aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-03-18 08:27:34 +0000
committerdos-reis <gdr@axiomatics.org>2010-03-18 08:27:34 +0000
commita7e82885a54b8d91c1978affc3f0e4668876041b (patch)
tree0f184e48fc2b3c48a2a57d90f77b22c8d19a2e52 /src
parente99018bd6a64e8d7d63a240a96ce213bb9e99b0f (diff)
downloadopen-axiom-a7e82885a54b8d91c1978affc3f0e4668876041b.tar.gz
* algebra/any.spad.pamphlet (Property): Tidy.
(Environment): Likewise. Rename setProperty! to putProperty. Rename setProperties! to putProperties.
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog6
-rw-r--r--src/algebra/any.spad.pamphlet35
-rw-r--r--src/share/algebra/browse.daase1932
-rw-r--r--src/share/algebra/category.daase7052
-rw-r--r--src/share/algebra/compress.daase2020
-rw-r--r--src/share/algebra/interp.daase9908
-rw-r--r--src/share/algebra/operation.daase32401
7 files changed, 27743 insertions, 25611 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index bd58ed47..868e2ebf 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,9 @@
+2010-03-18 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/any.spad.pamphlet (Property): Tidy.
+ (Environment): Likewise. Rename setProperty! to putProperty.
+ Rename setProperties! to putProperties.
+
2010-03-13 Gabriel Dos Reis <gdr@cs.tamu.edu>
* algebra/compiler.spad.pamphlet: Add more IR contructor
diff --git a/src/algebra/any.spad.pamphlet b/src/algebra/any.spad.pamphlet
index 52d579b4..e2dcca10 100644
--- a/src/algebra/any.spad.pamphlet
+++ b/src/algebra/any.spad.pamphlet
@@ -281,6 +281,7 @@ Property(): Public == Private where
Private == add
import Boolean
Rep == Pair(Identifier,SExpression)
+ inline Rep
name x ==
first rep x
@@ -326,6 +327,8 @@ Binding(): Public == Private where
Private == add
Rep == Pair(Identifier, List Property)
+ import List Property
+ inline Rep
name b ==
first rep b
@@ -444,25 +447,27 @@ import List Property
)abbrev domain ENV Environment
++ Author: Gabriel Dos Reis
++ Date Created: October 24, 2007
-++ Date Last Modified: January 19, 2008.
+++ Date Last Modified: March 18, 2010.
++ An `Environment' is a stack of scope.
Environment(): Public == Private where
Public == CoercibleTo(OutputForm) with
empty: () -> %
- ++ empty() constructs an empty environment
+ ++ \spad{empty()} constructs an empty environment
scopes: % -> List Scope
- ++ scopes(e) returns the stack of scopes in environment e.
+ ++ \spad{scopes(e)} returns the stack of scopes in environment \spad{e}.
getProperty: (Identifier, Identifier, %) -> Maybe SExpression
- ++ getProperty(n,p,e) returns the value of property with name `p'
- ++ for the symbol `n' in environment `e'. Otherwise, `nothing.
- setProperty!: (Identifier, Identifier, SExpression, %) -> %
- ++ setProperty!(n,p,v,e) binds the property `(p,v)' to `n'
- ++ in the topmost scope of `e'.
+ ++ \spad{getProperty(n,p,e)} returns the value of property with name
+ ++ \spad{p} for the symbol \spad{n} in environment \spad{e}.
+ ++ Otherwise, \spad{nothing}.
+ putProperty: (Identifier, Identifier, SExpression, %) -> %
+ ++ \spad{putProperty(n,p,v,e)} binds the property \spad{(p,v)} to
+ ++ \spad{n} in the topmost scope of \spad{e}.
getProperties: (Identifier, %) -> List Property
- ++ getBinding(n,e) returns the list of properties of `n' in e.
- setProperties!: (Identifier, List Property, %) -> %
- ++ setBinding!(n,props,e) set the list of properties of `n'
- ++ to `props' in `e'.
+ ++ \spad{getBinding(n,e)} returns the list of properties of
+ ++ \spad{n} in \spad{e}.
+ putProperties: (Identifier, List Property, %) -> %
+ ++ \spad{putProperties(n,props,e)} set the list of properties of
+ ++ \spad{n} to \spad{props} in \spad{e}.
currentEnv: () -> %
++ the current normal environment in effect.
interactiveEnv: () -> %
@@ -483,13 +488,13 @@ Environment(): Public == Private where
null? v => nothing
just v
- setProperty!(n,p,v,e) ==
+ putProperty(n,p,v,e) ==
put(n,p,v,e)$Lisp
getProperties(n,e) ==
getProplist(n,e)$Lisp
- setProperties!(n,b,e) ==
+ putProperties(n,b,e) ==
addBinding(n,b,e)$Lisp
currentEnv() ==
@@ -511,7 +516,7 @@ Environment(): Public == Private where
<<license>>=
--Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
--All rights reserved.
---Copyright (C) 2007-2009, Gabriel Dos Reis.
+--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index bb9886f6..5b5d10f2 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2265897 . 3477490099)
+(2267553 . 3477887507)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -56,10 +56,10 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3514)
+(-32 R -1649)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
+((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -88,14 +88,14 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3514 UP UPUP -3032)
+(-40 -1649 UP UPUP -1864)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3978 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
-(-41 R -3514)
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2718 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2718 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2718 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2718 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+(-41 R -1649)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -435) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,24 +106,24 @@ NIL
((|HasCategory| |#1| (QUOTE (-310))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
-((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))))
+((-4440 |has| |#1| (-561)) (-4438 . T) (-4437 . T))
+((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4443 . T) (-4444 . T))
-((-3978 (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855)))) (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))))
+((-2718 (-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|))))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
+((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
@@ -132,19 +132,19 @@ NIL
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
((-4440 . T))
NIL
-(-51)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-51 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
-(-52 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-52)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
(-53 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3514)
+(-54 |Base| R -1649)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -160,131 +160,131 @@ NIL
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
((-4443 . T) (-4444 . T))
NIL
-(-58 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-59 A B)
+(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
+(-59 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4444 . T) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-61 -3991)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-62 -3991)
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-61 -3458)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -3991)
+(-62 -3458)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-64 -3991)
+(-63 -3458)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -3991)
+(-64 -3458)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-65 -3458)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3991)
+(-66 -3458)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3991)
+(-67 -3458)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3991)
+(-68 -3458)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3991)
+(-69 -3458)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3991)
+(-70 -3458)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3991)
+(-71 -3458)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3991)
+(-72 -3458)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3991)
+(-73 -3458)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3991)
+(-74 -3458)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3991)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-76 |nameOne| |nameTwo| |nameThree|)
+(-75 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 |nameOne| |nameTwo| |nameThree|)
+(-76 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3991)
+(-77 -3458)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3991)
+(-78 -3458)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-79 -3458)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3991)
+(-80 -3458)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3991)
+(-81 -3458)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3991)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
-NIL
-NIL
-(-83 -3991)
+(-82 -3458)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3991)
+(-83 -3458)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3991)
+(-84 -3458)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3991)
+(-85 -3458)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3991)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+(-86 -3458)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3991)
+(-87 -3458)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-89 -3991)
+(-88 -3458)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+NIL
+NIL
+(-89 -3458)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -295,7 +295,7 @@ NIL
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -343,7 +343,7 @@ NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -363,7 +363,7 @@ NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2718 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -371,7 +371,7 @@ NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
((-4438 . T) (-4437 . T))
@@ -380,15 +380,15 @@ NIL
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-113)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
+(-113 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-114 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
+(-114)
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -3514 UP)
+(-115 -1649 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -399,7 +399,7 @@ NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-916))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-116 |#1|) (QUOTE (-1026))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-3978 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-1157))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-116 |#1|) (QUOTE (-915))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-116 |#1|) (QUOTE (-1028))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-2718 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-1158))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -415,7 +415,7 @@ NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
@@ -435,19 +435,19 @@ NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-128)
+((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
+((-4444 . T) (-4443 . T))
+((-2718 (-12 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129)))))) (-2718 (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-129) (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1106)))) (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))))
+(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
-(-129)
-((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128)))))) (-3978 (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-128) (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107)))) (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))))
(-130)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -468,12 +468,12 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4445 "*") . T))
NIL
-(-135 |minix| -3039 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-135 |minix| -2358 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -3039 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-136 |minix| -2358 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-137)
@@ -495,7 +495,7 @@ NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4443 . T) (-4433 . T) (-4444 . T))
-((-3978 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-2718 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -520,7 +520,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4440 . T))
NIL
-(-148 -3514 UP UPUP)
+(-148 -1649 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -531,7 +531,7 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasAttribute| |#1| (QUOTE -4443)))
+((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasAttribute| |#1| (QUOTE -4443)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3514)
+(-158 R -1649)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -573,11 +573,11 @@ NIL
NIL
NIL
(-161)
-((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
+((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
(-162)
-((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
+((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
(-163)
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4439)) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4439)) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4436 -3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-1466 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-4436 -2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-3016 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -604,14 +604,14 @@ NIL
((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution.")))
NIL
NIL
-(-169 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4436 -3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-1466 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1026))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#1| (QUOTE -4442)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-354)))))
-(-170 R S)
+(-169 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
+(-170 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4436 -2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-3016 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#1| (QUOTE -4442)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-353)))))
(-171 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -647,7 +647,7 @@ NIL
(-179 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-952 |#2|) (LIST (QUOTE -892) (|devaluate| |#1|))))
+((|HasCategory| (-958 |#2|) (LIST (QUOTE -892) (|devaluate| |#1|))))
(-180 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -664,27 +664,27 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-184)
-((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
+(-184 C)
+((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
-(-185 C)
-((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
+(-185 S)
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
-(-186 S)
+(-186)
((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-187)
-((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
(-188)
-((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
+((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-189 R -3514)
+(-189 R -1649)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -792,28 +792,28 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-216 -3514 UP UPUP R)
+(-216 -1649 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-217 -3514 FP)
+(-217 -1649 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-218)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2718 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-219)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-220 R -3514)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-220 R -1649)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-221 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-222 R1 R2)
@@ -823,18 +823,18 @@ NIL
(-223 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-224 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4440 . T))
NIL
-(-225 R -3514)
+(-225 R -1649)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-226)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3006 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-227)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -843,7 +843,7 @@ NIL
(-228 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-229 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
@@ -880,22 +880,22 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-238 S -3039 R)
+(-238 S -2358 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))))
-(-239 -3039 R)
+((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1106))))
+(-239 -2358 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
NIL
-(-240 -3039 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
-(-241 -3039 A B)
+(-240 -2358 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
+(-241 -2358 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2718 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2718 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-242)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -915,15 +915,15 @@ NIL
(-246 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-247 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-248 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-561)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-249)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -938,64 +938,64 @@ NIL
NIL
(-252 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4440 -3978 (-3274 (|has| |#4| (-1055)) (|has| |#4| (-234))) (-3274 (|has| |#4| (-1055)) (|has| |#4| (-906 (-1183)))) (|has| |#4| (-6 -4440)) (-3274 (|has| |#4| (-1055)) (|has| |#4| (-644 (-551))))) (-4437 |has| |#4| (-1055)) (-4438 |has| |#4| (-1055)) ((-4445 "*") |has| |#4| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-367))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-3978 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#4| (QUOTE -4440)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
+((-4440 -2718 (-1739 (|has| |#4| (-1055)) (|has| |#4| (-234))) (-1739 (|has| |#4| (-1055)) (|has| |#4| (-906 (-1183)))) (|has| |#4| (-6 -4440)) (-1739 (|has| |#4| (-1055)) (|has| |#4| (-644 (-569))))) (-4437 |has| |#4| (-1055)) (-4438 |has| |#4| (-1055)) ((-4445 "*") |has| |#4| (-173)) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#4| (QUOTE (-367))) (-2718 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1055)))) (-2718 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-2718 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-2718 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-173)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-234)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-798)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-853)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1055))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-2718 (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-731))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2718 (|HasCategory| |#4| (QUOTE (-1055))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1106)))) (-2718 (|HasAttribute| |#4| (QUOTE -4440)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
(-253 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4440 -3978 (-3274 (|has| |#3| (-1055)) (|has| |#3| (-234))) (-3274 (|has| |#3| (-1055)) (|has| |#3| (-906 (-1183)))) (|has| |#3| (-6 -4440)) (-3274 (|has| |#3| (-1055)) (|has| |#3| (-644 (-551))))) (-4437 |has| |#3| (-1055)) (-4438 |has| |#3| (-1055)) ((-4445 "*") |has| |#3| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-367))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3978 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#3| (QUOTE -4440)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+((-4440 -2718 (-1739 (|has| |#3| (-1055)) (|has| |#3| (-234))) (-1739 (|has| |#3| (-1055)) (|has| |#3| (-906 (-1183)))) (|has| |#3| (-6 -4440)) (-1739 (|has| |#3| (-1055)) (|has| |#3| (-644 (-569))))) (-4437 |has| |#3| (-1055)) (-4438 |has| |#3| (-1055)) ((-4445 "*") |has| |#3| (-173)) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#3| (QUOTE (-367))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2718 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-731))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2718 (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (-2718 (|HasAttribute| |#3| (QUOTE -4440)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
(-254 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-234))))
(-255 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-256 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
((-4443 . T) (-4444 . T))
NIL
-(-257 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
-NIL
-NIL
-(-258)
+(-257)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-259 R |Ex|)
+(-258 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-260)
+(-259)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-261 R)
+(-260 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
+(-261 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+NIL
+NIL
(-262)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
(-263)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
-NIL
-NIL
-(-264)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-265 S)
+(-264 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
+(-265)
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+NIL
+NIL
(-266 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-267 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1040,11 +1040,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-278 R -3514)
+(-278 R -1649)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-279 R -3514)
+(-279 R -1649)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1067,7 +1067,7 @@ NIL
(-284 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))))
+((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))))
(-285 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
((-4444 . T))
@@ -1096,7 +1096,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-292 S R |Mod| -2225 -3959 |exactQuo|)
+(-292 S R |Mod| -3594 -3719 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
@@ -1105,65 +1105,65 @@ NIL
((-4436 . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-294)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
(-295 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-296 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4440 -3978 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4437 |has| |#1| (-1055)) (-4438 |has| |#1| (-1055)))
-((|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-301))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-731))))
-(-297 S R)
+(-296 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
+(-297 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4440 -2718 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4437 |has| |#1| (-1055)) (-4438 |has| |#1| (-1055)))
+((|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-305))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-2718 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-731))))
(-298 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-299)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-300 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
-NIL
-((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-1055))))
-(-301)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
-NIL
-NIL
-(-302 -3514 S)
+(-300 -1649 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-303 E -3514)
+(-301 E -1649)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-304)
-((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
+(-302 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-305 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+(-303)
+((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-306)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+(-304 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1055))))
+(-305)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-(-307 R1)
+NIL
+(-306 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-308 R1 R2)
+(-307 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
+(-308)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+NIL
+NIL
(-309 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
@@ -1180,35 +1180,35 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-313 -3514)
+(-313 -1649)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
(-314)
-((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
+((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
(-315)
-((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
+((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
(-316 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1026))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-3978 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1157))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145)))))
-(-317 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4440 -3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (-12 (|has| |#1| (-562)) (-3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (|has| |#1| (-1055)) (|has| |#1| (-478)))) (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4435 |has| |#1| (-562)))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-318 R S)
+((|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1028))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-2718 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1158))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145)))) (-2718 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145))))))
+(-317 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-319 R FE)
+(-318 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-320 R -3514)
+(-319 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4440 -2718 (-1739 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-12 (|has| |#1| (-561)) (-2718 (-1739 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (|has| |#1| (-1055)) (|has| |#1| (-478)))) (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-561)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-561)) (-4435 |has| |#1| (-561)))
+((-2718 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-21))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2718 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2718 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2718 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2718 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
+(-320 R -1649)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1218,8 +1218,8 @@ NIL
NIL
(-322 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-323 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1231,7 +1231,7 @@ NIL
(-325 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
((-4438 . T) (-4437 . T))
-((|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-797))))
+((|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-797))))
(-326 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1243,20 +1243,20 @@ NIL
(-328 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))))
+((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))))
(-329 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-330 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-331 S -3514)
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-331 S -1649)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
-(-332 -3514)
+(-332 -1649)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
@@ -1276,22 +1276,22 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-337 -3514 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
-(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-337 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-339 S -3514 UP UPUP R)
+(-338 S -1649 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-340 -3514 UP UPUP R)
+(-339 -1649 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
+(-340 -1649 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
(-341 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
@@ -1303,87 +1303,87 @@ NIL
(-343 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-382)))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-344 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
-(-345 S -3514 UP UPUP)
+((|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-383)))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
+(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
+NIL
+(-345 S -1649 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-367))))
-(-346 -3514 UP UPUP)
+(-346 -1649 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-348 |p| |extdeg|)
+(-347 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
-(-349 GF |defpol|)
+((-2718 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
+(-348 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
-(-350 GF |extdeg|)
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-349 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
-(-351 GF)
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-350 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-352 F1 GF F2)
+(-351 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-353 S)
+(-352 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-354)
+(-353)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-355 R UP -3514)
+(-354 R UP -1649)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-356 |p| |extdeg|)
+(-355 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
-(-357 GF |uni|)
+((-2718 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
+(-356 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
-(-358 GF |extdeg|)
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-357 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-358 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-2718 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
(-359 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
-(-360 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-360 -1649 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-361 -3514 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+(-361 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-362 -3514 FP FPP)
+(-362 -1649 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-363 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2718 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-364 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1400,21 +1400,21 @@ NIL
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-368 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-368 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-369 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-369 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-370 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-562))))
+((|HasCategory| |#2| (QUOTE (-561))))
(-371 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
+((-4440 |has| |#1| (-561)) (-4438 . T) (-4437 . T))
NIL
(-372)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1428,18 +1428,18 @@ NIL
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
((-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-375 A S)
+(-375 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+NIL
+NIL
+(-376 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))))
-(-376 S)
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))))
+(-377 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
((-4443 . T))
NIL
-(-377 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
-NIL
-NIL
(-378 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4438 . T) (-4437 . T))
@@ -1451,43 +1451,43 @@ NIL
(-380 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))))
+((|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))))
(-381 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
((-4440 . T))
NIL
-(-382)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4426 . T) (-4434 . T) (-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-NIL
-(-383 |Par|)
+(-382 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
+(-383)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4426 . T) (-4434 . T) (-3006 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+NIL
(-384 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-385 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4438 . T) (-4437 . T))
-((|HasCategory| |#1| (QUOTE (-173))))
-(-386 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-173))))
+(-386 R |Basis|)
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((-4438 . T) (-4437 . T))
+NIL
(-387)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-388 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4438 . T) (-4437 . T))
-NIL
-(-389)
+(-388)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
+(-389 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-4438 . T) (-4437 . T))
+((|HasCategory| |#1| (QUOTE (-173))))
(-390 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
@@ -1516,35 +1516,35 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-397 -3514 UP UPUP R)
+(-397 -1649 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-398)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-398 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-399 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-399)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
(-400)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
(-401)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
(-402)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-403 -3991 |returnType| -1513 |symbols|)
+(-403 -3458 |returnType| -3856 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-404 -3514 UP)
+(-404 -1649 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1566,121 +1566,121 @@ NIL
((|HasAttribute| |#1| (QUOTE -4426)) (|HasAttribute| |#1| (QUOTE -4434)))
(-409)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3006 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-410 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-1227))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
-(-411 R S)
+(-410 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-412 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4430 -12 (|has| |#1| (-6 -4441)) (|has| |#1| (-457)) (|has| |#1| (-6 -4430))) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-825))) (-3978 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-413 A B)
+(-411 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-414 S R UP)
+(-412 S)
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((-4430 -12 (|has| |#1| (-6 -4441)) (|has| |#1| (-457)) (|has| |#1| (-6 -4430))) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-825))) (-2718 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4430)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-413 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-415 R UP)
+(-414 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-416 A S)
+(-415 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-417 S)
+((|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))
+(-416 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-418 R -3514 UP A)
-((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4440 . T))
-NIL
-(-419 R1 F1 U1 A1 R2 F2 U2 A2)
+(-417 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-420 R -3514 UP A |ibasis|)
+(-418 R -1649 UP A)
+((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
+((-4440 . T))
+NIL
+(-419 R -1649 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1044) (|devaluate| |#2|))))
-(-421 AR R AS S)
+(-420 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-422 S R)
+(-421 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-423 R)
+(-422 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
+((-4440 |has| |#1| (-561)) (-4438 . T) (-4437 . T))
NIL
+(-423 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1227))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
(-424 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-425 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+(-425 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))))
-(-426 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4440 -3978 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4435 |has| |#1| (-562)))
NIL
-(-427 R A S B)
+(-426 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-428 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-427 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-429 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
+(-428 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-430 A S)
+(-429 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
-(-431 S)
+(-430 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
((-4443 . T) (-4433 . T) (-4444 . T))
NIL
-(-432 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
-NIL
-NIL
-(-433 R -3514)
+(-431 R -1649)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-434 R E)
+(-432 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4430 -12 (|has| |#1| (-6 -4430)) (|has| |#2| (-6 -4430))) (-4437 . T) (-4438 . T) (-4440 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#2| (QUOTE -4430))))
-(-435 R -3514)
+(-433 R -1649)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-436 R -3514)
+(-434 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+NIL
+((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
+(-435 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4440 -2718 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-561)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-561)) (-4435 |has| |#1| (-561)))
+NIL
+(-436 R -1649)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-437 R -3514)
+(-437 R -1649)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-438 R -3514)
+(-438 R -1649)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1688,16 +1688,16 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-440 R -3514 UP)
+(-440 R -1649 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-48)))))
(-441)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
(-442)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
(-443 |f|)
@@ -1720,7 +1720,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-448 R UP -3514)
+(-448 R UP -1649)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1737,21 +1737,21 @@ NIL
NIL
NIL
(-452 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-367))))
-(-453 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-454 |Dom| |Expon| |VarSet| |Dpol|)
+(-453 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-455 |Dom| |Expon| |VarSet| |Dpol|)
+(-454 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
+(-455 |Dom| |Expon| |VarSet| |Dpol|)
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-367))))
(-456 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
@@ -1762,12 +1762,12 @@ NIL
NIL
(-458 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4440 |has| (-412 (-952 |#1|)) (-562)) (-4438 . T) (-4437 . T))
-((|HasCategory| (-412 (-952 |#1|)) (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-412 (-952 |#1|)) (QUOTE (-562))))
+((-4440 |has| (-412 (-958 |#1|)) (-561)) (-4438 . T) (-4437 . T))
+((|HasCategory| (-412 (-958 |#1|)) (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-412 (-958 |#1|)) (QUOTE (-561))))
(-459 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-561)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-460 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1803,7 +1803,7 @@ NIL
(-468 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-469 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1832,7 +1832,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-476 |lv| -3514 R)
+(-476 |lv| -1649 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1846,16 +1846,16 @@ NIL
NIL
(-479 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-480 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))))
(-481 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-482)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
@@ -1867,19 +1867,19 @@ NIL
(-484 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-485)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-486 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-487 -3039 S)
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-561)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-487 -2358 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-2718 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2718 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2718 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-488)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
@@ -1887,8 +1887,8 @@ NIL
(-489 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-490 -3514 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-490 -1649 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1899,11 +1899,11 @@ NIL
(-492)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2718 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-493 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))))
+((|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))
(-494 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1924,34 +1924,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-499 -3514 UP |AlExt| |AlPol|)
+(-499 -1649 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-500)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
+((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
(-501 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-502 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-503 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-504 R UP -3514)
+(-504 R UP -1649)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-505 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
(-506 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1964,7 +1964,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-509 -3514 |Expon| |VarSet| |DPoly|)
+(-509 -1649 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-1183)))))
@@ -1989,15 +1989,15 @@ NIL
NIL
NIL
(-515 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-516 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-517 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
(-518 S A B)
@@ -2015,7 +2015,7 @@ NIL
(-521 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-522)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -2023,15 +2023,15 @@ NIL
(-523 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
+((-2718 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
(-524 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-525 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-526 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -2043,7 +2043,7 @@ NIL
(-528 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-529)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2076,7 +2076,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-537 K -3514 |Par|)
+(-537 K -1649 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2088,19 +2088,19 @@ NIL
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-540)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-540 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-541 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-541)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
(-542 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-543 K -3514 |Par|)
+(-543 K -1649 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2121,7 +2121,7 @@ NIL
NIL
NIL
(-548 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
(-549 S)
@@ -2133,94 +2133,94 @@ NIL
((-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-551)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4425 . T) (-4431 . T) (-4435 . T) (-4430 . T) (-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-NIL
-(-552)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-553)
+(-552)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-554)
+(-553)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-555)
+(-554)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-556 |Key| |Entry| |addDom|)
+(-555 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
-(-557 R -3514)
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-556 R -1649)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-558 R0 -3514 UP UPUP R)
+(-557 R0 -1649 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-559)
+(-558)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-560 R)
+(-559 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4219 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3006 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-561 S)
+(-560 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-562)
+(-561)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-563 R -3514)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-562 R -1649)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-564 I)
+(-563 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-565)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-564)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-566 R -3514 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-565 R -1649 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -663) (|devaluate| |#2|))))
-(-567)
+((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|))))
+(-566)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-568 -3514 UP UPUP R)
+(-567 -1649 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-569 -3514 UP)
+(-568 -1649 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
+(-569)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
+((-4425 . T) (-4431 . T) (-4435 . T) (-4430 . T) (-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+NIL
(-570)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-571 R -3514 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-571 R -1649 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -663) (|devaluate| |#2|))))
-(-572 R -3514)
+((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|))))
+(-572 R -1649)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-635)))))
-(-573 -3514 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-634)))))
+(-573 -1649 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2228,27 +2228,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-575 -3514)
+(-575 -1649)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-576 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4219 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3006 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-577)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-578 R -3514)
+(-578 R -1649)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-635))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-562))))
-(-579 -3514 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-634))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-561))))
+(-579 -1649 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-580 R -3514)
+(-580 R -1649)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2280,22 +2280,22 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-588 -3514)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4438 . T) (-4437 . T))
-((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))))
-(-589 E -3514)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
+(-588 R -1649)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-590 R -3514)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-589 E -1649)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-591)
+(-590)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
+(-591 -1649)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4438 . T) (-4437 . T))
+((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))))
(-592 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2323,19 +2323,19 @@ NIL
(-598 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-3978 (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-2718 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-2718 (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-599 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-600 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (|HasCategory| (-551) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))) (|HasCategory| (-569) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))))
(-601 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-562))))
+(((-4445 "*") |has| |#1| (-561)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-561))))
(-602)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
@@ -2348,7 +2348,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-605 R -3514 FG)
+(-605 R -1649 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2359,11 +2359,11 @@ NIL
(-607 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-608 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4443)) (|HasCategory| |#3| (QUOTE (-1107))))
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4443)) (|HasCategory| |#3| (QUOTE (-1106))))
(-609 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2378,12 +2378,12 @@ NIL
NIL
(-612 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4440 -3978 (-3274 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4438 . T) (-4437 . T))
-((-3978 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
+((-4440 -2718 (-1739 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4438 . T) (-4437 . T))
+((-2718 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-613 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-614 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2392,14 +2392,14 @@ NIL
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
((-4444 . T))
NIL
-(-616 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
-NIL
-((|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))))
-(-617 R S)
+(-616 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
+(-617 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
+NIL
+((|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))))
(-618 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2408,7 +2408,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-620 -3514 UP)
+(-620 -1649 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2424,26 +2424,26 @@ NIL
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-624 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-853))))
-(-625 S R)
+(-624 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-626 R)
+(-625 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
((-4440 . T))
NIL
-(-627 R -3514)
+(-626 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-853))))
+(-627 R -1649)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-628 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
((-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4436 . T) (-4440 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
(-629 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2464,46 +2464,46 @@ NIL
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-634 R -3514)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-634)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-635)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-635 R -1649)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-636 |lv| -3514)
+(-636 |lv| -1649)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-637)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-1165) (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107))))
-(-638 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4440 -3978 (-3274 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4438 . T) (-4437 . T))
-((-3978 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
-(-639 S R)
+((-12 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2179) (QUOTE (-52))))))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-1165) (QUOTE (-855))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (QUOTE (-1106))))
+(-638 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-640 R)
+(-639 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4438 . T) (-4437 . T))
NIL
+(-640 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4440 -2718 (-1739 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4438 . T) (-4437 . T))
+((-2718 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-641 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
(-642 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-643 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3764 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
+((-1728 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
(-644 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4440 . T))
@@ -2512,22 +2512,22 @@ NIL
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-646 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-647 A B)
-((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
+(-646 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-648 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+(-647 A B)
+((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-649 A B C)
+(-648 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
+(-649 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
+((-4444 . T) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-650 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2539,7 +2539,7 @@ NIL
(-652 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-653 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2556,50 +2556,50 @@ NIL
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-657 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4438 . T) (-4437 . T))
-((|HasCategory| |#1| (QUOTE (-796))))
-(-658 R -3514 L)
+(-657 R -1649 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-659 A -2838)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-660 A)
+(-658 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-661 A M)
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+(-659 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-662 S A)
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+(-660 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-663 A)
+(-661 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-664 -3514 UP)
+(-662 -1649 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-665 A L)
+(-663 A -3731)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+(-664 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-666 S)
+(-665 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-667)
+(-666)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
+(-667 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4438 . T) (-4437 . T))
+((|HasCategory| |#1| (QUOTE (-796))))
(-668 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
@@ -2616,12 +2616,12 @@ NIL
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
((-4444 . T) (-4443 . T))
NIL
-(-672 -3514 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-672 -1649)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-673 -3514)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-673 -1649 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-674 R E OV P)
@@ -2631,7 +2631,7 @@ NIL
(-675 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4440 . T) (-4443 . T) (-4437 . T) (-4438 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))) (-3978 (|HasAttribute| |#2| (QUOTE (-4445 #1#))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))) (-2718 (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
(-676)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2651,7 +2651,7 @@ NIL
(-680 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-681)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2688,26 +2688,26 @@ NIL
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-690 S R |Row| |Col|)
+(-690 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+NIL
+NIL
+(-691 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))))
-(-691 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))))
+(-692 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
((-4443 . T) (-4444 . T))
NIL
-(-692 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
-NIL
-NIL
(-693 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))))
+((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))))
(-694 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4443 . T) (-4444 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-695 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2716,7 +2716,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-697 S -3514 FLAF FLAS)
+(-697 S -1649 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2726,8 +2726,8 @@ NIL
NIL
(-699)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4436 . T) (-4441 |has| (-704) (-367)) (-4435 |has| (-704) (-367)) (-1466 . T) (-4442 |has| (-704) (-6 -4442)) (-4439 |has| (-704) (-6 -4439)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-3978 (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-234))) (-3978 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3978 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-704) (QUOTE (-1026))) (|HasCategory| (-704) (QUOTE (-1208))) (-12 (|HasCategory| (-704) (QUOTE (-1008))) (|HasCategory| (-704) (QUOTE (-1208)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-1208)))) (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-562)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| (-704) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-562))) (|HasAttribute| (-704) (QUOTE -4442)) (|HasAttribute| (-704) (QUOTE -4439)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-145)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-354)))))
+((-4436 . T) (-4441 |has| (-704) (-367)) (-4435 |has| (-704) (-367)) (-3016 . T) (-4442 |has| (-704) (-6 -4442)) (-4439 |has| (-704) (-6 -4439)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-2718 (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-234))) (-2718 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2718 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-704) (QUOTE (-1028))) (|HasCategory| (-704) (QUOTE (-1208))) (-12 (|HasCategory| (-704) (QUOTE (-1008))) (|HasCategory| (-704) (QUOTE (-1208)))) (-2718 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (-2718 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-1208)))) (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915))) (-2718 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367)))) (-2718 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-561)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-561))) (|HasAttribute| (-704) (QUOTE -4442)) (|HasAttribute| (-704) (QUOTE -4439)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-145)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-353)))))
(-700 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
((-4444 . T))
@@ -2737,16 +2737,16 @@ NIL
NIL
NIL
(-702)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-703 OV E -3514 PG)
+(-703 OV E -1649 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-704)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3006 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-705 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2772,7 +2772,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-711 S -3090 I)
+(-711 S -2749 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2792,14 +2792,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-716 R |Mod| -2225 -3959 |exactQuo|)
+(-716 R |Mod| -3594 -3719 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-717 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-718 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2808,7 +2808,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-720 R |Mod| -2225 -3959 |exactQuo|)
+(-720 R |Mod| -3594 -3719 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4440 . T))
NIL
@@ -2820,7 +2820,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4438 . T) (-4437 . T))
NIL
-(-723 -3514)
+(-723 -1649)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
((-4440 . T))
NIL
@@ -2843,7 +2843,7 @@ NIL
(-728 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))))
+((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))))
(-729 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
((-4436 |has| |#1| (-367)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
@@ -2856,7 +2856,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-732 -3514 UP)
+(-732 -1649 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2874,8 +2874,8 @@ NIL
NIL
(-736 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-561)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-737 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2893,13 +2893,13 @@ NIL
((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-855))))
(-741 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4443 . T) (-4433 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-742 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
((-4433 . T) (-4444 . T))
NIL
+(-742 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4443 . T) (-4433 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-743)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2910,7 +2910,7 @@ NIL
NIL
(-745 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-746 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -3008,11 +3008,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-770 -3514)
+(-770 -1649)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-771 P -3514)
+(-771 P -1649)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3020,7 +3020,7 @@ NIL
NIL
NIL
NIL
-(-773 UP -3514)
+(-773 UP -1649)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3036,16 +3036,16 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4445 "*") . T))
NIL
-(-777 R -3514)
+(-777 R -1649)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-778)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-778 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-779 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-779)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
(-780 R |PolR| E |PolE|)
@@ -3056,7 +3056,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-782 -3514 |ExtF| |SUEx| |ExtP| |n|)
+(-782 -1649 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3070,20 +3070,20 @@ NIL
NIL
(-785 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (QUOTE (-550)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551))))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -997) (QUOTE (-551))))))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-786 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-787 R S)
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1728 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1728 (|HasCategory| |#1| (QUOTE (-550)))) (-1728 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1728 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569))))) (-1728 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1728 (|HasCategory| |#1| (LIST (QUOTE -998) (QUOTE (-569))))))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-786 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
+(-787 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-788 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
(-789 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
((-4444 . T) (-4443 . T))
@@ -3091,7 +3091,7 @@ NIL
(-790 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-173))))
+((-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-173))))
(-791)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3128,43 +3128,43 @@ NIL
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-800 S R)
+(-800)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+NIL
+NIL
+(-801 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
-(-801 R)
+((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
+(-802 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-802)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+(-803 -2718 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-803 R)
+(-804 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-3978 (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-804 -3978 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
-NIL
-NIL
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-2718 (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
(-805)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-806 R -3514 L)
+(-806 R -1649 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-807 R -3514)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-807 R -1649)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-808)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-809 R -3514)
+(-809 R -1649)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3172,11 +3172,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-811 -3514 UP UPUP R)
+(-811 -1649 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-812 -3514 UP L LQ)
+(-812 -1649 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3184,38 +3184,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-814 -3514 UP L LQ)
+(-814 -1649 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-815 -3514 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-815 -1649 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-816 -3514 L UP A LO)
+(-816 -1649 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-817 -3514 UP)
+(-817 -1649 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-818 -3514 LO)
+(-818 -1649 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-819 -3514 LODO)
+(-819 -1649 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-820 -3039 S |f|)
+(-820 -2358 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-2718 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2718 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2718 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-821 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-822 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
(((-4445 "*") |has| |#2| (-367)) (-4436 |has| |#2| (-367)) (-4441 |has| |#2| (-367)) (-4435 |has| |#2| (-367)) (-4440 . T) (-4438 . T) (-4437 . T))
@@ -3233,37 +3233,37 @@ NIL
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-826)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-827)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-828)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-829)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
(-830)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-831)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
-NIL
-NIL
-(-832 R)
+(-831 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-833 P R)
+(-832 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-234))))
+(-833)
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+NIL
+NIL
(-834)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
@@ -3276,26 +3276,26 @@ NIL
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-837 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4440 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
-(-838 R S)
+(-837 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-839 R)
-((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-840 A S)
+(-838 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4440 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2718 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
+(-839 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-841 S)
+(-840 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
+(-841 R)
+((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-842)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
@@ -3316,19 +3316,19 @@ NIL
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-847 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4440 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
-(-848 R S)
+(-847 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
+(-848 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4440 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2718 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
(-849)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-850 -3039 S)
+(-850 -2358 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3355,7 +3355,7 @@ NIL
(-856 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))))
+((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))))
(-857 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
((-4437 . T) (-4438 . T) (-4440 . T))
@@ -3363,19 +3363,19 @@ NIL
(-858 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))))
-(-859 R |sigma| -3683)
+((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))))
+(-859 R |sigma| -3011)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-860 |x| R |sigma| -3683)
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+(-860 |x| R |sigma| -3011)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367))))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367))))
(-861 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
(-862)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
@@ -3384,24 +3384,24 @@ NIL
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-864)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+(-864 S)
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-865 S)
+(-865)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-866)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
+((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
(-867)
-((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-868)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
(-869 |VariableList|)
@@ -3425,25 +3425,25 @@ NIL
NIL
NIL
(-874 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-875 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-876 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-874 |#1|) (QUOTE (-916))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-147))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-874 |#1|) (QUOTE (-1026))) (|HasCategory| (-874 |#1|) (QUOTE (-825))) (-3978 (|HasCategory| (-874 |#1|) (QUOTE (-825))) (|HasCategory| (-874 |#1|) (QUOTE (-855)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-1157))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-234))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -874) (|devaluate| |#1|)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (QUOTE (-310))) (|HasCategory| (-874 |#1|) (QUOTE (-550))) (|HasCategory| (-874 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (|HasCategory| (-874 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-875 |#1|) (QUOTE (-915))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-875 |#1|) (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-147))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-875 |#1|) (QUOTE (-1028))) (|HasCategory| (-875 |#1|) (QUOTE (-825))) (-2718 (|HasCategory| (-875 |#1|) (QUOTE (-825))) (|HasCategory| (-875 |#1|) (QUOTE (-855)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-1158))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-234))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -875) (|devaluate| |#1|)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (QUOTE (-310))) (|HasCategory| (-875 |#1|) (QUOTE (-550))) (|HasCategory| (-875 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (|HasCategory| (-875 |#1|) (QUOTE (-145)))))
(-877 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-825))) (-3978 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-825))) (-2718 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-878 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107)))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))))
(-879)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3503,27 +3503,27 @@ NIL
(-893 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3764 (|HasCategory| |#2| (QUOTE (-1055)))) (-3764 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (-3764 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))
-(-894 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
-NIL
-NIL
-(-895 R A B)
+((-12 (-1728 (|HasCategory| |#2| (QUOTE (-1055)))) (-1728 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (-1728 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))
+(-894 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-896 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+(-895 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-897 R -3090)
+(-896 R -2749)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-898 R S)
+(-897 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
+(-898 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+NIL
+NIL
(-899 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
@@ -3536,7 +3536,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-902 UP -3514)
+(-902 UP -1649)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3559,44 +3559,44 @@ NIL
(-907 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-908 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4440 . T))
-((-3978 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
-(-909 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-908 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-910 S)
+(-909 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
((-4440 . T))
NIL
-(-911 S)
+(-910 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-912 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
-(-913 R E |VarSet| S)
+(-911 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4440 . T))
+((-2718 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
+(-912 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-914 R S)
+(-913 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-915 S)
+(-914 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-145))))
-(-916)
+(-915)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-917 R0 -3514 UP UPUP R)
+(-916 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
+(-917 R0 -1649 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3624,63 +3624,63 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-924 -3514)
+(-924 -1649)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-925)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4445 "*") . T))
-NIL
-(-926 R)
+(-925 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-927)
+(-926)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-928 |xx| -3514)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
-NIL
+(-927)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4445 "*") . T))
NIL
-(-929 -3514 P)
+(-928 -1649 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
+(-929 |xx| -1649)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
+NIL
+NIL
(-930 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-931)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
+(-931 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-932 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-932)
+((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
(-933)
-((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
(-934)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-935)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-935 R -1649)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-936 R -3514)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-936)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
(-937 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-938 S R -3514)
+(-938 S R -1649)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3700,12 +3700,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -892) (|devaluate| |#1|))))
-(-943 -3090)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
+(-943 R -1649 -2749)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-944 R -3514 -3090)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-944 -2749)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
(-945 S R Q)
@@ -3727,7 +3727,7 @@ NIL
(-949 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-950 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3736,35 +3736,35 @@ NIL
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-853))))
-(-952 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1183) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-953 R S)
+(-952 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-954 |x| R)
+(-953 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-955 S R E |VarSet|)
+(-954 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))))
-(-956 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-915))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
+(-955 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
-(-957 E V R P -3514)
+(-956 E V R P -1649)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-958 E |Vars| R P S)
+(-957 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-959 E V R P -3514)
+(-958 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-959 E V R P -1649)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-457))))
@@ -3776,42 +3776,42 @@ NIL
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-962 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4441)))
-(-963 R L)
+(-962 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-964 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-965 A B)
+(-963 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-966)
+(-964 S)
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((-4444 . T) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-965)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-967 -3514)
+(-966 -1649)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-968 I)
+(-967 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-969)
+(-968)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
+(-969 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4441)))
(-970 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
((-4440 -12 (|has| |#2| (-478)) (|has| |#1| (-478))))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
(-971)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3846,7 +3846,7 @@ NIL
NIL
(-979 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-980)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3855,7 +3855,7 @@ NIL
(-981 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-562))))
+((|HasCategory| |#2| (QUOTE (-561))))
(-982 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
((-4443 . T))
@@ -3892,18 +3892,18 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-991 K R UP -3514)
+(-991 K R UP -1649)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-992 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
-NIL
-((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310)))))
-(-993 |vl| |nv|)
+(-992 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
+(-993 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
+NIL
+((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310)))))
(-994 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
@@ -3912,18 +3912,18 @@ NIL
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-996 A S)
+(-996 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+NIL
+NIL
+(-997 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1157))))
-(-997 S)
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1158))))
+(-998 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-998 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
-NIL
-NIL
(-999 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
@@ -3936,26 +3936,26 @@ NIL
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
((-4443 . T) (-4444 . T))
NIL
-(-1002 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4436 |has| |#1| (-293)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))))
-(-1003 S R)
+(-1002 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293))))
-(-1004 R)
+((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293))))
+(-1003 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
((-4436 |has| |#1| (-293)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1005 QR R QS S)
+(-1004 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
+(-1005 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4436 |has| |#1| (-293)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))))
(-1006 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1007 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3964,14 +3964,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1009 -3514 UP UPUP |radicnd| |n|)
+(-1009 -1649 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3978 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2718 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2718 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2718 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2718 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
(-1010 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2718 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-1011)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3991,7 +3991,7 @@ NIL
(-1015 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-1107))))
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-1106))))
(-1016 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -4004,19 +4004,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4436 . T) (-4441 . T) (-4435 . T) (-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4440 . T))
NIL
-(-1019 R -3514)
+(-1019 R -1649)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1020 R -3514)
+(-1020 R -1649)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1021 -3514 UP)
+(-1021 -1649 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1022 -3514 UP)
+(-1022 -1649 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4032,16 +4032,16 @@ NIL
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1026)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-1026 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
(-1027 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1028 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-1028)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
(-1029)
@@ -4051,35 +4051,35 @@ NIL
(-1030 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4436 . T) (-4441 . T) (-4435 . T) (-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4440 . T))
-((-3978 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-1031 -3514 L)
+((-2718 (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (QUOTE (-569)))))
+(-1031 -1649 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
(-1032 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1107))))
+((|HasCategory| |#1| (QUOTE (-1106))))
(-1033 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-1034)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
-(-1035 R)
+((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1034 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
((|HasAttribute| |#1| (QUOTE (-4445 "*"))))
-(-1036 R)
+(-1035 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))))
-(-1037 S)
+(-1036 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
+(-1037)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
+NIL
(-1038 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
@@ -4088,14 +4088,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1040 -3514 |Expon| |VarSet| |FPol| |LFPol|)
+(-1040 -1649 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1041)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2179) (QUOTE (-52))))))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1042)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4112,22 +4112,22 @@ NIL
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1046 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
-NIL
-NIL
-(-1047)
+(-1046)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1048 UP)
+(-1047 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1049 R)
+(-1048 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
+(-1049 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+NIL
+NIL
(-1050 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
@@ -4139,7 +4139,7 @@ NIL
(-1052 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1107))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1106))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1053)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
@@ -4152,7 +4152,7 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4440 . T))
NIL
-(-1056 |xx| -3514)
+(-1056 |xx| -1649)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4163,7 +4163,7 @@ NIL
(-1058 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-310))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-562))) (|HasCategory| |#4| (QUOTE (-173))))
+((|HasCategory| |#4| (QUOTE (-310))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-561))) (|HasCategory| |#4| (QUOTE (-173))))
(-1059 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
((-4443 . T) (-4438 . T) (-4437 . T))
@@ -4171,7 +4171,7 @@ NIL
(-1060 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4443 . T) (-4438 . T) (-4437 . T))
-((|HasCategory| |#3| (QUOTE (-173))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))))
+((|HasCategory| |#3| (QUOTE (-173))) (-2718 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-561))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1061 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4180,14 +4180,14 @@ NIL
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1063)
-((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
+(-1063 S T$)
+((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
+((|HasCategory| |#1| (QUOTE (-1106))))
+(-1064)
+((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
-(-1064 S T$)
-((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1107))))
(-1065 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
@@ -4207,14 +4207,14 @@ NIL
(-1069)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2179) (QUOTE (-52))))))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (QUOTE (-1106))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1070 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -997) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1183)))))
+((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -998) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1183)))))
(-1071 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1072)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4252,15 +4252,15 @@ NIL
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1081 |Base| R -3514)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1081 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1082 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1082 |Base| R -1649)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1083 |Base| R -3514)
+(-1083 |Base| R -1649)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4268,14 +4268,14 @@ NIL
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1085 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4436 |has| |#1| (-367)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-354)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
-(-1086 UP SAE UPA)
+(-1085 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
+(-1086 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4436 |has| |#1| (-367)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-353)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
(-1087 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4302,36 +4302,36 @@ NIL
NIL
(-1093 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1094 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1095 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1107))))
-(-1096 R S)
+(-1095 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-853))))
-(-1097)
+(-1096)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
+(-1097 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
+NIL
+NIL
(-1098 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1095 |#1|) (QUOTE (-1107))))
-(-1099 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
+((|HasCategory| (-1100 |#1|) (QUOTE (-1106))))
+(-1099 S)
+((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
(-1100 S)
-((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-NIL
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1106))))
(-1101 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
@@ -4340,36 +4340,36 @@ NIL
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1103 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4443 . T) (-4433 . T) (-4444 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-1104 A S)
+(-1103 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1105 S)
+(-1104 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
((-4433 . T))
NIL
-(-1106 S)
+(-1105 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1107)
+(-1106)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1108 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1107 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1109)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1108 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
+((-4443 . T) (-4433 . T) (-4444 . T))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-1109 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1110 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1110)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
(-1111 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4407,25 +4407,25 @@ NIL
(-1119 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4437 |has| |#3| (-1055)) (-4438 |has| |#3| (-1055)) (-4440 |has| |#3| (-6 -4440)) ((-4445 "*") |has| |#3| (-173)) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-367))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3978 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (-3978 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+((-2718 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#3| (QUOTE (-367))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2718 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2718 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-234))) (-2718 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1106)))) (|HasCategory| |#3| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106))))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2718 (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
(-1120 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-457))))
(-1121)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1122)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+(-1122 R -1649)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1123 R -3514)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1123 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1124 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1124)
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
(-1125)
@@ -4454,17 +4454,17 @@ NIL
NIL
(-1131 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1132 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
(-1133 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
((-4444 . T) (-4443 . T))
NIL
-(-1134 UP -3514)
+(-1134 UP -1649)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4519,11 +4519,11 @@ NIL
(-1147 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107))) (-3978 (-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106))) (-2718 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106))))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1148 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4440 . T) (-4432 |has| |#2| (-6 (-4445 "*"))) (-4443 . T) (-4437 . T) (-4438 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-367))) (-2718 (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
(-1149 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
@@ -4539,11 +4539,11 @@ NIL
(-1152 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1153 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1154 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4555,13 +4555,13 @@ NIL
(-1156 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))))
(-1157)
-((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
+((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
(-1158)
-((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
+((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
(-1159 |Coef|)
@@ -4569,21 +4569,21 @@ NIL
NIL
NIL
(-1160 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-1161 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1162 A B)
+(-1161 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1163 A B C)
+(-1162 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
+(-1163 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1164)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
((-4444 . T) (-4443 . T))
@@ -4591,21 +4591,21 @@ NIL
(-1165)
NIL
((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-2718 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-1166 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#1|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (QUOTE (-1106))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1167 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
+((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
(-1168 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1169 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1170 R UP)
@@ -4626,9 +4626,9 @@ NIL
NIL
(-1174 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4445 "*") -3978 (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4436 -3978 (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1175 R -3514)
+(((-4445 "*") -2718 (-1739 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1739 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-915)))) (-4436 -2718 (-1739 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1739 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-915)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1175 R -1649)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4636,26 +4636,26 @@ NIL
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1177 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1178 R S)
+(-1177 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1179 E OV R P)
+(-1178 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
+(-1179 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1180 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1181 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1182)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4670,10 +4670,10 @@ NIL
NIL
(-1185 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-977) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4441)))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| (-977) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasAttribute| |#1| (QUOTE -4441)))
(-1186)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
(-1187)
@@ -4708,14 +4708,14 @@ NIL
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1195 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4443 . T) (-4444 . T))
-((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
-(-1196 S)
+(-1195 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
+(-1196 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1963) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2179) (|devaluate| |#2|)))))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2718 (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-1197 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
@@ -4736,12 +4736,12 @@ NIL
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1202)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-1202 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1203 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1203)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
(-1204)
@@ -4767,7 +4767,7 @@ NIL
(-1209 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1210 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4776,7 +4776,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1212 R -3514)
+(-1212 R -1649)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4784,22 +4784,22 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1214 R -3514)
+(-1214 R -1649)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -892) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -892) (|devaluate| |#1|)))))
-(-1215 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
-(-1216 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -892) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -892) (|devaluate| |#1|)))))
+(-1215 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-372))))
-(-1217 R E V P)
+(-1216 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
((-4444 . T) (-4443 . T))
NIL
+(-1217 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
(-1218 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4811,17 +4811,17 @@ NIL
(-1220 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-1221 -3514)
+((|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1221 -1649)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1222)
-((|constructor| (NIL "The fundamental Type.")))
+((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
(-1223)
-((|constructor| (NIL "This domain represents a type AST.")))
+((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
(-1224 S)
@@ -4856,118 +4856,118 @@ NIL
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1232 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4445 "*") -3978 (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4436 -3978 (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1233 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1232 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1234 |Coef|)
+(-1233 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1235 S |Coef| UTS)
+(-1234 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-1236 |Coef| UTS)
+(-1235 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1237 |Coef| UTS)
+(-1236 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-3978 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-2718 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-2718 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-915))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
+(-1237 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4445 "*") -2718 (-1739 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1739 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-915)))) (-4436 -2718 (-1739 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1739 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-915)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1238 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1239 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1107))))
-(-1240 R S)
+(-1239 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-853))))
-(-1241 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4439 |has| |#2| (-367)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1242 |x| R |y| S)
+(-1240 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1106))))
+(-1241 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1243 R Q UP)
+(-1242 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1244 R UP)
+(-1243 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1245 R UP)
+(-1244 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1246 R U)
+(-1245 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1247 S R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(-1246 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-561)) (-4439 |has| |#2| (-367)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2718 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2718 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2718 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1247 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1157))))
-(-1248 R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
-(-1249 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+(-1248 S R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1158))))
+(-1249 R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1250 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4396) (LIST (|devaluate| |#2|) (QUOTE (-1183))))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2388) (LIST (|devaluate| |#2|) (QUOTE (-1183))))))
(-1251 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1252 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1253 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1254 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1253 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1255 |Coef|)
+(-1254 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1256 S |Coef| ULS)
+(-1255 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1257 |Coef| ULS)
+(-1256 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1258 |Coef| ULS)
+(-1257 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
+(-1258 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2718 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1259 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4445 "*") |has| (-1253 |#2| |#3| |#4|) (-173)) (-4436 |has| (-1253 |#2| |#3| |#4|) (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-173))) (-3978 (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-562))))
+(((-4445 "*") |has| (-1258 |#2| |#3| |#4|) (-173)) (-4436 |has| (-1258 |#2| |#3| |#4|) (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-173))) (-2718 (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-561))))
(-1260 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4976,30 +4976,30 @@ NIL
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1262 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1263 |Coef1| |Coef2| UTS1 UTS2)
+(-1262 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1264 S |Coef|)
+(-1263 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasSignature| |#2| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4262) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))))
-(-1265 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasSignature| |#2| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3313) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))))
+(-1264 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
+(-1265 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-561)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2718 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -2388) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2718 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3865) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1266 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1267 -3514 UP L UTS)
+(-1267 -1649 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-562))))
+((|HasCategory| |#1| (QUOTE (-561))))
(-1268)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
@@ -5016,28 +5016,28 @@ NIL
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
((-4444 . T) (-4443 . T))
NIL
-(-1272 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4444 . T) (-4443 . T))
-((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-1273 A B)
+(-1272 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
+(-1273 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4444 . T) (-4443 . T))
+((-2718 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2718 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2718 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-1274)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1275)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
(-1276)
-((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
+((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
(-1277)
-((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1278)
@@ -5056,7 +5056,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1282 K R UP -3514)
+(-1282 K R UP -1649)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -5075,7 +5075,7 @@ NIL
(-1286 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
((-4444 . T) (-4443 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-1287 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
((-4437 . T) (-4438 . T) (-4440 . T))
@@ -5088,30 +5088,30 @@ NIL
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1290 S -3514)
+(-1290 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
+NIL
+(-1291 S -1649)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1291 -3514)
+(-1292 -1649)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-1292 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
-NIL
(-1293 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasAttribute| |#2| (QUOTE -4436)))
-(-1294 R)
-((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4436 |has| |#1| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4436)))
-(-1295 |vl| R)
+((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasAttribute| |#2| (QUOTE -4436)))
+(-1294 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
+(-1295 R)
+((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
+((-4436 |has| |#1| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4436)))
(-1296 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
((-4440 . T) (-4441 |has| |#1| (-6 -4441)) (-4436 |has| |#1| (-6 -4436)) (-4438 . T) (-4437 . T))
@@ -5152,4 +5152,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2265877 2265882 2265887 2265892) (-2 NIL 2265857 2265862 2265867 2265872) (-1 NIL 2265837 2265842 2265847 2265852) (0 NIL 2265817 2265822 2265827 2265832) (-1301 "ZMOD.spad" 2265626 2265639 2265755 2265812) (-1300 "ZLINDEP.spad" 2264692 2264703 2265616 2265621) (-1299 "ZDSOLVE.spad" 2254637 2254659 2264682 2264687) (-1298 "YSTREAM.spad" 2254132 2254143 2254627 2254632) (-1297 "XRPOLY.spad" 2253352 2253372 2253988 2254057) (-1296 "XPR.spad" 2251147 2251160 2253070 2253169) (-1295 "XPOLYC.spad" 2250466 2250482 2251073 2251142) (-1294 "XPOLY.spad" 2250021 2250032 2250322 2250391) (-1293 "XPBWPOLY.spad" 2248458 2248478 2249801 2249870) (-1292 "XFALG.spad" 2245506 2245522 2248384 2248453) (-1291 "XF.spad" 2243969 2243984 2245408 2245501) (-1290 "XF.spad" 2242412 2242429 2243853 2243858) (-1289 "XEXPPKG.spad" 2241663 2241689 2242402 2242407) (-1288 "XDPOLY.spad" 2241277 2241293 2241519 2241588) (-1287 "XALG.spad" 2240937 2240948 2241233 2241272) (-1286 "WUTSET.spad" 2236776 2236793 2240583 2240610) (-1285 "WP.spad" 2235975 2236019 2236634 2236701) (-1284 "WHILEAST.spad" 2235773 2235782 2235965 2235970) (-1283 "WHEREAST.spad" 2235444 2235453 2235763 2235768) (-1282 "WFFINTBS.spad" 2233107 2233129 2235434 2235439) (-1281 "WEIER.spad" 2231329 2231340 2233097 2233102) (-1280 "VSPACE.spad" 2231002 2231013 2231297 2231324) (-1279 "VSPACE.spad" 2230695 2230708 2230992 2230997) (-1278 "VOID.spad" 2230372 2230381 2230685 2230690) (-1277 "VIEWDEF.spad" 2225573 2225582 2230362 2230367) (-1276 "VIEW3D.spad" 2209534 2209543 2225563 2225568) (-1275 "VIEW2D.spad" 2197425 2197434 2209524 2209529) (-1274 "VIEW.spad" 2195105 2195114 2197415 2197420) (-1273 "VECTOR2.spad" 2193744 2193757 2195095 2195100) (-1272 "VECTOR.spad" 2192418 2192429 2192669 2192696) (-1271 "VECTCAT.spad" 2190322 2190333 2192386 2192413) (-1270 "VECTCAT.spad" 2188033 2188046 2190099 2190104) (-1269 "VARIABLE.spad" 2187813 2187828 2188023 2188028) (-1268 "UTYPE.spad" 2187457 2187466 2187803 2187808) (-1267 "UTSODETL.spad" 2186752 2186776 2187413 2187418) (-1266 "UTSODE.spad" 2184968 2184988 2186742 2186747) (-1265 "UTSCAT.spad" 2182447 2182463 2184866 2184963) (-1264 "UTSCAT.spad" 2179570 2179588 2181991 2181996) (-1263 "UTS2.spad" 2179165 2179200 2179560 2179565) (-1262 "UTS.spad" 2173969 2173997 2177632 2177729) (-1261 "URAGG.spad" 2168642 2168653 2173959 2173964) (-1260 "URAGG.spad" 2163279 2163292 2168598 2168603) (-1259 "UPXSSING.spad" 2160924 2160950 2162360 2162493) (-1258 "UPXSCONS.spad" 2158683 2158703 2159056 2159205) (-1257 "UPXSCCA.spad" 2157254 2157274 2158529 2158678) (-1256 "UPXSCCA.spad" 2155967 2155989 2157244 2157249) (-1255 "UPXSCAT.spad" 2154556 2154572 2155813 2155962) (-1254 "UPXS2.spad" 2154099 2154152 2154546 2154551) (-1253 "UPXS.spad" 2151253 2151281 2152231 2152380) (-1252 "UPSQFREE.spad" 2149668 2149682 2151243 2151248) (-1251 "UPSCAT.spad" 2147279 2147303 2149566 2149663) (-1250 "UPSCAT.spad" 2144596 2144622 2146885 2146890) (-1249 "UPOLYC2.spad" 2144067 2144086 2144586 2144591) (-1248 "UPOLYC.spad" 2139107 2139118 2143909 2144062) (-1247 "UPOLYC.spad" 2134039 2134052 2138843 2138848) (-1246 "UPMP.spad" 2132939 2132952 2134029 2134034) (-1245 "UPDIVP.spad" 2132504 2132518 2132929 2132934) (-1244 "UPDECOMP.spad" 2130749 2130763 2132494 2132499) (-1243 "UPCDEN.spad" 2129958 2129974 2130739 2130744) (-1242 "UP2.spad" 2129322 2129343 2129948 2129953) (-1241 "UP.spad" 2126521 2126536 2126908 2127061) (-1240 "UNISEG2.spad" 2126018 2126031 2126477 2126482) (-1239 "UNISEG.spad" 2125371 2125382 2125937 2125942) (-1238 "UNIFACT.spad" 2124474 2124486 2125361 2125366) (-1237 "ULSCONS.spad" 2116870 2116890 2117240 2117389) (-1236 "ULSCCAT.spad" 2114607 2114627 2116716 2116865) (-1235 "ULSCCAT.spad" 2112452 2112474 2114563 2114568) (-1234 "ULSCAT.spad" 2110684 2110700 2112298 2112447) (-1233 "ULS2.spad" 2110198 2110251 2110674 2110679) (-1232 "ULS.spad" 2100756 2100784 2101843 2102272) (-1231 "UINT8.spad" 2100633 2100642 2100746 2100751) (-1230 "UINT64.spad" 2100509 2100518 2100623 2100628) (-1229 "UINT32.spad" 2100385 2100394 2100499 2100504) (-1228 "UINT16.spad" 2100261 2100270 2100375 2100380) (-1227 "UFD.spad" 2099326 2099335 2100187 2100256) (-1226 "UFD.spad" 2098453 2098464 2099316 2099321) (-1225 "UDVO.spad" 2097334 2097343 2098443 2098448) (-1224 "UDPO.spad" 2094827 2094838 2097290 2097295) (-1223 "TYPEAST.spad" 2094746 2094755 2094817 2094822) (-1222 "TYPE.spad" 2094678 2094687 2094736 2094741) (-1221 "TWOFACT.spad" 2093330 2093345 2094668 2094673) (-1220 "TUPLE.spad" 2092816 2092827 2093229 2093234) (-1219 "TUBETOOL.spad" 2089683 2089692 2092806 2092811) (-1218 "TUBE.spad" 2088330 2088347 2089673 2089678) (-1217 "TSETCAT.spad" 2075457 2075474 2088298 2088325) (-1216 "TSETCAT.spad" 2062570 2062589 2075413 2075418) (-1215 "TS.spad" 2061169 2061185 2062135 2062232) (-1214 "TRMANIP.spad" 2055535 2055552 2060875 2060880) (-1213 "TRIMAT.spad" 2054498 2054523 2055525 2055530) (-1212 "TRIGMNIP.spad" 2053025 2053042 2054488 2054493) (-1211 "TRIGCAT.spad" 2052537 2052546 2053015 2053020) (-1210 "TRIGCAT.spad" 2052047 2052058 2052527 2052532) (-1209 "TREE.spad" 2050622 2050633 2051654 2051681) (-1208 "TRANFUN.spad" 2050461 2050470 2050612 2050617) (-1207 "TRANFUN.spad" 2050298 2050309 2050451 2050456) (-1206 "TOPSP.spad" 2049972 2049981 2050288 2050293) (-1205 "TOOLSIGN.spad" 2049635 2049646 2049962 2049967) (-1204 "TEXTFILE.spad" 2048196 2048205 2049625 2049630) (-1203 "TEX1.spad" 2047752 2047763 2048186 2048191) (-1202 "TEX.spad" 2044898 2044907 2047742 2047747) (-1201 "TEMUTL.spad" 2044453 2044462 2044888 2044893) (-1200 "TBCMPPK.spad" 2042546 2042569 2044443 2044448) (-1199 "TBAGG.spad" 2041596 2041619 2042526 2042541) (-1198 "TBAGG.spad" 2040654 2040679 2041586 2041591) (-1197 "TANEXP.spad" 2040062 2040073 2040644 2040649) (-1196 "TABLEAU.spad" 2039543 2039554 2040052 2040057) (-1195 "TABLE.spad" 2037954 2037977 2038224 2038251) (-1194 "TABLBUMP.spad" 2034757 2034768 2037944 2037949) (-1193 "SYSTEM.spad" 2033985 2033994 2034747 2034752) (-1192 "SYSSOLP.spad" 2031468 2031479 2033975 2033980) (-1191 "SYSPTR.spad" 2031367 2031376 2031458 2031463) (-1190 "SYSNNI.spad" 2030549 2030560 2031357 2031362) (-1189 "SYSINT.spad" 2029953 2029964 2030539 2030544) (-1188 "SYNTAX.spad" 2026159 2026168 2029943 2029948) (-1187 "SYMTAB.spad" 2024227 2024236 2026149 2026154) (-1186 "SYMS.spad" 2020256 2020265 2024217 2024222) (-1185 "SYMPOLY.spad" 2019263 2019274 2019345 2019472) (-1184 "SYMFUNC.spad" 2018764 2018775 2019253 2019258) (-1183 "SYMBOL.spad" 2016267 2016276 2018754 2018759) (-1182 "SWITCH.spad" 2013038 2013047 2016257 2016262) (-1181 "SUTS.spad" 2009943 2009971 2011505 2011602) (-1180 "SUPXS.spad" 2007084 2007112 2008075 2008224) (-1179 "SUPFRACF.spad" 2006189 2006207 2007074 2007079) (-1178 "SUP2.spad" 2005581 2005594 2006179 2006184) (-1177 "SUP.spad" 2002394 2002405 2003167 2003320) (-1176 "SUMRF.spad" 2001368 2001379 2002384 2002389) (-1175 "SUMFS.spad" 2001005 2001022 2001358 2001363) (-1174 "SULS.spad" 1991550 1991578 1992650 1993079) (-1173 "SUCHTAST.spad" 1991319 1991328 1991540 1991545) (-1172 "SUCH.spad" 1991001 1991016 1991309 1991314) (-1171 "SUBSPACE.spad" 1983116 1983131 1990991 1990996) (-1170 "SUBRESP.spad" 1982286 1982300 1983072 1983077) (-1169 "STTFNC.spad" 1978754 1978770 1982276 1982281) (-1168 "STTF.spad" 1974853 1974869 1978744 1978749) (-1167 "STTAYLOR.spad" 1967488 1967499 1974734 1974739) (-1166 "STRTBL.spad" 1965993 1966010 1966142 1966169) (-1165 "STRING.spad" 1965402 1965411 1965416 1965443) (-1164 "STRICAT.spad" 1965190 1965199 1965370 1965397) (-1163 "STREAM3.spad" 1964763 1964778 1965180 1965185) (-1162 "STREAM2.spad" 1963891 1963904 1964753 1964758) (-1161 "STREAM1.spad" 1963597 1963608 1963881 1963886) (-1160 "STREAM.spad" 1960515 1960526 1963122 1963137) (-1159 "STINPROD.spad" 1959451 1959467 1960505 1960510) (-1158 "STEPAST.spad" 1958685 1958694 1959441 1959446) (-1157 "STEP.spad" 1957886 1957895 1958675 1958680) (-1156 "STBL.spad" 1956412 1956440 1956579 1956594) (-1155 "STAGG.spad" 1955487 1955498 1956402 1956407) (-1154 "STAGG.spad" 1954560 1954573 1955477 1955482) (-1153 "STACK.spad" 1953917 1953928 1954167 1954194) (-1152 "SREGSET.spad" 1951621 1951638 1953563 1953590) (-1151 "SRDCMPK.spad" 1950182 1950202 1951611 1951616) (-1150 "SRAGG.spad" 1945325 1945334 1950150 1950177) (-1149 "SRAGG.spad" 1940488 1940499 1945315 1945320) (-1148 "SQMATRIX.spad" 1938104 1938122 1939020 1939107) (-1147 "SPLTREE.spad" 1932656 1932669 1937540 1937567) (-1146 "SPLNODE.spad" 1929244 1929257 1932646 1932651) (-1145 "SPFCAT.spad" 1928053 1928062 1929234 1929239) (-1144 "SPECOUT.spad" 1926605 1926614 1928043 1928048) (-1143 "SPADXPT.spad" 1918200 1918209 1926595 1926600) (-1142 "spad-parser.spad" 1917665 1917674 1918190 1918195) (-1141 "SPADAST.spad" 1917366 1917375 1917655 1917660) (-1140 "SPACEC.spad" 1901565 1901576 1917356 1917361) (-1139 "SPACE3.spad" 1901341 1901352 1901555 1901560) (-1138 "SORTPAK.spad" 1900890 1900903 1901297 1901302) (-1137 "SOLVETRA.spad" 1898653 1898664 1900880 1900885) (-1136 "SOLVESER.spad" 1897181 1897192 1898643 1898648) (-1135 "SOLVERAD.spad" 1893207 1893218 1897171 1897176) (-1134 "SOLVEFOR.spad" 1891669 1891687 1893197 1893202) (-1133 "SNTSCAT.spad" 1891269 1891286 1891637 1891664) (-1132 "SMTS.spad" 1889541 1889567 1890834 1890931) (-1131 "SMP.spad" 1887016 1887036 1887406 1887533) (-1130 "SMITH.spad" 1885861 1885886 1887006 1887011) (-1129 "SMATCAT.spad" 1883971 1884001 1885805 1885856) (-1128 "SMATCAT.spad" 1882013 1882045 1883849 1883854) (-1127 "SKAGG.spad" 1880976 1880987 1881981 1882008) (-1126 "SINT.spad" 1879808 1879817 1880842 1880971) (-1125 "SIMPAN.spad" 1879536 1879545 1879798 1879803) (-1124 "SIGNRF.spad" 1878661 1878672 1879526 1879531) (-1123 "SIGNEF.spad" 1877947 1877964 1878651 1878656) (-1122 "SIGAST.spad" 1877332 1877341 1877937 1877942) (-1121 "SIG.spad" 1876662 1876671 1877322 1877327) (-1120 "SHP.spad" 1874590 1874605 1876618 1876623) (-1119 "SHDP.spad" 1864301 1864328 1864810 1864941) (-1118 "SGROUP.spad" 1863909 1863918 1864291 1864296) (-1117 "SGROUP.spad" 1863515 1863526 1863899 1863904) (-1116 "SGCF.spad" 1856678 1856687 1863505 1863510) (-1115 "SFRTCAT.spad" 1855608 1855625 1856646 1856673) (-1114 "SFRGCD.spad" 1854671 1854691 1855598 1855603) (-1113 "SFQCMPK.spad" 1849308 1849328 1854661 1854666) (-1112 "SFORT.spad" 1848747 1848761 1849298 1849303) (-1111 "SEXOF.spad" 1848590 1848630 1848737 1848742) (-1110 "SEXCAT.spad" 1846191 1846231 1848580 1848585) (-1109 "SEX.spad" 1846083 1846092 1846181 1846186) (-1108 "SETMN.spad" 1844535 1844552 1846073 1846078) (-1107 "SETCAT.spad" 1843857 1843866 1844525 1844530) (-1106 "SETCAT.spad" 1843177 1843188 1843847 1843852) (-1105 "SETAGG.spad" 1839726 1839737 1843157 1843172) (-1104 "SETAGG.spad" 1836283 1836296 1839716 1839721) (-1103 "SET.spad" 1834607 1834618 1835704 1835743) (-1102 "SEQAST.spad" 1834310 1834319 1834597 1834602) (-1101 "SEGXCAT.spad" 1833466 1833479 1834300 1834305) (-1100 "SEGCAT.spad" 1832391 1832402 1833456 1833461) (-1099 "SEGBIND2.spad" 1832089 1832102 1832381 1832386) (-1098 "SEGBIND.spad" 1831847 1831858 1832036 1832041) (-1097 "SEGAST.spad" 1831561 1831570 1831837 1831842) (-1096 "SEG2.spad" 1830996 1831009 1831517 1831522) (-1095 "SEG.spad" 1830809 1830820 1830915 1830920) (-1094 "SDVAR.spad" 1830085 1830096 1830799 1830804) (-1093 "SDPOL.spad" 1827511 1827522 1827802 1827929) (-1092 "SCPKG.spad" 1825600 1825611 1827501 1827506) (-1091 "SCOPE.spad" 1824753 1824762 1825590 1825595) (-1090 "SCACHE.spad" 1823449 1823460 1824743 1824748) (-1089 "SASTCAT.spad" 1823358 1823367 1823439 1823444) (-1088 "SAOS.spad" 1823230 1823239 1823348 1823353) (-1087 "SAERFFC.spad" 1822943 1822963 1823220 1823225) (-1086 "SAEFACT.spad" 1822644 1822664 1822933 1822938) (-1085 "SAE.spad" 1820819 1820835 1821430 1821565) (-1084 "RURPK.spad" 1818478 1818494 1820809 1820814) (-1083 "RULESET.spad" 1817931 1817955 1818468 1818473) (-1082 "RULECOLD.spad" 1817783 1817796 1817921 1817926) (-1081 "RULE.spad" 1816023 1816047 1817773 1817778) (-1080 "RTVALUE.spad" 1815758 1815767 1816013 1816018) (-1079 "RSTRCAST.spad" 1815475 1815484 1815748 1815753) (-1078 "RSETGCD.spad" 1811853 1811873 1815465 1815470) (-1077 "RSETCAT.spad" 1801789 1801806 1811821 1811848) (-1076 "RSETCAT.spad" 1791745 1791764 1801779 1801784) (-1075 "RSDCMPK.spad" 1790197 1790217 1791735 1791740) (-1074 "RRCC.spad" 1788581 1788611 1790187 1790192) (-1073 "RRCC.spad" 1786963 1786995 1788571 1788576) (-1072 "RPTAST.spad" 1786665 1786674 1786953 1786958) (-1071 "RPOLCAT.spad" 1766025 1766040 1786533 1786660) (-1070 "RPOLCAT.spad" 1745099 1745116 1765609 1765614) (-1069 "ROUTINE.spad" 1740982 1740991 1743746 1743773) (-1068 "ROMAN.spad" 1740310 1740319 1740848 1740977) (-1067 "ROIRC.spad" 1739390 1739422 1740300 1740305) (-1066 "RNS.spad" 1738293 1738302 1739292 1739385) (-1065 "RNS.spad" 1737282 1737293 1738283 1738288) (-1064 "RNGBIND.spad" 1736442 1736456 1737237 1737242) (-1063 "RNG.spad" 1736177 1736186 1736432 1736437) (-1062 "RMODULE.spad" 1735942 1735953 1736167 1736172) (-1061 "RMCAT2.spad" 1735362 1735419 1735932 1735937) (-1060 "RMATRIX.spad" 1734186 1734205 1734529 1734568) (-1059 "RMATCAT.spad" 1729765 1729796 1734142 1734181) (-1058 "RMATCAT.spad" 1725234 1725267 1729613 1729618) (-1057 "RLINSET.spad" 1724628 1724639 1725224 1725229) (-1056 "RINTERP.spad" 1724516 1724536 1724618 1724623) (-1055 "RING.spad" 1723986 1723995 1724496 1724511) (-1054 "RING.spad" 1723464 1723475 1723976 1723981) (-1053 "RIDIST.spad" 1722856 1722865 1723454 1723459) (-1052 "RGCHAIN.spad" 1721439 1721455 1722341 1722368) (-1051 "RGBCSPC.spad" 1721220 1721232 1721429 1721434) (-1050 "RGBCMDL.spad" 1720750 1720762 1721210 1721215) (-1049 "RFFACTOR.spad" 1720212 1720223 1720740 1720745) (-1048 "RFFACT.spad" 1719947 1719959 1720202 1720207) (-1047 "RFDIST.spad" 1718943 1718952 1719937 1719942) (-1046 "RF.spad" 1716585 1716596 1718933 1718938) (-1045 "RETSOL.spad" 1716004 1716017 1716575 1716580) (-1044 "RETRACT.spad" 1715432 1715443 1715994 1715999) (-1043 "RETRACT.spad" 1714858 1714871 1715422 1715427) (-1042 "RETAST.spad" 1714670 1714679 1714848 1714853) (-1041 "RESULT.spad" 1712730 1712739 1713317 1713344) (-1040 "RESRING.spad" 1712077 1712124 1712668 1712725) (-1039 "RESLATC.spad" 1711401 1711412 1712067 1712072) (-1038 "REPSQ.spad" 1711132 1711143 1711391 1711396) (-1037 "REPDB.spad" 1710839 1710850 1711122 1711127) (-1036 "REP2.spad" 1700497 1700508 1710681 1710686) (-1035 "REP1.spad" 1694693 1694704 1700447 1700452) (-1034 "REP.spad" 1692247 1692256 1694683 1694688) (-1033 "REGSET.spad" 1690044 1690061 1691893 1691920) (-1032 "REF.spad" 1689379 1689390 1689999 1690004) (-1031 "REDORDER.spad" 1688585 1688602 1689369 1689374) (-1030 "RECLOS.spad" 1687368 1687388 1688072 1688165) (-1029 "REALSOLV.spad" 1686508 1686517 1687358 1687363) (-1028 "REAL0Q.spad" 1683806 1683821 1686498 1686503) (-1027 "REAL0.spad" 1680650 1680665 1683796 1683801) (-1026 "REAL.spad" 1680522 1680531 1680640 1680645) (-1025 "RDUCEAST.spad" 1680243 1680252 1680512 1680517) (-1024 "RDIV.spad" 1679898 1679923 1680233 1680238) (-1023 "RDIST.spad" 1679465 1679476 1679888 1679893) (-1022 "RDETRS.spad" 1678329 1678347 1679455 1679460) (-1021 "RDETR.spad" 1676468 1676486 1678319 1678324) (-1020 "RDEEFS.spad" 1675567 1675584 1676458 1676463) (-1019 "RDEEF.spad" 1674577 1674594 1675557 1675562) (-1018 "RCFIELD.spad" 1671763 1671772 1674479 1674572) (-1017 "RCFIELD.spad" 1669035 1669046 1671753 1671758) (-1016 "RCAGG.spad" 1666963 1666974 1669025 1669030) (-1015 "RCAGG.spad" 1664818 1664831 1666882 1666887) (-1014 "RATRET.spad" 1664178 1664189 1664808 1664813) (-1013 "RATFACT.spad" 1663870 1663882 1664168 1664173) (-1012 "RANDSRC.spad" 1663189 1663198 1663860 1663865) (-1011 "RADUTIL.spad" 1662945 1662954 1663179 1663184) (-1010 "RADIX.spad" 1659866 1659880 1661412 1661505) (-1009 "RADFF.spad" 1658279 1658316 1658398 1658554) (-1008 "RADCAT.spad" 1657874 1657883 1658269 1658274) (-1007 "RADCAT.spad" 1657467 1657478 1657864 1657869) (-1006 "QUEUE.spad" 1656815 1656826 1657074 1657101) (-1005 "QUATCT2.spad" 1656435 1656454 1656805 1656810) (-1004 "QUATCAT.spad" 1654605 1654616 1656365 1656430) (-1003 "QUATCAT.spad" 1652526 1652539 1654288 1654293) (-1002 "QUAT.spad" 1651107 1651118 1651450 1651515) (-1001 "QUAGG.spad" 1649934 1649945 1651075 1651102) (-1000 "QQUTAST.spad" 1649702 1649711 1649924 1649929) (-999 "QFORM.spad" 1649167 1649181 1649692 1649697) (-998 "QFCAT2.spad" 1648860 1648876 1649157 1649162) (-997 "QFCAT.spad" 1647563 1647573 1648762 1648855) (-996 "QFCAT.spad" 1645857 1645869 1647058 1647063) (-995 "QEQUAT.spad" 1645416 1645424 1645847 1645852) (-994 "QCMPACK.spad" 1640163 1640182 1645406 1645411) (-993 "QALGSET2.spad" 1638159 1638177 1640153 1640158) (-992 "QALGSET.spad" 1634240 1634272 1638073 1638078) (-991 "PWFFINTB.spad" 1631656 1631677 1634230 1634235) (-990 "PUSHVAR.spad" 1630995 1631014 1631646 1631651) (-989 "PTRANFN.spad" 1627123 1627133 1630985 1630990) (-988 "PTPACK.spad" 1624211 1624221 1627113 1627118) (-987 "PTFUNC2.spad" 1624034 1624048 1624201 1624206) (-986 "PTCAT.spad" 1623289 1623299 1624002 1624029) (-985 "PSQFR.spad" 1622596 1622620 1623279 1623284) (-984 "PSEUDLIN.spad" 1621482 1621492 1622586 1622591) (-983 "PSETPK.spad" 1606915 1606931 1621360 1621365) (-982 "PSETCAT.spad" 1600835 1600858 1606895 1606910) (-981 "PSETCAT.spad" 1594729 1594754 1600791 1600796) (-980 "PSCURVE.spad" 1593712 1593720 1594719 1594724) (-979 "PSCAT.spad" 1592495 1592524 1593610 1593707) (-978 "PSCAT.spad" 1591368 1591399 1592485 1592490) (-977 "PRTITION.spad" 1590329 1590337 1591358 1591363) (-976 "PRTDAST.spad" 1590048 1590056 1590319 1590324) (-975 "PRS.spad" 1579610 1579627 1590004 1590009) (-974 "PRQAGG.spad" 1579045 1579055 1579578 1579605) (-973 "PROPLOG.spad" 1578344 1578352 1579035 1579040) (-972 "PROPFRML.spad" 1576912 1576923 1578334 1578339) (-971 "PROPERTY.spad" 1576400 1576408 1576902 1576907) (-970 "PRODUCT.spad" 1574082 1574094 1574366 1574421) (-969 "PRINT.spad" 1573834 1573842 1574072 1574077) (-968 "PRIMES.spad" 1572087 1572097 1573824 1573829) (-967 "PRIMELT.spad" 1570168 1570182 1572077 1572082) (-966 "PRIMCAT.spad" 1569795 1569803 1570158 1570163) (-965 "PRIMARR2.spad" 1568562 1568574 1569785 1569790) (-964 "PRIMARR.spad" 1567567 1567577 1567745 1567772) (-963 "PREASSOC.spad" 1566949 1566961 1567557 1567562) (-962 "PR.spad" 1565341 1565353 1566040 1566167) (-961 "PPCURVE.spad" 1564478 1564486 1565331 1565336) (-960 "PORTNUM.spad" 1564253 1564261 1564468 1564473) (-959 "POLYROOT.spad" 1563102 1563124 1564209 1564214) (-958 "POLYLIFT.spad" 1562367 1562390 1563092 1563097) (-957 "POLYCATQ.spad" 1560485 1560507 1562357 1562362) (-956 "POLYCAT.spad" 1553955 1553976 1560353 1560480) (-955 "POLYCAT.spad" 1546763 1546786 1553163 1553168) (-954 "POLY2UP.spad" 1546215 1546229 1546753 1546758) (-953 "POLY2.spad" 1545812 1545824 1546205 1546210) (-952 "POLY.spad" 1543147 1543157 1543662 1543789) (-951 "POLUTIL.spad" 1542088 1542117 1543103 1543108) (-950 "POLTOPOL.spad" 1540836 1540851 1542078 1542083) (-949 "POINT.spad" 1539674 1539684 1539761 1539788) (-948 "PNTHEORY.spad" 1536376 1536384 1539664 1539669) (-947 "PMTOOLS.spad" 1535151 1535165 1536366 1536371) (-946 "PMSYM.spad" 1534700 1534710 1535141 1535146) (-945 "PMQFCAT.spad" 1534291 1534305 1534690 1534695) (-944 "PMPREDFS.spad" 1533745 1533767 1534281 1534286) (-943 "PMPRED.spad" 1533224 1533238 1533735 1533740) (-942 "PMPLCAT.spad" 1532304 1532322 1533156 1533161) (-941 "PMLSAGG.spad" 1531889 1531903 1532294 1532299) (-940 "PMKERNEL.spad" 1531468 1531480 1531879 1531884) (-939 "PMINS.spad" 1531048 1531058 1531458 1531463) (-938 "PMFS.spad" 1530625 1530643 1531038 1531043) (-937 "PMDOWN.spad" 1529915 1529929 1530615 1530620) (-936 "PMASSFS.spad" 1528882 1528898 1529905 1529910) (-935 "PMASS.spad" 1527892 1527900 1528872 1528877) (-934 "PLOTTOOL.spad" 1527672 1527680 1527882 1527887) (-933 "PLOT3D.spad" 1524136 1524144 1527662 1527667) (-932 "PLOT1.spad" 1523293 1523303 1524126 1524131) (-931 "PLOT.spad" 1518216 1518224 1523283 1523288) (-930 "PLEQN.spad" 1505506 1505533 1518206 1518211) (-929 "PINTERPA.spad" 1505290 1505306 1505496 1505501) (-928 "PINTERP.spad" 1504912 1504931 1505280 1505285) (-927 "PID.spad" 1503882 1503890 1504838 1504907) (-926 "PICOERCE.spad" 1503539 1503549 1503872 1503877) (-925 "PI.spad" 1503148 1503156 1503513 1503534) (-924 "PGROEB.spad" 1501749 1501763 1503138 1503143) (-923 "PGE.spad" 1493366 1493374 1501739 1501744) (-922 "PGCD.spad" 1492256 1492273 1493356 1493361) (-921 "PFRPAC.spad" 1491405 1491415 1492246 1492251) (-920 "PFR.spad" 1488068 1488078 1491307 1491400) (-919 "PFOTOOLS.spad" 1487326 1487342 1488058 1488063) (-918 "PFOQ.spad" 1486696 1486714 1487316 1487321) (-917 "PFO.spad" 1486115 1486142 1486686 1486691) (-916 "PFECAT.spad" 1483797 1483805 1486041 1486110) (-915 "PFECAT.spad" 1481507 1481517 1483753 1483758) (-914 "PFBRU.spad" 1479395 1479407 1481497 1481502) (-913 "PFBR.spad" 1476955 1476978 1479385 1479390) (-912 "PF.spad" 1476529 1476541 1476760 1476853) (-911 "PERMGRP.spad" 1471291 1471301 1476519 1476524) (-910 "PERMCAT.spad" 1469849 1469859 1471271 1471286) (-909 "PERMAN.spad" 1468381 1468395 1469839 1469844) (-908 "PERM.spad" 1464066 1464076 1468211 1468226) (-907 "PENDTREE.spad" 1463407 1463417 1463695 1463700) (-906 "PDRING.spad" 1461958 1461968 1463387 1463402) (-905 "PDRING.spad" 1460517 1460529 1461948 1461953) (-904 "PDEPROB.spad" 1459532 1459540 1460507 1460512) (-903 "PDEPACK.spad" 1453572 1453580 1459522 1459527) (-902 "PDECOMP.spad" 1453042 1453059 1453562 1453567) (-901 "PDECAT.spad" 1451398 1451406 1453032 1453037) (-900 "PCOMP.spad" 1451251 1451264 1451388 1451393) (-899 "PBWLB.spad" 1449839 1449856 1451241 1451246) (-898 "PATTERN2.spad" 1449577 1449589 1449829 1449834) (-897 "PATTERN1.spad" 1447913 1447929 1449567 1449572) (-896 "PATTERN.spad" 1442452 1442462 1447903 1447908) (-895 "PATRES2.spad" 1442124 1442138 1442442 1442447) (-894 "PATRES.spad" 1439699 1439711 1442114 1442119) (-893 "PATMATCH.spad" 1437896 1437927 1439407 1439412) (-892 "PATMAB.spad" 1437325 1437335 1437886 1437891) (-891 "PATLRES.spad" 1436411 1436425 1437315 1437320) (-890 "PATAB.spad" 1436175 1436185 1436401 1436406) (-889 "PARTPERM.spad" 1433575 1433583 1436165 1436170) (-888 "PARSURF.spad" 1433009 1433037 1433565 1433570) (-887 "PARSU2.spad" 1432806 1432822 1432999 1433004) (-886 "script-parser.spad" 1432326 1432334 1432796 1432801) (-885 "PARSCURV.spad" 1431760 1431788 1432316 1432321) (-884 "PARSC2.spad" 1431551 1431567 1431750 1431755) (-883 "PARPCURV.spad" 1431013 1431041 1431541 1431546) (-882 "PARPC2.spad" 1430804 1430820 1431003 1431008) (-881 "PARAMAST.spad" 1429932 1429940 1430794 1430799) (-880 "PAN2EXPR.spad" 1429344 1429352 1429922 1429927) (-879 "PALETTE.spad" 1428314 1428322 1429334 1429339) (-878 "PAIR.spad" 1427301 1427314 1427902 1427907) (-877 "PADICRC.spad" 1424635 1424653 1425806 1425899) (-876 "PADICRAT.spad" 1422650 1422662 1422871 1422964) (-875 "PADICCT.spad" 1421199 1421211 1422576 1422645) (-874 "PADIC.spad" 1420894 1420906 1421125 1421194) (-873 "PADEPAC.spad" 1419583 1419602 1420884 1420889) (-872 "PADE.spad" 1418335 1418351 1419573 1419578) (-871 "OWP.spad" 1417575 1417605 1418193 1418260) (-870 "OVERSET.spad" 1417148 1417156 1417565 1417570) (-869 "OVAR.spad" 1416929 1416952 1417138 1417143) (-868 "OUTFORM.spad" 1406321 1406329 1416919 1416924) (-867 "OUTBFILE.spad" 1405739 1405747 1406311 1406316) (-866 "OUTBCON.spad" 1404745 1404753 1405729 1405734) (-865 "OUTBCON.spad" 1403749 1403759 1404735 1404740) (-864 "OUT.spad" 1402835 1402843 1403739 1403744) (-863 "OSI.spad" 1402310 1402318 1402825 1402830) (-862 "OSGROUP.spad" 1402228 1402236 1402300 1402305) (-861 "ORTHPOL.spad" 1400713 1400723 1402145 1402150) (-860 "OREUP.spad" 1400166 1400194 1400393 1400432) (-859 "ORESUP.spad" 1399467 1399491 1399846 1399885) (-858 "OREPCTO.spad" 1397324 1397336 1399387 1399392) (-857 "OREPCAT.spad" 1391471 1391481 1397280 1397319) (-856 "OREPCAT.spad" 1385508 1385520 1391319 1391324) (-855 "ORDSET.spad" 1384680 1384688 1385498 1385503) (-854 "ORDSET.spad" 1383850 1383860 1384670 1384675) (-853 "ORDRING.spad" 1383240 1383248 1383830 1383845) (-852 "ORDRING.spad" 1382638 1382648 1383230 1383235) (-851 "ORDMON.spad" 1382493 1382501 1382628 1382633) (-850 "ORDFUNS.spad" 1381625 1381641 1382483 1382488) (-849 "ORDFIN.spad" 1381445 1381453 1381615 1381620) (-848 "ORDCOMP2.spad" 1380738 1380750 1381435 1381440) (-847 "ORDCOMP.spad" 1379203 1379213 1380285 1380314) (-846 "OPTPROB.spad" 1377841 1377849 1379193 1379198) (-845 "OPTPACK.spad" 1370250 1370258 1377831 1377836) (-844 "OPTCAT.spad" 1367929 1367937 1370240 1370245) (-843 "OPSIG.spad" 1367583 1367591 1367919 1367924) (-842 "OPQUERY.spad" 1367132 1367140 1367573 1367578) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "OP.spad" 1365804 1365814 1365884 1365951) (-838 "ONECOMP2.spad" 1365228 1365240 1365794 1365799) (-837 "ONECOMP.spad" 1363973 1363983 1364775 1364804) (-836 "OMSERVER.spad" 1362979 1362987 1363963 1363968) (-835 "OMSAGG.spad" 1362767 1362777 1362935 1362974) (-834 "OMPKG.spad" 1361383 1361391 1362757 1362762) (-833 "OMLO.spad" 1360808 1360820 1361269 1361308) (-832 "OMEXPR.spad" 1360642 1360652 1360798 1360803) (-831 "OMERRK.spad" 1359676 1359684 1360632 1360637) (-830 "OMERR.spad" 1359221 1359229 1359666 1359671) (-829 "OMENC.spad" 1358565 1358573 1359211 1359216) (-828 "OMDEV.spad" 1352874 1352882 1358555 1358560) (-827 "OMCONN.spad" 1352283 1352291 1352864 1352869) (-826 "OM.spad" 1351256 1351264 1352273 1352278) (-825 "OINTDOM.spad" 1351019 1351027 1351182 1351251) (-824 "OFMONOID.spad" 1349142 1349152 1350975 1350980) (-823 "ODVAR.spad" 1348403 1348413 1349132 1349137) (-822 "ODR.spad" 1348047 1348073 1348215 1348364) (-821 "ODPOL.spad" 1345429 1345439 1345769 1345896) (-820 "ODP.spad" 1335276 1335296 1335649 1335780) (-819 "ODETOOLS.spad" 1333925 1333944 1335266 1335271) (-818 "ODESYS.spad" 1331619 1331636 1333915 1333920) (-817 "ODERTRIC.spad" 1327628 1327645 1331576 1331581) (-816 "ODERED.spad" 1327027 1327051 1327618 1327623) (-815 "ODERAT.spad" 1324644 1324661 1327017 1327022) (-814 "ODEPRRIC.spad" 1321681 1321703 1324634 1324639) (-813 "ODEPROB.spad" 1320938 1320946 1321671 1321676) (-812 "ODEPRIM.spad" 1318272 1318294 1320928 1320933) (-811 "ODEPAL.spad" 1317658 1317682 1318262 1318267) (-810 "ODEPACK.spad" 1304324 1304332 1317648 1317653) (-809 "ODEINT.spad" 1303759 1303775 1304314 1304319) (-808 "ODEIFTBL.spad" 1301154 1301162 1303749 1303754) (-807 "ODEEF.spad" 1296649 1296665 1301144 1301149) (-806 "ODECONST.spad" 1296186 1296204 1296639 1296644) (-805 "ODECAT.spad" 1294784 1294792 1296176 1296181) (-804 "OCTCT2.spad" 1294430 1294451 1294774 1294779) (-803 "OCT.spad" 1292566 1292576 1293280 1293319) (-802 "OCAMON.spad" 1292414 1292422 1292556 1292561) (-801 "OC.spad" 1290210 1290220 1292370 1292409) (-800 "OC.spad" 1287731 1287743 1289893 1289898) (-799 "OASGP.spad" 1287546 1287554 1287721 1287726) (-798 "OAMONS.spad" 1287068 1287076 1287536 1287541) (-797 "OAMON.spad" 1286929 1286937 1287058 1287063) (-796 "OAGROUP.spad" 1286791 1286799 1286919 1286924) (-795 "NUMTUBE.spad" 1286382 1286398 1286781 1286786) (-794 "NUMQUAD.spad" 1274358 1274366 1286372 1286377) (-793 "NUMODE.spad" 1265712 1265720 1274348 1274353) (-792 "NUMINT.spad" 1263278 1263286 1265702 1265707) (-791 "NUMFMT.spad" 1262118 1262126 1263268 1263273) (-790 "NUMERIC.spad" 1254232 1254242 1261923 1261928) (-789 "NTSCAT.spad" 1252740 1252756 1254200 1254227) (-788 "NTPOLFN.spad" 1252291 1252301 1252657 1252662) (-787 "NSUP2.spad" 1251683 1251695 1252281 1252286) (-786 "NSUP.spad" 1244729 1244739 1249269 1249422) (-785 "NSMP.spad" 1240960 1240979 1241268 1241395) (-784 "NREP.spad" 1239338 1239352 1240950 1240955) (-783 "NPCOEF.spad" 1238584 1238604 1239328 1239333) (-782 "NORMRETR.spad" 1238182 1238221 1238574 1238579) (-781 "NORMPK.spad" 1236084 1236103 1238172 1238177) (-780 "NORMMA.spad" 1235772 1235798 1236074 1236079) (-779 "NONE1.spad" 1235448 1235458 1235762 1235767) (-778 "NONE.spad" 1235189 1235197 1235438 1235443) (-777 "NODE1.spad" 1234676 1234692 1235179 1235184) (-776 "NNI.spad" 1233571 1233579 1234650 1234671) (-775 "NLINSOL.spad" 1232197 1232207 1233561 1233566) (-774 "NIPROB.spad" 1230738 1230746 1232187 1232192) (-773 "NFINTBAS.spad" 1228298 1228315 1230728 1230733) (-772 "NETCLT.spad" 1228272 1228283 1228288 1228293) (-771 "NCODIV.spad" 1226488 1226504 1228262 1228267) (-770 "NCNTFRAC.spad" 1226130 1226144 1226478 1226483) (-769 "NCEP.spad" 1224296 1224310 1226120 1226125) (-768 "NASRING.spad" 1223892 1223900 1224286 1224291) (-767 "NASRING.spad" 1223486 1223496 1223882 1223887) (-766 "NARNG.spad" 1222838 1222846 1223476 1223481) (-765 "NARNG.spad" 1222188 1222198 1222828 1222833) (-764 "NAGSP.spad" 1221265 1221273 1222178 1222183) (-763 "NAGS.spad" 1210926 1210934 1221255 1221260) (-762 "NAGF07.spad" 1209357 1209365 1210916 1210921) (-761 "NAGF04.spad" 1203759 1203767 1209347 1209352) (-760 "NAGF02.spad" 1197828 1197836 1203749 1203754) (-759 "NAGF01.spad" 1193589 1193597 1197818 1197823) (-758 "NAGE04.spad" 1187289 1187297 1193579 1193584) (-757 "NAGE02.spad" 1177949 1177957 1187279 1187284) (-756 "NAGE01.spad" 1173951 1173959 1177939 1177944) (-755 "NAGD03.spad" 1171955 1171963 1173941 1173946) (-754 "NAGD02.spad" 1164702 1164710 1171945 1171950) (-753 "NAGD01.spad" 1158995 1159003 1164692 1164697) (-752 "NAGC06.spad" 1154870 1154878 1158985 1158990) (-751 "NAGC05.spad" 1153371 1153379 1154860 1154865) (-750 "NAGC02.spad" 1152638 1152646 1153361 1153366) (-749 "NAALG.spad" 1152179 1152189 1152606 1152633) (-748 "NAALG.spad" 1151740 1151752 1152169 1152174) (-747 "MULTSQFR.spad" 1148698 1148715 1151730 1151735) (-746 "MULTFACT.spad" 1148081 1148098 1148688 1148693) (-745 "MTSCAT.spad" 1146175 1146196 1147979 1148076) (-744 "MTHING.spad" 1145834 1145844 1146165 1146170) (-743 "MSYSCMD.spad" 1145268 1145276 1145824 1145829) (-742 "MSETAGG.spad" 1145113 1145123 1145236 1145263) (-741 "MSET.spad" 1143071 1143081 1144819 1144858) (-740 "MRING.spad" 1140048 1140060 1142779 1142846) (-739 "MRF2.spad" 1139618 1139632 1140038 1140043) (-738 "MRATFAC.spad" 1139164 1139181 1139608 1139613) (-737 "MPRFF.spad" 1137204 1137223 1139154 1139159) (-736 "MPOLY.spad" 1134675 1134690 1135034 1135161) (-735 "MPCPF.spad" 1133939 1133958 1134665 1134670) (-734 "MPC3.spad" 1133756 1133796 1133929 1133934) (-733 "MPC2.spad" 1133402 1133435 1133746 1133751) (-732 "MONOTOOL.spad" 1131753 1131770 1133392 1133397) (-731 "MONOID.spad" 1131072 1131080 1131743 1131748) (-730 "MONOID.spad" 1130389 1130399 1131062 1131067) (-729 "MONOGEN.spad" 1129137 1129150 1130249 1130384) (-728 "MONOGEN.spad" 1127907 1127922 1129021 1129026) (-727 "MONADWU.spad" 1125937 1125945 1127897 1127902) (-726 "MONADWU.spad" 1123965 1123975 1125927 1125932) (-725 "MONAD.spad" 1123125 1123133 1123955 1123960) (-724 "MONAD.spad" 1122283 1122293 1123115 1123120) (-723 "MOEBIUS.spad" 1121019 1121033 1122263 1122278) (-722 "MODULE.spad" 1120889 1120899 1120987 1121014) (-721 "MODULE.spad" 1120779 1120791 1120879 1120884) (-720 "MODRING.spad" 1120114 1120153 1120759 1120774) (-719 "MODOP.spad" 1118779 1118791 1119936 1120003) (-718 "MODMONOM.spad" 1118510 1118528 1118769 1118774) (-717 "MODMON.spad" 1115305 1115321 1116024 1116177) (-716 "MODFIELD.spad" 1114667 1114706 1115207 1115300) (-715 "MMLFORM.spad" 1113527 1113535 1114657 1114662) (-714 "MMAP.spad" 1113269 1113303 1113517 1113522) (-713 "MLO.spad" 1111728 1111738 1113225 1113264) (-712 "MLIFT.spad" 1110340 1110357 1111718 1111723) (-711 "MKUCFUNC.spad" 1109875 1109893 1110330 1110335) (-710 "MKRECORD.spad" 1109479 1109492 1109865 1109870) (-709 "MKFUNC.spad" 1108886 1108896 1109469 1109474) (-708 "MKFLCFN.spad" 1107854 1107864 1108876 1108881) (-707 "MKBCFUNC.spad" 1107349 1107367 1107844 1107849) (-706 "MINT.spad" 1106788 1106796 1107251 1107344) (-705 "MHROWRED.spad" 1105299 1105309 1106778 1106783) (-704 "MFLOAT.spad" 1103819 1103827 1105189 1105294) (-703 "MFINFACT.spad" 1103219 1103241 1103809 1103814) (-702 "MESH.spad" 1101006 1101014 1103209 1103214) (-701 "MDDFACT.spad" 1099217 1099227 1100996 1101001) (-700 "MDAGG.spad" 1098508 1098518 1099197 1099212) (-699 "MCMPLX.spad" 1094519 1094527 1095133 1095334) (-698 "MCDEN.spad" 1093729 1093741 1094509 1094514) (-697 "MCALCFN.spad" 1090851 1090877 1093719 1093724) (-696 "MAYBE.spad" 1090135 1090146 1090841 1090846) (-695 "MATSTOR.spad" 1087443 1087453 1090125 1090130) (-694 "MATRIX.spad" 1086147 1086157 1086631 1086658) (-693 "MATLIN.spad" 1083491 1083515 1086031 1086036) (-692 "MATCAT2.spad" 1082773 1082821 1083481 1083486) (-691 "MATCAT.spad" 1074502 1074524 1082741 1082768) (-690 "MATCAT.spad" 1066103 1066127 1074344 1074349) (-689 "MAPPKG3.spad" 1065018 1065032 1066093 1066098) (-688 "MAPPKG2.spad" 1064356 1064368 1065008 1065013) (-687 "MAPPKG1.spad" 1063184 1063194 1064346 1064351) (-686 "MAPPAST.spad" 1062499 1062507 1063174 1063179) (-685 "MAPHACK3.spad" 1062311 1062325 1062489 1062494) (-684 "MAPHACK2.spad" 1062080 1062092 1062301 1062306) (-683 "MAPHACK1.spad" 1061724 1061734 1062070 1062075) (-682 "MAGMA.spad" 1059514 1059531 1061714 1061719) (-681 "MACROAST.spad" 1059093 1059101 1059504 1059509) (-680 "M3D.spad" 1056813 1056823 1058471 1058476) (-679 "LZSTAGG.spad" 1054051 1054061 1056803 1056808) (-678 "LZSTAGG.spad" 1051287 1051299 1054041 1054046) (-677 "LWORD.spad" 1047992 1048009 1051277 1051282) (-676 "LSTAST.spad" 1047776 1047784 1047982 1047987) (-675 "LSQM.spad" 1046003 1046017 1046397 1046448) (-674 "LSPP.spad" 1045538 1045555 1045993 1045998) (-673 "LSMP1.spad" 1043373 1043387 1045528 1045533) (-672 "LSMP.spad" 1042230 1042258 1043363 1043368) (-671 "LSAGG.spad" 1041899 1041909 1042198 1042225) (-670 "LSAGG.spad" 1041588 1041600 1041889 1041894) (-669 "LPOLY.spad" 1040542 1040561 1041444 1041513) (-668 "LPEFRAC.spad" 1039813 1039823 1040532 1040537) (-667 "LOGIC.spad" 1039415 1039423 1039803 1039808) (-666 "LOGIC.spad" 1039015 1039025 1039405 1039410) (-665 "LODOOPS.spad" 1037945 1037957 1039005 1039010) (-664 "LODOF.spad" 1036991 1037008 1037902 1037907) (-663 "LODOCAT.spad" 1035657 1035667 1036947 1036986) (-662 "LODOCAT.spad" 1034321 1034333 1035613 1035618) (-661 "LODO2.spad" 1033594 1033606 1034001 1034040) (-660 "LODO1.spad" 1032994 1033004 1033274 1033313) (-659 "LODO.spad" 1032378 1032394 1032674 1032713) (-658 "LODEEF.spad" 1031180 1031198 1032368 1032373) (-657 "LO.spad" 1030581 1030595 1031114 1031141) (-656 "LNAGG.spad" 1026413 1026423 1030571 1030576) (-655 "LNAGG.spad" 1022209 1022221 1026369 1026374) (-654 "LMOPS.spad" 1018977 1018994 1022199 1022204) (-653 "LMODULE.spad" 1018745 1018755 1018967 1018972) (-652 "LMDICT.spad" 1018032 1018042 1018296 1018323) (-651 "LLINSET.spad" 1017429 1017439 1018022 1018027) (-650 "LITERAL.spad" 1017335 1017346 1017419 1017424) (-649 "LIST3.spad" 1016646 1016660 1017325 1017330) (-648 "LIST2MAP.spad" 1013549 1013561 1016636 1016641) (-647 "LIST2.spad" 1012251 1012263 1013539 1013544) (-646 "LIST.spad" 1009986 1009996 1011398 1011425) (-645 "LINSET.spad" 1009608 1009618 1009976 1009981) (-644 "LINEXP.spad" 1009042 1009052 1009588 1009603) (-643 "LINDEP.spad" 1007851 1007863 1008954 1008959) (-642 "LIMITRF.spad" 1005798 1005808 1007841 1007846) (-641 "LIMITPS.spad" 1004708 1004721 1005788 1005793) (-640 "LIECAT.spad" 1004184 1004194 1004634 1004703) (-639 "LIECAT.spad" 1003688 1003700 1004140 1004145) (-638 "LIE.spad" 1001704 1001716 1002978 1003123) (-637 "LIB.spad" 999754 999762 1000363 1000378) (-636 "LGROBP.spad" 997107 997126 999744 999749) (-635 "LFCAT.spad" 996166 996174 997097 997102) (-634 "LF.spad" 995121 995137 996156 996161) (-633 "LEXTRIPK.spad" 990624 990639 995111 995116) (-632 "LEXP.spad" 988627 988654 990604 990619) (-631 "LETAST.spad" 988326 988334 988617 988622) (-630 "LEADCDET.spad" 986724 986741 988316 988321) (-629 "LAZM3PK.spad" 985428 985450 986714 986719) (-628 "LAUPOL.spad" 984121 984134 985021 985090) (-627 "LAPLACE.spad" 983704 983720 984111 984116) (-626 "LALG.spad" 983480 983490 983684 983699) (-625 "LALG.spad" 983264 983276 983470 983475) (-624 "LA.spad" 982704 982718 983186 983225) (-623 "KVTFROM.spad" 982439 982449 982694 982699) (-622 "KTVLOGIC.spad" 981951 981959 982429 982434) (-621 "KRCFROM.spad" 981689 981699 981941 981946) (-620 "KOVACIC.spad" 980412 980429 981679 981684) (-619 "KONVERT.spad" 980134 980144 980402 980407) (-618 "KOERCE.spad" 979871 979881 980124 980129) (-617 "KERNEL2.spad" 979574 979586 979861 979866) (-616 "KERNEL.spad" 978229 978239 979358 979363) (-615 "KDAGG.spad" 977338 977360 978209 978224) (-614 "KDAGG.spad" 976455 976479 977328 977333) (-613 "KAFILE.spad" 975418 975434 975653 975680) (-612 "JORDAN.spad" 973247 973259 974708 974853) (-611 "JOINAST.spad" 972941 972949 973237 973242) (-610 "JAVACODE.spad" 972807 972815 972931 972936) (-609 "IXAGG.spad" 970940 970964 972797 972802) (-608 "IXAGG.spad" 968928 968954 970787 970792) (-607 "IVECTOR.spad" 967698 967713 967853 967880) (-606 "ITUPLE.spad" 966859 966869 967688 967693) (-605 "ITRIGMNP.spad" 965698 965717 966849 966854) (-604 "ITFUN3.spad" 965204 965218 965688 965693) (-603 "ITFUN2.spad" 964948 964960 965194 965199) (-602 "ITFORM.spad" 964303 964311 964938 964943) (-601 "ITAYLOR.spad" 962297 962312 964167 964264) (-600 "ISUPS.spad" 954734 954749 961271 961368) (-599 "ISUMP.spad" 954235 954251 954724 954729) (-598 "ISTRING.spad" 953323 953336 953404 953431) (-597 "ISAST.spad" 953042 953050 953313 953318) (-596 "IRURPK.spad" 951759 951778 953032 953037) (-595 "IRSN.spad" 949763 949771 951749 951754) (-594 "IRRF2F.spad" 948248 948258 949719 949724) (-593 "IRREDFFX.spad" 947849 947860 948238 948243) (-592 "IROOT.spad" 946188 946198 947839 947844) (-591 "IRFORM.spad" 945512 945520 946178 946183) (-590 "IR2F.spad" 944718 944734 945502 945507) (-589 "IR2.spad" 943746 943762 944708 944713) (-588 "IR.spad" 941547 941561 943601 943628) (-587 "IPRNTPK.spad" 941307 941315 941537 941542) (-586 "IPF.spad" 940872 940884 941112 941205) (-585 "IPADIC.spad" 940633 940659 940798 940867) (-584 "IP4ADDR.spad" 940190 940198 940623 940628) (-583 "IOMODE.spad" 939811 939819 940180 940185) (-582 "IOBFILE.spad" 939172 939180 939801 939806) (-581 "IOBCON.spad" 939037 939045 939162 939167) (-580 "INVLAPLA.spad" 938686 938702 939027 939032) (-579 "INTTR.spad" 932080 932097 938676 938681) (-578 "INTTOOLS.spad" 929835 929851 931654 931659) (-577 "INTSLPE.spad" 929155 929163 929825 929830) (-576 "INTRVL.spad" 928721 928731 929069 929150) (-575 "INTRF.spad" 927145 927159 928711 928716) (-574 "INTRET.spad" 926577 926587 927135 927140) (-573 "INTRAT.spad" 925304 925321 926567 926572) (-572 "INTPM.spad" 923689 923705 924947 924952) (-571 "INTPAF.spad" 921560 921578 923621 923626) (-570 "INTPACK.spad" 911934 911942 921550 921555) (-569 "INTHERTR.spad" 911208 911225 911924 911929) (-568 "INTHERAL.spad" 910878 910902 911198 911203) (-567 "INTHEORY.spad" 907317 907325 910868 910873) (-566 "INTG0.spad" 901068 901086 907249 907254) (-565 "INTFTBL.spad" 896522 896530 901058 901063) (-564 "INTFACT.spad" 895581 895591 896512 896517) (-563 "INTEF.spad" 893968 893984 895571 895576) (-562 "INTDOM.spad" 892591 892599 893894 893963) (-561 "INTDOM.spad" 891276 891286 892581 892586) (-560 "INTCAT.spad" 889535 889545 891190 891271) (-559 "INTBIT.spad" 889042 889050 889525 889530) (-558 "INTALG.spad" 888230 888257 889032 889037) (-557 "INTAF.spad" 887730 887746 888220 888225) (-556 "INTABL.spad" 886248 886279 886411 886438) (-555 "INT8.spad" 886128 886136 886238 886243) (-554 "INT64.spad" 886007 886015 886118 886123) (-553 "INT32.spad" 885886 885894 885997 886002) (-552 "INT16.spad" 885765 885773 885876 885881) (-551 "INT.spad" 885213 885221 885619 885760) (-550 "INS.spad" 882716 882724 885115 885208) (-549 "INS.spad" 880305 880315 882706 882711) (-548 "INPSIGN.spad" 879775 879788 880295 880300) (-547 "INPRODPF.spad" 878871 878890 879765 879770) (-546 "INPRODFF.spad" 877959 877983 878861 878866) (-545 "INNMFACT.spad" 876934 876951 877949 877954) (-544 "INMODGCD.spad" 876422 876452 876924 876929) (-543 "INFSP.spad" 874719 874741 876412 876417) (-542 "INFPROD0.spad" 873799 873818 874709 874714) (-541 "INFORM1.spad" 873424 873434 873789 873794) (-540 "INFORM.spad" 870623 870631 873414 873419) (-539 "INFINITY.spad" 870175 870183 870613 870618) (-538 "INETCLTS.spad" 870152 870160 870165 870170) (-537 "INEP.spad" 868690 868712 870142 870147) (-536 "INDE.spad" 868419 868436 868680 868685) (-535 "INCRMAPS.spad" 867840 867850 868409 868414) (-534 "INBFILE.spad" 866912 866920 867830 867835) (-533 "INBFF.spad" 862706 862717 866902 866907) (-532 "INBCON.spad" 860996 861004 862696 862701) (-531 "INBCON.spad" 859284 859294 860986 860991) (-530 "INAST.spad" 858945 858953 859274 859279) (-529 "IMPTAST.spad" 858653 858661 858935 858940) (-528 "IMATRIX.spad" 857598 857624 858110 858137) (-527 "IMATQF.spad" 856692 856736 857554 857559) (-526 "IMATLIN.spad" 855297 855321 856648 856653) (-525 "ILIST.spad" 853955 853970 854480 854507) (-524 "IIARRAY2.spad" 853343 853381 853562 853589) (-523 "IFF.spad" 852753 852769 853024 853117) (-522 "IFAST.spad" 852367 852375 852743 852748) (-521 "IFARRAY.spad" 849860 849875 851550 851577) (-520 "IFAMON.spad" 849722 849739 849816 849821) (-519 "IEVALAB.spad" 849127 849139 849712 849717) (-518 "IEVALAB.spad" 848530 848544 849117 849122) (-517 "IDPOAMS.spad" 848286 848298 848520 848525) (-516 "IDPOAM.spad" 848006 848018 848276 848281) (-515 "IDPO.spad" 847804 847816 847996 848001) (-514 "IDPC.spad" 846742 846754 847794 847799) (-513 "IDPAM.spad" 846487 846499 846732 846737) (-512 "IDPAG.spad" 846234 846246 846477 846482) (-511 "IDENT.spad" 845884 845892 846224 846229) (-510 "IDECOMP.spad" 843123 843141 845874 845879) (-509 "IDEAL.spad" 838072 838111 843058 843063) (-508 "ICDEN.spad" 837261 837277 838062 838067) (-507 "ICARD.spad" 836452 836460 837251 837256) (-506 "IBPTOOLS.spad" 835059 835076 836442 836447) (-505 "IBITS.spad" 834262 834275 834695 834722) (-504 "IBATOOL.spad" 831239 831258 834252 834257) (-503 "IBACHIN.spad" 829746 829761 831229 831234) (-502 "IARRAY2.spad" 828734 828760 829353 829380) (-501 "IARRAY1.spad" 827779 827794 827917 827944) (-500 "IAN.spad" 826002 826010 827595 827688) (-499 "IALGFACT.spad" 825605 825638 825992 825997) (-498 "HYPCAT.spad" 825029 825037 825595 825600) (-497 "HYPCAT.spad" 824451 824461 825019 825024) (-496 "HOSTNAME.spad" 824259 824267 824441 824446) (-495 "HOMOTOP.spad" 824002 824012 824249 824254) (-494 "HOAGG.spad" 821284 821294 823992 823997) (-493 "HOAGG.spad" 818341 818353 821051 821056) (-492 "HEXADEC.spad" 816443 816451 816808 816901) (-491 "HEUGCD.spad" 815478 815489 816433 816438) (-490 "HELLFDIV.spad" 815068 815092 815468 815473) (-489 "HEAP.spad" 814460 814470 814675 814702) (-488 "HEADAST.spad" 813993 814001 814450 814455) (-487 "HDP.spad" 803836 803852 804213 804344) (-486 "HDMP.spad" 801050 801065 801666 801793) (-485 "HB.spad" 799301 799309 801040 801045) (-484 "HASHTBL.spad" 797771 797802 797982 798009) (-483 "HASAST.spad" 797487 797495 797761 797766) (-482 "HACKPI.spad" 796978 796986 797389 797482) (-481 "GTSET.spad" 795917 795933 796624 796651) (-480 "GSTBL.spad" 794436 794471 794610 794625) (-479 "GSERIES.spad" 791607 791634 792568 792717) (-478 "GROUP.spad" 790880 790888 791587 791602) (-477 "GROUP.spad" 790161 790171 790870 790875) (-476 "GROEBSOL.spad" 788655 788676 790151 790156) (-475 "GRMOD.spad" 787226 787238 788645 788650) (-474 "GRMOD.spad" 785795 785809 787216 787221) (-473 "GRIMAGE.spad" 778684 778692 785785 785790) (-472 "GRDEF.spad" 777063 777071 778674 778679) (-471 "GRAY.spad" 775526 775534 777053 777058) (-470 "GRALG.spad" 774603 774615 775516 775521) (-469 "GRALG.spad" 773678 773692 774593 774598) (-468 "GPOLSET.spad" 773132 773155 773360 773387) (-467 "GOSPER.spad" 772401 772419 773122 773127) (-466 "GMODPOL.spad" 771549 771576 772369 772396) (-465 "GHENSEL.spad" 770632 770646 771539 771544) (-464 "GENUPS.spad" 766925 766938 770622 770627) (-463 "GENUFACT.spad" 766502 766512 766915 766920) (-462 "GENPGCD.spad" 766088 766105 766492 766497) (-461 "GENMFACT.spad" 765540 765559 766078 766083) (-460 "GENEEZ.spad" 763491 763504 765530 765535) (-459 "GDMP.spad" 760547 760564 761321 761448) (-458 "GCNAALG.spad" 754470 754497 760341 760408) (-457 "GCDDOM.spad" 753646 753654 754396 754465) (-456 "GCDDOM.spad" 752884 752894 753636 753641) (-455 "GBINTERN.spad" 748904 748942 752874 752879) (-454 "GBF.spad" 744671 744709 748894 748899) (-453 "GBEUCLID.spad" 742553 742591 744661 744666) (-452 "GB.spad" 740079 740117 742509 742514) (-451 "GAUSSFAC.spad" 739392 739400 740069 740074) (-450 "GALUTIL.spad" 737718 737728 739348 739353) (-449 "GALPOLYU.spad" 736172 736185 737708 737713) (-448 "GALFACTU.spad" 734345 734364 736162 736167) (-447 "GALFACT.spad" 724534 724545 734335 734340) (-446 "FVFUN.spad" 721557 721565 724524 724529) (-445 "FVC.spad" 720609 720617 721547 721552) (-444 "FUNDESC.spad" 720287 720295 720599 720604) (-443 "FUNCTION.spad" 720136 720148 720277 720282) (-442 "FTEM.spad" 719301 719309 720126 720131) (-441 "FT.spad" 717601 717609 719291 719296) (-440 "FSUPFACT.spad" 716501 716520 717537 717542) (-439 "FST.spad" 714587 714595 716491 716496) (-438 "FSRED.spad" 714067 714083 714577 714582) (-437 "FSPRMELT.spad" 712949 712965 714024 714029) (-436 "FSPECF.spad" 711040 711056 712939 712944) (-435 "FSINT.spad" 710700 710716 711030 711035) (-434 "FSERIES.spad" 709891 709903 710520 710619) (-433 "FSCINT.spad" 709208 709224 709881 709886) (-432 "FSAGG2.spad" 707951 707967 709198 709203) (-431 "FSAGG.spad" 707068 707078 707907 707946) (-430 "FSAGG.spad" 706147 706159 706988 706993) (-429 "FS2UPS.spad" 700638 700672 706137 706142) (-428 "FS2EXPXP.spad" 699763 699786 700628 700633) (-427 "FS2.spad" 699410 699426 699753 699758) (-426 "FS.spad" 693678 693688 699185 699405) (-425 "FS.spad" 687724 687736 693233 693238) (-424 "FRUTIL.spad" 686678 686688 687714 687719) (-423 "FRNAALG.spad" 681797 681807 686620 686673) (-422 "FRNAALG.spad" 676928 676940 681753 681758) (-421 "FRNAAF2.spad" 676384 676402 676918 676923) (-420 "FRMOD.spad" 675794 675824 676315 676320) (-419 "FRIDEAL2.spad" 675398 675430 675784 675789) (-418 "FRIDEAL.spad" 674623 674644 675378 675393) (-417 "FRETRCT.spad" 674134 674144 674613 674618) (-416 "FRETRCT.spad" 673511 673523 673992 673997) (-415 "FRAMALG.spad" 671859 671872 673467 673506) (-414 "FRAMALG.spad" 670239 670254 671849 671854) (-413 "FRAC2.spad" 669844 669856 670229 670234) (-412 "FRAC.spad" 666943 666953 667346 667519) (-411 "FR2.spad" 666279 666291 666933 666938) (-410 "FR.spad" 660022 660032 665303 665372) (-409 "FPS.spad" 656837 656845 659912 660017) (-408 "FPS.spad" 653680 653690 656757 656762) (-407 "FPC.spad" 652726 652734 653582 653675) (-406 "FPC.spad" 651858 651868 652716 652721) (-405 "FPATMAB.spad" 651620 651630 651848 651853) (-404 "FPARFRAC.spad" 650107 650124 651610 651615) (-403 "FORTRAN.spad" 648613 648656 650097 650102) (-402 "FORTFN.spad" 645783 645791 648603 648608) (-401 "FORTCAT.spad" 645467 645475 645773 645778) (-400 "FORT.spad" 644416 644424 645457 645462) (-399 "FORMULA1.spad" 643895 643905 644406 644411) (-398 "FORMULA.spad" 641369 641377 643885 643890) (-397 "FORDER.spad" 641060 641084 641359 641364) (-396 "FOP.spad" 640261 640269 641050 641055) (-395 "FNLA.spad" 639685 639707 640229 640256) (-394 "FNCAT.spad" 638280 638288 639675 639680) (-393 "FNAME.spad" 638172 638180 638270 638275) (-392 "FMTC.spad" 637970 637978 638098 638167) (-391 "FMONOID.spad" 637635 637645 637926 637931) (-390 "FMONCAT.spad" 634788 634798 637625 637630) (-389 "FMFUN.spad" 631818 631826 634778 634783) (-388 "FMCAT.spad" 629486 629504 631786 631813) (-387 "FMC.spad" 628538 628546 629476 629481) (-386 "FM1.spad" 627895 627907 628472 628499) (-385 "FM.spad" 627590 627602 627829 627856) (-384 "FLOATRP.spad" 625325 625339 627580 627585) (-383 "FLOATCP.spad" 622756 622770 625315 625320) (-382 "FLOAT.spad" 616070 616078 622622 622751) (-381 "FLINEXP.spad" 615782 615792 616050 616065) (-380 "FLINEXP.spad" 615448 615460 615718 615723) (-379 "FLASORT.spad" 614774 614786 615438 615443) (-378 "FLALG.spad" 612420 612439 614700 614769) (-377 "FLAGG2.spad" 611145 611161 612410 612415) (-376 "FLAGG.spad" 608187 608197 611125 611140) (-375 "FLAGG.spad" 605130 605142 608070 608075) (-374 "FINRALG.spad" 603191 603204 605086 605125) (-373 "FINRALG.spad" 601178 601193 603075 603080) (-372 "FINITE.spad" 600330 600338 601168 601173) (-371 "FINAALG.spad" 589451 589461 600272 600325) (-370 "FINAALG.spad" 578584 578596 589407 589412) (-369 "FILECAT.spad" 577110 577127 578574 578579) (-368 "FILE.spad" 576693 576703 577100 577105) (-367 "FIELD.spad" 576099 576107 576595 576688) (-366 "FIELD.spad" 575591 575601 576089 576094) (-365 "FGROUP.spad" 574238 574248 575571 575586) (-364 "FGLMICPK.spad" 573025 573040 574228 574233) (-363 "FFX.spad" 572400 572415 572741 572834) (-362 "FFSLPE.spad" 571903 571924 572390 572395) (-361 "FFPOLY2.spad" 570963 570980 571893 571898) (-360 "FFPOLY.spad" 562225 562236 570953 570958) (-359 "FFP.spad" 561622 561642 561941 562034) (-358 "FFNBX.spad" 560134 560154 561338 561431) (-357 "FFNBP.spad" 558647 558664 559850 559943) (-356 "FFNB.spad" 557112 557133 558328 558421) (-355 "FFINTBAS.spad" 554626 554645 557102 557107) (-354 "FFIELDC.spad" 552203 552211 554528 554621) (-353 "FFIELDC.spad" 549866 549876 552193 552198) (-352 "FFHOM.spad" 548614 548631 549856 549861) (-351 "FFF.spad" 546049 546060 548604 548609) (-350 "FFCGX.spad" 544896 544916 545765 545858) (-349 "FFCGP.spad" 543785 543805 544612 544705) (-348 "FFCG.spad" 542577 542598 543466 543559) (-347 "FFCAT2.spad" 542324 542364 542567 542572) (-346 "FFCAT.spad" 535497 535519 542163 542319) (-345 "FFCAT.spad" 528749 528773 535417 535422) (-344 "FF.spad" 528197 528213 528430 528523) (-343 "FEXPR.spad" 519914 519960 527953 527992) (-342 "FEVALAB.spad" 519622 519632 519904 519909) (-341 "FEVALAB.spad" 519115 519127 519399 519404) (-340 "FDIVCAT.spad" 517179 517203 519105 519110) (-339 "FDIVCAT.spad" 515241 515267 517169 517174) (-338 "FDIV2.spad" 514897 514937 515231 515236) (-337 "FDIV.spad" 514339 514363 514887 514892) (-336 "FCTRDATA.spad" 513347 513355 514329 514334) (-335 "FCPAK1.spad" 511914 511922 513337 513342) (-334 "FCOMP.spad" 511293 511303 511904 511909) (-333 "FC.spad" 501300 501308 511283 511288) (-332 "FAXF.spad" 494271 494285 501202 501295) (-331 "FAXF.spad" 487294 487310 494227 494232) (-330 "FARRAY.spad" 485444 485454 486477 486504) (-329 "FAMR.spad" 483580 483592 485342 485439) (-328 "FAMR.spad" 481700 481714 483464 483469) (-327 "FAMONOID.spad" 481368 481378 481654 481659) (-326 "FAMONC.spad" 479664 479676 481358 481363) (-325 "FAGROUP.spad" 479288 479298 479560 479587) (-324 "FACUTIL.spad" 477492 477509 479278 479283) (-323 "FACTFUNC.spad" 476686 476696 477482 477487) (-322 "EXPUPXS.spad" 473519 473542 474818 474967) (-321 "EXPRTUBE.spad" 470807 470815 473509 473514) (-320 "EXPRODE.spad" 467967 467983 470797 470802) (-319 "EXPR2UPS.spad" 464089 464102 467957 467962) (-318 "EXPR2.spad" 463794 463806 464079 464084) (-317 "EXPR.spad" 459069 459079 459783 460190) (-316 "EXPEXPAN.spad" 456009 456034 456641 456734) (-315 "EXITAST.spad" 455745 455753 455999 456004) (-314 "EXIT.spad" 455416 455424 455735 455740) (-313 "EVALCYC.spad" 454876 454890 455406 455411) (-312 "EVALAB.spad" 454448 454458 454866 454871) (-311 "EVALAB.spad" 454018 454030 454438 454443) (-310 "EUCDOM.spad" 451592 451600 453944 454013) (-309 "EUCDOM.spad" 449228 449238 451582 451587) (-308 "ESTOOLS2.spad" 448831 448845 449218 449223) (-307 "ESTOOLS1.spad" 448516 448527 448821 448826) (-306 "ESTOOLS.spad" 440362 440370 448506 448511) (-305 "ESCONT1.spad" 440111 440123 440352 440357) (-304 "ESCONT.spad" 436904 436912 440101 440106) (-303 "ES2.spad" 436409 436425 436894 436899) (-302 "ES1.spad" 435979 435995 436399 436404) (-301 "ES.spad" 428794 428802 435969 435974) (-300 "ES.spad" 421515 421525 428692 428697) (-299 "ERROR.spad" 418842 418850 421505 421510) (-298 "EQTBL.spad" 417314 417336 417523 417550) (-297 "EQ2.spad" 417032 417044 417304 417309) (-296 "EQ.spad" 411837 411847 414624 414736) (-295 "EP.spad" 408163 408173 411827 411832) (-294 "ENV.spad" 406825 406833 408153 408158) (-293 "ENTIRER.spad" 406493 406501 406769 406820) (-292 "EMR.spad" 405700 405741 406419 406488) (-291 "ELTAGG.spad" 403954 403973 405690 405695) (-290 "ELTAGG.spad" 402172 402193 403910 403915) (-289 "ELTAB.spad" 401621 401639 402162 402167) (-288 "ELFUTS.spad" 401008 401027 401611 401616) (-287 "ELEMFUN.spad" 400697 400705 400998 401003) (-286 "ELEMFUN.spad" 400384 400394 400687 400692) (-285 "ELAGG.spad" 398355 398365 400364 400379) (-284 "ELAGG.spad" 396263 396275 398274 398279) (-283 "ELABOR.spad" 395609 395617 396253 396258) (-282 "ELABEXPR.spad" 394541 394549 395599 395604) (-281 "EFUPXS.spad" 391317 391347 394497 394502) (-280 "EFULS.spad" 388153 388176 391273 391278) (-279 "EFSTRUC.spad" 386168 386184 388143 388148) (-278 "EF.spad" 380944 380960 386158 386163) (-277 "EAB.spad" 379220 379228 380934 380939) (-276 "E04UCFA.spad" 378756 378764 379210 379215) (-275 "E04NAFA.spad" 378333 378341 378746 378751) (-274 "E04MBFA.spad" 377913 377921 378323 378328) (-273 "E04JAFA.spad" 377449 377457 377903 377908) (-272 "E04GCFA.spad" 376985 376993 377439 377444) (-271 "E04FDFA.spad" 376521 376529 376975 376980) (-270 "E04DGFA.spad" 376057 376065 376511 376516) (-269 "E04AGNT.spad" 371907 371915 376047 376052) (-268 "DVARCAT.spad" 368596 368606 371897 371902) (-267 "DVARCAT.spad" 365283 365295 368586 368591) (-266 "DSMP.spad" 362750 362764 363055 363182) (-265 "DROPT1.spad" 362415 362425 362740 362745) (-264 "DROPT0.spad" 357272 357280 362405 362410) (-263 "DROPT.spad" 351231 351239 357262 357267) (-262 "DRAWPT.spad" 349404 349412 351221 351226) (-261 "DRAWHACK.spad" 348712 348722 349394 349399) (-260 "DRAWCX.spad" 346182 346190 348702 348707) (-259 "DRAWCURV.spad" 345729 345744 346172 346177) (-258 "DRAWCFUN.spad" 335261 335269 345719 345724) (-257 "DRAW.spad" 328137 328150 335251 335256) (-256 "DQAGG.spad" 326315 326325 328105 328132) (-255 "DPOLCAT.spad" 321664 321680 326183 326310) (-254 "DPOLCAT.spad" 317099 317117 321620 321625) (-253 "DPMO.spad" 309325 309341 309463 309764) (-252 "DPMM.spad" 301564 301582 301689 301990) (-251 "DOMTMPLT.spad" 301224 301232 301554 301559) (-250 "DOMCTOR.spad" 300979 300987 301214 301219) (-249 "DOMAIN.spad" 300066 300074 300969 300974) (-248 "DMP.spad" 297326 297341 297896 298023) (-247 "DLP.spad" 296678 296688 297316 297321) (-246 "DLIST.spad" 295257 295267 295861 295888) (-245 "DLAGG.spad" 293674 293684 295247 295252) (-244 "DIVRING.spad" 293216 293224 293618 293669) (-243 "DIVRING.spad" 292802 292812 293206 293211) (-242 "DISPLAY.spad" 290992 291000 292792 292797) (-241 "DIRPROD2.spad" 289810 289828 290982 290987) (-240 "DIRPROD.spad" 279390 279406 280030 280161) (-239 "DIRPCAT.spad" 278334 278350 279254 279385) (-238 "DIRPCAT.spad" 277007 277025 277929 277934) (-237 "DIOSP.spad" 275832 275840 276997 277002) (-236 "DIOPS.spad" 274828 274838 275812 275827) (-235 "DIOPS.spad" 273798 273810 274784 274789) (-234 "DIFRING.spad" 273094 273102 273778 273793) (-233 "DIFRING.spad" 272398 272408 273084 273089) (-232 "DIFEXT.spad" 271569 271579 272378 272393) (-231 "DIFEXT.spad" 270657 270669 271468 271473) (-230 "DIAGG.spad" 270287 270297 270637 270652) (-229 "DIAGG.spad" 269925 269937 270277 270282) (-228 "DHMATRIX.spad" 268237 268247 269382 269409) (-227 "DFSFUN.spad" 261877 261885 268227 268232) (-226 "DFLOAT.spad" 258608 258616 261767 261872) (-225 "DFINTTLS.spad" 256839 256855 258598 258603) (-224 "DERHAM.spad" 254753 254785 256819 256834) (-223 "DEQUEUE.spad" 254077 254087 254360 254387) (-222 "DEGRED.spad" 253694 253708 254067 254072) (-221 "DEFINTRF.spad" 251276 251286 253684 253689) (-220 "DEFINTEF.spad" 249814 249830 251266 251271) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTORKIND.spad" 217515 217523 217902 217907) (-187 "CTORCAT.spad" 216764 216772 217505 217510) (-186 "CTORCAT.spad" 216011 216021 216754 216759) (-185 "CTORCALL.spad" 215600 215610 216001 216006) (-184 "CTOR.spad" 215291 215299 215590 215595) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX2.spad" 194842 194854 195117 195122) (-169 "COMPLEX.spad" 188979 188989 189223 189484) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2267533 2267538 2267543 2267548) (-2 NIL 2267513 2267518 2267523 2267528) (-1 NIL 2267493 2267498 2267503 2267508) (0 NIL 2267473 2267478 2267483 2267488) (-1301 "ZMOD.spad" 2267282 2267295 2267411 2267468) (-1300 "ZLINDEP.spad" 2266348 2266359 2267272 2267277) (-1299 "ZDSOLVE.spad" 2256293 2256315 2266338 2266343) (-1298 "YSTREAM.spad" 2255788 2255799 2256283 2256288) (-1297 "XRPOLY.spad" 2255008 2255028 2255644 2255713) (-1296 "XPR.spad" 2252803 2252816 2254726 2254825) (-1295 "XPOLY.spad" 2252358 2252369 2252659 2252728) (-1294 "XPOLYC.spad" 2251677 2251693 2252284 2252353) (-1293 "XPBWPOLY.spad" 2250114 2250134 2251457 2251526) (-1292 "XF.spad" 2248577 2248592 2250016 2250109) (-1291 "XF.spad" 2247020 2247037 2248461 2248466) (-1290 "XFALG.spad" 2244068 2244084 2246946 2247015) (-1289 "XEXPPKG.spad" 2243319 2243345 2244058 2244063) (-1288 "XDPOLY.spad" 2242933 2242949 2243175 2243244) (-1287 "XALG.spad" 2242593 2242604 2242889 2242928) (-1286 "WUTSET.spad" 2238432 2238449 2242239 2242266) (-1285 "WP.spad" 2237631 2237675 2238290 2238357) (-1284 "WHILEAST.spad" 2237429 2237438 2237621 2237626) (-1283 "WHEREAST.spad" 2237100 2237109 2237419 2237424) (-1282 "WFFINTBS.spad" 2234763 2234785 2237090 2237095) (-1281 "WEIER.spad" 2232985 2232996 2234753 2234758) (-1280 "VSPACE.spad" 2232658 2232669 2232953 2232980) (-1279 "VSPACE.spad" 2232351 2232364 2232648 2232653) (-1278 "VOID.spad" 2232028 2232037 2232341 2232346) (-1277 "VIEW.spad" 2229708 2229717 2232018 2232023) (-1276 "VIEWDEF.spad" 2224909 2224918 2229698 2229703) (-1275 "VIEW3D.spad" 2208870 2208879 2224899 2224904) (-1274 "VIEW2D.spad" 2196761 2196770 2208860 2208865) (-1273 "VECTOR.spad" 2195435 2195446 2195686 2195713) (-1272 "VECTOR2.spad" 2194074 2194087 2195425 2195430) (-1271 "VECTCAT.spad" 2191978 2191989 2194042 2194069) (-1270 "VECTCAT.spad" 2189689 2189702 2191755 2191760) (-1269 "VARIABLE.spad" 2189469 2189484 2189679 2189684) (-1268 "UTYPE.spad" 2189113 2189122 2189459 2189464) (-1267 "UTSODETL.spad" 2188408 2188432 2189069 2189074) (-1266 "UTSODE.spad" 2186624 2186644 2188398 2188403) (-1265 "UTS.spad" 2181428 2181456 2185091 2185188) (-1264 "UTSCAT.spad" 2178907 2178923 2181326 2181423) (-1263 "UTSCAT.spad" 2176030 2176048 2178451 2178456) (-1262 "UTS2.spad" 2175625 2175660 2176020 2176025) (-1261 "URAGG.spad" 2170298 2170309 2175615 2175620) (-1260 "URAGG.spad" 2164935 2164948 2170254 2170259) (-1259 "UPXSSING.spad" 2162580 2162606 2164016 2164149) (-1258 "UPXS.spad" 2159734 2159762 2160712 2160861) (-1257 "UPXSCONS.spad" 2157493 2157513 2157866 2158015) (-1256 "UPXSCCA.spad" 2156064 2156084 2157339 2157488) (-1255 "UPXSCCA.spad" 2154777 2154799 2156054 2156059) (-1254 "UPXSCAT.spad" 2153366 2153382 2154623 2154772) (-1253 "UPXS2.spad" 2152909 2152962 2153356 2153361) (-1252 "UPSQFREE.spad" 2151323 2151337 2152899 2152904) (-1251 "UPSCAT.spad" 2148934 2148958 2151221 2151318) (-1250 "UPSCAT.spad" 2146251 2146277 2148540 2148545) (-1249 "UPOLYC.spad" 2141291 2141302 2146093 2146246) (-1248 "UPOLYC.spad" 2136223 2136236 2141027 2141032) (-1247 "UPOLYC2.spad" 2135694 2135713 2136213 2136218) (-1246 "UP.spad" 2132893 2132908 2133280 2133433) (-1245 "UPMP.spad" 2131793 2131806 2132883 2132888) (-1244 "UPDIVP.spad" 2131358 2131372 2131783 2131788) (-1243 "UPDECOMP.spad" 2129603 2129617 2131348 2131353) (-1242 "UPCDEN.spad" 2128812 2128828 2129593 2129598) (-1241 "UP2.spad" 2128176 2128197 2128802 2128807) (-1240 "UNISEG.spad" 2127529 2127540 2128095 2128100) (-1239 "UNISEG2.spad" 2127026 2127039 2127485 2127490) (-1238 "UNIFACT.spad" 2126129 2126141 2127016 2127021) (-1237 "ULS.spad" 2116687 2116715 2117774 2118203) (-1236 "ULSCONS.spad" 2109083 2109103 2109453 2109602) (-1235 "ULSCCAT.spad" 2106820 2106840 2108929 2109078) (-1234 "ULSCCAT.spad" 2104665 2104687 2106776 2106781) (-1233 "ULSCAT.spad" 2102897 2102913 2104511 2104660) (-1232 "ULS2.spad" 2102411 2102464 2102887 2102892) (-1231 "UINT8.spad" 2102288 2102297 2102401 2102406) (-1230 "UINT64.spad" 2102164 2102173 2102278 2102283) (-1229 "UINT32.spad" 2102040 2102049 2102154 2102159) (-1228 "UINT16.spad" 2101916 2101925 2102030 2102035) (-1227 "UFD.spad" 2100981 2100990 2101842 2101911) (-1226 "UFD.spad" 2100108 2100119 2100971 2100976) (-1225 "UDVO.spad" 2098989 2098998 2100098 2100103) (-1224 "UDPO.spad" 2096482 2096493 2098945 2098950) (-1223 "TYPE.spad" 2096414 2096423 2096472 2096477) (-1222 "TYPEAST.spad" 2096333 2096342 2096404 2096409) (-1221 "TWOFACT.spad" 2094985 2095000 2096323 2096328) (-1220 "TUPLE.spad" 2094471 2094482 2094884 2094889) (-1219 "TUBETOOL.spad" 2091338 2091347 2094461 2094466) (-1218 "TUBE.spad" 2089985 2090002 2091328 2091333) (-1217 "TS.spad" 2088584 2088600 2089550 2089647) (-1216 "TSETCAT.spad" 2075711 2075728 2088552 2088579) (-1215 "TSETCAT.spad" 2062824 2062843 2075667 2075672) (-1214 "TRMANIP.spad" 2057190 2057207 2062530 2062535) (-1213 "TRIMAT.spad" 2056153 2056178 2057180 2057185) (-1212 "TRIGMNIP.spad" 2054680 2054697 2056143 2056148) (-1211 "TRIGCAT.spad" 2054192 2054201 2054670 2054675) (-1210 "TRIGCAT.spad" 2053702 2053713 2054182 2054187) (-1209 "TREE.spad" 2052277 2052288 2053309 2053336) (-1208 "TRANFUN.spad" 2052116 2052125 2052267 2052272) (-1207 "TRANFUN.spad" 2051953 2051964 2052106 2052111) (-1206 "TOPSP.spad" 2051627 2051636 2051943 2051948) (-1205 "TOOLSIGN.spad" 2051290 2051301 2051617 2051622) (-1204 "TEXTFILE.spad" 2049851 2049860 2051280 2051285) (-1203 "TEX.spad" 2046997 2047006 2049841 2049846) (-1202 "TEX1.spad" 2046553 2046564 2046987 2046992) (-1201 "TEMUTL.spad" 2046108 2046117 2046543 2046548) (-1200 "TBCMPPK.spad" 2044201 2044224 2046098 2046103) (-1199 "TBAGG.spad" 2043251 2043274 2044181 2044196) (-1198 "TBAGG.spad" 2042309 2042334 2043241 2043246) (-1197 "TANEXP.spad" 2041717 2041728 2042299 2042304) (-1196 "TABLE.spad" 2040128 2040151 2040398 2040425) (-1195 "TABLEAU.spad" 2039609 2039620 2040118 2040123) (-1194 "TABLBUMP.spad" 2036412 2036423 2039599 2039604) (-1193 "SYSTEM.spad" 2035640 2035649 2036402 2036407) (-1192 "SYSSOLP.spad" 2033123 2033134 2035630 2035635) (-1191 "SYSPTR.spad" 2033022 2033031 2033113 2033118) (-1190 "SYSNNI.spad" 2032204 2032215 2033012 2033017) (-1189 "SYSINT.spad" 2031608 2031619 2032194 2032199) (-1188 "SYNTAX.spad" 2027814 2027823 2031598 2031603) (-1187 "SYMTAB.spad" 2025882 2025891 2027804 2027809) (-1186 "SYMS.spad" 2021905 2021914 2025872 2025877) (-1185 "SYMPOLY.spad" 2020912 2020923 2020994 2021121) (-1184 "SYMFUNC.spad" 2020413 2020424 2020902 2020907) (-1183 "SYMBOL.spad" 2017916 2017925 2020403 2020408) (-1182 "SWITCH.spad" 2014687 2014696 2017906 2017911) (-1181 "SUTS.spad" 2011592 2011620 2013154 2013251) (-1180 "SUPXS.spad" 2008733 2008761 2009724 2009873) (-1179 "SUP.spad" 2005546 2005557 2006319 2006472) (-1178 "SUPFRACF.spad" 2004651 2004669 2005536 2005541) (-1177 "SUP2.spad" 2004043 2004056 2004641 2004646) (-1176 "SUMRF.spad" 2003017 2003028 2004033 2004038) (-1175 "SUMFS.spad" 2002654 2002671 2003007 2003012) (-1174 "SULS.spad" 1993199 1993227 1994299 1994728) (-1173 "SUCHTAST.spad" 1992968 1992977 1993189 1993194) (-1172 "SUCH.spad" 1992650 1992665 1992958 1992963) (-1171 "SUBSPACE.spad" 1984765 1984780 1992640 1992645) (-1170 "SUBRESP.spad" 1983935 1983949 1984721 1984726) (-1169 "STTF.spad" 1980034 1980050 1983925 1983930) (-1168 "STTFNC.spad" 1976502 1976518 1980024 1980029) (-1167 "STTAYLOR.spad" 1969137 1969148 1976383 1976388) (-1166 "STRTBL.spad" 1967642 1967659 1967791 1967818) (-1165 "STRING.spad" 1967051 1967060 1967065 1967092) (-1164 "STRICAT.spad" 1966839 1966848 1967019 1967046) (-1163 "STREAM.spad" 1963757 1963768 1966364 1966379) (-1162 "STREAM3.spad" 1963330 1963345 1963747 1963752) (-1161 "STREAM2.spad" 1962458 1962471 1963320 1963325) (-1160 "STREAM1.spad" 1962164 1962175 1962448 1962453) (-1159 "STINPROD.spad" 1961100 1961116 1962154 1962159) (-1158 "STEP.spad" 1960301 1960310 1961090 1961095) (-1157 "STEPAST.spad" 1959535 1959544 1960291 1960296) (-1156 "STBL.spad" 1958061 1958089 1958228 1958243) (-1155 "STAGG.spad" 1957136 1957147 1958051 1958056) (-1154 "STAGG.spad" 1956209 1956222 1957126 1957131) (-1153 "STACK.spad" 1955566 1955577 1955816 1955843) (-1152 "SREGSET.spad" 1953270 1953287 1955212 1955239) (-1151 "SRDCMPK.spad" 1951831 1951851 1953260 1953265) (-1150 "SRAGG.spad" 1946974 1946983 1951799 1951826) (-1149 "SRAGG.spad" 1942137 1942148 1946964 1946969) (-1148 "SQMATRIX.spad" 1939753 1939771 1940669 1940756) (-1147 "SPLTREE.spad" 1934305 1934318 1939189 1939216) (-1146 "SPLNODE.spad" 1930893 1930906 1934295 1934300) (-1145 "SPFCAT.spad" 1929702 1929711 1930883 1930888) (-1144 "SPECOUT.spad" 1928254 1928263 1929692 1929697) (-1143 "SPADXPT.spad" 1919849 1919858 1928244 1928249) (-1142 "spad-parser.spad" 1919314 1919323 1919839 1919844) (-1141 "SPADAST.spad" 1919015 1919024 1919304 1919309) (-1140 "SPACEC.spad" 1903214 1903225 1919005 1919010) (-1139 "SPACE3.spad" 1902990 1903001 1903204 1903209) (-1138 "SORTPAK.spad" 1902539 1902552 1902946 1902951) (-1137 "SOLVETRA.spad" 1900302 1900313 1902529 1902534) (-1136 "SOLVESER.spad" 1898830 1898841 1900292 1900297) (-1135 "SOLVERAD.spad" 1894856 1894867 1898820 1898825) (-1134 "SOLVEFOR.spad" 1893318 1893336 1894846 1894851) (-1133 "SNTSCAT.spad" 1892918 1892935 1893286 1893313) (-1132 "SMTS.spad" 1891190 1891216 1892483 1892580) (-1131 "SMP.spad" 1888665 1888685 1889055 1889182) (-1130 "SMITH.spad" 1887510 1887535 1888655 1888660) (-1129 "SMATCAT.spad" 1885620 1885650 1887454 1887505) (-1128 "SMATCAT.spad" 1883662 1883694 1885498 1885503) (-1127 "SKAGG.spad" 1882625 1882636 1883630 1883657) (-1126 "SINT.spad" 1881457 1881466 1882491 1882620) (-1125 "SIMPAN.spad" 1881185 1881194 1881447 1881452) (-1124 "SIG.spad" 1880515 1880524 1881175 1881180) (-1123 "SIGNRF.spad" 1879633 1879644 1880505 1880510) (-1122 "SIGNEF.spad" 1878912 1878929 1879623 1879628) (-1121 "SIGAST.spad" 1878297 1878306 1878902 1878907) (-1120 "SHP.spad" 1876225 1876240 1878253 1878258) (-1119 "SHDP.spad" 1865936 1865963 1866445 1866576) (-1118 "SGROUP.spad" 1865544 1865553 1865926 1865931) (-1117 "SGROUP.spad" 1865150 1865161 1865534 1865539) (-1116 "SGCF.spad" 1858313 1858322 1865140 1865145) (-1115 "SFRTCAT.spad" 1857243 1857260 1858281 1858308) (-1114 "SFRGCD.spad" 1856306 1856326 1857233 1857238) (-1113 "SFQCMPK.spad" 1850943 1850963 1856296 1856301) (-1112 "SFORT.spad" 1850382 1850396 1850933 1850938) (-1111 "SEXOF.spad" 1850225 1850265 1850372 1850377) (-1110 "SEX.spad" 1850117 1850126 1850215 1850220) (-1109 "SEXCAT.spad" 1847718 1847758 1850107 1850112) (-1108 "SET.spad" 1846042 1846053 1847139 1847178) (-1107 "SETMN.spad" 1844492 1844509 1846032 1846037) (-1106 "SETCAT.spad" 1843814 1843823 1844482 1844487) (-1105 "SETCAT.spad" 1843134 1843145 1843804 1843809) (-1104 "SETAGG.spad" 1839683 1839694 1843114 1843129) (-1103 "SETAGG.spad" 1836240 1836253 1839673 1839678) (-1102 "SEQAST.spad" 1835943 1835952 1836230 1836235) (-1101 "SEGXCAT.spad" 1835099 1835112 1835933 1835938) (-1100 "SEG.spad" 1834912 1834923 1835018 1835023) (-1099 "SEGCAT.spad" 1833837 1833848 1834902 1834907) (-1098 "SEGBIND.spad" 1833595 1833606 1833784 1833789) (-1097 "SEGBIND2.spad" 1833293 1833306 1833585 1833590) (-1096 "SEGAST.spad" 1833007 1833016 1833283 1833288) (-1095 "SEG2.spad" 1832442 1832455 1832963 1832968) (-1094 "SDVAR.spad" 1831718 1831729 1832432 1832437) (-1093 "SDPOL.spad" 1829144 1829155 1829435 1829562) (-1092 "SCPKG.spad" 1827233 1827244 1829134 1829139) (-1091 "SCOPE.spad" 1826386 1826395 1827223 1827228) (-1090 "SCACHE.spad" 1825082 1825093 1826376 1826381) (-1089 "SASTCAT.spad" 1824991 1825000 1825072 1825077) (-1088 "SAOS.spad" 1824863 1824872 1824981 1824986) (-1087 "SAERFFC.spad" 1824576 1824596 1824853 1824858) (-1086 "SAE.spad" 1822751 1822767 1823362 1823497) (-1085 "SAEFACT.spad" 1822452 1822472 1822741 1822746) (-1084 "RURPK.spad" 1820111 1820127 1822442 1822447) (-1083 "RULESET.spad" 1819564 1819588 1820101 1820106) (-1082 "RULE.spad" 1817804 1817828 1819554 1819559) (-1081 "RULECOLD.spad" 1817656 1817669 1817794 1817799) (-1080 "RTVALUE.spad" 1817391 1817400 1817646 1817651) (-1079 "RSTRCAST.spad" 1817108 1817117 1817381 1817386) (-1078 "RSETGCD.spad" 1813486 1813506 1817098 1817103) (-1077 "RSETCAT.spad" 1803422 1803439 1813454 1813481) (-1076 "RSETCAT.spad" 1793378 1793397 1803412 1803417) (-1075 "RSDCMPK.spad" 1791830 1791850 1793368 1793373) (-1074 "RRCC.spad" 1790214 1790244 1791820 1791825) (-1073 "RRCC.spad" 1788596 1788628 1790204 1790209) (-1072 "RPTAST.spad" 1788298 1788307 1788586 1788591) (-1071 "RPOLCAT.spad" 1767658 1767673 1788166 1788293) (-1070 "RPOLCAT.spad" 1746732 1746749 1767242 1767247) (-1069 "ROUTINE.spad" 1742615 1742624 1745379 1745406) (-1068 "ROMAN.spad" 1741943 1741952 1742481 1742610) (-1067 "ROIRC.spad" 1741023 1741055 1741933 1741938) (-1066 "RNS.spad" 1739926 1739935 1740925 1741018) (-1065 "RNS.spad" 1738915 1738926 1739916 1739921) (-1064 "RNG.spad" 1738650 1738659 1738905 1738910) (-1063 "RNGBIND.spad" 1737810 1737824 1738605 1738610) (-1062 "RMODULE.spad" 1737575 1737586 1737800 1737805) (-1061 "RMCAT2.spad" 1736995 1737052 1737565 1737570) (-1060 "RMATRIX.spad" 1735819 1735838 1736162 1736201) (-1059 "RMATCAT.spad" 1731398 1731429 1735775 1735814) (-1058 "RMATCAT.spad" 1726867 1726900 1731246 1731251) (-1057 "RLINSET.spad" 1726261 1726272 1726857 1726862) (-1056 "RINTERP.spad" 1726149 1726169 1726251 1726256) (-1055 "RING.spad" 1725619 1725628 1726129 1726144) (-1054 "RING.spad" 1725097 1725108 1725609 1725614) (-1053 "RIDIST.spad" 1724489 1724498 1725087 1725092) (-1052 "RGCHAIN.spad" 1723072 1723088 1723974 1724001) (-1051 "RGBCSPC.spad" 1722853 1722865 1723062 1723067) (-1050 "RGBCMDL.spad" 1722383 1722395 1722843 1722848) (-1049 "RF.spad" 1720025 1720036 1722373 1722378) (-1048 "RFFACTOR.spad" 1719487 1719498 1720015 1720020) (-1047 "RFFACT.spad" 1719222 1719234 1719477 1719482) (-1046 "RFDIST.spad" 1718218 1718227 1719212 1719217) (-1045 "RETSOL.spad" 1717637 1717650 1718208 1718213) (-1044 "RETRACT.spad" 1717065 1717076 1717627 1717632) (-1043 "RETRACT.spad" 1716491 1716504 1717055 1717060) (-1042 "RETAST.spad" 1716303 1716312 1716481 1716486) (-1041 "RESULT.spad" 1714363 1714372 1714950 1714977) (-1040 "RESRING.spad" 1713710 1713757 1714301 1714358) (-1039 "RESLATC.spad" 1713034 1713045 1713700 1713705) (-1038 "REPSQ.spad" 1712765 1712776 1713024 1713029) (-1037 "REP.spad" 1710319 1710328 1712755 1712760) (-1036 "REPDB.spad" 1710026 1710037 1710309 1710314) (-1035 "REP2.spad" 1699684 1699695 1709868 1709873) (-1034 "REP1.spad" 1693880 1693891 1699634 1699639) (-1033 "REGSET.spad" 1691677 1691694 1693526 1693553) (-1032 "REF.spad" 1691012 1691023 1691632 1691637) (-1031 "REDORDER.spad" 1690218 1690235 1691002 1691007) (-1030 "RECLOS.spad" 1689001 1689021 1689705 1689798) (-1029 "REALSOLV.spad" 1688141 1688150 1688991 1688996) (-1028 "REAL.spad" 1688013 1688022 1688131 1688136) (-1027 "REAL0Q.spad" 1685311 1685326 1688003 1688008) (-1026 "REAL0.spad" 1682155 1682170 1685301 1685306) (-1025 "RDUCEAST.spad" 1681876 1681885 1682145 1682150) (-1024 "RDIV.spad" 1681531 1681556 1681866 1681871) (-1023 "RDIST.spad" 1681098 1681109 1681521 1681526) (-1022 "RDETRS.spad" 1679962 1679980 1681088 1681093) (-1021 "RDETR.spad" 1678101 1678119 1679952 1679957) (-1020 "RDEEFS.spad" 1677200 1677217 1678091 1678096) (-1019 "RDEEF.spad" 1676210 1676227 1677190 1677195) (-1018 "RCFIELD.spad" 1673396 1673405 1676112 1676205) (-1017 "RCFIELD.spad" 1670668 1670679 1673386 1673391) (-1016 "RCAGG.spad" 1668596 1668607 1670658 1670663) (-1015 "RCAGG.spad" 1666451 1666464 1668515 1668520) (-1014 "RATRET.spad" 1665811 1665822 1666441 1666446) (-1013 "RATFACT.spad" 1665503 1665515 1665801 1665806) (-1012 "RANDSRC.spad" 1664822 1664831 1665493 1665498) (-1011 "RADUTIL.spad" 1664578 1664587 1664812 1664817) (-1010 "RADIX.spad" 1661499 1661513 1663045 1663138) (-1009 "RADFF.spad" 1659912 1659949 1660031 1660187) (-1008 "RADCAT.spad" 1659507 1659516 1659902 1659907) (-1007 "RADCAT.spad" 1659100 1659111 1659497 1659502) (-1006 "QUEUE.spad" 1658448 1658459 1658707 1658734) (-1005 "QUAT.spad" 1657029 1657040 1657372 1657437) (-1004 "QUATCT2.spad" 1656649 1656668 1657019 1657024) (-1003 "QUATCAT.spad" 1654819 1654830 1656579 1656644) (-1002 "QUATCAT.spad" 1652740 1652753 1654502 1654507) (-1001 "QUAGG.spad" 1651567 1651578 1652708 1652735) (-1000 "QQUTAST.spad" 1651335 1651344 1651557 1651562) (-999 "QFORM.spad" 1650800 1650814 1651325 1651330) (-998 "QFCAT.spad" 1649503 1649513 1650702 1650795) (-997 "QFCAT.spad" 1647797 1647809 1648998 1649003) (-996 "QFCAT2.spad" 1647490 1647506 1647787 1647792) (-995 "QEQUAT.spad" 1647049 1647057 1647480 1647485) (-994 "QCMPACK.spad" 1641796 1641815 1647039 1647044) (-993 "QALGSET.spad" 1637875 1637907 1641710 1641715) (-992 "QALGSET2.spad" 1635871 1635889 1637865 1637870) (-991 "PWFFINTB.spad" 1633287 1633308 1635861 1635866) (-990 "PUSHVAR.spad" 1632626 1632645 1633277 1633282) (-989 "PTRANFN.spad" 1628754 1628764 1632616 1632621) (-988 "PTPACK.spad" 1625842 1625852 1628744 1628749) (-987 "PTFUNC2.spad" 1625665 1625679 1625832 1625837) (-986 "PTCAT.spad" 1624920 1624930 1625633 1625660) (-985 "PSQFR.spad" 1624227 1624251 1624910 1624915) (-984 "PSEUDLIN.spad" 1623113 1623123 1624217 1624222) (-983 "PSETPK.spad" 1608546 1608562 1622991 1622996) (-982 "PSETCAT.spad" 1602466 1602489 1608526 1608541) (-981 "PSETCAT.spad" 1596360 1596385 1602422 1602427) (-980 "PSCURVE.spad" 1595343 1595351 1596350 1596355) (-979 "PSCAT.spad" 1594126 1594155 1595241 1595338) (-978 "PSCAT.spad" 1592999 1593030 1594116 1594121) (-977 "PRTITION.spad" 1591960 1591968 1592989 1592994) (-976 "PRTDAST.spad" 1591679 1591687 1591950 1591955) (-975 "PRS.spad" 1581241 1581258 1591635 1591640) (-974 "PRQAGG.spad" 1580676 1580686 1581209 1581236) (-973 "PROPLOG.spad" 1579975 1579983 1580666 1580671) (-972 "PROPFRML.spad" 1578543 1578554 1579965 1579970) (-971 "PROPERTY.spad" 1578031 1578039 1578533 1578538) (-970 "PRODUCT.spad" 1575713 1575725 1575997 1576052) (-969 "PR.spad" 1574105 1574117 1574804 1574931) (-968 "PRINT.spad" 1573857 1573865 1574095 1574100) (-967 "PRIMES.spad" 1572110 1572120 1573847 1573852) (-966 "PRIMELT.spad" 1570191 1570205 1572100 1572105) (-965 "PRIMCAT.spad" 1569818 1569826 1570181 1570186) (-964 "PRIMARR.spad" 1568823 1568833 1569001 1569028) (-963 "PRIMARR2.spad" 1567590 1567602 1568813 1568818) (-962 "PREASSOC.spad" 1566972 1566984 1567580 1567585) (-961 "PPCURVE.spad" 1566109 1566117 1566962 1566967) (-960 "PORTNUM.spad" 1565884 1565892 1566099 1566104) (-959 "POLYROOT.spad" 1564733 1564755 1565840 1565845) (-958 "POLY.spad" 1562068 1562078 1562583 1562710) (-957 "POLYLIFT.spad" 1561333 1561356 1562058 1562063) (-956 "POLYCATQ.spad" 1559451 1559473 1561323 1561328) (-955 "POLYCAT.spad" 1552921 1552942 1559319 1559446) (-954 "POLYCAT.spad" 1545729 1545752 1552129 1552134) (-953 "POLY2UP.spad" 1545181 1545195 1545719 1545724) (-952 "POLY2.spad" 1544778 1544790 1545171 1545176) (-951 "POLUTIL.spad" 1543719 1543748 1544734 1544739) (-950 "POLTOPOL.spad" 1542467 1542482 1543709 1543714) (-949 "POINT.spad" 1541305 1541315 1541392 1541419) (-948 "PNTHEORY.spad" 1538007 1538015 1541295 1541300) (-947 "PMTOOLS.spad" 1536782 1536796 1537997 1538002) (-946 "PMSYM.spad" 1536331 1536341 1536772 1536777) (-945 "PMQFCAT.spad" 1535922 1535936 1536321 1536326) (-944 "PMPRED.spad" 1535401 1535415 1535912 1535917) (-943 "PMPREDFS.spad" 1534855 1534877 1535391 1535396) (-942 "PMPLCAT.spad" 1533935 1533953 1534787 1534792) (-941 "PMLSAGG.spad" 1533520 1533534 1533925 1533930) (-940 "PMKERNEL.spad" 1533099 1533111 1533510 1533515) (-939 "PMINS.spad" 1532679 1532689 1533089 1533094) (-938 "PMFS.spad" 1532256 1532274 1532669 1532674) (-937 "PMDOWN.spad" 1531546 1531560 1532246 1532251) (-936 "PMASS.spad" 1530556 1530564 1531536 1531541) (-935 "PMASSFS.spad" 1529523 1529539 1530546 1530551) (-934 "PLOTTOOL.spad" 1529303 1529311 1529513 1529518) (-933 "PLOT.spad" 1524226 1524234 1529293 1529298) (-932 "PLOT3D.spad" 1520690 1520698 1524216 1524221) (-931 "PLOT1.spad" 1519847 1519857 1520680 1520685) (-930 "PLEQN.spad" 1507137 1507164 1519837 1519842) (-929 "PINTERP.spad" 1506759 1506778 1507127 1507132) (-928 "PINTERPA.spad" 1506543 1506559 1506749 1506754) (-927 "PI.spad" 1506152 1506160 1506517 1506538) (-926 "PID.spad" 1505122 1505130 1506078 1506147) (-925 "PICOERCE.spad" 1504779 1504789 1505112 1505117) (-924 "PGROEB.spad" 1503380 1503394 1504769 1504774) (-923 "PGE.spad" 1494997 1495005 1503370 1503375) (-922 "PGCD.spad" 1493887 1493904 1494987 1494992) (-921 "PFRPAC.spad" 1493036 1493046 1493877 1493882) (-920 "PFR.spad" 1489699 1489709 1492938 1493031) (-919 "PFOTOOLS.spad" 1488957 1488973 1489689 1489694) (-918 "PFOQ.spad" 1488327 1488345 1488947 1488952) (-917 "PFO.spad" 1487746 1487773 1488317 1488322) (-916 "PF.spad" 1487320 1487332 1487551 1487644) (-915 "PFECAT.spad" 1485002 1485010 1487246 1487315) (-914 "PFECAT.spad" 1482712 1482722 1484958 1484963) (-913 "PFBRU.spad" 1480600 1480612 1482702 1482707) (-912 "PFBR.spad" 1478160 1478183 1480590 1480595) (-911 "PERM.spad" 1473845 1473855 1477990 1478005) (-910 "PERMGRP.spad" 1468607 1468617 1473835 1473840) (-909 "PERMCAT.spad" 1467165 1467175 1468587 1468602) (-908 "PERMAN.spad" 1465697 1465711 1467155 1467160) (-907 "PENDTREE.spad" 1465038 1465048 1465326 1465331) (-906 "PDRING.spad" 1463589 1463599 1465018 1465033) (-905 "PDRING.spad" 1462148 1462160 1463579 1463584) (-904 "PDEPROB.spad" 1461163 1461171 1462138 1462143) (-903 "PDEPACK.spad" 1455203 1455211 1461153 1461158) (-902 "PDECOMP.spad" 1454673 1454690 1455193 1455198) (-901 "PDECAT.spad" 1453029 1453037 1454663 1454668) (-900 "PCOMP.spad" 1452882 1452895 1453019 1453024) (-899 "PBWLB.spad" 1451470 1451487 1452872 1452877) (-898 "PATTERN.spad" 1446009 1446019 1451460 1451465) (-897 "PATTERN2.spad" 1445747 1445759 1445999 1446004) (-896 "PATTERN1.spad" 1444083 1444099 1445737 1445742) (-895 "PATRES.spad" 1441658 1441670 1444073 1444078) (-894 "PATRES2.spad" 1441330 1441344 1441648 1441653) (-893 "PATMATCH.spad" 1439527 1439558 1441038 1441043) (-892 "PATMAB.spad" 1438956 1438966 1439517 1439522) (-891 "PATLRES.spad" 1438042 1438056 1438946 1438951) (-890 "PATAB.spad" 1437806 1437816 1438032 1438037) (-889 "PARTPERM.spad" 1435206 1435214 1437796 1437801) (-888 "PARSURF.spad" 1434640 1434668 1435196 1435201) (-887 "PARSU2.spad" 1434437 1434453 1434630 1434635) (-886 "script-parser.spad" 1433957 1433965 1434427 1434432) (-885 "PARSCURV.spad" 1433391 1433419 1433947 1433952) (-884 "PARSC2.spad" 1433182 1433198 1433381 1433386) (-883 "PARPCURV.spad" 1432644 1432672 1433172 1433177) (-882 "PARPC2.spad" 1432435 1432451 1432634 1432639) (-881 "PARAMAST.spad" 1431563 1431571 1432425 1432430) (-880 "PAN2EXPR.spad" 1430975 1430983 1431553 1431558) (-879 "PALETTE.spad" 1429945 1429953 1430965 1430970) (-878 "PAIR.spad" 1428932 1428945 1429533 1429538) (-877 "PADICRC.spad" 1426266 1426284 1427437 1427530) (-876 "PADICRAT.spad" 1424281 1424293 1424502 1424595) (-875 "PADIC.spad" 1423976 1423988 1424207 1424276) (-874 "PADICCT.spad" 1422525 1422537 1423902 1423971) (-873 "PADEPAC.spad" 1421214 1421233 1422515 1422520) (-872 "PADE.spad" 1419966 1419982 1421204 1421209) (-871 "OWP.spad" 1419206 1419236 1419824 1419891) (-870 "OVERSET.spad" 1418779 1418787 1419196 1419201) (-869 "OVAR.spad" 1418560 1418583 1418769 1418774) (-868 "OUT.spad" 1417646 1417654 1418550 1418555) (-867 "OUTFORM.spad" 1407038 1407046 1417636 1417641) (-866 "OUTBFILE.spad" 1406456 1406464 1407028 1407033) (-865 "OUTBCON.spad" 1405462 1405470 1406446 1406451) (-864 "OUTBCON.spad" 1404466 1404476 1405452 1405457) (-863 "OSI.spad" 1403941 1403949 1404456 1404461) (-862 "OSGROUP.spad" 1403859 1403867 1403931 1403936) (-861 "ORTHPOL.spad" 1402344 1402354 1403776 1403781) (-860 "OREUP.spad" 1401797 1401825 1402024 1402063) (-859 "ORESUP.spad" 1401098 1401122 1401477 1401516) (-858 "OREPCTO.spad" 1398955 1398967 1401018 1401023) (-857 "OREPCAT.spad" 1393102 1393112 1398911 1398950) (-856 "OREPCAT.spad" 1387139 1387151 1392950 1392955) (-855 "ORDSET.spad" 1386311 1386319 1387129 1387134) (-854 "ORDSET.spad" 1385481 1385491 1386301 1386306) (-853 "ORDRING.spad" 1384871 1384879 1385461 1385476) (-852 "ORDRING.spad" 1384269 1384279 1384861 1384866) (-851 "ORDMON.spad" 1384124 1384132 1384259 1384264) (-850 "ORDFUNS.spad" 1383256 1383272 1384114 1384119) (-849 "ORDFIN.spad" 1383076 1383084 1383246 1383251) (-848 "ORDCOMP.spad" 1381541 1381551 1382623 1382652) (-847 "ORDCOMP2.spad" 1380834 1380846 1381531 1381536) (-846 "OPTPROB.spad" 1379472 1379480 1380824 1380829) (-845 "OPTPACK.spad" 1371881 1371889 1379462 1379467) (-844 "OPTCAT.spad" 1369560 1369568 1371871 1371876) (-843 "OPSIG.spad" 1369214 1369222 1369550 1369555) (-842 "OPQUERY.spad" 1368763 1368771 1369204 1369209) (-841 "OP.spad" 1368505 1368515 1368585 1368652) (-840 "OPERCAT.spad" 1367971 1367981 1368495 1368500) (-839 "OPERCAT.spad" 1367435 1367447 1367961 1367966) (-838 "ONECOMP.spad" 1366180 1366190 1366982 1367011) (-837 "ONECOMP2.spad" 1365604 1365616 1366170 1366175) (-836 "OMSERVER.spad" 1364610 1364618 1365594 1365599) (-835 "OMSAGG.spad" 1364398 1364408 1364566 1364605) (-834 "OMPKG.spad" 1363014 1363022 1364388 1364393) (-833 "OM.spad" 1361987 1361995 1363004 1363009) (-832 "OMLO.spad" 1361412 1361424 1361873 1361912) (-831 "OMEXPR.spad" 1361246 1361256 1361402 1361407) (-830 "OMERR.spad" 1360791 1360799 1361236 1361241) (-829 "OMERRK.spad" 1359825 1359833 1360781 1360786) (-828 "OMENC.spad" 1359169 1359177 1359815 1359820) (-827 "OMDEV.spad" 1353478 1353486 1359159 1359164) (-826 "OMCONN.spad" 1352887 1352895 1353468 1353473) (-825 "OINTDOM.spad" 1352650 1352658 1352813 1352882) (-824 "OFMONOID.spad" 1350773 1350783 1352606 1352611) (-823 "ODVAR.spad" 1350034 1350044 1350763 1350768) (-822 "ODR.spad" 1349678 1349704 1349846 1349995) (-821 "ODPOL.spad" 1347060 1347070 1347400 1347527) (-820 "ODP.spad" 1336907 1336927 1337280 1337411) (-819 "ODETOOLS.spad" 1335556 1335575 1336897 1336902) (-818 "ODESYS.spad" 1333250 1333267 1335546 1335551) (-817 "ODERTRIC.spad" 1329259 1329276 1333207 1333212) (-816 "ODERED.spad" 1328658 1328682 1329249 1329254) (-815 "ODERAT.spad" 1326273 1326290 1328648 1328653) (-814 "ODEPRRIC.spad" 1323310 1323332 1326263 1326268) (-813 "ODEPROB.spad" 1322567 1322575 1323300 1323305) (-812 "ODEPRIM.spad" 1319901 1319923 1322557 1322562) (-811 "ODEPAL.spad" 1319287 1319311 1319891 1319896) (-810 "ODEPACK.spad" 1305953 1305961 1319277 1319282) (-809 "ODEINT.spad" 1305388 1305404 1305943 1305948) (-808 "ODEIFTBL.spad" 1302783 1302791 1305378 1305383) (-807 "ODEEF.spad" 1298274 1298290 1302773 1302778) (-806 "ODECONST.spad" 1297811 1297829 1298264 1298269) (-805 "ODECAT.spad" 1296409 1296417 1297801 1297806) (-804 "OCT.spad" 1294545 1294555 1295259 1295298) (-803 "OCTCT2.spad" 1294191 1294212 1294535 1294540) (-802 "OC.spad" 1291987 1291997 1294147 1294186) (-801 "OC.spad" 1289508 1289520 1291670 1291675) (-800 "OCAMON.spad" 1289356 1289364 1289498 1289503) (-799 "OASGP.spad" 1289171 1289179 1289346 1289351) (-798 "OAMONS.spad" 1288693 1288701 1289161 1289166) (-797 "OAMON.spad" 1288554 1288562 1288683 1288688) (-796 "OAGROUP.spad" 1288416 1288424 1288544 1288549) (-795 "NUMTUBE.spad" 1288007 1288023 1288406 1288411) (-794 "NUMQUAD.spad" 1275983 1275991 1287997 1288002) (-793 "NUMODE.spad" 1267337 1267345 1275973 1275978) (-792 "NUMINT.spad" 1264903 1264911 1267327 1267332) (-791 "NUMFMT.spad" 1263743 1263751 1264893 1264898) (-790 "NUMERIC.spad" 1255857 1255867 1263548 1263553) (-789 "NTSCAT.spad" 1254365 1254381 1255825 1255852) (-788 "NTPOLFN.spad" 1253916 1253926 1254282 1254287) (-787 "NSUP.spad" 1246962 1246972 1251502 1251655) (-786 "NSUP2.spad" 1246354 1246366 1246952 1246957) (-785 "NSMP.spad" 1242585 1242604 1242893 1243020) (-784 "NREP.spad" 1240963 1240977 1242575 1242580) (-783 "NPCOEF.spad" 1240209 1240229 1240953 1240958) (-782 "NORMRETR.spad" 1239807 1239846 1240199 1240204) (-781 "NORMPK.spad" 1237709 1237728 1239797 1239802) (-780 "NORMMA.spad" 1237397 1237423 1237699 1237704) (-779 "NONE.spad" 1237138 1237146 1237387 1237392) (-778 "NONE1.spad" 1236814 1236824 1237128 1237133) (-777 "NODE1.spad" 1236301 1236317 1236804 1236809) (-776 "NNI.spad" 1235196 1235204 1236275 1236296) (-775 "NLINSOL.spad" 1233822 1233832 1235186 1235191) (-774 "NIPROB.spad" 1232363 1232371 1233812 1233817) (-773 "NFINTBAS.spad" 1229923 1229940 1232353 1232358) (-772 "NETCLT.spad" 1229897 1229908 1229913 1229918) (-771 "NCODIV.spad" 1228113 1228129 1229887 1229892) (-770 "NCNTFRAC.spad" 1227755 1227769 1228103 1228108) (-769 "NCEP.spad" 1225921 1225935 1227745 1227750) (-768 "NASRING.spad" 1225517 1225525 1225911 1225916) (-767 "NASRING.spad" 1225111 1225121 1225507 1225512) (-766 "NARNG.spad" 1224463 1224471 1225101 1225106) (-765 "NARNG.spad" 1223813 1223823 1224453 1224458) (-764 "NAGSP.spad" 1222890 1222898 1223803 1223808) (-763 "NAGS.spad" 1212551 1212559 1222880 1222885) (-762 "NAGF07.spad" 1210982 1210990 1212541 1212546) (-761 "NAGF04.spad" 1205384 1205392 1210972 1210977) (-760 "NAGF02.spad" 1199453 1199461 1205374 1205379) (-759 "NAGF01.spad" 1195214 1195222 1199443 1199448) (-758 "NAGE04.spad" 1188914 1188922 1195204 1195209) (-757 "NAGE02.spad" 1179574 1179582 1188904 1188909) (-756 "NAGE01.spad" 1175576 1175584 1179564 1179569) (-755 "NAGD03.spad" 1173580 1173588 1175566 1175571) (-754 "NAGD02.spad" 1166327 1166335 1173570 1173575) (-753 "NAGD01.spad" 1160620 1160628 1166317 1166322) (-752 "NAGC06.spad" 1156495 1156503 1160610 1160615) (-751 "NAGC05.spad" 1154996 1155004 1156485 1156490) (-750 "NAGC02.spad" 1154263 1154271 1154986 1154991) (-749 "NAALG.spad" 1153804 1153814 1154231 1154258) (-748 "NAALG.spad" 1153365 1153377 1153794 1153799) (-747 "MULTSQFR.spad" 1150323 1150340 1153355 1153360) (-746 "MULTFACT.spad" 1149706 1149723 1150313 1150318) (-745 "MTSCAT.spad" 1147800 1147821 1149604 1149701) (-744 "MTHING.spad" 1147459 1147469 1147790 1147795) (-743 "MSYSCMD.spad" 1146893 1146901 1147449 1147454) (-742 "MSET.spad" 1144851 1144861 1146599 1146638) (-741 "MSETAGG.spad" 1144696 1144706 1144819 1144846) (-740 "MRING.spad" 1141673 1141685 1144404 1144471) (-739 "MRF2.spad" 1141243 1141257 1141663 1141668) (-738 "MRATFAC.spad" 1140789 1140806 1141233 1141238) (-737 "MPRFF.spad" 1138829 1138848 1140779 1140784) (-736 "MPOLY.spad" 1136300 1136315 1136659 1136786) (-735 "MPCPF.spad" 1135564 1135583 1136290 1136295) (-734 "MPC3.spad" 1135381 1135421 1135554 1135559) (-733 "MPC2.spad" 1135027 1135060 1135371 1135376) (-732 "MONOTOOL.spad" 1133378 1133395 1135017 1135022) (-731 "MONOID.spad" 1132697 1132705 1133368 1133373) (-730 "MONOID.spad" 1132014 1132024 1132687 1132692) (-729 "MONOGEN.spad" 1130762 1130775 1131874 1132009) (-728 "MONOGEN.spad" 1129532 1129547 1130646 1130651) (-727 "MONADWU.spad" 1127562 1127570 1129522 1129527) (-726 "MONADWU.spad" 1125590 1125600 1127552 1127557) (-725 "MONAD.spad" 1124750 1124758 1125580 1125585) (-724 "MONAD.spad" 1123908 1123918 1124740 1124745) (-723 "MOEBIUS.spad" 1122644 1122658 1123888 1123903) (-722 "MODULE.spad" 1122514 1122524 1122612 1122639) (-721 "MODULE.spad" 1122404 1122416 1122504 1122509) (-720 "MODRING.spad" 1121739 1121778 1122384 1122399) (-719 "MODOP.spad" 1120404 1120416 1121561 1121628) (-718 "MODMONOM.spad" 1120135 1120153 1120394 1120399) (-717 "MODMON.spad" 1116930 1116946 1117649 1117802) (-716 "MODFIELD.spad" 1116292 1116331 1116832 1116925) (-715 "MMLFORM.spad" 1115152 1115160 1116282 1116287) (-714 "MMAP.spad" 1114894 1114928 1115142 1115147) (-713 "MLO.spad" 1113353 1113363 1114850 1114889) (-712 "MLIFT.spad" 1111965 1111982 1113343 1113348) (-711 "MKUCFUNC.spad" 1111500 1111518 1111955 1111960) (-710 "MKRECORD.spad" 1111104 1111117 1111490 1111495) (-709 "MKFUNC.spad" 1110511 1110521 1111094 1111099) (-708 "MKFLCFN.spad" 1109479 1109489 1110501 1110506) (-707 "MKBCFUNC.spad" 1108974 1108992 1109469 1109474) (-706 "MINT.spad" 1108413 1108421 1108876 1108969) (-705 "MHROWRED.spad" 1106924 1106934 1108403 1108408) (-704 "MFLOAT.spad" 1105444 1105452 1106814 1106919) (-703 "MFINFACT.spad" 1104844 1104866 1105434 1105439) (-702 "MESH.spad" 1102626 1102634 1104834 1104839) (-701 "MDDFACT.spad" 1100837 1100847 1102616 1102621) (-700 "MDAGG.spad" 1100128 1100138 1100817 1100832) (-699 "MCMPLX.spad" 1096139 1096147 1096753 1096954) (-698 "MCDEN.spad" 1095349 1095361 1096129 1096134) (-697 "MCALCFN.spad" 1092471 1092497 1095339 1095344) (-696 "MAYBE.spad" 1091755 1091766 1092461 1092466) (-695 "MATSTOR.spad" 1089063 1089073 1091745 1091750) (-694 "MATRIX.spad" 1087767 1087777 1088251 1088278) (-693 "MATLIN.spad" 1085111 1085135 1087651 1087656) (-692 "MATCAT.spad" 1076840 1076862 1085079 1085106) (-691 "MATCAT.spad" 1068441 1068465 1076682 1076687) (-690 "MATCAT2.spad" 1067723 1067771 1068431 1068436) (-689 "MAPPKG3.spad" 1066638 1066652 1067713 1067718) (-688 "MAPPKG2.spad" 1065976 1065988 1066628 1066633) (-687 "MAPPKG1.spad" 1064804 1064814 1065966 1065971) (-686 "MAPPAST.spad" 1064119 1064127 1064794 1064799) (-685 "MAPHACK3.spad" 1063931 1063945 1064109 1064114) (-684 "MAPHACK2.spad" 1063700 1063712 1063921 1063926) (-683 "MAPHACK1.spad" 1063344 1063354 1063690 1063695) (-682 "MAGMA.spad" 1061134 1061151 1063334 1063339) (-681 "MACROAST.spad" 1060713 1060721 1061124 1061129) (-680 "M3D.spad" 1058433 1058443 1060091 1060096) (-679 "LZSTAGG.spad" 1055671 1055681 1058423 1058428) (-678 "LZSTAGG.spad" 1052907 1052919 1055661 1055666) (-677 "LWORD.spad" 1049612 1049629 1052897 1052902) (-676 "LSTAST.spad" 1049396 1049404 1049602 1049607) (-675 "LSQM.spad" 1047626 1047640 1048020 1048071) (-674 "LSPP.spad" 1047161 1047178 1047616 1047621) (-673 "LSMP.spad" 1046011 1046039 1047151 1047156) (-672 "LSMP1.spad" 1043829 1043843 1046001 1046006) (-671 "LSAGG.spad" 1043498 1043508 1043797 1043824) (-670 "LSAGG.spad" 1043187 1043199 1043488 1043493) (-669 "LPOLY.spad" 1042141 1042160 1043043 1043112) (-668 "LPEFRAC.spad" 1041412 1041422 1042131 1042136) (-667 "LO.spad" 1040813 1040827 1041346 1041373) (-666 "LOGIC.spad" 1040415 1040423 1040803 1040808) (-665 "LOGIC.spad" 1040015 1040025 1040405 1040410) (-664 "LODOOPS.spad" 1038945 1038957 1040005 1040010) (-663 "LODO.spad" 1038329 1038345 1038625 1038664) (-662 "LODOF.spad" 1037375 1037392 1038286 1038291) (-661 "LODOCAT.spad" 1036041 1036051 1037331 1037370) (-660 "LODOCAT.spad" 1034705 1034717 1035997 1036002) (-659 "LODO2.spad" 1033978 1033990 1034385 1034424) (-658 "LODO1.spad" 1033378 1033388 1033658 1033697) (-657 "LODEEF.spad" 1032180 1032198 1033368 1033373) (-656 "LNAGG.spad" 1028012 1028022 1032170 1032175) (-655 "LNAGG.spad" 1023808 1023820 1027968 1027973) (-654 "LMOPS.spad" 1020576 1020593 1023798 1023803) (-653 "LMODULE.spad" 1020344 1020354 1020566 1020571) (-652 "LMDICT.spad" 1019631 1019641 1019895 1019922) (-651 "LLINSET.spad" 1019028 1019038 1019621 1019626) (-650 "LITERAL.spad" 1018934 1018945 1019018 1019023) (-649 "LIST.spad" 1016669 1016679 1018081 1018108) (-648 "LIST3.spad" 1015980 1015994 1016659 1016664) (-647 "LIST2.spad" 1014682 1014694 1015970 1015975) (-646 "LIST2MAP.spad" 1011585 1011597 1014672 1014677) (-645 "LINSET.spad" 1011207 1011217 1011575 1011580) (-644 "LINEXP.spad" 1010641 1010651 1011187 1011202) (-643 "LINDEP.spad" 1009450 1009462 1010553 1010558) (-642 "LIMITRF.spad" 1007378 1007388 1009440 1009445) (-641 "LIMITPS.spad" 1006281 1006294 1007368 1007373) (-640 "LIE.spad" 1004297 1004309 1005571 1005716) (-639 "LIECAT.spad" 1003773 1003783 1004223 1004292) (-638 "LIECAT.spad" 1003277 1003289 1003729 1003734) (-637 "LIB.spad" 1001327 1001335 1001936 1001951) (-636 "LGROBP.spad" 998680 998699 1001317 1001322) (-635 "LF.spad" 997635 997651 998670 998675) (-634 "LFCAT.spad" 996694 996702 997625 997630) (-633 "LEXTRIPK.spad" 992197 992212 996684 996689) (-632 "LEXP.spad" 990200 990227 992177 992192) (-631 "LETAST.spad" 989899 989907 990190 990195) (-630 "LEADCDET.spad" 988297 988314 989889 989894) (-629 "LAZM3PK.spad" 987001 987023 988287 988292) (-628 "LAUPOL.spad" 985694 985707 986594 986663) (-627 "LAPLACE.spad" 985277 985293 985684 985689) (-626 "LA.spad" 984717 984731 985199 985238) (-625 "LALG.spad" 984493 984503 984697 984712) (-624 "LALG.spad" 984277 984289 984483 984488) (-623 "KVTFROM.spad" 984012 984022 984267 984272) (-622 "KTVLOGIC.spad" 983524 983532 984002 984007) (-621 "KRCFROM.spad" 983262 983272 983514 983519) (-620 "KOVACIC.spad" 981985 982002 983252 983257) (-619 "KONVERT.spad" 981707 981717 981975 981980) (-618 "KOERCE.spad" 981444 981454 981697 981702) (-617 "KERNEL.spad" 980099 980109 981228 981233) (-616 "KERNEL2.spad" 979802 979814 980089 980094) (-615 "KDAGG.spad" 978911 978933 979782 979797) (-614 "KDAGG.spad" 978028 978052 978901 978906) (-613 "KAFILE.spad" 976991 977007 977226 977253) (-612 "JORDAN.spad" 974820 974832 976281 976426) (-611 "JOINAST.spad" 974514 974522 974810 974815) (-610 "JAVACODE.spad" 974380 974388 974504 974509) (-609 "IXAGG.spad" 972513 972537 974370 974375) (-608 "IXAGG.spad" 970501 970527 972360 972365) (-607 "IVECTOR.spad" 969271 969286 969426 969453) (-606 "ITUPLE.spad" 968432 968442 969261 969266) (-605 "ITRIGMNP.spad" 967271 967290 968422 968427) (-604 "ITFUN3.spad" 966777 966791 967261 967266) (-603 "ITFUN2.spad" 966521 966533 966767 966772) (-602 "ITFORM.spad" 965876 965884 966511 966516) (-601 "ITAYLOR.spad" 963870 963885 965740 965837) (-600 "ISUPS.spad" 956307 956322 962844 962941) (-599 "ISUMP.spad" 955808 955824 956297 956302) (-598 "ISTRING.spad" 954896 954909 954977 955004) (-597 "ISAST.spad" 954615 954623 954886 954891) (-596 "IRURPK.spad" 953332 953351 954605 954610) (-595 "IRSN.spad" 951336 951344 953322 953327) (-594 "IRRF2F.spad" 949821 949831 951292 951297) (-593 "IRREDFFX.spad" 949422 949433 949811 949816) (-592 "IROOT.spad" 947761 947771 949412 949417) (-591 "IR.spad" 945562 945576 947616 947643) (-590 "IRFORM.spad" 944886 944894 945552 945557) (-589 "IR2.spad" 943914 943930 944876 944881) (-588 "IR2F.spad" 943120 943136 943904 943909) (-587 "IPRNTPK.spad" 942880 942888 943110 943115) (-586 "IPF.spad" 942445 942457 942685 942778) (-585 "IPADIC.spad" 942206 942232 942371 942440) (-584 "IP4ADDR.spad" 941763 941771 942196 942201) (-583 "IOMODE.spad" 941384 941392 941753 941758) (-582 "IOBFILE.spad" 940745 940753 941374 941379) (-581 "IOBCON.spad" 940610 940618 940735 940740) (-580 "INVLAPLA.spad" 940259 940275 940600 940605) (-579 "INTTR.spad" 933641 933658 940249 940254) (-578 "INTTOOLS.spad" 931396 931412 933215 933220) (-577 "INTSLPE.spad" 930716 930724 931386 931391) (-576 "INTRVL.spad" 930282 930292 930630 930711) (-575 "INTRF.spad" 928706 928720 930272 930277) (-574 "INTRET.spad" 928138 928148 928696 928701) (-573 "INTRAT.spad" 926865 926882 928128 928133) (-572 "INTPM.spad" 925250 925266 926508 926513) (-571 "INTPAF.spad" 923114 923132 925182 925187) (-570 "INTPACK.spad" 913488 913496 923104 923109) (-569 "INT.spad" 912936 912944 913342 913483) (-568 "INTHERTR.spad" 912210 912227 912926 912931) (-567 "INTHERAL.spad" 911880 911904 912200 912205) (-566 "INTHEORY.spad" 908319 908327 911870 911875) (-565 "INTG0.spad" 902052 902070 908251 908256) (-564 "INTFTBL.spad" 896081 896089 902042 902047) (-563 "INTFACT.spad" 895140 895150 896071 896076) (-562 "INTEF.spad" 893525 893541 895130 895135) (-561 "INTDOM.spad" 892148 892156 893451 893520) (-560 "INTDOM.spad" 890833 890843 892138 892143) (-559 "INTCAT.spad" 889092 889102 890747 890828) (-558 "INTBIT.spad" 888599 888607 889082 889087) (-557 "INTALG.spad" 887787 887814 888589 888594) (-556 "INTAF.spad" 887287 887303 887777 887782) (-555 "INTABL.spad" 885805 885836 885968 885995) (-554 "INT8.spad" 885685 885693 885795 885800) (-553 "INT64.spad" 885564 885572 885675 885680) (-552 "INT32.spad" 885443 885451 885554 885559) (-551 "INT16.spad" 885322 885330 885433 885438) (-550 "INS.spad" 882825 882833 885224 885317) (-549 "INS.spad" 880414 880424 882815 882820) (-548 "INPSIGN.spad" 879862 879875 880404 880409) (-547 "INPRODPF.spad" 878958 878977 879852 879857) (-546 "INPRODFF.spad" 878046 878070 878948 878953) (-545 "INNMFACT.spad" 877021 877038 878036 878041) (-544 "INMODGCD.spad" 876509 876539 877011 877016) (-543 "INFSP.spad" 874806 874828 876499 876504) (-542 "INFPROD0.spad" 873886 873905 874796 874801) (-541 "INFORM.spad" 871085 871093 873876 873881) (-540 "INFORM1.spad" 870710 870720 871075 871080) (-539 "INFINITY.spad" 870262 870270 870700 870705) (-538 "INETCLTS.spad" 870239 870247 870252 870257) (-537 "INEP.spad" 868777 868799 870229 870234) (-536 "INDE.spad" 868506 868523 868767 868772) (-535 "INCRMAPS.spad" 867927 867937 868496 868501) (-534 "INBFILE.spad" 866999 867007 867917 867922) (-533 "INBFF.spad" 862793 862804 866989 866994) (-532 "INBCON.spad" 861083 861091 862783 862788) (-531 "INBCON.spad" 859371 859381 861073 861078) (-530 "INAST.spad" 859032 859040 859361 859366) (-529 "IMPTAST.spad" 858740 858748 859022 859027) (-528 "IMATRIX.spad" 857685 857711 858197 858224) (-527 "IMATQF.spad" 856779 856823 857641 857646) (-526 "IMATLIN.spad" 855384 855408 856735 856740) (-525 "ILIST.spad" 854042 854057 854567 854594) (-524 "IIARRAY2.spad" 853430 853468 853649 853676) (-523 "IFF.spad" 852840 852856 853111 853204) (-522 "IFAST.spad" 852454 852462 852830 852835) (-521 "IFARRAY.spad" 849947 849962 851637 851664) (-520 "IFAMON.spad" 849809 849826 849903 849908) (-519 "IEVALAB.spad" 849214 849226 849799 849804) (-518 "IEVALAB.spad" 848617 848631 849204 849209) (-517 "IDPO.spad" 848415 848427 848607 848612) (-516 "IDPOAMS.spad" 848171 848183 848405 848410) (-515 "IDPOAM.spad" 847891 847903 848161 848166) (-514 "IDPC.spad" 846829 846841 847881 847886) (-513 "IDPAM.spad" 846574 846586 846819 846824) (-512 "IDPAG.spad" 846321 846333 846564 846569) (-511 "IDENT.spad" 845971 845979 846311 846316) (-510 "IDECOMP.spad" 843210 843228 845961 845966) (-509 "IDEAL.spad" 838159 838198 843145 843150) (-508 "ICDEN.spad" 837348 837364 838149 838154) (-507 "ICARD.spad" 836539 836547 837338 837343) (-506 "IBPTOOLS.spad" 835146 835163 836529 836534) (-505 "IBITS.spad" 834349 834362 834782 834809) (-504 "IBATOOL.spad" 831326 831345 834339 834344) (-503 "IBACHIN.spad" 829833 829848 831316 831321) (-502 "IARRAY2.spad" 828821 828847 829440 829467) (-501 "IARRAY1.spad" 827866 827881 828004 828031) (-500 "IAN.spad" 826089 826097 827682 827775) (-499 "IALGFACT.spad" 825692 825725 826079 826084) (-498 "HYPCAT.spad" 825116 825124 825682 825687) (-497 "HYPCAT.spad" 824538 824548 825106 825111) (-496 "HOSTNAME.spad" 824346 824354 824528 824533) (-495 "HOMOTOP.spad" 824089 824099 824336 824341) (-494 "HOAGG.spad" 821371 821381 824079 824084) (-493 "HOAGG.spad" 818428 818440 821138 821143) (-492 "HEXADEC.spad" 816530 816538 816895 816988) (-491 "HEUGCD.spad" 815565 815576 816520 816525) (-490 "HELLFDIV.spad" 815155 815179 815555 815560) (-489 "HEAP.spad" 814547 814557 814762 814789) (-488 "HEADAST.spad" 814080 814088 814537 814542) (-487 "HDP.spad" 803923 803939 804300 804431) (-486 "HDMP.spad" 801137 801152 801753 801880) (-485 "HB.spad" 799388 799396 801127 801132) (-484 "HASHTBL.spad" 797858 797889 798069 798096) (-483 "HASAST.spad" 797574 797582 797848 797853) (-482 "HACKPI.spad" 797065 797073 797476 797569) (-481 "GTSET.spad" 796004 796020 796711 796738) (-480 "GSTBL.spad" 794523 794558 794697 794712) (-479 "GSERIES.spad" 791694 791721 792655 792804) (-478 "GROUP.spad" 790967 790975 791674 791689) (-477 "GROUP.spad" 790248 790258 790957 790962) (-476 "GROEBSOL.spad" 788742 788763 790238 790243) (-475 "GRMOD.spad" 787313 787325 788732 788737) (-474 "GRMOD.spad" 785882 785896 787303 787308) (-473 "GRIMAGE.spad" 778771 778779 785872 785877) (-472 "GRDEF.spad" 777150 777158 778761 778766) (-471 "GRAY.spad" 775613 775621 777140 777145) (-470 "GRALG.spad" 774690 774702 775603 775608) (-469 "GRALG.spad" 773765 773779 774680 774685) (-468 "GPOLSET.spad" 773219 773242 773447 773474) (-467 "GOSPER.spad" 772488 772506 773209 773214) (-466 "GMODPOL.spad" 771636 771663 772456 772483) (-465 "GHENSEL.spad" 770719 770733 771626 771631) (-464 "GENUPS.spad" 767012 767025 770709 770714) (-463 "GENUFACT.spad" 766589 766599 767002 767007) (-462 "GENPGCD.spad" 766175 766192 766579 766584) (-461 "GENMFACT.spad" 765627 765646 766165 766170) (-460 "GENEEZ.spad" 763578 763591 765617 765622) (-459 "GDMP.spad" 760634 760651 761408 761535) (-458 "GCNAALG.spad" 754557 754584 760428 760495) (-457 "GCDDOM.spad" 753733 753741 754483 754552) (-456 "GCDDOM.spad" 752971 752981 753723 753728) (-455 "GB.spad" 750497 750535 752927 752932) (-454 "GBINTERN.spad" 746517 746555 750487 750492) (-453 "GBF.spad" 742284 742322 746507 746512) (-452 "GBEUCLID.spad" 740166 740204 742274 742279) (-451 "GAUSSFAC.spad" 739479 739487 740156 740161) (-450 "GALUTIL.spad" 737805 737815 739435 739440) (-449 "GALPOLYU.spad" 736259 736272 737795 737800) (-448 "GALFACTU.spad" 734432 734451 736249 736254) (-447 "GALFACT.spad" 724621 724632 734422 734427) (-446 "FVFUN.spad" 721644 721652 724611 724616) (-445 "FVC.spad" 720696 720704 721634 721639) (-444 "FUNDESC.spad" 720374 720382 720686 720691) (-443 "FUNCTION.spad" 720223 720235 720364 720369) (-442 "FT.spad" 718520 718528 720213 720218) (-441 "FTEM.spad" 717685 717693 718510 718515) (-440 "FSUPFACT.spad" 716585 716604 717621 717626) (-439 "FST.spad" 714671 714679 716575 716580) (-438 "FSRED.spad" 714151 714167 714661 714666) (-437 "FSPRMELT.spad" 713033 713049 714108 714113) (-436 "FSPECF.spad" 711124 711140 713023 713028) (-435 "FS.spad" 705392 705402 710899 711119) (-434 "FS.spad" 699438 699450 704947 704952) (-433 "FSINT.spad" 699098 699114 699428 699433) (-432 "FSERIES.spad" 698289 698301 698918 699017) (-431 "FSCINT.spad" 697606 697622 698279 698284) (-430 "FSAGG.spad" 696723 696733 697562 697601) (-429 "FSAGG.spad" 695802 695814 696643 696648) (-428 "FSAGG2.spad" 694545 694561 695792 695797) (-427 "FS2UPS.spad" 689036 689070 694535 694540) (-426 "FS2.spad" 688683 688699 689026 689031) (-425 "FS2EXPXP.spad" 687808 687831 688673 688678) (-424 "FRUTIL.spad" 686762 686772 687798 687803) (-423 "FR.spad" 680478 680488 685786 685855) (-422 "FRNAALG.spad" 675597 675607 680420 680473) (-421 "FRNAALG.spad" 670728 670740 675553 675558) (-420 "FRNAAF2.spad" 670184 670202 670718 670723) (-419 "FRMOD.spad" 669594 669624 670115 670120) (-418 "FRIDEAL.spad" 668819 668840 669574 669589) (-417 "FRIDEAL2.spad" 668423 668455 668809 668814) (-416 "FRETRCT.spad" 667934 667944 668413 668418) (-415 "FRETRCT.spad" 667311 667323 667792 667797) (-414 "FRAMALG.spad" 665659 665672 667267 667306) (-413 "FRAMALG.spad" 664039 664054 665649 665654) (-412 "FRAC.spad" 661138 661148 661541 661714) (-411 "FRAC2.spad" 660743 660755 661128 661133) (-410 "FR2.spad" 660079 660091 660733 660738) (-409 "FPS.spad" 656894 656902 659969 660074) (-408 "FPS.spad" 653737 653747 656814 656819) (-407 "FPC.spad" 652783 652791 653639 653732) (-406 "FPC.spad" 651915 651925 652773 652778) (-405 "FPATMAB.spad" 651677 651687 651905 651910) (-404 "FPARFRAC.spad" 650164 650181 651667 651672) (-403 "FORTRAN.spad" 648670 648713 650154 650159) (-402 "FORT.spad" 647619 647627 648660 648665) (-401 "FORTFN.spad" 644789 644797 647609 647614) (-400 "FORTCAT.spad" 644473 644481 644779 644784) (-399 "FORMULA.spad" 641947 641955 644463 644468) (-398 "FORMULA1.spad" 641426 641436 641937 641942) (-397 "FORDER.spad" 641117 641141 641416 641421) (-396 "FOP.spad" 640318 640326 641107 641112) (-395 "FNLA.spad" 639742 639764 640286 640313) (-394 "FNCAT.spad" 638337 638345 639732 639737) (-393 "FNAME.spad" 638229 638237 638327 638332) (-392 "FMTC.spad" 638027 638035 638155 638224) (-391 "FMONOID.spad" 637692 637702 637983 637988) (-390 "FMONCAT.spad" 634845 634855 637682 637687) (-389 "FM.spad" 634540 634552 634779 634806) (-388 "FMFUN.spad" 631570 631578 634530 634535) (-387 "FMC.spad" 630622 630630 631560 631565) (-386 "FMCAT.spad" 628290 628308 630590 630617) (-385 "FM1.spad" 627647 627659 628224 628251) (-384 "FLOATRP.spad" 625382 625396 627637 627642) (-383 "FLOAT.spad" 618696 618704 625248 625377) (-382 "FLOATCP.spad" 616127 616141 618686 618691) (-381 "FLINEXP.spad" 615839 615849 616107 616122) (-380 "FLINEXP.spad" 615505 615517 615775 615780) (-379 "FLASORT.spad" 614831 614843 615495 615500) (-378 "FLALG.spad" 612477 612496 614757 614826) (-377 "FLAGG.spad" 609519 609529 612457 612472) (-376 "FLAGG.spad" 606462 606474 609402 609407) (-375 "FLAGG2.spad" 605187 605203 606452 606457) (-374 "FINRALG.spad" 603248 603261 605143 605182) (-373 "FINRALG.spad" 601235 601250 603132 603137) (-372 "FINITE.spad" 600387 600395 601225 601230) (-371 "FINAALG.spad" 589508 589518 600329 600382) (-370 "FINAALG.spad" 578641 578653 589464 589469) (-369 "FILE.spad" 578224 578234 578631 578636) (-368 "FILECAT.spad" 576750 576767 578214 578219) (-367 "FIELD.spad" 576156 576164 576652 576745) (-366 "FIELD.spad" 575648 575658 576146 576151) (-365 "FGROUP.spad" 574295 574305 575628 575643) (-364 "FGLMICPK.spad" 573082 573097 574285 574290) (-363 "FFX.spad" 572457 572472 572798 572891) (-362 "FFSLPE.spad" 571960 571981 572447 572452) (-361 "FFPOLY.spad" 563222 563233 571950 571955) (-360 "FFPOLY2.spad" 562282 562299 563212 563217) (-359 "FFP.spad" 561679 561699 561998 562091) (-358 "FF.spad" 561127 561143 561360 561453) (-357 "FFNBX.spad" 559639 559659 560843 560936) (-356 "FFNBP.spad" 558152 558169 559355 559448) (-355 "FFNB.spad" 556617 556638 557833 557926) (-354 "FFINTBAS.spad" 554131 554150 556607 556612) (-353 "FFIELDC.spad" 551708 551716 554033 554126) (-352 "FFIELDC.spad" 549371 549381 551698 551703) (-351 "FFHOM.spad" 548119 548136 549361 549366) (-350 "FFF.spad" 545554 545565 548109 548114) (-349 "FFCGX.spad" 544401 544421 545270 545363) (-348 "FFCGP.spad" 543290 543310 544117 544210) (-347 "FFCG.spad" 542082 542103 542971 543064) (-346 "FFCAT.spad" 535255 535277 541921 542077) (-345 "FFCAT.spad" 528507 528531 535175 535180) (-344 "FFCAT2.spad" 528254 528294 528497 528502) (-343 "FEXPR.spad" 519971 520017 528010 528049) (-342 "FEVALAB.spad" 519679 519689 519961 519966) (-341 "FEVALAB.spad" 519172 519184 519456 519461) (-340 "FDIV.spad" 518614 518638 519162 519167) (-339 "FDIVCAT.spad" 516678 516702 518604 518609) (-338 "FDIVCAT.spad" 514740 514766 516668 516673) (-337 "FDIV2.spad" 514396 514436 514730 514735) (-336 "FCTRDATA.spad" 513404 513412 514386 514391) (-335 "FCPAK1.spad" 511971 511979 513394 513399) (-334 "FCOMP.spad" 511350 511360 511961 511966) (-333 "FC.spad" 501357 501365 511340 511345) (-332 "FAXF.spad" 494328 494342 501259 501352) (-331 "FAXF.spad" 487351 487367 494284 494289) (-330 "FARRAY.spad" 485501 485511 486534 486561) (-329 "FAMR.spad" 483637 483649 485399 485496) (-328 "FAMR.spad" 481757 481771 483521 483526) (-327 "FAMONOID.spad" 481425 481435 481711 481716) (-326 "FAMONC.spad" 479721 479733 481415 481420) (-325 "FAGROUP.spad" 479345 479355 479617 479644) (-324 "FACUTIL.spad" 477549 477566 479335 479340) (-323 "FACTFUNC.spad" 476743 476753 477539 477544) (-322 "EXPUPXS.spad" 473576 473599 474875 475024) (-321 "EXPRTUBE.spad" 470864 470872 473566 473571) (-320 "EXPRODE.spad" 468024 468040 470854 470859) (-319 "EXPR.spad" 463299 463309 464013 464420) (-318 "EXPR2UPS.spad" 459421 459434 463289 463294) (-317 "EXPR2.spad" 459126 459138 459411 459416) (-316 "EXPEXPAN.spad" 456066 456091 456698 456791) (-315 "EXIT.spad" 455737 455745 456056 456061) (-314 "EXITAST.spad" 455473 455481 455727 455732) (-313 "EVALCYC.spad" 454933 454947 455463 455468) (-312 "EVALAB.spad" 454505 454515 454923 454928) (-311 "EVALAB.spad" 454075 454087 454495 454500) (-310 "EUCDOM.spad" 451649 451657 454001 454070) (-309 "EUCDOM.spad" 449285 449295 451639 451644) (-308 "ESTOOLS.spad" 441131 441139 449275 449280) (-307 "ESTOOLS2.spad" 440734 440748 441121 441126) (-306 "ESTOOLS1.spad" 440419 440430 440724 440729) (-305 "ES.spad" 433234 433242 440409 440414) (-304 "ES.spad" 425955 425965 433132 433137) (-303 "ESCONT.spad" 422748 422756 425945 425950) (-302 "ESCONT1.spad" 422497 422509 422738 422743) (-301 "ES2.spad" 422002 422018 422487 422492) (-300 "ES1.spad" 421572 421588 421992 421997) (-299 "ERROR.spad" 418899 418907 421562 421567) (-298 "EQTBL.spad" 417371 417393 417580 417607) (-297 "EQ.spad" 412176 412186 414963 415075) (-296 "EQ2.spad" 411894 411906 412166 412171) (-295 "EP.spad" 408220 408230 411884 411889) (-294 "ENV.spad" 406898 406906 408210 408215) (-293 "ENTIRER.spad" 406566 406574 406842 406893) (-292 "EMR.spad" 405773 405814 406492 406561) (-291 "ELTAGG.spad" 404027 404046 405763 405768) (-290 "ELTAGG.spad" 402245 402266 403983 403988) (-289 "ELTAB.spad" 401694 401712 402235 402240) (-288 "ELFUTS.spad" 401081 401100 401684 401689) (-287 "ELEMFUN.spad" 400770 400778 401071 401076) (-286 "ELEMFUN.spad" 400457 400467 400760 400765) (-285 "ELAGG.spad" 398428 398438 400437 400452) (-284 "ELAGG.spad" 396336 396348 398347 398352) (-283 "ELABOR.spad" 395682 395690 396326 396331) (-282 "ELABEXPR.spad" 394614 394622 395672 395677) (-281 "EFUPXS.spad" 391390 391420 394570 394575) (-280 "EFULS.spad" 388226 388249 391346 391351) (-279 "EFSTRUC.spad" 386241 386257 388216 388221) (-278 "EF.spad" 381017 381033 386231 386236) (-277 "EAB.spad" 379293 379301 381007 381012) (-276 "E04UCFA.spad" 378829 378837 379283 379288) (-275 "E04NAFA.spad" 378406 378414 378819 378824) (-274 "E04MBFA.spad" 377986 377994 378396 378401) (-273 "E04JAFA.spad" 377522 377530 377976 377981) (-272 "E04GCFA.spad" 377058 377066 377512 377517) (-271 "E04FDFA.spad" 376594 376602 377048 377053) (-270 "E04DGFA.spad" 376130 376138 376584 376589) (-269 "E04AGNT.spad" 371980 371988 376120 376125) (-268 "DVARCAT.spad" 368669 368679 371970 371975) (-267 "DVARCAT.spad" 365356 365368 368659 368664) (-266 "DSMP.spad" 362823 362837 363128 363255) (-265 "DROPT.spad" 356782 356790 362813 362818) (-264 "DROPT1.spad" 356447 356457 356772 356777) (-263 "DROPT0.spad" 351304 351312 356437 356442) (-262 "DRAWPT.spad" 349477 349485 351294 351299) (-261 "DRAW.spad" 342353 342366 349467 349472) (-260 "DRAWHACK.spad" 341661 341671 342343 342348) (-259 "DRAWCX.spad" 339131 339139 341651 341656) (-258 "DRAWCURV.spad" 338678 338693 339121 339126) (-257 "DRAWCFUN.spad" 328210 328218 338668 338673) (-256 "DQAGG.spad" 326388 326398 328178 328205) (-255 "DPOLCAT.spad" 321737 321753 326256 326383) (-254 "DPOLCAT.spad" 317172 317190 321693 321698) (-253 "DPMO.spad" 309398 309414 309536 309837) (-252 "DPMM.spad" 301637 301655 301762 302063) (-251 "DOMTMPLT.spad" 301297 301305 301627 301632) (-250 "DOMCTOR.spad" 301052 301060 301287 301292) (-249 "DOMAIN.spad" 300139 300147 301042 301047) (-248 "DMP.spad" 297399 297414 297969 298096) (-247 "DLP.spad" 296751 296761 297389 297394) (-246 "DLIST.spad" 295330 295340 295934 295961) (-245 "DLAGG.spad" 293747 293757 295320 295325) (-244 "DIVRING.spad" 293289 293297 293691 293742) (-243 "DIVRING.spad" 292875 292885 293279 293284) (-242 "DISPLAY.spad" 291065 291073 292865 292870) (-241 "DIRPROD.spad" 280645 280661 281285 281416) (-240 "DIRPROD2.spad" 279463 279481 280635 280640) (-239 "DIRPCAT.spad" 278407 278423 279327 279458) (-238 "DIRPCAT.spad" 277080 277098 278002 278007) (-237 "DIOSP.spad" 275905 275913 277070 277075) (-236 "DIOPS.spad" 274901 274911 275885 275900) (-235 "DIOPS.spad" 273871 273883 274857 274862) (-234 "DIFRING.spad" 273167 273175 273851 273866) (-233 "DIFRING.spad" 272471 272481 273157 273162) (-232 "DIFEXT.spad" 271642 271652 272451 272466) (-231 "DIFEXT.spad" 270730 270742 271541 271546) (-230 "DIAGG.spad" 270360 270370 270710 270725) (-229 "DIAGG.spad" 269998 270010 270350 270355) (-228 "DHMATRIX.spad" 268310 268320 269455 269482) (-227 "DFSFUN.spad" 261950 261958 268300 268305) (-226 "DFLOAT.spad" 258681 258689 261840 261945) (-225 "DFINTTLS.spad" 256912 256928 258671 258676) (-224 "DERHAM.spad" 254826 254858 256892 256907) (-223 "DEQUEUE.spad" 254150 254160 254433 254460) (-222 "DEGRED.spad" 253767 253781 254140 254145) (-221 "DEFINTRF.spad" 251304 251314 253757 253762) (-220 "DEFINTEF.spad" 249814 249830 251294 251299) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTOR.spad" 217603 217611 217902 217907) (-187 "CTORKIND.spad" 217206 217214 217593 217598) (-186 "CTORCAT.spad" 216455 216463 217196 217201) (-185 "CTORCAT.spad" 215702 215712 216445 216450) (-184 "CTORCALL.spad" 215291 215301 215692 215697) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX.spad" 189264 189274 189508 189769) (-169 "COMPLEX2.spad" 188979 188991 189254 189259) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 9ed0db09..57dff726 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3937 +1,3937 @@
-(188581 . 3477490105)
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
+(188562 . 3477887514)
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+((((-569)) . T) (($) -2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T))
+(((|#2| |#2|) . T))
+((((-569)) . T))
+((($ $) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))))
+((($) . T))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) . T))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+(|has| |#1| (-915))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((($) . T) (((-412 (-569))) . T))
+((($) . T))
+((($) . T))
+(((|#2| |#2|) . T))
+((((-144)) . T))
+((((-541)) . T) (((-1165)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
+(((|#1|) . T))
+((((-226)) . T) (((-867)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((($ $) . T) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
+(-2718 (|has| |#1| (-825)) (|has| |#1| (-855)))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-853))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-319 |#1|)) . T) (((-569)) . T) (($) . T))
+(((|#1| |#2| |#3|) . T))
+((((-569)) . T) (((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+((((-867)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-412 |#2|) |#3|) . T))
-((((-412 (-551))) |has| #1=(-412 |#2|) (-1044 (-412 (-551)))) (((-551)) |has| #1# (-1044 (-551))) ((#1#) . T))
-((((-412 |#2|)) . T))
-((((-551)) |has| #1=(-412 |#2|) (-644 (-551))) ((#1#) . T))
-((((-412 |#2|)) . T))
-((((-412 |#2|) |#3|) . T))
-(|has| (-412 |#2|) (-147))
-((((-412 |#2|) |#3|) . T))
-(|has| (-412 |#2|) (-145))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-(|has| (-412 |#2|) (-234))
-((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
-((((-412 |#2|)) . T))
-(((|#3|) . T))
-(((#1=(-412 |#2|) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(((|#1| |#2| |#3|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1148 |#2| |#1|)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-1148 |#2| |#1|)) . T) ((|#1|) . T) (((-551)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
+(((|#4|) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+((((-867)) . T))
+((((-867)) |has| (-1100 |#1|) (-1106)))
+((((-867)) . T) (((-1188)) . T))
+(((|#1|) . T) ((|#2|) . T))
+((((-1188)) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2| (-487 (-2394 |#1|) (-776))) . T))
+(((|#1| (-536 (-1183))) . T))
+(((#0=(-875 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+((((-1165)) . T) (((-964 (-129))) . T) (((-867)) . T))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(|has| |#4| (-372))
+(|has| |#3| (-372))
(((|#1|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-868)) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#1| |#2|) . T))
-((((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((|#1| |#2|) . T))
-((((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((|#2|) . T))
-(((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) ((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-((((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((|#1| |#2|) . T))
+((((-1183)) . T))
+((((-511)) . T))
+((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
(((|#1| |#2|) . T))
-((((-169 (-382))) . T) (((-226)) . T) (((-382)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-(((#1=(-412 (-551)) #1#) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-616 $) $) . T))
-((((-412 (-551))) . T) (((-551)) . T) (((-616 $)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T) (((-616 $)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
+((($) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#1| (-561))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) . T))
+((($) . T))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1183)) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-1183)) . T))
+((((-569)) . T) (($) . T))
+((((-586 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-551)) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-776)) . T))
-((((-776)) . T))
-((((-868)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+((((-867)) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
+(|has| |#1| (-1106))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1| (-58 |#1|) (-58 |#1|)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-694 (-343 (-3971) (-3971 (QUOTE X) (QUOTE HESS)) (-704)))) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-(((|#1| |#1|) . T))
-((((-868)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-1010 2)) . T) (((-412 (-551))) . T) (((-868)) . T))
-((((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-551) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T))
-((((-868)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-551) (-112)) . T))
-((((-551) (-112)) . T))
-((((-551) (-112)) . T))
-((((-540)) . T))
-((((-112)) . T))
-((((-868)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-540)) . T))
-((((-868)) . T))
-((((-1183)) . T))
-((((-868)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-116 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+(((|#2|) . T) (((-569)) . T) ((|#6|) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
+(((|#2|) . T))
((($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
((($ $) . T))
((($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-551)) . T) (($) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-116 |#1|)) . T) (((-412 (-551))) . T))
-((($) . T) (((-116 |#1|)) . T) (((-412 (-551))) . T))
-((((-116 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-116 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-116 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-116 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-116 |#1|) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-116 |#1|)) . T))
-((((-1183) #1=(-116 |#1|)) |has| #1# (-519 (-1183) #1#)) ((#1# #1#) |has| #1# (-312 #1#)))
-(((#1=(-116 |#1|)) |has| #1# (-312 #1#)))
-(((#1=(-116 |#1|) $) |has| #1# (-289 #1# #1#)))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-551)) . T) (((-116 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-372))
(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
(((|#1|) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T) (((-868)) . T))
-((((-128)) . T))
-((((-128)) . T))
-((((-1165)) . T) (((-964 (-128))) . T) (((-868)) . T))
-((((-128)) . T))
-((((-551) (-128)) . T))
-((((-551) (-128)) . T))
-((((-551) (-128)) . T))
-((((-128)) . T))
-((((-128)) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-776)) . T))
-((((-776)) . T))
-((((-868)) . T))
-((((-551) (-776)) . T) ((|#3| (-776)) . T))
-((((-868)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| (-776)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-511)) . T))
-((((-184)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-646 (-144))) . T) (((-1165)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) . T))
-(((|#2|) . T) (($) . T))
-((((-868)) . T))
-(((|#2|) . T) (($) . T) (((-551)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-569)) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+(|has| |#1| (-561))
+(((|#1| |#1|) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(|has| |#1| (-1106))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(|has| |#1| (-1106))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(|has| |#1| (-853))
+((($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-569) (-129)) . T))
+((($) . T) (((-412 (-569))) . T))
+((((-129)) . T))
+(-2718 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2718 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(((|#1| |#2|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
((((-1188)) . T))
-(|has| |#1| (-826))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-354)))
-((((-868)) . T))
-(|has| |#1| (-147))
-(((|#1|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(-3978 (|has| |#1| (-234)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(((|#1|) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(((|#1|) |has| |#1| (-312 |#1|)))
-(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
-(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
-(((|#1|) . T))
-((((-551)) |has| |#1| (-892 (-551))) (((-382)) |has| |#1| (-892 (-382))))
-(((|#1|) . T))
-((((-551)) . T) (($) -3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-1044 (-412 (-551))))) ((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1| (-1177 |#1|)) . T))
-(((|#1| (-1177 |#1|)) . T))
-((($) -3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-(((|#1| (-1177 |#1|)) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(-3978 (|has| |#1| (-372)) (|has| |#1| (-354)))
-(((|#1|) . T))
-((((-169 (-226))) |has| |#1| . #1=((-1026))) (((-169 (-382))) |has| |#1| . #1#) (((-540)) |has| |#1| (-619 (-540))) (((-1177 |#1|)) . T) (((-896 (-551))) |has| |#1| (-619 (-896 (-551)))) (((-896 (-382))) |has| |#1| (-619 (-896 (-382)))))
-(-12 (|has| |#1| (-310)) (|has| |#1| (-916)))
-(-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
+(((|#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) (((-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))))
+(((|#1| |#2|) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-1106))
+((((-569)) . T) (((-412 (-569))) . T))
+(((|#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) . T))
+((((-569) |#1|) . T))
+((((-569)) . T))
+((((-569)) . T))
+((((-916 |#1|)) . T))
+(((|#1| (-536 |#2|)) . T))
+((((-569)) . T))
+((((-569)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-412 (-551))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
-((((-412 (-551))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-412 (-551))) . T) (((-412 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-412 (-551))) . T) (((-412 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T) ((#2=(-412 |#1|) #2#) . T) ((|#1| |#1|) . T))
-((((-412 (-551))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-551)) . T))
-((((-412 (-551))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-511)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-646 |#1|)) . T))
-((((-868)) . T))
-((((-1010 10)) . T) (((-412 (-551))) . T) (((-868)) . T))
-((((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-551) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-317 |#1|)) . T))
-((((-868)) . T))
-((((-317 |#1|)) . T) (((-551)) . T) (($) . T))
-((((-317 |#1|)) . T) (($) . T))
-((((-317 |#1|)) . T) (((-551)) . T))
-((((-317 |#1|)) . T))
-((((-551)) . T) (((-412 (-551))) . T))
-((((-382)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-540)) . T) (((-226)) . T) (((-382)) . T) (((-896 (-382))) . T))
-((((-868)) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(((|#1| (-1272 |#1|) (-1272 |#1|)) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1|) . T))
-(((|#1| (-1272 |#1|) (-1272 |#1|)) . T))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(((|#2|) |has| |#2| (-173)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-868)) -3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-868))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107))) (((-1272 |#2|)) . T))
-(|has| |#2| (-173))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2| |#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-1055)))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
-(|has| |#2| (-372))
-(((|#2|) |has| |#2| (-1055)))
-(((|#2|) |has| |#2| (-1055)) (((-551)) -12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055))))
-(((|#2|) |has| |#2| (-1107)))
-((((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-(((|#2|) |has| |#2| (-1107)) (((-551)) -12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-((((-551) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2|) . T))
-((((-551) |#2|) . T))
-((((-551) |#2|) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(((|#1| (-776)) . T))
(|has| |#2| (-798))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(|has| |#2| (-853))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
(|has| |#2| (-853))
-(((|#2|) |has| |#2| (-367)))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-646 |#1|)) . T))
-((((-646 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-646 |#1|)) . T) (((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-855))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-540)) |has| |#2| (-619 (-540))) (((-896 (-382))) |has| |#2| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#2| (-619 (-896 (-551)))))
-((($) . T))
-(((|#2| (-240 (-4407 |#1|) (-776))) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-((($) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#2| (-38 (-412 (-551)))) ((|#2| |#2|) . T) (($ $) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((|#2| (-240 (-4407 |#1|) (-776))) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-916)))
-((($ $) . T) ((#1=(-869 |#1|) $) . T) ((#1# |#2|) . T))
-((((-869 |#1|)) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-916))
-((((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))) (((-551)) |has| |#2| (-1044 (-551))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))) ((|#2|) . T) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-869 |#1|)) . T))
-(((|#2| (-240 (-4407 |#1|) (-776)) (-869 |#1|)) . T))
-((((-868)) . T))
-((((-511)) . T))
-((((-184)) . T) (((-868)) . T))
-((((-868)) . T))
-(((|#4|) |has| |#4| (-173)))
-(-3978 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-3978 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-3978 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-3978 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(((|#3|) . T) ((|#2|) . T) (($) -3978 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) (((-551)) . T) ((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
-(((|#3|) . T) ((|#2|) . T) (($) -3978 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) ((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
-(((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367))))
-(((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367))))
-((((-868)) . T) (((-1272 |#4|)) . T))
-(|has| |#4| (-173))
-(((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
-(((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
-(((|#4| |#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($ $) |has| |#4| (-173)))
-(((|#4|) |has| |#4| (-1055)))
-((((-1183)) -12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))
-(-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))
-(|has| |#4| (-372))
-(((|#4|) |has| |#4| (-1055)))
-(((|#4|) |has| |#4| (-1055)) (((-551)) -12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))))
-(((|#4|) |has| |#4| (-1107)))
-((((-551)) -3978 (|has| |#4| (-173)) (|has| |#4| (-853)) (-12 (|has| |#4| (-1044 (-551))) (|has| |#4| (-1107))) (|has| |#4| (-1055))) ((|#4|) -3978 (|has| |#4| (-173)) (|has| |#4| (-1107))) (((-412 (-551))) -12 (|has| |#4| (-1044 (-412 (-551)))) (|has| |#4| (-1107))))
-(((|#4|) |has| |#4| (-1107)) (((-551)) -12 (|has| |#4| (-1044 (-551))) (|has| |#4| (-1107))) (((-412 (-551))) -12 (|has| |#4| (-1044 (-412 (-551)))) (|has| |#4| (-1107))))
-((((-551) |#4|) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-551) |#4|) . T))
-((((-551) |#4|) . T))
-(|has| |#4| (-798))
-(-3978 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-3978 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-3978 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-3978 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(|has| |#4| (-853))
-(|has| |#4| (-853))
-(((|#4|) |has| |#4| (-367)))
-(((|#1| |#4|) . T))
-(((|#3|) |has| |#3| (-173)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(((|#2|) . T) (($) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-551)) . T) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
-(((|#2|) . T) (($) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-((((-868)) . T) (((-1272 |#3|)) . T))
-(|has| |#3| (-173))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-(((|#3| |#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
-(((|#3|) |has| |#3| (-1055)))
-((((-1183)) -12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))
-(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
-(|has| |#3| (-372))
-(((|#3|) |has| |#3| (-1055)))
-(((|#3|) |has| |#3| (-1055)) (((-551)) -12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))))
-(((|#3|) |has| |#3| (-1107)))
-((((-551)) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (|has| |#3| (-1055))) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-1107))) (((-412 (-551))) -12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))
-(((|#3|) |has| |#3| (-1107)) (((-551)) -12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (((-412 (-551))) -12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))
-((((-551) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3|) . T))
-((((-551) |#3|) . T))
-((((-551) |#3|) . T))
-(|has| |#3| (-798))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(|has| |#3| (-853))
-(|has| |#3| (-853))
-(((|#3|) |has| |#3| (-367)))
-(((|#1| |#3|) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-234))
-((($) . T))
-(((|#1| (-536 |#3|) |#3|) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#3| (-892 (-551)))) (((-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#3| (-892 (-382)))))
-((((-1183)) |has| |#1| (-906 (-1183))) ((|#3|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| . #1=((-234))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
+((((-1165) |#1|) . T))
+((((-569) (-129)) . T))
(((|#1|) . T))
-(((|#1| (-536 |#3|)) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#3| (-776)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-(((|#1| (-536 |#3|)) . T))
-((((-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#3| (-619 (-896 (-551))))) (((-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#3| (-619 (-896 (-382))))) (((-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#3| (-619 (-540)))))
-((((-1131 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#2|) . T))
-((((-1131 |#1| |#2|)) . T) (((-551)) . T) ((|#3|) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-536 |#3|)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((($) . T) (((-412 (-569))) . T))
((($) . T))
((($) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-412 (-569))) . T) (($) . T))
((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
((($) . T))
+(|has| |#1| (-1106))
+((((-412 (-569))) . T) (((-569)) . T))
+((((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#2|) . T))
+((((-1183) |#2|) |has| |#2| (-519 (-1183) |#2|)) ((|#2| |#2|) |has| |#2| (-312 |#2|)))
+((((-412 (-569))) . T) (((-569)) . T))
+((((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+(((|#1|) . T) (($) . T))
+((((-569)) . T))
+((((-569)) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((((-569)) . T))
+((((-569)) . T))
+((((-412 (-569))) . T) (($) . T))
+(((#0=(-704) (-1179 #0#)) . T))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T))
+(|has| |#2| (-367))
+((((-569) |#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+(((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+(((|#1| |#2|) . T))
+((((-867)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1165) |#1|) . T))
+(((|#3| |#3|) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| |#1|) . T))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-569) |#1|) . T))
+((((-867)) . T))
+((((-170 (-226))) |has| |#1| (-1028)) (((-170 (-383))) |has| |#1| (-1028)) (((-541)) |has| |#1| (-619 (-541))) (((-1179 |#1|)) . T) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(|has| |#1| (-367))
+((((-867)) . T))
((($) . T))
-((($ $) . T))
-((($) . T) (((-551)) . T))
((($) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-367)))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367))))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367))))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
-(((|#1| |#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
-((((-551)) -3978 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -3978 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
-(-3978 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(|has| |#1| (-478))
-(-3978 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(((|#1|) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -3978 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))) (((-551)) -3978 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1107)))
-((((-112)) |has| |#1| (-1107)) (((-868)) -3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1107)))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
+((((-129)) . T))
+(-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))
+(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
+(-2718 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+(|has| |#1| (-561))
+((((-569)) -2718 (|has| |#4| (-173)) (|has| |#4| (-853)) (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (|has| |#4| (-1055))) ((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-1106))) (((-412 (-569))) -12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))
+((((-569)) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055))) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#1| (-561))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#1|) . T))
+(|has| |#1| (-561))
+(|has| |#1| (-561))
+(|has| |#1| (-561))
+((((-704)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-412 (-569))) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))
+((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
+(((|#4| |#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($ $) |has| |#4| (-173)))
+(((|#3| |#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
+((((-867)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) . T) (((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
+(((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+((((-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+((((-649 |#1|)) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((((-412 $) (-412 $)) |has| |#2| (-561)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-915))
+((((-1165) (-52)) . T))
+((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T))
+((((-541)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(((|#1|) |has| |#1| (-173)))
+(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-867)) . T))
+((((-867)) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+(|has| |#1| (-855))
+(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-1106))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) . T) (((-1188)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-1188)) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(|has| |#1| (-234))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| (-536 (-823 (-1183)))) . T))
+(((|#1| (-977)) . T))
+((((-569)) . T) ((|#2|) . T))
+(((#0=(-875 |#1|) $) |has| #0# (-289 #0# #0#)))
+((((-569) |#4|) . T))
+((((-569) |#3|) . T))
+(((|#1|) . T))
+(((|#2| |#2|) . T))
+(|has| |#1| (-1158))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
(|has| (-1259 |#1| |#2| |#3| |#4|) (-145))
(|has| (-1259 |#1| |#2| |#3| |#4|) (-147))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-551))) . T))
-((($) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-551))) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-1259 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1183) #1=(-1259 |#1| |#2| |#3| |#4|)) |has| #1# (-519 (-1183) #1#)) ((#1# #1#) |has| #1# (-312 #1#)))
-(((#1=(-1259 |#1| |#2| |#3| |#4|)) |has| #1# (-312 #1#)))
-(((#1=(-1259 |#1| |#2| |#3| |#4|) $) |has| #1# (-289 #1# #1#)))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1253 |#2| |#3| |#4|)) . T) (((-551)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-1253 |#2| |#3| |#4|)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(((|#1|) |has| |#1| (-562)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
-((((-868)) . T))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-562)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-562)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-616 $) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)) (((-412 (-551))) |has| |#1| (-562)))
-((((-551)) -3978 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055))) (($) -3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-562)))
-((($) -3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-562)))
-(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)) (((-412 (-551))) |has| |#1| (-562)))
-(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)) (((-412 (-551))) |has| |#1| (-562)))
-(|has| |#1| (-562))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-562)) (($) |has| |#1| (-562)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-562)) (($) |has| |#1| (-562)))
-(((|#1| |#1|) |has| |#1| (-173)) ((#1=(-412 (-551)) #1#) |has| |#1| (-562)) (($ $) |has| |#1| (-562)))
-(|has| |#1| (-562))
-(((|#1|) |has| |#1| (-1055)))
-(((|#1|) |has| |#1| (-1055)) (((-551)) -12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))
-(((|#1|) . T))
-((((-551)) |has| |#1| (-892 (-551))) (((-382)) |has| |#1| (-892 (-382))))
-(((|#1|) . T))
-(|has| |#1| (-478))
-((((-1183)) |has| |#1| (-1055)))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))) (((-896 (-551))) |has| |#1| (-619 (-896 (-551)))) (((-896 (-382))) |has| |#1| (-619 (-896 (-382)))))
-((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551)))) (((-616 $)) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) -3978 (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-412 (-952 |#1|))) |has| |#1| (-562)) (((-952 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
-((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551)))) (((-551)) -3978 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))) (|has| |#1| (-1055))) ((|#1|) . T) (((-616 $)) . T) (($) |has| |#1| (-562)) (((-412 (-551))) -3978 (|has| |#1| (-562)) (|has| |#1| (-1044 (-412 (-551))))) (((-412 (-952 |#1|))) |has| |#1| (-562)) (((-952 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
+(|has| |#1| (-1106))
+((((-1165) |#1|) . T))
+(((|#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-((((-868)) . T))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-412 (-551))) . T))
-(((|#1| (-412 (-551))) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1|) . T))
-(((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-(((|#1| (-412 (-551)) (-1088)) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))))
-((($ $) . T))
-(|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+((((-1131 |#1| (-1183))) . T) (((-569)) . T) (((-823 (-1183))) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-1183)) . T))
+(|has| |#2| (-372))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) . T) ((|#1|) . T))
+(((|#2|) |has| |#2| (-1055)))
+((((-867)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
(((|#1|) . T))
-(|has| |#1| (-855))
+((((-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((#0=(-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) #0#) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))))
+((((-867)) . T))
+((((-569) |#1|) . T))
+((((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))))
+((($) . T))
+((((-867)) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+((((-867)) . T))
+(|has| (-1258 |#2| |#3| |#4|) (-147))
+(|has| (-1258 |#2| |#3| |#4|) (-145))
+(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
(((|#1|) . T))
+(|has| |#1| (-1106))
+((((-867)) . T))
(((|#1|) . T))
-(((|#1| (-551)) . T))
-(((#1=(-551) #1#) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-868)) . T))
-((((-551)) . T))
-((((-868)) . T))
(((|#1|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
(((|#1|) . T))
-(((|#1| (-776)) . T))
+((((-569) |#1|) . T))
+(((|#2|) |has| |#2| (-173)))
+(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-867)) |has| |#1| (-1106)))
+(-2718 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-916 |#1|)) . T))
+((((-412 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-569) |#1|)))
+((((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
+(((|#1|) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+(|has| |#1| (-367))
+(-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
+(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
+(|has| |#1| (-367))
+(|has| |#1| (-15 * (|#1| (-776) |#1|)))
+((((-569)) . T))
+((((-569)) . T))
+((((-1148 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T))
+((($) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
+((((-569) |#1|) . T))
+((((-867)) . T))
+(((|#2|) . T))
+(-2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((($) |has| |#1| (-561)) (((-569)) . T))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+((((-1265 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+((((-1269 |#2|)) . T) (((-1265 |#1| |#2| |#3|)) . T) (((-1237 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
+((((-1183)) -12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+(-2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($ $) |has| |#1| (-561)) ((|#1| |#1|) . T))
+(((#0=(-704) (-1179 #0#)) . T))
+((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T) (((-1273 |#4|)) . T))
+((((-867)) . T) (((-1273 |#3|)) . T))
+((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) . T))
+((((-867)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((($) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1265 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#3|) |has| |#3| (-1055)))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(|has| (-1100 |#1|) (-1106))
+(((|#2| (-824 |#1|)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#2|) . T) ((|#6|) . T))
+(|has| |#1| (-367))
+((((-569)) . T) ((|#2|) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#2|) . T) ((|#6|) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-1088) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-867)) . T))
+((((-916 |#1|)) . T))
+((((-144)) . T))
+((((-144)) . T))
+(((|#3|) |has| |#3| (-1106)) (((-569)) -12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
(((|#1|) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+(((|#1|) |has| |#1| (-173)))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+(|has| |#1| (-367))
+((((-1188)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-551)) . T))
-((((-868)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-1183)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| |#3|) . T))
-(((|#3|) . T) (((-551)) . T) (($) . T))
-(((|#3|) . T) (($) . T))
-(((|#3|) . T))
-((($) . T))
-((($ $) . T) (((-616 $) $) . T))
-(((|#3|) . T) (((-616 $)) . T))
-(((|#3|) . T) (((-551)) . T) (((-616 $)) . T))
-((((-868)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-(((#1=(-912 |#1|) #1#) . T) (($ $) . T) ((#2=(-412 (-551)) #2#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| $ (-147))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-(((#1=(-912 |#1|) #1#) . T) (($ $) . T) ((#2=(-412 (-551)) #2#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| $ (-147))
-((((-912 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(|has| |#2| (-825))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-853))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+(((|#1| |#2|) . T))
+((((-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))))
+((((-1165) |#1|) . T))
+(((|#1| |#2| |#3| (-536 |#3|)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
+((((-867)) . T))
+((((-412 (-569))) . T))
+(((|#1|) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+((((-412 (-569))) . T))
(|has| |#1| (-372))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-569)) . T))
+((((-569)) . T))
+(((|#1|) . T) (((-569)) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
+((((-1183) #0=(-875 |#1|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
(((|#1|) . T))
+((((-569) |#4|) . T))
+((((-569) |#3|) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-412 (-569))) . T) (((-569)) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#1| |#1|) . T))
(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((((-569)) . T))
+((((-569)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
(((|#1|) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-912 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-(((#1=(-912 |#1|) #1#) . T) (($ $) . T) ((#2=(-412 (-551)) #2#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-912 |#1|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| $ (-147))
-((((-912 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
(((|#1|) . T))
+((((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+((($) . T) (((-412 (-569))) . T))
+(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+(((|#1|) |has| |#1| (-561)))
+((((-569) |#4|) . T))
+((((-569) |#3|) . T))
+((((-867)) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-867)) . T))
+((((-569) |#1|) . T))
(((|#1|) . T))
+((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
+((($) . T))
+((($ $) . T) ((#0=(-1183) $) . T) ((#0# |#1|) . T))
+(((|#2|) |has| |#2| (-173)))
+((($) -2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+(((|#2| |#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
+((((-144)) . T))
(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
+((((-867)) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
(((|#1|) . T))
+((((-867)) . T))
+(|has| |#1| (-1106))
+(|has| $ (-147))
+((((-1188)) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+((((-569) |#1|) . T))
+((($) -2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+(|has| |#1| (-367))
+(-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
+(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
+(|has| |#1| (-367))
+(|has| |#1| (-15 * (|#1| (-776) |#1|)))
(((|#1|) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((((-867)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#2| (-536 (-869 |#1|))) . T))
+((((-867)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-586 |#1|)) . T))
+((($) . T))
+((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+(((|#1|) . T) (($) . T))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+((((-1181 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+((((-1269 |#2|)) . T) (((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(((|#4|) . T))
+(((|#3|) . T))
+((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T))
+((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+((((-867)) . T))
+((((-867)) . T))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-569) |#2|) . T))
+((((-867)) . T))
+((($) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1181 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+(((|#2|) |has| |#2| (-1055)))
+(|has| |#1| (-1106))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) |has| |#1| (-173)) (($) . T))
(((|#1|) . T))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-867)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
(((|#1|) . T))
+(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#2|) |has| |#1| (-367)))
+((((-569) |#1|) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
+((((-1188)) . T))
+((((-867)) . T))
+((((-412 |#2|) |#3|) . T))
+(((|#1| (-412 (-569))) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-867)) . T) (((-1188)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+((((-1188)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+(((|#2| |#3| (-869 |#1|)) . T))
+((((-1183)) |has| |#2| (-906 (-1183))))
(((|#1|) . T))
+(((|#1| (-536 |#2|) |#2|) . T))
+(((|#1| (-776) (-1088)) . T))
+((((-412 (-569))) |has| |#2| (-367)) (($) . T))
+(((|#1| (-536 (-1094 (-1183))) (-1094 (-1183))) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2|) . T))
(((|#1|) . T))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-372))
+(((|#2|) . T))
+((((-1005 |#1|)) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2718 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(|has| |#2| (-798))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
+(|has| |#2| (-853))
+((((-899 |#1|)) . T) (((-824 |#1|)) . T))
+((((-824 (-1183))) . T))
(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-649 (-569))) . T))
+((((-649 (-569))) . T) (((-867)) . T))
+((((-412 (-569))) . T) (((-867)) . T))
+((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+(|has| |#1| (-234))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($ $) . T))
+(((|#1| |#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1265 |#1| |#2| |#3|) $) -12 (|has| (-1265 |#1| |#2| |#3|) (-289 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
+((($ $) . T))
+((($ $) . T))
(((|#1|) . T))
+((((-1146 |#1| |#2|)) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-393) |#1|) . T))
-((((-226)) . T))
-((((-551)) . T) (((-412 (-551))) . T))
-((((-382)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-540)) . T) (((-1165)) . T) (((-226)) . T) (((-382)) . T) (((-896 (-382))) . T))
-((((-226)) . T) (((-868)) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T) (((-551)) . T))
+(((|#1| |#2|) . T))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+(((|#3|) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(((|#2|) . T))
+((((-867)) -2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T) (($) . T))
(((|#1|) |has| |#1| (-173)))
+((((-569)) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(|has| |#1| (-1106))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-569) (-144)) . T))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-569)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-569)) . T))
+((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+((($) . T) (((-569)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
+(((|#2|) |has| |#1| (-367)))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) . T) (($ $) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1188)) . T))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1| (-536 #0=(-1183)) #0#) . T))
+(((|#1|) . T) (($) . T))
+((((-569)) . T))
+(|has| |#4| (-173))
+(|has| |#3| (-173))
+(((#0=(-412 (-958 |#1|)) #0#) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(|has| |#1| (-1106))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(|has| |#1| (-1106))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+(((|#1| |#1|) |has| |#1| (-173)))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T))
+((((-412 (-958 |#1|))) . T))
+(((|#1|) . T) (((-569)) . T) (($) . T))
(((|#1|) |has| |#1| (-173)))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-867)) . T))
+((((-867)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1055)) (((-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))
(((|#1| |#2|) . T))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(|has| |#3| (-798))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(|has| |#3| (-853))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(((|#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| (-1163 |#1|)) |has| |#1| (-853)))
+((((-569) |#2|) . T))
+(|has| |#1| (-1106))
+(((|#1|) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-1158)))
+((((-412 (-569))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-1106))
+(((|#2|) . T))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
+(((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367))))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
+((((-867)) . T))
+(((|#1|) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-915)))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#2|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-1183) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-823 (-1183)) |#1|) . T) ((#1# $) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((((-569) |#2|) . T))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+((((-569) |#1|) . T))
+(|has| (-412 |#2|) (-147))
+(|has| (-412 |#2|) (-145))
+(((|#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+(|has| |#1| (-561))
+(|has| |#1| (-561))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-867)) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-393) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#2| (-1158))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-1222)) . T) (((-867)) . T) (((-1188)) . T))
+((((-116 |#1|)) . T))
+((((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-551)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-551)) . T) ((|#1|) . T))
+((((-393) (-1165)) . T))
+(|has| |#1| (-561))
+((((-569) |#1|) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#2|) . T))
+((((-867)) . T))
+((((-824 |#1|)) . T))
+(((|#2|) |has| |#2| (-173)))
+((((-1183) (-52)) . T))
(((|#1|) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-561))
(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#2|) . T))
+((((-649 |#1|)) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#2|) |has| |#2| (-312 |#2|)))
+(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|)) . T))
+(|has| $ (-147))
(((|#2|) . T))
+(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+(|has| |#2| (-372))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1| |#2|) . T))
-((((-868)) . T))
-(|has| |#1| (-855))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1165)) . T))
-((((-1165)) . T))
-((((-1165)) . T) (((-868)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-((((-868)) . T))
-(((|#3|) . T) (((-551)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| |#3|) . T))
-(((|#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-412 |#2|)) . T))
-((((-868)) . T))
-(|has| |#1| (-1227))
-((((-540)) |has| |#1| (-619 (-540))) (((-226)) . #1=(|has| |#1| (-1026))) (((-382)) . #1#))
-(|has| |#1| (-1026))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-1227)))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
-(((|#1|) . T))
-((($ $) |has| |#1| (-289 $ $)) ((|#1| $) |has| |#1| (-289 |#1| |#1|)))
-((($) |has| |#1| (-312 $)) ((|#1|) |has| |#1| (-312 |#1|)))
-((((-1183) $) |has| |#1| (-519 (-1183) $)) (($ $) |has| |#1| (-312 $)) ((|#1| |#1|) |has| |#1| (-312 |#1|)) (((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-234))
-((((-1183)) |has| |#1| (-906 (-1183))))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1| |#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-867)) . T))
+((((-1181 |#1| |#2| |#3|) $) -12 (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
+((($ $) . T))
+((($ $) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((#0=(-1265 |#1| |#2| |#3|) #0#) -12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1183) #0#) -12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+(-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#1|) . T) (((-551)) . T) (($) . T))
-(-12 (|has| |#1| (-550)) (|has| |#1| (-826)))
-((((-868)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
(((|#1|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(|has| |#1| (-234))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) ((|#1|) . T) (((-412 (-551))) . T))
-((($) . T) ((|#1|) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(((|#1|) |has| |#1| (-312 |#1|)))
-(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-569)) . T) (($) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) . T) (((-569)) . T) ((|#2|) . T))
+((((-569)) . T) (($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((((-412 (-569))) . T) (((-569)) . T))
+((((-569) (-144)) . T))
+((((-144)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+((((-112)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-112)) . T))
(((|#1|) . T))
-((((-551)) |has| |#1| (-892 (-551))) (((-382)) |has| |#1| (-892 (-382))))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(-3978 (|has| |#1| (-825)) (|has| |#1| (-855)))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
+((((-541)) |has| |#1| (-619 (-541))) (((-226)) . #0=(|has| |#1| (-1028))) (((-383)) . #0#))
+((((-867)) . T))
+((((-1188)) . T))
(|has| |#1| (-825))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(|has| |#1| (-561))
+(|has| |#1| (-855))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
+(|has| |#1| (-915))
+(((|#1|) . T))
+(|has| |#1| (-1106))
+((((-867)) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+((((-569) (-144)) . T))
+((($) . T))
+(-2718 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-1188)) . T) (((-867)) . T))
+((((-1188)) . T))
+((((-867)) . T))
+(|has| |#1| (-1106))
+(((|#1| (-977)) . T))
+(((|#1| |#1|) . T))
+((($) . T))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-12 (|has| |#1| (-478)) (|has| |#2| (-478)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((($) . T) (((-569)) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-1026))
-((((-540)) |has| |#1| (-619 (-540))) (((-896 (-551))) |has| |#1| (-619 (-896 (-551)))) (((-896 (-382))) |has| |#1| (-619 (-896 (-382)))) (((-382)) . #1=(|has| |#1| (-1026))) (((-226)) . #1#))
-((((-551)) . T) ((|#1|) . T) (($) . T) (((-412 (-551))) . T) (((-1183)) |has| |#1| (-1044 (-1183))))
-((((-412 (-551))) |has| |#1| . #1=((-1044 (-551)))) (((-551)) |has| |#1| . #1#) (((-1183)) |has| |#1| (-1044 (-1183))) ((|#1|) . T))
-(|has| |#1| (-1157))
+(|has| |#2| (-798))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(((|#1| |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#2| (-853))
+(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
+(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
+(-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
+(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-173)) ((|#4|) . T) (((-569)) . T))
+(((|#2|) |has| |#2| (-173)))
+(((|#1|) |has| |#1| (-173)))
+((((-867)) . T))
+(|has| |#1| (-353))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-412 (-569))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+(|has| |#1| (-833))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(|has| |#1| (-1106))
+(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((($) |has| |#1| (-561)))
+(((|#2|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1106)))
+(((|#3|) |has| |#3| (-1106)))
+(|has| |#3| (-372))
+((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+((((-867)) . T))
+((((-867)) . T))
+(((|#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) |has| |#1| (-173)))
+(|has| |#2| (-367))
(((|#1|) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) . T) (((-569)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((($) . T) (((-569)) . T))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-144)) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-551)) . T))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-144)) . T))
+((((-144)) . T))
+((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#) ((|#2|) . T) (((-569)) . T))
+(((|#1| |#2| |#3|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(((|#1|) |has| |#1| (-173)))
+(|has| $ (-147))
+(|has| $ (-147))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-173)))
+(|has| |#1| (-1106))
+((((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
+((($ $) |has| |#1| (-289 $ $)) ((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+(((|#1| (-412 (-569))) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-393) (-1165)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-412 (-952 |#1|))) . T))
-((((-412 (-952 |#1|))) . T))
-((((-412 (-952 |#1|))) . T))
-((((-1148 |#2| (-412 (-952 |#1|)))) . T) (((-412 (-952 |#1|))) . T))
-((((-868)) . T))
-((((-1148 |#2| (-412 (-952 |#1|)))) . T) (((-412 (-952 |#1|))) . T) (((-551)) . T))
-((((-412 (-952 |#1|))) . T))
-((((-412 (-952 |#1|))) . T))
-(((#1=(-412 (-952 |#1|)) #1#) . T))
-((((-412 (-952 |#1|))) . T))
-((((-412 (-952 |#1|))) . T))
-((((-540)) |has| |#2| (-619 (-540))) (((-896 (-382))) |has| |#2| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#2| (-619 (-896 (-551)))))
-((($) . T))
-(((|#2| |#3|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-((($) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-1183)) . T))
+(|has| |#1| (-561))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-561))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-867)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#2| (-38 (-412 (-551)))) ((|#2| |#2|) . T) (($ $) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((|#2| |#3|) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-916)))
-((($ $) . T) ((#1=(-869 |#1|) $) . T) ((#1# |#2|) . T))
-((((-869 |#1|)) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-916))
-((((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))) (((-551)) |has| |#2| (-1044 (-551))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))) ((|#2|) . T) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-869 |#1|)) . T))
-(((|#2| |#3| (-869 |#1|)) . T))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-((((-868)) . T))
-(((|#2|) . T) (((-551)) . T) ((|#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#4|) . T))
-((((-646 |#4|)) . T) (((-868)) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-540)) |has| |#4| (-619 (-540))))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-868)) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-((((-868)) . T))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-412 (-551))) . T))
-(((|#1| (-412 (-551))) . T))
+(((|#2|) . T) (($) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1|) . T))
-(((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-(((|#1| (-412 (-551)) (-1088)) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))))
-((($ $) . T))
-(|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))
-(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-540)) |has| |#4| (-619 (-540))))
-(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-868)) . T) (((-646 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-540)) . T) (((-412 (-1177 (-551)))) . T) (((-226)) . T) (((-382)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((((-382)) . T) (((-226)) . T) (((-868)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#1| |#2|) . T))
-((((-540)) |has| |#2| (-619 (-540))) (((-896 (-382))) |has| |#2| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#2| (-619 (-896 (-551)))))
-((($) . T))
-(((|#2| (-487 (-4407 |#1|) (-776))) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-((($) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#2| (-38 (-412 (-551)))) ((|#2| |#2|) . T) (($ $) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((|#2| (-487 (-4407 |#1|) (-776))) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-916)))
-((($ $) . T) ((#1=(-869 |#1|) $) . T) ((#1# |#2|) . T))
-((((-869 |#1|)) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-916))
-((((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))) (((-551)) |has| |#2| (-1044 (-551))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))) ((|#2|) . T) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-869 |#1|)) . T))
-(((|#2| (-487 (-4407 |#1|) (-776)) (-869 |#1|)) . T))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(((|#2|) |has| |#2| (-173)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-868)) -3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-868))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107))) (((-1272 |#2|)) . T))
+(|has| |#4| (-853))
+(((|#2| (-241 (-2394 |#1|) (-776)) (-869 |#1|)) . T))
+(|has| |#3| (-853))
+(((|#1| (-536 |#3|) |#3|) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-367)) (($ $) . T))
+((((-875 |#1|)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((((-867)) . T))
+(|has| |#1| (-145))
+((((-412 (-569))) |has| |#2| (-367)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-353)) (|has| |#1| (-372)))
+((((-1148 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-173))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2| |#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-1055)))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
-(|has| |#2| (-372))
-(((|#2|) |has| |#2| (-1055)))
-(((|#2|) |has| |#2| (-1055)) (((-551)) -12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055))))
-(((|#2|) |has| |#2| (-1107)))
-((((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-(((|#2|) |has| |#2| (-1107)) (((-551)) -12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-((((-551) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2|) . T))
-((((-551) |#2|) . T))
-((((-551) |#2|) . T))
-(|has| |#2| (-798))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(|has| |#2| (-853))
-(|has| |#2| (-853))
-(((|#2|) |has| |#2| (-367)))
(((|#1| |#2|) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+((((-867)) . T))
(((|#1|) . T))
+(((|#2|) . T) (($) . T))
+((((-704)) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(|has| |#1| (-561))
(((|#1|) . T))
-((((-551)) . T))
-((((-868)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-1010 16)) . T) (((-412 (-551))) . T) (((-868)) . T))
-((((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-551) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T))
-((((-1165)) . T) (((-868)) . T))
-((((-169 (-382))) . T) (((-226)) . T) (((-382)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-(((#1=(-412 (-551)) #1#) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-616 $) $) . T))
-((((-412 (-551))) . T) (((-551)) . T) (((-616 $)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T) (((-616 $)) . T))
-((((-868)) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-551) (-112)) . T))
-((((-551) (-112)) . T))
-((((-551) (-112)) . T))
-((((-540)) . T))
-((((-112)) . T))
-((((-868)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1183)) . T) (((-868)) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-551)) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
+((((-1183) (-52)) . T))
+(((|#1|) . T) (($) . T))
+((((-1010 10)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+(((|#1|) . T))
+((((-1010 16)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+(((|#1| (-569)) . T))
+((((-867)) . T))
+((((-867)) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-412 (-569))) . T))
+(((|#3|) . T) (((-617 $)) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((($ $) . T) ((|#2| $) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(((#0=(-1181 |#1| |#2| |#3|) #0#) -12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1183) #0#) -12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))))
+((((-867)) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
-(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-(((|#1|) . T))
+(((|#3| |#3|) . T))
(((|#1|) . T))
+((($) . T) ((|#2|) . T))
+((((-1183) (-52)) . T))
+(((|#3|) . T))
+((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-833))
+((($) . T) (((-569)) . T) ((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(|has| (-1100 |#1|) (-1106))
+(((|#2| |#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+((((-569)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-586 |#1|)) . T))
-((((-586 |#1|)) . T))
-((((-586 |#1|)) . T))
-((((-586 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-586 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-(((#1=(-586 |#1|) #1#) . T) (($ $) . T) ((#2=(-412 (-551)) #2#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-586 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-586 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-586 |#1|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-586 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-586 |#1|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(|has| $ (-147))
-((((-586 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1| |#4| |#5|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-855))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-776)) . T))
+(((|#2|) |has| |#2| (-173)))
+(((|#1|) |has| |#1| (-173)))
+(|has| |#1| (-561))
+((((-569)) . T))
+(((|#2|) . T))
+((((-867)) . T))
+(((|#1| (-412 (-569)) (-1088)) . T))
+(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
+(|has| |#1| (-561))
+((((-569)) . T))
+((((-116 |#1|)) . T))
(((|#1|) . T))
-(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
+((((-412 (-569))) . T) (($) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
((((-1188)) . T))
+((($) . T) (((-412 (-569))) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(|has| |#1| (-145))
+((((-569)) . T))
+(|has| |#1| (-147))
+((((-569)) . T))
+((((-898 (-569))) . T) (((-898 (-383))) . T) (((-541)) . T) (((-1183)) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-((((-776) |#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-584)) . T))
-((((-1109)) . T))
-((((-646 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-551)) . T) (((-226)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-1165) (-1183) (-551) (-226) (-868)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
-((($) . T))
-((($ $) . T))
((($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-551)) . T) (($) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-1165)) . T) (((-540)) . T) (((-551)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-551)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
+(((|#1|) . T))
+((((-867)) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#1|) . T) (($) . T))
+(((|#2|) |has| |#2| (-173)))
+((($) -2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((((-875 |#1|)) . T))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
+(|has| |#2| (-1158))
+(((#0=(-52)) . T) (((-2 (|:| -1963 (-1183)) (|:| -2179 #0#))) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(((|#1| (-569) (-1088)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| (-412 (-569)) (-1088)) . T))
+((($) -2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-569) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
+(|has| |#2| (-372))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
+((((-867)) . T))
+((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#4|) . T))
+(|has| |#1| (-353))
+((((-569)) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055))) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+(((|#1|) . T))
+(((|#4|) . T) (((-867)) . T))
+(((|#3|) . T) ((|#2|) . T) (($) -2718 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) (((-569)) . T) ((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
+(((|#2|) . T) (($) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-569)) . T) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(|has| |#1| (-561))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((((-412 (-569))) . T) (((-569)) . T))
+((((-569)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+(((|#3| |#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
+(|has| |#1| (-1028))
+((((-867)) . T))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+((((-569) (-112)) . T))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-312 |#1|)))
+((((-1188)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((((-1183) $) |has| |#1| (-519 (-1183) $)) (($ $) |has| |#1| (-312 $)) ((|#1| |#1|) |has| |#1| (-312 |#1|)) (((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
+((((-1183)) |has| |#1| (-906 (-1183))))
+(-2718 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))
+(((|#1| |#4|) . T))
+(((|#1| |#3|) . T))
+((((-393) |#1|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(|has| |#1| (-1106))
+(((|#2|) . T) (((-867)) . T))
+((((-867)) . T))
+(((|#2|) . T))
+((((-916 |#1|)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
(((|#1| |#2|) . T))
((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((((-868)) . T))
-((((-551)) . T) (($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-551)) . T) (($) . T))
-((((-551)) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#1| |#1|) . T))
+(((#0=(-875 |#1|)) |has| #0# (-312 #0#)))
+((((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T))
+(((|#1| |#2|) . T))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
+(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
+(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((($) . T) (((-569)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#2|) . T) (($) . T))
+(|has| |#1| (-1208))
+(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+((((-412 (-569))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1055)))
+(((|#3|) |has| |#3| (-1055)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(|has| |#1| (-367))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((($ $) . T) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-569) |#3|) . T))
+((((-867)) . T))
+((((-541)) |has| |#3| (-619 (-541))))
+((((-694 |#3|)) . T) (((-867)) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-853))
+(|has| |#1| (-853))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
((($) . T))
-((($ $) . T))
+(((#0=(-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) #0#) |has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))))
((($) . T))
((($) . T))
+(((|#2|) |has| |#2| (-1106)))
+((((-867)) -2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
((($) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-1165) (-52)) . T))
+(((|#2|) |has| |#2| (-173)))
+((($) -2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((((-867)) . T))
+(((|#2|) . T))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T))
+((($) . T) (((-569)) . T))
+((((-569) (-144)) . T))
+((((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((|#1| |#2|) . T))
+((((-412 (-569))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-867)) . T))
+((((-916 |#1|)) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
+(|has| |#1| (-853))
+((($) -2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(|has| |#1| (-367))
+(((|#1|) . T) (($) . T))
+(|has| |#1| (-853))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-1183)) |has| |#1| (-906 (-1183))))
+(|has| |#1| (-853))
+((((-511)) . T))
+(((|#1| (-1183)) . T))
+(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+((((-867)) . T) (((-1188)) . T))
+(((|#1| |#2|) . T))
+((($ $) . T))
+((((-1188)) . T))
+(|has| |#1| (-1106))
+(((|#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) . T))
+((((-412 (-958 |#1|))) . T))
+((((-541)) . T))
+((((-867)) . T))
((($) . T))
-((((-551)) . T) (($) . T))
+(((|#2|) . T) (($) . T))
+((((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-((((-551)) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-(|has| $ (-147))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
+(((|#1|) |has| |#1| (-173)))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#3|) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
(((|#1|) . T))
-(((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T))
-((((-412 (-551))) . T))
-((((-868)) . T))
-((((-551)) . T) (((-412 (-551))) . T))
-((((-412 (-551))) . T))
-((((-412 (-551))) . T))
-((((-412 (-551))) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T) (((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-551) (-144)) . T))
-((((-551) (-144)) . T))
-((((-551) (-144)) . T))
-((((-144)) . T))
-((((-868)) . T))
-((((-144)) . T))
-((((-144)) . T))
-(|has| |#1| (-15 * (|#1| (-551) |#1|)))
-((((-868)) . T))
-((($ $) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))
-(((|#1| (-551) (-1088)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
+((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
+((((-867)) . T))
+((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-511)) . T))
+(|has| |#2| (-853))
+((((-511)) . T))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
+(|has| |#1| (-561))
+((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-1165) |#1|) . T))
+(|has| |#1| (-1158))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-964 |#1|)) . T))
+(((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-569))) (((-569)) |has| |#1| (-1044 (-569))) (((-1183)) |has| |#1| (-1044 (-1183))) ((|#1|) . T))
+((((-569) |#2|) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-569)) . T))
+((((-649 |#4|)) . T) (((-867)) . T))
+((((-541)) |has| |#4| (-619 (-541))))
+((((-541)) |has| |#4| (-619 (-541))))
+((((-867)) . T) (((-649 |#4|)) . T))
+((($) |has| |#1| (-853)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+((((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+((((-649 |#4|)) . T) (((-867)) . T))
+((((-541)) |has| |#4| (-619 (-541))))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+(((|#1|) . T))
+((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
+(((|#2|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) . T))
+((($) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-867)) -2718 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-618 (-867))) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106))) (((-1273 |#3|)) . T))
+((((-569) |#2|) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#2| |#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
+(((|#2|) . T) (((-569)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((|#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-1165) (-1183) (-569) (-226) (-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-867)) . T))
+((((-569) (-112)) . T))
+(((|#1|) . T))
+((((-867)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-112)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((($) . T) (((-412 (-569))) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(|has| $ (-147))
+((((-412 |#2|)) . T))
+((((-412 (-569))) |has| #0=(-412 |#2|) (-1044 (-412 (-569)))) (((-569)) |has| #0# (-1044 (-569))) ((#0#) . T))
+(((|#2| |#2|) . T))
+(((|#4|) |has| |#4| (-173)))
+(|has| |#2| (-145))
+(|has| |#2| (-147))
+(((|#3|) |has| |#3| (-173)))
+(|has| |#1| (-147))
(|has| |#1| (-145))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
(|has| |#1| (-147))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))) ((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-((((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-(((|#1| (-551)) . T))
-(((|#1| (-551)) . T))
-((($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-((($) |has| |#1| (-562)) ((|#1|) . T))
-((($) |has| |#1| (-562)) ((|#1|) . T))
-((($ $) |has| |#1| (-562)) ((|#1| |#1|) . T))
-((($) |has| |#1| (-562)) (((-551)) . T))
-(((|#1|) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-551)) . T))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(|has| |#1| (-147))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(|has| |#1| (-147))
+(((|#1|) . T))
+(|has| |#2| (-234))
+(((|#2|) . T))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
+((((-1183) (-52)) . T))
+((((-867)) . T))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-1188)) . T) (((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
+(((|#1| |#1|) . T))
+((((-1183)) |has| |#2| (-906 (-1183))))
+((((-129)) . T))
+((((-899 |#1|)) . T) ((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
+((((-569) (-112)) . T))
+(|has| |#1| (-561))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#1|) . T) (((-569)) . T) (((-824 (-1183))) . T))
(((|#1|) . T))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
+(((|#2| |#2|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#3|) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+(((|#1|) . T))
+((((-1010 2)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-1005 |#1|)) . T) ((|#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1179 |#1|)) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#3|) . T) (($) . T))
(|has| |#1| (-855))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+(((|#2|) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-569) |#2|) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+(((|#2|) . T))
+((((-569) |#3|) . T))
+(((|#2|) . T))
+((((-867)) . T))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(((|#2| |#2|) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#2| (-367))
+(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#2|) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#2|) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T))
+((((-1165) (-52)) . T))
(((|#1|) . T))
-((((-128)) . T))
-((((-128)) . T))
-((((-128)) . T) (((-868)) . T))
-((((-1188)) . T))
-((((-1223)) . T) (((-868)) . T) (((-1188)) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) |has| |#2| (-173)))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-569) |#3|) . T))
+((((-569) (-144)) . T))
+((((-144)) . T))
+((((-867)) . T))
((((-1188)) . T))
-(((|#1|) -3978 (|has| |#2| (-371 |#1|)) (|has| |#2| (-423 |#1|))))
-(((|#1|) |has| |#2| (-423 |#1|)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-868)) . T))
-(((|#1|) . T) (((-551)) . T))
+((((-112)) . T))
+(|has| |#1| (-147))
(((|#1|) . T))
+(|has| |#1| (-145))
+((($) . T))
+(|has| |#1| (-561))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+((((-144)) . T))
+((((-867)) . T))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+((((-1165) (-52)) . T))
(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#2|) . T))
+((((-569) (-144)) . T))
+(((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(|has| |#1| (-855))
+(((|#2| (-776) (-1088)) . T))
+(((|#1| |#2|) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(|has| |#1| (-796))
+(((|#1|) |has| |#1| (-173)))
+(((|#4|) . T))
+(((|#4|) . T))
+(((|#1| |#2|) . T))
+(-2718 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| |#2| (-147))))
+(-2718 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145))))
+(((|#4|) . T))
+(|has| |#1| (-145))
((((-1165) |#1|) . T))
-((((-1165) |#1|) . T))
-((((-1165) |#1|) . T))
-((((-1165) |#1|) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((#1=(-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) #1#) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-1165) |#1|) . T))
-((((-868)) . T))
-((((-393) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-540)) |has| |#1| (-619 (-540))) (((-896 (-382))) |has| |#1| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#1| (-619 (-896 (-551)))))
+(|has| |#1| (-147))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
+((((-569)) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+((((-867)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#3|) . T))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))) (((-964 |#1|)) . T))
(|has| |#1| (-853))
(|has| |#1| (-853))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-964 |#1|)) . T))
+(((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367))))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(|has| |#2| (-367))
+(((|#1|) |has| |#1| (-173)))
+(((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+(((|#2|) |has| |#2| (-1055)))
+((((-1165) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#2| (-899 |#1|)) . T))
+((($) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((((-393) (-1165)) . T))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) -2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1963 (-1165)) (|:| -2179 #0#))) . T))
+(((|#1|) . T))
+((((-867)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-144)) . T))
+(|has| |#2| (-145))
+((((-569)) . T))
+(|has| |#2| (-147))
+(|has| |#1| (-478))
+(-2718 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(|has| |#1| (-367))
+((((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((($) |has| |#1| (-561)))
+((((-1188)) . T))
(|has| |#1| (-853))
(|has| |#1| (-853))
+((((-867)) . T))
(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-1183)) |has| |#1| (-906 (-1183))))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-867)) . T))
+(|has| |#1| (-1106))
+(((|#2| (-487 (-2394 |#1|) (-776)) (-869 |#1|)) . T))
+((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
+(((|#1| (-536 (-1183)) (-1183)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-173))
(((|#2| |#2|) . T))
-(((|#2|) . T) (((-551)) . T) (($) . T))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-551)) . T))
-(((|#2|) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(((|#2|) . T) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
+(((|#2|) |has| |#2| (-173)))
(((|#1|) . T))
-((((-412 |#2|)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-(|has| |#2| (-234))
-(((|#2|) . T) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#1|) . T) (($) . T) (((-551)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
(((|#2|) . T))
+(((|#1|) . T) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-1183) (-52)) . T))
+((($ $) . T))
+(((|#1| (-569)) . T))
+((((-916 |#1|)) . T))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -2718 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(|has| |#1| (-855))
+(|has| |#1| (-855))
+((((-569) |#2|) . T))
+((($) . T) (((-569)) . T) ((|#1|) . T))
+((((-867)) . T))
+((((-569)) . T))
+(|has| |#1| (-855))
+((((-694 |#2|)) . T) (((-867)) . T))
+((((-1265 |#1| |#2| |#3|)) -12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1| |#2|) . T))
+((((-412 (-958 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#1|) |has| |#1| (-173)))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-915)))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+((((-569) |#2|) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
+(|has| |#1| (-353))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#2|) . T) (((-569)) . T))
+((($) . T) (((-412 (-569))) . T))
+((((-569) (-112)) . T))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(|has| |#1| (-853))
+(|has| |#1| (-853))
+(|has| |#1| (-853))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
+(((|#1|) . T))
+(|has| |#1| (-853))
+(((#0=(-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) #0#) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#1| (-1106))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-((((-1165) (-51)) . T))
-((((-868)) . T))
-((((-1165) (-51)) . T))
-((((-1165) (-51)) . T))
-((((-1165) (-51)) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4310 (-1165)) (|:| -2264 #1#))) . T))
-(((#1=(-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) #1#) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) . T))
-((((-1165) (-51)) . T))
-(((|#1|) -3978 (|has| |#2| (-371 |#1|)) (|has| |#2| (-423 |#1|))))
-(((|#1|) |has| |#2| (-423 |#1|)))
(((|#1|) . T))
+(((|#2| |#2|) . T))
(((|#1|) . T))
+((((-1148 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T) (((-569)) . T))
+(((|#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-868)) . T))
-(((|#1|) . T) (((-551)) . T))
+(((|#3| |#3|) . T))
+((($) . T) (((-569)) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+(((|#2|) . T))
(((|#1|) . T))
+(((|#1| (-536 |#2|) |#2|) . T))
+((((-867)) . T))
+((((-144)) . T) (((-867)) . T))
+(((|#1| (-776) (-1088)) . T))
+(((|#3|) . T))
+((((-144)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) -2718 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+((((-144)) . T))
+(((|#2|) |has| |#2| (-173)))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
(((|#1|) . T))
-(|has| |#1| (-826))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#3| (-173))
+(((|#4|) |has| |#4| (-367)))
+(((|#3|) |has| |#3| (-367)))
(((|#1|) . T))
+(((|#2|) |has| |#1| (-367)))
+((((-867)) . T))
+((((-867)) . T))
+(((|#2|) . T))
+(((|#1| (-1179 |#1|)) . T))
+((((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((($) . T) ((|#1|) . T) (((-412 (-569))) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((($) |has| |#1| (-561)))
+(((|#2|) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) . T))
+((($) |has| |#1| (-853)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(|has| |#1| (-915))
+((((-1183)) . T))
+((((-867)) . T))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
+(((|#1| |#2|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((#0=(-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) #0#) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#1|) . T) (($) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
(|has| |#1| (-855))
+(|has| |#1| (-561))
+((((-586 |#1|)) . T))
+((($) . T))
+(((|#2|) . T))
+(-2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-825))) (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-916 |#1|)) . T))
+(((|#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) . T))
+(((|#1| |#4| |#5|) . T))
+(((|#1| (-776)) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-677 |#1|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-541)) . T))
+((((-867)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-1188)) . T))
+((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T))
+(((|#3|) . T) (((-569)) . T) (((-617 $)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#2|) . T))
+(-2718 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(|has| |#1| (-1208))
+(|has| |#1| (-1208))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+(|has| |#1| (-1208))
+(|has| |#1| (-1208))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-412 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T))
+(((|#3| |#3|) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#3|) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((((-1165) (-52)) . T))
+(|has| |#1| (-1106))
+(((|#1|) |has| |#1| (-173)) (($) . T))
+(-2718 (|has| |#2| (-825)) (|has| |#2| (-855)))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-569)) . T) (($) . T))
+((((-776)) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+((($) . T) (((-569)) . T))
+((($) . T))
+(|has| |#2| (-915))
+(|has| |#1| (-367))
+(((|#2|) |has| |#2| (-1106)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-541)) . T) (((-412 (-1179 (-569)))) . T) (((-226)) . T) (((-383)) . T))
+((((-383)) . T) (((-226)) . T) (((-867)) . T))
+(|has| |#1| (-915))
+(|has| |#1| (-915))
+(|has| |#1| (-915))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((($) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((($) . T) ((|#2|) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-1181 |#1| |#2| |#3|)) -12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#1|) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-867)) . T))
+((((-867)) . T))
+((($ $) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((($ $) . T))
+((((-569) (-112)) . T))
+((($) . T))
(((|#1|) . T))
+((((-569)) . T))
+((((-112)) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#1| (-569)) . T))
+((($) . T))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
(((|#1|) . T))
-((((-1188)) . T))
-(((|#1|) . T) (((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
+((((-569)) . T))
+(((|#1| |#2|) . T))
+((((-1183)) |has| |#1| (-1055)))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
(((|#1|) . T))
+((((-867)) . T))
+(((|#1| (-569)) . T))
+(((|#1| (-1265 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
+(((|#1| (-412 (-569))) . T))
+(((|#1| (-1237 |#1| |#2| |#3|)) . T))
+(((|#1| (-776)) . T))
(((|#1|) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-867)) . T))
+(|has| |#1| (-1106))
+((((-1165) |#1|) . T))
+((($) . T))
+(|has| |#2| (-147))
+(|has| |#2| (-145))
+(((|#1| (-536 (-823 (-1183))) (-823 (-1183))) . T))
+((((-867)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1055)))
+((((-569) (-112)) . T))
+((((-867)) |has| |#1| (-1106)))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+(|has| |#2| (-173))
+((((-569)) . T))
+(|has| |#2| (-853))
(((|#1|) . T))
+((((-569)) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-353)))
+((((-867)) . T))
+(|has| |#1| (-147))
+(((|#3|) . T))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-867)) . T))
+((((-1258 |#2| |#3| |#4|)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-867)) . T))
+((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (((-617 $)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) -2718 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1| (-776)) . T))
(((|#1|) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-312 |#1|)))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
(((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((((-551)) . T) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
+(|has| |#1| (-561))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
(((|#1|) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
(((|#1|) |has| |#1| (-173)))
+((((-867)) . T))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#1|) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1106)))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-1258 |#2| |#3| |#4|)) . T))
+((((-112)) . T))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+(((|#1| (-569) (-1088)) . T))
+((($) |has| |#1| (-312 $)) ((|#1|) |has| |#1| (-312 |#1|)))
+(|has| |#1| (-853))
+(|has| |#1| (-853))
+(((|#1| (-569) (-1088)) . T))
+(-2718 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1| (-412 (-569)) (-1088)) . T))
+(((|#1| (-776) (-1088)) . T))
+(|has| |#1| (-855))
+(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-147))
+(((|#2|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#1| (-1106))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-1106))
+((((-412 (-569))) |has| |#2| (-367)) (($) . T) (((-569)) . T))
+((((-569)) -2718 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
+(((|#1|) . T))
+(|has| |#1| (-1106))
+((((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((|#2|) |has| |#1| (-367)))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+((((-694 (-343 (-3709) (-3709 (QUOTE X) (QUOTE HESS)) (-704)))) . T))
+(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
-((((-868)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+((((-867)) . T))
+(|has| |#3| (-853))
+((((-867)) . T))
+((((-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
+((((-867)) . T))
+(((|#1| |#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+(((|#1|) . T))
+((((-569)) . T))
+((((-569)) . T))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+(((|#2|) |has| |#2| (-367)))
(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
+(|has| |#1| (-855))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1|) . T) (((-569)) . T))
+(((|#2|) . T))
+((((-569)) . T) ((|#3|) . T))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) |has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+((((-867)) . T))
+((((-867)) . T))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+((((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-234))
+(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#1|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
+(|has| |#1| (-853))
+(((|#1| (-569)) . T))
+(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
+(((|#1| (-1181 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-((((-868)) . T))
+(((|#1| (-412 (-569))) . T))
+(((|#1| (-1174 |#1| |#2| |#3|)) . T))
+(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
+(((|#1| (-776)) . T))
(((|#1|) . T))
+((((-412 (-958 |#1|))) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#1|) . T) (((-551)) . T))
+(((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#1| (-147))
+((((-412 (-958 |#1|))) . T))
(((|#1|) |has| |#1| (-173)))
+(|has| |#1| (-145))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) |has| |#1| (-173)))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-569)) . T) ((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-1183)) |has| |#1| (-1044 (-1183))))
+(((|#1| |#2|) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) -2718 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))) ((|#1|) . T))
+((((-144)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#1|) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-569)) . T))
+((((-867)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| (-412 |#2|) (-234))
+((((-649 |#1|)) . T))
+(|has| |#1| (-915))
+(((|#2|) |has| |#2| (-1055)))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(|has| |#1| (-367))
+(((|#1|) |has| |#1| (-173)))
+(((|#1| |#1|) . T))
+((((-875 |#1|)) . T))
+((((-867)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
+(((|#2|) |has| |#2| (-1106)))
(((|#1|) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((((-649 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
+((($) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-569)) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T))
(((|#1|) . T))
+((((-867)) . T))
+((($) . T))
+(((|#1| (-536 |#2|) |#2|) . T))
+((((-867)) . T))
+(((|#1| (-569) (-1088)) . T))
+(((|#1| (-412 (-569)) (-1088)) . T))
+((((-916 |#1|)) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+(((|#1|) . T))
+(((|#1| (-776) (-1088)) . T))
+(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-569)) -2718 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))) (((-412 (-569))) . T))
+(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-((((-868)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((|#1|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-((((-677 |#1|)) . T))
-((((-677 |#1|)) . T))
-(((|#2| (-677 |#1|)) . T))
-(((|#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((((-551)) . T) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(|has| |#2| (-234))
+(((|#2| (-536 (-869 |#1|)) (-869 |#1|)) . T))
+((((-867)) . T))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+(((|#1| |#3|) . T))
+((((-867)) . T))
+(((|#1|) |has| |#1| (-173)) (((-958 |#1|)) . T) (((-569)) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-704)) . T))
+((((-704)) . T))
+(((|#2|) |has| |#2| (-173)))
+(|has| |#2| (-853))
+((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+((((-112)) |has| |#1| (-1106)) (((-867)) -2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106))))
+(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-704)) . T) (((-412 (-569))) . T) (((-569)) . T))
+(((|#1| |#1|) |has| |#1| (-173)))
(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-4445 "*"))))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-569) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+((((-383)) . T))
+((((-704)) . T))
+((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
+(((|#1|) |has| |#1| (-173)))
+((((-412 (-958 |#1|))) . T))
(((|#2| |#2|) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#1|) . T))
(((|#2|) . T))
-(((|#2|) . T))
-((((-694 |#2|)) . T) (((-868)) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
+(((|#3|) |has| |#3| (-1055)))
+(|has| |#2| (-915))
+(|has| |#1| (-915))
+(|has| |#1| (-367))
((((-1183)) |has| |#2| (-906 (-1183))))
-(|has| |#2| (-234))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(((|#2|) . T))
-((((-551)) . T) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#2|) . T) (((-551)) |has| |#2| (-1044 (-551))) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-478))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-367))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
+(|has| |#1| (-38 (-412 (-569))))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+(|has| |#1| (-353))
+((((-144)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((($) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#2|) . T) (((-867)) . T))
+(((|#2|) . T) (((-867)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-855))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+(((|#1| |#2|) . T))
+((($) . T) (((-569)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) ((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
(((|#2|) . T))
-(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
+(((|#3|) . T))
+((((-116 |#1|)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-855))
+(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((((-116 |#1|)) . T))
+(((|#1|) |has| |#1| (-173)))
+(((|#2|) |has| |#2| (-173)))
(((|#1|) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
(((|#1|) . T))
+((((-569)) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#1| (-1028))) (((-226)) . #0#))
+(((|#1|) |has| |#1| (-367)))
+((((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((($ $) . T) (((-617 $) $) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((($) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
+((($) -2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-383)) . T) (((-569)) . T) (((-412 (-569))) . T))
+((((-649 (-785 |#1| (-869 |#2|)))) . T) (((-867)) . T))
+((((-541)) |has| (-785 |#1| (-869 |#2|)) (-619 (-541))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-383)) . T))
+(((|#1|) |has| |#1| (-173)))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#1|) |has| |#1| (-173)))
+((((-867)) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(((|#1|) . T))
+((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-776)) . T))
+(|has| |#1| (-1106))
+((($) -2718 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-867)) . T))
+((((-1183)) . T) (((-867)) . T))
+((((-569)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+((((-569)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (($) . T))
+((((-569)) . T))
+(|has| |#1| (-367))
+(-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
+(-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
+(|has| |#1| (-367))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+(|has| |#1| (-234))
+(|has| |#1| (-367))
+(((|#3|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-569)) |has| |#2| (-644 (-569))) ((|#2|) . T))
+(((|#2|) . T) (($) . T) (((-569)) . T))
+(((|#2|) . T))
+((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
+((((-412 (-569))) |has| |#2| (-367)) (($) . T))
+(|has| |#1| (-1106))
+((((-1148 |#2| |#1|)) . T) ((|#1|) . T) (((-569)) . T))
+(((|#1| |#2|) . T))
+((((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+(((|#3|) |has| |#3| (-173)))
+(((|#2|) . T) (($) . T) (((-569)) . T))
+(((|#1|) . T) (($) . T) (((-569)) . T))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+((((-867)) . T))
+((((-569)) . T))
+(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
+((((-958 |#1|)) . T) (((-867)) . T))
+(((|#3|) . T))
+(((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-293)) (|has| |#1| (-367))) ((#0=(-412 (-569)) #0#) |has| |#1| (-367)))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+((((-958 |#1|)) . T))
+((($) . T))
+((((-569) |#1|) . T))
+((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
+((((-541)) |has| |#2| (-619 (-541))))
+((((-694 |#2|)) . T) (((-867)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-1223)) . T) (((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-(((|#1| (-1272 |#1|) (-1272 |#1|)) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+((((-875 |#1|)) . T))
+(((|#1|) |has| |#1| (-173)))
+(-2718 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((($) . T) (((-569)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#2|) |has| |#2| (-1055)))
+(((|#3|) . T))
(((|#1|) . T))
-(((|#1| (-1272 |#1|) (-1272 |#1|)) . T))
-((((-868)) . T))
+((((-412 |#2|)) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
(((|#1|) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+((((-569) |#1|) . T))
(((|#1|) . T))
-((((-704)) . T))
-((((-704)) . T))
-((((-704)) . T))
-((((-704)) . T))
-((((-704)) . T))
-((((-382)) . T))
-((((-704)) . T))
-(((#1=(-704) (-1177 #1#)) . T))
-(((#1=(-704) (-1177 #1#)) . T))
-(((#1=(-704) (-1177 #1#)) . T))
-((((-704)) . T))
-((((-169 (-226))) . T) (((-169 (-382))) . T) (((-1177 (-704))) . T) (((-896 (-382))) . T))
-((((-704)) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-((((-868)) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T) (((-551)) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-(((#1=(-412 (-551)) #1#) . T) ((#2=(-704) #2#) . T) (($ $) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T) (((-551)) . T))
-((((-412 (-551))) . T) (((-704)) . T) (($) . T))
-((((-704)) . T) (((-412 (-551))) . T) (((-551)) . T))
-((((-382)) . T) (((-551)) . T) (((-412 (-551))) . T))
-((((-382)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-226)) . T) (((-382)) . T) (((-896 (-382))) . T))
-((((-868)) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-382)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-551)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
((($) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) . T) (($) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-1227)))
((($) . T))
-((($ $) . T))
-((($) . T) (((-551)) . T))
-((($) . T))
-((((-551)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (((-551)) . T) (($) . T))
+((((-412 (-569))) |has| #0=(-412 |#2|) (-1044 (-412 (-569)))) (((-569)) |has| #0# (-1044 (-569))) ((#0#) . T))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+(((|#1| (-776)) . T))
+(|has| |#1| (-855))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-569)) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#1| (-853))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-372))
(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-353))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
+((((-867)) . T))
+(((|#2|) . T) (((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+(((|#1| |#2|) . T))
+((((-144)) . T))
+((((-785 |#1| (-869 |#2|))) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(|has| |#1| (-1208))
+((((-867)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-412 $) (-412 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
+(-2718 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106)))
+((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
+(((|#2|) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((((-916 |#1|)) . T))
+((($) . T))
+((((-412 (-958 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-541)) |has| |#4| (-619 (-541))))
+((((-867)) . T) (((-649 |#4|)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1|) . T))
+(|has| |#1| (-853))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) |has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))))
+(|has| |#1| (-1106))
(|has| |#1| (-367))
-(((|#1| (-776) (-1088)) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-776)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-(((|#2|) . T) (((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1088)) . T) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-((((-1088)) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1| (-776)) . T))
-(((#1=(-1088) |#1|) . T) ((#1# $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1157))
(((|#1|) . T))
-((((-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) . T))
-((((-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) . T))
-((((-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) . T) (((-868)) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
+(((|#1|) . T))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367))))
+((((-677 |#1|)) . T))
+(((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+((($) . T) (((-412 (-569))) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(((|#2| |#2|) . T))
-((((-113)) . T) ((|#1|) . T))
-((((-113)) . T) ((|#1|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T) (((-551)) . T))
-((((-551)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
-((((-868)) . T))
-((((-540)) |has| |#2| (-619 (-540))) (((-896 (-382))) |has| |#2| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#2| (-619 (-896 (-551)))))
-((($) . T))
-(((|#2| (-536 (-869 |#1|))) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
-((($) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T))
+(-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
+(-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(|has| |#1| (-853))
+(((|#1| |#2|) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-1106))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-569)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) . T) (($) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#2| (-38 (-412 (-551)))) ((|#2| |#2|) . T) (($ $) -3978 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-412 (-551))) |has| |#2| (-38 (-412 (-551)))) ((|#2|) |has| |#2| (-173)) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((|#2| (-536 (-869 |#1|))) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-1106))
+(((|#2|) |has| |#2| (-173)))
+((((-569)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-569)) . T))
+(((|#2|) . T))
+(((|#1| |#1|) . T))
+(((|#3|) |has| |#3| (-367)))
+((((-412 |#2|)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-569)) . T) (($) . T) (((-412 (-569))) . T))
+((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-319 |#1|)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#2|) |has| |#2| (-367)))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(-3978 (|has| |#2| (-457)) (|has| |#2| (-916)))
-((($ $) . T) ((#1=(-869 |#1|) $) . T) ((#1# |#2|) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((#0=(-785 |#1| (-869 |#2|)) #0#) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
+((((-569)) . T) (($) . T))
((((-869 |#1|)) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-916))
-((((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))) (((-551)) |has| |#2| (-1044 (-551))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))) ((|#2|) . T) (($) -3978 (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-869 |#1|)) . T))
-(((|#2| (-536 (-869 |#1|)) (-869 |#1|)) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) |has| |#1| (-173)))
+(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
+(((|#2|) . T))
+((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
+((((-1183)) |has| |#1| (-906 (-1183))) (((-1094 (-1183))) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#4|) |has| |#4| (-1055)) (((-569)) -12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))))
+(((|#3|) |has| |#3| (-1055)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) ((|#2|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T) (((-551)) . T))
+((($ $) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106)))
+(|has| |#1| (-561))
+(((|#2|) . T))
+((((-569)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
(((|#1|) . T))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(((|#1| (-59 |#1|) (-59 |#1|)) . T))
+((((-586 |#1|)) . T))
+((($) . T))
(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
(((|#1|) . T))
+((($) . T))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
+((((-867)) . T))
+(((|#2|) |has| |#2| (-6 (-4445 "*"))))
(((|#1|) . T))
(((|#1|) . T))
+((($) . T))
+(((|#3|) . T))
+((($) . T))
+(((|#2|) . T) (((-569)) . T) (($) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| (-536 |#2|) |#2|) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#2| (-892 (-551)))) (((-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#2| (-892 (-382)))))
-(((|#2|) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-536 |#2|)) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
+(((|#3|) . T) (((-569)) . T))
+((((-1258 |#2| |#3| |#4|)) . T) (((-569)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (((-569)) -2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))) (|has| |#1| (-1055))) ((|#1|) . T) (((-617 $)) . T) (($) |has| |#1| (-561)) (((-412 (-569))) -2718 (|has| |#1| (-561)) (|has| |#1| (-1044 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
+((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T))
+((((-1131 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-1179 |#1|)) . T) (((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-1131 |#1| (-1183))) . T) (((-1094 (-1183))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-1183)) . T))
+(|has| |#1| (-1106))
+((($) . T))
+(|has| |#1| (-1106))
+((((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))) (((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383)))))
+(((|#1| |#2|) . T))
+((((-1183) |#1|) . T))
+(((|#4|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1183) (-52)) . T))
+((((-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((((-867)) . T))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+(((#0=(-1259 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-173)) ((#0=(-412 (-569)) #0#) |has| |#1| (-561)) (($ $) |has| |#1| (-561)))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561)))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+(|has| |#1| (-367))
+((($) |has| |#1| (-853)) (((-569)) -2718 (|has| |#1| (-21)) (|has| |#1| (-853))))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-1131 |#1| |#2|)) . T) (((-952 |#1|)) |has| |#2| (-619 (-1183))) (((-868)) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (($) . T))
-((((-1131 |#1| |#2|)) . T) ((|#2|) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-551)) . T))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-((((-1131 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
+((((-412 (-569))) . T) (($) . T))
+(((|#3|) |has| |#3| (-367)))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-1183)) . T))
+((($) . T) (((-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))) (((-569)) . T))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2| |#3|) . T))
+(-2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#1| (-536 |#2|)) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-((($) . T))
-((((-952 |#1|)) |has| |#2| (-619 (-1183))) (((-1165)) -12 (|has| |#1| (-1044 (-551))) (|has| |#2| (-619 (-1183)))) (((-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551))))) (((-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382))))) (((-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#2| (-619 (-540)))))
-(((|#1| (-536 |#2|) |#2|) . T))
+(((|#1| (-776)) . T))
+(((|#1| (-536 (-1094 (-1183)))) . T))
+(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-((((-1177 |#1|)) . T) (((-868)) . T))
-((((-412 $) (-412 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-915))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+((((-867)) . T))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367))))
+(((|#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+((($ $) . T) ((#0=(-1258 |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) |has| #0# (-38 (-412 (-569)))))
+((((-916 |#1|)) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+((($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+((($) . T))
+((($) . T))
+(-2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
(|has| |#1| (-367))
-(((|#1| (-776) (-1088)) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
+(((|#1| |#2|) . T))
+((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2718 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
+(((|#1| |#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-112)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#2|) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
+(((|#2|) . T))
+(|has| |#2| (-367))
+(|has| |#1| (-855))
(((|#1|) . T))
-(((|#1| (-776)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((((-1177 |#1|)) . T) (((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1088)) . T) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-((((-1177 |#1|)) . T) (((-1088)) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1| (-776)) . T))
-(((#1=(-1088) |#1|) . T) ((#1# $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1157))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
(((|#1|) . T))
+((((-569)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) ((|#1|) . T))
-((($) . T) ((|#1|) . T))
+((((-867)) . T))
+(((|#2|) |has| |#2| (-173)))
+(|has| |#1| (-1106))
+(((|#1|) |has| |#1| (-173)))
+(((|#2|) . T))
(((|#1|) . T))
+(((|#4|) . T))
+(((|#4|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T) (($) . T))
+(((|#3|) . T) (((-569)) . T) (($) . T))
+((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-825))
+(((|#4|) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-867)) . T))
+(((|#1| (-536 (-1183))) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-867)) . T))
+(((|#2|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#2|) . T))
+(((|#2|) -2718 (|has| |#2| (-6 (-4445 "*"))) (|has| |#2| (-173))))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(|has| |#2| (-915))
+(|has| |#1| (-915))
+(((|#2|) |has| |#2| (-173)))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+(((|#1| |#2|) . T))
+((($) . T) (((-569)) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) . T))
+(((|#1|) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+((($) . T) (((-569)) . T))
+(((|#1| (-412 (-569))) . T))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-293)) (|has| |#1| (-367)))
+((((-144)) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-853))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
(((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-((((-540)) |has| |#1| (-619 (-540))))
-(|has| |#1| (-372))
(((|#1|) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(((|#1|) |has| |#1| (-312 |#1|)))
-(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
-((((-1002 |#1|)) . T) ((|#1|) . T))
-((((-1002 |#1|)) . T) (((-551)) . T) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| (-1002 |#1|) (-1044 (-412 (-551))))))
-((((-1002 |#1|)) . T) ((|#1|) . T) (((-551)) -3978 (|has| |#1| (-1044 (-551))) (|has| (-1002 |#1|) (-1044 (-551)))) (((-412 (-551))) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| (-1002 |#1|) (-1044 (-412 (-551))))))
-(|has| |#1| (-855))
(((|#1|) . T))
-((((-868)) . T))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(-3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107)))
-(((|#2|) |has| |#2| (-173)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-3978 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-868)) -3978 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-868))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1107))) (((-1272 |#2|)) . T))
-(|has| |#2| (-173))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2| |#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-1055)))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
-(|has| |#2| (-372))
-(((|#2|) |has| |#2| (-1055)))
-(((|#2|) |has| |#2| (-1055)) (((-551)) -12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055))))
-(((|#2|) |has| |#2| (-1107)))
-((((-551)) -3978 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055))) ((|#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-(((|#2|) |has| |#2| (-1107)) (((-551)) -12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (((-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))))
-((((-551) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2|) . T))
-((((-551) |#2|) . T))
-((((-551) |#2|) . T))
-(|has| |#2| (-798))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-3978 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(|has| |#2| (-853))
-(|has| |#2| (-853))
-(((|#2|) |has| |#2| (-367)))
(((|#1| |#2|) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-188)) . T) (((-867)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))))
+((((-1183) (-52)) . T))
+(((|#2|) . T))
(((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-234))
-((($) . T))
-(((|#1| (-536 (-823 (-1183))) (-823 (-1183))) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-823 (-1183))) . T))
-((($ $) . T) ((#1=(-1183) $) |has| |#1| . #2=((-234))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-823 (-1183)) |#1|) . T) ((#3# $) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-536 (-823 (-1183)))) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
+((((-649 (-144))) . T) (((-1165)) . T))
+((((-867)) . T))
+((((-1165)) . T))
+((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+(|has| |#1| (-855))
+((((-867)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) . T))
+(((|#2|) |has| |#2| (-367)))
+((((-867)) . T))
+((((-541)) |has| |#4| (-619 (-541))))
+((((-867)) . T) (((-649 |#4|)) . T))
+(((|#2|) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T))
+(-2718 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-1183) (-52)) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(|has| |#1| (-915))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(|has| |#1| (-915))
+(((|#1|) . T) (((-569)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-867)) . T))
+((((-569)) . T))
+(((#0=(-412 (-569)) #0#) . T) (($ $) . T))
+((((-412 (-569))) . T) (($) . T))
+(((|#1| (-412 (-569)) (-1088)) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-561))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(|has| |#1| (-825))
+(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
+((((-412 |#2|)) . T))
+(|has| |#1| (-853))
+((((-1209 |#1|)) . T) (((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-569) #1#) . T) (($ $) . T))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
+(((|#2|) . T))
+((((-867)) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T) (((-569)) . T))
+(((|#1|) |has| |#1| (-173)))
+(((|#2|) |has| |#2| (-173)))
(((|#1|) . T))
-(((|#1| (-536 (-823 (-1183)))) . T))
-((((-1131 |#1| (-1183))) . T) (((-823 (-1183))) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-1183)) . T))
-((((-1131 |#1| (-1183))) . T) (((-551)) . T) (((-823 (-1183))) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-1183)) . T))
-(((|#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) . T))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-((((-412 (-551))) . #1=(|has| |#2| (-367))) (($) . #1#))
-((((-412 (-551))) . #1=(|has| |#2| (-367))) (($) . #1#))
-((((-412 (-551))) . #1=(|has| |#2| (-367))) (($) . #1#))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
-(|has| |#2| (-367))
(((|#2|) . T))
-((((-412 (-551))) . #1=(|has| |#2| (-367))) (($) . #1#) ((|#2|) . T) (((-551)) . T))
-((((-412 (-551))) |has| |#2| (-367)) (($) . T))
-(((|#2|) . T) (((-868)) . T))
-((((-412 (-551))) |has| |#2| (-367)) (($) . T) (((-551)) . T))
-((((-412 (-551))) |has| |#2| (-367)) (($) . T))
-((((-412 (-551))) |has| |#2| (-367)) (($) . T))
-(((#1=(-412 (-551)) #1#) |has| |#2| (-367)) (($ $) . T))
-((((-868)) . T))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1963 (-1183)) (|:| -2179 #0#))) . T))
+(|has| |#1| (-353))
+((((-569)) . T))
+((((-867)) . T))
(((|#1|) . T))
+(((#0=(-1259 |#1| |#2| |#3| |#4|) $) |has| #0# (-289 #0# #0#)))
+(|has| |#1| (-367))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -2718 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))) (((-569)) -2718 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
+(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(((#0=(-412 (-569)) #0#) . T) ((#1=(-704) #1#) . T) (($ $) . T))
+((((-319 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
+((((-867)) . T))
+(|has| |#1| (-1106))
+(((|#1|) . T))
+(((|#1|) -2718 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
+(((|#1|) -2718 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
+(((|#2|) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+((((-584)) . T))
+(((|#3| |#3|) . T))
+(|has| |#2| (-234))
+((((-869 |#1|)) . T))
+((((-1183)) |has| |#1| (-906 (-1183))) ((|#3|) . T))
+((((-649 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-1028)))
+((((-412 (-569))) . T) (($) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((($) . T) (((-412 (-569))) . T))
+((((-867)) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
+((((-569)) . T) (((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569)) . T))
+(((|#3|) . T))
+(|has| |#1| (-1106))
+(((|#2|) . T))
(((|#1|) . T))
+((((-569)) . T))
+(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (($) . T) (((-569)) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+(((|#1| |#2|) . T))
+((($) . T))
+((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((($) . T) (((-412 (-569))) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (((-569)) . T))
+(((|#1|) . T) (((-569)) . T))
+(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#2|) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#2|) . T))
+(((|#3|) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-1131 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#2|) . T))
(((|#1|) . T))
-((((-868)) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#3|) . T))
+((($ $) . T))
+((((-677 |#1|)) . T))
+((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) (((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))))
+(((|#2|) . T) ((|#6|) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
+((((-144)) . T))
+((($) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-383)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(|has| |#1| (-234))
-(((|#2|) |has| |#2| (-173)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-173)))
-((((-551)) . T) ((|#2|) |has| |#2| (-173)))
+(|has| |#2| (-915))
+(|has| |#1| (-915))
+(|has| |#1| (-915))
+(((|#4|) . T))
+(|has| |#2| (-1028))
+((($) . T))
+(|has| |#1| (-915))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((($) . T))
(((|#2|) . T))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-((($) |has| |#1| (-853)))
-(|has| |#1| (-853))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((($) |has| |#1| (-853)) (((-551)) -3978 (|has| |#1| (-21)) (|has| |#1| (-853))))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) -3978 (|has| |#1| (-853)) (|has| |#1| (-1044 (-551)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(((|#1| |#1|) . T))
-((((-113)) . T) ((|#1|) . T))
-((((-113)) . T) ((|#1|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T) (((-551)) . T))
-((((-868)) . T))
-((((-511)) . T))
-((((-868)) . T))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-(|has| |#1| (-853))
-((($) |has| |#1| (-853)))
-(|has| |#1| (-853))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((($) |has| |#1| (-853)) (((-551)) -3978 (|has| |#1| (-21)) (|has| |#1| (-853))))
-(-3978 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) -3978 (|has| |#1| (-853)) (|has| |#1| (-1044 (-551)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((($) . T))
+(|has| |#1| (-367))
+((((-916 |#1|)) . T))
+((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) |has| |#1| (-853)) (((-569)) -2718 (|has| |#1| (-21)) (|has| |#1| (-853))))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(-2718 (|has| |#1| (-372)) (|has| |#1| (-855)))
+(((|#1|) . T))
+((((-776)) . T))
+((((-867)) . T))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-412 |#2|) |#3|) . T))
+((($) . T) (((-412 (-569))) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T))
+((((-569)) . T) (($) . T))
+((((-569)) . T) (($) . T))
+((((-776) |#1|) . T))
+(((|#2| (-241 (-2394 |#1|) (-776))) . T))
+(((|#1| (-536 |#3|)) . T))
+((((-412 (-569))) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-1165)) . T) (((-867)) . T))
+(((#0=(-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) #0#) |has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))))
+((((-1165)) . T))
+(|has| |#1| (-915))
+(|has| |#2| (-367))
+(((|#1|) . T) (($) . T) (((-569)) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+((((-383)) . T) (((-569)) . T))
+(((#0=(-412 (-569)) #0#) . T) (($ $) . T))
+((($ $) . T))
+((($ $) . T))
(((|#1| |#1|) . T))
+((((-867)) . T))
+(|has| |#1| (-561))
+((((-412 (-569))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+(-2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(|has| |#1| (-38 (-412 (-569))))
+(-12 (|has| |#1| (-550)) (|has| |#1| (-833)))
+((((-867)) . T))
+((((-1183)) -2718 (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183))))))
+(|has| |#1| (-367))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+(|has| |#1| (-367))
+((((-412 (-569))) . T) (($) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((((-569) |#1|) . T))
(((|#1|) . T))
+(((|#2|) |has| |#1| (-367)))
+(((|#2|) |has| |#1| (-367)))
+((((-569)) . T) (($) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
(((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) ((|#1|) . T))
-((($) . T) ((|#1|) . T))
-(((|#1|) |has| |#1| (-173)))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-((((-551)) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
+(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) (((-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))))
(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-173)))
+((((-1183) #0=(-1259 |#1| |#2| |#3| |#4|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
+((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
+((((-617 $) $) . T) (($ $) . T))
+((((-170 (-226))) . T) (((-170 (-383))) . T) (((-1179 (-704))) . T) (((-898 (-383))) . T))
+(((|#3|) . T))
+(|has| |#1| (-561))
+(|has| (-412 |#2|) (-234))
+(((|#1| (-412 (-569))) . T))
+((($) . T) (((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T))
+(((|#3|) . T))
+(|has| |#1| (-561))
+((((-867)) . T))
+((($ $) . T))
+((($) . T))
+((((-867)) . T))
+((((-1183)) |has| |#2| (-906 (-1183))))
+((((-412 (-569))) . T) (($) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#2|) |has| |#1| (-367)))
+((((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))))
+(|has| |#1| (-367))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-367))
+(((|#1|) . T))
+((($) . T) (((-569)) . T) ((|#2|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-367))
+(((|#3|) . T))
+((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
+(((|#1|) . T))
+(|has| |#1| (-561))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
(((|#2|) . T))
-((((-1269 |#1|)) . T) (((-551)) . T) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#2|) . T) (((-551)) |has| |#2| (-1044 (-551))) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
(((|#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-896 (-551))) . T) (((-896 (-382))) . T) (((-540)) . T) (((-1183)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-((((-952 |#1|)) . T))
-(((|#1|) |has| |#1| (-173)) (((-952 |#1|)) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T))
-((((-952 |#1|)) . T) (((-868)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T) (((-551)) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(((|#1| |#2|) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
+((((-1165) |#1|) . T))
+(|has| |#1| (-147))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(|has| |#1| (-147))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))
((($) . T))
-((($ $) . T))
+(|has| |#1| (-147))
+((((-586 |#1|)) . T))
((($) . T))
+(|has| |#1| (-561))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
((($) . T))
((($) . T))
+((((-412 |#2|)) . T))
+((((-412 (-569))) |has| |#2| (-1044 (-569))) (((-569)) |has| |#2| (-1044 (-569))) (((-1183)) |has| |#2| (-1044 (-1183))) ((|#2|) . T))
+(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-353)))
+(|has| |#1| (-147))
+((((-867)) . T))
((($) . T))
-((((-551)) . T) (($) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-874 |#1|)) . T))
-((((-874 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-874 |#1|)) . T) (((-412 (-551))) . T))
-((($) . T) (((-874 |#1|)) . T) (((-412 (-551))) . T))
-((((-874 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-874 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-874 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-874 |#1|)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-874 |#1|) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-874 |#1|)) . T))
-((((-1183) #1=(-874 |#1|)) |has| #1# (-519 (-1183) #1#)) ((#1# #1#) |has| #1# (-312 #1#)))
-(((#1=(-874 |#1|)) |has| #1# (-312 #1#)))
-(((#1=(-874 |#1|) $) |has| #1# (-289 #1# #1#)))
-((((-874 |#1|)) . T))
-((((-874 |#1|)) . T))
-((((-874 |#1|)) . T))
-((((-874 |#1|)) . T))
-((((-551)) . T) (((-874 |#1|)) . T) (($) . T) (((-412 (-551))) . T))
-((((-874 |#1|)) . T))
-((((-874 |#1|)) . T))
-((((-868)) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
-(((|#2|) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
-(|has| |#2| (-234))
-(((|#2|) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T) (((-412 (-551))) . T))
-((($) . T) ((|#2|) . T) (((-412 (-551))) . T))
-(((|#2|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#2|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#2|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#2|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#2| |#2|) . T) ((#1=(-412 (-551)) #1#) . T) (($ $) . T))
-(((|#2|) . T))
-((((-1183) |#2|) |has| |#2| (-519 (-1183) |#2|)) ((|#2| |#2|) |has| |#2| (-312 |#2|)))
-(((|#2|) |has| |#2| (-312 |#2|)))
-(((|#2| $) |has| |#2| (-289 |#2| |#2|)))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
+((((-1146 |#1| |#2|)) . T))
+(((|#1| (-569)) . T))
+(((|#1| (-412 (-569))) . T))
+((((-569)) |has| |#2| (-892 (-569))) (((-383)) |has| |#2| (-892 (-383))))
(((|#2|) . T))
-((((-551)) |has| |#2| (-892 (-551))) (((-382)) |has| |#2| (-892 (-382))))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(-3978 (|has| |#2| (-825)) (|has| |#2| (-855)))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-112)) . T))
+(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
(((|#2|) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-1026))
-((((-540)) |has| |#2| (-619 (-540))) (((-896 (-551))) |has| |#2| (-619 (-896 (-551)))) (((-896 (-382))) |has| |#2| (-619 (-896 (-382)))) (((-382)) . #1=(|has| |#2| (-1026))) (((-226)) . #1#))
-((((-551)) . T) ((|#2|) . T) (($) . T) (((-412 (-551))) . T) (((-1183)) |has| |#2| (-1044 (-1183))))
-((((-412 (-551))) |has| |#2| . #1=((-1044 (-551)))) (((-551)) |has| |#2| . #1#) (((-1183)) |has| |#2| (-1044 (-1183))) ((|#2|) . T))
-(|has| |#2| (-1157))
+((((-867)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1183) (-52)) . T))
+((((-412 |#2|)) . T))
+((((-867)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+((((-867)) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-114)) . T) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
+((((-867)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
+((((-867)) . T))
+((((-867)) . T))
(((|#2|) . T))
-(-12 (|has| |#1| (-1107)) (|has| |#2| (-1107)))
-(-12 (|has| |#1| (-1107)) (|has| |#2| (-1107)))
-((((-868)) -3978 (-12 (|has| |#1| (-618 (-868))) (|has| |#2| (-618 (-868)))) (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107)))))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1183)) . T) ((|#1|) . T))
-((((-1183)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-677 |#1|)) . T))
-((((-677 |#1|)) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-867)) . T))
+(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
(((|#1|) . T))
-((((-1209 |#1|)) . T) (((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
(((|#1|) . T))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-367))
+((((-867)) . T))
+(((|#2|) . T))
+((((-569)) . T))
+((((-867)) . T))
+((((-569)) . T))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-1165)) . T) (((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+((((-867)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106)))
+(|has| |#1| (-1158))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-569) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-116 |#1|) $) |has| #0# (-289 #0# #0#)))
+(((|#1|) |has| |#1| (-173)))
+((((-319 |#1|)) . T) (((-569)) . T))
(((|#1|) . T))
-((((-868)) . T))
-(-3978 (|has| |#1| (-372)) (|has| |#1| (-855)))
+((((-867)) . T))
+((((-114)) . T) ((|#1|) . T))
+((((-867)) . T))
+(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-312 |#1|)))
+((((-569) |#1|) . T))
+((((-1183) |#1|) . T))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367))))
(((|#1|) . T))
-((((-868)) . T))
-((((-551)) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-(|has| $ (-147))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($) . T) (((-412 (-551))) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-412 (-551)) #1#) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-646 |#1|)) . T))
+(((|#1|) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+((((-569)) . T) (((-412 (-569))) . T))
(((|#1|) . T))
+(|has| |#1| (-561))
+((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-383)) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
+(|has| |#1| (-367))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(|has| |#1| (-367))
+(|has| |#1| (-561))
+(|has| |#1| (-1106))
+((((-785 |#1| (-869 |#2|))) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
+(((|#2| |#3|) . T))
(((|#1|) . T))
+(|has| |#2| (-915))
+(((|#1| (-536 |#2|)) . T))
+(((|#1| (-776)) . T))
+(|has| |#1| (-234))
+(((|#1| (-536 (-1094 (-1183)))) . T))
+(|has| |#2| (-367))
+((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-569)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+((((-867)) . T))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+((((-867)) . T))
+((((-1126)) . T) (((-867)) . T))
+((((-541)) . T) (((-867)) . T))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))) (((-896 (-382))) |has| |#1| (-619 (-896 (-382)))) (((-896 (-551))) |has| |#1| (-619 (-896 (-551)))))
-((($) . T))
-(((|#1| (-536 (-1183))) . T))
+((($ $) . T) (((-617 $) $) . T))
(((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))) ((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(((|#1| (-536 (-1183))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((($ $) . T) ((#1=(-1183) $) . T) ((#1# |#1|) . T))
-((((-1183)) . T))
-((((-382)) |has| |#1| (-892 (-382))) (((-551)) |has| |#1| (-892 (-551))))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T) (((-1183)) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) ((|#1|) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1183)) . T))
-(((|#1| (-536 (-1183)) (-1183)) . T))
-((((-1126)) . T) (((-868)) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-868)) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (($) . T))
-((($) |has| |#1| (-562)) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-551)) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1| |#2|) . T))
+((((-569)) . T))
+(((|#3|) . T))
+((((-867)) . T))
+(-2718 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-1131 |#1| |#2|)) . T) ((|#2|) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
+((((-1179 |#1|)) . T) (((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+(-2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+((((-1131 |#1| (-1183))) . T) (((-569)) . T) (((-1094 (-1183))) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-1183)) . T))
+(((#0=(-586 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#1|) |has| |#1| (-173)))
+(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((($) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
(((|#1|) . T))
+((($) . T) (((-412 (-569))) . T))
+(((|#2|) |has| |#2| (-6 (-4445 "*"))))
(((|#1|) . T))
-(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-(-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855))))
-(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-((((-551)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-(-12 (|has| |#1| (-478)) (|has| |#2| (-478)))
-(-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
-(-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
-(-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
-(-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
-(-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
-((((-868)) . T))
-((((-868)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-646 (-551))) . T))
-((((-646 (-551))) . T) (((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-551)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-((((-540)) |has| |#1| (-619 (-540))))
+((((-867)) . T))
+((((-297 |#3|)) . T))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(|has| |#1| (-234))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-293)) (|has| |#1| (-367)))
-((((-551)) . T) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551))))))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-367)))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-367)))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-367)))
-((($) . T) (((-551)) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-367)))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-551))) |has| |#1| (-367)))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-551))) |has| |#1| (-367)))
-(((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-293)) (|has| |#1| (-367))) ((#1=(-412 (-551)) #1#) |has| |#1| (-367)))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-367)))
+((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#2|) . T) ((|#6|) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(|has| |#2| (-915))
+(|has| |#1| (-915))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
(((|#1|) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(((|#1|) |has| |#1| (-312 |#1|)))
-(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
+((((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(|has| |#1| (-855))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
(((|#1|) . T))
+(|has| |#1| (-1106))
(((|#1|) . T))
-((((-412 |#2|) |#3|) . T))
-((((-412 (-551))) |has| #1=(-412 |#2|) (-1044 (-412 (-551)))) (((-551)) |has| #1# (-1044 (-551))) ((#1#) . T))
-((((-412 |#2|)) . T))
-((((-551)) |has| #1=(-412 |#2|) (-644 (-551))) ((#1#) . T))
-((((-412 |#2|)) . T))
-((((-412 |#2|) |#3|) . T))
-(|has| (-412 |#2|) (-147))
-((((-412 |#2|) |#3|) . T))
-(|has| (-412 |#2|) (-145))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-(|has| (-412 |#2|) (-234))
-((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
-((((-412 |#2|)) . T))
-(((|#3|) . T))
-(((#1=(-412 |#2|) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-868)) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T))
-((((-412 |#2|)) . T) (((-412 (-551))) . T) (($) . T) (((-551)) . T))
-(((|#1| |#2| |#3|) . T))
-((((-412 (-551))) . T) (((-868)) . T))
-((((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-((((-551)) . T) (((-412 (-551))) . T) (($) . T))
-(((#1=(-551) #1#) . T) ((#2=(-412 (-551)) #2#) . T) (($ $) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-412 (-551))) . T) (((-551)) . T))
-((((-551)) . T) (($) . T) (((-412 (-551))) . T))
-((((-551)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-551)) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (($) . T) (((-412 (-551))) . T) (((-551)) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) . T) ((#2=(-551) #2#) . T) (($ $) . T))
-(((|#1|) . T) (((-551)) . T) (((-412 (-551))) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) . T))
-(((|#1|) . T) (((-551)) -3978 (|has| |#1| (-1044 (-551))) (|has| (-412 (-551)) (-1044 (-551)))) (((-412 (-551))) . T))
-(|has| |#1| (-1107))
-((((-868)) |has| |#1| (-1107)))
-(|has| |#1| (-1107))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#4|) . T))
-((((-646 |#4|)) . T) (((-868)) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-540)) |has| |#4| (-619 (-540))))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+((((-1183)) . T) ((|#1|) . T))
+((((-867)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((#0=(-412 (-569)) #0#) . T))
+((((-412 (-569))) . T))
+(((|#1|) |has| |#1| (-173)))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
(((|#1|) . T))
(((|#1|) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-551)) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-551)) . T))
-((((-1183) (-51)) . T))
-((((-868)) . T))
-((((-1183) (-51)) . T))
-((((-1183) (-51)) . T))
-((((-1183) (-51)) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4310 (-1183)) (|:| -2264 #1#))) . T))
-(((#1=(-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) #1#) |has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) |has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-1183) (-51)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
-((((-785 |#1| (-869 |#2|))) . T))
-((((-646 (-785 |#1| (-869 |#2|)))) . T) (((-868)) . T))
-((((-785 |#1| (-869 |#2|))) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
-(((#1=(-785 |#1| (-869 |#2|)) #1#) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
-((((-785 |#1| (-869 |#2|))) . T))
-((((-540)) |has| (-785 |#1| (-869 |#2|)) (-619 (-540))))
-(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
-(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
-((((-540)) |has| |#3| (-619 (-540))))
-(((|#3|) |has| |#3| (-367)))
-(((|#3| |#3|) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-((((-694 |#3|)) . T) (((-868)) . T))
-((((-551)) . T) ((|#3|) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T))
-(|has| |#1| (-1107))
-((((-868)) |has| |#1| (-1107)))
-(|has| |#1| (-1107))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-((((-1183)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-551)) . T) (($) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-551)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-551)) . T))
-((((-1183) (-51)) . T))
-((((-868)) . T))
-((((-1183) (-51)) . T))
-((((-1183) (-51)) . T))
-((((-1183) (-51)) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4310 (-1183)) (|:| -2264 #1#))) . T))
-(((#1=(-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) #1#) |has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) |has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) . T))
-((((-1183) (-51)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-296 |#3|)) . T))
-((((-296 |#3|)) . T))
-(((|#3| |#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#3| |#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-541)) . T))
+((((-867)) . T))
+((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((((-1183)) |has| |#2| (-906 (-1183))) (((-1088)) . T))
+((((-867)) . T))
+((((-1258 |#2| |#3| |#4|)) . T))
+((((-916 |#1|)) . T))
+((($) . T) (((-412 (-569))) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+((((-867)) . T))
+(|has| |#1| (-1227))
(((|#2|) . T))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+((((-1183)) |has| |#1| (-906 (-1183))))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+((($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-561))))
+(|has| |#1| (-561))
(((|#1|) |has| |#1| (-367)))
-((((-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))))
-(-3978 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-354)))
-(-3978 (|has| |#1| (-372)) (|has| |#1| (-354)))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(-3978 (|has| |#1| (-145)) (|has| |#1| (-354)))
-(|has| |#1| (-354))
-(((|#1| |#2|) . T))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($ $) . T) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1| |#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-354))) (((-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-354)) (|has| |#1| (-1044 (-412 (-551))))) ((|#1|) . T))
-(|has| |#1| (-147))
-(((|#1| |#2|) . T))
+((((-569)) . T))
+(|has| |#1| (-796))
+((((-1183) #0=(-116 |#1|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
+(|has| |#1| (-796))
+(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+((((-1088)) . T) ((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-569)) . T) (($) . T))
+((((-569) (-776)) . T) ((|#3| (-776)) . T))
+(((|#1|) . T))
(((|#1| |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T))
+(|has| |#2| (-825))
+(|has| |#2| (-825))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
+(((|#1|) . T))
+((((-875 |#1|)) . T))
+((((-875 |#1|)) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-915)))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+(((|#1|) |has| |#1| (-173)))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-173)))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#2|) -2718 (|has| |#2| (-6 (-4445 "*"))) (|has| |#2| (-173))))
+(((|#2|) . T))
+(|has| |#1| (-367))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-869 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2| (-776)) . T))
((((-1183)) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-875 |#1|)) . T))
+(-2718 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-867)) . T))
(((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-234))
+(-2718 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855))))
+((((-875 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((($ $) . T) (((-617 $) $) . T))
((($) . T))
-(((|#1| (-536 (-1094 (-1183))) (-1094 (-1183))) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1094 (-1183))) . T))
-((($ $) . T) ((#1=(-1183) $) |has| |#1| . #2=((-234))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1094 (-1183)) |#1|) . T) ((#3# $) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
+((((-867)) . T))
+((((-569)) . T))
+(((|#2|) . T))
+((((-867)) . T))
+((($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
+((((-867)) . T))
(((|#1|) . T))
-(((|#1| (-536 (-1094 (-1183)))) . T))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
+((((-867)) . T))
+((($) . T) ((|#2|) . T) (((-412 (-569))) . T))
+(|has| |#1| (-1106))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
-(((|#1| (-536 (-1094 (-1183)))) . T))
-((((-1131 |#1| (-1183))) . T) (((-1094 (-1183))) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-1183)) . T))
-((((-1131 |#1| (-1183))) . T) (((-551)) . T) (((-1094 (-1183))) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-1183)) . T))
-(((|#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) . T))
-((((-868)) . T))
(((|#1|) . T))
(((|#1|) . T))
+((((-867)) . T))
+(|has| |#2| (-915))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
+((((-867)) . T))
+((((-867)) . T))
+(((|#3|) |has| |#3| (-1055)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))
+((((-1131 |#1| |#2|)) . T) (((-958 |#1|)) |has| |#2| (-619 (-1183))) (((-867)) . T))
+((((-958 |#1|)) |has| |#2| (-619 (-1183))) (((-1165)) -12 (|has| |#1| (-1044 (-569))) (|has| |#2| (-619 (-1183)))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))
+((((-1179 |#1|)) . T) (((-867)) . T))
+((((-867)) . T))
+((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T) (((-1183)) . T))
+((((-867)) . T))
+((((-569)) . T))
(((|#1|) . T))
-(((|#1| (-646 |#1|)) |has| |#1| (-853)))
-(|has| |#1| (-1107))
-((((-868)) |has| |#1| (-1107)))
-(|has| |#1| (-1107))
+((($) . T))
+((((-383)) |has| |#1| (-892 (-383))) (((-569)) |has| |#1| (-892 (-569))))
+((((-569)) . T))
(((|#1|) . T))
+((((-867)) . T))
(((|#1|) . T))
+((((-867)) . T))
+((((-1188)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
((((-1188)) . T))
-(|has| (-1095 |#1|) (-1107))
-((((-868)) |has| (-1095 |#1|) (-1107)))
-(|has| (-1095 |#1|) (-1107))
+((((-649 |#1|)) . T))
+((($) . T) (((-569)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
+((((-569)) -2718 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) (($) -2718 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
((((-1188)) . T))
+((((-569)) . T) (((-412 (-569))) . T))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-312 |#1|)))
+((((-383)) . T))
+((((-867)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
+((((-867)) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-412 |#2|) |#3|) . T))
(((|#1|) . T))
+(|has| |#1| (-1106))
+(((|#2| (-487 (-2394 |#1|) (-776))) . T))
+((((-569) |#1|) . T))
+((((-1165)) . T) (((-867)) . T))
+(((|#2| |#2|) . T))
+(((|#1| (-536 (-1183))) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-569)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
+(|has| |#1| (-561))
+(((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+((($) . T) (((-412 (-569))) . T))
+((($) . T))
+((($) . T))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+((((-144)) . T))
+(((|#1|) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-(|has| |#1| (-372))
(((|#1|) . T))
+((((-867)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-646 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-551)) . T) (((-226)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-1165) (-1183) (-551) (-226) (-868)) . T))
-((((-646 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-((((-868)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-868)) . T))
-(-3978 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1107)))
-(-3978 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1107)))
-(((|#3|) |has| |#3| (-173)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-3978 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-((($) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-551)) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
-((($) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367))))
-((((-868)) -3978 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-618 (-868))) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1107))) (((-1272 |#3|)) . T))
-(|has| |#3| (-173))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-(((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-(((|#3| |#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
-(((|#3|) |has| |#3| (-1055)))
+(|has| |#1| (-1158))
+(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
+(((|#1|) . T))
+((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-867)) . T))
+((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T) ((|#2|) . T))
+((((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-569) |#1|) . T))
+(((|#1| |#1|) . T))
+((($) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-173)) (($) . T))
+((($) . T))
+((((-704)) . T))
+((((-785 |#1| (-869 |#2|))) . T))
+((((-569)) . T) (($) . T))
+((($) . T))
+(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
+((((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-1106))
+(|has| |#2| (-367))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-38 (-412 (-569))))
+((((-569)) . T))
+((((-1183)) -12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))
((((-1183)) -12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))
-(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
-(|has| |#3| (-372))
+(((|#1|) . T))
+(|has| |#1| (-234))
+(((|#2| (-241 (-2394 |#1|) (-776))) . T))
+(((|#1| (-536 |#3|)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(((|#1|) . T) (($) . T))
+(((|#1| (-536 |#2|)) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(((|#1| (-776)) . T))
+(|has| |#1| (-561))
+(-2718 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+((((-867)) . T))
+((((-569)) . T) (((-412 (-569))) . T) (($) . T))
+(-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+(-2718 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(((|#1|) |has| |#1| (-173)))
+(((|#4|) |has| |#4| (-1055)))
(((|#3|) |has| |#3| (-1055)))
-(((|#3|) |has| |#3| (-1055)) (((-551)) -12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))))
-(((|#3|) |has| |#3| (-1107)))
-((((-551)) -3978 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (|has| |#3| (-1055))) ((|#3|) -3978 (|has| |#3| (-173)) (|has| |#3| (-1107))) (((-412 (-551))) -12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))
-(((|#3|) |has| |#3| (-1107)) (((-551)) -12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (((-412 (-551))) -12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))
-((((-551) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))
-(((|#3|) . T))
-((((-551) |#3|) . T))
-((((-551) |#3|) . T))
-(|has| |#3| (-798))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-3978 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(|has| |#3| (-853))
-(|has| |#3| (-853))
-(((|#3|) |has| |#3| (-367)))
-(((|#1| |#3|) . T))
-((((-868)) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
+((((-569)) . T) (((-412 (-569))) -2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-1131 |#1| |#2|)) . T) (((-569)) . T) ((|#3|) . T) (($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#2|) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((((-1188)) . T))
+((((-677 |#1|)) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+((((-867)) . T))
+((((-649 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
((((-1188)) . T))
-((($) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-((((-551)) . T) (($) . T))
-((((-551)) . T))
-((((-551)) . T))
-((((-540)) . T) (((-551)) . T) (((-896 (-551))) . T) (((-382)) . T) (((-226)) . T))
-((((-551)) . T))
-((((-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#2| (-619 (-540)))) (((-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382))))) (((-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551))))))
-((($) . T))
-(((|#1| (-536 |#2|)) . T))
+((($) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))) ((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(((|#1| (-536 |#2|)) . T))
+(((|#4|) |has| |#4| (-1106)) (((-569)) -12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (((-412 (-569))) -12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))
+(((|#3|) |has| |#3| (-1106)) (((-569)) -12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+(|has| |#2| (-367))
+(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-644 (-551))))
-(-3978 (|has| |#1| (-457)) (|has| |#1| (-916)))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+(|has| |#2| (-367))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+(((|#2| |#2|) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#2|) . T))
-((((-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#2| (-892 (-382)))) (((-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#2| (-892 (-551)))))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) (((-551)) |has| |#1| (-1044 (-551))) ((|#1|) . T) ((|#2|) . T))
-((((-551)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) ((|#1|) . T) (($) -3978 (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#2|) . T))
-(((|#1| (-536 |#2|) |#2|) . T))
+((((-867)) |has| |#1| (-1106)))
((($) . T))
-((($ $) . T) ((|#2| $) . T))
-(((|#2|) . T))
-((((-868)) . T))
-(((|#1| (-536 |#2|) |#2|) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))) ((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-((((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-(((|#1| (-536 |#2|)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| |#2|) . T))
-((((-868)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-825))
+(|has| |#2| (-825))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
+(|has| |#1| (-367))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) |has| |#2| (-422 |#1|)))
+(((|#1|) |has| |#2| (-422 |#1|)))
+((((-1165)) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-649 |#1|)) . T) (((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
((((-1188)) . T))
((((-1188)) . T))
-((((-1188)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-1146 |#1| |#2|)) . T))
-(((#1=(-1146 |#1| |#2|) #1#) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
-((((-1146 |#1| |#2|)) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
-((((-868)) . T))
-((((-1146 |#1| |#2|)) . T))
-((((-540)) |has| |#2| (-619 (-540))))
-(((|#2|) |has| |#2| (-6 (-4445 "*"))))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-694 |#2|)) . T) (((-868)) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) -3978 (|has| |#2| (-6 (-4445 "*"))) (|has| |#2| (-173))))
-(((|#2|) -3978 (|has| |#2| (-6 (-4445 "*"))) (|has| |#2| (-173))))
-(((|#2|) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
-(|has| |#2| (-234))
-(((|#2|) . T))
-(((|#2|) . T) (((-551)) |has| |#2| (-644 (-551))))
-(((|#2|) . T))
-((((-551)) . T) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#2|) . T) (((-551)) |has| |#2| (-1044 (-551))) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))
-(((|#2|) . T))
-(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-540)) |has| |#4| (-619 (-540))))
-(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-868)) . T) (((-646 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1|) . T))
+((((-1188)) . T))
+((((-649 |#1|)) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1222)) . T) (((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) |has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+((((-569) |#1|) . T))
+((((-569) |#1|) . T))
+((((-569) |#1|) . T))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-569) |#1|) . T))
(((|#1|) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((((-1183)) |has| |#1| (-906 (-1183))) (((-823 (-1183))) . T))
+(-2718 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-824 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
+((((-867)) . T))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
(((|#1| |#2|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+(|has| |#1| (-38 (-412 (-569))))
+((((-867)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
+(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
+(|has| |#1| (-367))
+(-2718 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (-12 (|has| |#1| (-367)) (|has| |#2| (-234))))
+(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
+(|has| |#1| (-367))
+(((|#1|) . T))
+(((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
+((((-569) |#1|) . T))
+((((-319 |#1|)) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((#0=(-704) (-1179 #0#)) . T))
+((((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-569)) . T) (((-412 (-569))) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(|has| |#1| (-853))
+(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2718 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1131 |#1| (-1183))) . T) (((-823 (-1183))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-1183)) . T))
+((($) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
+(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1183) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-1094 (-1183)) |#1|) . T) ((#1# $) . T))
+((($) . T) ((|#2|) . T))
+((($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+(|has| |#2| (-915))
+((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+(((|#1|) |has| |#1| (-173)))
+((((-569) |#1|) . T))
+(((|#1|) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-646 |#1|)) . T))
+(((#0=(-1259 |#1| |#2| |#3| |#4|)) |has| #0# (-312 #0#)))
+((($) . T))
(((|#1|) . T))
+((($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2| |#2|) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(|has| |#2| (-234))
+(|has| $ (-147))
+((((-867)) . T))
+((($) . T) (((-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-867)) . T))
+(|has| |#1| (-853))
+((((-129)) . T))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T) (((-569)) . T))
(((|#1|) . T))
+((((-129)) . T))
+((((-412 |#2|) |#3|) . T))
+((((-867)) . T))
+(-12 (|has| |#1| (-310)) (|has| |#1| (-915)))
+(((|#2| (-677 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) |has| |#1| (-1106)))
+(((|#4|) . T))
+(|has| |#1| (-561))
+((($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
+((((-1183)) -2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))
+(((|#1|) . T) (($) -2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-569) |#1|) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
(((|#1|) . T))
+(((|#1| (-536 (-823 (-1183)))) . T))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-569)) . T) ((|#2|) . T) (($) . T) (((-412 (-569))) . T) (((-1183)) |has| |#2| (-1044 (-1183))))
(((|#1|) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((($) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(|has| |#1| (-561))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-551) (-144)) . T))
-((((-551) (-144)) . T))
-((((-551) (-144)) . T))
-((((-144)) . T))
-((((-144)) . T))
-((((-1165) |#1|) . T))
-((((-868)) . T))
-((((-1165) |#1|) . T))
-((((-1165) |#1|) . T))
-((((-1165) |#1|) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((#1=(-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) #1#) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) |has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) . T))
-((((-1165) |#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
+(((|#1|) . T))
+((((-412 |#2|)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T))
+(((|#2|) . T) (((-412 (-569))) . T) (($) . T))
+((((-569)) . T))
+((((-867)) . T))
+((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-867)) . T))
+((((-412 (-569))) . T) (($) . T))
+((((-569) |#1|) . T))
+((($) . T))
+((($) . T))
+((((-867)) . T))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
+((((-867)) . T))
+((((-867)) . T))
+((((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1|) . T) (((-867)) . T) (((-1188)) . T))
+((((-867)) . T))
+((((-1188)) . T))
+((((-114)) . T) ((|#1|) . T) (((-569)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
+((((-129)) . T))
+((($) . T) (((-569)) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T))
+(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
+((((-867)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((|#2|) . T) ((|#6|) . T))
+((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
+((($) . T) (((-569)) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-1110)) . T))
+((((-867)) . T))
+((((-1188)) . T) (((-867)) . T))
+((((-1188)) . T) (((-867)) . T))
+((($) -2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1181 |#1| |#2| |#3|)) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(|has| |#1| (-367))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1181 |#1| |#2| |#3|)) -12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|)))))
-(((#1=(-1181 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|)))) (((-1183) #1#) -12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|)))))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
+((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((($) . T))
+((($) -2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($ $) . T) (((-1183) $) . T))
+((((-1265 |#1| |#2| |#3|)) . T))
+(|has| |#2| (-915))
+((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
(|has| |#1| (-367))
-(-3978 (-12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))
-((((-1183)) -3978 (-12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183)))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(-3978 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-147))))
-(-3978 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-145))))
-((((-868)) . T))
-(((|#1|) . T))
-((((-1181 |#1| |#2| |#3|) $) -12 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)))) (($ $) . T))
-(((|#1| (-551) (-1088)) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((#2=(-1181 |#1| |#2| |#3|) #2#) |has| |#1| (-367)) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-551)) . T) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((((-1181 |#1| |#2| |#3|)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-551)) . T) ((|#1|) |has| |#1| (-173)))
-(((|#1| (-551)) . T))
-(((|#1| (-551)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-1181 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-412 $) (-412 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
+((((-1265 |#1| |#2| |#3|)) . T) (((-1237 |#1| |#2| |#3|)) . T))
+((((-1183)) . T) (((-867)) . T))
+(|has| |#1| (-915))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| |#1|) |has| |#1| (-173)))
+((((-704)) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-1188)) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-1188)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
+((((-1188)) . T))
+((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561)))
+((((-412 (-569))) . T) (($) . T))
+(((|#1| (-569)) . T))
+(((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1188)) . T))
+((((-1188)) . T))
(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916)))
(|has| |#1| (-367))
-(((|#1| (-776) (-1088)) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
-((((-551)) |has| |#1| (-644 (-551))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-776)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1088)) . T) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-((((-1088)) . T) ((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
+(-2718 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(((|#1| (-569)) . T))
+(((|#1| (-412 (-569))) . T))
(((|#1| (-776)) . T))
-(((#1=(-1088) |#1|) . T) ((#1# $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1157))
+((((-412 (-569))) . T))
+(((|#1| (-536 |#2|) |#2|) . T))
+((((-569) |#1|) . T))
+((((-569) |#1|) . T))
+(|has| |#1| (-1106))
+((((-569) |#1|) . T))
(((|#1|) . T))
-((((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))
-((($ $) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))))
-(((|#1| (-412 (-551)) (-1088)) . T))
+((((-898 (-383))) . T) (((-898 (-569))) . T) (((-1183)) . T) (((-541)) . T))
+(((|#1|) . T))
+((((-867)) . T))
+(-2718 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+((((-569)) . T))
+((((-569)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1|) . T))
+(-2718 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
+(-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(((|#1| (-412 (-551))) . T))
-(((|#1| (-412 (-551))) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-((((-868)) . T))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-((((-1269 |#2|)) . T) (((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1| (-1174 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-776)) . T))
-(((|#1| (-776)) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1| (-776) (-1088)) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|)))))
-((($ $) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (($) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T))
-(|has| |#1| (-15 * (|#1| (-776) |#1|)))
-(((|#1|) . T))
-((((-868)) . T))
-((((-382)) . T) (((-551)) . T))
-((((-1165)) . T))
-((((-896 (-382))) . T) (((-896 (-551))) . T) (((-1183)) . T) (((-540)) . T))
-((((-868)) . T))
-(((|#1| (-977)) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((((-868)) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (($) . T))
-((($) |has| |#1| (-562)) ((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))) (((-551)) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-551)) |has| |#1| (-1044 (-551))) (((-412 (-551))) |has| |#1| (-1044 (-412 (-551)))))
-(((|#1| (-977)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-551)) . T))
-((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-551)) . T))
-((((-540)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| |#2|) . T))
-((((-868)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
+((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+(|has| |#1| (-234))
+((($) . T) (((-569)) . T) (((-412 (-569))) . T))
+((($) . T) (((-569)) . T))
+((($) . T) (((-569)) . T))
+((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((((-867)) . T))
+(((|#1| (-776) (-1088)) . T))
+((((-569) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-569) |#1|) . T))
+((((-569) |#1|) . T))
+((((-116 |#1|)) . T))
+((((-412 (-569))) . T) (((-569)) . T))
+(((|#2|) |has| |#2| (-1055)))
+((((-412 (-569))) . T) (($) . T))
+(((|#2|) . T))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
+((((-569)) . T))
+((((-569)) . T))
+((((-1165) (-1183) (-569) (-226) (-867)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((#1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #1#) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
-((((-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T))
+((((-569)) . T) ((|#2|) |has| |#2| (-173)))
+((((-114)) . T) ((|#1|) . T) (((-569)) . T))
+(-2718 (|has| |#1| (-353)) (|has| |#1| (-372)))
(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-393) (-1165)) . T))
+((((-226)) . T))
+((((-412 (-569))) . T) (($) . T) (((-569)) . T))
+((((-867)) . T))
+((($) . T) ((|#1|) . T))
+((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-541)) |has| |#1| (-619 (-541))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((($) . T) (((-412 (-569))) . T))
+(|has| |#1| (-915))
+(|has| |#1| (-915))
+((((-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) (((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) (((-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) (((-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))))
+((((-867)) . T))
+((((-867)) . T))
+(((|#2| |#2|) . T))
+(((|#1| |#1|) |has| |#1| (-173)))
+(((|#1|) . T) (((-569)) . T))
+((((-1188)) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(((|#2|) . T))
+(-2718 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))))
(((|#1|) . T))
+((((-867)) -2718 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))))
+((((-412 |#2|) |#3|) . T))
+((((-412 (-569))) . T) (($) . T))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-367))
+((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
+((($) . T) (((-569)) . T))
+(|has| (-412 |#2|) (-147))
+(|has| (-412 |#2|) (-145))
((($) . T))
-((($ $) . T) (((-1183) $) . T))
-((((-1183)) . T))
-((((-868)) . T))
-(((|#1| (-536 #1=(-1183)) #1#) . T))
-((($) . T) (((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-((($) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))) ((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-((((-551)) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-((((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-562)))
-(((|#1| (-536 (-1183))) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-1183)) . T))
-(|has| |#1| (-1107))
-(|has| |#1| (-1107))
-((((-964 |#1|)) . T))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-1107))) (((-964 |#1|)) . T))
-((((-964 |#1|)) . T))
-((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
+((((-704)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((#0=(-569) #0#) . T))
+((($) . T) (((-412 (-569))) . T))
+(-2718 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
+(-2718 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+((((-867)) . T) (((-1188)) . T))
+(|has| |#4| (-798))
+(-2718 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(|has| |#4| (-853))
+(|has| |#3| (-798))
((((-1188)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1262 |#1| |#2| |#3|)) . T))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(|has| |#1| (-367))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1262 |#1| |#2| |#3|)) -12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|)))))
-(((#1=(-1262 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|)))) (((-1183) #1#) -12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-519 (-1183) (-1262 |#1| |#2| |#3|)))))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (-12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))
-((((-1183)) -3978 (-12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183)))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))
-((((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(-3978 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-147))))
-(-3978 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-145))))
-((((-868)) . T))
-(((|#1|) . T))
-((((-1262 |#1| |#2| |#3|) $) -12 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-289 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)))) (($ $) . T))
-(((|#1| (-551) (-1088)) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((#2=(-1262 |#1| |#2| |#3|) #2#) |has| |#1| (-367)) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-551)) . T) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-1262 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((((-1262 |#1| |#2| |#3|)) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-551)) . T) ((|#1|) |has| |#1| (-173)))
-(((|#1| (-551)) . T))
-(((|#1| (-551)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-1262 |#1| |#2| |#3|)) . T))
-(((|#2|) |has| |#1| (-367)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-1157)))
-(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551)))) (((-412 (-551))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551)))))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-1026)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-916)))
-(((|#2|) |has| |#1| (-367)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-825))) (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-((((-382)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-382)))) (((-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-551)))))
-(|has| |#1| (-367))
-(((|#2|) |has| |#1| (-367)))
-((((-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-551)))) ((|#2|) |has| |#1| (-367)))
-(((|#2|) |has| |#1| (-367)))
-(((|#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))))
-(((|#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) (((-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))))
-(((|#2|) |has| |#1| (-367)))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))
-((((-1183)) -3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))
-(((|#2|) |has| |#1| (-367)))
-((((-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1026))) (((-382)) -12 (|has| |#1| (-367)) (|has| |#2| (-1026))) (((-896 (-382))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-382))))) (((-896 (-551))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-551))))) (((-540)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-540)))))
-(-3978 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| |#2| (-147))))
-(-3978 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145))))
-((((-868)) . T))
+(-2718 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(|has| |#3| (-853))
+((((-569)) . T))
+(((|#2|) . T))
+((((-1183)) -2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) (($ $) . T))
-(((|#1| (-551) (-1088)) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#2| |#2|) |has| |#1| (-367)) ((|#1| |#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (((-551)) . T) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-((((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))) (((-551)) . T) ((|#1|) |has| |#1| (-173)))
-(((|#1| (-551)) . T))
-(((|#1| (-551)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| |#2|) . T))
-(((|#1| (-1160 |#1|)) |has| |#1| (-853)))
-(|has| |#1| (-1107))
-((((-868)) |has| |#1| (-1107)))
-(|has| |#1| (-1107))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((((-412 $) (-412 $)) |has| |#2| (-562)) (($ $) . T) ((|#2| |#2|) . T))
-(|has| |#2| (-367))
-(-3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(|has| |#2| (-367))
-(((|#2| (-776) (-1088)) . T))
-(|has| |#2| (-916))
-(|has| |#2| (-916))
-((((-1183)) |has| |#2| (-906 (-1183))) (((-1088)) . T))
-((((-551)) |has| |#2| (-644 (-551))) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2| (-776)) . T))
-(|has| |#2| (-147))
-(|has| |#2| (-145))
-((((-1269 |#1|)) . T) (((-551)) . T) (($) -3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-1088)) . T) ((|#2|) . T) (((-412 (-551))) -3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))))
-((($) -3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-173)) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-173)) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((($) . T) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((((-551)) . T) (($) . T) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2| |#2|) . T) ((#1=(-412 (-551)) #1#) |has| |#2| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-173)) (((-412 (-551))) |has| |#2| (-38 (-412 (-551)))))
-(((|#2|) . T))
-((((-1088)) . T) ((|#2|) . T) (((-551)) |has| |#2| (-1044 (-551))) (((-412 (-551))) |has| |#2| (-1044 (-412 (-551)))))
-(((|#2| (-776)) . T))
-(((#1=(-1088) |#2|) . T) ((#1# $) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T))
+((((-869 |#1|)) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1146 |#1| |#2|)) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
((($) . T))
-(|has| |#2| (-1157))
-(((|#2|) . T))
-((((-1262 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-1028))
+(((|#2|) . T) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+((((-867)) . T))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#2| (-1028))) (((-226)) . #0#))
+((((-297 |#3|)) . T))
+((((-1183) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))
+(|has| |#1| (-38 (-412 (-569))))
+(|has| |#1| (-38 (-412 (-569))))
+((((-867)) . T))
+(((|#2|) . T))
+((((-867)) . T))
((($ $) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))))
-(((|#1| (-412 (-551)) (-1088)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(((|#1| (-412 (-551))) . T))
-(((|#1| (-412 (-551))) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-((((-868)) . T))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-((((-1269 |#2|)) . T) (((-1262 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1| (-1232 |#1| |#2| |#3|)) . T))
+((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-412 (-569))) . T) (((-704)) . T) (($) . T))
+((((-1181 |#1| |#2| |#3|)) . T))
+((((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T))
+((((-867)) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-569) |#1|) . T))
+((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T))
(((|#2|) . T))
+(|has| |#2| (-367))
+(((|#3|) . T) ((|#2|) . T) (($) -2718 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) ((|#4|) -2718 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
+(((|#2|) . T) (($) -2718 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2718 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))
-((($ $) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))))
-(((|#1| (-412 (-551)) (-1088)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(((|#1| (-412 (-551))) . T))
-(((|#1| (-412 (-551))) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-367))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-((((-868)) . T))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (($) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1| |#1|) . T) (($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562))) ((#1=(-412 (-551)) #1#) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) -3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-367))) (((-551)) . T) (($) -3978 (|has| |#1| (-367)) (|has| |#1| (-562))))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-562)))
-(-3978 (|has| |#1| (-367)) (|has| |#1| (-562)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1| |#2|) . T))
-((((-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
-(|has| (-1253 |#2| |#3| |#4|) (-147))
-(|has| (-1253 |#2| |#3| |#4|) (-145))
-((($) . T) ((#1=(-1253 |#2| |#3| |#4|)) |has| #1# (-173)) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))))
-((($) . T) ((#1=(-1253 |#2| |#3| |#4|)) |has| #1# (-173)) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))))
-((((-868)) . T))
-((($) . T) ((#1=(-1253 |#2| |#3| |#4|)) . T) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))))
-((($) . T) ((#1=(-1253 |#2| |#3| |#4|)) . T) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))))
-((($ $) . T) ((#1=(-1253 |#2| |#3| |#4|) #1#) . T) ((#2=(-412 (-551)) #2#) |has| #1# (-38 (-412 (-551)))))
-(((#1=(-1253 |#2| |#3| |#4|)) . T) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((#1=(-1253 |#2| |#3| |#4|)) . T) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))) (($) . T))
-((($) . T) (((-1253 |#2| |#3| |#4|)) . T) (((-412 (-551))) |has| (-1253 |#2| |#3| |#4|) (-38 (-412 (-551)))) (((-551)) . T))
-((($) . T) ((#1=(-1253 |#2| |#3| |#4|)) |has| #1# (-173)) (((-412 (-551))) |has| #1# (-38 (-412 (-551)))))
-((((-1253 |#2| |#3| |#4|)) . T))
-((((-1253 |#2| |#3| |#4|)) . T))
-((((-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(|has| |#1| (-38 (-412 (-551))))
-(((|#1| (-776)) . T))
-(((|#1| (-776)) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(-3978 (|has| |#1| (-173)) (|has| |#1| (-562)))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-((($ $) -3978 (|has| |#1| (-173)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#1=(-412 (-551)) #1#) |has| |#1| (-38 (-412 (-551)))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))))
-(((|#1| (-776) (-1088)) . T))
-((((-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|)))))
-((($ $) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T) (($) . T))
-(((|#1|) . T) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (($) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-173)) (((-412 (-551))) |has| |#1| (-38 (-412 (-551)))) (((-551)) . T))
-(|has| |#1| (-15 * (|#1| (-776) |#1|)))
(((|#1|) . T))
-((((-1183)) . T) (((-868)) . T))
+(|has| |#1| (-367))
+((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-551) |#1|) . T))
-((((-540)) |has| |#1| (-619 (-540))))
+((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-1183)) . T) ((|#1|) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+((((-188)) . T) (((-867)) . T))
+((((-867)) . T))
(((|#1|) . T))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(-3978 (|has| |#1| (-855)) (|has| |#1| (-1107)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))
-((((-868)) -3978 (|has| |#1| (-618 (-868))) (|has| |#1| (-855)) (|has| |#1| (-1107))))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-129)) . T) (((-867)) . T))
+((((-569) |#1|) . T))
+((((-129)) . T))
(((|#1|) . T))
-(|has| |#1| (-855))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
+(((|#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) (($ $) . T))
+((($ $) . T))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((((-867)) . T))
+((((-867)) . T))
+((((-867)) . T))
+(((|#1| (-536 |#2|)) . T))
+((((-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) . T))
+((((-569) (-129)) . T))
+(((|#1| (-569)) . T))
+(((|#1| (-412 (-569))) . T))
+(((|#1| (-776)) . T))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((((-1188)) . T))
-((((-868)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+(-2718 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2718 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) . T))
+(((|#2| (-536 (-869 |#1|))) . T))
+((((-1188)) . T))
+((((-1188)) . T))
+((((-569) |#1|) . T))
+((((-867)) . T) (((-1188)) . T))
((((-1188)) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#4|) . T))
-(((|#1|) |has| |#1| (-173)) ((|#4|) . T) (((-551)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T))
-(((|#4|) . T) (((-868)) . T))
-(((|#1|) |has| |#1| (-173)) (($) . T) (((-551)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-540)) |has| |#4| (-619 (-540))))
-(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))
-(((|#4|) . T))
-((((-868)) . T) (((-646 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-173)))
(((|#2|) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-867)) . T) (((-1188)) . T))
+((((-1188)) . T))
+((((-867)) -2718 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+(((|#1|) . T))
+(((|#2| (-776)) . T))
(((|#1| |#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-551)) . T) ((|#2|) . T))
+((((-1165) |#1|) . T))
+((((-412 |#2|)) . T))
+((((-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T))
+(|has| |#1| (-561))
+(|has| |#1| (-561))
((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-173)))
-((((-824 |#1|)) . T))
-(((|#2|) . T) (((-551)) . T) (((-824 |#1|)) . T))
-(((|#2| (-824 |#1|)) . T))
-(((|#2| (-899 |#1|)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) . T))
-(((|#2|) . T) (($) . T))
-((((-868)) . T))
-(((|#2|) . T) (($) . T) (((-551)) . T))
-((((-899 |#1|)) . T) ((|#2|) . T) (((-551)) . T) (((-824 |#1|)) . T))
-((((-899 |#1|)) . T) (((-824 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-1183) |#1|) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
+((($) . T) (((-412 (-569))) . T))
+((((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-551)) . T))
-(((|#1|) . T) (((-551)) . T) (((-824 (-1183))) . T))
-((((-824 (-1183))) . T))
-((((-1183) |#1|) . T))
-(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
+((((-569)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-289 |#2| |#2|)))
+(((|#1| (-649 |#1|)) |has| |#1| (-853)))
+(-2718 (|has| |#1| (-234)) (|has| |#1| (-353)))
+(-2718 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1269 |#1|)) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+(|has| |#1| (-1106))
+(((|#1|) . T))
+((((-1269 |#1|)) . T) (((-569)) . T) (($) -2718 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-1088)) . T) ((|#2|) . T) (((-412 (-569))) -2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))))
+((((-412 (-569))) . T) (($) . T))
+((((-1005 |#1|)) . T) ((|#1|) . T) (((-569)) -2718 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569)))) (((-412 (-569))) -2718 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1183)) |has| |#1| (-906 (-1183))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)))
+(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((#0=(-1146 |#1| |#2|) #0#) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
(((|#1|) . T))
-(((|#2|) . T) ((|#1|) . T) (((-551)) . T))
-(((|#1|) . T) (($) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-551)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) |has| |#2| (-173)))
-(((|#2|) . T))
-(((|#2|) . T) (($) . T))
-((((-868)) . T))
-(((|#2|) . T) (($) . T) (((-551)) . T))
-(((|#2|) . T) (((-551)) . T) (((-824 |#1|)) . T))
-((((-824 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-551)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) #0#) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))))
+(((#0=(-116 |#1|)) |has| #0# (-312 #0#)))
((($ $) . T))
-((($) . T))
-((($) . T))
-((((-868)) . T))
-((((-551)) . T) (($) . T))
-((($) . T))
-((((-551)) . T))
-(((-1301 . -173) T) ((-1301 . -621) 188563) ((-1301 . -731) T) ((-1301 . -1118) T) ((-1301 . -1063) T) ((-1301 . -1055) T) ((-1301 . -653) 188550) ((-1301 . -651) 188522) ((-1301 . -131) T) ((-1301 . -25) T) ((-1301 . -102) T) ((-1301 . -618) 188504) ((-1301 . -1107) T) ((-1301 . -23) T) ((-1301 . -21) T) ((-1301 . -1062) 188491) ((-1301 . -1057) 188478) ((-1301 . -111) 188463) ((-1301 . -372) T) ((-1301 . -619) 188445) ((-1301 . -1157) T) ((-1297 . -1295) 188424) ((-1297 . -1044) 188401) ((-1297 . -621) 188350) ((-1297 . -1055) T) ((-1297 . -1063) T) ((-1297 . -1118) T) ((-1297 . -731) T) ((-1297 . -21) T) ((-1297 . -651) 188309) ((-1297 . -23) T) ((-1297 . -1107) T) ((-1297 . -618) 188291) ((-1297 . -102) T) ((-1297 . -25) T) ((-1297 . -131) T) ((-1297 . -653) 188265) ((-1297 . -1287) 188249) ((-1297 . -722) 188219) ((-1297 . -645) 188189) ((-1297 . -1062) 188173) ((-1297 . -1057) 188157) ((-1297 . -111) 188136) ((-1297 . -38) 188106) ((-1297 . -1292) 188085) ((-1296 . -1055) T) ((-1296 . -1063) T) ((-1296 . -1118) T) ((-1296 . -731) T) ((-1296 . -21) T) ((-1296 . -651) 188044) ((-1296 . -23) T) ((-1296 . -1107) T) ((-1296 . -618) 188026) ((-1296 . -102) T) ((-1296 . -25) T) ((-1296 . -131) T) ((-1296 . -653) 188000) ((-1296 . -621) 187956) ((-1296 . -1287) 187940) ((-1296 . -722) 187910) ((-1296 . -645) 187880) ((-1296 . -1062) 187864) ((-1296 . -1057) 187848) ((-1296 . -111) 187827) ((-1296 . -38) 187797) ((-1296 . -388) 187776) ((-1296 . -1044) 187760) ((-1294 . -1295) 187736) ((-1294 . -1044) 187710) ((-1294 . -621) 187656) ((-1294 . -1055) T) ((-1294 . -1063) T) ((-1294 . -1118) T) ((-1294 . -731) T) ((-1294 . -21) T) ((-1294 . -651) 187615) ((-1294 . -23) T) ((-1294 . -1107) T) ((-1294 . -618) 187597) ((-1294 . -102) T) ((-1294 . -25) T) ((-1294 . -131) T) ((-1294 . -653) 187571) ((-1294 . -1287) 187555) ((-1294 . -722) 187525) ((-1294 . -645) 187495) ((-1294 . -1062) 187479) ((-1294 . -1057) 187463) ((-1294 . -111) 187442) ((-1294 . -38) 187412) ((-1294 . -1292) 187388) ((-1293 . -1295) 187367) ((-1293 . -1044) 187324) ((-1293 . -621) 187253) ((-1293 . -1055) T) ((-1293 . -1063) T) ((-1293 . -1118) T) ((-1293 . -731) T) ((-1293 . -21) T) ((-1293 . -651) 187212) ((-1293 . -23) T) ((-1293 . -1107) T) ((-1293 . -618) 187194) ((-1293 . -102) T) ((-1293 . -25) T) ((-1293 . -131) T) ((-1293 . -653) 187168) ((-1293 . -1287) 187152) ((-1293 . -722) 187122) ((-1293 . -645) 187092) ((-1293 . -1062) 187076) ((-1293 . -1057) 187060) ((-1293 . -111) 187039) ((-1293 . -38) 187009) ((-1293 . -1292) 186988) ((-1293 . -388) 186960) ((-1288 . -388) 186932) ((-1288 . -621) 186881) ((-1288 . -1044) 186858) ((-1288 . -645) 186828) ((-1288 . -722) 186798) ((-1288 . -653) 186772) ((-1288 . -651) 186731) ((-1288 . -131) T) ((-1288 . -25) T) ((-1288 . -102) T) ((-1288 . -618) 186713) ((-1288 . -1107) T) ((-1288 . -23) T) ((-1288 . -21) T) ((-1288 . -1062) 186697) ((-1288 . -1057) 186681) ((-1288 . -111) 186660) ((-1288 . -1295) 186639) ((-1288 . -1055) T) ((-1288 . -1063) T) ((-1288 . -1118) T) ((-1288 . -731) T) ((-1288 . -1287) 186623) ((-1288 . -38) 186593) ((-1288 . -1292) 186572) ((-1286 . -1217) 186541) ((-1286 . -618) 186503) ((-1286 . -151) 186487) ((-1286 . -34) T) ((-1286 . -1222) T) ((-1286 . -312) 186425) ((-1286 . -519) 186358) ((-1286 . -1107) T) ((-1286 . -102) T) ((-1286 . -494) 186342) ((-1286 . -619) 186303) ((-1286 . -982) 186272) ((-1285 . -1055) T) ((-1285 . -1063) T) ((-1285 . -1118) T) ((-1285 . -731) T) ((-1285 . -21) T) ((-1285 . -651) 186217) ((-1285 . -23) T) ((-1285 . -1107) T) ((-1285 . -618) 186186) ((-1285 . -102) T) ((-1285 . -25) T) ((-1285 . -131) T) ((-1285 . -653) 186146) ((-1285 . -621) 186088) ((-1285 . -495) 186072) ((-1285 . -38) 186042) ((-1285 . -111) 186007) ((-1285 . -1057) 185977) ((-1285 . -1062) 185947) ((-1285 . -645) 185917) ((-1285 . -722) 185887) ((-1284 . -1089) T) ((-1284 . -495) 185868) ((-1284 . -618) 185834) ((-1284 . -621) 185815) ((-1284 . -1107) T) ((-1284 . -102) T) ((-1284 . -93) T) ((-1283 . -1089) T) ((-1283 . -495) 185796) ((-1283 . -618) 185762) ((-1283 . -621) 185743) ((-1283 . -1107) T) ((-1283 . -102) T) ((-1283 . -93) T) ((-1278 . -618) 185725) ((-1276 . -1107) T) ((-1276 . -618) 185707) ((-1276 . -102) T) ((-1275 . -1107) T) ((-1275 . -618) 185689) ((-1275 . -102) T) ((-1272 . -1271) 185673) ((-1272 . -376) 185657) ((-1272 . -855) 185636) ((-1272 . -151) 185620) ((-1272 . -34) T) ((-1272 . -1222) T) ((-1272 . -618) 185532) ((-1272 . -312) 185470) ((-1272 . -519) 185403) ((-1272 . -1107) 185353) ((-1272 . -102) 185303) ((-1272 . -494) 185287) ((-1272 . -619) 185248) ((-1272 . -609) 185225) ((-1272 . -289) 185202) ((-1272 . -291) 185179) ((-1272 . -656) 185163) ((-1272 . -19) 185147) ((-1269 . -1107) T) ((-1269 . -618) 185113) ((-1269 . -102) T) ((-1262 . -1265) 185097) ((-1262 . -234) 185056) ((-1262 . -621) 184938) ((-1262 . -653) 184863) ((-1262 . -651) 184773) ((-1262 . -131) T) ((-1262 . -25) T) ((-1262 . -102) T) ((-1262 . -618) 184755) ((-1262 . -1107) T) ((-1262 . -23) T) ((-1262 . -21) T) ((-1262 . -731) T) ((-1262 . -1118) T) ((-1262 . -1063) T) ((-1262 . -1055) T) ((-1262 . -289) 184740) ((-1262 . -906) 184653) ((-1262 . -979) 184622) ((-1262 . -38) 184519) ((-1262 . -111) 184388) ((-1262 . -1057) 184271) ((-1262 . -1062) 184154) ((-1262 . -645) 184051) ((-1262 . -722) 183948) ((-1262 . -145) 183927) ((-1262 . -147) 183906) ((-1262 . -173) 183857) ((-1262 . -562) 183836) ((-1262 . -293) 183815) ((-1262 . -47) 183792) ((-1262 . -1251) 183769) ((-1262 . -35) 183735) ((-1262 . -95) 183701) ((-1262 . -287) 183667) ((-1262 . -498) 183633) ((-1262 . -1211) 183599) ((-1262 . -1208) 183565) ((-1262 . -1008) 183531) ((-1259 . -329) 183475) ((-1259 . -1044) 183441) ((-1259 . -417) 183407) ((-1259 . -38) 183299) ((-1259 . -621) 183173) ((-1259 . -653) 183078) ((-1259 . -651) 182968) ((-1259 . -731) T) ((-1259 . -1118) T) ((-1259 . -1063) T) ((-1259 . -1055) T) ((-1259 . -111) 182860) ((-1259 . -1057) 182765) ((-1259 . -1062) 182670) ((-1259 . -21) T) ((-1259 . -23) T) ((-1259 . -1107) T) ((-1259 . -618) 182652) ((-1259 . -102) T) ((-1259 . -25) T) ((-1259 . -131) T) ((-1259 . -645) 182544) ((-1259 . -722) 182436) ((-1259 . -145) 182397) ((-1259 . -147) 182358) ((-1259 . -173) T) ((-1259 . -562) T) ((-1259 . -293) T) ((-1259 . -47) 182302) ((-1258 . -1257) 182281) ((-1258 . -367) 182260) ((-1258 . -1227) 182239) ((-1258 . -927) 182218) ((-1258 . -562) 182169) ((-1258 . -173) 182100) ((-1258 . -621) 181913) ((-1258 . -722) 181754) ((-1258 . -645) 181595) ((-1258 . -38) 181436) ((-1258 . -457) 181415) ((-1258 . -310) 181394) ((-1258 . -653) 181291) ((-1258 . -651) 181173) ((-1258 . -731) T) ((-1258 . -1118) T) ((-1258 . -1063) T) ((-1258 . -1055) T) ((-1258 . -111) 180994) ((-1258 . -1057) 180829) ((-1258 . -1062) 180664) ((-1258 . -21) T) ((-1258 . -23) T) ((-1258 . -1107) T) ((-1258 . -618) 180646) ((-1258 . -102) T) ((-1258 . -25) T) ((-1258 . -131) T) ((-1258 . -293) 180597) ((-1258 . -244) 180576) ((-1258 . -1008) 180542) ((-1258 . -1208) 180508) ((-1258 . -1211) 180474) ((-1258 . -498) 180440) ((-1258 . -287) 180406) ((-1258 . -95) 180372) ((-1258 . -35) 180338) ((-1258 . -1251) 180308) ((-1258 . -47) 180278) ((-1258 . -147) 180257) ((-1258 . -145) 180236) ((-1258 . -979) 180198) ((-1258 . -906) 180104) ((-1258 . -289) 180089) ((-1258 . -234) 180041) ((-1258 . -1255) 180025) ((-1258 . -1044) 180009) ((-1253 . -1257) 179970) ((-1253 . -367) 179949) ((-1253 . -1227) 179928) ((-1253 . -927) 179907) ((-1253 . -562) 179858) ((-1253 . -173) 179789) ((-1253 . -621) 179532) ((-1253 . -722) 179373) ((-1253 . -645) 179214) ((-1253 . -38) 179055) ((-1253 . -457) 179034) ((-1253 . -310) 179013) ((-1253 . -653) 178910) ((-1253 . -651) 178792) ((-1253 . -731) T) ((-1253 . -1118) T) ((-1253 . -1063) T) ((-1253 . -1055) T) ((-1253 . -111) 178613) ((-1253 . -1057) 178448) ((-1253 . -1062) 178283) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1107) T) ((-1253 . -618) 178265) ((-1253 . -102) T) ((-1253 . -25) T) ((-1253 . -131) T) ((-1253 . -293) 178216) ((-1253 . -244) 178195) ((-1253 . -1008) 178161) ((-1253 . -1208) 178127) ((-1253 . -1211) 178093) ((-1253 . -498) 178059) ((-1253 . -287) 178025) ((-1253 . -95) 177991) ((-1253 . -35) 177957) ((-1253 . -1251) 177927) ((-1253 . -47) 177897) ((-1253 . -147) 177876) ((-1253 . -145) 177855) ((-1253 . -979) 177817) ((-1253 . -906) 177723) ((-1253 . -289) 177708) ((-1253 . -234) 177660) ((-1253 . -1255) 177644) ((-1253 . -1044) 177579) ((-1241 . -1248) 177563) ((-1241 . -1157) 177541) ((-1241 . -619) NIL) ((-1241 . -312) 177528) ((-1241 . -519) 177475) ((-1241 . -329) 177452) ((-1241 . -1044) 177332) ((-1241 . -417) 177316) ((-1241 . -38) 177145) ((-1241 . -111) 176954) ((-1241 . -1057) 176777) ((-1241 . -1062) 176600) ((-1241 . -651) 176510) ((-1241 . -653) 176435) ((-1241 . -645) 176264) ((-1241 . -722) 176093) ((-1241 . -621) 175841) ((-1241 . -145) 175820) ((-1241 . -147) 175799) ((-1241 . -47) 175776) ((-1241 . -381) 175760) ((-1241 . -644) 175708) ((-1241 . -906) 175651) ((-1241 . -892) NIL) ((-1241 . -916) 175630) ((-1241 . -1227) 175609) ((-1241 . -956) 175578) ((-1241 . -927) 175557) ((-1241 . -562) 175468) ((-1241 . -293) 175379) ((-1241 . -173) 175270) ((-1241 . -457) 175201) ((-1241 . -310) 175180) ((-1241 . -289) 175107) ((-1241 . -234) T) ((-1241 . -131) T) ((-1241 . -25) T) ((-1241 . -102) T) ((-1241 . -618) 175089) ((-1241 . -1107) T) ((-1241 . -23) T) ((-1241 . -21) T) ((-1241 . -731) T) ((-1241 . -1118) T) ((-1241 . -1063) T) ((-1241 . -1055) T) ((-1241 . -232) 175073) ((-1239 . -1100) 175057) ((-1239 . -623) 175041) ((-1239 . -1107) 175019) ((-1239 . -618) 174986) ((-1239 . -102) 174964) ((-1239 . -1101) 174921) ((-1237 . -1236) 174900) ((-1237 . -1008) 174866) ((-1237 . -1208) 174832) ((-1237 . -1211) 174798) ((-1237 . -498) 174764) ((-1237 . -287) 174730) ((-1237 . -95) 174696) ((-1237 . -35) 174662) ((-1237 . -1251) 174639) ((-1237 . -47) 174616) ((-1237 . -621) 174364) ((-1237 . -722) 174178) ((-1237 . -645) 173992) ((-1237 . -653) 173862) ((-1237 . -651) 173717) ((-1237 . -1062) 173525) ((-1237 . -1057) 173333) ((-1237 . -111) 173122) ((-1237 . -38) 172936) ((-1237 . -979) 172905) ((-1237 . -289) 172825) ((-1237 . -1234) 172809) ((-1237 . -731) T) ((-1237 . -1118) T) ((-1237 . -1063) T) ((-1237 . -1055) T) ((-1237 . -21) T) ((-1237 . -23) T) ((-1237 . -1107) T) ((-1237 . -618) 172791) ((-1237 . -102) T) ((-1237 . -25) T) ((-1237 . -131) T) ((-1237 . -145) 172716) ((-1237 . -147) 172641) ((-1237 . -619) 172312) ((-1237 . -232) 172282) ((-1237 . -906) 172133) ((-1237 . -234) 172038) ((-1237 . -367) 172017) ((-1237 . -1227) 171996) ((-1237 . -927) 171975) ((-1237 . -562) 171926) ((-1237 . -173) 171857) ((-1237 . -457) 171836) ((-1237 . -310) 171815) ((-1237 . -293) 171766) ((-1237 . -244) 171745) ((-1237 . -342) 171715) ((-1237 . -519) 171575) ((-1237 . -312) 171514) ((-1237 . -381) 171484) ((-1237 . -644) 171392) ((-1237 . -405) 171362) ((-1237 . -1222) 171341) ((-1237 . -892) 171214) ((-1237 . -825) 171167) ((-1237 . -796) 171120) ((-1237 . -797) 171073) ((-1237 . -855) 170972) ((-1237 . -799) 170925) ((-1237 . -802) 170878) ((-1237 . -853) 170831) ((-1237 . -890) 170801) ((-1237 . -916) 170754) ((-1237 . -1026) 170706) ((-1237 . -1044) 170492) ((-1237 . -1157) 170444) ((-1237 . -997) 170414) ((-1232 . -1236) 170375) ((-1232 . -1008) 170341) ((-1232 . -1208) 170307) ((-1232 . -1211) 170273) ((-1232 . -498) 170239) ((-1232 . -287) 170205) ((-1232 . -95) 170171) ((-1232 . -35) 170137) ((-1232 . -1251) 170114) ((-1232 . -47) 170091) ((-1232 . -621) 169886) ((-1232 . -722) 169682) ((-1232 . -645) 169478) ((-1232 . -653) 169330) ((-1232 . -651) 169167) ((-1232 . -1062) 168957) ((-1232 . -1057) 168747) ((-1232 . -111) 168516) ((-1232 . -38) 168312) ((-1232 . -979) 168281) ((-1232 . -289) 168129) ((-1232 . -1234) 168113) ((-1232 . -731) T) ((-1232 . -1118) T) ((-1232 . -1063) T) ((-1232 . -1055) T) ((-1232 . -21) T) ((-1232 . -23) T) ((-1232 . -1107) T) ((-1232 . -618) 168095) ((-1232 . -102) T) ((-1232 . -25) T) ((-1232 . -131) T) ((-1232 . -145) 168002) ((-1232 . -147) 167909) ((-1232 . -619) NIL) ((-1232 . -232) 167861) ((-1232 . -906) 167694) ((-1232 . -234) 167581) ((-1232 . -367) 167560) ((-1232 . -1227) 167539) ((-1232 . -927) 167518) ((-1232 . -562) 167469) ((-1232 . -173) 167400) ((-1232 . -457) 167379) ((-1232 . -310) 167358) ((-1232 . -293) 167309) ((-1232 . -244) 167288) ((-1232 . -342) 167240) ((-1232 . -519) 167009) ((-1232 . -312) 166894) ((-1232 . -381) 166846) ((-1232 . -644) 166798) ((-1232 . -405) 166750) ((-1232 . -1222) 166729) ((-1232 . -892) NIL) ((-1232 . -825) NIL) ((-1232 . -796) NIL) ((-1232 . -797) NIL) ((-1232 . -855) NIL) ((-1232 . -799) NIL) ((-1232 . -802) NIL) ((-1232 . -853) NIL) ((-1232 . -890) 166681) ((-1232 . -916) NIL) ((-1232 . -1026) NIL) ((-1232 . -1044) 166647) ((-1232 . -1157) NIL) ((-1232 . -997) 166599) ((-1231 . -849) T) ((-1231 . -855) T) ((-1231 . -1107) T) ((-1231 . -618) 166581) ((-1231 . -102) T) ((-1231 . -372) T) ((-1230 . -849) T) ((-1230 . -855) T) ((-1230 . -1107) T) ((-1230 . -618) 166563) ((-1230 . -102) T) ((-1230 . -372) T) ((-1229 . -849) T) ((-1229 . -855) T) ((-1229 . -1107) T) ((-1229 . -618) 166545) ((-1229 . -102) T) ((-1229 . -372) T) ((-1228 . -849) T) ((-1228 . -855) T) ((-1228 . -1107) T) ((-1228 . -618) 166527) ((-1228 . -102) T) ((-1228 . -372) T) ((-1223 . -1089) T) ((-1223 . -495) 166508) ((-1223 . -618) 166474) ((-1223 . -621) 166455) ((-1223 . -1107) T) ((-1223 . -102) T) ((-1223 . -93) T) ((-1220 . -495) 166432) ((-1220 . -618) 166344) ((-1220 . -621) 166321) ((-1220 . -1107) 166299) ((-1220 . -102) 166277) ((-1215 . -745) 166253) ((-1215 . -35) 166219) ((-1215 . -95) 166185) ((-1215 . -287) 166151) ((-1215 . -498) 166117) ((-1215 . -1211) 166083) ((-1215 . -1208) 166049) ((-1215 . -1008) 166015) ((-1215 . -47) 165984) ((-1215 . -38) 165881) ((-1215 . -645) 165778) ((-1215 . -722) 165675) ((-1215 . -621) 165557) ((-1215 . -293) 165536) ((-1215 . -562) 165515) ((-1215 . -111) 165384) ((-1215 . -1057) 165267) ((-1215 . -1062) 165150) ((-1215 . -173) 165101) ((-1215 . -147) 165080) ((-1215 . -145) 165059) ((-1215 . -653) 164984) ((-1215 . -651) 164894) ((-1215 . -979) 164856) ((-1215 . -1055) T) ((-1215 . -1063) T) ((-1215 . -1118) T) ((-1215 . -731) T) ((-1215 . -21) T) ((-1215 . -23) T) ((-1215 . -1107) T) ((-1215 . -618) 164838) ((-1215 . -102) T) ((-1215 . -25) T) ((-1215 . -131) T) ((-1215 . -906) 164819) ((-1215 . -519) 164786) ((-1215 . -312) 164773) ((-1209 . -1016) 164757) ((-1209 . -34) T) ((-1209 . -1222) T) ((-1209 . -618) 164689) ((-1209 . -312) 164627) ((-1209 . -519) 164560) ((-1209 . -1107) 164538) ((-1209 . -102) 164516) ((-1209 . -494) 164500) ((-1204 . -369) 164474) ((-1204 . -102) T) ((-1204 . -618) 164456) ((-1204 . -1107) T) ((-1202 . -1107) T) ((-1202 . -618) 164438) ((-1202 . -102) T) ((-1202 . -621) 164420) ((-1195 . -1199) 164399) ((-1195 . -230) 164349) ((-1195 . -107) 164299) ((-1195 . -312) 164103) ((-1195 . -519) 163895) ((-1195 . -494) 163832) ((-1195 . -151) 163782) ((-1195 . -619) NIL) ((-1195 . -236) 163732) ((-1195 . -615) 163711) ((-1195 . -291) 163690) ((-1195 . -289) 163669) ((-1195 . -102) T) ((-1195 . -1107) T) ((-1195 . -618) 163651) ((-1195 . -1222) T) ((-1195 . -34) T) ((-1195 . -609) 163630) ((-1193 . -1222) T) ((-1191 . -1107) T) ((-1191 . -618) 163612) ((-1191 . -102) T) ((-1190 . -849) T) ((-1190 . -855) T) ((-1190 . -1107) T) ((-1190 . -618) 163594) ((-1190 . -102) T) ((-1190 . -372) T) ((-1189 . -849) T) ((-1189 . -855) T) ((-1189 . -1107) T) ((-1189 . -618) 163576) ((-1189 . -102) T) ((-1189 . -372) T) ((-1188 . -1268) T) ((-1188 . -1107) T) ((-1188 . -618) 163543) ((-1188 . -102) T) ((-1188 . -1044) 163479) ((-1188 . -621) 163415) ((-1187 . -618) 163397) ((-1186 . -618) 163379) ((-1185 . -329) 163356) ((-1185 . -1044) 163252) ((-1185 . -417) 163236) ((-1185 . -38) 163133) ((-1185 . -621) 162986) ((-1185 . -653) 162911) ((-1185 . -651) 162821) ((-1185 . -731) T) ((-1185 . -1118) T) ((-1185 . -1063) T) ((-1185 . -1055) T) ((-1185 . -111) 162690) ((-1185 . -1057) 162573) ((-1185 . -1062) 162456) ((-1185 . -21) T) ((-1185 . -23) T) ((-1185 . -1107) T) ((-1185 . -618) 162438) ((-1185 . -102) T) ((-1185 . -25) T) ((-1185 . -131) T) ((-1185 . -645) 162335) ((-1185 . -722) 162232) ((-1185 . -145) 162211) ((-1185 . -147) 162190) ((-1185 . -173) 162141) ((-1185 . -562) 162120) ((-1185 . -293) 162099) ((-1185 . -47) 162076) ((-1183 . -855) T) ((-1183 . -102) T) ((-1183 . -618) 162058) ((-1183 . -1107) T) ((-1183 . -619) 161980) ((-1183 . -826) T) ((-1183 . -621) 161961) ((-1183 . -892) 161928) ((-1182 . -618) 161910) ((-1181 . -1265) 161894) ((-1181 . -234) 161853) ((-1181 . -621) 161735) ((-1181 . -653) 161660) ((-1181 . -651) 161570) ((-1181 . -131) T) ((-1181 . -25) T) ((-1181 . -102) T) ((-1181 . -618) 161552) ((-1181 . -1107) T) ((-1181 . -23) T) ((-1181 . -21) T) ((-1181 . -731) T) ((-1181 . -1118) T) ((-1181 . -1063) T) ((-1181 . -1055) T) ((-1181 . -289) 161537) ((-1181 . -906) 161450) ((-1181 . -979) 161419) ((-1181 . -38) 161316) ((-1181 . -111) 161185) ((-1181 . -1057) 161068) ((-1181 . -1062) 160951) ((-1181 . -645) 160848) ((-1181 . -722) 160745) ((-1181 . -145) 160724) ((-1181 . -147) 160703) ((-1181 . -173) 160654) ((-1181 . -562) 160633) ((-1181 . -293) 160612) ((-1181 . -47) 160589) ((-1181 . -1251) 160566) ((-1181 . -35) 160532) ((-1181 . -95) 160498) ((-1181 . -287) 160464) ((-1181 . -498) 160430) ((-1181 . -1211) 160396) ((-1181 . -1208) 160362) ((-1181 . -1008) 160328) ((-1180 . -1257) 160289) ((-1180 . -367) 160268) ((-1180 . -1227) 160247) ((-1180 . -927) 160226) ((-1180 . -562) 160177) ((-1180 . -173) 160108) ((-1180 . -621) 159851) ((-1180 . -722) 159692) ((-1180 . -645) 159533) ((-1180 . -38) 159374) ((-1180 . -457) 159353) ((-1180 . -310) 159332) ((-1180 . -653) 159229) ((-1180 . -651) 159111) ((-1180 . -731) T) ((-1180 . -1118) T) ((-1180 . -1063) T) ((-1180 . -1055) T) ((-1180 . -111) 158932) ((-1180 . -1057) 158767) ((-1180 . -1062) 158602) ((-1180 . -21) T) ((-1180 . -23) T) ((-1180 . -1107) T) ((-1180 . -618) 158584) ((-1180 . -102) T) ((-1180 . -25) T) ((-1180 . -131) T) ((-1180 . -293) 158535) ((-1180 . -244) 158514) ((-1180 . -1008) 158480) ((-1180 . -1208) 158446) ((-1180 . -1211) 158412) ((-1180 . -498) 158378) ((-1180 . -287) 158344) ((-1180 . -95) 158310) ((-1180 . -35) 158276) ((-1180 . -1251) 158246) ((-1180 . -47) 158216) ((-1180 . -147) 158195) ((-1180 . -145) 158174) ((-1180 . -979) 158136) ((-1180 . -906) 158042) ((-1180 . -289) 158027) ((-1180 . -234) 157979) ((-1180 . -1255) 157963) ((-1180 . -1044) 157898) ((-1177 . -1248) 157882) ((-1177 . -1157) 157860) ((-1177 . -619) NIL) ((-1177 . -312) 157847) ((-1177 . -519) 157794) ((-1177 . -329) 157771) ((-1177 . -1044) 157651) ((-1177 . -417) 157635) ((-1177 . -38) 157464) ((-1177 . -111) 157273) ((-1177 . -1057) 157096) ((-1177 . -1062) 156919) ((-1177 . -651) 156829) ((-1177 . -653) 156754) ((-1177 . -645) 156583) ((-1177 . -722) 156412) ((-1177 . -621) 156181) ((-1177 . -145) 156160) ((-1177 . -147) 156139) ((-1177 . -47) 156116) ((-1177 . -381) 156100) ((-1177 . -644) 156048) ((-1177 . -906) 155991) ((-1177 . -892) NIL) ((-1177 . -916) 155970) ((-1177 . -1227) 155949) ((-1177 . -956) 155918) ((-1177 . -927) 155897) ((-1177 . -562) 155808) ((-1177 . -293) 155719) ((-1177 . -173) 155610) ((-1177 . -457) 155541) ((-1177 . -310) 155520) ((-1177 . -289) 155447) ((-1177 . -234) T) ((-1177 . -131) T) ((-1177 . -25) T) ((-1177 . -102) T) ((-1177 . -618) 155429) ((-1177 . -1107) T) ((-1177 . -23) T) ((-1177 . -21) T) ((-1177 . -731) T) ((-1177 . -1118) T) ((-1177 . -1063) T) ((-1177 . -1055) T) ((-1177 . -232) 155413) ((-1174 . -1236) 155374) ((-1174 . -1008) 155340) ((-1174 . -1208) 155306) ((-1174 . -1211) 155272) ((-1174 . -498) 155238) ((-1174 . -287) 155204) ((-1174 . -95) 155170) ((-1174 . -35) 155136) ((-1174 . -1251) 155113) ((-1174 . -47) 155090) ((-1174 . -621) 154885) ((-1174 . -722) 154681) ((-1174 . -645) 154477) ((-1174 . -653) 154329) ((-1174 . -651) 154166) ((-1174 . -1062) 153956) ((-1174 . -1057) 153746) ((-1174 . -111) 153515) ((-1174 . -38) 153311) ((-1174 . -979) 153280) ((-1174 . -289) 153128) ((-1174 . -1234) 153112) ((-1174 . -731) T) ((-1174 . -1118) T) ((-1174 . -1063) T) ((-1174 . -1055) T) ((-1174 . -21) T) ((-1174 . -23) T) ((-1174 . -1107) T) ((-1174 . -618) 153094) ((-1174 . -102) T) ((-1174 . -25) T) ((-1174 . -131) T) ((-1174 . -145) 153001) ((-1174 . -147) 152908) ((-1174 . -619) NIL) ((-1174 . -232) 152860) ((-1174 . -906) 152693) ((-1174 . -234) 152580) ((-1174 . -367) 152559) ((-1174 . -1227) 152538) ((-1174 . -927) 152517) ((-1174 . -562) 152468) ((-1174 . -173) 152399) ((-1174 . -457) 152378) ((-1174 . -310) 152357) ((-1174 . -293) 152308) ((-1174 . -244) 152287) ((-1174 . -342) 152239) ((-1174 . -519) 152008) ((-1174 . -312) 151893) ((-1174 . -381) 151845) ((-1174 . -644) 151797) ((-1174 . -405) 151749) ((-1174 . -1222) 151728) ((-1174 . -892) NIL) ((-1174 . -825) NIL) ((-1174 . -796) NIL) ((-1174 . -797) NIL) ((-1174 . -855) NIL) ((-1174 . -799) NIL) ((-1174 . -802) NIL) ((-1174 . -853) NIL) ((-1174 . -890) 151680) ((-1174 . -916) NIL) ((-1174 . -1026) NIL) ((-1174 . -1044) 151646) ((-1174 . -1157) NIL) ((-1174 . -997) 151598) ((-1173 . -1089) T) ((-1173 . -495) 151579) ((-1173 . -618) 151545) ((-1173 . -621) 151526) ((-1173 . -1107) T) ((-1173 . -102) T) ((-1173 . -93) T) ((-1172 . -1107) T) ((-1172 . -618) 151508) ((-1172 . -102) T) ((-1171 . -1107) T) ((-1171 . -618) 151490) ((-1171 . -102) T) ((-1166 . -1199) 151466) ((-1166 . -230) 151413) ((-1166 . -107) 151360) ((-1166 . -312) 151155) ((-1166 . -519) 150938) ((-1166 . -494) 150872) ((-1166 . -151) 150819) ((-1166 . -619) NIL) ((-1166 . -236) 150766) ((-1166 . -615) 150742) ((-1166 . -291) 150718) ((-1166 . -289) 150694) ((-1166 . -102) T) ((-1166 . -1107) T) ((-1166 . -618) 150676) ((-1166 . -1222) T) ((-1166 . -34) T) ((-1166 . -609) 150652) ((-1165 . -1164) T) ((-1165 . -19) 150634) ((-1165 . -656) 150616) ((-1165 . -291) 150591) ((-1165 . -289) 150566) ((-1165 . -609) 150541) ((-1165 . -619) NIL) ((-1165 . -494) 150523) ((-1165 . -519) NIL) ((-1165 . -312) NIL) ((-1165 . -1222) T) ((-1165 . -34) T) ((-1165 . -151) 150505) ((-1165 . -855) T) ((-1165 . -376) 150487) ((-1165 . -1150) T) ((-1165 . -102) T) ((-1165 . -618) 150469) ((-1165 . -1107) T) ((-1165 . -826) T) ((-1160 . -679) 150453) ((-1160 . -656) 150437) ((-1160 . -291) 150414) ((-1160 . -289) 150391) ((-1160 . -609) 150368) ((-1160 . -619) 150329) ((-1160 . -494) 150313) ((-1160 . -102) 150291) ((-1160 . -1107) 150269) ((-1160 . -519) 150202) ((-1160 . -312) 150140) ((-1160 . -618) 150072) ((-1160 . -1222) T) ((-1160 . -34) T) ((-1160 . -151) 150056) ((-1160 . -1261) 150040) ((-1160 . -1016) 150024) ((-1160 . -1155) 150008) ((-1160 . -621) 149985) ((-1158 . -1089) T) ((-1158 . -495) 149966) ((-1158 . -618) 149932) ((-1158 . -621) 149913) ((-1158 . -1107) T) ((-1158 . -102) T) ((-1158 . -93) T) ((-1156 . -1199) 149892) ((-1156 . -230) 149842) ((-1156 . -107) 149792) ((-1156 . -312) 149596) ((-1156 . -519) 149388) ((-1156 . -494) 149325) ((-1156 . -151) 149275) ((-1156 . -619) NIL) ((-1156 . -236) 149225) ((-1156 . -615) 149204) ((-1156 . -291) 149183) ((-1156 . -289) 149162) ((-1156 . -102) T) ((-1156 . -1107) T) ((-1156 . -618) 149144) ((-1156 . -1222) T) ((-1156 . -34) T) ((-1156 . -609) 149123) ((-1153 . -1127) 149107) ((-1153 . -494) 149091) ((-1153 . -102) 149069) ((-1153 . -1107) 149047) ((-1153 . -519) 148980) ((-1153 . -312) 148918) ((-1153 . -618) 148850) ((-1153 . -1222) T) ((-1153 . -34) T) ((-1153 . -107) 148834) ((-1152 . -1115) 148803) ((-1152 . -1217) 148772) ((-1152 . -618) 148734) ((-1152 . -151) 148718) ((-1152 . -34) T) ((-1152 . -1222) T) ((-1152 . -312) 148656) ((-1152 . -519) 148589) ((-1152 . -1107) T) ((-1152 . -102) T) ((-1152 . -494) 148573) ((-1152 . -619) 148534) ((-1152 . -982) 148503) ((-1152 . -1077) 148472) ((-1148 . -1129) 148417) ((-1148 . -494) 148401) ((-1148 . -519) 148334) ((-1148 . -312) 148272) ((-1148 . -1222) T) ((-1148 . -34) T) ((-1148 . -1059) 148212) ((-1148 . -1044) 148108) ((-1148 . -621) 148026) ((-1148 . -417) 148010) ((-1148 . -644) 147958) ((-1148 . -381) 147942) ((-1148 . -234) 147921) ((-1148 . -906) 147880) ((-1148 . -232) 147864) ((-1148 . -722) 147796) ((-1148 . -645) 147728) ((-1148 . -653) 147702) ((-1148 . -651) 147661) ((-1148 . -131) T) ((-1148 . -25) T) ((-1148 . -102) T) ((-1148 . -618) 147623) ((-1148 . -1107) T) ((-1148 . -23) T) ((-1148 . -21) T) ((-1148 . -1062) 147607) ((-1148 . -1057) 147591) ((-1148 . -111) 147570) ((-1148 . -1055) T) ((-1148 . -1063) T) ((-1148 . -1118) T) ((-1148 . -731) T) ((-1148 . -38) 147530) ((-1148 . -619) 147491) ((-1147 . -1016) 147462) ((-1147 . -34) T) ((-1147 . -1222) T) ((-1147 . -618) 147444) ((-1147 . -312) 147370) ((-1147 . -519) 147289) ((-1147 . -1107) T) ((-1147 . -102) T) ((-1147 . -494) 147260) ((-1146 . -1107) T) ((-1146 . -618) 147242) ((-1146 . -102) T) ((-1141 . -1143) T) ((-1141 . -1268) T) ((-1141 . -93) T) ((-1141 . -102) T) ((-1141 . -618) 147208) ((-1141 . -1107) T) ((-1141 . -621) 147189) ((-1141 . -495) 147170) ((-1141 . -1089) T) ((-1139 . -1140) 147154) ((-1139 . -102) T) ((-1139 . -618) 147136) ((-1139 . -1107) T) ((-1132 . -745) 147115) ((-1132 . -35) 147081) ((-1132 . -95) 147047) ((-1132 . -287) 147013) ((-1132 . -498) 146979) ((-1132 . -1211) 146945) ((-1132 . -1208) 146911) ((-1132 . -1008) 146877) ((-1132 . -47) 146849) ((-1132 . -38) 146746) ((-1132 . -645) 146643) ((-1132 . -722) 146540) ((-1132 . -621) 146422) ((-1132 . -293) 146401) ((-1132 . -562) 146380) ((-1132 . -111) 146249) ((-1132 . -1057) 146132) ((-1132 . -1062) 146015) ((-1132 . -173) 145966) ((-1132 . -147) 145945) ((-1132 . -145) 145924) ((-1132 . -653) 145849) ((-1132 . -651) 145759) ((-1132 . -979) 145726) ((-1132 . -1055) T) ((-1132 . -1063) T) ((-1132 . -1118) T) ((-1132 . -731) T) ((-1132 . -21) T) ((-1132 . -23) T) ((-1132 . -1107) T) ((-1132 . -618) 145708) ((-1132 . -102) T) ((-1132 . -25) T) ((-1132 . -131) T) ((-1132 . -906) 145692) ((-1132 . -519) 145662) ((-1132 . -312) 145649) ((-1131 . -956) 145616) ((-1131 . -621) 145408) ((-1131 . -1044) 145291) ((-1131 . -1227) 145270) ((-1131 . -916) 145249) ((-1131 . -892) 145108) ((-1131 . -906) 145092) ((-1131 . -519) 145044) ((-1131 . -457) 144995) ((-1131 . -644) 144943) ((-1131 . -381) 144927) ((-1131 . -47) 144899) ((-1131 . -38) 144748) ((-1131 . -645) 144597) ((-1131 . -722) 144446) ((-1131 . -293) 144377) ((-1131 . -562) 144308) ((-1131 . -111) 144137) ((-1131 . -1057) 143980) ((-1131 . -1062) 143823) ((-1131 . -173) 143734) ((-1131 . -147) 143713) ((-1131 . -145) 143692) ((-1131 . -653) 143617) ((-1131 . -651) 143527) ((-1131 . -131) T) ((-1131 . -25) T) ((-1131 . -102) T) ((-1131 . -618) 143509) ((-1131 . -1107) T) ((-1131 . -23) T) ((-1131 . -21) T) ((-1131 . -1055) T) ((-1131 . -1063) T) ((-1131 . -1118) T) ((-1131 . -731) T) ((-1131 . -417) 143493) ((-1131 . -329) 143465) ((-1131 . -312) 143452) ((-1131 . -619) 143200) ((-1126 . -550) T) ((-1126 . -1227) T) ((-1126 . -1157) T) ((-1126 . -1044) 143182) ((-1126 . -619) 143097) ((-1126 . -1026) T) ((-1126 . -892) 143079) ((-1126 . -853) T) ((-1126 . -802) T) ((-1126 . -799) T) ((-1126 . -855) T) ((-1126 . -797) T) ((-1126 . -796) T) ((-1126 . -825) T) ((-1126 . -644) 143061) ((-1126 . -927) T) ((-1126 . -562) T) ((-1126 . -293) T) ((-1126 . -173) T) ((-1126 . -621) 143033) ((-1126 . -722) 143020) ((-1126 . -645) 143007) ((-1126 . -1062) 142994) ((-1126 . -1057) 142981) ((-1126 . -111) 142966) ((-1126 . -38) 142953) ((-1126 . -457) T) ((-1126 . -310) T) ((-1126 . -234) T) ((-1126 . -143) T) ((-1126 . -1055) T) ((-1126 . -1063) T) ((-1126 . -1118) T) ((-1126 . -731) T) ((-1126 . -21) T) ((-1126 . -651) 142925) ((-1126 . -23) T) ((-1126 . -1107) T) ((-1126 . -618) 142907) ((-1126 . -102) T) ((-1126 . -25) T) ((-1126 . -131) T) ((-1126 . -653) 142894) ((-1126 . -147) T) ((-1126 . -849) T) ((-1126 . -372) T) ((-1126 . -667) T) ((-1126 . -826) T) ((-1122 . -1089) T) ((-1122 . -495) 142875) ((-1122 . -618) 142841) ((-1122 . -621) 142822) ((-1122 . -1107) T) ((-1122 . -102) T) ((-1122 . -93) T) ((-1121 . -1107) T) ((-1121 . -618) 142804) ((-1121 . -102) T) ((-1119 . -239) 142783) ((-1119 . -1280) 142753) ((-1119 . -796) 142732) ((-1119 . -853) 142711) ((-1119 . -802) 142662) ((-1119 . -799) 142613) ((-1119 . -855) 142564) ((-1119 . -797) 142515) ((-1119 . -798) 142494) ((-1119 . -291) 142471) ((-1119 . -289) 142448) ((-1119 . -494) 142432) ((-1119 . -519) 142365) ((-1119 . -312) 142303) ((-1119 . -1222) T) ((-1119 . -34) T) ((-1119 . -609) 142280) ((-1119 . -1044) 142107) ((-1119 . -621) 141837) ((-1119 . -417) 141806) ((-1119 . -644) 141712) ((-1119 . -381) 141681) ((-1119 . -372) 141660) ((-1119 . -234) 141612) ((-1119 . -906) 141544) ((-1119 . -232) 141513) ((-1119 . -111) 141403) ((-1119 . -1057) 141300) ((-1119 . -1062) 141197) ((-1119 . -173) 141176) ((-1119 . -618) 140907) ((-1119 . -722) 140849) ((-1119 . -645) 140791) ((-1119 . -653) 140639) ((-1119 . -651) 140389) ((-1119 . -131) 140259) ((-1119 . -23) 140129) ((-1119 . -21) 140039) ((-1119 . -1055) 139969) ((-1119 . -1063) 139899) ((-1119 . -1118) 139809) ((-1119 . -731) 139719) ((-1119 . -38) 139689) ((-1119 . -1107) 139479) ((-1119 . -102) 139269) ((-1119 . -25) 139120) ((-1112 . -401) T) ((-1112 . -1222) T) ((-1112 . -618) 139102) ((-1111 . -1110) 139066) ((-1111 . -102) T) ((-1111 . -618) 139048) ((-1111 . -1107) T) ((-1111 . -623) 138963) ((-1109 . -1110) 138915) ((-1109 . -102) T) ((-1109 . -618) 138897) ((-1109 . -1107) T) ((-1109 . -623) 138800) ((-1108 . -372) T) ((-1108 . -102) T) ((-1108 . -618) 138782) ((-1108 . -1107) T) ((-1103 . -431) 138766) ((-1103 . -1105) 138750) ((-1103 . -372) 138729) ((-1103 . -236) 138713) ((-1103 . -619) 138674) ((-1103 . -151) 138658) ((-1103 . -494) 138642) ((-1103 . -102) T) ((-1103 . -1107) T) ((-1103 . -519) 138575) ((-1103 . -312) 138513) ((-1103 . -618) 138495) ((-1103 . -1222) T) ((-1103 . -34) T) ((-1103 . -107) 138479) ((-1103 . -230) 138463) ((-1102 . -1089) T) ((-1102 . -495) 138444) ((-1102 . -618) 138410) ((-1102 . -621) 138391) ((-1102 . -1107) T) ((-1102 . -102) T) ((-1102 . -93) T) ((-1098 . -1222) T) ((-1098 . -1107) 138361) ((-1098 . -618) 138320) ((-1098 . -102) 138290) ((-1097 . -1089) T) ((-1097 . -495) 138271) ((-1097 . -618) 138237) ((-1097 . -621) 138218) ((-1097 . -1107) T) ((-1097 . -102) T) ((-1097 . -93) T) ((-1095 . -1100) 138202) ((-1095 . -623) 138186) ((-1095 . -1107) 138164) ((-1095 . -618) 138131) ((-1095 . -102) 138109) ((-1095 . -1101) 138067) ((-1094 . -268) 138051) ((-1094 . -621) 138035) ((-1094 . -1044) 138019) ((-1094 . -1107) T) ((-1094 . -618) 138001) ((-1094 . -102) T) ((-1094 . -855) T) ((-1093 . -255) 137938) ((-1093 . -621) 137674) ((-1093 . -1044) 137501) ((-1093 . -619) NIL) ((-1093 . -329) 137462) ((-1093 . -417) 137446) ((-1093 . -38) 137295) ((-1093 . -111) 137124) ((-1093 . -1057) 136967) ((-1093 . -1062) 136810) ((-1093 . -651) 136720) ((-1093 . -653) 136645) ((-1093 . -645) 136494) ((-1093 . -722) 136343) ((-1093 . -145) 136322) ((-1093 . -147) 136301) ((-1093 . -173) 136212) ((-1093 . -562) 136143) ((-1093 . -293) 136074) ((-1093 . -47) 136035) ((-1093 . -381) 136019) ((-1093 . -644) 135967) ((-1093 . -457) 135918) ((-1093 . -519) 135785) ((-1093 . -906) 135720) ((-1093 . -892) NIL) ((-1093 . -916) 135699) ((-1093 . -1227) 135678) ((-1093 . -956) 135623) ((-1093 . -312) 135610) ((-1093 . -234) 135589) ((-1093 . -131) T) ((-1093 . -25) T) ((-1093 . -102) T) ((-1093 . -618) 135571) ((-1093 . -1107) T) ((-1093 . -23) T) ((-1093 . -21) T) ((-1093 . -731) T) ((-1093 . -1118) T) ((-1093 . -1063) T) ((-1093 . -1055) T) ((-1093 . -232) 135555) ((-1091 . -618) 135537) ((-1088 . -855) T) ((-1088 . -102) T) ((-1088 . -618) 135519) ((-1088 . -1107) T) ((-1088 . -619) 135500) ((-1085 . -729) 135479) ((-1085 . -1044) 135375) ((-1085 . -417) 135359) ((-1085 . -644) 135307) ((-1085 . -381) 135291) ((-1085 . -374) 135270) ((-1085 . -147) 135249) ((-1085 . -621) 135067) ((-1085 . -722) 134935) ((-1085 . -645) 134803) ((-1085 . -653) 134713) ((-1085 . -651) 134608) ((-1085 . -1062) 134518) ((-1085 . -1057) 134428) ((-1085 . -111) 134324) ((-1085 . -38) 134192) ((-1085 . -415) 134171) ((-1085 . -407) 134150) ((-1085 . -145) 134101) ((-1085 . -1157) 134080) ((-1085 . -354) 134059) ((-1085 . -372) 134010) ((-1085 . -244) 133961) ((-1085 . -293) 133912) ((-1085 . -310) 133863) ((-1085 . -457) 133814) ((-1085 . -562) 133765) ((-1085 . -927) 133716) ((-1085 . -1227) 133667) ((-1085 . -367) 133618) ((-1085 . -234) 133543) ((-1085 . -906) 133476) ((-1085 . -232) 133446) ((-1085 . -619) 133430) ((-1085 . -21) T) ((-1085 . -23) T) ((-1085 . -1107) T) ((-1085 . -618) 133412) ((-1085 . -102) T) ((-1085 . -25) T) ((-1085 . -131) T) ((-1085 . -1055) T) ((-1085 . -1063) T) ((-1085 . -1118) T) ((-1085 . -731) T) ((-1085 . -173) T) ((-1083 . -1107) T) ((-1083 . -618) 133394) ((-1083 . -102) T) ((-1083 . -289) 133373) ((-1082 . -1107) T) ((-1082 . -618) 133355) ((-1082 . -102) T) ((-1081 . -1107) T) ((-1081 . -618) 133337) ((-1081 . -102) T) ((-1081 . -289) 133316) ((-1081 . -1044) 133293) ((-1081 . -621) 133270) ((-1080 . -1222) T) ((-1079 . -1089) T) ((-1079 . -495) 133251) ((-1079 . -618) 133217) ((-1079 . -621) 133198) ((-1079 . -1107) T) ((-1079 . -102) T) ((-1079 . -93) T) ((-1072 . -1089) T) ((-1072 . -495) 133179) ((-1072 . -618) 133145) ((-1072 . -621) 133126) ((-1072 . -1107) T) ((-1072 . -102) T) ((-1072 . -93) T) ((-1069 . -1199) 133101) ((-1069 . -230) 133047) ((-1069 . -107) 132993) ((-1069 . -312) 132844) ((-1069 . -519) 132688) ((-1069 . -494) 132619) ((-1069 . -151) 132565) ((-1069 . -619) NIL) ((-1069 . -236) 132511) ((-1069 . -615) 132486) ((-1069 . -291) 132461) ((-1069 . -289) 132436) ((-1069 . -102) T) ((-1069 . -1107) T) ((-1069 . -618) 132418) ((-1069 . -1222) T) ((-1069 . -34) T) ((-1069 . -609) 132393) ((-1068 . -550) T) ((-1068 . -1227) T) ((-1068 . -1157) T) ((-1068 . -1044) 132375) ((-1068 . -619) 132290) ((-1068 . -1026) T) ((-1068 . -892) 132272) ((-1068 . -853) T) ((-1068 . -802) T) ((-1068 . -799) T) ((-1068 . -855) T) ((-1068 . -797) T) ((-1068 . -796) T) ((-1068 . -825) T) ((-1068 . -644) 132254) ((-1068 . -927) T) ((-1068 . -562) T) ((-1068 . -293) T) ((-1068 . -173) T) ((-1068 . -621) 132226) ((-1068 . -722) 132213) ((-1068 . -645) 132200) ((-1068 . -1062) 132187) ((-1068 . -1057) 132174) ((-1068 . -111) 132159) ((-1068 . -38) 132146) ((-1068 . -457) T) ((-1068 . -310) T) ((-1068 . -234) T) ((-1068 . -143) T) ((-1068 . -1055) T) ((-1068 . -1063) T) ((-1068 . -1118) T) ((-1068 . -731) T) ((-1068 . -21) T) ((-1068 . -651) 132118) ((-1068 . -23) T) ((-1068 . -1107) T) ((-1068 . -618) 132100) ((-1068 . -102) T) ((-1068 . -25) T) ((-1068 . -131) T) ((-1068 . -653) 132087) ((-1068 . -147) T) ((-1068 . -623) 132068) ((-1067 . -1074) 132047) ((-1067 . -102) T) ((-1067 . -618) 132029) ((-1067 . -1107) T) ((-1064 . -1222) T) ((-1064 . -1107) 132007) ((-1064 . -618) 131974) ((-1064 . -102) 131952) ((-1060 . -1059) 131892) ((-1060 . -645) 131834) ((-1060 . -722) 131776) ((-1060 . -34) T) ((-1060 . -1222) T) ((-1060 . -312) 131714) ((-1060 . -519) 131647) ((-1060 . -494) 131631) ((-1060 . -653) 131615) ((-1060 . -651) 131584) ((-1060 . -131) T) ((-1060 . -25) T) ((-1060 . -102) T) ((-1060 . -618) 131546) ((-1060 . -1107) T) ((-1060 . -23) T) ((-1060 . -21) T) ((-1060 . -1062) 131530) ((-1060 . -1057) 131514) ((-1060 . -111) 131493) ((-1060 . -1280) 131463) ((-1060 . -619) 131424) ((-1052 . -1077) 131353) ((-1052 . -982) 131282) ((-1052 . -619) 131224) ((-1052 . -494) 131189) ((-1052 . -102) T) ((-1052 . -1107) T) ((-1052 . -519) 131090) ((-1052 . -312) 130998) ((-1052 . -618) 130941) ((-1052 . -1222) T) ((-1052 . -34) T) ((-1052 . -151) 130906) ((-1052 . -1217) 130835) ((-1042 . -1089) T) ((-1042 . -495) 130816) ((-1042 . -618) 130782) ((-1042 . -621) 130763) ((-1042 . -1107) T) ((-1042 . -102) T) ((-1042 . -93) T) ((-1041 . -1199) 130738) ((-1041 . -230) 130684) ((-1041 . -107) 130630) ((-1041 . -312) 130481) ((-1041 . -519) 130325) ((-1041 . -494) 130256) ((-1041 . -151) 130202) ((-1041 . -619) NIL) ((-1041 . -236) 130148) ((-1041 . -615) 130123) ((-1041 . -291) 130098) ((-1041 . -289) 130073) ((-1041 . -102) T) ((-1041 . -1107) T) ((-1041 . -618) 130055) ((-1041 . -1222) T) ((-1041 . -34) T) ((-1041 . -609) 130030) ((-1040 . -173) T) ((-1040 . -621) 129999) ((-1040 . -731) T) ((-1040 . -1118) T) ((-1040 . -1063) T) ((-1040 . -1055) T) ((-1040 . -653) 129973) ((-1040 . -651) 129932) ((-1040 . -131) T) ((-1040 . -25) T) ((-1040 . -102) T) ((-1040 . -618) 129914) ((-1040 . -1107) T) ((-1040 . -23) T) ((-1040 . -21) T) ((-1040 . -1062) 129888) ((-1040 . -1057) 129862) ((-1040 . -111) 129829) ((-1040 . -38) 129813) ((-1040 . -645) 129797) ((-1040 . -722) 129781) ((-1033 . -1077) 129750) ((-1033 . -982) 129719) ((-1033 . -619) 129680) ((-1033 . -494) 129664) ((-1033 . -102) T) ((-1033 . -1107) T) ((-1033 . -519) 129597) ((-1033 . -312) 129535) ((-1033 . -618) 129497) ((-1033 . -1222) T) ((-1033 . -34) T) ((-1033 . -151) 129481) ((-1033 . -1217) 129450) ((-1032 . -1222) T) ((-1032 . -1107) 129428) ((-1032 . -618) 129395) ((-1032 . -102) 129373) ((-1030 . -1018) T) ((-1030 . -1008) T) ((-1030 . -796) T) ((-1030 . -797) T) ((-1030 . -855) T) ((-1030 . -799) T) ((-1030 . -802) T) ((-1030 . -853) T) ((-1030 . -1044) 129253) ((-1030 . -417) 129215) ((-1030 . -244) T) ((-1030 . -293) T) ((-1030 . -310) T) ((-1030 . -457) T) ((-1030 . -38) 129152) ((-1030 . -645) 129089) ((-1030 . -722) 129026) ((-1030 . -621) 128963) ((-1030 . -562) T) ((-1030 . -927) T) ((-1030 . -1227) T) ((-1030 . -367) T) ((-1030 . -111) 128879) ((-1030 . -1057) 128816) ((-1030 . -1062) 128753) ((-1030 . -173) T) ((-1030 . -147) T) ((-1030 . -653) 128690) ((-1030 . -651) 128627) ((-1030 . -131) T) ((-1030 . -25) T) ((-1030 . -102) T) ((-1030 . -618) 128609) ((-1030 . -1107) T) ((-1030 . -23) T) ((-1030 . -21) T) ((-1030 . -1055) T) ((-1030 . -1063) T) ((-1030 . -1118) T) ((-1030 . -731) T) ((-1025 . -1089) T) ((-1025 . -495) 128590) ((-1025 . -618) 128556) ((-1025 . -621) 128537) ((-1025 . -1107) T) ((-1025 . -102) T) ((-1025 . -93) T) ((-1010 . -997) 128519) ((-1010 . -1157) T) ((-1010 . -621) 128469) ((-1010 . -1044) 128429) ((-1010 . -619) 128359) ((-1010 . -1026) T) ((-1010 . -916) NIL) ((-1010 . -890) 128341) ((-1010 . -853) T) ((-1010 . -802) T) ((-1010 . -799) T) ((-1010 . -855) T) ((-1010 . -797) T) ((-1010 . -796) T) ((-1010 . -825) T) ((-1010 . -892) 128323) ((-1010 . -1222) T) ((-1010 . -405) 128305) ((-1010 . -644) 128287) ((-1010 . -381) 128269) ((-1010 . -289) NIL) ((-1010 . -312) NIL) ((-1010 . -519) NIL) ((-1010 . -342) 128251) ((-1010 . -244) T) ((-1010 . -111) 128185) ((-1010 . -1057) 128135) ((-1010 . -1062) 128085) ((-1010 . -293) T) ((-1010 . -722) 128035) ((-1010 . -645) 127985) ((-1010 . -653) 127935) ((-1010 . -651) 127885) ((-1010 . -38) 127835) ((-1010 . -310) T) ((-1010 . -457) T) ((-1010 . -173) T) ((-1010 . -562) T) ((-1010 . -927) T) ((-1010 . -1227) T) ((-1010 . -367) T) ((-1010 . -234) T) ((-1010 . -906) NIL) ((-1010 . -232) 127817) ((-1010 . -147) T) ((-1010 . -145) NIL) ((-1010 . -131) T) ((-1010 . -25) T) ((-1010 . -102) T) ((-1010 . -618) 127777) ((-1010 . -1107) T) ((-1010 . -23) T) ((-1010 . -21) T) ((-1010 . -1055) T) ((-1010 . -1063) T) ((-1010 . -1118) T) ((-1010 . -731) T) ((-1009 . -346) 127751) ((-1009 . -173) T) ((-1009 . -621) 127681) ((-1009 . -731) T) ((-1009 . -1118) T) ((-1009 . -1063) T) ((-1009 . -1055) T) ((-1009 . -653) 127626) ((-1009 . -651) 127556) ((-1009 . -131) T) ((-1009 . -25) T) ((-1009 . -102) T) ((-1009 . -618) 127538) ((-1009 . -1107) T) ((-1009 . -23) T) ((-1009 . -21) T) ((-1009 . -1062) 127483) ((-1009 . -1057) 127428) ((-1009 . -111) 127357) ((-1009 . -619) 127341) ((-1009 . -232) 127318) ((-1009 . -906) 127270) ((-1009 . -234) 127242) ((-1009 . -367) T) ((-1009 . -1227) T) ((-1009 . -927) T) ((-1009 . -562) T) ((-1009 . -722) 127187) ((-1009 . -645) 127132) ((-1009 . -38) 127077) ((-1009 . -457) T) ((-1009 . -310) T) ((-1009 . -293) T) ((-1009 . -244) T) ((-1009 . -372) NIL) ((-1009 . -354) NIL) ((-1009 . -1157) NIL) ((-1009 . -145) 127049) ((-1009 . -407) NIL) ((-1009 . -415) 127021) ((-1009 . -147) 126993) ((-1009 . -374) 126965) ((-1009 . -381) 126942) ((-1009 . -644) 126881) ((-1009 . -417) 126858) ((-1009 . -1044) 126746) ((-1009 . -729) 126718) ((-1006 . -1001) 126702) ((-1006 . -494) 126686) ((-1006 . -102) 126664) ((-1006 . -1107) 126642) ((-1006 . -519) 126575) ((-1006 . -312) 126513) ((-1006 . -618) 126445) ((-1006 . -1222) T) ((-1006 . -34) T) ((-1006 . -107) 126429) ((-1002 . -1004) 126413) ((-1002 . -855) 126392) ((-1002 . -1044) 126288) ((-1002 . -417) 126272) ((-1002 . -644) 126220) ((-1002 . -381) 126204) ((-1002 . -289) 126162) ((-1002 . -312) 126127) ((-1002 . -519) 126039) ((-1002 . -342) 126023) ((-1002 . -38) 125971) ((-1002 . -111) 125853) ((-1002 . -1057) 125749) ((-1002 . -1062) 125645) ((-1002 . -651) 125568) ((-1002 . -653) 125506) ((-1002 . -645) 125454) ((-1002 . -722) 125402) ((-1002 . -621) 125292) ((-1002 . -293) 125243) ((-1002 . -244) 125222) ((-1002 . -234) 125201) ((-1002 . -906) 125160) ((-1002 . -232) 125144) ((-1002 . -619) 125105) ((-1002 . -147) 125084) ((-1002 . -145) 125063) ((-1002 . -131) T) ((-1002 . -25) T) ((-1002 . -102) T) ((-1002 . -618) 125045) ((-1002 . -1107) T) ((-1002 . -23) T) ((-1002 . -21) T) ((-1002 . -1055) T) ((-1002 . -1063) T) ((-1002 . -1118) T) ((-1002 . -731) T) ((-1000 . -1089) T) ((-1000 . -495) 125026) ((-1000 . -618) 124992) ((-1000 . -621) 124973) ((-1000 . -1107) T) ((-1000 . -102) T) ((-1000 . -93) T) ((-999 . -21) T) ((-999 . -651) 124955) ((-999 . -23) T) ((-999 . -1107) T) ((-999 . -618) 124937) ((-999 . -102) T) ((-999 . -25) T) ((-999 . -131) T) ((-995 . -618) 124919) ((-992 . -1107) T) ((-992 . -618) 124901) ((-992 . -102) T) ((-977 . -802) T) ((-977 . -799) T) ((-977 . -855) T) ((-977 . -797) T) ((-977 . -23) T) ((-977 . -1107) T) ((-977 . -618) 124861) ((-977 . -102) T) ((-977 . -25) T) ((-977 . -131) T) ((-977 . -619) 124836) ((-976 . -1089) T) ((-976 . -495) 124817) ((-976 . -618) 124783) ((-976 . -621) 124764) ((-976 . -1107) T) ((-976 . -102) T) ((-976 . -93) T) ((-972 . -973) T) ((-972 . -102) T) ((-972 . -618) 124746) ((-972 . -1107) T) ((-972 . -621) 124730) ((-971 . -618) 124712) ((-970 . -1107) T) ((-970 . -618) 124694) ((-970 . -102) T) ((-970 . -372) 124647) ((-970 . -731) 124546) ((-970 . -1118) 124445) ((-970 . -23) 124256) ((-970 . -25) 124067) ((-970 . -131) 123922) ((-970 . -478) 123875) ((-970 . -21) 123830) ((-970 . -651) 123774) ((-970 . -798) 123727) ((-970 . -797) 123680) ((-970 . -855) 123579) ((-970 . -799) 123532) ((-970 . -802) 123485) ((-964 . -19) 123469) ((-964 . -656) 123453) ((-964 . -291) 123430) ((-964 . -289) 123407) ((-964 . -609) 123384) ((-964 . -619) 123345) ((-964 . -494) 123329) ((-964 . -102) 123279) ((-964 . -1107) 123229) ((-964 . -519) 123162) ((-964 . -312) 123100) ((-964 . -618) 123012) ((-964 . -1222) T) ((-964 . -34) T) ((-964 . -151) 122996) ((-964 . -855) 122975) ((-964 . -376) 122959) ((-962 . -329) 122938) ((-962 . -1044) 122834) ((-962 . -417) 122818) ((-962 . -38) 122715) ((-962 . -621) 122568) ((-962 . -653) 122493) ((-962 . -651) 122403) ((-962 . -731) T) ((-962 . -1118) T) ((-962 . -1063) T) ((-962 . -1055) T) ((-962 . -111) 122272) ((-962 . -1057) 122155) ((-962 . -1062) 122038) ((-962 . -21) T) ((-962 . -23) T) ((-962 . -1107) T) ((-962 . -618) 122020) ((-962 . -102) T) ((-962 . -25) T) ((-962 . -131) T) ((-962 . -645) 121917) ((-962 . -722) 121814) ((-962 . -145) 121793) ((-962 . -147) 121772) ((-962 . -173) 121723) ((-962 . -562) 121702) ((-962 . -293) 121681) ((-962 . -47) 121660) ((-960 . -1107) T) ((-960 . -618) 121626) ((-960 . -102) T) ((-952 . -956) 121587) ((-952 . -621) 121376) ((-952 . -1044) 121256) ((-952 . -1227) 121235) ((-952 . -916) 121214) ((-952 . -892) 121139) ((-952 . -906) 121120) ((-952 . -519) 121067) ((-952 . -457) 121018) ((-952 . -644) 120966) ((-952 . -381) 120950) ((-952 . -47) 120919) ((-952 . -38) 120768) ((-952 . -645) 120617) ((-952 . -722) 120466) ((-952 . -293) 120397) ((-952 . -562) 120328) ((-952 . -111) 120157) ((-952 . -1057) 120000) ((-952 . -1062) 119843) ((-952 . -173) 119754) ((-952 . -147) 119733) ((-952 . -145) 119712) ((-952 . -653) 119637) ((-952 . -651) 119547) ((-952 . -131) T) ((-952 . -25) T) ((-952 . -102) T) ((-952 . -618) 119529) ((-952 . -1107) T) ((-952 . -23) T) ((-952 . -21) T) ((-952 . -1055) T) ((-952 . -1063) T) ((-952 . -1118) T) ((-952 . -731) T) ((-952 . -417) 119513) ((-952 . -329) 119482) ((-952 . -312) 119469) ((-952 . -619) 119330) ((-949 . -986) 119314) ((-949 . -19) 119298) ((-949 . -656) 119282) ((-949 . -291) 119259) ((-949 . -289) 119236) ((-949 . -609) 119213) ((-949 . -619) 119174) ((-949 . -494) 119158) ((-949 . -102) 119108) ((-949 . -1107) 119058) ((-949 . -519) 118991) ((-949 . -312) 118929) ((-949 . -618) 118841) ((-949 . -1222) T) ((-949 . -34) T) ((-949 . -151) 118825) ((-949 . -855) 118804) ((-949 . -376) 118788) ((-949 . -1271) 118772) ((-949 . -623) 118749) ((-933 . -980) T) ((-933 . -618) 118731) ((-931 . -961) T) ((-931 . -618) 118713) ((-925 . -799) T) ((-925 . -855) T) ((-925 . -1107) T) ((-925 . -618) 118695) ((-925 . -102) T) ((-925 . -25) T) ((-925 . -731) T) ((-925 . -1118) T) ((-920 . -367) T) ((-920 . -1227) T) ((-920 . -927) T) ((-920 . -562) T) ((-920 . -173) T) ((-920 . -621) 118632) ((-920 . -722) 118584) ((-920 . -645) 118536) ((-920 . -38) 118488) ((-920 . -457) T) ((-920 . -310) T) ((-920 . -653) 118440) ((-920 . -651) 118377) ((-920 . -731) T) ((-920 . -1118) T) ((-920 . -1063) T) ((-920 . -1055) T) ((-920 . -111) 118315) ((-920 . -1057) 118267) ((-920 . -1062) 118219) ((-920 . -21) T) ((-920 . -23) T) ((-920 . -1107) T) ((-920 . -618) 118201) ((-920 . -102) T) ((-920 . -25) T) ((-920 . -131) T) ((-920 . -293) T) ((-920 . -244) T) ((-912 . -354) T) ((-912 . -1157) T) ((-912 . -372) T) ((-912 . -145) T) ((-912 . -367) T) ((-912 . -1227) T) ((-912 . -927) T) ((-912 . -562) T) ((-912 . -173) T) ((-912 . -621) 118151) ((-912 . -722) 118116) ((-912 . -645) 118081) ((-912 . -38) 118046) ((-912 . -457) T) ((-912 . -310) T) ((-912 . -111) 118002) ((-912 . -1057) 117967) ((-912 . -1062) 117932) ((-912 . -651) 117882) ((-912 . -653) 117847) ((-912 . -293) T) ((-912 . -244) T) ((-912 . -407) T) ((-912 . -1055) T) ((-912 . -1063) T) ((-912 . -1118) T) ((-912 . -731) T) ((-912 . -21) T) ((-912 . -23) T) ((-912 . -1107) T) ((-912 . -618) 117829) ((-912 . -102) T) ((-912 . -25) T) ((-912 . -131) T) ((-912 . -234) T) ((-912 . -332) 117816) ((-912 . -147) 117798) ((-912 . -1044) 117785) ((-912 . -1280) 117772) ((-912 . -1291) 117759) ((-912 . -619) 117741) ((-911 . -1107) T) ((-911 . -618) 117723) ((-911 . -102) T) ((-908 . -910) 117707) ((-908 . -855) 117658) ((-908 . -731) T) ((-908 . -1107) T) ((-908 . -618) 117640) ((-908 . -102) T) ((-908 . -1118) T) ((-908 . -478) T) ((-907 . -119) 117624) ((-907 . -494) 117608) ((-907 . -102) 117586) ((-907 . -1107) 117564) ((-907 . -519) 117497) ((-907 . -312) 117435) ((-907 . -618) 117346) ((-907 . -1222) T) ((-907 . -34) T) ((-907 . -1016) 117330) ((-904 . -1107) T) ((-904 . -618) 117312) ((-904 . -102) T) ((-899 . -855) T) ((-899 . -102) T) ((-899 . -618) 117294) ((-899 . -1107) T) ((-899 . -1044) 117271) ((-899 . -621) 117248) ((-896 . -1107) T) ((-896 . -618) 117230) ((-896 . -102) T) ((-896 . -1044) 117198) ((-896 . -621) 117166) ((-894 . -1107) T) ((-894 . -618) 117148) ((-894 . -102) T) ((-891 . -1107) T) ((-891 . -618) 117130) ((-891 . -102) T) ((-881 . -1089) T) ((-881 . -495) 117111) ((-881 . -618) 117077) ((-881 . -621) 117058) ((-881 . -1107) T) ((-881 . -102) T) ((-881 . -93) T) ((-881 . -1268) T) ((-879 . -1107) T) ((-879 . -618) 117040) ((-879 . -102) T) ((-878 . -1222) T) ((-878 . -618) 116912) ((-878 . -1107) 116863) ((-878 . -102) 116814) ((-877 . -997) 116798) ((-877 . -1157) 116776) ((-877 . -1044) 116642) ((-877 . -621) 116540) ((-877 . -619) 116347) ((-877 . -1026) 116325) ((-877 . -916) 116304) ((-877 . -890) 116288) ((-877 . -853) 116267) ((-877 . -802) 116246) ((-877 . -799) 116225) ((-877 . -855) 116176) ((-877 . -797) 116155) ((-877 . -796) 116134) ((-877 . -825) 116113) ((-877 . -892) 116038) ((-877 . -1222) T) ((-877 . -405) 116022) ((-877 . -644) 115970) ((-877 . -381) 115954) ((-877 . -289) 115912) ((-877 . -312) 115877) ((-877 . -519) 115789) ((-877 . -342) 115773) ((-877 . -244) T) ((-877 . -111) 115711) ((-877 . -1057) 115663) ((-877 . -1062) 115615) ((-877 . -293) T) ((-877 . -722) 115567) ((-877 . -645) 115519) ((-877 . -653) 115471) ((-877 . -651) 115408) ((-877 . -38) 115360) ((-877 . -310) T) ((-877 . -457) T) ((-877 . -173) T) ((-877 . -562) T) ((-877 . -927) T) ((-877 . -1227) T) ((-877 . -367) T) ((-877 . -234) 115339) ((-877 . -906) 115298) ((-877 . -232) 115282) ((-877 . -147) 115261) ((-877 . -145) 115240) ((-877 . -131) T) ((-877 . -25) T) ((-877 . -102) T) ((-877 . -618) 115222) ((-877 . -1107) T) ((-877 . -23) T) ((-877 . -21) T) ((-877 . -1055) T) ((-877 . -1063) T) ((-877 . -1118) T) ((-877 . -731) T) ((-876 . -997) 115199) ((-876 . -1157) NIL) ((-876 . -1044) 115176) ((-876 . -621) 115106) ((-876 . -619) NIL) ((-876 . -1026) NIL) ((-876 . -916) NIL) ((-876 . -890) 115083) ((-876 . -853) NIL) ((-876 . -802) NIL) ((-876 . -799) NIL) ((-876 . -855) NIL) ((-876 . -797) NIL) ((-876 . -796) NIL) ((-876 . -825) NIL) ((-876 . -892) NIL) ((-876 . -1222) T) ((-876 . -405) 115060) ((-876 . -644) 115037) ((-876 . -381) 115014) ((-876 . -289) 114965) ((-876 . -312) 114922) ((-876 . -519) 114830) ((-876 . -342) 114807) ((-876 . -244) T) ((-876 . -111) 114736) ((-876 . -1057) 114681) ((-876 . -1062) 114626) ((-876 . -293) T) ((-876 . -722) 114571) ((-876 . -645) 114516) ((-876 . -653) 114461) ((-876 . -651) 114391) ((-876 . -38) 114336) ((-876 . -310) T) ((-876 . -457) T) ((-876 . -173) T) ((-876 . -562) T) ((-876 . -927) T) ((-876 . -1227) T) ((-876 . -367) T) ((-876 . -234) NIL) ((-876 . -906) NIL) ((-876 . -232) 114313) ((-876 . -147) T) ((-876 . -145) NIL) ((-876 . -131) T) ((-876 . -25) T) ((-876 . -102) T) ((-876 . -618) 114295) ((-876 . -1107) T) ((-876 . -23) T) ((-876 . -21) T) ((-876 . -1055) T) ((-876 . -1063) T) ((-876 . -1118) T) ((-876 . -731) T) ((-874 . -875) 114279) ((-874 . -927) T) ((-874 . -562) T) ((-874 . -293) T) ((-874 . -173) T) ((-874 . -621) 114251) ((-874 . -722) 114238) ((-874 . -645) 114225) ((-874 . -1062) 114212) ((-874 . -1057) 114199) ((-874 . -111) 114184) ((-874 . -38) 114171) ((-874 . -457) T) ((-874 . -310) T) ((-874 . -1055) T) ((-874 . -1063) T) ((-874 . -1118) T) ((-874 . -731) T) ((-874 . -21) T) ((-874 . -651) 114143) ((-874 . -23) T) ((-874 . -1107) T) ((-874 . -618) 114125) ((-874 . -102) T) ((-874 . -25) T) ((-874 . -131) T) ((-874 . -653) 114112) ((-874 . -147) T) ((-871 . -1055) T) ((-871 . -1063) T) ((-871 . -1118) T) ((-871 . -731) T) ((-871 . -21) T) ((-871 . -651) 114057) ((-871 . -23) T) ((-871 . -1107) T) ((-871 . -618) 114019) ((-871 . -102) T) ((-871 . -25) T) ((-871 . -131) T) ((-871 . -653) 113979) ((-871 . -621) 113914) ((-871 . -495) 113891) ((-871 . -38) 113861) ((-871 . -111) 113826) ((-871 . -1057) 113796) ((-871 . -1062) 113766) ((-871 . -645) 113736) ((-871 . -722) 113706) ((-870 . -1107) T) ((-870 . -618) 113688) ((-870 . -102) T) ((-869 . -849) T) ((-869 . -855) T) ((-869 . -1107) T) ((-869 . -618) 113670) ((-869 . -102) T) ((-869 . -372) T) ((-869 . -619) 113592) ((-868 . -1107) T) ((-868 . -618) 113574) ((-868 . -102) T) ((-867 . -866) T) ((-867 . -174) T) ((-867 . -618) 113556) ((-863 . -855) T) ((-863 . -102) T) ((-863 . -618) 113538) ((-863 . -1107) T) ((-860 . -857) 113522) ((-860 . -1044) 113418) ((-860 . -621) 113315) ((-860 . -417) 113299) ((-860 . -722) 113269) ((-860 . -645) 113239) ((-860 . -653) 113213) ((-860 . -651) 113172) ((-860 . -131) T) ((-860 . -25) T) ((-860 . -102) T) ((-860 . -618) 113154) ((-860 . -1107) T) ((-860 . -23) T) ((-860 . -21) T) ((-860 . -1062) 113138) ((-860 . -1057) 113122) ((-860 . -111) 113101) ((-860 . -1055) T) ((-860 . -1063) T) ((-860 . -1118) T) ((-860 . -731) T) ((-860 . -38) 113071) ((-859 . -857) 113055) ((-859 . -1044) 112951) ((-859 . -621) 112869) ((-859 . -417) 112853) ((-859 . -722) 112823) ((-859 . -645) 112793) ((-859 . -653) 112767) ((-859 . -651) 112726) ((-859 . -131) T) ((-859 . -25) T) ((-859 . -102) T) ((-859 . -618) 112708) ((-859 . -1107) T) ((-859 . -23) T) ((-859 . -21) T) ((-859 . -1062) 112692) ((-859 . -1057) 112676) ((-859 . -111) 112655) ((-859 . -1055) T) ((-859 . -1063) T) ((-859 . -1118) T) ((-859 . -731) T) ((-859 . -38) 112625) ((-847 . -1107) T) ((-847 . -618) 112607) ((-847 . -102) T) ((-847 . -417) 112591) ((-847 . -621) 112459) ((-847 . -1044) 112355) ((-847 . -21) 112307) ((-847 . -651) 112224) ((-847 . -23) 112176) ((-847 . -25) 112128) ((-847 . -131) 112080) ((-847 . -853) 112059) ((-847 . -653) 112032) ((-847 . -1063) 112011) ((-847 . -1055) 111990) ((-847 . -802) 111969) ((-847 . -799) 111948) ((-847 . -855) 111927) ((-847 . -797) 111906) ((-847 . -796) 111885) ((-847 . -1118) 111864) ((-847 . -731) 111843) ((-846 . -1107) T) ((-846 . -618) 111825) ((-846 . -102) T) ((-843 . -841) 111807) ((-843 . -102) T) ((-843 . -618) 111789) ((-843 . -1107) T) ((-839 . -1055) T) ((-839 . -1063) T) ((-839 . -1118) T) ((-839 . -731) T) ((-839 . -21) T) ((-839 . -651) 111734) ((-839 . -23) T) ((-839 . -1107) T) ((-839 . -618) 111716) ((-839 . -102) T) ((-839 . -25) T) ((-839 . -131) T) ((-839 . -653) 111676) ((-839 . -621) 111630) ((-839 . -1044) 111599) ((-839 . -289) 111578) ((-839 . -147) 111557) ((-839 . -145) 111536) ((-839 . -38) 111506) ((-839 . -111) 111471) ((-839 . -1057) 111441) ((-839 . -1062) 111411) ((-839 . -645) 111381) ((-839 . -722) 111351) ((-837 . -1107) T) ((-837 . -618) 111333) ((-837 . -102) T) ((-837 . -417) 111317) ((-837 . -621) 111185) ((-837 . -1044) 111081) ((-837 . -21) 111033) ((-837 . -651) 110950) ((-837 . -23) 110902) ((-837 . -25) 110854) ((-837 . -131) 110806) ((-837 . -853) 110785) ((-837 . -653) 110758) ((-837 . -1063) 110737) ((-837 . -1055) 110716) ((-837 . -802) 110695) ((-837 . -799) 110674) ((-837 . -855) 110653) ((-837 . -797) 110632) ((-837 . -796) 110611) ((-837 . -1118) 110590) ((-837 . -731) 110569) ((-833 . -713) 110553) ((-833 . -621) 110508) ((-833 . -722) 110478) ((-833 . -645) 110448) ((-833 . -653) 110422) ((-833 . -651) 110381) ((-833 . -131) T) ((-833 . -25) T) ((-833 . -102) T) ((-833 . -618) 110363) ((-833 . -1107) T) ((-833 . -23) T) ((-833 . -21) T) ((-833 . -1062) 110347) ((-833 . -1057) 110331) ((-833 . -111) 110310) ((-833 . -1055) T) ((-833 . -1063) T) ((-833 . -1118) T) ((-833 . -731) T) ((-833 . -38) 110280) ((-833 . -234) 110259) ((-831 . -1107) T) ((-831 . -618) 110241) ((-831 . -102) T) ((-830 . -1107) T) ((-830 . -618) 110223) ((-830 . -102) T) ((-829 . -1107) T) ((-829 . -618) 110205) ((-829 . -102) T) ((-824 . -390) 110189) ((-824 . -621) 110173) ((-824 . -1044) 110157) ((-824 . -855) T) ((-824 . -1118) T) ((-824 . -102) T) ((-824 . -618) 110139) ((-824 . -1107) T) ((-824 . -731) T) ((-824 . -851) T) ((-824 . -862) T) ((-823 . -268) 110123) ((-823 . -621) 110107) ((-823 . -1044) 110091) ((-823 . -1107) T) ((-823 . -618) 110073) ((-823 . -102) T) ((-823 . -855) T) ((-822 . -111) 110015) ((-822 . -1057) 109966) ((-822 . -1062) 109917) ((-822 . -21) T) ((-822 . -651) 109853) ((-822 . -23) T) ((-822 . -1107) T) ((-822 . -618) 109822) ((-822 . -102) T) ((-822 . -25) T) ((-822 . -131) T) ((-822 . -653) 109773) ((-822 . -234) T) ((-822 . -621) 109687) ((-822 . -731) T) ((-822 . -1118) T) ((-822 . -1063) T) ((-822 . -1055) T) ((-822 . -495) 109671) ((-822 . -367) 109650) ((-822 . -1227) 109629) ((-822 . -927) 109608) ((-822 . -562) 109587) ((-822 . -173) 109566) ((-822 . -722) 109508) ((-822 . -645) 109450) ((-822 . -38) 109392) ((-822 . -457) 109371) ((-822 . -310) 109350) ((-822 . -293) 109329) ((-822 . -244) 109308) ((-821 . -255) 109247) ((-821 . -621) 108984) ((-821 . -1044) 108812) ((-821 . -619) NIL) ((-821 . -329) 108774) ((-821 . -417) 108758) ((-821 . -38) 108607) ((-821 . -111) 108436) ((-821 . -1057) 108279) ((-821 . -1062) 108122) ((-821 . -651) 108032) ((-821 . -653) 107957) ((-821 . -645) 107806) ((-821 . -722) 107655) ((-821 . -145) 107634) ((-821 . -147) 107613) ((-821 . -173) 107524) ((-821 . -562) 107455) ((-821 . -293) 107386) ((-821 . -47) 107348) ((-821 . -381) 107332) ((-821 . -644) 107280) ((-821 . -457) 107231) ((-821 . -519) 107099) ((-821 . -906) 107035) ((-821 . -892) NIL) ((-821 . -916) 107014) ((-821 . -1227) 106993) ((-821 . -956) 106940) ((-821 . -312) 106927) ((-821 . -234) 106906) ((-821 . -131) T) ((-821 . -25) T) ((-821 . -102) T) ((-821 . -618) 106888) ((-821 . -1107) T) ((-821 . -23) T) ((-821 . -21) T) ((-821 . -731) T) ((-821 . -1118) T) ((-821 . -1063) T) ((-821 . -1055) T) ((-821 . -232) 106872) ((-820 . -239) 106851) ((-820 . -1280) 106821) ((-820 . -796) 106800) ((-820 . -853) 106779) ((-820 . -802) 106730) ((-820 . -799) 106681) ((-820 . -855) 106632) ((-820 . -797) 106583) ((-820 . -798) 106562) ((-820 . -291) 106539) ((-820 . -289) 106516) ((-820 . -494) 106500) ((-820 . -519) 106433) ((-820 . -312) 106371) ((-820 . -1222) T) ((-820 . -34) T) ((-820 . -609) 106348) ((-820 . -1044) 106175) ((-820 . -621) 105905) ((-820 . -417) 105874) ((-820 . -644) 105780) ((-820 . -381) 105749) ((-820 . -372) 105728) ((-820 . -234) 105680) ((-820 . -906) 105612) ((-820 . -232) 105581) ((-820 . -111) 105471) ((-820 . -1057) 105368) ((-820 . -1062) 105265) ((-820 . -173) 105244) ((-820 . -618) 104975) ((-820 . -722) 104917) ((-820 . -645) 104859) ((-820 . -653) 104707) ((-820 . -651) 104457) ((-820 . -131) 104327) ((-820 . -23) 104197) ((-820 . -21) 104107) ((-820 . -1055) 104037) ((-820 . -1063) 103967) ((-820 . -1118) 103877) ((-820 . -731) 103787) ((-820 . -38) 103757) ((-820 . -1107) 103547) ((-820 . -102) 103337) ((-820 . -25) 103188) ((-813 . -1107) T) ((-813 . -618) 103170) ((-813 . -102) T) ((-803 . -801) 103154) ((-803 . -855) 103133) ((-803 . -1044) 102913) ((-803 . -621) 102759) ((-803 . -417) 102722) ((-803 . -289) 102680) ((-803 . -312) 102645) ((-803 . -519) 102557) ((-803 . -342) 102541) ((-803 . -372) 102520) ((-803 . -619) 102481) ((-803 . -147) 102460) ((-803 . -145) 102439) ((-803 . -722) 102423) ((-803 . -645) 102407) ((-803 . -653) 102381) ((-803 . -651) 102340) ((-803 . -131) T) ((-803 . -25) T) ((-803 . -102) T) ((-803 . -618) 102322) ((-803 . -1107) T) ((-803 . -23) T) ((-803 . -21) T) ((-803 . -1062) 102306) ((-803 . -1057) 102290) ((-803 . -111) 102269) ((-803 . -1055) T) ((-803 . -1063) T) ((-803 . -1118) T) ((-803 . -731) T) ((-803 . -38) 102253) ((-786 . -1248) 102237) ((-786 . -1157) 102215) ((-786 . -619) NIL) ((-786 . -312) 102202) ((-786 . -519) 102149) ((-786 . -329) 102126) ((-786 . -1044) 101985) ((-786 . -417) 101969) ((-786 . -38) 101798) ((-786 . -111) 101607) ((-786 . -1057) 101430) ((-786 . -1062) 101253) ((-786 . -651) 101163) ((-786 . -653) 101088) ((-786 . -645) 100917) ((-786 . -722) 100746) ((-786 . -621) 100494) ((-786 . -145) 100473) ((-786 . -147) 100452) ((-786 . -47) 100429) ((-786 . -381) 100413) ((-786 . -644) 100361) ((-786 . -906) 100304) ((-786 . -892) NIL) ((-786 . -916) 100283) ((-786 . -1227) 100262) ((-786 . -956) 100231) ((-786 . -927) 100210) ((-786 . -562) 100121) ((-786 . -293) 100032) ((-786 . -173) 99923) ((-786 . -457) 99854) ((-786 . -310) 99833) ((-786 . -289) 99760) ((-786 . -234) T) ((-786 . -131) T) ((-786 . -25) T) ((-786 . -102) T) ((-786 . -618) 99721) ((-786 . -1107) T) ((-786 . -23) T) ((-786 . -21) T) ((-786 . -731) T) ((-786 . -1118) T) ((-786 . -1063) T) ((-786 . -1055) T) ((-786 . -232) 99705) ((-785 . -1071) 99672) ((-785 . -619) 99306) ((-785 . -312) 99293) ((-785 . -519) 99245) ((-785 . -329) 99217) ((-785 . -1044) 99074) ((-785 . -417) 99058) ((-785 . -38) 98907) ((-785 . -621) 98673) ((-785 . -653) 98598) ((-785 . -651) 98508) ((-785 . -731) T) ((-785 . -1118) T) ((-785 . -1063) T) ((-785 . -1055) T) ((-785 . -111) 98337) ((-785 . -1057) 98180) ((-785 . -1062) 98023) ((-785 . -21) T) ((-785 . -23) T) ((-785 . -1107) T) ((-785 . -618) 97937) ((-785 . -102) T) ((-785 . -25) T) ((-785 . -131) T) ((-785 . -645) 97786) ((-785 . -722) 97635) ((-785 . -145) 97614) ((-785 . -147) 97593) ((-785 . -173) 97504) ((-785 . -562) 97435) ((-785 . -293) 97366) ((-785 . -47) 97338) ((-785 . -381) 97322) ((-785 . -644) 97270) ((-785 . -457) 97221) ((-785 . -906) 97205) ((-785 . -892) 97064) ((-785 . -916) 97043) ((-785 . -1227) 97022) ((-785 . -956) 96989) ((-778 . -1107) T) ((-778 . -618) 96971) ((-778 . -102) T) ((-776 . -798) T) ((-776 . -131) T) ((-776 . -25) T) ((-776 . -102) T) ((-776 . -618) 96953) ((-776 . -1107) T) ((-776 . -23) T) ((-776 . -797) T) ((-776 . -855) T) ((-776 . -799) T) ((-776 . -802) T) ((-776 . -731) T) ((-776 . -1118) T) ((-774 . -1107) T) ((-774 . -618) 96935) ((-774 . -102) T) ((-741 . -742) 96919) ((-741 . -1105) 96903) ((-741 . -236) 96887) ((-741 . -619) 96848) ((-741 . -151) 96832) ((-741 . -494) 96816) ((-741 . -102) T) ((-741 . -1107) T) ((-741 . -519) 96749) ((-741 . -312) 96687) ((-741 . -618) 96669) ((-741 . -1222) T) ((-741 . -34) T) ((-741 . -107) 96653) ((-741 . -700) 96637) ((-740 . -1055) T) ((-740 . -1063) T) ((-740 . -1118) T) ((-740 . -731) T) ((-740 . -21) T) ((-740 . -651) 96582) ((-740 . -23) T) ((-740 . -1107) T) ((-740 . -618) 96564) ((-740 . -102) T) ((-740 . -25) T) ((-740 . -131) T) ((-740 . -653) 96524) ((-740 . -621) 96480) ((-740 . -1044) 96451) ((-740 . -147) 96430) ((-740 . -145) 96409) ((-740 . -38) 96379) ((-740 . -111) 96344) ((-740 . -1057) 96314) ((-740 . -1062) 96284) ((-740 . -645) 96254) ((-740 . -722) 96224) ((-740 . -372) 96177) ((-736 . -956) 96130) ((-736 . -621) 95915) ((-736 . -1044) 95791) ((-736 . -1227) 95770) ((-736 . -916) 95749) ((-736 . -892) NIL) ((-736 . -906) 95726) ((-736 . -519) 95669) ((-736 . -457) 95620) ((-736 . -644) 95568) ((-736 . -381) 95552) ((-736 . -47) 95517) ((-736 . -38) 95366) ((-736 . -645) 95215) ((-736 . -722) 95064) ((-736 . -293) 94995) ((-736 . -562) 94926) ((-736 . -111) 94755) ((-736 . -1057) 94598) ((-736 . -1062) 94441) ((-736 . -173) 94352) ((-736 . -147) 94331) ((-736 . -145) 94310) ((-736 . -653) 94235) ((-736 . -651) 94145) ((-736 . -131) T) ((-736 . -25) T) ((-736 . -102) T) ((-736 . -618) 94127) ((-736 . -1107) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -1055) T) ((-736 . -1063) T) ((-736 . -1118) T) ((-736 . -731) T) ((-736 . -417) 94111) ((-736 . -329) 94076) ((-736 . -312) 94063) ((-736 . -619) 93924) ((-723 . -478) T) ((-723 . -1118) T) ((-723 . -102) T) ((-723 . -618) 93906) ((-723 . -1107) T) ((-723 . -731) T) ((-720 . -1055) T) ((-720 . -1063) T) ((-720 . -1118) T) ((-720 . -731) T) ((-720 . -21) T) ((-720 . -651) 93878) ((-720 . -23) T) ((-720 . -1107) T) ((-720 . -618) 93860) ((-720 . -102) T) ((-720 . -25) T) ((-720 . -131) T) ((-720 . -653) 93847) ((-720 . -621) 93829) ((-719 . -1055) T) ((-719 . -1063) T) ((-719 . -1118) T) ((-719 . -731) T) ((-719 . -21) T) ((-719 . -651) 93774) ((-719 . -23) T) ((-719 . -1107) T) ((-719 . -618) 93756) ((-719 . -102) T) ((-719 . -25) T) ((-719 . -131) T) ((-719 . -653) 93716) ((-719 . -621) 93670) ((-719 . -1044) 93639) ((-719 . -289) 93618) ((-719 . -147) 93597) ((-719 . -145) 93576) ((-719 . -38) 93546) ((-719 . -111) 93511) ((-719 . -1057) 93481) ((-719 . -1062) 93451) ((-719 . -645) 93421) ((-719 . -722) 93391) ((-718 . -855) T) ((-718 . -102) T) ((-718 . -618) 93326) ((-718 . -1107) T) ((-718 . -495) 93276) ((-718 . -621) 93226) ((-717 . -1248) 93210) ((-717 . -1157) 93188) ((-717 . -619) NIL) ((-717 . -312) 93175) ((-717 . -519) 93122) ((-717 . -329) 93099) ((-717 . -1044) 92979) ((-717 . -417) 92963) ((-717 . -38) 92792) ((-717 . -111) 92601) ((-717 . -1057) 92424) ((-717 . -1062) 92247) ((-717 . -651) 92157) ((-717 . -653) 92082) ((-717 . -645) 91911) ((-717 . -722) 91740) ((-717 . -621) 91496) ((-717 . -145) 91475) ((-717 . -147) 91454) ((-717 . -47) 91431) ((-717 . -381) 91415) ((-717 . -644) 91363) ((-717 . -906) 91306) ((-717 . -892) NIL) ((-717 . -916) 91285) ((-717 . -1227) 91264) ((-717 . -956) 91233) ((-717 . -927) 91212) ((-717 . -562) 91123) ((-717 . -293) 91034) ((-717 . -173) 90925) ((-717 . -457) 90856) ((-717 . -310) 90835) ((-717 . -289) 90762) ((-717 . -234) T) ((-717 . -131) T) ((-717 . -25) T) ((-717 . -102) T) ((-717 . -618) 90744) ((-717 . -1107) T) ((-717 . -23) T) ((-717 . -21) T) ((-717 . -731) T) ((-717 . -1118) T) ((-717 . -1063) T) ((-717 . -1055) T) ((-717 . -232) 90728) ((-717 . -372) 90707) ((-716 . -367) T) ((-716 . -1227) T) ((-716 . -927) T) ((-716 . -562) T) ((-716 . -173) T) ((-716 . -621) 90657) ((-716 . -722) 90622) ((-716 . -645) 90587) ((-716 . -38) 90552) ((-716 . -457) T) ((-716 . -310) T) ((-716 . -653) 90517) ((-716 . -651) 90467) ((-716 . -731) T) ((-716 . -1118) T) ((-716 . -1063) T) ((-716 . -1055) T) ((-716 . -111) 90423) ((-716 . -1057) 90388) ((-716 . -1062) 90353) ((-716 . -21) T) ((-716 . -23) T) ((-716 . -1107) T) ((-716 . -618) 90335) ((-716 . -102) T) ((-716 . -25) T) ((-716 . -131) T) ((-716 . -293) T) ((-716 . -244) T) ((-715 . -1107) T) ((-715 . -618) 90317) ((-715 . -102) T) ((-706 . -392) T) ((-706 . -1044) 90299) ((-706 . -855) T) ((-706 . -38) 90286) ((-706 . -621) 90258) ((-706 . -731) T) ((-706 . -1118) T) ((-706 . -1063) T) ((-706 . -1055) T) ((-706 . -111) 90243) ((-706 . -1057) 90230) ((-706 . -1062) 90217) ((-706 . -21) T) ((-706 . -651) 90189) ((-706 . -23) T) ((-706 . -1107) T) ((-706 . -618) 90171) ((-706 . -102) T) ((-706 . -25) T) ((-706 . -131) T) ((-706 . -653) 90158) ((-706 . -645) 90145) ((-706 . -722) 90132) ((-706 . -173) T) ((-706 . -293) T) ((-706 . -562) T) ((-706 . -550) T) ((-706 . -1227) T) ((-706 . -1157) T) ((-706 . -619) 90047) ((-706 . -1026) T) ((-706 . -892) 90029) ((-706 . -853) T) ((-706 . -802) T) ((-706 . -799) T) ((-706 . -797) T) ((-706 . -796) T) ((-706 . -825) T) ((-706 . -644) 90011) ((-706 . -927) T) ((-706 . -457) T) ((-706 . -310) T) ((-706 . -234) T) ((-706 . -143) T) ((-706 . -147) T) ((-704 . -409) T) ((-704 . -147) T) ((-704 . -621) 89946) ((-704 . -653) 89911) ((-704 . -651) 89861) ((-704 . -131) T) ((-704 . -25) T) ((-704 . -102) T) ((-704 . -618) 89843) ((-704 . -1107) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -731) T) ((-704 . -1118) T) ((-704 . -1063) T) ((-704 . -1055) T) ((-704 . -619) 89788) ((-704 . -367) T) ((-704 . -1227) T) ((-704 . -927) T) ((-704 . -562) T) ((-704 . -173) T) ((-704 . -722) 89753) ((-704 . -645) 89718) ((-704 . -38) 89683) ((-704 . -457) T) ((-704 . -310) T) ((-704 . -111) 89639) ((-704 . -1057) 89604) ((-704 . -1062) 89569) ((-704 . -293) T) ((-704 . -244) T) ((-704 . -853) T) ((-704 . -802) T) ((-704 . -799) T) ((-704 . -855) T) ((-704 . -797) T) ((-704 . -796) T) ((-704 . -892) 89551) ((-704 . -1008) T) ((-704 . -1026) T) ((-704 . -1044) 89496) ((-704 . -1066) T) ((-704 . -392) T) ((-699 . -392) T) ((-699 . -1044) 89441) ((-699 . -855) T) ((-699 . -38) 89391) ((-699 . -621) 89326) ((-699 . -731) T) ((-699 . -1118) T) ((-699 . -1063) T) ((-699 . -1055) T) ((-699 . -111) 89260) ((-699 . -1057) 89210) ((-699 . -1062) 89160) ((-699 . -21) T) ((-699 . -651) 89095) ((-699 . -23) T) ((-699 . -1107) T) ((-699 . -618) 89077) ((-699 . -102) T) ((-699 . -25) T) ((-699 . -131) T) ((-699 . -653) 89027) ((-699 . -645) 88977) ((-699 . -722) 88927) ((-699 . -173) T) ((-699 . -293) T) ((-699 . -562) T) ((-699 . -166) 88909) ((-699 . -35) NIL) ((-699 . -95) NIL) ((-699 . -287) NIL) ((-699 . -498) NIL) ((-699 . -1211) NIL) ((-699 . -1208) NIL) ((-699 . -1008) NIL) ((-699 . -916) NIL) ((-699 . -619) 88817) ((-699 . -890) 88799) ((-699 . -372) NIL) ((-699 . -354) NIL) ((-699 . -1157) NIL) ((-699 . -407) NIL) ((-699 . -415) 88766) ((-699 . -374) 88733) ((-699 . -729) 88700) ((-699 . -417) 88682) ((-699 . -892) 88664) ((-699 . -1222) T) ((-699 . -405) 88646) ((-699 . -644) 88628) ((-699 . -381) 88610) ((-699 . -289) NIL) ((-699 . -312) NIL) ((-699 . -519) NIL) ((-699 . -342) 88592) ((-699 . -244) T) ((-699 . -1227) T) ((-699 . -367) T) ((-699 . -927) T) ((-699 . -457) T) ((-699 . -310) T) ((-699 . -234) NIL) ((-699 . -906) NIL) ((-699 . -232) 88574) ((-699 . -147) T) ((-699 . -145) NIL) ((-696 . -1268) T) ((-696 . -1044) 88558) ((-696 . -621) 88542) ((-696 . -618) 88524) ((-694 . -691) 88482) ((-694 . -494) 88466) ((-694 . -102) 88444) ((-694 . -1107) 88422) ((-694 . -519) 88355) ((-694 . -312) 88293) ((-694 . -618) 88225) ((-694 . -1222) T) ((-694 . -34) T) ((-694 . -57) 88183) ((-694 . -619) 88144) ((-686 . -1089) T) ((-686 . -495) 88125) ((-686 . -618) 88075) ((-686 . -621) 88056) ((-686 . -1107) T) ((-686 . -102) T) ((-686 . -93) T) ((-682 . -855) T) ((-682 . -102) T) ((-682 . -618) 88038) ((-682 . -1107) T) ((-682 . -1044) 88022) ((-682 . -621) 88006) ((-681 . -1089) T) ((-681 . -495) 87987) ((-681 . -618) 87953) ((-681 . -621) 87934) ((-681 . -1107) T) ((-681 . -102) T) ((-681 . -93) T) ((-680 . -494) 87918) ((-680 . -102) 87896) ((-680 . -1107) 87874) ((-680 . -519) 87807) ((-680 . -312) 87745) ((-680 . -618) 87677) ((-680 . -1222) T) ((-680 . -34) T) ((-677 . -855) T) ((-677 . -102) T) ((-677 . -618) 87659) ((-677 . -1107) T) ((-677 . -1044) 87643) ((-677 . -621) 87627) ((-676 . -1089) T) ((-676 . -495) 87608) ((-676 . -618) 87574) ((-676 . -621) 87555) ((-676 . -1107) T) ((-676 . -102) T) ((-676 . -93) T) ((-675 . -1129) 87500) ((-675 . -494) 87484) ((-675 . -519) 87417) ((-675 . -312) 87355) ((-675 . -1222) T) ((-675 . -34) T) ((-675 . -1059) 87295) ((-675 . -1044) 87191) ((-675 . -621) 87109) ((-675 . -417) 87093) ((-675 . -644) 87041) ((-675 . -381) 87025) ((-675 . -234) 87004) ((-675 . -906) 86963) ((-675 . -232) 86947) ((-675 . -722) 86931) ((-675 . -645) 86915) ((-675 . -653) 86889) ((-675 . -651) 86848) ((-675 . -131) T) ((-675 . -25) T) ((-675 . -102) T) ((-675 . -618) 86810) ((-675 . -1107) T) ((-675 . -23) T) ((-675 . -21) T) ((-675 . -1062) 86794) ((-675 . -1057) 86778) ((-675 . -111) 86757) ((-675 . -1055) T) ((-675 . -1063) T) ((-675 . -1118) T) ((-675 . -731) T) ((-675 . -38) 86717) ((-675 . -423) 86701) ((-675 . -749) 86685) ((-675 . -725) T) ((-675 . -766) T) ((-675 . -371) 86669) ((-669 . -378) 86648) ((-669 . -722) 86632) ((-669 . -645) 86616) ((-669 . -653) 86600) ((-669 . -651) 86569) ((-669 . -131) T) ((-669 . -25) T) ((-669 . -102) T) ((-669 . -618) 86551) ((-669 . -1107) T) ((-669 . -23) T) ((-669 . -21) T) ((-669 . -1062) 86535) ((-669 . -1057) 86519) ((-669 . -111) 86498) ((-669 . -640) 86482) ((-669 . -388) 86454) ((-669 . -621) 86431) ((-669 . -1044) 86408) ((-661 . -663) 86392) ((-661 . -38) 86362) ((-661 . -621) 86280) ((-661 . -653) 86254) ((-661 . -651) 86213) ((-661 . -731) T) ((-661 . -1118) T) ((-661 . -1063) T) ((-661 . -1055) T) ((-661 . -111) 86192) ((-661 . -1057) 86176) ((-661 . -1062) 86160) ((-661 . -21) T) ((-661 . -23) T) ((-661 . -1107) T) ((-661 . -618) 86142) ((-661 . -102) T) ((-661 . -25) T) ((-661 . -131) T) ((-661 . -645) 86112) ((-661 . -722) 86082) ((-661 . -417) 86066) ((-661 . -1044) 85962) ((-661 . -857) 85946) ((-661 . -289) 85907) ((-660 . -663) 85891) ((-660 . -38) 85861) ((-660 . -621) 85779) ((-660 . -653) 85753) ((-660 . -651) 85712) ((-660 . -731) T) ((-660 . -1118) T) ((-660 . -1063) T) ((-660 . -1055) T) ((-660 . -111) 85691) ((-660 . -1057) 85675) ((-660 . -1062) 85659) ((-660 . -21) T) ((-660 . -23) T) ((-660 . -1107) T) ((-660 . -618) 85641) ((-660 . -102) T) ((-660 . -25) T) ((-660 . -131) T) ((-660 . -645) 85611) ((-660 . -722) 85581) ((-660 . -417) 85565) ((-660 . -1044) 85461) ((-660 . -857) 85445) ((-660 . -289) 85424) ((-659 . -663) 85408) ((-659 . -38) 85378) ((-659 . -621) 85296) ((-659 . -653) 85270) ((-659 . -651) 85229) ((-659 . -731) T) ((-659 . -1118) T) ((-659 . -1063) T) ((-659 . -1055) T) ((-659 . -111) 85208) ((-659 . -1057) 85192) ((-659 . -1062) 85176) ((-659 . -21) T) ((-659 . -23) T) ((-659 . -1107) T) ((-659 . -618) 85158) ((-659 . -102) T) ((-659 . -25) T) ((-659 . -131) T) ((-659 . -645) 85128) ((-659 . -722) 85098) ((-659 . -417) 85082) ((-659 . -1044) 84978) ((-659 . -857) 84962) ((-659 . -289) 84941) ((-657 . -722) 84925) ((-657 . -645) 84909) ((-657 . -653) 84893) ((-657 . -651) 84862) ((-657 . -131) T) ((-657 . -25) T) ((-657 . -102) T) ((-657 . -618) 84844) ((-657 . -1107) T) ((-657 . -23) T) ((-657 . -21) T) ((-657 . -1062) 84828) ((-657 . -1057) 84812) ((-657 . -111) 84791) ((-657 . -796) 84770) ((-657 . -797) 84749) ((-657 . -855) 84728) ((-657 . -799) 84707) ((-657 . -802) 84686) ((-654 . -1107) T) ((-654 . -618) 84668) ((-654 . -102) T) ((-654 . -1044) 84652) ((-654 . -621) 84636) ((-652 . -700) 84620) ((-652 . -107) 84604) ((-652 . -34) T) ((-652 . -1222) T) ((-652 . -618) 84536) ((-652 . -312) 84474) ((-652 . -519) 84407) ((-652 . -1107) 84385) ((-652 . -102) 84363) ((-652 . -494) 84347) ((-652 . -151) 84331) ((-652 . -619) 84292) ((-652 . -236) 84276) ((-650 . -1089) T) ((-650 . -495) 84257) ((-650 . -618) 84210) ((-650 . -621) 84191) ((-650 . -1107) T) ((-650 . -102) T) ((-650 . -93) T) ((-646 . -671) 84175) ((-646 . -1261) 84159) ((-646 . -1016) 84143) ((-646 . -1155) 84127) ((-646 . -855) 84106) ((-646 . -376) 84090) ((-646 . -656) 84074) ((-646 . -291) 84051) ((-646 . -289) 84028) ((-646 . -609) 84005) ((-646 . -619) 83966) ((-646 . -494) 83950) ((-646 . -102) 83900) ((-646 . -1107) 83850) ((-646 . -519) 83783) ((-646 . -312) 83721) ((-646 . -618) 83633) ((-646 . -1222) T) ((-646 . -34) T) ((-646 . -151) 83617) ((-646 . -285) 83601) ((-646 . -826) 83580) ((-638 . -749) 83564) ((-638 . -725) T) ((-638 . -766) T) ((-638 . -111) 83543) ((-638 . -1057) 83527) ((-638 . -1062) 83511) ((-638 . -21) T) ((-638 . -651) 83480) ((-638 . -23) T) ((-638 . -1107) T) ((-638 . -618) 83449) ((-638 . -102) T) ((-638 . -25) T) ((-638 . -131) T) ((-638 . -653) 83433) ((-638 . -645) 83417) ((-638 . -722) 83401) ((-638 . -423) 83366) ((-638 . -371) 83298) ((-637 . -1199) 83273) ((-637 . -230) 83219) ((-637 . -107) 83165) ((-637 . -312) 83016) ((-637 . -519) 82860) ((-637 . -494) 82791) ((-637 . -151) 82737) ((-637 . -619) NIL) ((-637 . -236) 82683) ((-637 . -615) 82658) ((-637 . -291) 82633) ((-637 . -289) 82608) ((-637 . -102) T) ((-637 . -1107) T) ((-637 . -618) 82590) ((-637 . -1222) T) ((-637 . -34) T) ((-637 . -609) 82565) ((-632 . -478) T) ((-632 . -1118) T) ((-632 . -102) T) ((-632 . -618) 82547) ((-632 . -1107) T) ((-632 . -731) T) ((-631 . -1089) T) ((-631 . -495) 82528) ((-631 . -618) 82494) ((-631 . -621) 82475) ((-631 . -1107) T) ((-631 . -102) T) ((-631 . -93) T) ((-628 . -232) 82459) ((-628 . -906) 82418) ((-628 . -1055) T) ((-628 . -1063) T) ((-628 . -1118) T) ((-628 . -731) T) ((-628 . -21) T) ((-628 . -651) 82390) ((-628 . -23) T) ((-628 . -1107) T) ((-628 . -618) 82372) ((-628 . -102) T) ((-628 . -25) T) ((-628 . -131) T) ((-628 . -653) 82359) ((-628 . -621) 82254) ((-628 . -234) 82233) ((-628 . -562) T) ((-628 . -293) T) ((-628 . -173) T) ((-628 . -722) 82220) ((-628 . -645) 82207) ((-628 . -1062) 82194) ((-628 . -1057) 82181) ((-628 . -111) 82166) ((-628 . -38) 82153) ((-628 . -619) 82130) ((-628 . -417) 82114) ((-628 . -1044) 81997) ((-628 . -147) 81976) ((-628 . -145) 81955) ((-628 . -310) 81934) ((-628 . -457) 81913) ((-628 . -927) 81892) ((-624 . -38) 81876) ((-624 . -621) 81845) ((-624 . -653) 81819) ((-624 . -651) 81778) ((-624 . -731) T) ((-624 . -1118) T) ((-624 . -1063) T) ((-624 . -1055) T) ((-624 . -111) 81757) ((-624 . -1057) 81741) ((-624 . -1062) 81725) ((-624 . -21) T) ((-624 . -23) T) ((-624 . -1107) T) ((-624 . -618) 81707) ((-624 . -102) T) ((-624 . -25) T) ((-624 . -131) T) ((-624 . -645) 81691) ((-624 . -722) 81675) ((-624 . -853) 81654) ((-624 . -802) 81633) ((-624 . -799) 81612) ((-624 . -855) 81591) ((-624 . -797) 81570) ((-624 . -796) 81549) ((-622 . -973) T) ((-622 . -102) T) ((-622 . -618) 81531) ((-622 . -1107) T) ((-616 . -132) T) ((-616 . -102) T) ((-616 . -618) 81513) ((-616 . -1107) T) ((-616 . -855) T) ((-616 . -890) 81497) ((-616 . -619) 81358) ((-613 . -369) 81298) ((-613 . -102) T) ((-613 . -618) 81280) ((-613 . -1107) T) ((-613 . -1199) 81256) ((-613 . -230) 81203) ((-613 . -107) 81150) ((-613 . -312) 80945) ((-613 . -519) 80728) ((-613 . -494) 80662) ((-613 . -151) 80609) ((-613 . -619) NIL) ((-613 . -236) 80556) ((-613 . -615) 80532) ((-613 . -291) 80508) ((-613 . -289) 80484) ((-613 . -1222) T) ((-613 . -34) T) ((-613 . -609) 80460) ((-612 . -749) 80444) ((-612 . -725) T) ((-612 . -766) T) ((-612 . -111) 80423) ((-612 . -1057) 80407) ((-612 . -1062) 80391) ((-612 . -21) T) ((-612 . -651) 80360) ((-612 . -23) T) ((-612 . -1107) T) ((-612 . -618) 80329) ((-612 . -102) T) ((-612 . -25) T) ((-612 . -131) T) ((-612 . -653) 80313) ((-612 . -645) 80297) ((-612 . -722) 80281) ((-612 . -423) 80246) ((-612 . -371) 80178) ((-611 . -1089) T) ((-611 . -495) 80159) ((-611 . -618) 80109) ((-611 . -621) 80090) ((-611 . -1107) T) ((-611 . -102) T) ((-611 . -93) T) ((-610 . -618) 80057) ((-610 . -495) 80039) ((-610 . -621) 80021) ((-607 . -1271) 80005) ((-607 . -376) 79989) ((-607 . -855) 79968) ((-607 . -151) 79952) ((-607 . -34) T) ((-607 . -1222) T) ((-607 . -618) 79864) ((-607 . -312) 79802) ((-607 . -519) 79735) ((-607 . -1107) 79685) ((-607 . -102) 79635) ((-607 . -494) 79619) ((-607 . -619) 79580) ((-607 . -609) 79557) ((-607 . -289) 79534) ((-607 . -291) 79511) ((-607 . -656) 79495) ((-607 . -19) 79479) ((-606 . -618) 79461) ((-602 . -1107) T) ((-602 . -618) 79427) ((-602 . -102) T) ((-602 . -495) 79408) ((-602 . -621) 79389) ((-601 . -1055) T) ((-601 . -1063) T) ((-601 . -1118) T) ((-601 . -731) T) ((-601 . -21) T) ((-601 . -651) 79348) ((-601 . -23) T) ((-601 . -1107) T) ((-601 . -618) 79330) ((-601 . -102) T) ((-601 . -25) T) ((-601 . -131) T) ((-601 . -653) 79304) ((-601 . -621) 79262) ((-601 . -111) 79215) ((-601 . -1057) 79175) ((-601 . -1062) 79135) ((-601 . -562) 79114) ((-601 . -293) 79093) ((-601 . -173) 79072) ((-601 . -722) 79045) ((-601 . -645) 79018) ((-601 . -38) 78991) ((-600 . -1251) 78968) ((-600 . -47) 78945) ((-600 . -38) 78842) ((-600 . -645) 78739) ((-600 . -722) 78636) ((-600 . -621) 78518) ((-600 . -293) 78497) ((-600 . -562) 78476) ((-600 . -111) 78345) ((-600 . -1057) 78228) ((-600 . -1062) 78111) ((-600 . -173) 78062) ((-600 . -147) 78041) ((-600 . -145) 78020) ((-600 . -653) 77945) ((-600 . -651) 77855) ((-600 . -979) 77824) ((-600 . -906) 77737) ((-600 . -289) 77722) ((-600 . -1055) T) ((-600 . -1063) T) ((-600 . -1118) T) ((-600 . -731) T) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1107) T) ((-600 . -618) 77704) ((-600 . -102) T) ((-600 . -25) T) ((-600 . -131) T) ((-600 . -234) 77663) ((-598 . -1150) T) ((-598 . -376) 77645) ((-598 . -855) T) ((-598 . -151) 77627) ((-598 . -34) T) ((-598 . -1222) T) ((-598 . -618) 77609) ((-598 . -312) NIL) ((-598 . -519) NIL) ((-598 . -1107) T) ((-598 . -102) T) ((-598 . -494) 77591) ((-598 . -619) NIL) ((-598 . -609) 77566) ((-598 . -289) 77541) ((-598 . -291) 77516) ((-598 . -656) 77498) ((-598 . -19) 77480) ((-597 . -1089) T) ((-597 . -495) 77461) ((-597 . -618) 77427) ((-597 . -621) 77408) ((-597 . -1107) T) ((-597 . -102) T) ((-597 . -93) T) ((-591 . -1107) T) ((-591 . -618) 77374) ((-591 . -102) T) ((-591 . -495) 77355) ((-591 . -621) 77336) ((-588 . -722) 77311) ((-588 . -645) 77286) ((-588 . -653) 77261) ((-588 . -651) 77221) ((-588 . -131) T) ((-588 . -25) T) ((-588 . -102) T) ((-588 . -618) 77203) ((-588 . -1107) T) ((-588 . -23) T) ((-588 . -21) T) ((-588 . -1062) 77178) ((-588 . -1057) 77153) ((-588 . -111) 77121) ((-588 . -1044) 77105) ((-588 . -621) 77089) ((-586 . -354) T) ((-586 . -1157) T) ((-586 . -372) T) ((-586 . -145) T) ((-586 . -367) T) ((-586 . -1227) T) ((-586 . -927) T) ((-586 . -562) T) ((-586 . -173) T) ((-586 . -621) 77039) ((-586 . -722) 77004) ((-586 . -645) 76969) ((-586 . -38) 76934) ((-586 . -457) T) ((-586 . -310) T) ((-586 . -111) 76890) ((-586 . -1057) 76855) ((-586 . -1062) 76820) ((-586 . -651) 76770) ((-586 . -653) 76735) ((-586 . -293) T) ((-586 . -244) T) ((-586 . -407) T) ((-586 . -1055) T) ((-586 . -1063) T) ((-586 . -1118) T) ((-586 . -731) T) ((-586 . -21) T) ((-586 . -23) T) ((-586 . -1107) T) ((-586 . -618) 76717) ((-586 . -102) T) ((-586 . -25) T) ((-586 . -131) T) ((-586 . -234) T) ((-586 . -332) 76704) ((-586 . -147) 76686) ((-586 . -1044) 76673) ((-586 . -1280) 76660) ((-586 . -1291) 76647) ((-586 . -619) 76629) ((-585 . -875) 76613) ((-585 . -927) T) ((-585 . -562) T) ((-585 . -293) T) ((-585 . -173) T) ((-585 . -621) 76585) ((-585 . -722) 76572) ((-585 . -645) 76559) ((-585 . -1062) 76546) ((-585 . -1057) 76533) ((-585 . -111) 76518) ((-585 . -38) 76505) ((-585 . -457) T) ((-585 . -310) T) ((-585 . -1055) T) ((-585 . -1063) T) ((-585 . -1118) T) ((-585 . -731) T) ((-585 . -21) T) ((-585 . -651) 76477) ((-585 . -23) T) ((-585 . -1107) T) ((-585 . -618) 76459) ((-585 . -102) T) ((-585 . -25) T) ((-585 . -131) T) ((-585 . -653) 76446) ((-585 . -147) T) ((-584 . -1107) T) ((-584 . -618) 76428) ((-584 . -102) T) ((-583 . -1107) T) ((-583 . -618) 76410) ((-583 . -102) T) ((-582 . -581) T) ((-582 . -866) T) ((-582 . -174) T) ((-582 . -532) T) ((-582 . -618) 76392) ((-576 . -560) 76376) ((-576 . -35) T) ((-576 . -95) T) ((-576 . -287) T) ((-576 . -498) T) ((-576 . -1211) T) ((-576 . -1208) T) ((-576 . -1044) 76358) ((-576 . -1008) T) ((-576 . -855) T) ((-576 . -562) T) ((-576 . -293) T) ((-576 . -173) T) ((-576 . -621) 76330) ((-576 . -722) 76317) ((-576 . -645) 76304) ((-576 . -653) 76291) ((-576 . -651) 76263) ((-576 . -131) T) ((-576 . -25) T) ((-576 . -102) T) ((-576 . -618) 76245) ((-576 . -1107) T) ((-576 . -23) T) ((-576 . -21) T) ((-576 . -1062) 76232) ((-576 . -1057) 76219) ((-576 . -111) 76204) ((-576 . -1055) T) ((-576 . -1063) T) ((-576 . -1118) T) ((-576 . -731) T) ((-576 . -38) 76191) ((-576 . -457) T) ((-556 . -1199) 76170) ((-556 . -230) 76120) ((-556 . -107) 76070) ((-556 . -312) 75874) ((-556 . -519) 75666) ((-556 . -494) 75603) ((-556 . -151) 75553) ((-556 . -619) NIL) ((-556 . -236) 75503) ((-556 . -615) 75482) ((-556 . -291) 75461) ((-556 . -289) 75440) ((-556 . -102) T) ((-556 . -1107) T) ((-556 . -618) 75422) ((-556 . -1222) T) ((-556 . -34) T) ((-556 . -609) 75401) ((-555 . -849) T) ((-555 . -855) T) ((-555 . -1107) T) ((-555 . -618) 75383) ((-555 . -102) T) ((-555 . -372) T) ((-554 . -849) T) ((-554 . -855) T) ((-554 . -1107) T) ((-554 . -618) 75365) ((-554 . -102) T) ((-554 . -372) T) ((-553 . -849) T) ((-553 . -855) T) ((-553 . -1107) T) ((-553 . -618) 75347) ((-553 . -102) T) ((-553 . -372) T) ((-552 . -849) T) ((-552 . -855) T) ((-552 . -1107) T) ((-552 . -618) 75329) ((-552 . -102) T) ((-552 . -372) T) ((-551 . -550) T) ((-551 . -1227) T) ((-551 . -1157) T) ((-551 . -1044) 75311) ((-551 . -619) 75210) ((-551 . -1026) T) ((-551 . -892) 75192) ((-551 . -853) T) ((-551 . -802) T) ((-551 . -799) T) ((-551 . -855) T) ((-551 . -797) T) ((-551 . -796) T) ((-551 . -825) T) ((-551 . -644) 75174) ((-551 . -927) T) ((-551 . -562) T) ((-551 . -293) T) ((-551 . -173) T) ((-551 . -621) 75146) ((-551 . -722) 75133) ((-551 . -645) 75120) ((-551 . -1062) 75107) ((-551 . -1057) 75094) ((-551 . -111) 75079) ((-551 . -38) 75066) ((-551 . -457) T) ((-551 . -310) T) ((-551 . -234) T) ((-551 . -143) T) ((-551 . -1055) T) ((-551 . -1063) T) ((-551 . -1118) T) ((-551 . -731) T) ((-551 . -21) T) ((-551 . -651) 75038) ((-551 . -23) T) ((-551 . -1107) T) ((-551 . -618) 75020) ((-551 . -102) T) ((-551 . -25) T) ((-551 . -131) T) ((-551 . -653) 75007) ((-551 . -147) T) ((-551 . -826) T) ((-540 . -1110) 74959) ((-540 . -102) T) ((-540 . -618) 74941) ((-540 . -1107) T) ((-540 . -623) 74844) ((-540 . -619) 74825) ((-538 . -772) 74807) ((-538 . -532) T) ((-538 . -174) T) ((-538 . -866) T) ((-538 . -581) T) ((-538 . -618) 74789) ((-536 . -798) T) ((-536 . -131) T) ((-536 . -25) T) ((-536 . -102) T) ((-536 . -618) 74771) ((-536 . -1107) T) ((-536 . -23) T) ((-536 . -797) T) ((-536 . -855) T) ((-536 . -799) T) ((-536 . -802) T) ((-536 . -514) 74748) ((-534 . -532) T) ((-534 . -174) T) ((-534 . -618) 74730) ((-530 . -1089) T) ((-530 . -495) 74711) ((-530 . -618) 74677) ((-530 . -621) 74658) ((-530 . -1107) T) ((-530 . -102) T) ((-530 . -93) T) ((-529 . -1089) T) ((-529 . -495) 74639) ((-529 . -618) 74605) ((-529 . -621) 74586) ((-529 . -1107) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -691) 74536) ((-528 . -494) 74520) ((-528 . -102) 74498) ((-528 . -1107) 74476) ((-528 . -519) 74409) ((-528 . -312) 74347) ((-528 . -618) 74279) ((-528 . -1222) T) ((-528 . -34) T) ((-528 . -57) 74229) ((-525 . -671) 74213) ((-525 . -1261) 74197) ((-525 . -1016) 74181) ((-525 . -1155) 74165) ((-525 . -855) 74144) ((-525 . -376) 74128) ((-525 . -656) 74112) ((-525 . -291) 74089) ((-525 . -289) 74066) ((-525 . -609) 74043) ((-525 . -619) 74004) ((-525 . -494) 73988) ((-525 . -102) 73938) ((-525 . -1107) 73888) ((-525 . -519) 73821) ((-525 . -312) 73759) ((-525 . -618) 73671) ((-525 . -1222) T) ((-525 . -34) T) ((-525 . -151) 73655) ((-525 . -285) 73639) ((-524 . -57) 73613) ((-524 . -34) T) ((-524 . -1222) T) ((-524 . -618) 73545) ((-524 . -312) 73483) ((-524 . -519) 73416) ((-524 . -1107) 73394) ((-524 . -102) 73372) ((-524 . -494) 73356) ((-523 . -332) 73333) ((-523 . -234) T) ((-523 . -372) T) ((-523 . -1157) T) ((-523 . -354) T) ((-523 . -147) 73315) ((-523 . -621) 73245) ((-523 . -653) 73190) ((-523 . -651) 73120) ((-523 . -131) T) ((-523 . -25) T) ((-523 . -102) T) ((-523 . -618) 73102) ((-523 . -1107) T) ((-523 . -23) T) ((-523 . -21) T) ((-523 . -731) T) ((-523 . -1118) T) ((-523 . -1063) T) ((-523 . -1055) T) ((-523 . -367) T) ((-523 . -1227) T) ((-523 . -927) T) ((-523 . -562) T) ((-523 . -173) T) ((-523 . -722) 73047) ((-523 . -645) 72992) ((-523 . -38) 72957) ((-523 . -457) T) ((-523 . -310) T) ((-523 . -111) 72886) ((-523 . -1057) 72831) ((-523 . -1062) 72776) ((-523 . -293) T) ((-523 . -244) T) ((-523 . -407) T) ((-523 . -145) T) ((-523 . -1044) 72753) ((-523 . -1280) 72730) ((-523 . -1291) 72707) ((-522 . -1089) T) ((-522 . -495) 72688) ((-522 . -618) 72654) ((-522 . -621) 72635) ((-522 . -1107) T) ((-522 . -102) T) ((-522 . -93) T) ((-521 . -19) 72619) ((-521 . -656) 72603) ((-521 . -291) 72580) ((-521 . -289) 72557) ((-521 . -609) 72534) ((-521 . -619) 72495) ((-521 . -494) 72479) ((-521 . -102) 72429) ((-521 . -1107) 72379) ((-521 . -519) 72312) ((-521 . -312) 72250) ((-521 . -618) 72162) ((-521 . -1222) T) ((-521 . -34) T) ((-521 . -151) 72146) ((-521 . -855) 72125) ((-521 . -376) 72109) ((-521 . -285) 72093) ((-520 . -326) 72072) ((-520 . -621) 72056) ((-520 . -1044) 72040) ((-520 . -23) T) ((-520 . -1107) T) ((-520 . -618) 72022) ((-520 . -102) T) ((-520 . -25) T) ((-520 . -131) T) ((-517 . -798) T) ((-517 . -131) T) ((-517 . -25) T) ((-517 . -102) T) ((-517 . -618) 72004) ((-517 . -1107) T) ((-517 . -23) T) ((-517 . -797) T) ((-517 . -855) T) ((-517 . -799) T) ((-517 . -802) T) ((-517 . -514) 71983) ((-516 . -797) T) ((-516 . -855) T) ((-516 . -799) T) ((-516 . -25) T) ((-516 . -102) T) ((-516 . -618) 71965) ((-516 . -1107) T) ((-516 . -23) T) ((-516 . -514) 71944) ((-515 . -514) 71923) ((-515 . -102) T) ((-515 . -618) 71905) ((-515 . -1107) T) ((-513 . -23) T) ((-513 . -1107) T) ((-513 . -618) 71887) ((-513 . -102) T) ((-513 . -25) T) ((-513 . -514) 71866) ((-512 . -21) T) ((-512 . -651) 71848) ((-512 . -23) T) ((-512 . -1107) T) ((-512 . -618) 71830) ((-512 . -102) T) ((-512 . -25) T) ((-512 . -131) T) ((-512 . -514) 71809) ((-511 . -1107) T) ((-511 . -618) 71775) ((-511 . -102) T) ((-509 . -1107) T) ((-509 . -618) 71757) ((-509 . -102) T) ((-507 . -855) T) ((-507 . -102) T) ((-507 . -618) 71739) ((-507 . -1107) T) ((-505 . -123) T) ((-505 . -376) 71721) ((-505 . -855) T) ((-505 . -151) 71703) ((-505 . -34) T) ((-505 . -1222) T) ((-505 . -618) 71685) ((-505 . -312) NIL) ((-505 . -519) NIL) ((-505 . -1107) T) ((-505 . -494) 71667) ((-505 . -619) 71649) ((-505 . -609) 71624) ((-505 . -289) 71599) ((-505 . -291) 71574) ((-505 . -656) 71556) ((-505 . -19) 71538) ((-505 . -102) T) ((-505 . -667) T) ((-502 . -57) 71488) ((-502 . -34) T) ((-502 . -1222) T) ((-502 . -618) 71420) ((-502 . -312) 71358) ((-502 . -519) 71291) ((-502 . -1107) 71269) ((-502 . -102) 71247) ((-502 . -494) 71231) ((-501 . -19) 71215) ((-501 . -656) 71199) ((-501 . -291) 71176) ((-501 . -289) 71153) ((-501 . -609) 71130) ((-501 . -619) 71091) ((-501 . -494) 71075) ((-501 . -102) 71025) ((-501 . -1107) 70975) ((-501 . -519) 70908) ((-501 . -312) 70846) ((-501 . -618) 70758) ((-501 . -1222) T) ((-501 . -34) T) ((-501 . -151) 70742) ((-501 . -855) 70721) ((-501 . -376) 70705) ((-500 . -301) T) ((-500 . -102) T) ((-500 . -618) 70687) ((-500 . -1107) T) ((-500 . -621) 70620) ((-500 . -1044) 70563) ((-500 . -519) 70529) ((-500 . -312) 70516) ((-500 . -27) T) ((-500 . -1008) T) ((-500 . -244) T) ((-500 . -111) 70472) ((-500 . -1057) 70437) ((-500 . -1062) 70402) ((-500 . -293) T) ((-500 . -722) 70367) ((-500 . -645) 70332) ((-500 . -653) 70297) ((-500 . -651) 70247) ((-500 . -131) T) ((-500 . -25) T) ((-500 . -23) T) ((-500 . -21) T) ((-500 . -1055) T) ((-500 . -1063) T) ((-500 . -1118) T) ((-500 . -731) T) ((-500 . -38) 70212) ((-500 . -310) T) ((-500 . -457) T) ((-500 . -173) T) ((-500 . -562) T) ((-500 . -927) T) ((-500 . -1227) T) ((-500 . -367) T) ((-500 . -644) 70172) ((-500 . -1026) T) ((-500 . -619) 70117) ((-500 . -147) T) ((-500 . -234) T) ((-496 . -1107) T) ((-496 . -618) 70083) ((-496 . -102) T) ((-492 . -997) 70065) ((-492 . -1157) T) ((-492 . -621) 70015) ((-492 . -1044) 69975) ((-492 . -619) 69905) ((-492 . -1026) T) ((-492 . -916) NIL) ((-492 . -890) 69887) ((-492 . -853) T) ((-492 . -802) T) ((-492 . -799) T) ((-492 . -855) T) ((-492 . -797) T) ((-492 . -796) T) ((-492 . -825) T) ((-492 . -892) 69869) ((-492 . -1222) T) ((-492 . -405) 69851) ((-492 . -644) 69833) ((-492 . -381) 69815) ((-492 . -289) NIL) ((-492 . -312) NIL) ((-492 . -519) NIL) ((-492 . -342) 69797) ((-492 . -244) T) ((-492 . -111) 69731) ((-492 . -1057) 69681) ((-492 . -1062) 69631) ((-492 . -293) T) ((-492 . -722) 69581) ((-492 . -645) 69531) ((-492 . -653) 69481) ((-492 . -651) 69431) ((-492 . -38) 69381) ((-492 . -310) T) ((-492 . -457) T) ((-492 . -173) T) ((-492 . -562) T) ((-492 . -927) T) ((-492 . -1227) T) ((-492 . -367) T) ((-492 . -234) T) ((-492 . -906) NIL) ((-492 . -232) 69363) ((-492 . -147) T) ((-492 . -145) NIL) ((-492 . -131) T) ((-492 . -25) T) ((-492 . -102) T) ((-492 . -618) 69304) ((-492 . -1107) T) ((-492 . -23) T) ((-492 . -21) T) ((-492 . -1055) T) ((-492 . -1063) T) ((-492 . -1118) T) ((-492 . -731) T) ((-490 . -340) 69273) ((-490 . -131) T) ((-490 . -25) T) ((-490 . -102) T) ((-490 . -618) 69255) ((-490 . -1107) T) ((-490 . -23) T) ((-490 . -651) 69237) ((-490 . -21) T) ((-489 . -974) 69221) ((-489 . -494) 69205) ((-489 . -102) 69183) ((-489 . -1107) 69161) ((-489 . -519) 69094) ((-489 . -312) 69032) ((-489 . -618) 68964) ((-489 . -1222) T) ((-489 . -34) T) ((-489 . -107) 68948) ((-488 . -1089) T) ((-488 . -495) 68929) ((-488 . -618) 68895) ((-488 . -621) 68876) ((-488 . -1107) T) ((-488 . -102) T) ((-488 . -93) T) ((-487 . -239) 68855) ((-487 . -1280) 68825) ((-487 . -796) 68804) ((-487 . -853) 68783) ((-487 . -802) 68734) ((-487 . -799) 68685) ((-487 . -855) 68636) ((-487 . -797) 68587) ((-487 . -798) 68566) ((-487 . -291) 68543) ((-487 . -289) 68520) ((-487 . -494) 68504) ((-487 . -519) 68437) ((-487 . -312) 68375) ((-487 . -1222) T) ((-487 . -34) T) ((-487 . -609) 68352) ((-487 . -1044) 68179) ((-487 . -621) 67909) ((-487 . -417) 67878) ((-487 . -644) 67784) ((-487 . -381) 67753) ((-487 . -372) 67732) ((-487 . -234) 67684) ((-487 . -906) 67616) ((-487 . -232) 67585) ((-487 . -111) 67475) ((-487 . -1057) 67372) ((-487 . -1062) 67269) ((-487 . -173) 67248) ((-487 . -618) 66979) ((-487 . -722) 66921) ((-487 . -645) 66863) ((-487 . -653) 66711) ((-487 . -651) 66461) ((-487 . -131) 66331) ((-487 . -23) 66201) ((-487 . -21) 66111) ((-487 . -1055) 66041) ((-487 . -1063) 65971) ((-487 . -1118) 65881) ((-487 . -731) 65791) ((-487 . -38) 65761) ((-487 . -1107) 65551) ((-487 . -102) 65341) ((-487 . -25) 65192) ((-486 . -956) 65137) ((-486 . -621) 64922) ((-486 . -1044) 64798) ((-486 . -1227) 64777) ((-486 . -916) 64756) ((-486 . -892) NIL) ((-486 . -906) 64733) ((-486 . -519) 64676) ((-486 . -457) 64627) ((-486 . -644) 64575) ((-486 . -381) 64559) ((-486 . -47) 64516) ((-486 . -38) 64365) ((-486 . -645) 64214) ((-486 . -722) 64063) ((-486 . -293) 63994) ((-486 . -562) 63925) ((-486 . -111) 63754) ((-486 . -1057) 63597) ((-486 . -1062) 63440) ((-486 . -173) 63351) ((-486 . -147) 63330) ((-486 . -145) 63309) ((-486 . -653) 63234) ((-486 . -651) 63144) ((-486 . -131) T) ((-486 . -25) T) ((-486 . -102) T) ((-486 . -618) 63126) ((-486 . -1107) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1055) T) ((-486 . -1063) T) ((-486 . -1118) T) ((-486 . -731) T) ((-486 . -417) 63110) ((-486 . -329) 63067) ((-486 . -312) 63054) ((-486 . -619) 62915) ((-484 . -1199) 62894) ((-484 . -230) 62844) ((-484 . -107) 62794) ((-484 . -312) 62598) ((-484 . -519) 62390) ((-484 . -494) 62327) ((-484 . -151) 62277) ((-484 . -619) NIL) ((-484 . -236) 62227) ((-484 . -615) 62206) ((-484 . -291) 62185) ((-484 . -289) 62164) ((-484 . -102) T) ((-484 . -1107) T) ((-484 . -618) 62146) ((-484 . -1222) T) ((-484 . -34) T) ((-484 . -609) 62125) ((-483 . -1089) T) ((-483 . -495) 62106) ((-483 . -618) 62072) ((-483 . -621) 62053) ((-483 . -1107) T) ((-483 . -102) T) ((-483 . -93) T) ((-482 . -367) T) ((-482 . -1227) T) ((-482 . -927) T) ((-482 . -562) T) ((-482 . -173) T) ((-482 . -621) 62003) ((-482 . -722) 61968) ((-482 . -645) 61933) ((-482 . -38) 61898) ((-482 . -457) T) ((-482 . -310) T) ((-482 . -653) 61863) ((-482 . -651) 61813) ((-482 . -731) T) ((-482 . -1118) T) ((-482 . -1063) T) ((-482 . -1055) T) ((-482 . -111) 61769) ((-482 . -1057) 61734) ((-482 . -1062) 61699) ((-482 . -21) T) ((-482 . -23) T) ((-482 . -1107) T) ((-482 . -618) 61651) ((-482 . -102) T) ((-482 . -25) T) ((-482 . -131) T) ((-482 . -293) T) ((-482 . -244) T) ((-482 . -147) T) ((-482 . -1044) 61611) ((-482 . -1026) T) ((-482 . -619) 61533) ((-481 . -1217) 61502) ((-481 . -618) 61464) ((-481 . -151) 61448) ((-481 . -34) T) ((-481 . -1222) T) ((-481 . -312) 61386) ((-481 . -519) 61319) ((-481 . -1107) T) ((-481 . -102) T) ((-481 . -494) 61303) ((-481 . -619) 61264) ((-481 . -982) 61233) ((-480 . -1199) 61212) ((-480 . -230) 61162) ((-480 . -107) 61112) ((-480 . -312) 60916) ((-480 . -519) 60708) ((-480 . -494) 60645) ((-480 . -151) 60595) ((-480 . -619) NIL) ((-480 . -236) 60545) ((-480 . -615) 60524) ((-480 . -291) 60503) ((-480 . -289) 60482) ((-480 . -102) T) ((-480 . -1107) T) ((-480 . -618) 60464) ((-480 . -1222) T) ((-480 . -34) T) ((-480 . -609) 60443) ((-479 . -1255) 60427) ((-479 . -234) 60379) ((-479 . -289) 60364) ((-479 . -906) 60270) ((-479 . -979) 60232) ((-479 . -38) 60073) ((-479 . -111) 59894) ((-479 . -1057) 59729) ((-479 . -1062) 59564) ((-479 . -651) 59446) ((-479 . -653) 59343) ((-479 . -645) 59184) ((-479 . -722) 59025) ((-479 . -621) 58851) ((-479 . -145) 58830) ((-479 . -147) 58809) ((-479 . -47) 58779) ((-479 . -1251) 58749) ((-479 . -35) 58715) ((-479 . -95) 58681) ((-479 . -287) 58647) ((-479 . -498) 58613) ((-479 . -1211) 58579) ((-479 . -1208) 58545) ((-479 . -1008) 58511) ((-479 . -244) 58490) ((-479 . -293) 58441) ((-479 . -131) T) ((-479 . -25) T) ((-479 . -102) T) ((-479 . -618) 58423) ((-479 . -1107) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1055) T) ((-479 . -1063) T) ((-479 . -1118) T) ((-479 . -731) T) ((-479 . -310) 58402) ((-479 . -457) 58381) ((-479 . -173) 58312) ((-479 . -562) 58263) ((-479 . -927) 58242) ((-479 . -1227) 58221) ((-479 . -367) 58200) ((-473 . -1107) T) ((-473 . -618) 58182) ((-473 . -102) T) ((-468 . -982) 58151) ((-468 . -619) 58112) ((-468 . -494) 58096) ((-468 . -102) T) ((-468 . -1107) T) ((-468 . -519) 58029) ((-468 . -312) 57967) ((-468 . -618) 57929) ((-468 . -1222) T) ((-468 . -34) T) ((-468 . -151) 57913) ((-466 . -722) 57884) ((-466 . -645) 57855) ((-466 . -653) 57826) ((-466 . -651) 57782) ((-466 . -131) T) ((-466 . -25) T) ((-466 . -102) T) ((-466 . -618) 57764) ((-466 . -1107) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1062) 57735) ((-466 . -1057) 57706) ((-466 . -111) 57667) ((-459 . -956) 57634) ((-459 . -621) 57419) ((-459 . -1044) 57295) ((-459 . -1227) 57274) ((-459 . -916) 57253) ((-459 . -892) NIL) ((-459 . -906) 57230) ((-459 . -519) 57173) ((-459 . -457) 57124) ((-459 . -644) 57072) ((-459 . -381) 57056) ((-459 . -47) 57035) ((-459 . -38) 56884) ((-459 . -645) 56733) ((-459 . -722) 56582) ((-459 . -293) 56513) ((-459 . -562) 56444) ((-459 . -111) 56273) ((-459 . -1057) 56116) ((-459 . -1062) 55959) ((-459 . -173) 55870) ((-459 . -147) 55849) ((-459 . -145) 55828) ((-459 . -653) 55753) ((-459 . -651) 55663) ((-459 . -131) T) ((-459 . -25) T) ((-459 . -102) T) ((-459 . -618) 55645) ((-459 . -1107) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -1055) T) ((-459 . -1063) T) ((-459 . -1118) T) ((-459 . -731) T) ((-459 . -417) 55629) ((-459 . -329) 55608) ((-459 . -312) 55595) ((-459 . -619) 55456) ((-458 . -423) 55426) ((-458 . -749) 55396) ((-458 . -725) T) ((-458 . -766) T) ((-458 . -111) 55359) ((-458 . -1057) 55329) ((-458 . -1062) 55299) ((-458 . -21) T) ((-458 . -651) 55214) ((-458 . -23) T) ((-458 . -1107) T) ((-458 . -618) 55196) ((-458 . -102) T) ((-458 . -25) T) ((-458 . -131) T) ((-458 . -653) 55126) ((-458 . -645) 55096) ((-458 . -722) 55066) ((-458 . -371) 55036) ((-444 . -1107) T) ((-444 . -618) 55018) ((-444 . -102) T) ((-443 . -1107) T) ((-443 . -618) 55000) ((-443 . -102) T) ((-442 . -369) 54974) ((-442 . -102) T) ((-442 . -618) 54956) ((-442 . -1107) T) ((-441 . -1107) T) ((-441 . -618) 54938) ((-441 . -102) T) ((-439 . -618) 54920) ((-434 . -38) 54904) ((-434 . -621) 54873) ((-434 . -653) 54847) ((-434 . -651) 54806) ((-434 . -731) T) ((-434 . -1118) T) ((-434 . -1063) T) ((-434 . -1055) T) ((-434 . -111) 54785) ((-434 . -1057) 54769) ((-434 . -1062) 54753) ((-434 . -21) T) ((-434 . -23) T) ((-434 . -1107) T) ((-434 . -618) 54735) ((-434 . -102) T) ((-434 . -25) T) ((-434 . -131) T) ((-434 . -645) 54719) ((-434 . -722) 54703) ((-420 . -731) T) ((-420 . -1107) T) ((-420 . -618) 54685) ((-420 . -102) T) ((-420 . -1118) T) ((-418 . -478) T) ((-418 . -1118) T) ((-418 . -102) T) ((-418 . -618) 54667) ((-418 . -1107) T) ((-418 . -731) T) ((-412 . -997) 54651) ((-412 . -1157) 54629) ((-412 . -1044) 54495) ((-412 . -621) 54393) ((-412 . -619) 54200) ((-412 . -1026) 54178) ((-412 . -916) 54157) ((-412 . -890) 54141) ((-412 . -853) 54120) ((-412 . -802) 54099) ((-412 . -799) 54078) ((-412 . -855) 54029) ((-412 . -797) 54008) ((-412 . -796) 53987) ((-412 . -825) 53966) ((-412 . -892) 53891) ((-412 . -1222) T) ((-412 . -405) 53875) ((-412 . -644) 53823) ((-412 . -381) 53807) ((-412 . -289) 53765) ((-412 . -312) 53730) ((-412 . -519) 53642) ((-412 . -342) 53626) ((-412 . -244) T) ((-412 . -111) 53564) ((-412 . -1057) 53516) ((-412 . -1062) 53468) ((-412 . -293) T) ((-412 . -722) 53420) ((-412 . -645) 53372) ((-412 . -653) 53324) ((-412 . -651) 53261) ((-412 . -38) 53213) ((-412 . -310) T) ((-412 . -457) T) ((-412 . -173) T) ((-412 . -562) T) ((-412 . -927) T) ((-412 . -1227) T) ((-412 . -367) T) ((-412 . -234) 53192) ((-412 . -906) 53151) ((-412 . -232) 53135) ((-412 . -147) 53114) ((-412 . -145) 53093) ((-412 . -131) T) ((-412 . -25) T) ((-412 . -102) T) ((-412 . -618) 53075) ((-412 . -1107) T) ((-412 . -23) T) ((-412 . -21) T) ((-412 . -1055) T) ((-412 . -1063) T) ((-412 . -1118) T) ((-412 . -731) T) ((-412 . -826) 53028) ((-410 . -562) T) ((-410 . -293) T) ((-410 . -173) T) ((-410 . -621) 52936) ((-410 . -722) 52910) ((-410 . -645) 52884) ((-410 . -653) 52858) ((-410 . -651) 52817) ((-410 . -131) T) ((-410 . -25) T) ((-410 . -102) T) ((-410 . -618) 52799) ((-410 . -1107) T) ((-410 . -23) T) ((-410 . -21) T) ((-410 . -1062) 52773) ((-410 . -1057) 52747) ((-410 . -111) 52714) ((-410 . -1055) T) ((-410 . -1063) T) ((-410 . -1118) T) ((-410 . -731) T) ((-410 . -38) 52688) ((-410 . -232) 52672) ((-410 . -906) 52631) ((-410 . -234) 52610) ((-410 . -342) 52594) ((-410 . -519) 52436) ((-410 . -312) 52375) ((-410 . -289) 52303) ((-410 . -417) 52287) ((-410 . -1044) 52183) ((-410 . -457) 52133) ((-410 . -1026) 52111) ((-410 . -619) 52018) ((-410 . -1227) 51996) ((-404 . -1107) T) ((-404 . -618) 51978) ((-404 . -102) T) ((-404 . -619) 51955) ((-403 . -401) T) ((-403 . -1222) T) ((-403 . -618) 51937) ((-398 . -1107) T) ((-398 . -618) 51919) ((-398 . -102) T) ((-398 . -621) 51901) ((-395 . -749) 51885) ((-395 . -725) T) ((-395 . -766) T) ((-395 . -111) 51864) ((-395 . -1057) 51848) ((-395 . -1062) 51832) ((-395 . -21) T) ((-395 . -651) 51801) ((-395 . -23) T) ((-395 . -1107) T) ((-395 . -618) 51783) ((-395 . -102) T) ((-395 . -25) T) ((-395 . -131) T) ((-395 . -653) 51767) ((-395 . -645) 51751) ((-395 . -722) 51735) ((-393 . -394) T) ((-393 . -102) T) ((-393 . -618) 51701) ((-393 . -1107) T) ((-393 . -621) 51682) ((-393 . -495) 51663) ((-391 . -390) 51647) ((-391 . -621) 51631) ((-391 . -1044) 51615) ((-391 . -855) 51594) ((-391 . -1118) T) ((-391 . -102) T) ((-391 . -618) 51576) ((-391 . -1107) T) ((-391 . -731) T) ((-386 . -388) 51555) ((-386 . -621) 51539) ((-386 . -1044) 51523) ((-386 . -645) 51493) ((-386 . -722) 51463) ((-386 . -653) 51447) ((-386 . -651) 51416) ((-386 . -131) T) ((-386 . -25) T) ((-386 . -102) T) ((-386 . -618) 51398) ((-386 . -1107) T) ((-386 . -23) T) ((-386 . -21) T) ((-386 . -1062) 51382) ((-386 . -1057) 51366) ((-386 . -111) 51345) ((-385 . -111) 51324) ((-385 . -1057) 51308) ((-385 . -1062) 51292) ((-385 . -21) T) ((-385 . -651) 51261) ((-385 . -23) T) ((-385 . -1107) T) ((-385 . -618) 51243) ((-385 . -102) T) ((-385 . -25) T) ((-385 . -131) T) ((-385 . -653) 51227) ((-385 . -514) 51206) ((-385 . -722) 51176) ((-385 . -645) 51146) ((-382 . -409) T) ((-382 . -147) T) ((-382 . -621) 51096) ((-382 . -653) 51061) ((-382 . -651) 51011) ((-382 . -131) T) ((-382 . -25) T) ((-382 . -102) T) ((-382 . -618) 50978) ((-382 . -1107) T) ((-382 . -23) T) ((-382 . -21) T) ((-382 . -731) T) ((-382 . -1118) T) ((-382 . -1063) T) ((-382 . -1055) T) ((-382 . -619) 50892) ((-382 . -367) T) ((-382 . -1227) T) ((-382 . -927) T) ((-382 . -562) T) ((-382 . -173) T) ((-382 . -722) 50857) ((-382 . -645) 50822) ((-382 . -38) 50787) ((-382 . -457) T) ((-382 . -310) T) ((-382 . -111) 50743) ((-382 . -1057) 50708) ((-382 . -1062) 50673) ((-382 . -293) T) ((-382 . -244) T) ((-382 . -853) T) ((-382 . -802) T) ((-382 . -799) T) ((-382 . -855) T) ((-382 . -797) T) ((-382 . -796) T) ((-382 . -892) 50655) ((-382 . -1008) T) ((-382 . -1026) T) ((-382 . -1044) 50615) ((-382 . -1066) T) ((-382 . -234) T) ((-382 . -826) T) ((-382 . -1208) T) ((-382 . -1211) T) ((-382 . -498) T) ((-382 . -287) T) ((-382 . -95) T) ((-382 . -35) T) ((-382 . -623) 50597) ((-368 . -369) 50574) ((-368 . -102) T) ((-368 . -618) 50556) ((-368 . -1107) T) ((-365 . -478) T) ((-365 . -1118) T) ((-365 . -102) T) ((-365 . -618) 50538) ((-365 . -1107) T) ((-365 . -731) T) ((-365 . -1044) 50522) ((-365 . -621) 50506) ((-363 . -332) 50490) ((-363 . -234) 50469) ((-363 . -372) 50448) ((-363 . -1157) 50427) ((-363 . -354) 50406) ((-363 . -147) 50385) ((-363 . -621) 50322) ((-363 . -653) 50274) ((-363 . -651) 50211) ((-363 . -131) T) ((-363 . -25) T) ((-363 . -102) T) ((-363 . -618) 50193) ((-363 . -1107) T) ((-363 . -23) T) ((-363 . -21) T) ((-363 . -731) T) ((-363 . -1118) T) ((-363 . -1063) T) ((-363 . -1055) T) ((-363 . -367) T) ((-363 . -1227) T) ((-363 . -927) T) ((-363 . -562) T) ((-363 . -173) T) ((-363 . -722) 50145) ((-363 . -645) 50097) ((-363 . -38) 50062) ((-363 . -457) T) ((-363 . -310) T) ((-363 . -111) 50000) ((-363 . -1057) 49952) ((-363 . -1062) 49904) ((-363 . -293) T) ((-363 . -244) T) ((-363 . -407) 49855) ((-363 . -145) 49806) ((-363 . -1044) 49790) ((-363 . -1280) 49774) ((-363 . -1291) 49758) ((-359 . -332) 49742) ((-359 . -234) 49721) ((-359 . -372) 49700) ((-359 . -1157) 49679) ((-359 . -354) 49658) ((-359 . -147) 49637) ((-359 . -621) 49574) ((-359 . -653) 49526) ((-359 . -651) 49463) ((-359 . -131) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -618) 49445) ((-359 . -1107) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -731) T) ((-359 . -1118) T) ((-359 . -1063) T) ((-359 . -1055) T) ((-359 . -367) T) ((-359 . -1227) T) ((-359 . -927) T) ((-359 . -562) T) ((-359 . -173) T) ((-359 . -722) 49397) ((-359 . -645) 49349) ((-359 . -38) 49314) ((-359 . -457) T) ((-359 . -310) T) ((-359 . -111) 49252) ((-359 . -1057) 49204) ((-359 . -1062) 49156) ((-359 . -293) T) ((-359 . -244) T) ((-359 . -407) 49107) ((-359 . -145) 49058) ((-359 . -1044) 49042) ((-359 . -1280) 49026) ((-359 . -1291) 49010) ((-358 . -332) 48994) ((-358 . -234) 48973) ((-358 . -372) 48952) ((-358 . -1157) 48931) ((-358 . -354) 48910) ((-358 . -147) 48889) ((-358 . -621) 48826) ((-358 . -653) 48778) ((-358 . -651) 48715) ((-358 . -131) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -618) 48697) ((-358 . -1107) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -731) T) ((-358 . -1118) T) ((-358 . -1063) T) ((-358 . -1055) T) ((-358 . -367) T) ((-358 . -1227) T) ((-358 . -927) T) ((-358 . -562) T) ((-358 . -173) T) ((-358 . -722) 48649) ((-358 . -645) 48601) ((-358 . -38) 48566) ((-358 . -457) T) ((-358 . -310) T) ((-358 . -111) 48504) ((-358 . -1057) 48456) ((-358 . -1062) 48408) ((-358 . -293) T) ((-358 . -244) T) ((-358 . -407) 48359) ((-358 . -145) 48310) ((-358 . -1044) 48294) ((-358 . -1280) 48278) ((-358 . -1291) 48262) ((-357 . -332) 48246) ((-357 . -234) 48225) ((-357 . -372) 48204) ((-357 . -1157) 48183) ((-357 . -354) 48162) ((-357 . -147) 48141) ((-357 . -621) 48078) ((-357 . -653) 48030) ((-357 . -651) 47967) ((-357 . -131) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -618) 47949) ((-357 . -1107) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -731) T) ((-357 . -1118) T) ((-357 . -1063) T) ((-357 . -1055) T) ((-357 . -367) T) ((-357 . -1227) T) ((-357 . -927) T) ((-357 . -562) T) ((-357 . -173) T) ((-357 . -722) 47901) ((-357 . -645) 47853) ((-357 . -38) 47818) ((-357 . -457) T) ((-357 . -310) T) ((-357 . -111) 47756) ((-357 . -1057) 47708) ((-357 . -1062) 47660) ((-357 . -293) T) ((-357 . -244) T) ((-357 . -407) 47611) ((-357 . -145) 47562) ((-357 . -1044) 47546) ((-357 . -1280) 47530) ((-357 . -1291) 47514) ((-356 . -332) 47491) ((-356 . -234) T) ((-356 . -372) T) ((-356 . -1157) T) ((-356 . -354) T) ((-356 . -147) 47473) ((-356 . -621) 47403) ((-356 . -653) 47348) ((-356 . -651) 47278) ((-356 . -131) T) ((-356 . -25) T) ((-356 . -102) T) ((-356 . -618) 47260) ((-356 . -1107) T) ((-356 . -23) T) ((-356 . -21) T) ((-356 . -731) T) ((-356 . -1118) T) ((-356 . -1063) T) ((-356 . -1055) T) ((-356 . -367) T) ((-356 . -1227) T) ((-356 . -927) T) ((-356 . -562) T) ((-356 . -173) T) ((-356 . -722) 47205) ((-356 . -645) 47150) ((-356 . -38) 47115) ((-356 . -457) T) ((-356 . -310) T) ((-356 . -111) 47044) ((-356 . -1057) 46989) ((-356 . -1062) 46934) ((-356 . -293) T) ((-356 . -244) T) ((-356 . -407) T) ((-356 . -145) T) ((-356 . -1044) 46911) ((-356 . -1280) 46888) ((-356 . -1291) 46865) ((-350 . -332) 46849) ((-350 . -234) 46828) ((-350 . -372) 46807) ((-350 . -1157) 46786) ((-350 . -354) 46765) ((-350 . -147) 46744) ((-350 . -621) 46681) ((-350 . -653) 46633) ((-350 . -651) 46570) ((-350 . -131) T) ((-350 . -25) T) ((-350 . -102) T) ((-350 . -618) 46552) ((-350 . -1107) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -731) T) ((-350 . -1118) T) ((-350 . -1063) T) ((-350 . -1055) T) ((-350 . -367) T) ((-350 . -1227) T) ((-350 . -927) T) ((-350 . -562) T) ((-350 . -173) T) ((-350 . -722) 46504) ((-350 . -645) 46456) ((-350 . -38) 46421) ((-350 . -457) T) ((-350 . -310) T) ((-350 . -111) 46359) ((-350 . -1057) 46311) ((-350 . -1062) 46263) ((-350 . -293) T) ((-350 . -244) T) ((-350 . -407) 46214) ((-350 . -145) 46165) ((-350 . -1044) 46149) ((-350 . -1280) 46133) ((-350 . -1291) 46117) ((-349 . -332) 46101) ((-349 . -234) 46080) ((-349 . -372) 46059) ((-349 . -1157) 46038) ((-349 . -354) 46017) ((-349 . -147) 45996) ((-349 . -621) 45933) ((-349 . -653) 45885) ((-349 . -651) 45822) ((-349 . -131) T) ((-349 . -25) T) ((-349 . -102) T) ((-349 . -618) 45804) ((-349 . -1107) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -731) T) ((-349 . -1118) T) ((-349 . -1063) T) ((-349 . -1055) T) ((-349 . -367) T) ((-349 . -1227) T) ((-349 . -927) T) ((-349 . -562) T) ((-349 . -173) T) ((-349 . -722) 45756) ((-349 . -645) 45708) ((-349 . -38) 45673) ((-349 . -457) T) ((-349 . -310) T) ((-349 . -111) 45611) ((-349 . -1057) 45563) ((-349 . -1062) 45515) ((-349 . -293) T) ((-349 . -244) T) ((-349 . -407) 45466) ((-349 . -145) 45417) ((-349 . -1044) 45401) ((-349 . -1280) 45385) ((-349 . -1291) 45369) ((-348 . -332) 45346) ((-348 . -234) T) ((-348 . -372) T) ((-348 . -1157) T) ((-348 . -354) T) ((-348 . -147) 45328) ((-348 . -621) 45258) ((-348 . -653) 45203) ((-348 . -651) 45133) ((-348 . -131) T) ((-348 . -25) T) ((-348 . -102) T) ((-348 . -618) 45115) ((-348 . -1107) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -731) T) ((-348 . -1118) T) ((-348 . -1063) T) ((-348 . -1055) T) ((-348 . -367) T) ((-348 . -1227) T) ((-348 . -927) T) ((-348 . -562) T) ((-348 . -173) T) ((-348 . -722) 45060) ((-348 . -645) 45005) ((-348 . -38) 44970) ((-348 . -457) T) ((-348 . -310) T) ((-348 . -111) 44899) ((-348 . -1057) 44844) ((-348 . -1062) 44789) ((-348 . -293) T) ((-348 . -244) T) ((-348 . -407) T) ((-348 . -145) T) ((-348 . -1044) 44766) ((-348 . -1280) 44743) ((-348 . -1291) 44720) ((-344 . -332) 44697) ((-344 . -234) T) ((-344 . -372) T) ((-344 . -1157) T) ((-344 . -354) T) ((-344 . -147) 44679) ((-344 . -621) 44609) ((-344 . -653) 44554) ((-344 . -651) 44484) ((-344 . -131) T) ((-344 . -25) T) ((-344 . -102) T) ((-344 . -618) 44466) ((-344 . -1107) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -731) T) ((-344 . -1118) T) ((-344 . -1063) T) ((-344 . -1055) T) ((-344 . -367) T) ((-344 . -1227) T) ((-344 . -927) T) ((-344 . -562) T) ((-344 . -173) T) ((-344 . -722) 44411) ((-344 . -645) 44356) ((-344 . -38) 44321) ((-344 . -457) T) ((-344 . -310) T) ((-344 . -111) 44250) ((-344 . -1057) 44195) ((-344 . -1062) 44140) ((-344 . -293) T) ((-344 . -244) T) ((-344 . -407) T) ((-344 . -145) T) ((-344 . -1044) 44117) ((-344 . -1280) 44094) ((-344 . -1291) 44071) ((-343 . -301) T) ((-343 . -102) T) ((-343 . -618) 44053) ((-343 . -1107) T) ((-343 . -621) 44005) ((-343 . -1044) 43972) ((-343 . -519) 43938) ((-343 . -312) 43925) ((-343 . -38) 43909) ((-343 . -653) 43883) ((-343 . -651) 43842) ((-343 . -731) T) ((-343 . -1118) T) ((-343 . -1063) T) ((-343 . -1055) T) ((-343 . -111) 43821) ((-343 . -1057) 43805) ((-343 . -1062) 43789) ((-343 . -21) T) ((-343 . -23) T) ((-343 . -25) T) ((-343 . -131) T) ((-343 . -645) 43773) ((-343 . -722) 43757) ((-343 . -906) 43738) ((-337 . -340) 43707) ((-337 . -131) T) ((-337 . -25) T) ((-337 . -102) T) ((-337 . -618) 43689) ((-337 . -1107) T) ((-337 . -23) T) ((-337 . -651) 43671) ((-337 . -21) T) ((-336 . -1107) T) ((-336 . -618) 43653) ((-336 . -102) T) ((-334 . -855) T) ((-334 . -102) T) ((-334 . -618) 43635) ((-334 . -1107) T) ((-333 . -1107) T) ((-333 . -618) 43617) ((-333 . -102) T) ((-330 . -19) 43601) ((-330 . -656) 43585) ((-330 . -291) 43562) ((-330 . -289) 43539) ((-330 . -609) 43516) ((-330 . -619) 43477) ((-330 . -494) 43461) ((-330 . -102) 43411) ((-330 . -1107) 43361) ((-330 . -519) 43294) ((-330 . -312) 43232) ((-330 . -618) 43144) ((-330 . -1222) T) ((-330 . -34) T) ((-330 . -151) 43128) ((-330 . -855) 43107) ((-330 . -376) 43091) ((-330 . -285) 43075) ((-327 . -326) 43052) ((-327 . -621) 43036) ((-327 . -1044) 43020) ((-327 . -23) T) ((-327 . -1107) T) ((-327 . -618) 43002) ((-327 . -102) T) ((-327 . -25) T) ((-327 . -131) T) ((-325 . -21) T) ((-325 . -651) 42984) ((-325 . -23) T) ((-325 . -1107) T) ((-325 . -618) 42966) ((-325 . -102) T) ((-325 . -25) T) ((-325 . -131) T) ((-325 . -722) 42948) ((-325 . -645) 42930) ((-325 . -653) 42912) ((-325 . -1062) 42894) ((-325 . -1057) 42876) ((-325 . -111) 42851) ((-325 . -326) 42828) ((-325 . -621) 42812) ((-325 . -1044) 42796) ((-325 . -855) 42775) ((-322 . -1255) 42759) ((-322 . -234) 42711) ((-322 . -289) 42696) ((-322 . -906) 42602) ((-322 . -979) 42564) ((-322 . -38) 42405) ((-322 . -111) 42226) ((-322 . -1057) 42061) ((-322 . -1062) 41896) ((-322 . -651) 41778) ((-322 . -653) 41675) ((-322 . -645) 41516) ((-322 . -722) 41357) ((-322 . -621) 41183) ((-322 . -145) 41162) ((-322 . -147) 41141) ((-322 . -47) 41111) ((-322 . -1251) 41081) ((-322 . -35) 41047) ((-322 . -95) 41013) ((-322 . -287) 40979) ((-322 . -498) 40945) ((-322 . -1211) 40911) ((-322 . -1208) 40877) ((-322 . -1008) 40843) ((-322 . -244) 40822) ((-322 . -293) 40773) ((-322 . -131) T) ((-322 . -25) T) ((-322 . -102) T) ((-322 . -618) 40755) ((-322 . -1107) T) ((-322 . -23) T) ((-322 . -21) T) ((-322 . -1055) T) ((-322 . -1063) T) ((-322 . -1118) T) ((-322 . -731) T) ((-322 . -310) 40734) ((-322 . -457) 40713) ((-322 . -173) 40644) ((-322 . -562) 40595) ((-322 . -927) 40574) ((-322 . -1227) 40553) ((-322 . -367) 40532) ((-322 . -797) T) ((-322 . -855) T) ((-322 . -799) T) ((-317 . -426) 40516) ((-317 . -621) 40080) ((-317 . -1044) 39743) ((-317 . -619) 39604) ((-317 . -890) 39588) ((-317 . -906) 39554) ((-317 . -478) 39533) ((-317 . -417) 39517) ((-317 . -892) 39442) ((-317 . -1222) T) ((-317 . -405) 39426) ((-317 . -644) 39332) ((-317 . -381) 39301) ((-317 . -244) 39280) ((-317 . -111) 39176) ((-317 . -1057) 39086) ((-317 . -1062) 38996) ((-317 . -293) 38975) ((-317 . -722) 38885) ((-317 . -645) 38795) ((-317 . -653) 38616) ((-317 . -651) 38300) ((-317 . -38) 38210) ((-317 . -310) 38189) ((-317 . -457) 38168) ((-317 . -173) 38147) ((-317 . -562) 38126) ((-317 . -927) 38105) ((-317 . -1227) 38084) ((-317 . -367) 38063) ((-317 . -312) 38050) ((-317 . -519) 38016) ((-317 . -301) T) ((-317 . -147) 37995) ((-317 . -145) 37974) ((-317 . -1055) 37864) ((-317 . -1063) 37754) ((-317 . -1118) 37603) ((-317 . -731) 37452) ((-317 . -131) 37323) ((-317 . -25) 37175) ((-317 . -102) T) ((-317 . -618) 37157) ((-317 . -1107) T) ((-317 . -23) 37009) ((-317 . -21) 36880) ((-317 . -29) 36850) ((-317 . -1008) 36829) ((-317 . -27) 36808) ((-317 . -1208) 36787) ((-317 . -1211) 36766) ((-317 . -498) 36745) ((-317 . -287) 36724) ((-317 . -95) 36703) ((-317 . -35) 36682) ((-317 . -160) 36661) ((-317 . -143) 36640) ((-317 . -635) 36619) ((-317 . -966) 36598) ((-317 . -1145) 36577) ((-316 . -997) 36538) ((-316 . -1157) NIL) ((-316 . -1044) 36468) ((-316 . -621) 36351) ((-316 . -619) NIL) ((-316 . -1026) NIL) ((-316 . -916) NIL) ((-316 . -890) 36312) ((-316 . -853) NIL) ((-316 . -802) NIL) ((-316 . -799) NIL) ((-316 . -855) NIL) ((-316 . -797) NIL) ((-316 . -796) NIL) ((-316 . -825) NIL) ((-316 . -892) NIL) ((-316 . -1222) T) ((-316 . -405) 36273) ((-316 . -644) 36234) ((-316 . -381) 36195) ((-316 . -289) 36130) ((-316 . -312) 36071) ((-316 . -519) 35963) ((-316 . -342) 35924) ((-316 . -244) T) ((-316 . -111) 35837) ((-316 . -1057) 35766) ((-316 . -1062) 35695) ((-316 . -293) T) ((-316 . -722) 35624) ((-316 . -645) 35553) ((-316 . -653) 35482) ((-316 . -651) 35396) ((-316 . -38) 35325) ((-316 . -310) T) ((-316 . -457) T) ((-316 . -173) T) ((-316 . -562) T) ((-316 . -927) T) ((-316 . -1227) T) ((-316 . -367) T) ((-316 . -234) NIL) ((-316 . -906) NIL) ((-316 . -232) 35286) ((-316 . -147) 35242) ((-316 . -145) 35198) ((-316 . -131) T) ((-316 . -25) T) ((-316 . -102) T) ((-316 . -618) 35180) ((-316 . -1107) T) ((-316 . -23) T) ((-316 . -21) T) ((-316 . -1055) T) ((-316 . -1063) T) ((-316 . -1118) T) ((-316 . -731) T) ((-315 . -1089) T) ((-315 . -495) 35161) ((-315 . -618) 35127) ((-315 . -621) 35108) ((-315 . -1107) T) ((-315 . -102) T) ((-315 . -93) T) ((-314 . -1107) T) ((-314 . -618) 35090) ((-314 . -102) T) ((-298 . -1199) 35069) ((-298 . -230) 35019) ((-298 . -107) 34969) ((-298 . -312) 34773) ((-298 . -519) 34565) ((-298 . -494) 34502) ((-298 . -151) 34452) ((-298 . -619) NIL) ((-298 . -236) 34402) ((-298 . -615) 34381) ((-298 . -291) 34360) ((-298 . -289) 34339) ((-298 . -102) T) ((-298 . -1107) T) ((-298 . -618) 34321) ((-298 . -1222) T) ((-298 . -34) T) ((-298 . -609) 34300) ((-296 . -1222) T) ((-296 . -519) 34249) ((-296 . -1107) 34031) ((-296 . -618) 33772) ((-296 . -102) 33554) ((-296 . -25) 33418) ((-296 . -21) 33301) ((-296 . -651) 33036) ((-296 . -23) 32919) ((-296 . -131) 32802) ((-296 . -1118) 32683) ((-296 . -731) 32585) ((-296 . -478) 32564) ((-296 . -1055) 32506) ((-296 . -1063) 32448) ((-296 . -653) 32308) ((-296 . -621) 32239) ((-296 . -111) 32155) ((-296 . -1057) 32076) ((-296 . -1062) 31997) ((-296 . -722) 31939) ((-296 . -645) 31881) ((-296 . -906) 31840) ((-296 . -1280) 31810) ((-294 . -618) 31792) ((-292 . -310) T) ((-292 . -457) T) ((-292 . -38) 31779) ((-292 . -621) 31751) ((-292 . -731) T) ((-292 . -1118) T) ((-292 . -1063) T) ((-292 . -1055) T) ((-292 . -111) 31736) ((-292 . -1057) 31723) ((-292 . -1062) 31710) ((-292 . -21) T) ((-292 . -651) 31682) ((-292 . -23) T) ((-292 . -1107) T) ((-292 . -618) 31664) ((-292 . -102) T) ((-292 . -25) T) ((-292 . -131) T) ((-292 . -653) 31651) ((-292 . -645) 31638) ((-292 . -722) 31625) ((-292 . -173) T) ((-292 . -293) T) ((-292 . -562) T) ((-292 . -927) T) ((-283 . -618) 31607) ((-282 . -618) 31589) ((-281 . -989) 31573) ((-280 . -989) 31557) ((-277 . -855) T) ((-277 . -102) T) ((-277 . -618) 31539) ((-277 . -1107) T) ((-276 . -844) T) ((-276 . -102) T) ((-276 . -618) 31521) ((-276 . -1107) T) ((-275 . -844) T) ((-275 . -102) T) ((-275 . -618) 31503) ((-275 . -1107) T) ((-274 . -844) T) ((-274 . -102) T) ((-274 . -618) 31485) ((-274 . -1107) T) ((-273 . -844) T) ((-273 . -102) T) ((-273 . -618) 31467) ((-273 . -1107) T) ((-272 . -844) T) ((-272 . -102) T) ((-272 . -618) 31449) ((-272 . -1107) T) ((-271 . -844) T) ((-271 . -102) T) ((-271 . -618) 31431) ((-271 . -1107) T) ((-270 . -844) T) ((-270 . -102) T) ((-270 . -618) 31413) ((-270 . -1107) T) ((-266 . -255) 31375) ((-266 . -621) 31128) ((-266 . -1044) 30972) ((-266 . -619) 30720) ((-266 . -329) 30692) ((-266 . -417) 30676) ((-266 . -38) 30525) ((-266 . -111) 30354) ((-266 . -1057) 30197) ((-266 . -1062) 30040) ((-266 . -651) 29950) ((-266 . -653) 29875) ((-266 . -645) 29724) ((-266 . -722) 29573) ((-266 . -145) 29552) ((-266 . -147) 29531) ((-266 . -173) 29442) ((-266 . -562) 29373) ((-266 . -293) 29304) ((-266 . -47) 29276) ((-266 . -381) 29260) ((-266 . -644) 29208) ((-266 . -457) 29159) ((-266 . -519) 29044) ((-266 . -906) 28990) ((-266 . -892) 28849) ((-266 . -916) 28828) ((-266 . -1227) 28807) ((-266 . -956) 28774) ((-266 . -312) 28761) ((-266 . -234) 28740) ((-266 . -131) T) ((-266 . -25) T) ((-266 . -102) T) ((-266 . -618) 28722) ((-266 . -1107) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -731) T) ((-266 . -1118) T) ((-266 . -1063) T) ((-266 . -1055) T) ((-266 . -232) 28706) ((-263 . -1107) T) ((-263 . -618) 28688) ((-263 . -102) T) ((-253 . -239) 28667) ((-253 . -1280) 28637) ((-253 . -796) 28616) ((-253 . -853) 28595) ((-253 . -802) 28546) ((-253 . -799) 28497) ((-253 . -855) 28448) ((-253 . -797) 28399) ((-253 . -798) 28378) ((-253 . -291) 28355) ((-253 . -289) 28332) ((-253 . -494) 28316) ((-253 . -519) 28249) ((-253 . -312) 28187) ((-253 . -1222) T) ((-253 . -34) T) ((-253 . -609) 28164) ((-253 . -1044) 27991) ((-253 . -621) 27721) ((-253 . -417) 27690) ((-253 . -644) 27596) ((-253 . -381) 27565) ((-253 . -372) 27544) ((-253 . -234) 27496) ((-253 . -906) 27428) ((-253 . -232) 27397) ((-253 . -111) 27287) ((-253 . -1057) 27184) ((-253 . -1062) 27081) ((-253 . -173) 27060) ((-253 . -618) 27021) ((-253 . -722) 26963) ((-253 . -645) 26905) ((-253 . -653) 26740) ((-253 . -651) 26560) ((-253 . -131) T) ((-253 . -23) T) ((-253 . -21) T) ((-253 . -1055) 26490) ((-253 . -1063) 26420) ((-253 . -1118) 26330) ((-253 . -731) 26240) ((-253 . -38) 26210) ((-253 . -1107) T) ((-253 . -102) T) ((-253 . -25) T) ((-252 . -239) 26189) ((-252 . -1280) 26159) ((-252 . -796) 26138) ((-252 . -853) 26117) ((-252 . -802) 26068) ((-252 . -799) 26019) ((-252 . -855) 25970) ((-252 . -797) 25921) ((-252 . -798) 25900) ((-252 . -291) 25877) ((-252 . -289) 25854) ((-252 . -494) 25838) ((-252 . -519) 25771) ((-252 . -312) 25709) ((-252 . -1222) T) ((-252 . -34) T) ((-252 . -609) 25686) ((-252 . -1044) 25513) ((-252 . -621) 25243) ((-252 . -417) 25212) ((-252 . -644) 25118) ((-252 . -381) 25087) ((-252 . -372) 25066) ((-252 . -234) 25018) ((-252 . -906) 24950) ((-252 . -232) 24919) ((-252 . -111) 24809) ((-252 . -1057) 24706) ((-252 . -1062) 24603) ((-252 . -173) 24582) ((-252 . -618) 24543) ((-252 . -722) 24485) ((-252 . -645) 24427) ((-252 . -653) 24249) ((-252 . -651) 24056) ((-252 . -131) T) ((-252 . -23) T) ((-252 . -21) T) ((-252 . -1055) 23986) ((-252 . -1063) 23916) ((-252 . -1118) 23826) ((-252 . -731) 23736) ((-252 . -38) 23706) ((-252 . -1107) T) ((-252 . -102) T) ((-252 . -25) T) ((-251 . -1107) T) ((-251 . -618) 23688) ((-251 . -102) T) ((-250 . -187) T) ((-250 . -1107) T) ((-250 . -618) 23655) ((-250 . -102) T) ((-250 . -841) 23637) ((-249 . -1107) T) ((-249 . -618) 23619) ((-249 . -102) T) ((-248 . -956) 23564) ((-248 . -621) 23349) ((-248 . -1044) 23225) ((-248 . -1227) 23204) ((-248 . -916) 23183) ((-248 . -892) NIL) ((-248 . -906) 23160) ((-248 . -519) 23103) ((-248 . -457) 23054) ((-248 . -644) 23002) ((-248 . -381) 22986) ((-248 . -47) 22943) ((-248 . -38) 22792) ((-248 . -645) 22641) ((-248 . -722) 22490) ((-248 . -293) 22421) ((-248 . -562) 22352) ((-248 . -111) 22181) ((-248 . -1057) 22024) ((-248 . -1062) 21867) ((-248 . -173) 21778) ((-248 . -147) 21757) ((-248 . -145) 21736) ((-248 . -653) 21661) ((-248 . -651) 21571) ((-248 . -131) T) ((-248 . -25) T) ((-248 . -102) T) ((-248 . -618) 21553) ((-248 . -1107) T) ((-248 . -23) T) ((-248 . -21) T) ((-248 . -1055) T) ((-248 . -1063) T) ((-248 . -1118) T) ((-248 . -731) T) ((-248 . -417) 21537) ((-248 . -329) 21494) ((-248 . -312) 21481) ((-248 . -619) 21342) ((-246 . -671) 21326) ((-246 . -1261) 21310) ((-246 . -1016) 21294) ((-246 . -1155) 21278) ((-246 . -855) 21257) ((-246 . -376) 21241) ((-246 . -656) 21225) ((-246 . -291) 21202) ((-246 . -289) 21179) ((-246 . -609) 21156) ((-246 . -619) 21117) ((-246 . -494) 21101) ((-246 . -102) 21051) ((-246 . -1107) 21001) ((-246 . -519) 20934) ((-246 . -312) 20872) ((-246 . -618) 20764) ((-246 . -1222) T) ((-246 . -34) T) ((-246 . -151) 20748) ((-246 . -285) 20732) ((-246 . -495) 20709) ((-246 . -621) 20686) ((-240 . -239) 20665) ((-240 . -1280) 20635) ((-240 . -796) 20614) ((-240 . -853) 20593) ((-240 . -802) 20544) ((-240 . -799) 20495) ((-240 . -855) 20446) ((-240 . -797) 20397) ((-240 . -798) 20376) ((-240 . -291) 20353) ((-240 . -289) 20330) ((-240 . -494) 20314) ((-240 . -519) 20247) ((-240 . -312) 20185) ((-240 . -1222) T) ((-240 . -34) T) ((-240 . -609) 20162) ((-240 . -1044) 19989) ((-240 . -621) 19719) ((-240 . -417) 19688) ((-240 . -644) 19594) ((-240 . -381) 19563) ((-240 . -372) 19542) ((-240 . -234) 19494) ((-240 . -906) 19426) ((-240 . -232) 19395) ((-240 . -111) 19285) ((-240 . -1057) 19182) ((-240 . -1062) 19079) ((-240 . -173) 19058) ((-240 . -618) 18789) ((-240 . -722) 18731) ((-240 . -645) 18673) ((-240 . -653) 18521) ((-240 . -651) 18271) ((-240 . -131) 18141) ((-240 . -23) 18011) ((-240 . -21) 17921) ((-240 . -1055) 17851) ((-240 . -1063) 17781) ((-240 . -1118) 17691) ((-240 . -731) 17601) ((-240 . -38) 17571) ((-240 . -1107) 17361) ((-240 . -102) 17151) ((-240 . -25) 17002) ((-228 . -691) 16960) ((-228 . -494) 16944) ((-228 . -102) 16922) ((-228 . -1107) 16900) ((-228 . -519) 16833) ((-228 . -312) 16771) ((-228 . -618) 16703) ((-228 . -1222) T) ((-228 . -34) T) ((-228 . -57) 16661) ((-226 . -409) T) ((-226 . -147) T) ((-226 . -621) 16611) ((-226 . -653) 16576) ((-226 . -651) 16526) ((-226 . -131) T) ((-226 . -25) T) ((-226 . -102) T) ((-226 . -618) 16508) ((-226 . -1107) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -731) T) ((-226 . -1118) T) ((-226 . -1063) T) ((-226 . -1055) T) ((-226 . -619) 16438) ((-226 . -367) T) ((-226 . -1227) T) ((-226 . -927) T) ((-226 . -562) T) ((-226 . -173) T) ((-226 . -722) 16403) ((-226 . -645) 16368) ((-226 . -38) 16333) ((-226 . -457) T) ((-226 . -310) T) ((-226 . -111) 16289) ((-226 . -1057) 16254) ((-226 . -1062) 16219) ((-226 . -293) T) ((-226 . -244) T) ((-226 . -853) T) ((-226 . -802) T) ((-226 . -799) T) ((-226 . -855) T) ((-226 . -797) T) ((-226 . -796) T) ((-226 . -892) 16201) ((-226 . -1008) T) ((-226 . -1026) T) ((-226 . -1044) 16161) ((-226 . -1066) T) ((-226 . -234) T) ((-226 . -826) T) ((-226 . -1208) T) ((-226 . -1211) T) ((-226 . -498) T) ((-226 . -287) T) ((-226 . -95) T) ((-226 . -35) T) ((-224 . -626) 16138) ((-224 . -621) 16100) ((-224 . -653) 16067) ((-224 . -651) 16019) ((-224 . -731) T) ((-224 . -1118) T) ((-224 . -1063) T) ((-224 . -1055) T) ((-224 . -21) T) ((-224 . -23) T) ((-224 . -1107) T) ((-224 . -618) 16001) ((-224 . -102) T) ((-224 . -25) T) ((-224 . -131) T) ((-224 . -1044) 15978) ((-223 . -256) 15962) ((-223 . -1127) 15946) ((-223 . -107) 15930) ((-223 . -34) T) ((-223 . -1222) T) ((-223 . -618) 15862) ((-223 . -312) 15800) ((-223 . -519) 15733) ((-223 . -1107) 15711) ((-223 . -102) 15689) ((-223 . -494) 15673) ((-223 . -1001) 15657) ((-219 . -1089) T) ((-219 . -495) 15638) ((-219 . -618) 15604) ((-219 . -621) 15585) ((-219 . -1107) T) ((-219 . -102) T) ((-219 . -93) T) ((-218 . -997) 15567) ((-218 . -1157) T) ((-218 . -621) 15517) ((-218 . -1044) 15477) ((-218 . -619) 15407) ((-218 . -1026) T) ((-218 . -916) NIL) ((-218 . -890) 15389) ((-218 . -853) T) ((-218 . -802) T) ((-218 . -799) T) ((-218 . -855) T) ((-218 . -797) T) ((-218 . -796) T) ((-218 . -825) T) ((-218 . -892) 15371) ((-218 . -1222) T) ((-218 . -405) 15353) ((-218 . -644) 15335) ((-218 . -381) 15317) ((-218 . -289) NIL) ((-218 . -312) NIL) ((-218 . -519) NIL) ((-218 . -342) 15299) ((-218 . -244) T) ((-218 . -111) 15233) ((-218 . -1057) 15183) ((-218 . -1062) 15133) ((-218 . -293) T) ((-218 . -722) 15083) ((-218 . -645) 15033) ((-218 . -653) 14983) ((-218 . -651) 14933) ((-218 . -38) 14883) ((-218 . -310) T) ((-218 . -457) T) ((-218 . -173) T) ((-218 . -562) T) ((-218 . -927) T) ((-218 . -1227) T) ((-218 . -367) T) ((-218 . -234) T) ((-218 . -906) NIL) ((-218 . -232) 14865) ((-218 . -147) T) ((-218 . -145) NIL) ((-218 . -131) T) ((-218 . -25) T) ((-218 . -102) T) ((-218 . -618) 14806) ((-218 . -1107) T) ((-218 . -23) T) ((-218 . -21) T) ((-218 . -1055) T) ((-218 . -1063) T) ((-218 . -1118) T) ((-218 . -731) T) ((-215 . -1107) T) ((-215 . -618) 14788) ((-215 . -102) T) ((-215 . -621) 14765) ((-214 . -1107) T) ((-214 . -618) 14747) ((-214 . -102) T) ((-213 . -901) T) ((-213 . -102) T) ((-213 . -618) 14729) ((-213 . -1107) T) ((-212 . -901) T) ((-212 . -102) T) ((-212 . -618) 14711) ((-212 . -1107) T) ((-210 . -805) T) ((-210 . -102) T) ((-210 . -618) 14693) ((-210 . -1107) T) ((-209 . -805) T) ((-209 . -102) T) ((-209 . -618) 14675) ((-209 . -1107) T) ((-208 . -805) T) ((-208 . -102) T) ((-208 . -618) 14657) ((-208 . -1107) T) ((-207 . -805) T) ((-207 . -102) T) ((-207 . -618) 14639) ((-207 . -1107) T) ((-204 . -792) T) ((-204 . -102) T) ((-204 . -618) 14621) ((-204 . -1107) T) ((-203 . -792) T) ((-203 . -102) T) ((-203 . -618) 14603) ((-203 . -1107) T) ((-202 . -792) T) ((-202 . -102) T) ((-202 . -618) 14585) ((-202 . -1107) T) ((-201 . -792) T) ((-201 . -102) T) ((-201 . -618) 14567) ((-201 . -1107) T) ((-200 . -792) T) ((-200 . -102) T) ((-200 . -618) 14549) ((-200 . -1107) T) ((-199 . -792) T) ((-199 . -102) T) ((-199 . -618) 14531) ((-199 . -1107) T) ((-198 . -792) T) ((-198 . -102) T) ((-198 . -618) 14513) ((-198 . -1107) T) ((-197 . -792) T) ((-197 . -102) T) ((-197 . -618) 14495) ((-197 . -1107) T) ((-196 . -792) T) ((-196 . -102) T) ((-196 . -618) 14477) ((-196 . -1107) T) ((-195 . -792) T) ((-195 . -102) T) ((-195 . -618) 14459) ((-195 . -1107) T) ((-194 . -792) T) ((-194 . -102) T) ((-194 . -618) 14441) ((-194 . -1107) T) ((-188 . -1107) T) ((-188 . -618) 14423) ((-188 . -102) T) ((-185 . -1107) T) ((-185 . -618) 14405) ((-185 . -102) T) ((-184 . -187) T) ((-184 . -1107) T) ((-184 . -618) 14387) ((-184 . -102) T) ((-184 . -841) 14369) ((-181 . -1089) T) ((-181 . -495) 14350) ((-181 . -618) 14316) ((-181 . -621) 14297) ((-181 . -1107) T) ((-181 . -102) T) ((-181 . -93) T) ((-176 . -618) 14279) ((-175 . -38) 14211) ((-175 . -621) 14128) ((-175 . -653) 14060) ((-175 . -651) 13977) ((-175 . -731) T) ((-175 . -1118) T) ((-175 . -1063) T) ((-175 . -1055) T) ((-175 . -111) 13888) ((-175 . -1057) 13820) ((-175 . -1062) 13752) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1107) T) ((-175 . -618) 13734) ((-175 . -102) T) ((-175 . -25) T) ((-175 . -131) T) ((-175 . -645) 13666) ((-175 . -722) 13598) ((-175 . -367) T) ((-175 . -1227) T) ((-175 . -927) T) ((-175 . -562) T) ((-175 . -173) T) ((-175 . -457) T) ((-175 . -310) T) ((-175 . -293) T) ((-175 . -244) T) ((-172 . -1107) T) ((-172 . -618) 13580) ((-172 . -102) T) ((-169 . -166) 13564) ((-169 . -35) 13542) ((-169 . -95) 13520) ((-169 . -287) 13498) ((-169 . -498) 13476) ((-169 . -1211) 13454) ((-169 . -1208) 13432) ((-169 . -1008) 13383) ((-169 . -916) 13336) ((-169 . -619) 13097) ((-169 . -890) 13081) ((-169 . -372) 13032) ((-169 . -354) 13011) ((-169 . -1157) 12990) ((-169 . -407) 12969) ((-169 . -415) 12940) ((-169 . -38) 12768) ((-169 . -111) 12664) ((-169 . -1057) 12574) ((-169 . -1062) 12484) ((-169 . -651) 12379) ((-169 . -653) 12289) ((-169 . -645) 12117) ((-169 . -722) 11945) ((-169 . -374) 11916) ((-169 . -729) 11887) ((-169 . -1044) 11783) ((-169 . -621) 11561) ((-169 . -417) 11545) ((-169 . -892) 11470) ((-169 . -1222) T) ((-169 . -405) 11454) ((-169 . -644) 11402) ((-169 . -381) 11386) ((-169 . -289) 11344) ((-169 . -312) 11309) ((-169 . -519) 11221) ((-169 . -342) 11205) ((-169 . -244) 11156) ((-169 . -1227) 11061) ((-169 . -367) 11012) ((-169 . -927) 10943) ((-169 . -562) 10854) ((-169 . -293) 10765) ((-169 . -457) 10696) ((-169 . -310) 10627) ((-169 . -234) 10578) ((-169 . -906) 10537) ((-169 . -232) 10521) ((-169 . -173) T) ((-169 . -147) 10500) ((-169 . -1055) T) ((-169 . -1063) T) ((-169 . -1118) T) ((-169 . -731) T) ((-169 . -21) T) ((-169 . -23) T) ((-169 . -1107) T) ((-169 . -618) 10482) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -131) T) ((-169 . -145) 10433) ((-169 . -826) 10412) ((-168 . -1222) T) ((-162 . -1089) T) ((-162 . -495) 10393) ((-162 . -618) 10359) ((-162 . -621) 10340) ((-162 . -1107) T) ((-162 . -102) T) ((-162 . -93) T) ((-161 . -1107) T) ((-161 . -618) 10322) ((-161 . -102) T) ((-157 . -25) T) ((-157 . -102) T) ((-157 . -618) 10304) ((-157 . -1107) T) ((-156 . -1089) T) ((-156 . -495) 10285) ((-156 . -618) 10251) ((-156 . -621) 10232) ((-156 . -1107) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1089) T) ((-154 . -495) 10213) ((-154 . -618) 10179) ((-154 . -621) 10160) ((-154 . -1107) T) ((-154 . -102) T) ((-154 . -93) T) ((-152 . -1055) T) ((-152 . -1063) T) ((-152 . -1118) T) ((-152 . -731) T) ((-152 . -21) T) ((-152 . -651) 10119) ((-152 . -23) T) ((-152 . -1107) T) ((-152 . -618) 10101) ((-152 . -102) T) ((-152 . -25) T) ((-152 . -131) T) ((-152 . -653) 10075) ((-152 . -621) 10044) ((-152 . -38) 10028) ((-152 . -111) 10007) ((-152 . -1057) 9991) ((-152 . -1062) 9975) ((-152 . -645) 9959) ((-152 . -722) 9943) ((-152 . -1280) 9927) ((-144 . -849) T) ((-144 . -855) T) ((-144 . -1107) T) ((-144 . -618) 9909) ((-144 . -102) T) ((-144 . -372) T) ((-141 . -1107) T) ((-141 . -618) 9891) ((-141 . -102) T) ((-141 . -619) 9850) ((-141 . -431) 9832) ((-141 . -1105) 9814) ((-141 . -372) T) ((-141 . -236) 9796) ((-141 . -151) 9778) ((-141 . -494) 9760) ((-141 . -519) NIL) ((-141 . -312) NIL) ((-141 . -1222) T) ((-141 . -34) T) ((-141 . -107) 9742) ((-141 . -230) 9724) ((-140 . -618) 9706) ((-139 . -187) T) ((-139 . -1107) T) ((-139 . -618) 9673) ((-139 . -102) T) ((-139 . -841) 9655) ((-138 . -1089) T) ((-138 . -495) 9636) ((-138 . -618) 9602) ((-138 . -621) 9583) ((-138 . -1107) T) ((-138 . -102) T) ((-138 . -93) T) ((-137 . -1089) T) ((-137 . -495) 9564) ((-137 . -618) 9530) ((-137 . -621) 9511) ((-137 . -1107) T) ((-137 . -102) T) ((-137 . -93) T) ((-135 . -470) 9488) ((-135 . -621) 9472) ((-135 . -1044) 9456) ((-135 . -1107) T) ((-135 . -618) 9438) ((-135 . -102) T) ((-135 . -475) 9393) ((-134 . -855) T) ((-134 . -102) T) ((-134 . -618) 9375) ((-134 . -1107) T) ((-134 . -23) T) ((-134 . -25) T) ((-134 . -731) T) ((-134 . -1118) T) ((-134 . -1044) 9357) ((-134 . -621) 9339) ((-133 . -1089) T) ((-133 . -495) 9320) ((-133 . -618) 9286) ((-133 . -621) 9267) ((-133 . -1107) T) ((-133 . -102) T) ((-133 . -93) T) ((-130 . -1107) T) ((-130 . -618) 9249) ((-130 . -102) T) ((-129 . -19) 9231) ((-129 . -656) 9213) ((-129 . -291) 9188) ((-129 . -289) 9163) ((-129 . -609) 9138) ((-129 . -619) NIL) ((-129 . -494) 9120) ((-129 . -102) T) ((-129 . -1107) T) ((-129 . -519) NIL) ((-129 . -312) NIL) ((-129 . -618) 9064) ((-129 . -1222) T) ((-129 . -34) T) ((-129 . -151) 9046) ((-129 . -855) T) ((-129 . -376) 9028) ((-128 . -849) T) ((-128 . -855) T) ((-128 . -1107) T) ((-128 . -618) 8995) ((-128 . -102) T) ((-128 . -372) T) ((-128 . -495) 8977) ((-128 . -621) 8959) ((-127 . -125) 8943) ((-127 . -1016) 8927) ((-127 . -34) T) ((-127 . -1222) T) ((-127 . -618) 8859) ((-127 . -312) 8797) ((-127 . -519) 8730) ((-127 . -1107) 8708) ((-127 . -102) 8686) ((-127 . -494) 8670) ((-127 . -119) 8654) ((-126 . -125) 8638) ((-126 . -1016) 8622) ((-126 . -34) T) ((-126 . -1222) T) ((-126 . -618) 8554) ((-126 . -312) 8492) ((-126 . -519) 8425) ((-126 . -1107) 8403) ((-126 . -102) 8381) ((-126 . -494) 8365) ((-126 . -119) 8349) ((-121 . -125) 8333) ((-121 . -1016) 8317) ((-121 . -34) T) ((-121 . -1222) T) ((-121 . -618) 8249) ((-121 . -312) 8187) ((-121 . -519) 8120) ((-121 . -1107) 8098) ((-121 . -102) 8076) ((-121 . -494) 8060) ((-121 . -119) 8044) ((-117 . -997) 8021) ((-117 . -1157) NIL) ((-117 . -1044) 7998) ((-117 . -621) 7928) ((-117 . -619) NIL) ((-117 . -1026) NIL) ((-117 . -916) NIL) ((-117 . -890) 7905) ((-117 . -853) NIL) ((-117 . -802) NIL) ((-117 . -799) NIL) ((-117 . -855) NIL) ((-117 . -797) NIL) ((-117 . -796) NIL) ((-117 . -825) NIL) ((-117 . -892) NIL) ((-117 . -1222) T) ((-117 . -405) 7882) ((-117 . -644) 7859) ((-117 . -381) 7836) ((-117 . -289) 7787) ((-117 . -312) 7744) ((-117 . -519) 7652) ((-117 . -342) 7629) ((-117 . -244) T) ((-117 . -111) 7558) ((-117 . -1057) 7503) ((-117 . -1062) 7448) ((-117 . -293) T) ((-117 . -722) 7393) ((-117 . -645) 7338) ((-117 . -653) 7283) ((-117 . -651) 7213) ((-117 . -38) 7158) ((-117 . -310) T) ((-117 . -457) T) ((-117 . -173) T) ((-117 . -562) T) ((-117 . -927) T) ((-117 . -1227) T) ((-117 . -367) T) ((-117 . -234) NIL) ((-117 . -906) NIL) ((-117 . -232) 7135) ((-117 . -147) T) ((-117 . -145) NIL) ((-117 . -131) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -618) 7117) ((-117 . -1107) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1055) T) ((-117 . -1063) T) ((-117 . -1118) T) ((-117 . -731) T) ((-116 . -875) 7101) ((-116 . -927) T) ((-116 . -562) T) ((-116 . -293) T) ((-116 . -173) T) ((-116 . -621) 7073) ((-116 . -722) 7060) ((-116 . -645) 7047) ((-116 . -1062) 7034) ((-116 . -1057) 7021) ((-116 . -111) 7006) ((-116 . -38) 6993) ((-116 . -457) T) ((-116 . -310) T) ((-116 . -1055) T) ((-116 . -1063) T) ((-116 . -1118) T) ((-116 . -731) T) ((-116 . -21) T) ((-116 . -651) 6965) ((-116 . -23) T) ((-116 . -1107) T) ((-116 . -618) 6947) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -131) T) ((-116 . -653) 6934) ((-116 . -147) T) ((-113 . -855) T) ((-113 . -102) T) ((-113 . -618) 6916) ((-113 . -1107) T) ((-113 . -841) 6897) ((-112 . -849) T) ((-112 . -855) T) ((-112 . -1107) T) ((-112 . -618) 6879) ((-112 . -102) T) ((-112 . -372) T) ((-112 . -667) T) ((-112 . -973) T) ((-112 . -619) 6861) ((-110 . -123) T) ((-110 . -376) 6843) ((-110 . -855) T) ((-110 . -151) 6825) ((-110 . -34) T) ((-110 . -1222) T) ((-110 . -618) 6807) ((-110 . -312) NIL) ((-110 . -519) NIL) ((-110 . -1107) T) ((-110 . -494) 6789) ((-110 . -619) 6771) ((-110 . -609) 6746) ((-110 . -289) 6721) ((-110 . -291) 6696) ((-110 . -656) 6678) ((-110 . -19) 6660) ((-110 . -102) T) ((-110 . -667) T) ((-109 . -618) 6642) ((-108 . -997) 6624) ((-108 . -1157) T) ((-108 . -621) 6574) ((-108 . -1044) 6534) ((-108 . -619) 6464) ((-108 . -1026) T) ((-108 . -916) NIL) ((-108 . -890) 6446) ((-108 . -853) T) ((-108 . -802) T) ((-108 . -799) T) ((-108 . -855) T) ((-108 . -797) T) ((-108 . -796) T) ((-108 . -825) T) ((-108 . -892) 6428) ((-108 . -1222) T) ((-108 . -405) 6410) ((-108 . -644) 6392) ((-108 . -381) 6374) ((-108 . -289) NIL) ((-108 . -312) NIL) ((-108 . -519) NIL) ((-108 . -342) 6356) ((-108 . -244) T) ((-108 . -111) 6290) ((-108 . -1057) 6240) ((-108 . -1062) 6190) ((-108 . -293) T) ((-108 . -722) 6140) ((-108 . -645) 6090) ((-108 . -653) 6040) ((-108 . -651) 5990) ((-108 . -38) 5940) ((-108 . -310) T) ((-108 . -457) T) ((-108 . -173) T) ((-108 . -562) T) ((-108 . -927) T) ((-108 . -1227) T) ((-108 . -367) T) ((-108 . -234) T) ((-108 . -906) NIL) ((-108 . -232) 5922) ((-108 . -147) T) ((-108 . -145) NIL) ((-108 . -131) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -618) 5864) ((-108 . -1107) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1055) T) ((-108 . -1063) T) ((-108 . -1118) T) ((-108 . -731) T) ((-105 . -1107) T) ((-105 . -618) 5846) ((-105 . -102) T) ((-103 . -125) 5830) ((-103 . -1016) 5814) ((-103 . -34) T) ((-103 . -1222) T) ((-103 . -618) 5746) ((-103 . -312) 5684) ((-103 . -519) 5617) ((-103 . -1107) 5595) ((-103 . -102) 5573) ((-103 . -494) 5557) ((-103 . -119) 5541) ((-99 . -478) T) ((-99 . -1118) T) ((-99 . -102) T) ((-99 . -618) 5523) ((-99 . -1107) T) ((-99 . -731) T) ((-99 . -289) 5502) ((-97 . -1107) T) ((-97 . -618) 5484) ((-97 . -102) T) ((-96 . -1089) T) ((-96 . -495) 5465) ((-96 . -618) 5431) ((-96 . -621) 5412) ((-96 . -1107) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1127) 5396) ((-91 . -494) 5380) ((-91 . -102) 5358) ((-91 . -1107) 5336) ((-91 . -519) 5269) ((-91 . -312) 5207) ((-91 . -618) 5139) ((-91 . -1222) T) ((-91 . -34) T) ((-91 . -107) 5123) ((-89 . -402) T) ((-89 . -618) 5105) ((-89 . -1222) T) ((-89 . -401) T) ((-88 . -389) T) ((-88 . -618) 5087) ((-88 . -1222) T) ((-88 . -401) T) ((-87 . -445) T) ((-87 . -618) 5069) ((-87 . -1222) T) ((-87 . -401) T) ((-86 . -446) T) ((-86 . -618) 5051) ((-86 . -1222) T) ((-86 . -401) T) ((-85 . -389) T) ((-85 . -618) 5033) ((-85 . -1222) T) ((-85 . -401) T) ((-84 . -389) T) ((-84 . -618) 5015) ((-84 . -1222) T) ((-84 . -401) T) ((-83 . -446) T) ((-83 . -618) 4997) ((-83 . -1222) T) ((-83 . -401) T) ((-82 . -446) T) ((-82 . -618) 4979) ((-82 . -1222) T) ((-82 . -401) T) ((-81 . -446) T) ((-81 . -618) 4961) ((-81 . -1222) T) ((-81 . -401) T) ((-81 . -621) 4902) ((-80 . -446) T) ((-80 . -618) 4884) ((-80 . -1222) T) ((-80 . -401) T) ((-79 . -446) T) ((-79 . -618) 4866) ((-79 . -1222) T) ((-79 . -401) T) ((-78 . -402) T) ((-78 . -618) 4848) ((-78 . -1222) T) ((-78 . -401) T) ((-77 . -446) T) ((-77 . -618) 4830) ((-77 . -1222) T) ((-77 . -401) T) ((-76 . -446) T) ((-76 . -618) 4812) ((-76 . -1222) T) ((-76 . -401) T) ((-75 . -402) T) ((-75 . -618) 4794) ((-75 . -1222) T) ((-75 . -401) T) ((-74 . -446) T) ((-74 . -618) 4776) ((-74 . -1222) T) ((-74 . -401) T) ((-73 . -387) T) ((-73 . -618) 4758) ((-73 . -1222) T) ((-73 . -401) T) ((-72 . -401) T) ((-72 . -1222) T) ((-72 . -618) 4740) ((-71 . -446) T) ((-71 . -618) 4722) ((-71 . -1222) T) ((-71 . -401) T) ((-70 . -387) T) ((-70 . -618) 4704) ((-70 . -1222) T) ((-70 . -401) T) ((-69 . -401) T) ((-69 . -1222) T) ((-69 . -618) 4686) ((-68 . -387) T) ((-68 . -618) 4668) ((-68 . -1222) T) ((-68 . -401) T) ((-67 . -387) T) ((-67 . -618) 4650) ((-67 . -1222) T) ((-67 . -401) T) ((-66 . -402) T) ((-66 . -618) 4632) ((-66 . -1222) T) ((-66 . -401) T) ((-65 . -389) T) ((-65 . -618) 4614) ((-65 . -1222) T) ((-65 . -401) T) ((-65 . -621) 4543) ((-64 . -446) T) ((-64 . -618) 4525) ((-64 . -1222) T) ((-64 . -401) T) ((-63 . -401) T) ((-63 . -1222) T) ((-63 . -618) 4507) ((-62 . -446) T) ((-62 . -618) 4489) ((-62 . -1222) T) ((-62 . -401) T) ((-61 . -402) T) ((-61 . -618) 4471) ((-61 . -1222) T) ((-61 . -401) T) ((-60 . -57) 4433) ((-60 . -34) T) ((-60 . -1222) T) ((-60 . -618) 4365) ((-60 . -312) 4303) ((-60 . -519) 4236) ((-60 . -1107) 4214) ((-60 . -102) 4192) ((-60 . -494) 4176) ((-58 . -19) 4160) ((-58 . -656) 4144) ((-58 . -291) 4121) ((-58 . -289) 4098) ((-58 . -609) 4075) ((-58 . -619) 4036) ((-58 . -494) 4020) ((-58 . -102) 3970) ((-58 . -1107) 3920) ((-58 . -519) 3853) ((-58 . -312) 3791) ((-58 . -618) 3703) ((-58 . -1222) T) ((-58 . -34) T) ((-58 . -151) 3687) ((-58 . -855) 3666) ((-58 . -376) 3650) ((-55 . -1107) T) ((-55 . -618) 3632) ((-55 . -102) T) ((-55 . -1044) 3614) ((-55 . -621) 3596) ((-51 . -1107) T) ((-51 . -618) 3578) ((-51 . -102) T) ((-50 . -626) 3562) ((-50 . -621) 3531) ((-50 . -653) 3505) ((-50 . -651) 3464) ((-50 . -731) T) ((-50 . -1118) T) ((-50 . -1063) T) ((-50 . -1055) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1107) T) ((-50 . -618) 3446) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -131) T) ((-50 . -1044) 3430) ((-49 . -1107) T) ((-49 . -618) 3412) ((-49 . -102) T) ((-48 . -301) T) ((-48 . -102) T) ((-48 . -618) 3394) ((-48 . -1107) T) ((-48 . -621) 3327) ((-48 . -1044) 3270) ((-48 . -519) 3236) ((-48 . -312) 3223) ((-48 . -27) T) ((-48 . -1008) T) ((-48 . -244) T) ((-48 . -111) 3179) ((-48 . -1057) 3144) ((-48 . -1062) 3109) ((-48 . -293) T) ((-48 . -722) 3074) ((-48 . -645) 3039) ((-48 . -653) 3004) ((-48 . -651) 2954) ((-48 . -131) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1055) T) ((-48 . -1063) T) ((-48 . -1118) T) ((-48 . -731) T) ((-48 . -38) 2919) ((-48 . -310) T) ((-48 . -457) T) ((-48 . -173) T) ((-48 . -562) T) ((-48 . -927) T) ((-48 . -1227) T) ((-48 . -367) T) ((-48 . -644) 2879) ((-48 . -1026) T) ((-48 . -619) 2824) ((-48 . -147) T) ((-48 . -234) T) ((-45 . -36) 2803) ((-45 . -609) 2728) ((-45 . -312) 2532) ((-45 . -519) 2324) ((-45 . -494) 2261) ((-45 . -289) 2186) ((-45 . -291) 2111) ((-45 . -615) 2090) ((-45 . -236) 2040) ((-45 . -107) 1990) ((-45 . -230) 1940) ((-45 . -1199) 1919) ((-45 . -285) 1869) ((-45 . -151) 1819) ((-45 . -34) T) ((-45 . -1222) T) ((-45 . -618) 1801) ((-45 . -1107) T) ((-45 . -102) T) ((-45 . -619) NIL) ((-45 . -656) 1751) ((-45 . -376) 1701) ((-45 . -855) NIL) ((-45 . -1155) 1651) ((-45 . -1016) 1601) ((-45 . -1261) 1551) ((-45 . -671) 1501) ((-44 . -423) 1485) ((-44 . -749) 1469) ((-44 . -725) T) ((-44 . -766) T) ((-44 . -111) 1448) ((-44 . -1057) 1432) ((-44 . -1062) 1416) ((-44 . -21) T) ((-44 . -651) 1359) ((-44 . -23) T) ((-44 . -1107) T) ((-44 . -618) 1341) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -131) T) ((-44 . -653) 1299) ((-44 . -645) 1283) ((-44 . -722) 1267) ((-44 . -371) 1251) ((-40 . -346) 1225) ((-40 . -173) T) ((-40 . -621) 1155) ((-40 . -731) T) ((-40 . -1118) T) ((-40 . -1063) T) ((-40 . -1055) T) ((-40 . -653) 1100) ((-40 . -651) 1030) ((-40 . -131) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -618) 1012) ((-40 . -1107) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1062) 957) ((-40 . -1057) 902) ((-40 . -111) 831) ((-40 . -619) 815) ((-40 . -232) 792) ((-40 . -906) 744) ((-40 . -234) 716) ((-40 . -367) T) ((-40 . -1227) T) ((-40 . -927) T) ((-40 . -562) T) ((-40 . -722) 661) ((-40 . -645) 606) ((-40 . -38) 551) ((-40 . -457) T) ((-40 . -310) T) ((-40 . -293) T) ((-40 . -244) T) ((-40 . -372) NIL) ((-40 . -354) NIL) ((-40 . -1157) NIL) ((-40 . -145) 523) ((-40 . -407) NIL) ((-40 . -415) 495) ((-40 . -147) 467) ((-40 . -374) 439) ((-40 . -381) 416) ((-40 . -644) 355) ((-40 . -417) 332) ((-40 . -1044) 220) ((-40 . -729) 192) ((-31 . -1089) T) ((-31 . -495) 173) ((-31 . -618) 139) ((-31 . -621) 120) ((-31 . -1107) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -961) T) ((-30 . -618) 102) ((0 . |EnumerationCategory|) T) ((0 . -618) 84) ((0 . -1107) T) ((0 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -618) 66) ((-2 . -1107) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -618) 48) ((-3 . -1107) T) ((-3 . -102) T) ((-1 . -1107) T) ((-1 . -618) 30) ((-1 . -102) T)) \ No newline at end of file
+(-2718 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-234)) ((|#2| |#1|) |has| |#1| (-234)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-483 . -1106) T) ((-266 . -519) 188453) ((-248 . -519) 188396) ((-246 . -1106) 188346) ((-576 . -111) 188331) ((-536 . -23) T) ((-137 . -1106) T) ((-133 . -1106) T) ((-117 . -312) 188288) ((-138 . -1106) T) ((-484 . -519) 188080) ((-682 . -621) 188064) ((-699 . -102) T) ((-1147 . -519) 187983) ((-395 . -131) T) ((-1286 . -982) 187952) ((-1030 . -1057) 187889) ((-31 . -93) T) ((-607 . -494) 187873) ((-1030 . -645) 187810) ((-626 . -131) T) ((-824 . -851) T) ((-528 . -57) 187760) ((-524 . -519) 187693) ((-358 . -1057) 187638) ((-59 . -519) 187571) ((-521 . -519) 187504) ((-423 . -906) 187463) ((-170 . -1055) T) ((-502 . -519) 187396) ((-501 . -519) 187329) ((-358 . -645) 187274) ((-804 . -1044) 187054) ((-704 . -38) 187019) ((-1246 . -621) 186767) ((-347 . -353) T) ((-1100 . -1099) 186751) ((-1100 . -1106) 186729) ((-860 . -621) 186626) ((-170 . -244) 186577) ((-170 . -234) 186528) ((-1100 . -1101) 186486) ((-877 . -289) 186444) ((-226 . -800) T) ((-226 . -797) T) ((-699 . -287) NIL) ((-576 . -621) 186416) ((-1156 . -1199) 186395) ((-412 . -998) 186379) ((-48 . -1057) 186344) ((-706 . -21) T) ((-706 . -25) T) ((-48 . -645) 186309) ((-1288 . -653) 186283) ((-319 . -160) 186262) ((-319 . -143) 186241) ((-1156 . -107) 186191) ((-116 . -21) T) ((-40 . -232) 186168) ((-134 . -25) T) ((-116 . -25) T) ((-613 . -291) 186144) ((-480 . -291) 186123) ((-1246 . -329) 186100) ((-1246 . -1055) T) ((-860 . -1055) T) ((-804 . -342) 186084) ((-139 . -186) T) ((-117 . -1158) NIL) ((-91 . -618) 186016) ((-482 . -131) T) ((-1246 . -234) T) ((-1102 . -495) 185997) ((-1102 . -618) 185963) ((-1096 . -495) 185944) ((-1096 . -618) 185910) ((-598 . -1223) T) ((-1079 . -495) 185891) ((-576 . -1055) T) ((-1079 . -618) 185857) ((-667 . -722) 185841) ((-1072 . -495) 185822) ((-1072 . -618) 185788) ((-964 . -291) 185765) ((-60 . -34) T) ((-1068 . -800) T) ((-1068 . -797) T) ((-1042 . -495) 185746) ((-1025 . -495) 185727) ((-821 . -731) T) ((-736 . -47) 185692) ((-628 . -38) 185679) ((-359 . -293) T) ((-356 . -293) T) ((-348 . -293) T) ((-266 . -293) 185610) ((-248 . -293) 185541) ((-1042 . -618) 185507) ((-1030 . -102) T) ((-1025 . -618) 185473) ((-631 . -495) 185454) ((-418 . -731) T) ((-117 . -38) 185399) ((-488 . -495) 185380) ((-631 . -618) 185346) ((-418 . -478) T) ((-219 . -495) 185327) ((-488 . -618) 185293) ((-358 . -102) T) ((-219 . -618) 185259) ((-1217 . -1064) T) ((-347 . -651) 185189) ((-716 . -1064) T) ((-1181 . -47) 185166) ((-1180 . -47) 185136) ((-1174 . -47) 185113) ((-128 . -291) 185088) ((-1041 . -151) 185034) ((-916 . -293) T) ((-1132 . -47) 185006) ((-699 . -312) NIL) ((-520 . -618) 184988) ((-515 . -618) 184970) ((-513 . -618) 184952) ((-330 . -1106) 184902) ((-717 . -457) 184833) ((-48 . -102) T) ((-1257 . -289) 184818) ((-1236 . -289) 184738) ((-649 . -671) 184722) ((-649 . -656) 184706) ((-343 . -21) T) ((-343 . -25) T) ((-40 . -353) NIL) ((-175 . -21) T) ((-175 . -25) T) ((-649 . -377) 184690) ((-610 . -495) 184672) ((-607 . -289) 184649) ((-610 . -618) 184616) ((-393 . -102) T) ((-1126 . -143) T) ((-126 . -618) 184548) ((-879 . -1106) T) ((-663 . -416) 184532) ((-719 . -618) 184514) ((-250 . -618) 184481) ((-188 . -618) 184463) ((-162 . -618) 184445) ((-157 . -618) 184427) ((-1288 . -731) T) ((-1108 . -34) T) ((-876 . -800) NIL) ((-876 . -797) NIL) ((-863 . -855) T) ((-736 . -892) NIL) ((-1297 . -131) T) ((-385 . -131) T) ((-898 . -621) 184395) ((-910 . -102) T) ((-736 . -1044) 184271) ((-536 . -131) T) ((-1093 . -416) 184255) ((-1006 . -494) 184239) ((-117 . -405) 184216) ((-1174 . -1223) 184195) ((-787 . -416) 184179) ((-785 . -416) 184163) ((-949 . -34) T) ((-699 . -1158) NIL) ((-253 . -653) 183998) ((-252 . -653) 183820) ((-822 . -926) 183799) ((-459 . -416) 183783) ((-607 . -19) 183767) ((-1152 . -1216) 183736) ((-1174 . -892) NIL) ((-1174 . -890) 183688) ((-607 . -609) 183665) ((-1209 . -618) 183597) ((-1182 . -618) 183579) ((-62 . -400) T) ((-1180 . -1044) 183514) ((-1174 . -1044) 183480) ((-699 . -38) 183430) ((-40 . -651) 183360) ((-479 . -289) 183345) ((-1229 . -618) 183327) ((-736 . -381) 183311) ((-843 . -618) 183293) ((-663 . -1064) T) ((-1257 . -1008) 183259) ((-1236 . -1008) 183225) ((-1094 . -621) 183209) ((-1069 . -1199) 183184) ((-1082 . -621) 183161) ((-877 . -619) 182968) ((-877 . -618) 182950) ((-1196 . -494) 182887) ((-423 . -1028) 182865) ((-48 . -312) 182852) ((-1069 . -107) 182798) ((-484 . -494) 182735) ((-525 . -1223) T) ((-1174 . -342) 182687) ((-1147 . -494) 182658) ((-1174 . -381) 182610) ((-1093 . -1064) T) ((-442 . -102) T) ((-184 . -1106) T) ((-253 . -34) T) ((-252 . -34) T) ((-787 . -1064) T) ((-785 . -1064) T) ((-736 . -906) 182587) ((-459 . -1064) T) ((-59 . -494) 182571) ((-1040 . -1062) 182545) ((-524 . -494) 182529) ((-521 . -494) 182513) ((-502 . -494) 182497) ((-501 . -494) 182481) ((-246 . -519) 182414) ((-1040 . -111) 182381) ((-1181 . -906) 182294) ((-1180 . -906) 182200) ((-1174 . -906) 182033) ((-1132 . -906) 182017) ((-675 . -1118) T) ((-358 . -1158) T) ((-650 . -93) T) ((-325 . -1062) 181999) ((-253 . -796) 181978) ((-253 . -799) 181929) ((-31 . -495) 181910) ((-253 . -798) 181889) ((-252 . -796) 181868) ((-252 . -799) 181819) ((-252 . -798) 181798) ((-31 . -618) 181764) ((-50 . -1064) T) ((-253 . -731) 181674) ((-252 . -731) 181584) ((-1217 . -1106) T) ((-675 . -23) T) ((-586 . -1064) T) ((-523 . -1064) T) ((-383 . -1062) 181549) ((-325 . -111) 181524) ((-73 . -387) T) ((-73 . -400) T) ((-1030 . -38) 181461) ((-699 . -405) 181443) ((-99 . -102) T) ((-716 . -1106) T) ((-1301 . -1057) 181430) ((-1009 . -145) 181402) ((-1009 . -147) 181374) ((-875 . -651) 181346) ((-383 . -111) 181302) ((-322 . -1227) 181281) ((-479 . -1008) 181247) ((-358 . -38) 181212) ((-40 . -374) 181184) ((-878 . -618) 181056) ((-127 . -125) 181040) ((-121 . -125) 181024) ((-841 . -1062) 180994) ((-838 . -21) 180946) ((-832 . -1062) 180930) ((-838 . -25) 180882) ((-322 . -561) 180833) ((-522 . -621) 180814) ((-569 . -833) T) ((-241 . -1223) T) ((-1040 . -621) 180783) ((-841 . -111) 180748) ((-832 . -111) 180727) ((-1257 . -618) 180709) ((-1236 . -618) 180691) ((-1236 . -619) 180362) ((-1179 . -915) 180341) ((-1131 . -915) 180320) ((-48 . -38) 180285) ((-1295 . -1118) T) ((-607 . -618) 180197) ((-607 . -619) 180158) ((-1293 . -1118) T) ((-365 . -621) 180142) ((-325 . -621) 180126) ((-241 . -1044) 179953) ((-1179 . -653) 179878) ((-1131 . -653) 179803) ((-859 . -653) 179777) ((-723 . -618) 179759) ((-551 . -372) T) ((-1295 . -23) T) ((-1293 . -23) T) ((-496 . -1106) T) ((-383 . -621) 179709) ((-383 . -623) 179691) ((-1040 . -1055) T) ((-870 . -102) T) ((-1196 . -289) 179670) ((-170 . -372) 179621) ((-1010 . -1223) T) ((-841 . -621) 179575) ((-832 . -621) 179530) ((-44 . -23) T) ((-484 . -289) 179509) ((-591 . -1106) T) ((-1152 . -1115) 179478) ((-1110 . -1109) 179430) ((-395 . -21) T) ((-395 . -25) T) ((-152 . -1118) T) ((-1301 . -102) T) ((-1010 . -890) 179412) ((-1010 . -892) 179394) ((-1217 . -722) 179291) ((-628 . -232) 179275) ((-626 . -21) T) ((-292 . -561) T) ((-626 . -25) T) ((-1203 . -1106) T) ((-716 . -722) 179240) ((-241 . -381) 179209) ((-1010 . -1044) 179169) ((-383 . -1055) T) ((-224 . -1064) T) ((-117 . -232) 179146) ((-59 . -289) 179123) ((-152 . -23) T) ((-521 . -289) 179100) ((-330 . -519) 179033) ((-501 . -289) 179010) ((-383 . -244) T) ((-383 . -234) T) ((-841 . -1055) T) ((-832 . -1055) T) ((-717 . -955) 178979) ((-706 . -855) T) ((-479 . -618) 178961) ((-1259 . -1057) 178866) ((-585 . -651) 178838) ((-569 . -651) 178810) ((-500 . -651) 178760) ((-832 . -234) 178739) ((-134 . -855) T) ((-1259 . -645) 178631) ((-663 . -1106) T) ((-1196 . -609) 178610) ((-555 . -1199) 178589) ((-340 . -1106) T) ((-322 . -367) 178568) ((-412 . -147) 178547) ((-412 . -145) 178526) ((-970 . -1118) 178425) ((-241 . -906) 178357) ((-820 . -1118) 178267) ((-659 . -857) 178251) ((-484 . -609) 178230) ((-555 . -107) 178180) ((-1010 . -381) 178162) ((-1010 . -342) 178144) ((-97 . -1106) T) ((-970 . -23) 177955) ((-482 . -21) T) ((-482 . -25) T) ((-820 . -23) 177825) ((-1183 . -618) 177807) ((-59 . -19) 177791) ((-1183 . -619) 177713) ((-1179 . -731) T) ((-1131 . -731) T) ((-521 . -19) 177697) ((-501 . -19) 177681) ((-59 . -609) 177658) ((-1093 . -1106) T) ((-907 . -102) 177636) ((-859 . -731) T) ((-787 . -1106) T) ((-521 . -609) 177613) ((-501 . -609) 177590) ((-785 . -1106) T) ((-785 . -1071) 177557) ((-466 . -1106) T) ((-459 . -1106) T) ((-591 . -722) 177532) ((-654 . -1106) T) ((-1265 . -47) 177509) ((-1259 . -102) T) ((-1258 . -47) 177479) ((-1237 . -47) 177456) ((-1217 . -173) 177407) ((-1180 . -310) 177386) ((-1174 . -310) 177365) ((-1102 . -621) 177346) ((-1096 . -621) 177327) ((-1086 . -561) 177278) ((-1010 . -906) NIL) ((-1086 . -1227) 177229) ((-675 . -131) T) ((-632 . -1118) T) ((-1079 . -621) 177210) ((-1072 . -621) 177191) ((-1042 . -621) 177172) ((-1025 . -621) 177153) ((-704 . -651) 177103) ((-277 . -1106) T) ((-85 . -446) T) ((-85 . -400) T) ((-719 . -1062) 177073) ((-716 . -173) T) ((-50 . -1106) T) ((-600 . -47) 177050) ((-226 . -653) 177015) ((-586 . -1106) T) ((-523 . -1106) T) ((-492 . -825) T) ((-492 . -926) T) ((-363 . -1227) T) ((-357 . -1227) T) ((-349 . -1227) T) ((-322 . -1118) T) ((-319 . -1057) 176925) ((-316 . -1057) 176854) ((-108 . -1227) T) ((-631 . -621) 176835) ((-363 . -561) T) ((-218 . -926) T) ((-218 . -825) T) ((-319 . -645) 176745) ((-316 . -645) 176674) ((-357 . -561) T) ((-349 . -561) T) ((-488 . -621) 176655) ((-108 . -561) T) ((-663 . -722) 176625) ((-1174 . -1028) NIL) ((-219 . -621) 176606) ((-322 . -23) T) ((-67 . -1223) T) ((-1006 . -618) 176538) ((-699 . -232) 176520) ((-719 . -111) 176485) ((-649 . -34) T) ((-246 . -494) 176469) ((-1108 . -1104) 176453) ((-172 . -1106) T) ((-1301 . -1158) T) ((-1297 . -21) T) ((-1297 . -25) T) ((-1295 . -131) T) ((-1293 . -131) T) ((-958 . -915) 176432) ((-1286 . -102) T) ((-1269 . -618) 176398) ((-1258 . -1044) 176333) ((-520 . -621) 176317) ((-1237 . -1223) 176296) ((-1237 . -892) NIL) ((-1237 . -890) 176248) ((-486 . -915) 176227) ((-1237 . -1044) 176193) ((-1217 . -519) 176160) ((-1093 . -722) 176009) ((-1068 . -653) 175996) ((-958 . -653) 175921) ((-602 . -495) 175902) ((-590 . -495) 175883) ((-787 . -722) 175712) ((-602 . -618) 175678) ((-590 . -618) 175644) ((-541 . -618) 175626) ((-541 . -619) 175607) ((-785 . -722) 175456) ((-1083 . -102) T) ((-385 . -25) T) ((-628 . -651) 175428) ((-385 . -21) T) ((-486 . -653) 175353) ((-466 . -722) 175324) ((-459 . -722) 175173) ((-993 . -102) T) ((-1196 . -619) NIL) ((-1196 . -618) 175155) ((-1148 . -1129) 175100) ((-742 . -102) T) ((-117 . -651) 175030) ((-610 . -621) 175012) ((-1052 . -1216) 174941) ((-907 . -312) 174879) ((-536 . -25) T) ((-881 . -93) T) ((-719 . -621) 174833) ((-686 . -93) T) ((-650 . -495) 174814) ((-141 . -102) T) ((-44 . -131) T) ((-681 . -93) T) ((-669 . -618) 174796) ((-347 . -1064) T) ((-292 . -1118) T) ((-650 . -618) 174749) ((-483 . -93) T) ((-359 . -618) 174731) ((-356 . -618) 174713) ((-348 . -618) 174695) ((-266 . -619) 174443) ((-266 . -618) 174425) ((-248 . -618) 174407) ((-248 . -619) 174268) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1147 . -618) 174250) ((-1126 . -645) 174237) ((-1126 . -1057) 174224) ((-824 . -731) T) ((-824 . -862) T) ((-607 . -291) 174201) ((-586 . -722) 174166) ((-484 . -619) NIL) ((-484 . -618) 174148) ((-523 . -722) 174093) ((-319 . -102) T) ((-316 . -102) T) ((-292 . -23) T) ((-152 . -131) T) ((-916 . -618) 174075) ((-916 . -619) 174057) ((-391 . -731) T) ((-877 . -1062) 174009) ((-877 . -111) 173947) ((-719 . -1055) T) ((-717 . -1249) 173931) ((-699 . -353) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-524 . -618) 173863) ((-383 . -800) T) ((-224 . -1106) T) ((-168 . -1223) T) ((-383 . -797) T) ((-226 . -799) T) ((-226 . -796) T) ((-59 . -619) 173824) ((-59 . -618) 173736) ((-226 . -731) T) ((-521 . -619) 173697) ((-521 . -618) 173609) ((-502 . -618) 173541) ((-501 . -619) 173502) ((-501 . -618) 173414) ((-1086 . -367) 173365) ((-40 . -416) 173342) ((-77 . -1223) T) ((-876 . -915) NIL) ((-363 . -332) 173326) ((-363 . -367) T) ((-357 . -332) 173310) ((-357 . -367) T) ((-349 . -332) 173294) ((-349 . -367) T) ((-319 . -287) 173273) ((-108 . -367) T) ((-70 . -1223) T) ((-1237 . -342) 173225) ((-876 . -653) 173170) ((-1237 . -381) 173122) ((-970 . -131) 172977) ((-820 . -131) 172847) ((-964 . -656) 172831) ((-1093 . -173) 172742) ((-964 . -377) 172726) ((-1068 . -799) T) ((-1068 . -796) T) ((-877 . -621) 172624) ((-787 . -173) 172515) ((-785 . -173) 172426) ((-821 . -47) 172388) ((-1068 . -731) T) ((-330 . -494) 172372) ((-958 . -731) T) ((-1286 . -312) 172310) ((-459 . -173) 172221) ((-246 . -289) 172198) ((-1265 . -906) 172111) ((-1258 . -906) 172017) ((-1257 . -1062) 171852) ((-486 . -731) T) ((-1237 . -906) 171685) ((-1236 . -1062) 171493) ((-1217 . -293) 171472) ((-1193 . -1223) T) ((-1190 . -372) T) ((-1189 . -372) T) ((-1152 . -151) 171456) ((-1126 . -102) T) ((-1124 . -1106) T) ((-1086 . -23) T) ((-1086 . -1118) T) ((-1081 . -102) T) ((-1063 . -618) 171423) ((-933 . -961) T) ((-742 . -312) 171361) ((-75 . -1223) T) ((-669 . -386) 171333) ((-170 . -915) 171286) ((-30 . -961) T) ((-112 . -849) T) ((-1 . -618) 171268) ((-1009 . -414) 171240) ((-128 . -656) 171222) ((-50 . -625) 171206) ((-699 . -651) 171141) ((-600 . -906) 171054) ((-443 . -102) T) ((-128 . -377) 171036) ((-141 . -312) NIL) ((-877 . -1055) T) ((-838 . -855) 171015) ((-81 . -1223) T) ((-716 . -293) T) ((-40 . -1064) T) ((-586 . -173) T) ((-523 . -173) T) ((-516 . -618) 170997) ((-170 . -653) 170907) ((-512 . -618) 170889) ((-355 . -147) 170871) ((-355 . -145) T) ((-363 . -1118) T) ((-357 . -1118) T) ((-349 . -1118) T) ((-1010 . -310) T) ((-920 . -310) T) ((-877 . -244) T) ((-108 . -1118) T) ((-877 . -234) 170850) ((-1257 . -111) 170671) ((-1236 . -111) 170460) ((-246 . -1261) 170444) ((-569 . -853) T) ((-363 . -23) T) ((-358 . -353) T) ((-319 . -312) 170431) ((-316 . -312) 170372) ((-357 . -23) T) ((-322 . -131) T) ((-349 . -23) T) ((-1010 . -1028) T) ((-31 . -621) 170353) ((-108 . -23) T) ((-659 . -1057) 170337) ((-246 . -609) 170314) ((-336 . -1106) T) ((-659 . -645) 170284) ((-1259 . -38) 170176) ((-1246 . -915) 170155) ((-112 . -1106) T) ((-1041 . -102) T) ((-1246 . -653) 170080) ((-876 . -799) NIL) ((-860 . -653) 170054) ((-876 . -796) NIL) ((-821 . -892) NIL) ((-876 . -731) T) ((-1093 . -519) 169927) ((-787 . -519) 169874) ((-785 . -519) 169826) ((-576 . -653) 169813) ((-821 . -1044) 169641) ((-459 . -519) 169584) ((-393 . -394) T) ((-1257 . -621) 169397) ((-1236 . -621) 169145) ((-60 . -1223) T) ((-626 . -855) 169124) ((-505 . -666) T) ((-1152 . -982) 169093) ((-1030 . -651) 169030) ((-1009 . -457) T) ((-704 . -853) T) ((-515 . -797) T) ((-479 . -1062) 168865) ((-347 . -1106) T) ((-316 . -1158) NIL) ((-292 . -131) T) ((-399 . -1106) T) ((-875 . -1064) T) ((-699 . -374) 168832) ((-358 . -651) 168762) ((-224 . -625) 168739) ((-330 . -289) 168716) ((-479 . -111) 168537) ((-1257 . -1055) T) ((-1236 . -1055) T) ((-821 . -381) 168521) ((-170 . -731) T) ((-659 . -102) T) ((-1257 . -244) 168500) ((-1257 . -234) 168452) ((-1236 . -234) 168357) ((-1236 . -244) 168336) ((-1009 . -407) NIL) ((-675 . -644) 168284) ((-319 . -38) 168194) ((-316 . -38) 168123) ((-69 . -618) 168105) ((-322 . -498) 168071) ((-48 . -651) 168021) ((-1196 . -291) 168000) ((-1231 . -855) T) ((-1119 . -1118) 167910) ((-83 . -1223) T) ((-61 . -618) 167892) ((-484 . -291) 167871) ((-1288 . -1044) 167848) ((-1171 . -1106) T) ((-1119 . -23) 167718) ((-821 . -906) 167654) ((-1246 . -731) T) ((-1108 . -1223) T) ((-479 . -621) 167480) ((-1093 . -293) 167411) ((-972 . -1106) T) ((-899 . -102) T) ((-787 . -293) 167322) ((-330 . -19) 167306) ((-59 . -291) 167283) ((-785 . -293) 167214) ((-860 . -731) T) ((-117 . -853) NIL) ((-521 . -291) 167191) ((-330 . -609) 167168) ((-501 . -291) 167145) ((-459 . -293) 167076) ((-1041 . -312) 166927) ((-881 . -495) 166908) ((-881 . -618) 166874) ((-686 . -495) 166855) ((-576 . -731) T) ((-681 . -495) 166836) ((-686 . -618) 166786) ((-681 . -618) 166752) ((-667 . -618) 166734) ((-483 . -495) 166715) ((-483 . -618) 166681) ((-246 . -619) 166642) ((-246 . -495) 166619) ((-138 . -495) 166600) ((-137 . -495) 166581) ((-133 . -495) 166562) ((-246 . -618) 166454) ((-214 . -102) T) ((-138 . -618) 166420) ((-137 . -618) 166386) ((-133 . -618) 166352) ((-1153 . -34) T) ((-949 . -1223) T) ((-347 . -722) 166297) ((-675 . -25) T) ((-675 . -21) T) ((-1183 . -621) 166278) ((-479 . -1055) T) ((-640 . -422) 166243) ((-612 . -422) 166208) ((-1126 . -1158) T) ((-717 . -1057) 166031) ((-586 . -293) T) ((-523 . -293) T) ((-1258 . -310) 166010) ((-479 . -234) 165962) ((-479 . -244) 165941) ((-1237 . -310) 165920) ((-717 . -645) 165749) ((-1237 . -1028) NIL) ((-1086 . -131) T) ((-877 . -800) 165728) ((-144 . -102) T) ((-40 . -1106) T) ((-877 . -797) 165707) ((-649 . -1016) 165691) ((-585 . -1064) T) ((-569 . -1064) T) ((-500 . -1064) T) ((-412 . -457) T) ((-363 . -131) T) ((-319 . -405) 165675) ((-316 . -405) 165636) ((-357 . -131) T) ((-349 . -131) T) ((-1188 . -1106) T) ((-1126 . -38) 165623) ((-1100 . -618) 165590) ((-108 . -131) T) ((-960 . -1106) T) ((-927 . -1106) T) ((-776 . -1106) T) ((-677 . -1106) T) ((-706 . -147) T) ((-116 . -147) T) ((-1295 . -21) T) ((-1295 . -25) T) ((-1293 . -21) T) ((-1293 . -25) T) ((-669 . -1062) 165574) ((-536 . -855) T) ((-505 . -855) T) ((-359 . -1062) 165526) ((-356 . -1062) 165478) ((-348 . -1062) 165430) ((-253 . -1223) T) ((-252 . -1223) T) ((-266 . -1062) 165273) ((-248 . -1062) 165116) ((-669 . -111) 165095) ((-552 . -849) T) ((-359 . -111) 165033) ((-356 . -111) 164971) ((-348 . -111) 164909) ((-266 . -111) 164738) ((-248 . -111) 164567) ((-822 . -1227) 164546) ((-628 . -416) 164530) ((-44 . -21) T) ((-44 . -25) T) ((-820 . -644) 164436) ((-822 . -561) 164415) ((-253 . -1044) 164242) ((-252 . -1044) 164069) ((-126 . -119) 164053) ((-916 . -1062) 164018) ((-717 . -102) T) ((-704 . -1064) T) ((-602 . -621) 163999) ((-590 . -621) 163980) ((-541 . -623) 163883) ((-347 . -173) T) ((-88 . -618) 163865) ((-152 . -21) T) ((-152 . -25) T) ((-916 . -111) 163821) ((-40 . -722) 163766) ((-875 . -1106) T) ((-669 . -621) 163743) ((-650 . -621) 163724) ((-359 . -621) 163661) ((-356 . -621) 163598) ((-552 . -1106) T) ((-348 . -621) 163535) ((-330 . -619) 163496) ((-330 . -618) 163408) ((-266 . -621) 163161) ((-248 . -621) 162946) ((-1236 . -797) 162899) ((-1236 . -800) 162852) ((-253 . -381) 162821) ((-252 . -381) 162790) ((-659 . -38) 162760) ((-613 . -34) T) ((-487 . -1118) 162670) ((-480 . -34) T) ((-1119 . -131) 162540) ((-970 . -25) 162351) ((-916 . -621) 162301) ((-879 . -618) 162283) ((-970 . -21) 162238) ((-820 . -21) 162148) ((-820 . -25) 161999) ((-1229 . -372) T) ((-628 . -1064) T) ((-1185 . -561) 161978) ((-1179 . -47) 161955) ((-359 . -1055) T) ((-356 . -1055) T) ((-487 . -23) 161825) ((-348 . -1055) T) ((-266 . -1055) T) ((-248 . -1055) T) ((-1131 . -47) 161797) ((-117 . -1064) T) ((-1040 . -653) 161771) ((-964 . -34) T) ((-359 . -234) 161750) ((-359 . -244) T) ((-356 . -234) 161729) ((-356 . -244) T) ((-348 . -234) 161708) ((-348 . -244) T) ((-266 . -329) 161680) ((-248 . -329) 161637) ((-266 . -234) 161616) ((-1163 . -151) 161600) ((-253 . -906) 161532) ((-252 . -906) 161464) ((-1088 . -855) T) ((-419 . -1118) T) ((-1060 . -23) T) ((-916 . -1055) T) ((-325 . -653) 161446) ((-1030 . -853) T) ((-1217 . -1008) 161412) ((-1180 . -926) 161391) ((-1174 . -926) 161370) ((-1174 . -825) NIL) ((-1005 . -1057) 161266) ((-916 . -244) T) ((-822 . -367) 161245) ((-389 . -23) T) ((-127 . -1106) 161223) ((-121 . -1106) 161201) ((-916 . -234) T) ((-128 . -34) T) ((-383 . -653) 161166) ((-1005 . -645) 161114) ((-875 . -722) 161101) ((-1301 . -651) 161073) ((-1052 . -151) 161038) ((-40 . -173) T) ((-699 . -416) 161020) ((-717 . -312) 161007) ((-841 . -653) 160967) ((-832 . -653) 160941) ((-322 . -25) T) ((-322 . -21) T) ((-663 . -289) 160920) ((-585 . -1106) T) ((-569 . -1106) T) ((-500 . -1106) T) ((-246 . -291) 160897) ((-316 . -232) 160858) ((-1179 . -892) NIL) ((-55 . -1106) T) ((-1131 . -892) 160717) ((-129 . -855) T) ((-1179 . -1044) 160597) ((-1131 . -1044) 160480) ((-184 . -618) 160462) ((-859 . -1044) 160358) ((-787 . -289) 160285) ((-822 . -1118) T) ((-1040 . -731) T) ((-607 . -656) 160269) ((-1052 . -982) 160198) ((-1005 . -102) T) ((-822 . -23) T) ((-717 . -1158) 160176) ((-699 . -1064) T) ((-607 . -377) 160160) ((-355 . -457) T) ((-347 . -293) T) ((-1274 . -1106) T) ((-249 . -1106) T) ((-404 . -102) T) ((-292 . -21) T) ((-292 . -25) T) ((-365 . -731) T) ((-715 . -1106) T) ((-704 . -1106) T) ((-365 . -478) T) ((-1217 . -618) 160142) ((-1179 . -381) 160126) ((-1131 . -381) 160110) ((-1030 . -416) 160072) ((-141 . -230) 160054) ((-383 . -799) T) ((-383 . -796) T) ((-875 . -173) T) ((-383 . -731) T) ((-716 . -618) 160036) ((-717 . -38) 159865) ((-1273 . -1271) 159849) ((-355 . -407) T) ((-1273 . -1106) 159799) ((-585 . -722) 159786) ((-569 . -722) 159773) ((-500 . -722) 159738) ((-1259 . -651) 159628) ((-319 . -634) 159607) ((-841 . -731) T) ((-832 . -731) T) ((-649 . -1223) T) ((-1086 . -644) 159555) ((-1179 . -906) 159498) ((-1131 . -906) 159482) ((-667 . -1062) 159466) ((-108 . -644) 159448) ((-487 . -131) 159318) ((-1185 . -1118) T) ((-958 . -47) 159287) ((-628 . -1106) T) ((-667 . -111) 159266) ((-496 . -618) 159232) ((-330 . -291) 159209) ((-486 . -47) 159166) ((-1185 . -23) T) ((-117 . -1106) T) ((-103 . -102) 159144) ((-1285 . -1118) T) ((-553 . -855) T) ((-1060 . -131) T) ((-1030 . -1064) T) ((-824 . -1044) 159128) ((-1009 . -729) 159100) ((-1285 . -23) T) ((-704 . -722) 159065) ((-591 . -618) 159047) ((-391 . -1044) 159031) ((-358 . -1064) T) ((-389 . -131) T) ((-327 . -1044) 159015) ((-1203 . -618) 158997) ((-1126 . -833) T) ((-1111 . -1106) T) ((-226 . -892) 158979) ((-1010 . -926) T) ((-91 . -34) T) ((-1010 . -825) T) ((-920 . -926) T) ((-1086 . -21) T) ((-1086 . -25) T) ((-492 . -1227) T) ((-1005 . -312) 158944) ((-881 . -621) 158925) ((-719 . -653) 158885) ((-218 . -1227) T) ((-686 . -621) 158866) ((-226 . -1044) 158826) ((-40 . -293) T) ((-681 . -621) 158807) ((-492 . -561) T) ((-483 . -621) 158788) ((-319 . -651) 158472) ((-316 . -651) 158386) ((-363 . -25) T) ((-363 . -21) T) ((-357 . -25) T) ((-218 . -561) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-246 . -621) 158363) ((-138 . -621) 158344) ((-137 . -621) 158325) ((-133 . -621) 158306) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1064) T) ((-585 . -173) T) ((-569 . -173) T) ((-500 . -173) T) ((-663 . -618) 158288) ((-742 . -741) 158272) ((-340 . -618) 158254) ((-68 . -387) T) ((-68 . -400) T) ((-1108 . -107) 158238) ((-1068 . -892) 158220) ((-958 . -892) 158145) ((-658 . -1118) T) ((-628 . -722) 158132) ((-486 . -892) NIL) ((-1152 . -102) T) ((-1100 . -623) 158116) ((-1068 . -1044) 158098) ((-97 . -618) 158080) ((-482 . -147) T) ((-958 . -1044) 157960) ((-117 . -722) 157905) ((-658 . -23) T) ((-486 . -1044) 157781) ((-1093 . -619) NIL) ((-1093 . -618) 157763) ((-787 . -619) NIL) ((-787 . -618) 157724) ((-785 . -619) 157358) ((-785 . -618) 157272) ((-1119 . -644) 157178) ((-466 . -618) 157160) ((-459 . -618) 157142) ((-459 . -619) 157003) ((-1041 . -230) 156949) ((-877 . -915) 156928) ((-126 . -34) T) ((-822 . -131) T) ((-654 . -618) 156910) ((-583 . -102) T) ((-359 . -1292) 156894) ((-356 . -1292) 156878) ((-348 . -1292) 156862) ((-127 . -519) 156795) ((-121 . -519) 156728) ((-516 . -797) T) ((-516 . -800) T) ((-515 . -799) T) ((-103 . -312) 156666) ((-223 . -102) 156644) ((-704 . -173) T) ((-699 . -1106) T) ((-877 . -653) 156596) ((-65 . -388) T) ((-277 . -618) 156578) ((-65 . -400) T) ((-958 . -381) 156562) ((-875 . -293) T) ((-50 . -618) 156544) ((-1005 . -38) 156492) ((-1126 . -651) 156464) ((-586 . -618) 156446) ((-486 . -381) 156430) ((-586 . -619) 156412) ((-523 . -618) 156394) ((-916 . -1292) 156381) ((-876 . -1223) T) ((-706 . -457) T) ((-500 . -519) 156347) ((-492 . -367) T) ((-359 . -372) 156326) ((-356 . -372) 156305) ((-348 . -372) 156284) ((-719 . -731) T) ((-218 . -367) T) ((-116 . -457) T) ((-1296 . -1287) 156268) ((-876 . -890) 156245) ((-876 . -892) NIL) ((-970 . -855) 156144) ((-820 . -855) 156095) ((-1230 . -102) T) ((-659 . -661) 156079) ((-1209 . -34) T) ((-172 . -618) 156061) ((-1119 . -21) 155971) ((-1119 . -25) 155822) ((-876 . -1044) 155799) ((-958 . -906) 155780) ((-1246 . -47) 155757) ((-916 . -372) T) ((-59 . -656) 155741) ((-521 . -656) 155725) ((-486 . -906) 155702) ((-71 . -446) T) ((-71 . -400) T) ((-501 . -656) 155686) ((-59 . -377) 155670) ((-628 . -173) T) ((-521 . -377) 155654) ((-501 . -377) 155638) ((-832 . -713) 155622) ((-1179 . -310) 155601) ((-1185 . -131) T) ((-1148 . -1057) 155585) ((-117 . -173) T) ((-1148 . -645) 155517) ((-1152 . -312) 155455) ((-170 . -1223) T) ((-1285 . -131) T) ((-871 . -1057) 155425) ((-640 . -749) 155409) ((-612 . -749) 155393) ((-1258 . -926) 155372) ((-1237 . -926) 155351) ((-1237 . -825) NIL) ((-871 . -645) 155321) ((-699 . -722) 155271) ((-1236 . -915) 155224) ((-1030 . -1106) T) ((-876 . -381) 155201) ((-876 . -342) 155178) ((-911 . -1118) T) ((-170 . -890) 155162) ((-170 . -892) 155087) ((-492 . -1118) T) ((-358 . -1106) T) ((-218 . -1118) T) ((-76 . -446) T) ((-76 . -400) T) ((-170 . -1044) 154983) ((-322 . -855) T) ((-1273 . -519) 154916) ((-1257 . -653) 154813) ((-1236 . -653) 154683) ((-877 . -799) 154662) ((-877 . -796) 154641) ((-877 . -731) T) ((-492 . -23) T) ((-224 . -618) 154623) ((-175 . -457) T) ((-223 . -312) 154561) ((-86 . -446) T) ((-86 . -400) T) ((-218 . -23) T) ((-1297 . -1290) 154540) ((-682 . -1044) 154524) ((-585 . -293) T) ((-569 . -293) T) ((-500 . -293) T) ((-136 . -475) 154479) ((-659 . -651) 154438) ((-48 . -1106) T) ((-717 . -232) 154422) ((-876 . -906) NIL) ((-1246 . -892) NIL) ((-895 . -102) T) ((-891 . -102) T) ((-393 . -1106) T) ((-170 . -381) 154406) ((-170 . -342) 154390) ((-1246 . -1044) 154270) ((-860 . -1044) 154166) ((-1148 . -102) T) ((-667 . -797) 154145) ((-658 . -131) T) ((-117 . -519) 154053) ((-667 . -800) 154032) ((-576 . -1044) 154014) ((-297 . -1280) 153984) ((-871 . -102) T) ((-969 . -561) 153963) ((-1217 . -1062) 153846) ((-1009 . -1057) 153791) ((-487 . -644) 153697) ((-910 . -1106) T) ((-1030 . -722) 153634) ((-716 . -1062) 153599) ((-1009 . -645) 153544) ((-622 . -102) T) ((-607 . -34) T) ((-1153 . -1223) T) ((-1217 . -111) 153413) ((-479 . -653) 153310) ((-358 . -722) 153255) ((-170 . -906) 153214) ((-704 . -293) T) ((-699 . -173) T) ((-716 . -111) 153170) ((-1301 . -1064) T) ((-1246 . -381) 153154) ((-423 . -1227) 153132) ((-1124 . -618) 153114) ((-316 . -853) NIL) ((-423 . -561) T) ((-226 . -310) T) ((-1236 . -796) 153067) ((-1236 . -799) 153020) ((-1257 . -731) T) ((-1236 . -731) T) ((-48 . -722) 152985) ((-226 . -1028) T) ((-355 . -1280) 152962) ((-1259 . -416) 152928) ((-723 . -731) T) ((-336 . -618) 152910) ((-1246 . -906) 152853) ((-1217 . -621) 152735) ((-112 . -618) 152717) ((-112 . -619) 152699) ((-723 . -478) T) ((-716 . -621) 152649) ((-1296 . -1057) 152633) ((-487 . -21) 152543) ((-127 . -494) 152527) ((-121 . -494) 152511) ((-487 . -25) 152362) ((-1296 . -645) 152332) ((-628 . -293) T) ((-591 . -1062) 152307) ((-442 . -1106) T) ((-1068 . -310) T) ((-117 . -293) T) ((-1110 . -102) T) ((-1009 . -102) T) ((-591 . -111) 152275) ((-1148 . -312) 152213) ((-1217 . -1055) T) ((-1068 . -1028) T) ((-66 . -1223) T) ((-1060 . -25) T) ((-1060 . -21) T) ((-716 . -1055) T) ((-389 . -21) T) ((-389 . -25) T) ((-699 . -519) NIL) ((-1030 . -173) T) ((-716 . -244) T) ((-1068 . -550) T) ((-717 . -651) 152123) ((-511 . -102) T) ((-507 . -102) T) ((-358 . -173) T) ((-347 . -618) 152105) ((-412 . -1057) 152057) ((-399 . -618) 152039) ((-1126 . -853) T) ((-479 . -731) T) ((-898 . -1044) 152007) ((-412 . -645) 151959) ((-108 . -855) T) ((-663 . -1062) 151943) ((-492 . -131) T) ((-1259 . -1064) T) ((-218 . -131) T) ((-1163 . -102) 151921) ((-99 . -1106) T) ((-246 . -671) 151905) ((-246 . -656) 151889) ((-663 . -111) 151868) ((-591 . -621) 151852) ((-319 . -416) 151836) ((-246 . -377) 151820) ((-1166 . -236) 151767) ((-1005 . -232) 151751) ((-74 . -1223) T) ((-48 . -173) T) ((-706 . -392) T) ((-706 . -143) T) ((-1296 . -102) T) ((-1203 . -621) 151733) ((-1093 . -1062) 151576) ((-266 . -915) 151555) ((-248 . -915) 151534) ((-787 . -1062) 151357) ((-785 . -1062) 151200) ((-613 . -1223) T) ((-1171 . -618) 151182) ((-1093 . -111) 151011) ((-1052 . -102) T) ((-480 . -1223) T) ((-466 . -1062) 150982) ((-459 . -1062) 150825) ((-669 . -653) 150809) ((-876 . -310) T) ((-787 . -111) 150618) ((-785 . -111) 150447) ((-359 . -653) 150399) ((-356 . -653) 150351) ((-348 . -653) 150303) ((-266 . -653) 150228) ((-248 . -653) 150153) ((-1165 . -855) T) ((-1094 . -1044) 150137) ((-466 . -111) 150098) ((-459 . -111) 149927) ((-1082 . -1044) 149904) ((-1006 . -34) T) ((-972 . -618) 149886) ((-964 . -1223) T) ((-126 . -1016) 149870) ((-969 . -1118) T) ((-876 . -1028) NIL) ((-740 . -1118) T) ((-720 . -1118) T) ((-663 . -621) 149788) ((-1273 . -494) 149772) ((-1148 . -38) 149732) ((-969 . -23) T) ((-916 . -653) 149697) ((-870 . -1106) T) ((-848 . -102) T) ((-822 . -21) T) ((-640 . -1057) 149681) ((-612 . -1057) 149665) ((-822 . -25) T) ((-740 . -23) T) ((-720 . -23) T) ((-640 . -645) 149649) ((-110 . -666) T) ((-612 . -645) 149633) ((-586 . -1062) 149598) ((-523 . -1062) 149543) ((-228 . -57) 149501) ((-458 . -23) T) ((-412 . -102) T) ((-265 . -102) T) ((-699 . -293) T) ((-871 . -38) 149471) ((-586 . -111) 149427) ((-523 . -111) 149356) ((-1093 . -621) 149092) ((-423 . -1118) T) ((-319 . -1064) 148982) ((-316 . -1064) T) ((-128 . -1223) T) ((-787 . -621) 148730) ((-785 . -621) 148496) ((-663 . -1055) T) ((-1301 . -1106) T) ((-459 . -621) 148281) ((-170 . -310) 148212) ((-423 . -23) T) ((-40 . -618) 148194) ((-40 . -619) 148178) ((-108 . -998) 148160) ((-116 . -874) 148144) ((-654 . -621) 148128) ((-48 . -519) 148094) ((-1209 . -1016) 148078) ((-1188 . -618) 148045) ((-1196 . -34) T) ((-960 . -618) 148011) ((-927 . -618) 147993) ((-1119 . -855) 147944) ((-776 . -618) 147926) ((-677 . -618) 147908) ((-1163 . -312) 147846) ((-484 . -34) T) ((-1098 . -1223) T) ((-482 . -457) T) ((-1147 . -34) T) ((-1093 . -1055) T) ((-50 . -621) 147815) ((-787 . -1055) T) ((-785 . -1055) T) ((-652 . -236) 147799) ((-637 . -236) 147745) ((-586 . -621) 147695) ((-523 . -621) 147625) ((-1246 . -310) 147604) ((-1093 . -329) 147565) ((-459 . -1055) T) ((-1185 . -21) T) ((-1093 . -234) 147544) ((-787 . -329) 147521) ((-787 . -234) T) ((-785 . -329) 147493) ((-736 . -1227) 147472) ((-330 . -656) 147456) ((-1185 . -25) T) ((-59 . -34) T) ((-524 . -34) T) ((-521 . -34) T) ((-459 . -329) 147435) ((-330 . -377) 147419) ((-502 . -34) T) ((-501 . -34) T) ((-1009 . -1158) NIL) ((-736 . -561) 147350) ((-640 . -102) T) ((-612 . -102) T) ((-359 . -731) T) ((-356 . -731) T) ((-348 . -731) T) ((-266 . -731) T) ((-248 . -731) T) ((-1052 . -312) 147258) ((-907 . -1106) 147236) ((-50 . -1055) T) ((-1285 . -21) T) ((-1285 . -25) T) ((-1181 . -561) 147215) ((-1180 . -1227) 147194) ((-1180 . -561) 147145) ((-586 . -1055) T) ((-523 . -1055) T) ((-1174 . -1227) 147124) ((-365 . -1044) 147108) ((-325 . -1044) 147092) ((-1030 . -293) T) ((-383 . -892) 147074) ((-1174 . -561) 147025) ((-1009 . -38) 146970) ((-1005 . -651) 146893) ((-804 . -1118) T) ((-916 . -731) T) ((-586 . -244) T) ((-586 . -234) T) ((-523 . -234) T) ((-523 . -244) T) ((-1132 . -561) 146872) ((-358 . -293) T) ((-652 . -700) 146856) ((-383 . -1044) 146816) ((-297 . -1057) 146737) ((-1126 . -1064) T) ((-103 . -125) 146721) ((-297 . -645) 146663) ((-804 . -23) T) ((-1295 . -1290) 146639) ((-1273 . -289) 146616) ((-412 . -312) 146581) ((-1293 . -1290) 146560) ((-1259 . -1106) T) ((-875 . -618) 146542) ((-841 . -1044) 146511) ((-204 . -792) T) ((-203 . -792) T) ((-202 . -792) T) ((-201 . -792) T) ((-200 . -792) T) ((-199 . -792) T) ((-198 . -792) T) ((-197 . -792) T) ((-196 . -792) T) ((-195 . -792) T) ((-552 . -618) 146493) ((-500 . -1008) T) ((-276 . -844) T) ((-275 . -844) T) ((-274 . -844) T) ((-273 . -844) T) ((-48 . -293) T) ((-272 . -844) T) ((-271 . -844) T) ((-270 . -844) T) ((-194 . -792) T) ((-617 . -855) T) ((-659 . -416) 146477) ((-224 . -621) 146439) ((-110 . -855) T) ((-658 . -21) T) ((-658 . -25) T) ((-1296 . -38) 146409) ((-117 . -289) 146360) ((-1273 . -19) 146344) ((-1273 . -609) 146321) ((-1286 . -1106) T) ((-355 . -1057) 146266) ((-1083 . -1106) T) ((-993 . -1106) T) ((-969 . -131) T) ((-742 . -1106) T) ((-355 . -645) 146211) ((-740 . -131) T) ((-720 . -131) T) ((-516 . -798) T) ((-516 . -799) T) ((-458 . -131) T) ((-412 . -1158) 146189) ((-224 . -1055) T) ((-297 . -102) 145971) ((-141 . -1106) T) ((-704 . -1008) T) ((-91 . -1223) T) ((-127 . -618) 145903) ((-121 . -618) 145835) ((-1301 . -173) T) ((-1180 . -367) 145814) ((-1174 . -367) 145793) ((-319 . -1106) T) ((-423 . -131) T) ((-316 . -1106) T) ((-412 . -38) 145745) ((-1139 . -102) T) ((-1259 . -722) 145637) ((-659 . -1064) T) ((-1141 . -1268) T) ((-322 . -145) 145616) ((-322 . -147) 145595) ((-136 . -1106) T) ((-139 . -1106) T) ((-114 . -1106) T) ((-863 . -102) T) ((-585 . -618) 145577) ((-569 . -619) 145476) ((-569 . -618) 145458) ((-500 . -618) 145440) ((-500 . -619) 145385) ((-490 . -23) T) ((-487 . -855) 145336) ((-492 . -644) 145318) ((-971 . -618) 145300) ((-218 . -644) 145282) ((-226 . -409) T) ((-667 . -653) 145266) ((-55 . -618) 145248) ((-1179 . -926) 145227) ((-736 . -1118) T) ((-355 . -102) T) ((-1222 . -1089) T) ((-1126 . -849) T) ((-823 . -855) T) ((-736 . -23) T) ((-347 . -1062) 145172) ((-1165 . -1164) T) ((-1153 . -107) 145156) ((-1181 . -1118) T) ((-1180 . -1118) T) ((-520 . -1044) 145140) ((-1174 . -1118) T) ((-1132 . -1118) T) ((-347 . -111) 145069) ((-1010 . -1227) T) ((-126 . -1223) T) ((-920 . -1227) T) ((-699 . -289) NIL) ((-1274 . -618) 145051) ((-1181 . -23) T) ((-1180 . -23) T) ((-1174 . -23) T) ((-1010 . -561) T) ((-1148 . -232) 145035) ((-920 . -561) T) ((-1132 . -23) T) ((-249 . -618) 145017) ((-1081 . -1106) T) ((-804 . -131) T) ((-715 . -618) 144999) ((-319 . -722) 144909) ((-316 . -722) 144838) ((-704 . -618) 144820) ((-704 . -619) 144765) ((-412 . -405) 144749) ((-443 . -1106) T) ((-492 . -25) T) ((-492 . -21) T) ((-1126 . -1106) T) ((-218 . -25) T) ((-218 . -21) T) ((-717 . -416) 144733) ((-719 . -1044) 144702) ((-1273 . -618) 144614) ((-1273 . -619) 144575) ((-1259 . -173) T) ((-246 . -34) T) ((-347 . -621) 144505) ((-399 . -621) 144487) ((-932 . -980) T) ((-1209 . -1223) T) ((-667 . -796) 144466) ((-667 . -799) 144445) ((-403 . -400) T) ((-528 . -102) 144423) ((-1041 . -1106) T) ((-223 . -1001) 144407) ((-509 . -102) T) ((-628 . -618) 144389) ((-45 . -855) NIL) ((-628 . -619) 144366) ((-1041 . -615) 144341) ((-907 . -519) 144274) ((-347 . -1055) T) ((-117 . -619) NIL) ((-117 . -618) 144256) ((-877 . -1223) T) ((-675 . -422) 144240) ((-675 . -1129) 144185) ((-505 . -151) 144167) ((-347 . -234) T) ((-347 . -244) T) ((-40 . -1062) 144112) ((-877 . -890) 144096) ((-877 . -892) 144021) ((-717 . -1064) T) ((-699 . -1008) NIL) ((-1257 . -47) 143991) ((-1236 . -47) 143968) ((-1147 . -1016) 143939) ((-3 . |UnionCategory|) T) ((-1126 . -722) 143926) ((-1111 . -618) 143908) ((-1086 . -147) 143887) ((-1086 . -145) 143838) ((-972 . -621) 143822) ((-226 . -926) T) ((-40 . -111) 143751) ((-877 . -1044) 143615) ((-1010 . -367) T) ((-1009 . -232) 143592) ((-706 . -1057) 143579) ((-920 . -367) T) ((-706 . -645) 143566) ((-322 . -1211) 143532) ((-383 . -310) T) ((-322 . -1208) 143498) ((-319 . -173) 143477) ((-316 . -173) T) ((-586 . -1292) 143464) ((-523 . -1292) 143441) ((-363 . -147) 143420) ((-116 . -1057) 143407) ((-363 . -145) 143358) ((-357 . -147) 143337) ((-357 . -145) 143288) ((-349 . -147) 143267) ((-613 . -1199) 143243) ((-116 . -645) 143230) ((-349 . -145) 143181) ((-322 . -35) 143147) ((-480 . -1199) 143126) ((0 . |EnumerationCategory|) T) ((-322 . -95) 143092) ((-383 . -1028) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -236) 143042) ((-659 . -1106) T) ((-613 . -107) 142989) ((-490 . -131) T) ((-480 . -107) 142939) ((-241 . -1118) 142849) ((-877 . -381) 142833) ((-877 . -342) 142817) ((-241 . -23) 142687) ((-40 . -621) 142617) ((-1068 . -926) T) ((-1068 . -825) T) ((-586 . -372) T) ((-523 . -372) T) ((-1286 . -519) 142550) ((-1265 . -561) 142529) ((-355 . -1158) T) ((-330 . -34) T) ((-44 . -422) 142513) ((-1188 . -621) 142449) ((-878 . -1223) T) ((-395 . -749) 142433) ((-1258 . -1227) 142412) ((-1258 . -561) 142363) ((-1148 . -651) 142322) ((-736 . -131) T) ((-677 . -621) 142306) ((-1237 . -1227) 142285) ((-1237 . -561) 142236) ((-1236 . -1223) 142215) ((-1236 . -892) 142088) ((-1236 . -890) 142058) ((-1181 . -131) T) ((-314 . -1089) T) ((-1180 . -131) T) ((-742 . -519) 141991) ((-1174 . -131) T) ((-1132 . -131) T) ((-899 . -1106) T) ((-144 . -849) T) ((-1030 . -1008) T) ((-696 . -618) 141973) ((-1010 . -23) T) ((-528 . -312) 141911) ((-1010 . -1118) T) ((-141 . -519) NIL) ((-871 . -651) 141856) ((-1009 . -353) NIL) ((-977 . -23) T) ((-920 . -1118) T) ((-355 . -38) 141821) ((-920 . -23) T) ((-877 . -906) 141780) ((-82 . -618) 141762) ((-40 . -1055) T) ((-875 . -1062) 141749) ((-875 . -111) 141734) ((-706 . -102) T) ((-699 . -618) 141716) ((-607 . -1223) T) ((-601 . -561) 141695) ((-432 . -1118) T) ((-343 . -1057) 141679) ((-214 . -1106) T) ((-175 . -1057) 141611) ((-479 . -47) 141581) ((-134 . -102) T) ((-40 . -234) 141553) ((-40 . -244) T) ((-116 . -102) T) ((-600 . -561) 141532) ((-343 . -645) 141516) ((-699 . -619) 141424) ((-319 . -519) 141390) ((-175 . -645) 141322) ((-316 . -519) 141214) ((-1257 . -1044) 141198) ((-1236 . -1044) 140984) ((-1005 . -416) 140968) ((-432 . -23) T) ((-1126 . -173) T) ((-1259 . -293) T) ((-659 . -722) 140938) ((-144 . -1106) T) ((-48 . -1008) T) ((-412 . -232) 140922) ((-298 . -236) 140872) ((-876 . -926) T) ((-876 . -825) NIL) ((-875 . -621) 140844) ((-869 . -855) T) ((-1236 . -342) 140814) ((-1236 . -381) 140784) ((-223 . -1127) 140768) ((-1273 . -291) 140745) ((-1217 . -653) 140670) ((-1009 . -651) 140600) ((-969 . -21) T) ((-969 . -25) T) ((-740 . -21) T) ((-740 . -25) T) ((-720 . -21) T) ((-720 . -25) T) ((-716 . -653) 140565) ((-458 . -21) T) ((-458 . -25) T) ((-343 . -102) T) ((-175 . -102) T) ((-1005 . -1064) T) ((-875 . -1055) T) ((-779 . -102) T) ((-1258 . -367) 140544) ((-1257 . -906) 140450) ((-1237 . -367) 140429) ((-1236 . -906) 140280) ((-1030 . -618) 140262) ((-412 . -833) 140215) ((-1181 . -498) 140181) ((-170 . -926) 140112) ((-1180 . -498) 140078) ((-1174 . -498) 140044) ((-717 . -1106) T) ((-1132 . -498) 140010) ((-585 . -1062) 139997) ((-569 . -1062) 139984) ((-500 . -1062) 139949) ((-319 . -293) 139928) ((-316 . -293) T) ((-358 . -618) 139910) ((-423 . -25) T) ((-423 . -21) T) ((-99 . -289) 139889) ((-585 . -111) 139874) ((-569 . -111) 139859) ((-500 . -111) 139815) ((-1183 . -892) 139782) ((-907 . -494) 139766) ((-48 . -618) 139748) ((-48 . -619) 139693) ((-241 . -131) 139563) ((-1296 . -651) 139522) ((-1246 . -926) 139501) ((-821 . -1227) 139480) ((-393 . -495) 139461) ((-1041 . -519) 139305) ((-393 . -618) 139271) ((-821 . -561) 139202) ((-591 . -653) 139177) ((-266 . -47) 139149) ((-248 . -47) 139106) ((-536 . -514) 139083) ((-585 . -621) 139055) ((-569 . -621) 139027) ((-500 . -621) 138960) ((-1080 . -1223) T) ((-1006 . -1223) T) ((-1265 . -23) T) ((-704 . -1062) 138925) ((-1265 . -1118) T) ((-1258 . -1118) T) ((-1258 . -23) T) ((-1237 . -1118) T) ((-1237 . -23) T) ((-1009 . -374) 138897) ((-112 . -372) T) ((-479 . -906) 138803) ((-1217 . -731) T) ((-910 . -618) 138785) ((-55 . -621) 138767) ((-91 . -107) 138751) ((-1126 . -293) T) ((-911 . -855) 138702) ((-706 . -1158) T) ((-704 . -111) 138658) ((-848 . -651) 138575) ((-601 . -1118) T) ((-600 . -1118) T) ((-717 . -722) 138404) ((-716 . -731) T) ((-1010 . -131) T) ((-977 . -131) T) ((-492 . -855) T) ((-920 . -131) T) ((-804 . -25) T) ((-804 . -21) T) ((-218 . -855) T) ((-412 . -651) 138341) ((-585 . -1055) T) ((-569 . -1055) T) ((-500 . -1055) T) ((-601 . -23) T) ((-347 . -1292) 138318) ((-322 . -457) 138297) ((-343 . -312) 138284) ((-600 . -23) T) ((-432 . -131) T) ((-663 . -653) 138258) ((-246 . -1016) 138242) ((-877 . -310) T) ((-1297 . -1287) 138226) ((-776 . -797) T) ((-776 . -800) T) ((-706 . -38) 138213) ((-569 . -234) T) ((-500 . -244) T) ((-500 . -234) T) ((-1156 . -236) 138163) ((-1093 . -915) 138142) ((-116 . -38) 138129) ((-210 . -805) T) ((-209 . -805) T) ((-208 . -805) T) ((-207 . -805) T) ((-877 . -1028) 138107) ((-1286 . -494) 138091) ((-787 . -915) 138070) ((-785 . -915) 138049) ((-1196 . -1223) T) ((-459 . -915) 138028) ((-742 . -494) 138012) ((-1093 . -653) 137937) ((-704 . -621) 137872) ((-787 . -653) 137797) ((-628 . -1062) 137784) ((-484 . -1223) T) ((-347 . -372) T) ((-141 . -494) 137766) ((-785 . -653) 137691) ((-1147 . -1223) T) ((-554 . -855) T) ((-466 . -653) 137662) ((-266 . -892) 137521) ((-248 . -892) NIL) ((-117 . -1062) 137466) ((-459 . -653) 137391) ((-669 . -1044) 137368) ((-628 . -111) 137353) ((-395 . -1057) 137337) ((-359 . -1044) 137321) ((-356 . -1044) 137305) ((-348 . -1044) 137289) ((-266 . -1044) 137133) ((-248 . -1044) 137009) ((-117 . -111) 136938) ((-59 . -1223) T) ((-395 . -645) 136922) ((-626 . -1057) 136906) ((-524 . -1223) T) ((-521 . -1223) T) ((-502 . -1223) T) ((-501 . -1223) T) ((-442 . -618) 136888) ((-439 . -618) 136870) ((-626 . -645) 136854) ((-3 . -102) T) ((-1033 . -1216) 136823) ((-838 . -102) T) ((-694 . -57) 136781) ((-704 . -1055) T) ((-640 . -651) 136750) ((-612 . -651) 136719) ((-50 . -653) 136693) ((-292 . -457) T) ((-481 . -1216) 136662) ((0 . -102) T) ((-586 . -653) 136627) ((-523 . -653) 136572) ((-49 . -102) T) ((-916 . -1044) 136559) ((-704 . -244) T) ((-1086 . -414) 136538) ((-736 . -644) 136486) ((-1005 . -1106) T) ((-717 . -173) 136377) ((-628 . -621) 136272) ((-492 . -998) 136254) ((-266 . -381) 136238) ((-248 . -381) 136222) ((-404 . -1106) T) ((-1032 . -102) 136200) ((-343 . -38) 136184) ((-218 . -998) 136166) ((-117 . -621) 136096) ((-175 . -38) 136028) ((-1257 . -310) 136007) ((-1236 . -310) 135986) ((-663 . -731) T) ((-99 . -618) 135968) ((-482 . -1057) 135933) ((-1174 . -644) 135885) ((-482 . -645) 135850) ((-490 . -25) T) ((-490 . -21) T) ((-1236 . -1028) 135802) ((-1063 . -1223) T) ((-628 . -1055) T) ((-383 . -409) T) ((-395 . -102) T) ((-1111 . -623) 135717) ((-266 . -906) 135663) ((-248 . -906) 135640) ((-117 . -1055) T) ((-821 . -1118) T) ((-1093 . -731) T) ((-628 . -234) 135619) ((-626 . -102) T) ((-787 . -731) T) ((-785 . -731) T) ((-418 . -1118) T) ((-117 . -244) T) ((-40 . -372) NIL) ((-117 . -234) NIL) ((-1228 . -855) T) ((-459 . -731) T) ((-821 . -23) T) ((-736 . -25) T) ((-736 . -21) T) ((-1083 . -289) 135598) ((-78 . -401) T) ((-78 . -400) T) ((-538 . -772) 135580) ((-699 . -1062) 135530) ((-1265 . -131) T) ((-1258 . -131) T) ((-1237 . -131) T) ((-1181 . -25) T) ((-1148 . -416) 135514) ((-640 . -371) 135446) ((-612 . -371) 135378) ((-1163 . -1155) 135362) ((-103 . -1106) 135340) ((-1181 . -21) T) ((-1180 . -21) T) ((-870 . -618) 135322) ((-1005 . -722) 135270) ((-224 . -653) 135237) ((-699 . -111) 135171) ((-50 . -731) T) ((-1180 . -25) T) ((-355 . -353) T) ((-1174 . -21) T) ((-1086 . -457) 135122) ((-1174 . -25) T) ((-717 . -519) 135069) ((-586 . -731) T) ((-523 . -731) T) ((-1132 . -21) T) ((-1132 . -25) T) ((-601 . -131) T) ((-297 . -651) 134804) ((-600 . -131) T) ((-363 . -457) T) ((-357 . -457) T) ((-349 . -457) T) ((-479 . -310) 134783) ((-1231 . -102) T) ((-316 . -289) 134718) ((-108 . -457) T) ((-79 . -446) T) ((-79 . -400) T) ((-482 . -102) T) ((-696 . -621) 134702) ((-1301 . -618) 134684) ((-1301 . -619) 134666) ((-1086 . -407) 134645) ((-1041 . -494) 134576) ((-569 . -800) T) ((-569 . -797) T) ((-1069 . -236) 134522) ((-363 . -407) 134473) ((-357 . -407) 134424) ((-349 . -407) 134375) ((-1288 . -1118) T) ((-1297 . -1057) 134359) ((-385 . -1057) 134343) ((-1297 . -645) 134313) ((-385 . -645) 134283) ((-699 . -621) 134218) ((-1288 . -23) T) ((-1275 . -102) T) ((-176 . -618) 134200) ((-1148 . -1064) T) ((-552 . -372) T) ((-675 . -749) 134184) ((-1185 . -145) 134163) ((-1185 . -147) 134142) ((-1152 . -1106) T) ((-1152 . -1077) 134111) ((-69 . -1223) T) ((-1030 . -1062) 134048) ((-355 . -651) 133978) ((-871 . -1064) T) ((-241 . -644) 133884) ((-699 . -1055) T) ((-358 . -1062) 133829) ((-61 . -1223) T) ((-1030 . -111) 133745) ((-907 . -618) 133656) ((-699 . -244) T) ((-699 . -234) NIL) ((-848 . -853) 133635) ((-704 . -800) T) ((-704 . -797) T) ((-1009 . -416) 133612) ((-358 . -111) 133541) ((-383 . -926) T) ((-412 . -853) 133520) ((-717 . -293) 133431) ((-224 . -731) T) ((-1265 . -498) 133397) ((-1258 . -498) 133363) ((-1237 . -498) 133329) ((-583 . -1106) T) ((-319 . -1008) 133308) ((-223 . -1106) 133286) ((-1230 . -849) T) ((-322 . -979) 133248) ((-105 . -102) T) ((-48 . -1062) 133213) ((-1297 . -102) T) ((-385 . -102) T) ((-48 . -111) 133169) ((-1010 . -644) 133151) ((-1259 . -618) 133133) ((-536 . -102) T) ((-505 . -102) T) ((-1139 . -1140) 133117) ((-152 . -1280) 133101) ((-246 . -1223) T) ((-1222 . -102) T) ((-1030 . -621) 133038) ((-1179 . -1227) 133017) ((-358 . -621) 132947) ((-1131 . -1227) 132926) ((-241 . -21) 132836) ((-241 . -25) 132687) ((-127 . -119) 132671) ((-121 . -119) 132655) ((-44 . -749) 132639) ((-1179 . -561) 132550) ((-1131 . -561) 132481) ((-1230 . -1106) T) ((-1041 . -289) 132456) ((-1173 . -1089) T) ((-1000 . -1089) T) ((-821 . -131) T) ((-117 . -800) NIL) ((-117 . -797) NIL) ((-359 . -310) T) ((-356 . -310) T) ((-348 . -310) T) ((-253 . -1118) 132366) ((-252 . -1118) 132276) ((-1030 . -1055) T) ((-1009 . -1064) T) ((-48 . -621) 132209) ((-347 . -653) 132154) ((-626 . -38) 132138) ((-1286 . -618) 132100) ((-1286 . -619) 132061) ((-1083 . -618) 132043) ((-1030 . -244) T) ((-358 . -1055) T) ((-820 . -1280) 132013) ((-253 . -23) T) ((-252 . -23) T) ((-993 . -618) 131995) ((-742 . -619) 131956) ((-742 . -618) 131938) ((-804 . -855) 131917) ((-1166 . -151) 131864) ((-1005 . -519) 131776) ((-358 . -234) T) ((-358 . -244) T) ((-393 . -621) 131757) ((-1010 . -25) T) ((-141 . -618) 131739) ((-141 . -619) 131698) ((-916 . -310) T) ((-1010 . -21) T) ((-977 . -25) T) ((-920 . -21) T) ((-920 . -25) T) ((-432 . -21) T) ((-432 . -25) T) ((-848 . -416) 131682) ((-48 . -1055) T) ((-1295 . -1287) 131666) ((-1293 . -1287) 131650) ((-1041 . -609) 131625) ((-319 . -619) 131486) ((-319 . -618) 131468) ((-316 . -619) NIL) ((-316 . -618) 131450) ((-48 . -244) T) ((-48 . -234) T) ((-659 . -289) 131411) ((-555 . -236) 131361) ((-139 . -618) 131328) ((-136 . -618) 131310) ((-114 . -618) 131292) ((-482 . -38) 131257) ((-1297 . -1294) 131236) ((-1288 . -131) T) ((-1296 . -1064) T) ((-1088 . -102) T) ((-88 . -1223) T) ((-505 . -312) NIL) ((-1006 . -107) 131220) ((-895 . -1106) T) ((-891 . -1106) T) ((-1273 . -656) 131204) ((-1273 . -377) 131188) ((-330 . -1223) T) ((-598 . -855) T) ((-1148 . -1106) T) ((-1148 . -1059) 131128) ((-103 . -519) 131061) ((-933 . -618) 131043) ((-347 . -731) T) ((-30 . -618) 131025) ((-871 . -1106) T) ((-848 . -1064) 131004) ((-40 . -653) 130949) ((-226 . -1227) T) ((-412 . -1064) T) ((-1165 . -151) 130931) ((-1005 . -293) 130882) ((-622 . -1106) T) ((-226 . -561) T) ((-322 . -1254) 130866) ((-322 . -1251) 130836) ((-706 . -651) 130808) ((-1196 . -1199) 130787) ((-1081 . -618) 130769) ((-1196 . -107) 130719) ((-652 . -151) 130703) ((-637 . -151) 130649) ((-116 . -651) 130621) ((-484 . -1199) 130600) ((-492 . -147) T) ((-492 . -145) NIL) ((-1126 . -619) 130515) ((-443 . -618) 130497) ((-218 . -147) T) ((-218 . -145) NIL) ((-1126 . -618) 130479) ((-129 . -102) T) ((-52 . -102) T) ((-1237 . -644) 130431) ((-484 . -107) 130381) ((-999 . -23) T) ((-1297 . -38) 130351) ((-1179 . -1118) T) ((-1131 . -1118) T) ((-1068 . -1227) T) ((-314 . -102) T) ((-859 . -1118) T) ((-958 . -1227) 130330) ((-486 . -1227) 130309) ((-1068 . -561) T) ((-958 . -561) 130240) ((-1179 . -23) T) ((-1157 . -1089) T) ((-1131 . -23) T) ((-859 . -23) T) ((-486 . -561) 130171) ((-1148 . -722) 130103) ((-675 . -1057) 130087) ((-1152 . -519) 130020) ((-675 . -645) 130004) ((-1041 . -619) NIL) ((-1041 . -618) 129986) ((-96 . -1089) T) ((-871 . -722) 129956) ((-1217 . -47) 129925) ((-253 . -131) T) ((-252 . -131) T) ((-1110 . -1106) T) ((-1009 . -1106) T) ((-62 . -618) 129907) ((-1174 . -855) NIL) ((-1030 . -797) T) ((-1030 . -800) T) ((-1301 . -1062) 129894) ((-1301 . -111) 129879) ((-1265 . -25) T) ((-1265 . -21) T) ((-875 . -653) 129866) ((-1258 . -21) T) ((-1258 . -25) T) ((-1237 . -21) T) ((-1237 . -25) T) ((-1033 . -151) 129850) ((-877 . -825) 129829) ((-877 . -926) T) ((-717 . -289) 129756) ((-601 . -21) T) ((-343 . -651) 129715) ((-601 . -25) T) ((-600 . -21) T) ((-175 . -651) 129632) ((-40 . -731) T) ((-223 . -519) 129565) ((-600 . -25) T) ((-481 . -151) 129549) ((-468 . -151) 129533) ((-927 . -799) T) ((-927 . -731) T) ((-776 . -798) T) ((-776 . -799) T) ((-511 . -1106) T) ((-507 . -1106) T) ((-776 . -731) T) ((-226 . -367) T) ((-1295 . -1057) 129517) ((-1293 . -1057) 129501) ((-1295 . -645) 129471) ((-1163 . -1106) 129449) ((-876 . -1227) T) ((-1293 . -645) 129419) ((-659 . -618) 129401) ((-876 . -561) T) ((-699 . -372) NIL) ((-44 . -1057) 129385) ((-1301 . -621) 129367) ((-1296 . -1106) T) ((-675 . -102) T) ((-363 . -1280) 129351) ((-357 . -1280) 129335) ((-44 . -645) 129319) ((-349 . -1280) 129303) ((-553 . -102) T) ((-525 . -855) 129282) ((-1052 . -1106) T) ((-822 . -457) 129261) ((-152 . -1057) 129245) ((-1052 . -1077) 129174) ((-1033 . -982) 129143) ((-824 . -1118) T) ((-1009 . -722) 129088) ((-152 . -645) 129072) ((-391 . -1118) T) ((-481 . -982) 129041) ((-468 . -982) 129010) ((-110 . -151) 128992) ((-73 . -618) 128974) ((-899 . -618) 128956) ((-1086 . -729) 128935) ((-1301 . -1055) T) ((-821 . -644) 128883) ((-297 . -1064) 128825) ((-170 . -1227) 128730) ((-226 . -1118) T) ((-327 . -23) T) ((-1174 . -998) 128682) ((-848 . -1106) T) ((-1259 . -1062) 128587) ((-1132 . -745) 128566) ((-1257 . -926) 128545) ((-1236 . -926) 128524) ((-875 . -731) T) ((-170 . -561) 128435) ((-585 . -653) 128422) ((-569 . -653) 128409) ((-412 . -1106) T) ((-265 . -1106) T) ((-214 . -618) 128391) ((-500 . -653) 128356) ((-226 . -23) T) ((-1236 . -825) 128309) ((-1295 . -102) T) ((-358 . -1292) 128286) ((-1293 . -102) T) ((-1259 . -111) 128178) ((-820 . -1057) 128075) ((-820 . -645) 128017) ((-144 . -618) 127999) ((-999 . -131) T) ((-44 . -102) T) ((-241 . -855) 127950) ((-1246 . -1227) 127929) ((-103 . -494) 127913) ((-1296 . -722) 127883) ((-1093 . -47) 127844) ((-1068 . -1118) T) ((-958 . -1118) T) ((-127 . -34) T) ((-121 . -34) T) ((-787 . -47) 127821) ((-785 . -47) 127793) ((-1246 . -561) 127704) ((-358 . -372) T) ((-486 . -1118) T) ((-1179 . -131) T) ((-1131 . -131) T) ((-459 . -47) 127683) ((-876 . -367) T) ((-859 . -131) T) ((-152 . -102) T) ((-1068 . -23) T) ((-958 . -23) T) ((-576 . -561) T) ((-821 . -25) T) ((-821 . -21) T) ((-1148 . -519) 127616) ((-597 . -1089) T) ((-591 . -1044) 127600) ((-1259 . -621) 127474) ((-486 . -23) T) ((-355 . -1064) T) ((-1217 . -906) 127455) ((-675 . -312) 127393) ((-1119 . -1280) 127363) ((-704 . -653) 127328) ((-1009 . -173) T) ((-969 . -145) 127307) ((-640 . -1106) T) ((-612 . -1106) T) ((-969 . -147) 127286) ((-1010 . -855) T) ((-740 . -147) 127265) ((-740 . -145) 127244) ((-977 . -855) T) ((-838 . -651) 127161) ((-479 . -926) 127140) ((-322 . -1057) 126975) ((-319 . -1062) 126885) ((-316 . -1062) 126814) ((-1005 . -289) 126772) ((-412 . -722) 126724) ((-322 . -645) 126565) ((-706 . -853) T) ((-1259 . -1055) T) ((-319 . -111) 126461) ((-316 . -111) 126374) ((-970 . -102) T) ((-820 . -102) 126164) ((-717 . -619) NIL) ((-717 . -618) 126146) ((-663 . -1044) 126042) ((-1259 . -329) 125986) ((-1041 . -291) 125961) ((-585 . -731) T) ((-569 . -799) T) ((-170 . -367) 125912) ((-569 . -796) T) ((-569 . -731) T) ((-500 . -731) T) ((-1152 . -494) 125896) ((-1093 . -892) NIL) ((-876 . -1118) T) ((-117 . -915) NIL) ((-1295 . -1294) 125872) ((-1293 . -1294) 125851) ((-787 . -892) NIL) ((-785 . -892) 125710) ((-1288 . -25) T) ((-1288 . -21) T) ((-1220 . -102) 125688) ((-1112 . -400) T) ((-628 . -653) 125675) ((-459 . -892) NIL) ((-680 . -102) 125653) ((-1093 . -1044) 125480) ((-876 . -23) T) ((-787 . -1044) 125339) ((-785 . -1044) 125196) ((-117 . -653) 125141) ((-459 . -1044) 125017) ((-319 . -621) 124581) ((-316 . -621) 124464) ((-395 . -651) 124433) ((-654 . -1044) 124417) ((-632 . -102) T) ((-223 . -494) 124401) ((-1273 . -34) T) ((-626 . -651) 124360) ((-292 . -1057) 124347) ((-136 . -621) 124331) ((-292 . -645) 124318) ((-640 . -722) 124302) ((-612 . -722) 124286) ((-675 . -38) 124246) ((-322 . -102) T) ((-85 . -618) 124228) ((-50 . -1044) 124212) ((-1126 . -1062) 124199) ((-1093 . -381) 124183) ((-787 . -381) 124167) ((-704 . -731) T) ((-704 . -799) T) ((-704 . -796) T) ((-586 . -1044) 124154) ((-523 . -1044) 124131) ((-60 . -57) 124093) ((-327 . -131) T) ((-319 . -1055) 123983) ((-316 . -1055) T) ((-170 . -1118) T) ((-785 . -381) 123967) ((-45 . -151) 123917) ((-1010 . -998) 123899) ((-459 . -381) 123883) ((-412 . -173) T) ((-319 . -244) 123862) ((-316 . -244) T) ((-316 . -234) NIL) ((-297 . -1106) 123644) ((-226 . -131) T) ((-1126 . -111) 123629) ((-170 . -23) T) ((-804 . -147) 123608) ((-804 . -145) 123587) ((-253 . -644) 123493) ((-252 . -644) 123399) ((-322 . -287) 123365) ((-1163 . -519) 123298) ((-482 . -651) 123248) ((-1139 . -1106) T) ((-226 . -1066) T) ((-820 . -312) 123186) ((-1093 . -906) 123121) ((-787 . -906) 123064) ((-785 . -906) 123048) ((-1295 . -38) 123018) ((-1293 . -38) 122988) ((-1246 . -1118) T) ((-860 . -1118) T) ((-459 . -906) 122965) ((-863 . -1106) T) ((-1246 . -23) T) ((-1126 . -621) 122937) ((-576 . -1118) T) ((-860 . -23) T) ((-628 . -731) T) ((-359 . -926) T) ((-356 . -926) T) ((-292 . -102) T) ((-348 . -926) T) ((-1068 . -131) T) ((-976 . -1089) T) ((-958 . -131) T) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -731) T) ((-699 . -915) NIL) ((-1052 . -519) 122838) ((-486 . -131) T) ((-576 . -23) T) ((-680 . -312) 122776) ((-640 . -766) T) ((-612 . -766) T) ((-1237 . -855) NIL) ((-1086 . -1057) 122686) ((-1009 . -293) T) ((-699 . -653) 122636) ((-253 . -21) T) ((-355 . -1106) T) ((-253 . -25) T) ((-252 . -21) T) ((-252 . -25) T) ((-152 . -38) 122620) ((-2 . -102) T) ((-916 . -926) T) ((-1086 . -645) 122488) ((-487 . -1280) 122458) ((-1126 . -1055) T) ((-716 . -310) T) ((-363 . -1057) 122410) ((-357 . -1057) 122362) ((-349 . -1057) 122314) ((-363 . -645) 122266) ((-224 . -1044) 122243) ((-357 . -645) 122195) ((-108 . -1057) 122145) ((-349 . -645) 122097) ((-297 . -722) 122039) ((-706 . -1064) T) ((-492 . -457) T) ((-412 . -519) 121951) ((-108 . -645) 121901) ((-218 . -457) T) ((-1126 . -234) T) ((-298 . -151) 121851) ((-1005 . -619) 121812) ((-1005 . -618) 121794) ((-995 . -618) 121776) ((-116 . -1064) T) ((-659 . -1062) 121760) ((-226 . -498) T) ((-404 . -618) 121742) ((-404 . -619) 121719) ((-1060 . -1280) 121689) ((-659 . -111) 121668) ((-1148 . -494) 121652) ((-1297 . -651) 121611) ((-385 . -651) 121580) ((-820 . -38) 121550) ((-63 . -446) T) ((-63 . -400) T) ((-1166 . -102) T) ((-876 . -131) T) ((-489 . -102) 121528) ((-1301 . -372) T) ((-1086 . -102) T) ((-1067 . -102) T) ((-355 . -722) 121473) ((-736 . -147) 121452) ((-736 . -145) 121431) ((-659 . -621) 121349) ((-1030 . -653) 121286) ((-528 . -1106) 121264) ((-363 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-108 . -102) T) ((-509 . -1106) T) ((-358 . -653) 121209) ((-1179 . -644) 121157) ((-1131 . -644) 121105) ((-389 . -514) 121084) ((-838 . -853) 121063) ((-383 . -1227) T) ((-699 . -731) T) ((-343 . -1064) T) ((-1237 . -998) 121015) ((-175 . -1064) T) ((-103 . -618) 120947) ((-1181 . -145) 120926) ((-1181 . -147) 120905) ((-383 . -561) T) ((-1180 . -147) 120884) ((-1180 . -145) 120863) ((-1174 . -145) 120770) ((-412 . -293) T) ((-1174 . -147) 120677) ((-1132 . -147) 120656) ((-1132 . -145) 120635) ((-322 . -38) 120476) ((-170 . -131) T) ((-316 . -800) NIL) ((-316 . -797) NIL) ((-659 . -1055) T) ((-48 . -653) 120441) ((-1119 . -1057) 120338) ((-899 . -621) 120315) ((-1119 . -645) 120257) ((-1173 . -102) T) ((-1000 . -102) T) ((-999 . -21) T) ((-127 . -1016) 120241) ((-121 . -1016) 120225) ((-999 . -25) T) ((-907 . -119) 120209) ((-1165 . -102) T) ((-1246 . -131) T) ((-1179 . -25) T) ((-1179 . -21) T) ((-860 . -131) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-859 . -25) T) ((-859 . -21) T) ((-787 . -310) 120188) ((-652 . -102) 120166) ((-637 . -102) T) ((-1166 . -312) 119961) ((-576 . -131) T) ((-626 . -853) 119940) ((-1163 . -494) 119924) ((-1156 . -151) 119874) ((-1152 . -618) 119836) ((-1152 . -619) 119797) ((-1030 . -796) T) ((-1030 . -799) T) ((-1030 . -731) T) ((-717 . -1062) 119620) ((-489 . -312) 119558) ((-458 . -422) 119528) ((-355 . -173) T) ((-292 . -38) 119515) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-347 . -1044) 119492) ((-270 . -102) T) ((-213 . -102) T) ((-212 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-358 . -731) T) ((-717 . -111) 119301) ((-675 . -232) 119285) ((-586 . -310) T) ((-523 . -310) T) ((-297 . -519) 119234) ((-108 . -312) NIL) ((-72 . -400) T) ((-1119 . -102) 119024) ((-838 . -416) 119008) ((-1126 . -800) T) ((-1126 . -797) T) ((-706 . -1106) T) ((-583 . -618) 118990) ((-383 . -367) T) ((-170 . -498) 118968) ((-223 . -618) 118900) ((-134 . -1106) T) ((-116 . -1106) T) ((-48 . -731) T) ((-1052 . -494) 118865) ((-141 . -430) 118847) ((-141 . -372) T) ((-1033 . -102) T) ((-517 . -514) 118826) ((-717 . -621) 118582) ((-481 . -102) T) ((-468 . -102) T) ((-1040 . -1118) T) ((-1230 . -618) 118564) ((-1188 . -1044) 118500) ((-1181 . -35) 118466) ((-1181 . -95) 118432) ((-1181 . -1211) 118398) ((-1181 . -1208) 118364) ((-1165 . -312) NIL) ((-89 . -401) T) ((-89 . -400) T) ((-1086 . -1158) 118343) ((-1180 . -1208) 118309) ((-1180 . -1211) 118275) ((-1040 . -23) T) ((-1180 . -95) 118241) ((-576 . -498) T) ((-1180 . -35) 118207) ((-1174 . -1208) 118173) ((-1174 . -1211) 118139) ((-1174 . -95) 118105) ((-365 . -1118) T) ((-363 . -1158) 118084) ((-357 . -1158) 118063) ((-349 . -1158) 118042) ((-1174 . -35) 118008) ((-1132 . -35) 117974) ((-1132 . -95) 117940) ((-108 . -1158) T) ((-1132 . -1211) 117906) ((-838 . -1064) 117885) ((-652 . -312) 117823) ((-637 . -312) 117674) ((-1132 . -1208) 117640) ((-717 . -1055) T) ((-1068 . -644) 117622) ((-1086 . -38) 117490) ((-958 . -644) 117438) ((-1010 . -147) T) ((-1010 . -145) NIL) ((-383 . -1118) T) ((-327 . -25) T) ((-325 . -23) T) ((-949 . -855) 117417) ((-717 . -329) 117394) ((-486 . -644) 117342) ((-40 . -1044) 117230) ((-717 . -234) T) ((-706 . -722) 117217) ((-343 . -1106) T) ((-175 . -1106) T) ((-334 . -855) T) ((-423 . -457) 117167) ((-383 . -23) T) ((-363 . -38) 117132) ((-357 . -38) 117097) ((-349 . -38) 117062) ((-80 . -446) T) ((-80 . -400) T) ((-226 . -25) T) ((-226 . -21) T) ((-841 . -1118) T) ((-108 . -38) 117012) ((-832 . -1118) T) ((-779 . -1106) T) ((-116 . -722) 116999) ((-677 . -1044) 116983) ((-617 . -102) T) ((-841 . -23) T) ((-832 . -23) T) ((-1163 . -289) 116960) ((-1119 . -312) 116898) ((-487 . -1057) 116795) ((-1108 . -236) 116779) ((-64 . -401) T) ((-64 . -400) T) ((-1157 . -102) T) ((-110 . -102) T) ((-487 . -645) 116721) ((-40 . -381) 116698) ((-96 . -102) T) ((-658 . -857) 116682) ((-1141 . -1089) T) ((-1068 . -21) T) ((-1068 . -25) T) ((-1060 . -1057) 116666) ((-820 . -232) 116635) ((-958 . -25) T) ((-958 . -21) T) ((-1060 . -645) 116577) ((-626 . -1064) T) ((-1126 . -372) T) ((-1033 . -312) 116515) ((-675 . -651) 116474) ((-486 . -25) T) ((-486 . -21) T) ((-389 . -1057) 116458) ((-895 . -618) 116440) ((-891 . -618) 116422) ((-528 . -519) 116355) ((-253 . -855) 116306) ((-252 . -855) 116257) ((-389 . -645) 116227) ((-876 . -644) 116204) ((-481 . -312) 116142) ((-468 . -312) 116080) ((-355 . -293) T) ((-1163 . -1261) 116064) ((-1148 . -618) 116026) ((-1148 . -619) 115987) ((-1146 . -102) T) ((-1005 . -1062) 115883) ((-40 . -906) 115835) ((-1163 . -609) 115812) ((-1301 . -653) 115799) ((-871 . -495) 115776) ((-1069 . -151) 115722) ((-877 . -1227) T) ((-1005 . -111) 115604) ((-343 . -722) 115588) ((-871 . -618) 115550) ((-175 . -722) 115482) ((-412 . -289) 115440) ((-877 . -561) T) ((-108 . -405) 115422) ((-84 . -388) T) ((-84 . -400) T) ((-706 . -173) T) ((-622 . -618) 115404) ((-99 . -731) T) ((-487 . -102) 115194) ((-99 . -478) T) ((-116 . -173) T) ((-1295 . -651) 115153) ((-1293 . -651) 115112) ((-1119 . -38) 115082) ((-170 . -644) 115030) ((-1060 . -102) T) ((-1005 . -621) 114920) ((-876 . -25) T) ((-820 . -239) 114899) ((-876 . -21) T) ((-823 . -102) T) ((-44 . -651) 114842) ((-419 . -102) T) ((-389 . -102) T) ((-110 . -312) NIL) ((-228 . -102) 114820) ((-127 . -1223) T) ((-121 . -1223) T) ((-822 . -1057) 114771) ((-822 . -645) 114713) ((-1040 . -131) T) ((-675 . -371) 114697) ((-152 . -651) 114656) ((-1005 . -1055) T) ((-1246 . -644) 114604) ((-1110 . -618) 114586) ((-1009 . -618) 114568) ((-520 . -23) T) ((-515 . -23) T) ((-347 . -310) T) ((-513 . -23) T) ((-325 . -131) T) ((-3 . -1106) T) ((-1009 . -619) 114552) ((-1005 . -244) 114531) ((-1005 . -234) 114510) ((-1301 . -731) T) ((-1265 . -145) 114489) ((-838 . -1106) T) ((-1265 . -147) 114468) ((-1258 . -147) 114447) ((-1258 . -145) 114426) ((-1257 . -1227) 114405) ((-1237 . -145) 114312) ((-1237 . -147) 114219) ((-1236 . -1227) 114198) ((-383 . -131) T) ((-569 . -892) 114180) ((0 . -1106) T) ((-175 . -173) T) ((-170 . -21) T) ((-170 . -25) T) ((-49 . -1106) T) ((-1259 . -653) 114085) ((-1257 . -561) 114036) ((-719 . -1118) T) ((-1236 . -561) 113987) ((-569 . -1044) 113969) ((-600 . -147) 113948) ((-600 . -145) 113927) ((-500 . -1044) 113870) ((-1141 . -1143) T) ((-87 . -388) T) ((-87 . -400) T) ((-877 . -367) T) ((-841 . -131) T) ((-832 . -131) T) ((-970 . -651) 113814) ((-719 . -23) T) ((-511 . -618) 113780) ((-507 . -618) 113762) ((-820 . -651) 113512) ((-1297 . -1064) T) ((-383 . -1066) T) ((-1032 . -1106) 113490) ((-55 . -1044) 113472) ((-907 . -34) T) ((-487 . -312) 113410) ((-597 . -102) T) ((-1163 . -619) 113371) ((-1163 . -618) 113303) ((-1185 . -1057) 113186) ((-45 . -102) T) ((-822 . -102) T) ((-1185 . -645) 113083) ((-1246 . -25) T) ((-1246 . -21) T) ((-860 . -25) T) ((-44 . -371) 113067) ((-860 . -21) T) ((-736 . -457) 113018) ((-1296 . -618) 113000) ((-1285 . -1057) 112970) ((-1060 . -312) 112908) ((-676 . -1089) T) ((-611 . -1089) T) ((-395 . -1106) T) ((-576 . -25) T) ((-576 . -21) T) ((-181 . -1089) T) ((-161 . -1089) T) ((-156 . -1089) T) ((-154 . -1089) T) ((-1285 . -645) 112878) ((-626 . -1106) T) ((-704 . -892) 112860) ((-1273 . -1223) T) ((-228 . -312) 112798) ((-144 . -372) T) ((-1052 . -619) 112740) ((-1052 . -618) 112683) ((-316 . -915) NIL) ((-1231 . -849) T) ((-704 . -1044) 112628) ((-716 . -926) T) ((-479 . -1227) 112607) ((-1180 . -457) 112586) ((-1174 . -457) 112565) ((-333 . -102) T) ((-877 . -1118) T) ((-322 . -651) 112447) ((-319 . -653) 112268) ((-316 . -653) 112197) ((-479 . -561) 112148) ((-343 . -519) 112114) ((-555 . -151) 112064) ((-40 . -310) T) ((-848 . -618) 112046) ((-706 . -293) T) ((-877 . -23) T) ((-383 . -498) T) ((-1086 . -232) 112016) ((-517 . -102) T) ((-412 . -619) 111823) ((-412 . -618) 111805) ((-265 . -618) 111787) ((-116 . -293) T) ((-1259 . -731) T) ((-1257 . -367) 111766) ((-1236 . -367) 111745) ((-1286 . -34) T) ((-1231 . -1106) T) ((-117 . -1223) T) ((-108 . -232) 111727) ((-1185 . -102) T) ((-482 . -1106) T) ((-528 . -494) 111711) ((-742 . -34) T) ((-658 . -1057) 111695) ((-487 . -38) 111665) ((-658 . -645) 111635) ((-141 . -34) T) ((-117 . -890) 111612) ((-117 . -892) NIL) ((-628 . -1044) 111495) ((-649 . -855) 111474) ((-1285 . -102) T) ((-298 . -102) T) ((-717 . -372) 111453) ((-117 . -1044) 111430) ((-395 . -722) 111414) ((-626 . -722) 111398) ((-45 . -312) 111202) ((-821 . -145) 111181) ((-821 . -147) 111160) ((-292 . -651) 111132) ((-1296 . -386) 111111) ((-824 . -855) T) ((-1275 . -1106) T) ((-1166 . -230) 111058) ((-391 . -855) 111037) ((-1265 . -1211) 111003) ((-1265 . -1208) 110969) ((-1258 . -1208) 110935) ((-520 . -131) T) ((-1258 . -1211) 110901) ((-1237 . -1208) 110867) ((-1237 . -1211) 110833) ((-1265 . -35) 110799) ((-1265 . -95) 110765) ((-640 . -618) 110734) ((-612 . -618) 110703) ((-226 . -855) T) ((-1258 . -95) 110669) ((-1258 . -35) 110635) ((-1257 . -1118) T) ((-1126 . -653) 110622) ((-1237 . -95) 110588) ((-1236 . -1118) T) ((-598 . -151) 110570) ((-1086 . -353) 110549) ((-175 . -293) T) ((-117 . -381) 110526) ((-117 . -342) 110503) ((-1237 . -35) 110469) ((-875 . -310) T) ((-316 . -799) NIL) ((-316 . -796) NIL) ((-319 . -731) 110318) ((-316 . -731) T) ((-479 . -367) 110297) ((-363 . -353) 110276) ((-357 . -353) 110255) ((-349 . -353) 110234) ((-319 . -478) 110213) ((-1257 . -23) T) ((-1236 . -23) T) ((-723 . -1118) T) ((-719 . -131) T) ((-658 . -102) T) ((-482 . -722) 110178) ((-45 . -285) 110128) ((-105 . -1106) T) ((-68 . -618) 110110) ((-976 . -102) T) ((-869 . -102) T) ((-628 . -906) 110069) ((-1297 . -1106) T) ((-385 . -1106) T) ((-82 . -1223) T) ((-1222 . -1106) T) ((-1068 . -855) T) ((-117 . -906) NIL) ((-787 . -926) 110048) ((-718 . -855) T) ((-536 . -1106) T) ((-505 . -1106) T) ((-359 . -1227) T) ((-356 . -1227) T) ((-348 . -1227) T) ((-266 . -1227) 110027) ((-248 . -1227) 110006) ((-538 . -865) T) ((-1119 . -232) 109975) ((-1165 . -833) T) ((-1148 . -1062) 109959) ((-395 . -766) T) ((-699 . -1223) T) ((-696 . -1044) 109943) ((-359 . -561) T) ((-356 . -561) T) ((-348 . -561) T) ((-266 . -561) 109874) ((-248 . -561) 109805) ((-530 . -1089) T) ((-1148 . -111) 109784) ((-458 . -749) 109754) ((-871 . -1062) 109724) ((-822 . -38) 109666) ((-699 . -890) 109648) ((-699 . -892) 109630) ((-298 . -312) 109434) ((-916 . -1227) T) ((-1163 . -291) 109411) ((-1086 . -651) 109306) ((-675 . -416) 109290) ((-871 . -111) 109255) ((-1010 . -457) T) ((-699 . -1044) 109200) ((-916 . -561) T) ((-538 . -618) 109182) ((-586 . -926) T) ((-492 . -1057) 109132) ((-479 . -1118) T) ((-523 . -926) T) ((-920 . -457) T) ((-65 . -618) 109114) ((-218 . -1057) 109064) ((-492 . -645) 109014) ((-363 . -651) 108951) ((-357 . -651) 108888) ((-349 . -651) 108825) ((-637 . -230) 108771) ((-218 . -645) 108721) ((-108 . -651) 108671) ((-479 . -23) T) ((-1126 . -799) T) ((-877 . -131) T) ((-1126 . -796) T) ((-1288 . -1290) 108650) ((-1126 . -731) T) ((-659 . -653) 108624) ((-297 . -618) 108365) ((-1148 . -621) 108283) ((-1041 . -34) T) ((-820 . -853) 108262) ((-585 . -310) T) ((-569 . -310) T) ((-500 . -310) T) ((-1297 . -722) 108232) ((-699 . -381) 108214) ((-699 . -342) 108196) ((-482 . -173) T) ((-385 . -722) 108166) ((-871 . -621) 108101) ((-876 . -855) NIL) ((-569 . -1028) T) ((-500 . -1028) T) ((-1139 . -618) 108083) ((-1119 . -239) 108062) ((-215 . -102) T) ((-1156 . -102) T) ((-71 . -618) 108044) ((-1148 . -1055) T) ((-1185 . -38) 107941) ((-863 . -618) 107923) ((-569 . -550) T) ((-675 . -1064) T) ((-736 . -955) 107876) ((-1148 . -234) 107855) ((-1088 . -1106) T) ((-1040 . -25) T) ((-1040 . -21) T) ((-1009 . -1062) 107800) ((-911 . -102) T) ((-871 . -1055) T) ((-699 . -906) NIL) ((-359 . -332) 107784) ((-359 . -367) T) ((-356 . -332) 107768) ((-356 . -367) T) ((-348 . -332) 107752) ((-348 . -367) T) ((-492 . -102) T) ((-1285 . -38) 107722) ((-551 . -855) T) ((-528 . -692) 107672) ((-218 . -102) T) ((-1030 . -1044) 107552) ((-1009 . -111) 107481) ((-1181 . -979) 107450) ((-525 . -151) 107434) ((-1086 . -374) 107413) ((-355 . -618) 107395) ((-325 . -21) T) ((-358 . -1044) 107372) ((-325 . -25) T) ((-1180 . -979) 107334) ((-1174 . -979) 107303) ((-76 . -618) 107285) ((-1132 . -979) 107252) ((-704 . -310) T) ((-129 . -849) T) ((-916 . -367) T) ((-383 . -25) T) ((-383 . -21) T) ((-916 . -332) 107239) ((-86 . -618) 107221) ((-704 . -1028) T) ((-682 . -855) T) ((-1257 . -131) T) ((-1236 . -131) T) ((-907 . -1016) 107205) ((-841 . -21) T) ((-48 . -1044) 107148) ((-841 . -25) T) ((-832 . -25) T) ((-832 . -21) T) ((-1119 . -651) 106898) ((-1295 . -1064) T) ((-554 . -102) T) ((-1293 . -1064) T) ((-659 . -731) T) ((-1110 . -623) 106801) ((-1009 . -621) 106731) ((-1296 . -1062) 106715) ((-820 . -416) 106684) ((-103 . -119) 106668) ((-129 . -1106) T) ((-52 . -1106) T) ((-932 . -618) 106650) ((-876 . -998) 106627) ((-828 . -102) T) ((-1296 . -111) 106606) ((-658 . -38) 106576) ((-576 . -855) T) ((-359 . -1118) T) ((-356 . -1118) T) ((-348 . -1118) T) ((-266 . -1118) T) ((-248 . -1118) T) ((-628 . -310) 106555) ((-1156 . -312) 106359) ((-669 . -23) T) ((-529 . -1089) T) ((-314 . -1106) T) ((-487 . -232) 106328) ((-152 . -1064) T) ((-359 . -23) T) ((-356 . -23) T) ((-348 . -23) T) ((-117 . -310) T) ((-266 . -23) T) ((-248 . -23) T) ((-1009 . -1055) T) ((-717 . -915) 106307) ((-1163 . -621) 106284) ((-1009 . -234) 106256) ((-1009 . -244) T) ((-117 . -1028) NIL) ((-916 . -1118) T) ((-1258 . -457) 106235) ((-1237 . -457) 106214) ((-528 . -618) 106146) ((-717 . -653) 106071) ((-412 . -1062) 106023) ((-509 . -618) 106005) ((-916 . -23) T) ((-492 . -312) NIL) ((-1296 . -621) 105961) ((-479 . -131) T) ((-218 . -312) NIL) ((-412 . -111) 105899) ((-820 . -1064) 105829) ((-742 . -1104) 105813) ((-1257 . -498) 105779) ((-1236 . -498) 105745) ((-553 . -849) T) ((-141 . -1104) 105727) ((-482 . -293) T) ((-1296 . -1055) T) ((-1228 . -102) T) ((-1069 . -102) T) ((-848 . -621) 105595) ((-505 . -519) NIL) ((-487 . -239) 105574) ((-412 . -621) 105472) ((-969 . -1057) 105355) ((-740 . -1057) 105325) ((-969 . -645) 105222) ((-1179 . -145) 105201) ((-740 . -645) 105171) ((-458 . -1057) 105141) ((-1179 . -147) 105120) ((-1131 . -147) 105099) ((-1131 . -145) 105078) ((-640 . -1062) 105062) ((-612 . -1062) 105046) ((-458 . -645) 105016) ((-1181 . -1264) 105000) ((-1181 . -1251) 104977) ((-675 . -1106) T) ((-675 . -1059) 104917) ((-1180 . -1256) 104878) ((-553 . -1106) T) ((-492 . -1158) T) ((-1180 . -1251) 104848) ((-1180 . -1254) 104832) ((-1174 . -1235) 104793) ((-218 . -1158) T) ((-347 . -926) T) ((-823 . -268) 104777) ((-640 . -111) 104756) ((-612 . -111) 104735) ((-1174 . -1251) 104712) ((-848 . -1055) 104691) ((-1174 . -1233) 104675) ((-520 . -25) T) ((-500 . -305) T) ((-516 . -23) T) ((-515 . -25) T) ((-513 . -25) T) ((-512 . -23) T) ((-423 . -1057) 104649) ((-412 . -1055) T) ((-322 . -1064) T) ((-699 . -310) T) ((-423 . -645) 104623) ((-108 . -853) T) ((-717 . -731) T) ((-412 . -244) T) ((-412 . -234) 104602) ((-492 . -38) 104552) ((-218 . -38) 104502) ((-479 . -498) 104468) ((-1230 . -372) T) ((-1165 . -1150) T) ((-1107 . -102) T) ((-706 . -618) 104450) ((-706 . -619) 104365) ((-719 . -21) T) ((-719 . -25) T) ((-1141 . -102) T) ((-487 . -651) 104115) ((-134 . -618) 104097) ((-116 . -618) 104079) ((-157 . -25) T) ((-1295 . -1106) T) ((-877 . -644) 104027) ((-1293 . -1106) T) ((-969 . -102) T) ((-740 . -102) T) ((-720 . -102) T) ((-458 . -102) T) ((-821 . -457) 103978) ((-44 . -1106) T) ((-1094 . -855) T) ((-1069 . -312) 103829) ((-669 . -131) T) ((-1060 . -651) 103798) ((-675 . -722) 103782) ((-292 . -1064) T) ((-359 . -131) T) ((-356 . -131) T) ((-348 . -131) T) ((-266 . -131) T) ((-248 . -131) T) ((-389 . -651) 103751) ((-423 . -102) T) ((-152 . -1106) T) ((-45 . -230) 103701) ((-804 . -1057) 103685) ((-964 . -855) 103664) ((-1005 . -653) 103602) ((-804 . -645) 103586) ((-241 . -1280) 103556) ((-1030 . -310) T) ((-297 . -1062) 103477) ((-916 . -131) T) ((-40 . -926) T) ((-492 . -405) 103459) ((-358 . -310) T) ((-218 . -405) 103441) ((-1086 . -416) 103425) ((-297 . -111) 103341) ((-1190 . -855) T) ((-1189 . -855) T) ((-877 . -25) T) ((-877 . -21) T) ((-343 . -618) 103323) ((-1259 . -47) 103267) ((-226 . -147) T) ((-175 . -618) 103249) ((-1119 . -853) 103228) ((-779 . -618) 103210) ((-128 . -855) T) ((-613 . -236) 103157) ((-480 . -236) 103107) ((-1295 . -722) 103077) ((-48 . -310) T) ((-1293 . -722) 103047) ((-65 . -621) 102976) ((-970 . -1106) T) ((-820 . -1106) 102766) ((-315 . -102) T) ((-907 . -1223) T) ((-48 . -1028) T) ((-1236 . -644) 102674) ((-694 . -102) 102652) ((-44 . -722) 102636) ((-555 . -102) T) ((-297 . -621) 102567) ((-67 . -387) T) ((-67 . -400) T) ((-667 . -23) T) ((-822 . -651) 102503) ((-675 . -766) T) ((-1220 . -1106) 102481) ((-355 . -1062) 102426) ((-680 . -1106) 102404) ((-1068 . -147) T) ((-958 . -147) 102383) ((-958 . -145) 102362) ((-804 . -102) T) ((-152 . -722) 102346) ((-486 . -147) 102325) ((-486 . -145) 102304) ((-355 . -111) 102233) ((-1086 . -1064) T) ((-325 . -855) 102212) ((-1265 . -979) 102181) ((-632 . -1106) T) ((-1258 . -979) 102143) ((-516 . -131) T) ((-512 . -131) T) ((-298 . -230) 102093) ((-363 . -1064) T) ((-357 . -1064) T) ((-349 . -1064) T) ((-297 . -1055) 102035) ((-1237 . -979) 102004) ((-383 . -855) T) ((-108 . -1064) T) ((-1005 . -731) T) ((-875 . -926) T) ((-848 . -800) 101983) ((-848 . -797) 101962) ((-423 . -312) 101901) ((-473 . -102) T) ((-600 . -979) 101870) ((-322 . -1106) T) ((-412 . -800) 101849) ((-412 . -797) 101828) ((-505 . -494) 101810) ((-1259 . -1044) 101776) ((-1257 . -21) T) ((-1257 . -25) T) ((-1236 . -21) T) ((-1236 . -25) T) ((-820 . -722) 101718) ((-355 . -621) 101648) ((-704 . -409) T) ((-1286 . -1223) T) ((-611 . -102) T) ((-1119 . -416) 101617) ((-1009 . -372) NIL) ((-676 . -102) T) ((-181 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1185 . -651) 101527) ((-742 . -1223) T) ((-736 . -1057) 101370) ((-44 . -766) T) ((-736 . -645) 101219) ((-598 . -102) T) ((-77 . -401) T) ((-77 . -400) T) ((-658 . -661) 101203) ((-141 . -1223) T) ((-876 . -147) T) ((-876 . -145) NIL) ((-1222 . -93) T) ((-355 . -1055) T) ((-70 . -387) T) ((-70 . -400) T) ((-1172 . -102) T) ((-675 . -519) 101136) ((-1285 . -651) 101081) ((-694 . -312) 101019) ((-969 . -38) 100916) ((-1187 . -618) 100898) ((-740 . -38) 100868) ((-555 . -312) 100672) ((-1181 . -1057) 100555) ((-319 . -1223) T) ((-355 . -234) T) ((-355 . -244) T) ((-316 . -1223) T) ((-292 . -1106) T) ((-1180 . -1057) 100390) ((-1174 . -1057) 100180) ((-1132 . -1057) 100063) ((-1181 . -645) 99960) ((-1180 . -645) 99801) ((-716 . -1227) T) ((-1174 . -645) 99597) ((-1163 . -656) 99581) ((-1132 . -645) 99478) ((-1217 . -561) 99457) ((-824 . -390) 99441) ((-716 . -561) T) ((-319 . -890) 99425) ((-319 . -892) 99350) ((-316 . -890) 99311) ((-316 . -892) NIL) ((-804 . -312) 99276) ((-322 . -722) 99117) ((-391 . -390) 99101) ((-327 . -326) 99078) ((-490 . -102) T) ((-479 . -25) T) ((-479 . -21) T) ((-423 . -38) 99052) ((-319 . -1044) 98715) ((-226 . -1208) T) ((-226 . -1211) T) ((-3 . -618) 98697) ((-316 . -1044) 98627) ((-2 . -1106) T) ((-2 . |RecordCategory|) T) ((-838 . -618) 98609) ((-1119 . -1064) 98539) ((-585 . -926) T) ((-569 . -825) T) ((-569 . -926) T) ((-500 . -926) T) ((-136 . -1044) 98523) ((-226 . -95) T) ((-170 . -147) 98502) ((-75 . -446) T) ((0 . -618) 98484) ((-75 . -400) T) ((-170 . -145) 98435) ((-226 . -35) T) ((-49 . -618) 98417) ((-482 . -1064) T) ((-492 . -232) 98399) ((-489 . -974) 98383) ((-487 . -853) 98362) ((-218 . -232) 98344) ((-81 . -446) T) ((-81 . -400) T) ((-1152 . -34) T) ((-820 . -173) 98323) ((-736 . -102) T) ((-658 . -651) 98282) ((-1032 . -618) 98249) ((-505 . -289) 98224) ((-319 . -381) 98193) ((-316 . -381) 98154) ((-316 . -342) 98115) ((-1091 . -618) 98097) ((-821 . -955) 98044) ((-667 . -131) T) ((-1246 . -145) 98023) ((-1246 . -147) 98002) ((-1181 . -102) T) ((-1180 . -102) T) ((-1174 . -102) T) ((-1166 . -1106) T) ((-1132 . -102) T) ((-223 . -34) T) ((-292 . -722) 97989) ((-1166 . -615) 97965) ((-598 . -312) NIL) ((-489 . -1106) 97943) ((-395 . -618) 97925) ((-515 . -855) T) ((-1156 . -230) 97875) ((-1265 . -1264) 97859) ((-1265 . -1251) 97836) ((-1258 . -1256) 97797) ((-1258 . -1251) 97767) ((-1258 . -1254) 97751) ((-1237 . -1235) 97712) ((-1237 . -1251) 97689) ((-626 . -618) 97671) ((-1237 . -1233) 97655) ((-704 . -926) T) ((-1181 . -287) 97621) ((-1180 . -287) 97587) ((-1174 . -287) 97553) ((-1086 . -1106) T) ((-1067 . -1106) T) ((-48 . -305) T) ((-319 . -906) 97519) ((-316 . -906) NIL) ((-1067 . -1074) 97498) ((-1126 . -892) 97480) ((-804 . -38) 97464) ((-266 . -644) 97412) ((-248 . -644) 97360) ((-706 . -1062) 97347) ((-600 . -1251) 97324) ((-1132 . -287) 97290) ((-322 . -173) 97221) ((-363 . -1106) T) ((-357 . -1106) T) ((-349 . -1106) T) ((-505 . -19) 97203) ((-1126 . -1044) 97185) ((-1108 . -151) 97169) ((-108 . -1106) T) ((-116 . -1062) 97156) ((-716 . -367) T) ((-505 . -609) 97131) ((-706 . -111) 97116) ((-441 . -102) T) ((-881 . -1268) T) ((-251 . -102) T) ((-45 . -1155) 97066) ((-116 . -111) 97051) ((-640 . -725) T) ((-612 . -725) T) ((-1275 . -618) 97033) ((-1231 . -618) 97015) ((-1229 . -855) T) ((-820 . -519) 96948) ((-1041 . -1223) T) ((-241 . -1057) 96845) ((-1217 . -1118) T) ((-1217 . -23) T) ((-949 . -151) 96829) ((-1179 . -457) 96760) ((-1174 . -312) 96645) ((-241 . -645) 96587) ((-1173 . -1106) T) ((-1165 . -1106) T) ((-1148 . -653) 96561) ((-530 . -102) T) ((-525 . -102) 96511) ((-1132 . -312) 96498) ((-1131 . -457) 96449) ((-1093 . -1227) 96428) ((-787 . -1227) 96407) ((-785 . -1227) 96386) ((-62 . -1223) T) ((-482 . -618) 96338) ((-482 . -619) 96260) ((-1093 . -561) 96191) ((-1000 . -1106) T) ((-787 . -561) 96102) ((-785 . -561) 96033) ((-487 . -416) 96002) ((-628 . -926) 95981) ((-459 . -1227) 95960) ((-736 . -312) 95947) ((-706 . -621) 95919) ((-403 . -618) 95901) ((-680 . -519) 95834) ((-669 . -25) T) ((-669 . -21) T) ((-459 . -561) 95765) ((-359 . -25) T) ((-359 . -21) T) ((-117 . -926) T) ((-117 . -825) NIL) ((-356 . -25) T) ((-356 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-266 . -25) T) ((-266 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-83 . -388) T) ((-83 . -400) T) ((-134 . -621) 95747) ((-116 . -621) 95719) ((-1086 . -722) 95587) ((-1010 . -1057) 95537) ((-1010 . -645) 95487) ((-949 . -986) 95471) ((-920 . -645) 95423) ((-920 . -1057) 95375) ((-916 . -21) T) ((-916 . -25) T) ((-877 . -855) 95326) ((-871 . -653) 95286) ((-716 . -1118) T) ((-716 . -23) T) ((-292 . -173) T) ((-706 . -1055) T) ((-314 . -93) T) ((-706 . -234) T) ((-652 . -1106) 95264) ((-637 . -615) 95239) ((-637 . -1106) T) ((-586 . -1227) T) ((-586 . -561) T) ((-523 . -1227) T) ((-523 . -561) T) ((-492 . -651) 95189) ((-432 . -1057) 95173) ((-432 . -645) 95157) ((-363 . -722) 95109) ((-357 . -722) 95061) ((-343 . -1062) 95045) ((-349 . -722) 94997) ((-343 . -111) 94976) ((-175 . -1062) 94908) ((-218 . -651) 94858) ((-175 . -111) 94769) ((-108 . -722) 94719) ((-276 . -1106) T) ((-275 . -1106) T) ((-274 . -1106) T) ((-273 . -1106) T) ((-272 . -1106) T) ((-271 . -1106) T) ((-270 . -1106) T) ((-213 . -1106) T) ((-212 . -1106) T) ((-170 . -1211) 94697) ((-170 . -1208) 94675) ((-210 . -1106) T) ((-209 . -1106) T) ((-116 . -1055) T) ((-208 . -1106) T) ((-207 . -1106) T) ((-204 . -1106) T) ((-203 . -1106) T) ((-202 . -1106) T) ((-201 . -1106) T) ((-200 . -1106) T) ((-199 . -1106) T) ((-198 . -1106) T) ((-197 . -1106) T) ((-196 . -1106) T) ((-195 . -1106) T) ((-194 . -1106) T) ((-241 . -102) 94465) ((-170 . -35) 94443) ((-170 . -95) 94421) ((-659 . -1044) 94317) ((-487 . -1064) 94247) ((-1119 . -1106) 94037) ((-1148 . -34) T) ((-675 . -494) 94021) ((-73 . -1223) T) ((-105 . -618) 94003) ((-1297 . -618) 93985) ((-385 . -618) 93967) ((-343 . -621) 93919) ((-175 . -621) 93836) ((-1222 . -495) 93817) ((-736 . -38) 93666) ((-576 . -1211) T) ((-576 . -1208) T) ((-536 . -618) 93648) ((-525 . -312) 93586) ((-505 . -618) 93568) ((-505 . -619) 93550) ((-1222 . -618) 93516) ((-1174 . -1158) NIL) ((-1033 . -1077) 93485) ((-1033 . -1106) T) ((-1010 . -102) T) ((-977 . -102) T) ((-920 . -102) T) ((-899 . -1044) 93462) ((-1148 . -731) T) ((-1009 . -653) 93407) ((-481 . -1106) T) ((-468 . -1106) T) ((-591 . -23) T) ((-576 . -35) T) ((-576 . -95) T) ((-432 . -102) T) ((-1069 . -230) 93353) ((-1181 . -38) 93250) ((-871 . -731) T) ((-699 . -926) T) ((-516 . -25) T) ((-512 . -21) T) ((-512 . -25) T) ((-1180 . -38) 93091) ((-343 . -1055) T) ((-1174 . -38) 92887) ((-1086 . -173) T) ((-175 . -1055) T) ((-1132 . -38) 92784) ((-717 . -47) 92761) ((-363 . -173) T) ((-357 . -173) T) ((-524 . -57) 92735) ((-502 . -57) 92685) ((-355 . -1292) 92662) ((-226 . -457) T) ((-322 . -293) 92613) ((-349 . -173) T) ((-175 . -244) T) ((-1236 . -855) 92512) ((-108 . -173) T) ((-877 . -998) 92496) ((-663 . -1118) T) ((-586 . -367) T) ((-586 . -332) 92483) ((-523 . -332) 92460) ((-523 . -367) T) ((-319 . -310) 92439) ((-316 . -310) T) ((-607 . -855) 92418) ((-1119 . -722) 92360) ((-525 . -285) 92344) ((-663 . -23) T) ((-423 . -232) 92328) ((-316 . -1028) NIL) ((-340 . -23) T) ((-103 . -1016) 92312) ((-45 . -36) 92291) ((-617 . -1106) T) ((-355 . -372) T) ((-529 . -102) T) ((-500 . -27) T) ((-241 . -312) 92229) ((-1093 . -1118) T) ((-1296 . -653) 92203) ((-787 . -1118) T) ((-785 . -1118) T) ((-459 . -1118) T) ((-1068 . -457) T) ((-1157 . -1106) T) ((-958 . -457) 92154) ((-1121 . -1089) T) ((-110 . -1106) T) ((-1093 . -23) T) ((-822 . -1064) T) ((-787 . -23) T) ((-785 . -23) T) ((-486 . -457) 92105) ((-1166 . -519) 91888) ((-385 . -386) 91867) ((-1185 . -416) 91851) ((-466 . -23) T) ((-459 . -23) T) ((-96 . -1106) T) ((-489 . -519) 91784) ((-1265 . -1057) 91667) ((-1265 . -645) 91564) ((-1258 . -645) 91405) ((-1258 . -1057) 91240) ((-292 . -293) T) ((-1237 . -1057) 91030) ((-1088 . -618) 91012) ((-1088 . -619) 90993) ((-412 . -915) 90972) ((-1237 . -645) 90768) ((-50 . -1118) T) ((-1217 . -131) T) ((-1030 . -926) T) ((-1009 . -731) T) ((-848 . -653) 90741) ((-717 . -892) NIL) ((-601 . -1057) 90701) ((-586 . -1118) T) ((-523 . -1118) T) ((-600 . -1057) 90584) ((-1174 . -405) 90536) ((-1010 . -312) NIL) ((-820 . -494) 90520) ((-601 . -645) 90493) ((-358 . -926) T) ((-600 . -645) 90390) ((-1163 . -34) T) ((-412 . -653) 90342) ((-50 . -23) T) ((-716 . -131) T) ((-717 . -1044) 90222) ((-586 . -23) T) ((-108 . -519) NIL) ((-523 . -23) T) ((-170 . -414) 90193) ((-1146 . -1106) T) ((-1288 . -1287) 90177) ((-706 . -800) T) ((-706 . -797) T) ((-1126 . -310) T) ((-383 . -147) T) ((-283 . -618) 90159) ((-282 . -618) 90141) ((-1236 . -998) 90111) ((-48 . -926) T) ((-680 . -494) 90095) ((-253 . -1280) 90065) ((-252 . -1280) 90035) ((-1183 . -855) T) ((-1119 . -173) 90014) ((-1126 . -1028) T) ((-1052 . -34) T) ((-841 . -147) 89993) ((-841 . -145) 89972) ((-742 . -107) 89956) ((-617 . -132) T) ((-487 . -1106) 89746) ((-1185 . -1064) T) ((-876 . -457) T) ((-85 . -1223) T) ((-241 . -38) 89716) ((-141 . -107) 89698) ((-717 . -381) 89682) ((-838 . -621) 89550) ((-1296 . -731) T) ((-1285 . -1064) T) ((-1126 . -550) T) ((-584 . -102) T) ((-129 . -495) 89532) ((-1265 . -102) T) ((-395 . -1062) 89516) ((-1258 . -102) T) ((-1179 . -955) 89485) ((-129 . -618) 89452) ((-52 . -618) 89434) ((-1131 . -955) 89401) ((-658 . -416) 89385) ((-1237 . -102) T) ((-1165 . -519) NIL) ((-667 . -25) T) ((-626 . -1062) 89369) ((-667 . -21) T) ((-969 . -651) 89279) ((-740 . -651) 89224) ((-720 . -651) 89196) ((-395 . -111) 89175) ((-223 . -256) 89159) ((-1060 . -1059) 89099) ((-1060 . -1106) T) ((-1010 . -1158) T) ((-823 . -1106) T) ((-458 . -651) 89014) ((-347 . -1227) T) ((-640 . -653) 88998) ((-626 . -111) 88977) ((-612 . -653) 88961) ((-601 . -102) T) ((-314 . -495) 88942) ((-591 . -131) T) ((-600 . -102) T) ((-419 . -1106) T) ((-389 . -1106) T) ((-314 . -618) 88908) ((-228 . -1106) 88886) ((-652 . -519) 88819) ((-637 . -519) 88663) ((-838 . -1055) 88642) ((-649 . -151) 88626) ((-347 . -561) T) ((-717 . -906) 88569) ((-555 . -230) 88519) ((-1265 . -287) 88485) ((-1258 . -287) 88451) ((-1086 . -293) 88402) ((-492 . -853) T) ((-224 . -1118) T) ((-1237 . -287) 88368) ((-1217 . -498) 88334) ((-1010 . -38) 88284) ((-218 . -853) T) ((-423 . -651) 88243) ((-920 . -38) 88195) ((-848 . -799) 88174) ((-848 . -796) 88153) ((-848 . -731) 88132) ((-363 . -293) T) ((-357 . -293) T) ((-349 . -293) T) ((-170 . -457) 88063) ((-432 . -38) 88047) ((-108 . -293) T) ((-224 . -23) T) ((-412 . -799) 88026) ((-412 . -796) 88005) ((-412 . -731) T) ((-505 . -291) 87980) ((-482 . -1062) 87945) ((-663 . -131) T) ((-626 . -621) 87914) ((-1119 . -519) 87847) ((-340 . -131) T) ((-170 . -407) 87826) ((-487 . -722) 87768) ((-820 . -289) 87745) ((-482 . -111) 87701) ((-658 . -1064) T) ((-821 . -1057) 87544) ((-1284 . -1089) T) ((-1246 . -457) 87475) ((-821 . -645) 87324) ((-1283 . -1089) T) ((-1093 . -131) T) ((-1060 . -722) 87266) ((-787 . -131) T) ((-785 . -131) T) ((-576 . -457) T) ((-1033 . -519) 87199) ((-626 . -1055) T) ((-597 . -1106) T) ((-538 . -174) T) ((-466 . -131) T) ((-459 . -131) T) ((-45 . -1106) T) ((-389 . -722) 87169) ((-822 . -1106) T) ((-481 . -519) 87102) ((-468 . -519) 87035) ((-458 . -371) 87005) ((-45 . -615) 86984) ((-319 . -305) T) ((-482 . -621) 86934) ((-1237 . -312) 86819) ((-675 . -618) 86781) ((-59 . -855) 86760) ((-1010 . -405) 86742) ((-553 . -618) 86724) ((-804 . -651) 86683) ((-820 . -609) 86660) ((-521 . -855) 86639) ((-501 . -855) 86618) ((-40 . -1227) T) ((-1005 . -1044) 86514) ((-50 . -131) T) ((-586 . -131) T) ((-523 . -131) T) ((-297 . -653) 86374) ((-347 . -332) 86351) ((-347 . -367) T) ((-325 . -326) 86328) ((-322 . -289) 86313) ((-40 . -561) T) ((-383 . -1208) T) ((-383 . -1211) T) ((-1041 . -1199) 86288) ((-1196 . -236) 86238) ((-1174 . -232) 86190) ((-333 . -1106) T) ((-383 . -95) T) ((-383 . -35) T) ((-1041 . -107) 86136) ((-482 . -1055) T) ((-1297 . -1062) 86120) ((-484 . -236) 86070) ((-1166 . -494) 86004) ((-1288 . -1057) 85988) ((-385 . -1062) 85972) ((-1288 . -645) 85942) ((-482 . -244) T) ((-821 . -102) T) ((-719 . -147) 85921) ((-719 . -145) 85900) ((-489 . -494) 85884) ((-490 . -339) 85853) ((-1297 . -111) 85832) ((-517 . -1106) T) ((-487 . -173) 85811) ((-1005 . -381) 85795) ((-418 . -102) T) ((-385 . -111) 85774) ((-1005 . -342) 85758) ((-281 . -989) 85742) ((-280 . -989) 85726) ((-1295 . -618) 85708) ((-1293 . -618) 85690) ((-110 . -519) NIL) ((-1179 . -1249) 85674) ((-859 . -857) 85658) ((-1185 . -1106) T) ((-103 . -1223) T) ((-958 . -955) 85619) ((-822 . -722) 85561) ((-1237 . -1158) NIL) ((-486 . -955) 85506) ((-1068 . -143) T) ((-60 . -102) 85484) ((-44 . -618) 85466) ((-78 . -618) 85448) ((-355 . -653) 85393) ((-1285 . -1106) T) ((-516 . -855) T) ((-347 . -1118) T) ((-298 . -1106) T) ((-1005 . -906) 85352) ((-298 . -615) 85331) ((-1297 . -621) 85280) ((-1265 . -38) 85177) ((-1258 . -38) 85018) ((-1237 . -38) 84814) ((-492 . -1064) T) ((-385 . -621) 84798) ((-218 . -1064) T) ((-347 . -23) T) ((-152 . -618) 84780) ((-838 . -800) 84759) ((-838 . -797) 84738) ((-1222 . -621) 84719) ((-601 . -38) 84692) ((-600 . -38) 84589) ((-875 . -561) T) ((-224 . -131) T) ((-322 . -1008) 84555) ((-79 . -618) 84537) ((-717 . -310) 84516) ((-297 . -731) 84418) ((-829 . -102) T) ((-869 . -849) T) ((-297 . -478) 84397) ((-1288 . -102) T) ((-40 . -367) T) ((-877 . -147) 84376) ((-490 . -651) 84358) ((-877 . -145) 84337) ((-1165 . -494) 84319) ((-1297 . -1055) T) ((-487 . -519) 84252) ((-1152 . -1223) T) ((-970 . -618) 84234) ((-652 . -494) 84218) ((-637 . -494) 84149) ((-820 . -618) 83880) ((-48 . -27) T) ((-1185 . -722) 83777) ((-658 . -1106) T) ((-866 . -865) T) ((-441 . -368) 83751) ((-736 . -651) 83661) ((-1108 . -102) T) ((-976 . -1106) T) ((-869 . -1106) T) ((-821 . -312) 83648) ((-538 . -532) T) ((-538 . -581) T) ((-1293 . -386) 83620) ((-1060 . -519) 83553) ((-1166 . -289) 83529) ((-241 . -232) 83498) ((-253 . -1057) 83395) ((-252 . -1057) 83292) ((-1285 . -722) 83262) ((-1173 . -93) T) ((-1000 . -93) T) ((-822 . -173) 83241) ((-253 . -645) 83183) ((-252 . -645) 83125) ((-1220 . -495) 83102) ((-228 . -519) 83035) ((-626 . -800) 83014) ((-626 . -797) 82993) ((-1220 . -618) 82905) ((-223 . -1223) T) ((-680 . -618) 82837) ((-1181 . -651) 82747) ((-1163 . -1016) 82731) ((-949 . -102) 82681) ((-355 . -731) T) ((-866 . -618) 82663) ((-1180 . -651) 82545) ((-1174 . -651) 82382) ((-1132 . -651) 82292) ((-1237 . -405) 82244) ((-1119 . -494) 82228) ((-60 . -312) 82166) ((-334 . -102) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-40 . -1118) T) ((-716 . -21) T) ((-632 . -618) 82148) ((-520 . -326) 82127) ((-716 . -25) T) ((-444 . -102) T) ((-108 . -289) NIL) ((-927 . -1118) T) ((-40 . -23) T) ((-776 . -1118) T) ((-569 . -1227) T) ((-500 . -1227) T) ((-322 . -618) 82109) ((-1010 . -232) 82091) ((-170 . -166) 82075) ((-585 . -561) T) ((-569 . -561) T) ((-500 . -561) T) ((-776 . -23) T) ((-1257 . -147) 82054) ((-1166 . -609) 82030) ((-1257 . -145) 82009) ((-1033 . -494) 81993) ((-1236 . -145) 81918) ((-1236 . -147) 81843) ((-1288 . -1294) 81822) ((-481 . -494) 81806) ((-468 . -494) 81790) ((-528 . -34) T) ((-658 . -722) 81760) ((-112 . -973) T) ((-667 . -855) 81739) ((-1185 . -173) 81690) ((-369 . -102) T) ((-241 . -239) 81669) ((-253 . -102) T) ((-252 . -102) T) ((-1246 . -955) 81638) ((-246 . -855) 81617) ((-821 . -38) 81466) ((-45 . -519) 81258) ((-1165 . -289) 81233) ((-215 . -1106) T) ((-1156 . -1106) T) ((-1156 . -615) 81212) ((-591 . -25) T) ((-591 . -21) T) ((-1108 . -312) 81150) ((-969 . -416) 81134) ((-704 . -1227) T) ((-637 . -289) 81109) ((-1093 . -644) 81057) ((-787 . -644) 81005) ((-785 . -644) 80953) ((-347 . -131) T) ((-292 . -618) 80935) ((-911 . -1106) T) ((-704 . -561) T) ((-129 . -621) 80917) ((-875 . -1118) T) ((-459 . -644) 80865) ((-911 . -909) 80849) ((-383 . -457) T) ((-492 . -1106) T) ((-949 . -312) 80787) ((-706 . -653) 80774) ((-554 . -849) T) ((-218 . -1106) T) ((-319 . -926) 80753) ((-316 . -926) T) ((-316 . -825) NIL) ((-395 . -725) T) ((-875 . -23) T) ((-116 . -653) 80740) ((-479 . -145) 80719) ((-423 . -416) 80703) ((-479 . -147) 80682) ((-110 . -494) 80664) ((-314 . -621) 80645) ((-2 . -618) 80627) ((-187 . -102) T) ((-1165 . -19) 80609) ((-1165 . -609) 80584) ((-663 . -21) T) ((-663 . -25) T) ((-598 . -1150) T) ((-1119 . -289) 80561) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -651) 80311) ((-500 . -367) T) ((-1288 . -38) 80281) ((-1179 . -1057) 80104) ((-1148 . -1223) T) ((-1131 . -1057) 79947) ((-859 . -1057) 79931) ((-637 . -609) 79906) ((-1295 . -1062) 79890) ((-1179 . -645) 79719) ((-1131 . -645) 79568) ((-859 . -645) 79538) ((-1293 . -1062) 79522) ((-1257 . -1208) 79488) ((-554 . -1106) T) ((-1093 . -25) T) ((-1093 . -21) T) ((-536 . -797) T) ((-536 . -800) T) ((-117 . -1227) T) ((-969 . -1064) T) ((-628 . -561) T) ((-787 . -25) T) ((-787 . -21) T) ((-785 . -21) T) ((-785 . -25) T) ((-740 . -1064) T) ((-720 . -1064) T) ((-675 . -1062) 79472) ((-522 . -1089) T) ((-466 . -25) T) ((-117 . -561) T) ((-466 . -21) T) ((-459 . -25) T) ((-459 . -21) T) ((-1257 . -1211) 79438) ((-1157 . -93) T) ((-1148 . -1044) 79334) ((-822 . -293) 79313) ((-1257 . -95) 79279) ((-828 . -1106) T) ((-1240 . -102) 79257) ((-972 . -973) T) ((-675 . -111) 79236) ((-298 . -519) 79028) ((-1237 . -232) 78980) ((-1236 . -1208) 78946) ((-1236 . -1211) 78912) ((-253 . -312) 78850) ((-252 . -312) 78788) ((-1231 . -372) T) ((-1166 . -619) NIL) ((-1166 . -618) 78770) ((-1228 . -849) T) ((-1148 . -381) 78754) ((-1126 . -825) T) ((-96 . -93) T) ((-1126 . -926) T) ((-1119 . -609) 78731) ((-1086 . -619) 78715) ((-1010 . -651) 78665) ((-920 . -651) 78602) ((-820 . -291) 78579) ((-489 . -618) 78511) ((-613 . -151) 78458) ((-492 . -722) 78408) ((-423 . -1064) T) ((-487 . -494) 78392) ((-432 . -651) 78351) ((-330 . -855) 78330) ((-343 . -653) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-218 . -722) 78254) ((-170 . -729) 78225) ((-175 . -653) 78157) ((-586 . -21) T) ((-586 . -25) T) ((-523 . -25) T) ((-523 . -21) T) ((-480 . -151) 78107) ((-1086 . -618) 78089) ((-1067 . -618) 78071) ((-999 . -102) T) ((-867 . -102) T) ((-804 . -416) 78034) ((-40 . -131) T) ((-704 . -367) T) ((-706 . -731) T) ((-706 . -799) T) ((-706 . -796) T) ((-213 . -901) T) ((-585 . -1118) T) ((-569 . -1118) T) ((-500 . -1118) T) ((-363 . -618) 78016) ((-357 . -618) 77998) ((-349 . -618) 77980) ((-66 . -401) T) ((-66 . -400) T) ((-108 . -619) 77910) ((-108 . -618) 77852) ((-212 . -901) T) ((-964 . -151) 77836) ((-776 . -131) T) ((-675 . -621) 77754) ((-134 . -731) T) ((-116 . -731) T) ((-1257 . -35) 77720) ((-1060 . -494) 77704) ((-585 . -23) T) ((-569 . -23) T) ((-500 . -23) T) ((-1236 . -95) 77670) ((-1236 . -35) 77636) ((-1179 . -102) T) ((-1131 . -102) T) ((-859 . -102) T) ((-228 . -494) 77620) ((-1295 . -111) 77599) ((-1293 . -111) 77578) ((-44 . -1062) 77562) ((-1295 . -621) 77508) ((-1246 . -1249) 77492) ((-860 . -857) 77476) ((-1295 . -1055) T) ((-1185 . -293) 77455) ((-110 . -289) 77430) ((-1293 . -621) 77359) ((-128 . -151) 77341) ((-1148 . -906) 77300) ((-44 . -111) 77279) ((-1228 . -1106) T) ((-1188 . -1268) T) ((-1173 . -495) 77260) ((-1173 . -618) 77226) ((-675 . -1055) T) ((-1165 . -619) NIL) ((-1165 . -618) 77208) ((-1069 . -615) 77183) ((-1069 . -1106) T) ((-1000 . -495) 77164) ((-74 . -446) T) ((-74 . -400) T) ((-1000 . -618) 77130) ((-152 . -1062) 77114) ((-675 . -234) 77093) ((-576 . -559) 77077) ((-359 . -147) 77056) ((-359 . -145) 77007) ((-356 . -147) 76986) ((-356 . -145) 76937) ((-348 . -147) 76916) ((-348 . -145) 76867) ((-266 . -145) 76846) ((-266 . -147) 76825) ((-253 . -38) 76795) ((-248 . -147) 76774) ((-117 . -367) T) ((-248 . -145) 76753) ((-252 . -38) 76723) ((-152 . -111) 76702) ((-1009 . -1044) 76590) ((-1174 . -853) NIL) ((-699 . -1227) T) ((-804 . -1064) T) ((-704 . -1118) T) ((-1293 . -1055) T) ((-1163 . -1223) T) ((-1009 . -381) 76567) ((-916 . -145) T) ((-916 . -147) 76549) ((-875 . -131) T) ((-820 . -1062) 76446) ((-704 . -23) T) ((-699 . -561) T) ((-226 . -1057) 76411) ((-652 . -618) 76343) ((-652 . -619) 76304) ((-637 . -619) NIL) ((-637 . -618) 76286) ((-492 . -173) T) ((-226 . -645) 76251) ((-224 . -21) T) ((-218 . -173) T) ((-224 . -25) T) ((-479 . -1211) 76217) ((-479 . -1208) 76183) ((-276 . -618) 76165) ((-275 . -618) 76147) ((-274 . -618) 76129) ((-273 . -618) 76111) ((-272 . -618) 76093) ((-505 . -656) 76075) ((-271 . -618) 76057) ((-343 . -731) T) ((-270 . -618) 76039) ((-110 . -19) 76021) ((-175 . -731) T) ((-505 . -377) 76003) ((-213 . -618) 75985) ((-525 . -1155) 75969) ((-505 . -123) T) ((-110 . -609) 75944) ((-212 . -618) 75926) ((-479 . -35) 75892) ((-479 . -95) 75858) ((-210 . -618) 75840) ((-209 . -618) 75822) ((-208 . -618) 75804) ((-207 . -618) 75786) ((-204 . -618) 75768) ((-203 . -618) 75750) ((-202 . -618) 75732) ((-201 . -618) 75714) ((-200 . -618) 75696) ((-199 . -618) 75678) ((-198 . -618) 75660) ((-541 . -1109) 75612) ((-197 . -618) 75594) ((-196 . -618) 75576) ((-45 . -494) 75513) ((-195 . -618) 75495) ((-194 . -618) 75477) ((-152 . -621) 75446) ((-1121 . -102) T) ((-820 . -111) 75336) ((-649 . -102) 75286) ((-487 . -289) 75263) ((-1119 . -618) 74994) ((-1107 . -1106) T) ((-1052 . -1223) T) ((-1296 . -1044) 74978) ((-1068 . -1057) 74965) ((-1179 . -312) 74952) ((-958 . -1057) 74795) ((-1141 . -1106) T) ((-1131 . -312) 74782) ((-628 . -1118) T) ((-1068 . -645) 74769) ((-1102 . -1089) T) ((-958 . -645) 74618) ((-1096 . -1089) T) ((-486 . -1057) 74461) ((-1079 . -1089) T) ((-1072 . -1089) T) ((-1042 . -1089) T) ((-1025 . -1089) T) ((-117 . -1118) T) ((-486 . -645) 74310) ((-824 . -102) T) ((-631 . -1089) T) ((-628 . -23) T) ((-1156 . -519) 74102) ((-488 . -1089) T) ((-391 . -102) T) ((-327 . -102) T) ((-219 . -1089) T) ((-969 . -1106) T) ((-152 . -1055) T) ((-736 . -416) 74086) ((-117 . -23) T) ((-1009 . -906) 74038) ((-740 . -1106) T) ((-720 . -1106) T) ((-458 . -1106) T) ((-412 . -1223) T) ((-319 . -435) 74022) ((-597 . -93) T) ((-1265 . -651) 73932) ((-1033 . -619) 73893) ((-1030 . -1227) T) ((-226 . -102) T) ((-1033 . -618) 73855) ((-1258 . -651) 73737) ((-821 . -232) 73721) ((-820 . -621) 73451) ((-1237 . -651) 73288) ((-1030 . -561) T) ((-838 . -653) 73261) ((-358 . -1227) T) ((-481 . -618) 73223) ((-481 . -619) 73184) ((-468 . -619) 73145) ((-468 . -618) 73107) ((-601 . -651) 73066) ((-412 . -890) 73050) ((-322 . -1062) 72885) ((-412 . -892) 72810) ((-600 . -651) 72720) ((-848 . -1044) 72616) ((-492 . -519) NIL) ((-487 . -609) 72593) ((-358 . -561) T) ((-218 . -519) NIL) ((-877 . -457) T) ((-423 . -1106) T) ((-412 . -1044) 72457) ((-322 . -111) 72278) ((-699 . -367) T) ((-226 . -287) T) ((-1220 . -621) 72255) ((-48 . -1227) T) ((-820 . -1055) 72185) ((-1179 . -1158) 72163) ((-585 . -131) T) ((-569 . -131) T) ((-500 . -131) T) ((-1166 . -291) 72139) ((-48 . -561) T) ((-1068 . -102) T) ((-958 . -102) T) ((-876 . -1057) 72084) ((-319 . -27) 72063) ((-820 . -234) 72015) ((-250 . -840) 71997) ((-241 . -853) 71976) ((-188 . -840) 71958) ((-718 . -102) T) ((-298 . -494) 71895) ((-876 . -645) 71840) ((-486 . -102) T) ((-736 . -1064) T) ((-617 . -618) 71822) ((-617 . -619) 71683) ((-412 . -381) 71667) ((-412 . -342) 71651) ((-322 . -621) 71477) ((-1179 . -38) 71306) ((-1131 . -38) 71155) ((-859 . -38) 71125) ((-395 . -653) 71109) ((-649 . -312) 71047) ((-1157 . -495) 71028) ((-1157 . -618) 70994) ((-969 . -722) 70891) ((-740 . -722) 70861) ((-223 . -107) 70845) ((-45 . -289) 70770) ((-626 . -653) 70744) ((-315 . -1106) T) ((-292 . -1062) 70731) ((-110 . -618) 70713) ((-110 . -619) 70695) ((-458 . -722) 70665) ((-821 . -255) 70604) ((-694 . -1106) 70582) ((-555 . -1106) T) ((-1181 . -1064) T) ((-1180 . -1064) T) ((-96 . -495) 70563) ((-1174 . -1064) T) ((-292 . -111) 70548) ((-1132 . -1064) T) ((-555 . -615) 70527) ((-96 . -618) 70493) ((-1010 . -853) T) ((-228 . -692) 70451) ((-699 . -1118) T) ((-1217 . -745) 70427) ((-1030 . -367) T) ((-843 . -840) 70409) ((-838 . -799) 70388) ((-412 . -906) 70347) ((-322 . -1055) T) ((-347 . -25) T) ((-347 . -21) T) ((-170 . -1057) 70257) ((-68 . -1223) T) ((-838 . -796) 70236) ((-423 . -722) 70210) ((-804 . -1106) T) ((-717 . -926) 70189) ((-704 . -131) T) ((-170 . -645) 70017) ((-699 . -23) T) ((-492 . -293) T) ((-838 . -731) 69996) ((-322 . -234) 69948) ((-322 . -244) 69927) ((-218 . -293) T) ((-129 . -372) T) ((-1257 . -457) 69906) ((-1236 . -457) 69885) ((-358 . -332) 69862) ((-358 . -367) T) ((-1146 . -618) 69844) ((-45 . -1261) 69794) ((-876 . -102) T) ((-649 . -285) 69778) ((-704 . -1066) T) ((-1284 . -102) T) ((-1283 . -102) T) ((-482 . -653) 69743) ((-473 . -1106) T) ((-45 . -609) 69668) ((-1165 . -291) 69643) ((-292 . -621) 69615) ((-40 . -644) 69554) ((-1246 . -1057) 69377) ((-860 . -1057) 69361) ((-48 . -367) T) ((-1112 . -618) 69343) ((-1246 . -645) 69172) ((-860 . -645) 69142) ((-637 . -291) 69117) ((-821 . -651) 69027) ((-576 . -1057) 69014) ((-487 . -618) 68745) ((-241 . -416) 68714) ((-958 . -312) 68701) ((-576 . -645) 68688) ((-65 . -1223) T) ((-1069 . -519) 68532) ((-676 . -1106) T) ((-628 . -131) T) ((-486 . -312) 68519) ((-611 . -1106) T) ((-551 . -102) T) ((-117 . -131) T) ((-292 . -1055) T) ((-181 . -1106) T) ((-161 . -1106) T) ((-156 . -1106) T) ((-154 . -1106) T) ((-458 . -766) T) ((-31 . -1089) T) ((-969 . -173) 68470) ((-976 . -93) T) ((-1086 . -1062) 68380) ((-626 . -799) 68359) ((-598 . -1106) T) ((-626 . -796) 68338) ((-626 . -731) T) ((-298 . -289) 68317) ((-297 . -1223) T) ((-1060 . -618) 68279) ((-1060 . -619) 68240) ((-1030 . -1118) T) ((-170 . -102) T) ((-277 . -855) T) ((-1172 . -1106) T) ((-823 . -618) 68222) ((-1119 . -291) 68199) ((-1108 . -230) 68183) ((-1009 . -310) T) ((-804 . -722) 68167) ((-363 . -1062) 68119) ((-358 . -1118) T) ((-357 . -1062) 68071) ((-419 . -618) 68053) ((-389 . -618) 68035) ((-349 . -1062) 67987) ((-228 . -618) 67919) ((-1086 . -111) 67815) ((-1030 . -23) T) ((-108 . -1062) 67765) ((-904 . -102) T) ((-846 . -102) T) ((-813 . -102) T) ((-774 . -102) T) ((-682 . -102) T) ((-479 . -457) 67744) ((-423 . -173) T) ((-363 . -111) 67682) ((-357 . -111) 67620) ((-349 . -111) 67558) ((-253 . -232) 67527) ((-252 . -232) 67496) ((-358 . -23) T) ((-71 . -1223) T) ((-226 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-675 . -725) T) ((-170 . -287) 67373) ((-48 . -1118) T) ((-927 . -25) T) ((-776 . -25) T) ((-1297 . -653) 67347) ((-1156 . -494) 67284) ((-490 . -1106) T) ((-1288 . -651) 67243) ((-1246 . -102) T) ((-1068 . -1158) T) ((-860 . -102) T) ((-241 . -1064) 67173) ((-970 . -797) 67126) ((-970 . -800) 67079) ((-385 . -653) 67063) ((-48 . -23) T) ((-820 . -800) 67014) ((-820 . -797) 66965) ((-553 . -372) T) ((-298 . -609) 66944) ((-482 . -731) T) ((-576 . -102) T) ((-1086 . -621) 66762) ((-250 . -186) T) ((-188 . -186) T) ((-876 . -312) 66719) ((-658 . -289) 66698) ((-112 . -666) T) ((-363 . -621) 66635) ((-357 . -621) 66572) ((-349 . -621) 66509) ((-76 . -1223) T) ((-108 . -621) 66459) ((-1068 . -38) 66446) ((-669 . -378) 66425) ((-958 . -38) 66274) ((-736 . -1106) T) ((-486 . -38) 66123) ((-86 . -1223) T) ((-597 . -495) 66104) ((-576 . -287) T) ((-1237 . -853) NIL) ((-597 . -618) 66070) ((-1181 . -1106) T) ((-1180 . -1106) T) ((-1086 . -1055) T) ((-355 . -1044) 66047) ((-822 . -495) 66031) ((-1010 . -1064) T) ((-45 . -618) 66013) ((-45 . -619) NIL) ((-920 . -1064) T) ((-822 . -618) 65982) ((-1174 . -1106) T) ((-1153 . -102) 65960) ((-1086 . -244) 65911) ((-432 . -1064) T) ((-363 . -1055) T) ((-369 . -368) 65888) ((-357 . -1055) T) ((-349 . -1055) T) ((-253 . -239) 65867) ((-252 . -239) 65846) ((-1086 . -234) 65771) ((-1132 . -1106) T) ((-297 . -906) 65730) ((-108 . -1055) T) ((-699 . -131) T) ((-423 . -519) 65572) ((-363 . -234) 65551) ((-363 . -244) T) ((-44 . -725) T) ((-357 . -234) 65530) ((-357 . -244) T) ((-349 . -234) 65509) ((-349 . -244) T) ((-1173 . -621) 65490) ((-170 . -312) 65455) ((-108 . -244) T) ((-108 . -234) T) ((-1000 . -621) 65436) ((-322 . -797) T) ((-875 . -21) T) ((-875 . -25) T) ((-412 . -310) T) ((-505 . -34) T) ((-110 . -291) 65411) ((-1119 . -1062) 65308) ((-876 . -1158) NIL) ((-333 . -618) 65290) ((-412 . -1028) 65268) ((-1119 . -111) 65158) ((-696 . -1268) T) ((-441 . -1106) T) ((-251 . -1106) T) ((-1297 . -731) T) ((-63 . -618) 65140) ((-876 . -38) 65085) ((-528 . -1223) T) ((-607 . -151) 65069) ((-517 . -618) 65051) ((-1246 . -312) 65038) ((-736 . -722) 64887) ((-536 . -798) T) ((-536 . -799) T) ((-569 . -644) 64869) ((-500 . -644) 64829) ((-359 . -457) T) ((-356 . -457) T) ((-348 . -457) T) ((-266 . -457) 64780) ((-530 . -1106) T) ((-525 . -1106) 64730) ((-248 . -457) 64681) ((-1156 . -289) 64660) ((-1185 . -618) 64642) ((-694 . -519) 64575) ((-969 . -293) 64554) ((-555 . -519) 64346) ((-253 . -651) 64166) ((-252 . -651) 63973) ((-1285 . -618) 63942) ((-1179 . -232) 63926) ((-1119 . -621) 63656) ((-170 . -1158) 63635) ((-1285 . -495) 63619) ((-1181 . -722) 63516) ((-1180 . -722) 63357) ((-898 . -102) T) ((-1174 . -722) 63153) ((-1132 . -722) 63050) ((-1163 . -679) 63034) ((-359 . -407) 62985) ((-356 . -407) 62936) ((-348 . -407) 62887) ((-1030 . -131) T) ((-804 . -519) 62799) ((-298 . -619) NIL) ((-298 . -618) 62781) ((-916 . -457) T) ((-970 . -372) 62734) ((-820 . -372) 62713) ((-515 . -514) 62692) ((-513 . -514) 62671) ((-492 . -289) NIL) ((-487 . -291) 62648) ((-423 . -293) T) ((-358 . -131) T) ((-218 . -289) NIL) ((-699 . -498) NIL) ((-99 . -1118) T) ((-170 . -38) 62476) ((-1257 . -979) 62438) ((-1153 . -312) 62376) ((-1236 . -979) 62345) ((-916 . -407) T) ((-1119 . -1055) 62275) ((-1259 . -561) T) ((-1156 . -609) 62254) ((-112 . -855) T) ((-1069 . -494) 62185) ((-585 . -21) T) ((-585 . -25) T) ((-569 . -21) T) ((-569 . -25) T) ((-500 . -25) T) ((-500 . -21) T) ((-1246 . -1158) 62163) ((-1119 . -234) 62115) ((-48 . -131) T) ((-1204 . -102) T) ((-241 . -1106) 61905) ((-876 . -405) 61882) ((-1094 . -102) T) ((-1082 . -102) T) ((-613 . -102) T) ((-480 . -102) T) ((-1246 . -38) 61711) ((-860 . -38) 61681) ((-1040 . -1057) 61655) ((-736 . -173) 61566) ((-658 . -618) 61548) ((-650 . -1089) T) ((-1040 . -645) 61532) ((-576 . -38) 61519) ((-976 . -495) 61500) ((-976 . -618) 61466) ((-964 . -102) 61416) ((-869 . -618) 61398) ((-869 . -619) 61320) ((-598 . -519) NIL) ((-1265 . -1064) T) ((-1258 . -1064) T) ((-325 . -1057) 61302) ((-1237 . -1064) T) ((-1301 . -1118) T) ((-1217 . -147) 61281) ((-325 . -645) 61263) ((-1217 . -145) 61242) ((-1191 . -102) T) ((-1190 . -102) T) ((-1189 . -102) T) ((-1181 . -173) 61193) ((-601 . -1064) T) ((-600 . -1064) T) ((-1180 . -173) 61124) ((-1174 . -173) 61055) ((-383 . -1057) 61020) ((-1157 . -621) 61001) ((-1132 . -173) 60952) ((-1010 . -1106) T) ((-977 . -1106) T) ((-920 . -1106) T) ((-383 . -645) 60917) ((-804 . -802) 60901) ((-704 . -25) T) ((-704 . -21) T) ((-117 . -644) 60878) ((-706 . -892) 60860) ((-432 . -1106) T) ((-319 . -1227) 60839) ((-316 . -1227) T) ((-170 . -405) 60823) ((-841 . -1057) 60793) ((-479 . -979) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -618) 60737) ((-832 . -1057) 60721) ((-108 . -800) T) ((-108 . -797) T) ((-706 . -1044) 60703) ((-319 . -561) 60682) ((-316 . -561) T) ((-841 . -645) 60652) ((-832 . -645) 60622) ((-1301 . -23) T) ((-134 . -1044) 60604) ((-96 . -621) 60585) ((-999 . -651) 60567) ((-487 . -1062) 60464) ((-45 . -291) 60389) ((-241 . -722) 60331) ((-522 . -102) T) ((-487 . -111) 60221) ((-1098 . -102) 60191) ((-1040 . -102) T) ((-1179 . -651) 60101) ((-1131 . -651) 60011) ((-859 . -651) 59970) ((-649 . -833) 59949) ((-736 . -519) 59892) ((-1060 . -1062) 59876) ((-1141 . -93) T) ((-1069 . -289) 59851) ((-628 . -21) T) ((-628 . -25) T) ((-529 . -1106) T) ((-675 . -653) 59825) ((-365 . -102) T) ((-325 . -102) T) ((-389 . -1062) 59809) ((-1060 . -111) 59788) ((-821 . -416) 59772) ((-117 . -25) T) ((-89 . -618) 59754) ((-117 . -21) T) ((-613 . -312) 59549) ((-480 . -312) 59353) ((-1156 . -619) NIL) ((-389 . -111) 59332) ((-383 . -102) T) ((-215 . -618) 59314) ((-1156 . -618) 59296) ((-1174 . -519) 59065) ((-1010 . -722) 59015) ((-1132 . -519) 58985) ((-920 . -722) 58937) ((-487 . -621) 58667) ((-355 . -310) T) ((-1196 . -151) 58617) ((-964 . -312) 58555) ((-841 . -102) T) ((-432 . -722) 58539) ((-226 . -833) T) ((-832 . -102) T) ((-830 . -102) T) ((-484 . -151) 58489) ((-1257 . -1256) 58468) ((-1126 . -1227) T) ((-343 . -1044) 58435) ((-1257 . -1251) 58405) ((-1257 . -1254) 58389) ((-1236 . -1235) 58368) ((-80 . -618) 58350) ((-911 . -618) 58332) ((-1236 . -1251) 58309) ((-1126 . -561) T) ((-927 . -855) T) ((-776 . -855) T) ((-677 . -855) T) ((-492 . -619) 58239) ((-492 . -618) 58180) ((-383 . -287) T) ((-1236 . -1233) 58164) ((-1259 . -1118) T) ((-218 . -619) 58094) ((-218 . -618) 58035) ((-1295 . -653) 58009) ((-1069 . -609) 57984) ((-823 . -621) 57968) ((-59 . -151) 57952) ((-521 . -151) 57936) ((-501 . -151) 57920) ((-363 . -1292) 57904) ((-357 . -1292) 57888) ((-349 . -1292) 57872) ((-319 . -367) 57851) ((-316 . -367) T) ((-487 . -1055) 57781) ((-699 . -644) 57763) ((-1293 . -653) 57737) ((-128 . -312) NIL) ((-1259 . -23) T) ((-694 . -494) 57721) ((-64 . -618) 57703) ((-1119 . -800) 57654) ((-1119 . -797) 57605) ((-555 . -494) 57542) ((-675 . -34) T) ((-487 . -234) 57494) ((-298 . -291) 57473) ((-241 . -173) 57452) ((-821 . -1064) T) ((-44 . -653) 57410) ((-1086 . -372) 57361) ((-736 . -293) 57292) ((-525 . -519) 57225) ((-822 . -1062) 57176) ((-1093 . -145) 57155) ((-554 . -618) 57137) ((-363 . -372) 57116) ((-357 . -372) 57095) ((-349 . -372) 57074) ((-1093 . -147) 57053) ((-876 . -232) 57030) ((-822 . -111) 56972) ((-787 . -145) 56951) ((-787 . -147) 56930) ((-266 . -955) 56897) ((-253 . -853) 56876) ((-248 . -955) 56821) ((-252 . -853) 56800) ((-785 . -145) 56779) ((-785 . -147) 56758) ((-152 . -653) 56732) ((-584 . -1106) T) ((-459 . -147) 56711) ((-459 . -145) 56690) ((-675 . -731) T) ((-828 . -618) 56672) ((-1265 . -1106) T) ((-1258 . -1106) T) ((-1237 . -1106) T) ((-1217 . -1211) 56638) ((-1217 . -1208) 56604) ((-1181 . -293) 56583) ((-1180 . -293) 56534) ((-1174 . -293) 56485) ((-1132 . -293) 56464) ((-343 . -906) 56445) ((-1010 . -173) T) ((-920 . -173) T) ((-699 . -21) T) ((-699 . -25) T) ((-226 . -651) 56395) ((-601 . -1106) T) ((-600 . -1106) T) ((-479 . -1254) 56379) ((-479 . -1251) 56349) ((-423 . -289) 56277) ((-552 . -855) T) ((-319 . -1118) 56126) ((-316 . -1118) T) ((-1217 . -35) 56092) ((-1217 . -95) 56058) ((-84 . -618) 56040) ((-91 . -102) 56018) ((-1301 . -131) T) ((-719 . -1057) 55988) ((-597 . -621) 55969) ((-586 . -145) T) ((-586 . -147) 55951) ((-523 . -147) 55933) ((-523 . -145) T) ((-719 . -645) 55903) ((-319 . -23) 55755) ((-40 . -346) 55729) ((-316 . -23) T) ((-822 . -621) 55643) ((-1165 . -656) 55625) ((-1288 . -1064) T) ((-1165 . -377) 55607) ((-820 . -653) 55455) ((-1102 . -102) T) ((-1096 . -102) T) ((-1079 . -102) T) ((-170 . -232) 55439) ((-1072 . -102) T) ((-1042 . -102) T) ((-1025 . -102) T) ((-598 . -494) 55421) ((-631 . -102) T) ((-241 . -519) 55354) ((-488 . -102) T) ((-1295 . -731) T) ((-1293 . -731) T) ((-219 . -102) T) ((-1185 . -1062) 55237) ((-1068 . -651) 55209) ((-958 . -651) 55119) ((-1185 . -111) 54988) ((-881 . -1089) T) ((-486 . -651) 54898) ((-866 . -174) T) ((-822 . -1055) T) ((-686 . -1089) T) ((-681 . -1089) T) ((-520 . -102) T) ((-515 . -102) T) ((-48 . -644) 54858) ((-513 . -102) T) ((-483 . -1089) T) ((-1285 . -1062) 54828) ((-138 . -1089) T) ((-137 . -1089) T) ((-133 . -1089) T) ((-1040 . -38) 54812) ((-822 . -234) T) ((-822 . -244) 54791) ((-1285 . -111) 54756) ((-1265 . -722) 54653) ((-1258 . -722) 54494) ((-555 . -289) 54473) ((-1246 . -232) 54457) ((-1228 . -618) 54439) ((-611 . -93) T) ((-1069 . -619) NIL) ((-1069 . -618) 54421) ((-676 . -93) T) ((-181 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1237 . -722) 54217) ((-1009 . -926) T) ((-152 . -731) T) ((-1185 . -621) 54070) ((-1119 . -372) 54049) ((-1030 . -25) T) ((-1010 . -519) NIL) ((-253 . -416) 54018) ((-252 . -416) 53987) ((-1030 . -21) T) ((-877 . -1057) 53939) ((-601 . -722) 53912) ((-600 . -722) 53809) ((-804 . -289) 53767) ((-126 . -102) 53745) ((-838 . -1044) 53641) ((-170 . -833) 53620) ((-322 . -653) 53517) ((-820 . -34) T) ((-719 . -102) T) ((-1126 . -1118) T) ((-1032 . -1223) T) ((-877 . -645) 53469) ((-383 . -38) 53434) ((-358 . -25) T) ((-358 . -21) T) ((-188 . -102) T) ((-162 . -102) T) ((-250 . -102) T) ((-157 . -102) T) ((-359 . -1280) 53418) ((-356 . -1280) 53402) ((-348 . -1280) 53386) ((-170 . -353) 53365) ((-569 . -855) T) ((-1126 . -23) T) ((-87 . -618) 53347) ((-706 . -310) T) ((-841 . -38) 53317) ((-832 . -38) 53287) ((-1285 . -621) 53229) ((-1259 . -131) T) ((-1156 . -291) 53208) ((-970 . -731) 53107) ((-970 . -798) 53060) ((-970 . -799) 53013) ((-820 . -796) 52992) ((-116 . -310) T) ((-91 . -312) 52930) ((-680 . -34) T) ((-555 . -609) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-820 . -799) 52860) ((-820 . -798) 52839) ((-706 . -1028) T) ((-658 . -1062) 52823) ((-876 . -651) 52753) ((-820 . -731) 52663) ((-970 . -478) 52616) ((-487 . -800) 52567) ((-487 . -797) 52518) ((-916 . -1280) 52505) ((-1185 . -1055) T) ((-658 . -111) 52484) ((-1185 . -329) 52461) ((-1209 . -102) 52439) ((-1107 . -618) 52421) ((-706 . -550) T) ((-821 . -1106) T) ((-1285 . -1055) T) ((-1141 . -495) 52402) ((-1229 . -102) T) ((-418 . -1106) T) ((-1141 . -618) 52368) ((-253 . -1064) 52298) ((-252 . -1064) 52228) ((-843 . -102) T) ((-292 . -653) 52215) ((-598 . -289) 52190) ((-694 . -692) 52148) ((-969 . -618) 52130) ((-877 . -102) T) ((-740 . -618) 52112) ((-720 . -618) 52094) ((-1265 . -173) 52045) ((-1258 . -173) 51976) ((-1237 . -173) 51907) ((-704 . -855) T) ((-1010 . -293) T) ((-458 . -618) 51889) ((-632 . -731) T) ((-60 . -1106) 51867) ((-246 . -151) 51851) ((-920 . -293) T) ((-1030 . -1018) T) ((-632 . -478) T) ((-717 . -1227) 51830) ((-658 . -621) 51748) ((-170 . -651) 51643) ((-1273 . -855) 51622) ((-601 . -173) 51601) ((-600 . -173) 51552) ((-1257 . -645) 51393) ((-1257 . -1057) 51228) ((-1236 . -645) 51042) ((-1236 . -1057) 50850) ((-717 . -561) 50761) ((-412 . -926) T) ((-412 . -825) 50740) ((-322 . -799) T) ((-976 . -621) 50721) ((-322 . -731) T) ((-423 . -618) 50703) ((-423 . -619) 50610) ((-649 . -1155) 50594) ((-110 . -656) 50576) ((-175 . -310) T) ((-126 . -312) 50514) ((-110 . -377) 50496) ((-403 . -1223) T) ((-319 . -131) 50367) ((-316 . -131) T) ((-69 . -400) T) ((-110 . -123) T) ((-525 . -494) 50351) ((-659 . -1118) T) ((-598 . -19) 50333) ((-61 . -446) T) ((-61 . -400) T) ((-829 . -1106) T) ((-598 . -609) 50308) ((-482 . -1044) 50268) ((-658 . -1055) T) ((-659 . -23) T) ((-1288 . -1106) T) ((-31 . -102) T) ((-1246 . -651) 50178) ((-860 . -651) 50137) ((-821 . -722) 49986) ((-582 . -865) T) ((-576 . -651) 49958) ((-117 . -855) NIL) ((-1179 . -416) 49942) ((-1131 . -416) 49926) ((-859 . -416) 49910) ((-878 . -102) 49861) ((-1257 . -102) T) ((-1237 . -519) 49630) ((-1236 . -102) T) ((-1209 . -312) 49568) ((-1181 . -289) 49553) ((-1180 . -289) 49538) ((-530 . -93) T) ((-1174 . -289) 49386) ((-315 . -618) 49368) ((-1108 . -1106) T) ((-1086 . -653) 49278) ((-716 . -457) T) ((-694 . -618) 49210) ((-292 . -731) T) ((-108 . -915) NIL) ((-694 . -619) 49171) ((-606 . -618) 49153) ((-582 . -618) 49135) ((-555 . -619) NIL) ((-555 . -618) 49117) ((-534 . -618) 49099) ((-516 . -514) 49078) ((-492 . -1062) 49028) ((-479 . -1057) 48863) ((-512 . -514) 48842) ((-479 . -645) 48683) ((-218 . -1062) 48633) ((-363 . -653) 48585) ((-357 . -653) 48537) ((-226 . -853) T) ((-349 . -653) 48489) ((-607 . -102) 48439) ((-487 . -372) 48418) ((-108 . -653) 48368) ((-492 . -111) 48302) ((-241 . -494) 48286) ((-347 . -147) 48268) ((-347 . -145) T) ((-170 . -374) 48239) ((-949 . -1271) 48223) ((-218 . -111) 48157) ((-877 . -312) 48122) ((-949 . -1106) 48072) ((-804 . -619) 48033) ((-804 . -618) 48015) ((-723 . -102) T) ((-334 . -1106) T) ((-215 . -621) 47992) ((-1126 . -131) T) ((-719 . -38) 47962) ((-319 . -498) 47941) ((-505 . -1223) T) ((-1257 . -287) 47907) ((-1236 . -287) 47873) ((-330 . -151) 47857) ((-444 . -1106) T) ((-1069 . -291) 47832) ((-1288 . -722) 47802) ((-1166 . -34) T) ((-1297 . -1044) 47779) ((-473 . -618) 47761) ((-489 . -34) T) ((-385 . -1044) 47745) ((-1179 . -1064) T) ((-1131 . -1064) T) ((-859 . -1064) T) ((-1068 . -853) T) ((-492 . -621) 47695) ((-218 . -621) 47645) ((-821 . -173) 47556) ((-525 . -289) 47533) ((-1265 . -293) 47512) ((-1204 . -368) 47486) ((-1094 . -268) 47470) ((-676 . -495) 47451) ((-676 . -618) 47417) ((-611 . -495) 47398) ((-117 . -998) 47375) ((-611 . -618) 47325) ((-479 . -102) T) ((-181 . -495) 47306) ((-181 . -618) 47272) ((-161 . -495) 47253) ((-156 . -495) 47234) ((-154 . -495) 47215) ((-161 . -618) 47181) ((-156 . -618) 47147) ((-369 . -1106) T) ((-253 . -1106) T) ((-252 . -1106) T) ((-154 . -618) 47113) ((-1258 . -293) 47064) ((-1237 . -293) 47015) ((-877 . -1158) 46993) ((-1181 . -1008) 46959) ((-613 . -368) 46899) ((-1180 . -1008) 46865) ((-613 . -230) 46812) ((-699 . -855) T) ((-598 . -618) 46794) ((-598 . -619) NIL) ((-480 . -230) 46744) ((-492 . -1055) T) ((-1174 . -1008) 46710) ((-88 . -445) T) ((-88 . -400) T) ((-218 . -1055) T) ((-1132 . -1008) 46676) ((-1086 . -731) T) ((-717 . -1118) T) ((-601 . -293) 46655) ((-600 . -293) 46634) ((-492 . -244) T) ((-492 . -234) T) ((-218 . -244) T) ((-218 . -234) T) ((-1172 . -618) 46616) ((-877 . -38) 46568) ((-363 . -731) T) ((-357 . -731) T) ((-349 . -731) T) ((-108 . -799) T) ((-108 . -796) T) ((-717 . -23) T) ((-108 . -731) T) ((-525 . -1261) 46552) ((-1301 . -25) T) ((-479 . -287) 46518) ((-1301 . -21) T) ((-1236 . -312) 46457) ((-1183 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-525 . -609) 46378) ((-1119 . -653) 46226) ((-607 . -312) 46164) ((-45 . -656) 46114) ((-45 . -671) 46064) ((-45 . -377) 46014) ((-1165 . -34) T) ((-876 . -853) NIL) ((-659 . -131) T) ((-490 . -618) 45996) ((-241 . -289) 45973) ((-187 . -1106) T) ((-1093 . -457) 45924) ((-821 . -519) 45798) ((-669 . -1057) 45782) ((-652 . -34) T) ((-637 . -34) T) ((-787 . -457) 45713) ((-669 . -645) 45697) ((-359 . -1057) 45649) ((-356 . -1057) 45601) ((-348 . -1057) 45553) ((-266 . -1057) 45396) ((-248 . -1057) 45239) ((-785 . -457) 45190) ((-359 . -645) 45142) ((-356 . -645) 45094) ((-348 . -645) 45046) ((-266 . -645) 44895) ((-248 . -645) 44744) ((-459 . -457) 44695) ((-958 . -416) 44679) ((-736 . -618) 44661) ((-253 . -722) 44603) ((-252 . -722) 44545) ((-736 . -619) 44406) ((-486 . -416) 44390) ((-343 . -305) T) ((-529 . -93) T) ((-355 . -926) T) ((-1006 . -102) 44368) ((-916 . -1057) 44333) ((-1030 . -855) T) ((-60 . -519) 44266) ((-916 . -645) 44231) ((-1236 . -1158) 44183) ((-1010 . -289) NIL) ((-226 . -1064) T) ((-383 . -833) T) ((-1119 . -34) T) ((-586 . -457) T) ((-523 . -457) T) ((-1240 . -1099) 44167) ((-1240 . -1106) 44145) ((-241 . -609) 44122) ((-1240 . -1101) 44079) ((-1181 . -618) 44061) ((-1180 . -618) 44043) ((-1174 . -618) 44025) ((-1174 . -619) NIL) ((-1132 . -618) 44007) ((-877 . -405) 43991) ((-602 . -102) T) ((-590 . -102) T) ((-541 . -102) T) ((-1257 . -38) 43832) ((-1236 . -38) 43646) ((-875 . -147) T) ((-586 . -407) T) ((-523 . -407) T) ((-1269 . -102) T) ((-1259 . -21) T) ((-1259 . -25) T) ((-1119 . -796) 43625) ((-1119 . -799) 43576) ((-1119 . -798) 43555) ((-999 . -1106) T) ((-1033 . -34) T) ((-867 . -1106) T) ((-1119 . -731) 43465) ((-669 . -102) T) ((-650 . -102) T) ((-555 . -291) 43444) ((-1196 . -102) T) ((-481 . -34) T) ((-468 . -34) T) ((-359 . -102) T) ((-356 . -102) T) ((-348 . -102) T) ((-266 . -102) T) ((-248 . -102) T) ((-482 . -310) T) ((-1068 . -1064) T) ((-958 . -1064) T) ((-319 . -644) 43350) ((-316 . -644) 43311) ((-1179 . -1106) T) ((-486 . -1064) T) ((-484 . -102) T) ((-441 . -618) 43293) ((-1131 . -1106) T) ((-251 . -618) 43275) ((-859 . -1106) T) ((-1147 . -102) T) ((-821 . -293) 43206) ((-969 . -1062) 43089) ((-482 . -1028) T) ((-740 . -1062) 43059) ((-1040 . -651) 43018) ((-458 . -1062) 42988) ((-1153 . -1127) 42972) ((-1108 . -519) 42905) ((-969 . -111) 42774) ((-916 . -102) T) ((-740 . -111) 42739) ((-530 . -495) 42720) ((-530 . -618) 42686) ((-59 . -102) 42636) ((-525 . -619) 42597) ((-525 . -618) 42509) ((-524 . -102) 42487) ((-521 . -102) 42437) ((-502 . -102) 42415) ((-501 . -102) 42365) ((-458 . -111) 42328) ((-253 . -173) 42307) ((-252 . -173) 42286) ((-325 . -651) 42268) ((-423 . -1062) 42242) ((-1217 . -979) 42204) ((-1005 . -1118) T) ((-383 . -651) 42154) ((-1141 . -621) 42135) ((-949 . -519) 42068) ((-492 . -800) T) ((-479 . -38) 41909) ((-423 . -111) 41876) ((-492 . -797) T) ((-1006 . -312) 41814) ((-218 . -800) T) ((-218 . -797) T) ((-1005 . -23) T) ((-717 . -131) T) ((-1236 . -405) 41784) ((-841 . -651) 41729) ((-832 . -651) 41688) ((-319 . -25) 41540) ((-170 . -416) 41524) ((-319 . -21) 41395) ((-316 . -25) T) ((-316 . -21) T) ((-869 . -372) T) ((-969 . -621) 41248) ((-110 . -34) T) ((-740 . -621) 41204) ((-720 . -621) 41186) ((-487 . -653) 41034) ((-876 . -1064) T) ((-598 . -291) 41009) ((-585 . -147) T) ((-569 . -147) T) ((-500 . -147) T) ((-1179 . -722) 40838) ((-1063 . -102) 40816) ((-1131 . -722) 40665) ((-1126 . -644) 40647) ((-859 . -722) 40617) ((-675 . -1223) T) ((-1 . -102) T) ((-423 . -621) 40525) ((-241 . -618) 40256) ((-1121 . -1106) T) ((-1246 . -416) 40240) ((-1196 . -312) 40044) ((-969 . -1055) T) ((-740 . -1055) T) ((-720 . -1055) T) ((-649 . -1106) 39994) ((-1060 . -653) 39978) ((-860 . -416) 39962) ((-516 . -102) T) ((-512 . -102) T) ((-266 . -312) 39949) ((-248 . -312) 39936) ((-969 . -329) 39915) ((-389 . -653) 39899) ((-675 . -1044) 39795) ((-484 . -312) 39599) ((-253 . -519) 39532) ((-252 . -519) 39465) ((-1147 . -312) 39391) ((-824 . -1106) T) ((-804 . -1062) 39375) ((-1265 . -289) 39360) ((-1258 . -289) 39345) ((-1237 . -289) 39193) ((-391 . -1106) T) ((-327 . -1106) T) ((-423 . -1055) T) ((-170 . -1064) T) ((-59 . -312) 39131) ((-804 . -111) 39110) ((-600 . -289) 39095) ((-524 . -312) 39033) ((-521 . -312) 38971) ((-502 . -312) 38909) ((-501 . -312) 38847) ((-423 . -234) 38826) ((-487 . -34) T) ((-1010 . -619) 38756) ((-226 . -1106) T) ((-1010 . -618) 38716) ((-977 . -618) 38676) ((-977 . -619) 38651) ((-920 . -618) 38633) ((-704 . -147) T) ((-706 . -926) T) ((-706 . -825) T) ((-432 . -618) 38615) ((-1126 . -21) T) ((-1126 . -25) T) ((-675 . -381) 38599) ((-116 . -926) T) ((-877 . -232) 38583) ((-78 . -1223) T) ((-126 . -125) 38567) ((-1060 . -34) T) ((-1295 . -1044) 38541) ((-1293 . -1044) 38498) ((-1246 . -1064) T) ((-860 . -1064) T) ((-487 . -796) 38477) ((-359 . -1158) 38456) ((-356 . -1158) 38435) ((-348 . -1158) 38414) ((-487 . -799) 38365) ((-487 . -798) 38344) ((-228 . -34) T) ((-487 . -731) 38254) ((-804 . -621) 38100) ((-667 . -1057) 38084) ((-60 . -494) 38068) ((-576 . -1064) T) ((-667 . -645) 38052) ((-1179 . -173) 37943) ((-1131 . -173) 37854) ((-1068 . -1106) T) ((-1093 . -955) 37799) ((-958 . -1106) T) ((-822 . -653) 37750) ((-787 . -955) 37719) ((-718 . -1106) T) ((-785 . -955) 37686) ((-521 . -285) 37670) ((-675 . -906) 37629) ((-486 . -1106) T) ((-459 . -955) 37596) ((-79 . -1223) T) ((-359 . -38) 37561) ((-356 . -38) 37526) ((-348 . -38) 37491) ((-266 . -38) 37340) ((-248 . -38) 37189) ((-916 . -1158) T) ((-529 . -495) 37170) ((-628 . -147) 37149) ((-628 . -145) 37128) ((-529 . -618) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-419 . -731) T) ((-804 . -1055) T) ((-347 . -457) T) ((-1265 . -1008) 37060) ((-1258 . -1008) 37026) ((-1237 . -1008) 36992) ((-916 . -38) 36957) ((-226 . -722) 36922) ((-322 . -47) 36892) ((-40 . -414) 36864) ((-140 . -618) 36846) ((-1005 . -131) T) ((-820 . -1223) T) ((-175 . -926) T) ((-554 . -372) T) ((-611 . -621) 36827) ((-347 . -407) T) ((-719 . -651) 36772) ((-676 . -621) 36753) ((-181 . -621) 36734) ((-161 . -621) 36715) ((-156 . -621) 36696) ((-154 . -621) 36677) ((-525 . -291) 36654) ((-1236 . -232) 36624) ((-881 . -102) T) ((-820 . -1044) 36451) ((-45 . -34) T) ((-686 . -102) T) ((-681 . -102) T) ((-667 . -102) T) ((-659 . -21) T) ((-659 . -25) T) ((-1108 . -494) 36435) ((-680 . -1223) T) ((-483 . -102) T) ((-246 . -102) 36385) ((-551 . -849) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-876 . -1106) T) ((-1185 . -653) 36310) ((-1068 . -722) 36297) ((-736 . -1062) 36140) ((-1179 . -519) 36087) ((-958 . -722) 35936) ((-1131 . -519) 35888) ((-1284 . -1106) T) ((-1283 . -1106) T) ((-486 . -722) 35737) ((-67 . -618) 35719) ((-736 . -111) 35548) ((-949 . -494) 35532) ((-1285 . -653) 35492) ((-822 . -731) T) ((-1181 . -1062) 35375) ((-1180 . -1062) 35210) ((-1174 . -1062) 35000) ((-1132 . -1062) 34883) ((-1009 . -1227) T) ((-1100 . -102) 34861) ((-820 . -381) 34830) ((-584 . -618) 34812) ((-551 . -1106) T) ((-1009 . -561) T) ((-1181 . -111) 34681) ((-1180 . -111) 34502) ((-1174 . -111) 34271) ((-1132 . -111) 34140) ((-1111 . -1109) 34104) ((-383 . -853) T) ((-1265 . -618) 34086) ((-1258 . -618) 34068) ((-877 . -651) 34005) ((-1237 . -618) 33987) ((-1237 . -619) NIL) ((-241 . -291) 33964) ((-40 . -457) T) ((-226 . -173) T) ((-170 . -1106) T) ((-736 . -621) 33749) ((-699 . -147) T) ((-699 . -145) NIL) ((-601 . -618) 33731) ((-600 . -618) 33713) ((-904 . -1106) T) ((-846 . -1106) T) ((-813 . -1106) T) ((-774 . -1106) T) ((-663 . -857) 33697) ((-682 . -1106) T) ((-820 . -906) 33629) ((-1228 . -372) T) ((-40 . -407) NIL) ((-1181 . -621) 33511) ((-1126 . -666) T) ((-876 . -722) 33456) ((-253 . -494) 33440) ((-252 . -494) 33424) ((-1180 . -621) 33167) ((-1174 . -621) 32962) ((-717 . -644) 32910) ((-658 . -653) 32884) ((-1132 . -621) 32766) ((-298 . -34) T) ((-736 . -1055) T) ((-586 . -1280) 32753) ((-523 . -1280) 32730) ((-1246 . -1106) T) ((-1179 . -293) 32641) ((-1131 . -293) 32572) ((-1068 . -173) T) ((-860 . -1106) T) ((-958 . -173) 32483) ((-787 . -1249) 32467) ((-649 . -519) 32400) ((-77 . -618) 32382) ((-736 . -329) 32347) ((-1185 . -731) T) ((-576 . -1106) T) ((-486 . -173) 32258) ((-246 . -312) 32196) ((-1148 . -1118) T) ((-70 . -618) 32178) ((-1285 . -731) T) ((-1181 . -1055) T) ((-1180 . -1055) T) ((-330 . -102) 32128) ((-1174 . -1055) T) ((-1148 . -23) T) ((-1132 . -1055) T) ((-91 . -1127) 32112) ((-871 . -1118) T) ((-1181 . -234) 32071) ((-1180 . -244) 32050) ((-1180 . -234) 32002) ((-1174 . -234) 31889) ((-1174 . -244) 31868) ((-322 . -906) 31774) ((-871 . -23) T) ((-170 . -722) 31602) ((-412 . -1227) T) ((-1107 . -372) T) ((-1009 . -367) T) ((-875 . -457) T) ((-1030 . -147) T) ((-949 . -289) 31579) ((-316 . -855) NIL) ((-1257 . -651) 31461) ((-879 . -102) T) ((-1236 . -651) 31316) ((-717 . -25) T) ((-412 . -561) T) ((-717 . -21) T) ((-530 . -621) 31297) ((-358 . -147) 31279) ((-358 . -145) T) ((-1153 . -1106) 31257) ((-458 . -725) T) ((-75 . -618) 31239) ((-114 . -855) T) ((-246 . -285) 31223) ((-241 . -1062) 31120) ((-81 . -618) 31102) ((-740 . -372) 31055) ((-1183 . -833) T) ((-742 . -236) 31039) ((-1166 . -1223) T) ((-141 . -236) 31021) ((-241 . -111) 30911) ((-1246 . -722) 30740) ((-48 . -147) T) ((-876 . -173) T) ((-860 . -722) 30710) ((-489 . -1223) T) ((-958 . -519) 30657) ((-658 . -731) T) ((-576 . -722) 30644) ((-1040 . -1064) T) ((-486 . -519) 30587) ((-949 . -19) 30571) ((-949 . -609) 30548) ((-821 . -619) NIL) ((-821 . -618) 30530) ((-1217 . -1057) 30413) ((-1010 . -1062) 30363) ((-418 . -618) 30345) ((-253 . -289) 30322) ((-252 . -289) 30299) ((-492 . -915) NIL) ((-319 . -29) 30269) ((-108 . -1223) T) ((-1009 . -1118) T) ((-218 . -915) NIL) ((-1217 . -645) 30166) ((-920 . -1062) 30118) ((-1086 . -1044) 30014) ((-1010 . -111) 29948) ((-716 . -1057) 29913) ((-1009 . -23) T) ((-920 . -111) 29851) ((-742 . -700) 29835) ((-716 . -645) 29800) ((-266 . -232) 29784) ((-432 . -1062) 29768) ((-383 . -1064) T) ((-241 . -621) 29498) ((-699 . -1211) NIL) ((-492 . -653) 29448) ((-479 . -651) 29330) ((-108 . -890) 29312) ((-108 . -892) 29294) ((-699 . -1208) NIL) ((-218 . -653) 29244) ((-363 . -1044) 29228) ((-357 . -1044) 29212) ((-330 . -312) 29150) ((-349 . -1044) 29134) ((-226 . -293) T) ((-432 . -111) 29113) ((-60 . -618) 29045) ((-170 . -173) T) ((-1126 . -855) T) ((-108 . -1044) 29005) ((-898 . -1106) T) ((-841 . -1064) T) ((-832 . -1064) T) ((-699 . -35) NIL) ((-699 . -95) NIL) ((-316 . -998) 28966) ((-184 . -102) T) ((-585 . -457) T) ((-569 . -457) T) ((-500 . -457) T) ((-412 . -367) T) ((-241 . -1055) 28896) ((-1156 . -34) T) ((-482 . -926) T) ((-1005 . -644) 28844) ((-253 . -609) 28821) ((-252 . -609) 28798) ((-1086 . -381) 28782) ((-876 . -519) 28690) ((-241 . -234) 28642) ((-1165 . -1223) T) ((-1010 . -621) 28592) ((-920 . -621) 28529) ((-829 . -618) 28511) ((-1296 . -1118) T) ((-1288 . -618) 28493) ((-1246 . -173) 28384) ((-432 . -621) 28353) ((-108 . -381) 28335) ((-108 . -342) 28317) ((-1068 . -293) T) ((-958 . -293) 28248) ((-804 . -372) 28227) ((-652 . -1223) T) ((-637 . -1223) T) ((-591 . -1057) 28202) ((-486 . -293) 28133) ((-576 . -173) T) ((-330 . -285) 28117) ((-1296 . -23) T) ((-1217 . -102) T) ((-1204 . -1106) T) ((-1094 . -1106) T) ((-1082 . -1106) T) ((-591 . -645) 28092) ((-83 . -618) 28074) ((-1190 . -849) T) ((-1189 . -849) T) ((-716 . -102) T) ((-359 . -353) 28053) ((-613 . -1106) T) ((-356 . -353) 28032) ((-348 . -353) 28011) ((-480 . -1106) T) ((-1196 . -230) 27961) ((-266 . -255) 27923) ((-1148 . -131) T) ((-613 . -615) 27899) ((-1086 . -906) 27832) ((-1010 . -1055) T) ((-920 . -1055) T) ((-480 . -615) 27811) ((-1174 . -797) NIL) ((-1174 . -800) NIL) ((-1108 . -619) 27772) ((-484 . -230) 27722) ((-1108 . -618) 27704) ((-1010 . -244) T) ((-1010 . -234) T) ((-432 . -1055) T) ((-964 . -1106) 27654) ((-920 . -244) T) ((-871 . -131) T) ((-704 . -457) T) ((-848 . -1118) 27633) ((-108 . -906) NIL) ((-1217 . -287) 27599) ((-877 . -853) 27578) ((-1119 . -1223) T) ((-911 . -731) T) ((-170 . -519) 27490) ((-1005 . -25) T) ((-911 . -478) T) ((-412 . -1118) T) ((-492 . -799) T) ((-492 . -796) T) ((-916 . -353) T) ((-492 . -731) T) ((-218 . -799) T) ((-218 . -796) T) ((-1005 . -21) T) ((-218 . -731) T) ((-848 . -23) 27442) ((-1191 . -1106) T) ((-663 . -1057) 27426) ((-1190 . -1106) T) ((-529 . -621) 27407) ((-1189 . -1106) T) ((-322 . -310) 27386) ((-1041 . -236) 27332) ((-663 . -645) 27302) ((-412 . -23) T) ((-949 . -619) 27263) ((-949 . -618) 27175) ((-649 . -494) 27159) ((-45 . -1016) 27109) ((-622 . -973) T) ((-496 . -102) T) ((-334 . -618) 27091) ((-1119 . -1044) 26918) ((-598 . -656) 26900) ((-130 . -1106) T) ((-128 . -1106) T) ((-598 . -377) 26882) ((-347 . -1280) 26859) ((-444 . -618) 26841) ((-1246 . -519) 26788) ((-1093 . -1057) 26631) ((-1033 . -1223) T) ((-876 . -293) T) ((-1179 . -289) 26558) ((-1093 . -645) 26407) ((-1006 . -1001) 26391) ((-787 . -1057) 26214) ((-785 . -1057) 26057) ((-787 . -645) 25886) ((-785 . -645) 25735) ((-481 . -1223) T) ((-468 . -1223) T) ((-591 . -102) T) ((-466 . -1057) 25706) ((-459 . -1057) 25549) ((-669 . -651) 25518) ((-628 . -457) 25497) ((-466 . -645) 25468) ((-459 . -645) 25317) ((-359 . -651) 25254) ((-356 . -651) 25191) ((-348 . -651) 25128) ((-266 . -651) 25038) ((-248 . -651) 24948) ((-1288 . -386) 24920) ((-522 . -1106) T) ((-117 . -457) T) ((-1203 . -102) T) ((-1098 . -1106) 24890) ((-1040 . -1106) T) ((-1121 . -93) T) ((-899 . -855) T) ((-1265 . -111) 24759) ((-355 . -1227) T) ((-1265 . -1062) 24642) ((-1119 . -381) 24611) ((-1258 . -1062) 24446) ((-1237 . -1062) 24236) ((-1258 . -111) 24057) ((-1237 . -111) 23826) ((-1217 . -312) 23813) ((-1009 . -131) T) ((-916 . -651) 23763) ((-369 . -618) 23745) ((-355 . -561) T) ((-292 . -310) T) ((-601 . -1062) 23705) ((-600 . -1062) 23588) ((-586 . -1057) 23553) ((-523 . -1057) 23498) ((-365 . -1106) T) ((-325 . -1106) T) ((-253 . -618) 23459) ((-252 . -618) 23420) ((-586 . -645) 23385) ((-523 . -645) 23330) ((-699 . -414) 23297) ((-640 . -23) T) ((-612 . -23) T) ((-663 . -102) T) ((-601 . -111) 23250) ((-600 . -111) 23119) ((-383 . -1106) T) ((-340 . -102) T) ((-170 . -293) 23030) ((-1236 . -853) 22983) ((-719 . -1064) T) ((-1153 . -519) 22916) ((-1119 . -906) 22848) ((-841 . -1106) T) ((-832 . -1106) T) ((-830 . -1106) T) ((-97 . -102) T) ((-144 . -855) T) ((-617 . -890) 22832) ((-110 . -1223) T) ((-1093 . -102) T) ((-1069 . -34) T) ((-787 . -102) T) ((-785 . -102) T) ((-1265 . -621) 22714) ((-1258 . -621) 22457) ((-466 . -102) T) ((-459 . -102) T) ((-1237 . -621) 22252) ((-241 . -800) 22203) ((-241 . -797) 22154) ((-654 . -102) T) ((-601 . -621) 22112) ((-600 . -621) 21994) ((-1246 . -293) 21905) ((-669 . -639) 21889) ((-187 . -618) 21871) ((-649 . -289) 21848) ((-1040 . -722) 21832) ((-576 . -293) T) ((-969 . -653) 21757) ((-1296 . -131) T) ((-740 . -653) 21717) ((-720 . -653) 21704) ((-277 . -102) T) ((-458 . -653) 21634) ((-50 . -102) T) ((-586 . -102) T) ((-523 . -102) T) ((-1265 . -1055) T) ((-1258 . -1055) T) ((-1237 . -1055) T) ((-512 . -651) 21616) ((-325 . -722) 21598) ((-1265 . -234) 21557) ((-1258 . -244) 21536) ((-1258 . -234) 21488) ((-1237 . -234) 21375) ((-1237 . -244) 21354) ((-1217 . -38) 21251) ((-601 . -1055) T) ((-600 . -1055) T) ((-1010 . -800) T) ((-1010 . -797) T) ((-977 . -800) T) ((-977 . -797) T) ((-877 . -1064) T) ((-109 . -618) 21233) ((-699 . -457) T) ((-383 . -722) 21198) ((-423 . -653) 21172) ((-875 . -874) 21156) ((-716 . -38) 21121) ((-600 . -234) 21080) ((-40 . -729) 21052) ((-355 . -332) 21029) ((-355 . -367) T) ((-1086 . -310) 20980) ((-297 . -1118) 20861) ((-1112 . -1223) T) ((-172 . -102) T) ((-1240 . -618) 20828) ((-848 . -131) 20780) ((-649 . -1261) 20764) ((-841 . -722) 20734) ((-832 . -722) 20704) ((-487 . -1223) T) ((-363 . -310) T) ((-357 . -310) T) ((-349 . -310) T) ((-649 . -609) 20681) ((-412 . -131) T) ((-525 . -671) 20665) ((-108 . -310) T) ((-297 . -23) 20548) ((-525 . -656) 20532) ((-699 . -407) NIL) ((-525 . -377) 20516) ((-294 . -618) 20498) ((-91 . -1106) 20476) ((-108 . -1028) T) ((-569 . -143) T) ((-1273 . -151) 20460) ((-487 . -1044) 20287) ((-1259 . -145) 20248) ((-1259 . -147) 20209) ((-1060 . -1223) T) ((-999 . -618) 20191) ((-867 . -618) 20173) ((-821 . -1062) 20016) ((-1284 . -93) T) ((-1283 . -93) T) ((-1179 . -619) NIL) ((-1102 . -1106) T) ((-1096 . -1106) T) ((-1093 . -312) 20003) ((-1079 . -1106) T) ((-228 . -1223) T) ((-1072 . -1106) T) ((-1042 . -1106) T) ((-1025 . -1106) T) ((-787 . -312) 19990) ((-785 . -312) 19977) ((-1179 . -618) 19959) ((-821 . -111) 19788) ((-1131 . -618) 19770) ((-631 . -1106) T) ((-582 . -174) T) ((-534 . -174) T) ((-459 . -312) 19757) ((-488 . -1106) T) ((-1131 . -619) 19505) ((-1040 . -173) T) ((-949 . -291) 19482) ((-219 . -1106) T) ((-859 . -618) 19464) ((-613 . -519) 19247) ((-81 . -621) 19188) ((-823 . -1044) 19172) ((-480 . -519) 18964) ((-969 . -731) T) ((-740 . -731) T) ((-720 . -731) T) ((-355 . -1118) T) ((-1186 . -618) 18946) ((-224 . -102) T) ((-487 . -381) 18915) ((-520 . -1106) T) ((-515 . -1106) T) ((-513 . -1106) T) ((-804 . -653) 18889) ((-1030 . -457) T) ((-964 . -519) 18822) ((-355 . -23) T) ((-640 . -131) T) ((-612 . -131) T) ((-358 . -457) T) ((-241 . -372) 18801) ((-383 . -173) T) ((-1257 . -1064) T) ((-1236 . -1064) T) ((-226 . -1008) T) ((-821 . -621) 18538) ((-704 . -392) T) ((-423 . -731) T) ((-706 . -1227) T) ((-1148 . -644) 18486) ((-585 . -874) 18470) ((-1288 . -1062) 18454) ((-1166 . -1199) 18430) ((-706 . -561) T) ((-126 . -1106) 18408) ((-719 . -1106) T) ((-487 . -906) 18340) ((-250 . -1106) T) ((-188 . -1106) T) ((-663 . -38) 18310) ((-358 . -407) T) ((-319 . -147) 18289) ((-319 . -145) 18268) ((-128 . -519) NIL) ((-116 . -561) T) ((-316 . -147) 18224) ((-316 . -145) 18180) ((-48 . -457) T) ((-162 . -1106) T) ((-157 . -1106) T) ((-1166 . -107) 18127) ((-787 . -1158) 18105) ((-694 . -34) T) ((-1288 . -111) 18084) ((-555 . -34) T) ((-489 . -107) 18068) ((-253 . -291) 18045) ((-252 . -291) 18022) ((-876 . -289) 17973) ((-45 . -1223) T) ((-1229 . -849) T) ((-821 . -1055) T) ((-667 . -651) 17942) ((-1185 . -47) 17919) ((-821 . -329) 17881) ((-1093 . -38) 17730) ((-821 . -234) 17709) ((-787 . -38) 17538) ((-785 . -38) 17387) ((-1121 . -495) 17368) ((-459 . -38) 17217) ((-1121 . -618) 17183) ((-1124 . -102) T) ((-649 . -619) 17144) ((-649 . -618) 17056) ((-586 . -1158) T) ((-523 . -1158) T) ((-1153 . -494) 17040) ((-347 . -1057) 16985) ((-1209 . -1106) 16963) ((-1148 . -25) T) ((-1148 . -21) T) ((-347 . -645) 16908) ((-1288 . -621) 16857) ((-479 . -1064) T) ((-1229 . -1106) T) ((-1237 . -797) NIL) ((-1237 . -800) NIL) ((-1005 . -855) 16836) ((-843 . -1106) T) ((-824 . -618) 16818) ((-871 . -21) T) ((-871 . -25) T) ((-804 . -731) T) ((-175 . -1227) T) ((-586 . -38) 16783) ((-523 . -38) 16748) ((-391 . -618) 16730) ((-336 . -102) T) ((-327 . -618) 16712) ((-170 . -289) 16670) ((-63 . -1223) T) ((-112 . -102) T) ((-877 . -1106) T) ((-175 . -561) T) ((-719 . -722) 16640) ((-297 . -131) 16523) ((-226 . -618) 16505) ((-226 . -619) 16435) ((-1009 . -644) 16374) ((-1288 . -1055) T) ((-1126 . -147) T) ((-637 . -1199) 16349) ((-736 . -915) 16328) ((-598 . -34) T) ((-652 . -107) 16312) ((-637 . -107) 16258) ((-1246 . -289) 16185) ((-736 . -653) 16110) ((-298 . -1223) T) ((-1185 . -1044) 16006) ((-949 . -623) 15983) ((-582 . -581) T) ((-582 . -532) T) ((-534 . -532) T) ((-1174 . -915) NIL) ((-1068 . -619) 15898) ((-1068 . -618) 15880) ((-958 . -618) 15862) ((-718 . -495) 15812) ((-347 . -102) T) ((-253 . -1062) 15709) ((-252 . -1062) 15606) ((-399 . -102) T) ((-31 . -1106) T) ((-958 . -619) 15467) ((-718 . -618) 15402) ((-1286 . -1216) 15371) ((-486 . -618) 15353) ((-486 . -619) 15214) ((-266 . -416) 15198) ((-248 . -416) 15182) ((-253 . -111) 15072) ((-252 . -111) 14962) ((-1181 . -653) 14887) ((-1180 . -653) 14784) ((-1174 . -653) 14636) ((-1132 . -653) 14561) ((-355 . -131) T) ((-82 . -446) T) ((-82 . -400) T) ((-1009 . -25) T) ((-1009 . -21) T) ((-878 . -1106) 14512) ((-40 . -1057) 14457) ((-877 . -722) 14409) ((-40 . -645) 14354) ((-383 . -293) T) ((-170 . -1008) 14305) ((-699 . -392) T) ((-1005 . -1003) 14289) ((-706 . -1118) T) ((-699 . -166) 14271) ((-1257 . -1106) T) ((-1236 . -1106) T) ((-319 . -1208) 14250) ((-319 . -1211) 14229) ((-1171 . -102) T) ((-319 . -965) 14208) ((-134 . -1118) T) ((-116 . -1118) T) ((-607 . -1271) 14192) ((-706 . -23) T) ((-607 . -1106) 14142) ((-319 . -95) 14121) ((-91 . -519) 14054) ((-175 . -367) T) ((-253 . -621) 13784) ((-252 . -621) 13514) ((-319 . -35) 13493) ((-613 . -494) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-972 . -102) T) ((-723 . -1106) T) ((-480 . -494) 13364) ((-412 . -644) 13312) ((-658 . -1044) 13208) ((-964 . -494) 13192) ((-359 . -1064) T) ((-356 . -1064) T) ((-348 . -1064) T) ((-266 . -1064) T) ((-248 . -1064) T) ((-876 . -619) NIL) ((-876 . -618) 13174) ((-1284 . -495) 13155) ((-1283 . -495) 13136) ((-1296 . -21) T) ((-1284 . -618) 13102) ((-1283 . -618) 13068) ((-576 . -1008) T) ((-736 . -731) T) ((-1296 . -25) T) ((-253 . -1055) 12998) ((-252 . -1055) 12928) ((-72 . -1223) T) ((-253 . -234) 12880) ((-252 . -234) 12832) ((-40 . -102) T) ((-916 . -1064) T) ((-1188 . -102) T) ((-128 . -494) 12814) ((-1181 . -731) T) ((-1180 . -731) T) ((-1174 . -731) T) ((-1174 . -796) NIL) ((-1174 . -799) NIL) ((-960 . -102) T) ((-927 . -102) T) ((-875 . -1057) 12801) ((-1132 . -731) T) ((-776 . -102) T) ((-677 . -102) T) ((-875 . -645) 12788) ((-551 . -618) 12770) ((-479 . -1106) T) ((-343 . -1118) T) ((-175 . -1118) T) ((-322 . -926) 12749) ((-1257 . -722) 12590) ((-877 . -173) T) ((-1236 . -722) 12404) ((-848 . -21) 12356) ((-848 . -25) 12308) ((-246 . -1155) 12292) ((-126 . -519) 12225) ((-412 . -25) T) ((-412 . -21) T) ((-343 . -23) T) ((-170 . -619) 11991) ((-170 . -618) 11973) ((-175 . -23) T) ((-649 . -291) 11950) ((-525 . -34) T) ((-904 . -618) 11932) ((-89 . -1223) T) ((-846 . -618) 11914) ((-813 . -618) 11896) ((-774 . -618) 11878) ((-682 . -618) 11860) ((-241 . -653) 11708) ((-1183 . -1106) T) ((-1179 . -1062) 11531) ((-1156 . -1223) T) ((-1131 . -1062) 11374) ((-859 . -1062) 11358) ((-1240 . -623) 11342) ((-1179 . -111) 11151) ((-1131 . -111) 10980) ((-859 . -111) 10959) ((-1230 . -855) T) ((-1246 . -619) NIL) ((-1246 . -618) 10941) ((-347 . -1158) T) ((-860 . -618) 10923) ((-1082 . -289) 10902) ((-80 . -1223) T) ((-1010 . -915) NIL) ((-613 . -289) 10878) ((-1209 . -519) 10811) ((-492 . -1223) T) ((-576 . -618) 10793) ((-480 . -289) 10772) ((-1217 . -651) 10682) ((-522 . -93) T) ((-1093 . -232) 10666) ((-218 . -1223) T) ((-1010 . -653) 10616) ((-964 . -289) 10593) ((-292 . -926) T) ((-822 . -310) 10572) ((-875 . -102) T) ((-787 . -232) 10556) ((-920 . -653) 10508) ((-716 . -651) 10458) ((-699 . -729) 10425) ((-640 . -21) T) ((-640 . -25) T) ((-612 . -21) T) ((-552 . -102) T) ((-347 . -38) 10390) ((-492 . -890) 10372) ((-492 . -892) 10354) ((-479 . -722) 10195) ((-218 . -890) 10177) ((-64 . -1223) T) ((-218 . -892) 10159) ((-612 . -25) T) ((-432 . -653) 10133) ((-1179 . -621) 9902) ((-492 . -1044) 9862) ((-877 . -519) 9774) ((-1131 . -621) 9566) ((-859 . -621) 9484) ((-218 . -1044) 9444) ((-241 . -34) T) ((-1006 . -1106) 9422) ((-585 . -1057) 9409) ((-569 . -1057) 9396) ((-500 . -1057) 9361) ((-1257 . -173) 9292) ((-1236 . -173) 9223) ((-585 . -645) 9210) ((-569 . -645) 9197) ((-500 . -645) 9162) ((-717 . -145) 9141) ((-717 . -147) 9120) ((-706 . -131) T) ((-136 . -470) 9097) ((-1153 . -618) 9029) ((-663 . -661) 9013) ((-128 . -289) 8988) ((-116 . -131) T) ((-482 . -1227) T) ((-613 . -609) 8964) ((-480 . -609) 8943) ((-340 . -339) 8912) ((-602 . -1106) T) ((-590 . -1106) T) ((-541 . -1106) T) ((-482 . -561) T) ((-1179 . -1055) T) ((-1131 . -1055) T) ((-859 . -1055) T) ((-241 . -796) 8891) ((-241 . -799) 8842) ((-241 . -798) 8821) ((-1179 . -329) 8798) ((-241 . -731) 8708) ((-964 . -19) 8692) ((-492 . -381) 8674) ((-492 . -342) 8656) ((-1131 . -329) 8628) ((-358 . -1280) 8605) ((-218 . -381) 8587) ((-218 . -342) 8569) ((-964 . -609) 8546) ((-1179 . -234) T) ((-1269 . -1106) T) ((-669 . -1106) T) ((-650 . -1106) T) ((-1196 . -1106) T) ((-1093 . -255) 8483) ((-591 . -651) 8443) ((-359 . -1106) T) ((-356 . -1106) T) ((-348 . -1106) T) ((-266 . -1106) T) ((-248 . -1106) T) ((-84 . -1223) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1196 . -615) 8378) ((-1236 . -519) 8238) ((-1147 . -1106) T) ((-1121 . -621) 8219) ((-484 . -1106) T) ((-1086 . -926) 8170) ((-1010 . -799) T) ((-484 . -615) 8149) ((-253 . -800) 8100) ((-253 . -797) 8051) ((-252 . -800) 8002) ((-40 . -1158) NIL) ((-252 . -797) 7953) ((-1010 . -796) T) ((-128 . -19) 7935) ((-1010 . -731) T) ((-704 . -1057) 7900) ((-977 . -799) T) ((-920 . -731) T) ((-916 . -1106) T) ((-128 . -609) 7875) ((-704 . -645) 7840) ((-91 . -494) 7824) ((-492 . -906) NIL) ((-898 . -618) 7806) ((-226 . -1062) 7771) ((-877 . -293) T) ((-218 . -906) NIL) ((-838 . -1118) 7750) ((-59 . -1106) 7700) ((-524 . -1106) 7678) ((-521 . -1106) 7628) ((-502 . -1106) 7606) ((-501 . -1106) 7556) ((-585 . -102) T) ((-569 . -102) T) ((-500 . -102) T) ((-479 . -173) 7487) ((-363 . -926) T) ((-357 . -926) T) ((-349 . -926) T) ((-226 . -111) 7443) ((-838 . -23) 7395) ((-432 . -731) T) ((-108 . -926) T) ((-40 . -38) 7340) ((-108 . -825) T) ((-586 . -353) T) ((-523 . -353) T) ((-841 . -289) 7319) ((-319 . -457) 7298) ((-316 . -457) T) ((-663 . -651) 7257) ((-607 . -519) 7190) ((-343 . -131) T) ((-175 . -131) T) ((-297 . -25) 7054) ((-297 . -21) 6937) ((-45 . -1199) 6916) ((-66 . -618) 6898) ((-55 . -102) T) ((-340 . -651) 6880) ((-45 . -107) 6830) ((-824 . -621) 6814) ((-1274 . -102) T) ((-1273 . -102) 6764) ((-1265 . -653) 6689) ((-1258 . -653) 6586) ((-1237 . -653) 6438) ((-1108 . -430) 6422) ((-1108 . -372) 6401) ((-391 . -621) 6385) ((-327 . -621) 6369) ((-1237 . -915) NIL) ((-1204 . -618) 6351) ((-1069 . -1223) T) ((-1093 . -651) 6261) ((-1068 . -1062) 6248) ((-1068 . -111) 6233) ((-958 . -1062) 6076) ((-958 . -111) 5905) ((-787 . -651) 5815) ((-785 . -651) 5725) ((-628 . -1057) 5712) ((-669 . -722) 5696) ((-628 . -645) 5683) ((-486 . -1062) 5526) ((-482 . -367) T) ((-466 . -651) 5482) ((-459 . -651) 5392) ((-226 . -621) 5342) ((-359 . -722) 5294) ((-356 . -722) 5246) ((-117 . -1057) 5191) ((-348 . -722) 5143) ((-266 . -722) 4992) ((-248 . -722) 4841) ((-1102 . -93) T) ((-1096 . -93) T) ((-117 . -645) 4786) ((-1079 . -93) T) ((-949 . -656) 4770) ((-1072 . -93) T) ((-486 . -111) 4599) ((-1063 . -1106) 4577) ((-1042 . -93) T) ((-949 . -377) 4561) ((-249 . -102) T) ((-1025 . -93) T) ((-74 . -618) 4543) ((-969 . -47) 4522) ((-715 . -102) T) ((-704 . -102) T) ((-1 . -1106) T) ((-626 . -1118) T) ((-1094 . -618) 4504) ((-631 . -93) T) ((-1082 . -618) 4486) ((-916 . -722) 4451) ((-126 . -494) 4435) ((-488 . -93) T) ((-626 . -23) T) ((-395 . -23) T) ((-87 . -1223) T) ((-219 . -93) T) ((-613 . -618) 4417) ((-613 . -619) NIL) ((-480 . -619) NIL) ((-480 . -618) 4399) ((-355 . -25) T) ((-355 . -21) T) ((-50 . -651) 4358) ((-516 . -1106) T) ((-512 . -1106) T) ((-127 . -312) 4296) ((-121 . -312) 4234) ((-601 . -653) 4208) ((-600 . -653) 4133) ((-586 . -651) 4083) ((-226 . -1055) T) ((-523 . -651) 4013) ((-383 . -1008) T) ((-226 . -244) T) ((-226 . -234) T) ((-1068 . -621) 3985) ((-1068 . -623) 3966) ((-964 . -619) 3927) ((-964 . -618) 3839) ((-958 . -621) 3628) ((-875 . -38) 3615) ((-718 . -621) 3565) ((-1257 . -293) 3516) ((-1236 . -293) 3467) ((-486 . -621) 3252) ((-1126 . -457) T) ((-507 . -855) T) ((-319 . -1145) 3231) ((-1005 . -147) 3210) ((-1005 . -145) 3189) ((-500 . -312) 3176) ((-298 . -1199) 3155) ((-1191 . -618) 3137) ((-1190 . -618) 3119) ((-1189 . -618) 3101) ((-876 . -1062) 3046) ((-482 . -1118) T) ((-139 . -840) 3028) ((-114 . -840) 3009) ((-628 . -102) T) ((-1209 . -494) 2993) ((-253 . -372) 2972) ((-252 . -372) 2951) ((-1068 . -1055) T) ((-298 . -107) 2901) ((-130 . -618) 2883) ((-128 . -619) NIL) ((-128 . -618) 2827) ((-117 . -102) T) ((-958 . -1055) T) ((-876 . -111) 2756) ((-482 . -23) T) ((-486 . -1055) T) ((-1068 . -234) T) ((-958 . -329) 2725) ((-486 . -329) 2682) ((-359 . -173) T) ((-356 . -173) T) ((-348 . -173) T) ((-266 . -173) 2593) ((-248 . -173) 2504) ((-969 . -1044) 2400) ((-522 . -495) 2381) ((-740 . -1044) 2352) ((-522 . -618) 2318) ((-1111 . -102) T) ((-1098 . -618) 2277) ((-1040 . -618) 2259) ((-699 . -1057) 2209) ((-1286 . -151) 2193) ((-1284 . -621) 2174) ((-1283 . -621) 2155) ((-1278 . -618) 2137) ((-1265 . -731) T) ((-699 . -645) 2087) ((-1258 . -731) T) ((-1237 . -796) NIL) ((-1237 . -799) NIL) ((-170 . -1062) 1997) ((-916 . -173) T) ((-876 . -621) 1927) ((-1237 . -731) T) ((-1009 . -346) 1901) ((-224 . -651) 1853) ((-1006 . -519) 1786) ((-848 . -855) 1765) ((-569 . -1158) T) ((-479 . -293) 1716) ((-601 . -731) T) ((-365 . -618) 1698) ((-325 . -618) 1680) ((-423 . -1044) 1576) ((-600 . -731) T) ((-412 . -855) 1527) ((-170 . -111) 1423) ((-838 . -131) 1375) ((-742 . -151) 1359) ((-1273 . -312) 1297) ((-492 . -310) T) ((-383 . -618) 1264) ((-525 . -1016) 1248) ((-383 . -619) 1162) ((-218 . -310) T) ((-141 . -151) 1144) ((-719 . -289) 1123) ((-492 . -1028) T) ((-585 . -38) 1110) ((-569 . -38) 1097) ((-500 . -38) 1062) ((-218 . -1028) T) ((-876 . -1055) T) ((-841 . -618) 1044) ((-832 . -618) 1026) ((-830 . -618) 1008) ((-821 . -915) 987) ((-1297 . -1118) T) ((-1246 . -1062) 810) ((-860 . -1062) 794) ((-876 . -244) T) ((-876 . -234) NIL) ((-694 . -1223) T) ((-1297 . -23) T) ((-821 . -653) 719) ((-555 . -1223) T) ((-423 . -342) 703) ((-576 . -1062) 690) ((-1246 . -111) 499) ((-706 . -644) 481) ((-860 . -111) 460) ((-385 . -23) T) ((-170 . -621) 238) ((-1196 . -519) 30) ((-881 . -1106) T) ((-686 . -1106) T) ((-681 . -1106) T) ((-667 . -1106) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 62afc8e1..f323d7c2 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,1016 +1,1150 @@
-(30 . 3477490098)
+(30 . 3477887505)
(4446 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
- |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
- |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
- |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
- |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
- |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
- |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
+ |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
+ |AbelianSemiGroup| |AlgebraicallyClosedField&|
+ |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
+ |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst|
+ |AlgebraicFunction| |Aggregate&| |Aggregate|
+ |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
+ |Algebra| |AlgFactor| |AlgebraicFunctionField|
|AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
- |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
- |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
+ |AlgebraGivenByStructuralConstants| |AssociationList|
+ |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
+ |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
+ |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
|TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
- |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30|
- |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55|
- |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9|
- |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
- |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
- |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons|
- |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&|
- |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
- |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule|
- |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots|
- |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&|
- |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&|
- |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
- |BinaryTree| |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid|
- |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensor|
- |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |CategoryConstructor|
- |Category| |CharacterClass| |CommonDenominator|
- |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
- |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable|
- |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection|
- |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
- |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
- |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
- |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
- |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |CompilerPackage|
- |Complex| |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
- |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
+ |OneDimensionalArrayFunctions2| |OneDimensionalArray|
+ |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
+ |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
+ |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
+ |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
+ |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
+ |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
+ |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism|
+ |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
+ |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
+ |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean|
+ |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
+ |BalancedPAdicInteger| |BalancedPAdicRational|
+ |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
+ |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
+ |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
+ |BinaryTree| |ByteBuffer| |Byte| |ByteOrder|
+ |CancellationAbelianMonoid| |CachableSet| |CapsuleAst|
+ |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor|
+ |CaseAst| |CategoryAst| |CategoryConstructor| |Category|
+ |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory|
+ |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage|
+ |CharacteristicZero| |ChangeOfVariable|
+ |ComplexIntegerSolveLinearPolynomialEquation| |Collection&|
+ |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping|
+ |CollectAst| |ComplexRootPackage| |ColonAst| |Color|
+ |CombinatorialFunction| |IntegerCombinatoricFunctions|
+ |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators|
+ |CommuteUnivariatePolynomialCategory| |ComplexCategory&|
+ |ComplexCategory| |ComplexFactorization| |CompilerPackage|
+ |ComplexFunctions2| |Complex| |ComplexPattern|
+ |SubSpaceComponentProperty| |CommutativeRing| |Conduit|
+ |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
- |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory|
- |ConstructorKind| |ComplexTrigonometricManipulations|
- |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
- |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType|
- |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType|
- |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
- |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
- |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage|
- |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
- |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
- |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
- |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
- |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
+ |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&|
+ |ConstructorCategory| |ConstructorKind| |Constructor|
+ |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
+ |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
+ |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
+ |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
+ |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
+ |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
+ |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database|
+ |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
+ |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
+ |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
+ |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
+ |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
+ |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
- |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
- |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
- |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DomainConstructor| |DomainTemplate| |DirectProductMatrixModule|
- |DirectProductModule| |DifferentialPolynomialCategory&|
- |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
- |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
+ |DictionaryOperations| |DiophantineSolutionPackage|
+ |DirectProductCategory&| |DirectProductCategory|
+ |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
+ |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
+ |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |Domain| |DomainConstructor| |DomainTemplate|
+ |DirectProductMatrixModule| |DirectProductModule|
+ |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
+ |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
+ |DrawNumericHack| |TopLevelDrawFunctions|
+ |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DrawOption|
+ |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction|
+ |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|Elaboration| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
- |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
- |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
- |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
- |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
- |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
- |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
- |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
- |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
- |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
- |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
- |FortranCodePackage1| |FunctorData| |FiniteDivisor| |FiniteDivisorFunctions2|
- |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
- |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
+ |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
+ |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
+ |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
+ |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
+ |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
+ |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit|
+ |ExponentialExpansion| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |Expression|
+ |ExpressionSpaceODESolver| |ExpressionTubePlot|
+ |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
+ |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
+ |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray|
+ |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
+ |FortranCode| |FourierComponent| |FortranCodePackage1| |FunctorData|
+ |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
+ |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression|
+ |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FiniteFieldCyclicGroup|
+ |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
- |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
- |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
- |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
+ |FiniteFieldCategory| |FunctionFieldIntegralBasis|
+ |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteField|
+ |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
+ |FiniteFieldPolynomialPackage|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
- |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
- |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
- |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
- |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
- |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoidCategory|
- |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat| |ScriptFormulaFormat1| |FortranPackage|
- |FortranProgramCategory| |FortranFunctionCategory| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2|
- |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal|
- |FractionalIdealFunctions2| |FramedModule|
- |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
- |FunctionSpace| |FunctionSpaceFunctions2|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
- |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
- |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
+ |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
+ |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
+ |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
+ |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
+ |FreeModuleCat| |FortranMatrixCategory|
+ |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoidCategory|
+ |FreeMonoid| |FortranMachineTypeCategory| |FileName|
+ |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage|
+ |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat|
+ |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage|
+ |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&|
+ |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2|
+ |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&|
+ |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal|
+ |FramedModule| |FramedNonAssociativeAlgebraFunctions2|
+ |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra|
+ |Factored| |FactoredFunctionUtilities|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
+ |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
+ |FiniteSetAggregate&| |FiniteSetAggregate|
+ |FunctionSpaceComplexIntegration| |FourierSeries|
+ |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
- |FunctionCalled| |FunctionDescriptor| |FortranVectorCategory|
- |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
- |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
- |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage|
- |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
- |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
+ |FortranType| |FunctionCalled| |FunctionDescriptor|
+ |FortranVectorCategory| |FortranVectorFunctionCategory|
+ |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
+ |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
+ |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage|
+ |GroebnerFactorizationPackage| |GroebnerInternalPackage|
+ |GroebnerPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra|
+ |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
+ |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
- |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
- |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
- |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
- |Pi| |HasAst| |HashTable| |HallBasis|
- |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
- |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
- |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname|
- |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
- |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
+ |GeneralModulePolynomial| |GosperSummationMethod|
+ |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
+ |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
+ |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
+ |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable|
+ |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
+ |HomogeneousDirectProduct| |HeadAst| |Heap|
+ |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
+ |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo|
+ |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
+ |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
- |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
- |Identifier| |IndexedDirectProductAbelianGroup|
- |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
- |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
- |InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
- |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
+ |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
+ |IdealDecompositionPackage| |Identifier|
+ |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
+ |IndexedDirectProductCategory|
+ |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup|
+ |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst|
+ |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions|
+ |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst|
+ |InAst| |InputByteConduit&| |InputByteConduit|
|InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps|
|IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket|
- |Infinity| |InputForm| |InputFormFunctions1|
+ |Infinity| |InputFormFunctions1| |InputForm|
|InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
|InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
|InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
- |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int64| |Int8| |InnerTable|
- |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
- |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
- |IntegerFactorizationPackage| |IntegrationFunctionsTable|
- |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
- |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
+ |IntegerNumberSystem| |Int16| |Int32| |Int64| |Int8| |InnerTable|
+ |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
+ |IntervalCategory| |IntegralDomain&| |IntegralDomain|
+ |ElementaryIntegration| |IntegerFactorizationPackage|
+ |IntegrationFunctionsTable| |GenusZeroIntegration|
+ |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
+ |TranscendentalHermiteIntegration| |Integer|
|AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
- |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger|
- |InnerPrimeField| |InternalPrintPackage| |IntegrationResult|
- |IntegrationResultFunctions2| |IntegrationResultToFunction|
- |InternalRepresentationForm| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString|
- |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries|
- |InternalTypeForm| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
- |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
- |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst|
- |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
- |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
- |Kovacic| |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom|
- |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform|
- |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination|
- |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction|
- |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library|
- |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage|
- |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver|
- |LinearSet| |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal|
- |LeftLinearSet| |ListMultiDictionary| |LeftModule| |ListMonoidOps|
- |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
- |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
+ |TranscendentalIntegration| |InverseLaplaceTransform|
+ |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address|
+ |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
+ |IntegrationResultToFunction| |IntegrationResultFunctions2|
+ |InternalRepresentationForm| |IntegrationResult| |IntegerRoots|
+ |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
+ |IrrRepSymNatPackage|
+ |InternalRationalUnivariateRepresentationPackage| |IsAst|
+ |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
+ |InnerTaylorSeries| |InternalTypeForm| |InfiniteTupleFunctions2|
+ |InfiniteTupleFunctions3| |InnerTrigonometricManipulations|
+ |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate|
+ |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile|
+ |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel|
+ |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom|
+ |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra|
+ |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial|
+ |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst|
+ |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory|
+ |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
+ |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence|
+ |LinearlyExplicitRingOver| |LinearSet| |ListToMap| |ListFunctions2|
+ |ListFunctions3| |List| |Literal| |LeftLinearSet|
+ |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&|
+ |LinearAggregate| |ElementaryFunctionLODESolver|
+ |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
+ |LinearOrdinaryDifferentialOperator|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
- |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
- |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix|
- |MacroAst| |Magma| |MappingPackageInternalHacks1|
- |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst|
- |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&|
- |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions|
+ |ListAggregate| |LinearSystemMatrixPackage1|
+ |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
+ |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&|
+ |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma|
+ |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
+ |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
+ |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2|
+ |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions|
|Matrix| |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex|
- |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat|
- |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction|
- |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
- |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
- |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
- |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
+ |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
+ |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
+ |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
+ |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction|
+ |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction|
+ |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap|
+ |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
+ |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform|
+ |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
|MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
|MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
|MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
- |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
- |MultisetAggregate| |MoreSystemCommands| |MergeThing|
+ |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing|
+ |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing|
|MultivariateTaylorSeriesCategory| |MultivariateFactorize|
- |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
- |NagPolynomialRootsPackage| |NagRootFindingPackage|
- |NagSeriesSummationPackage| |NagIntegrationPackage|
- |NagOrdinaryDifferentialEquationsPackage|
+ |MultivariateSquareFree| |NonAssociativeAlgebra&|
+ |NonAssociativeAlgebra| |NagPolynomialRootsPackage|
+ |NagRootFindingPackage| |NagSeriesSummationPackage|
+ |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
- |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
- |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
- |NumericComplexEigenPackage| |NumericContinuedFraction|
- |NonCommutativeOperatorDivision| |NetworkClientSocket|
- |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
- |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver|
- |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage|
+ |NagFittingPackage| |NagOptimisationPackage|
+ |NagMatrixOperationsPackage| |NagEigenPackage|
+ |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
+ |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
+ |NonAssociativeRing| |NumericComplexEigenPackage|
+ |NumericContinuedFraction| |NonCommutativeOperatorDivision|
+ |NetworkClientSocket| |NumberFieldIntegralBasis|
+ |NumericalIntegrationProblem| |NonLinearSolvePackage|
+ |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1|
+ |None| |NormInMonogenicAlgebra| |NormalizationPackage|
|NormRetractPackage| |NPCoef| |NumericRealEigenPackage|
- |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial|
- |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions|
+ |NewSparseMultivariatePolynomial|
+ |NewSparseUnivariatePolynomialFunctions2|
+ |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
|NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
- |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations|
- |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup|
- |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
- |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid|
- |Octonion| |OctonionCategoryFunctions2|
+ |NumericalIntegrationCategory|
+ |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
+ |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
+ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
+ |OrderedCancellationAbelianMonoid| |OctonionCategory&|
+ |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
|OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
- |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration|
- |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE|
- |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE|
- |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct|
+ |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
+ |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
+ |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
+ |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
+ |SystemODESolver| |ODETools| |OrderedDirectProduct|
|OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
- |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain|
- |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding|
- |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
- |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
- |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
- |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery|
+ |OrderlyDifferentialVariable| |OrderedFreeMonoid|
+ |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
+ |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
+ |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
+ |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
+ |OnePointCompletionFunctions2| |OnePointCompletion|
+ |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery|
|OperatorSignature| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
- |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
- |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
- |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
- |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile|
- |OutputForm| |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials|
- |PadeApproximants| |PadeApproximantPackage| |PAdicInteger|
- |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair|
+ |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
+ |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory|
+ |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
+ |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
+ |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&|
+ |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage|
+ |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials|
+ |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory|
+ |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Pair|
|Palette| |PolynomialAN2Expression| |ParameterAst|
|ParametricPlaneCurveFunctions2| |ParametricPlaneCurve|
|ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser|
- |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations|
- |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern|
- |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis|
- |PolynomialComposition| |PartialDifferentialEquationsSolverCategory|
- |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage|
- |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing|
- |PendantTree| |Permutation| |Permanent| |PermutationCategory|
- |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion|
+ |ParametricSurfaceFunctions2| |ParametricSurface|
+ |PartitionsAndPermutations| |Patternable| |PatternMatchListResult|
+ |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2|
+ |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern|
+ |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
+ |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
+ |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
+ |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
+ |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
+ |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
- |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
- |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
- |PrincipalIdealDomain| |PolynomialInterpolation|
- |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
- |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
- |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
+ |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
+ |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
+ |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
+ |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
+ |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
+ |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
+ |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |AttachPredicates| |FunctionSpaceAttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
- |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
- |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
- |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
- |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
- |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
- |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
- |PrintPackage| |Product| |Property| |PropositionalFormula|
- |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
- |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
- |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
- |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
- |PartialTranscendentalFunctions| |PushVariables|
- |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
- |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
- |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
- |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
- |RandomNumberSource| |RationalFactorize| |RationalRetractions|
- |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
- |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
- |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
- |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
- |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
- |Reference| |RegularTriangularSet| |RadicalEigenPackage|
- |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
+ |FunctionSpaceAttachPredicates| |AttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
+ |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
+ |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
+ |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
+ |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
+ |PortNumber| |PlottablePlaneCurveCategory|
+ |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
+ |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
+ |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
+ |Property| |PropositionalFormula| |PropositionalLogic|
+ |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
+ |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&|
+ |PolynomialSetCategory| |PolynomialSetUtilitiesPackage|
+ |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory|
+ |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions|
+ |PushVariables| |PAdicWildFunctionFieldIntegralBasis|
+ |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage|
+ |QueryEquation| |QuotientFieldCategoryFunctions2|
+ |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm|
+ |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&|
+ |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion|
+ |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField|
+ |RadixExpansion| |RadixUtilities| |RandomNumberSource|
+ |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
+ |RecursiveAggregate| |RealClosedField&| |RealClosedField|
+ |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE|
+ |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
+ |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant|
+ |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference|
+ |RegularTriangularSet| |RepresentationPackage1|
+ |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage|
|RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result|
|ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
- |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain|
- |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
- |RightLinearSet| |RectangularMatrixCategory&| |RectangularMatrixCategory|
- |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
- |RangeBinding| |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst|
+ |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel|
+ |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&|
+ |Ring| |RationalInterpolation| |RightLinearSet|
+ |RectangularMatrixCategory&| |RectangularMatrixCategory|
+ |RectangularMatrix| |RectangularMatrixCategoryFunctions2|
+ |RightModule| |RangeBinding| |Rng| |RealNumberSystem&|
+ |RealNumberSystem| |RightOpenIntervalRootCharacterization|
+ |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&|
+ |RecursivePolynomialCategory| |RepeatAst|
|RealRootCharacterizationCategory&| |RealRootCharacterizationCategory|
|RegularSetDecompositionPackage| |RegularTriangularSetCategory&|
- |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RestrictAst|
- |RuntimeValue| |RewriteRule| |RuleCalled| |Ruleset|
- |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
- |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
- |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
+ |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage|
+ |RestrictAst| |RuntimeValue| |RuleCalled| |RewriteRule| |Ruleset|
+ |RationalUnivariateRepresentationPackage|
+ |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
+ |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
+ |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
- |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
- |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
- |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
- |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
- |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
- |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
- |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
- |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
- |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
- |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
- |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
+ |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
+ |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
+ |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
+ |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
+ |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
+ |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory|
+ |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
+ |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
+ |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
+ |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
+ |SmithNormalForm| |SparseMultivariatePolynomial|
+ |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory|
+ |PolynomialSolveByFormulas| |RadicalSolvePackage|
+ |TransSolvePackageService| |TransSolvePackage| |SortPackage|
+ |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
|SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate|
- |SparseTable| |StepThrough| |StepAst| |StreamInfiniteProduct| |Stream|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory|
- |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
- |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
- |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
- |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
+ |StreamAggregate| |SparseTable| |StepAst| |StepThrough|
+ |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2|
+ |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable|
+ |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctionsNonCommutative|
+ |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
+ |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
+ |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
+ |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
- |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger|
- |SystemNonNegativeInteger| |SystemPointer| |SystemSolvePackage| |System|
- |TableauxBumpers| |Table| |Tableau| |TangentExpansions| |TableAggregate&|
- |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat|
- |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
- |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
- |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
- |TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
- |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
- |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
- |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32|
- |UInt64| |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
+ |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
+ |SystemInteger| |SystemNonNegativeInteger| |SystemPointer|
+ |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table|
+ |TangentExpansions| |TableAggregate&| |TableAggregate|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1|
+ |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory|
+ |Tree| |TrigonometricFunctionCategory&|
+ |TrigonometricFunctionCategory| |TrigonometricManipulations|
+ |TriangularMatrixOperations| |TranscendentalManipulations|
+ |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries|
+ |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type|
+ |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16|
+ |UInt32| |UInt64| |UInt8| |UnivariateLaurentSeriesFunctions2|
|UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
- |UniversalSegmentFunctions2| |UnivariatePolynomial|
- |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
+ |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
+ |UnivariatePolynomialFunctions2|
+ |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
- |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
+ |UnivariatePolynomialCategoryFunctions2|
+ |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
+ |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor|
- |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
- |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
+ |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity|
+ |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
- |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
- |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
- |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
- |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
- |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
- |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
- |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
+ |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
+ |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
+ |TwoDimensionalViewport| |ThreeDimensionalViewport|
+ |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation|
+ |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst|
+ |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
+ |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra|
+ |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat|
+ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
- |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
- |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
- |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
- |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
- |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
- |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
- |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
- |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules| |localUnquote|
- |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray| |associatedSystem|
- |uncouplingMatrices| |associatedEquations| |arrayStack| |setButtonValue|
- |setAttributeButtonStep| |resetAttributeButtons| |getButtonValue| |decrease|
- |increase| |morphism| |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!|
- |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant|
- |bezoutDiscriminant| |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding|
- |test| |setProperties| |setProperty| |deleteProperty!| |has?| |comparison|
- |equality| |nary?| |unary?| |nullary?| |properties| |derivative|
- |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!|
- |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
- |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte|
- |setLength!| |capacity| |byteBuffer| |unknownEndian| |bigEndian|
- |littleEndian| |subtractIfCan| |setPosition|
- |generalizedContinuumHypothesisAssumed|
- |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
- |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents|
- |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic|
- |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?|
- |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral|
- |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| |find| |e|
- |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom|
- |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial|
- |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm|
- |polarCoordinates| |complex| |imaginary| |elaborateFile| |elaborate|
- |macroExpand| |solid| |solid?| |denominators| |numerators| |convergents|
- |approximants| |reducedForm| |partialQuotients| |partialDenominators|
- |partialNumerators| |reducedContinuedFraction| |push| |bindings| |cartesian|
- |polar| |cylindrical| |spherical| |parabolic| |parabolicCylindrical|
- |paraboloidal| |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal|
- |bipolar| |bipolarCylindrical| |toroidal| |conical| |modTree|
- |multiEuclideanTree| |complexZeros| |divisorCascade| |graeffe| |pleskenSplit|
- |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound|
- |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry|
- |findConstructor| |arguments| |operations| |dualSignature| |kind| |package|
- |domain| |category| |coerceP| |powerSum| |elementary| |alternating| |cyclic|
- |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction|
- |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite|
- |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName|
- |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight|
- |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF|
- |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF|
- |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF|
- |subscriptedVariables| |central?| |elliptic?| |qsetelt| |doubleResultant|
- |distdfact| |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?|
- |decimal| |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?|
- |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |logGamma|
- |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| |dictionary|
- |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| |setnext!|
- |setprevious!| |next| |previous| |datalist| |shanksDiscLogAlgorithm|
- |showSummary| |reflect| |reify| |constructor| |functorData| |separant|
- |initial| |leader| |isobaric?| |weights| |differentialVariables|
- |extractBottom!| |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!|
- |dequeue| |makeObject| |recolor| |drawComplex| |drawComplexVectorField|
- |setRealSteps| |setImagSteps| |setClipValue| |draw| |option?| |range|
- |colorFunction| |curveColor| |pointColor| |clip| |clipBoolean| |style|
- |toScale| |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps|
- |space| |tubePoints| |tubeRadius| |option| |weight| |makeVariable|
- |finiteBound| |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?|
- |linearMatrix| |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf|
- |optAttributes| |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin|
- |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot|
- |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch|
- |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs|
- |localReal?| |rischNormalize| |realElementary| |validExponential|
- |rootNormalize| |tanQ| |callForm?| |getIdentifier| |variable?| |getConstant|
- |type| |environment| |typeForm| |irForm| |elaboration| |select!| |delete!|
- |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| |interactiveEnv|
- |currentEnv| |setProperties!| |getProperties| |setProperty!| |getProperty|
- |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector|
- |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne|
- |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower|
- |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?|
- |problemPoints| |zerosOf| |singularitiesOf| |polynomialZeros| |f2df| |ef2edf|
- |ocf2ocdf| |socf2socdf| |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation|
- |numberOfOperations| |edf2efi| |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef|
- |vedf2vef| |df2st| |f2st| |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure|
- |measure2Result| |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef|
- |fi2df| |mat| |neglist| |multiEuclidean| |extendedEuclidean| |euclideanSize|
- |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction|
- |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial|
- |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef|
- |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog|
- |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement|
- |setLabelValue| |getCode| |printCode| |code| |operation| |common|
- |printStatement| |save| |stop| |block| |cond| |returns| |call| |comment|
- |continue| |goto| |repeatUntilLoop| |whileLoop| |forLoop| |sin?| |zeroVector|
- |zeroSquareMatrix| |identitySquareMatrix| |lookupFunction| |encodingDirectory|
- |attributeData| |domainTemplate| |lSpaceBasis| |finiteBasis| |principal?|
- |divisor| |useNagFunctions| |rationalPoints| |nonSingularModel|
- |algSplitSimple| |hyperelliptic| |elliptic| |integralDerivationMatrix|
- |integralRepresents| |integralCoordinates| |yCoordinates|
- |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity|
- |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity|
- |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?|
- |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?|
- |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?|
- |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable|
- |createMultiplicationTable| |createMultiplicationMatrix|
- |createLowComplexityTable| |createLowComplexityNormalBasis|
- |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm|
- |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix|
- |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly|
- |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly|
- |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly|
- |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly|
- |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly|
- |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!|
- |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit|
- |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence|
- |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?|
- |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?|
- |alternative?| |flexible?| |rightAlternative?| |leftAlternative?|
- |antiAssociative?| |associative?| |antiCommutative?| |commutative?|
- |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm|
- |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?|
- |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral|
- |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation|
- |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |overlap|
- |hcrf| |hclf| |writable?| |readable?| |exists?| |extension| |directory|
- |filename| |shallowExpand| |deepExpand| |clearFortranOutputStack|
- |showFortranOutputStack| |popFortranOutputStack| |pushFortranOutputStack|
- |topFortranOutputStack| |setFormula!| |formula| |linkToFortran|
- |setLegalFortranSourceExtensions| |fracPart| |polyPart| |fullPartialFraction|
- |primeFrobenius| |discreteLog| |decreasePrecision| |increasePrecision| |bits|
- |unitNormalize| |unit| |flagFactor| |sqfrFactor| |primeFactor| |nthFlag|
- |nthExponent| |irreducibleFactor| |factors| |nilFactor|
- |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module|
- |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix|
- |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents|
- |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP|
- |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality|
- |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown|
- |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?|
- |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter|
- |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger|
- |fortranDouble| |fortranReal| |external?| |scalarTypeOf|
- |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine|
- |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors|
- |modularFactor| |useSingleFactorBound?| |useSingleFactorBound|
- |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?|
- |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
- |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
- |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
- |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
- |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
- |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
- |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
- |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
- |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
- |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
- |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
- |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
- |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
- |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
- |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
- |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
- |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
- |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
- |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
- |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
- |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
- |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
- |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
- |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
- |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
- |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
- |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
- |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
- |contract| |gensym| |leadingSupport| |shrinkable| |physicalLength!|
- |physicalLength| |flexibleArray| |elseBranch| |thenBranch|
- |generalizedInverse| |imports| |sequence| |readBytes!| |readUInt32!|
- |readInt32!| |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!|
- |setFieldInfo| |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup|
- |normal?| |basis| |normalElement| |minimalPolynomial| |position!| |eof?|
- |inputBinaryFile| |increment| |incrementBy| |charpol| |solve1|
- |innerEigenvectors| |compile| |declare| |parseString| |unparse| |flatten|
- |lambda| |binary| |packageCall| |interpret| |innerSolve1| |innerSolve|
- |makeEq| |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod|
- |powmod| |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder|
- |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate|
- |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf|
- |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal|
- |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint|
- |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable|
- |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0|
- |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic|
- |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
- |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
- |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
- |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
- |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
- |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
- |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
- |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
- |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
- |inverseLaplace| |inputOutputBinaryFile| |bothWays| |input| |resolve| |bytes|
- |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| |irDef|
- |irCtor| |irVar| |perfectNthPower?| |perfectNthRoot| |approxNthRoot|
- |perfectSquare?| |perfectSqrt| |approxSqrt| |generateIrredPoly|
- |complexExpand| |complexIntegrate| |dimensionOfIrreducibleRepresentation|
- |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
- |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
- |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
- |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
- |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| |mappingMode|
- |categoryMode| |voidMode| |noValueMode| |jokerMode| GF2FG FG2F F2FG
- |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
- |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan|
- |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |unknown|
- |laplace| |trailingCoefficient| |normalizeIfCan| |polCase| |distFact|
- |identification| |LyndonCoordinates| |LyndonBasis| |zeroDimensional?|
- |fglmIfCan| |groebner| |lexTriangular| |squareFreeLexTriangular| |belong?|
- |erf| |dilog| |li| |Ci| |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol|
- |computeBasis| |coord| |anticoord| |intcompBasis| |choosemon| |transform|
- |pack!| |library| |complexLimit| |limit| |linearlyDependent?|
- |linearDependence| |solveLinear| |reducedSystem| |setDifference|
- |setIntersection| |setUnion| |append| |null| |nil| |substitute| |duplicates?|
- |mapGen| |mapExpon| |commutativeEquality| |leftMult| |rightMult| |makeUnit|
- |reverse!| |reverse| |nthFactor| |nthExpon| |makeMulti| |makeTerm|
- |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
- |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~
- |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
- |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
- |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
- |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
- |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
- |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag|
- |curryRight| |curryLeft| |constantRight| |constantLeft| |twist|
- |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat|
- |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!|
- |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!|
- |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence|
- |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates|
- |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod|
- |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent|
- |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal|
- |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
- |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
- |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
- |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
- |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
- |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
- |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
- |numberOfMonomials| |multiset| |systemCommand| |mergeDifference|
- |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
- |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
- |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
- |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
- |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
- |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
- |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
- |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
- |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
- |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
- |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
- |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
- |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
- |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
- |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
- |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
- |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
- |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
- |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
- |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
- |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
- |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
- |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
- |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift|
- |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors|
- |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues|
- |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1|
- |extendedResultant| |subResultantsChain| |lazyPseudoQuotient|
- |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric|
- |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman|
- |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan|
- |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson|
- |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono|
- |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve|
- |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable|
- |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE|
- |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE|
- |constantCoefficientRicDE| |changeVar| |ratDsolve|
- |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
- |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
- |lexico| |OMmakeConn| |OMcloseConn| |OMconnInDevice| |OMconnOutDevice|
- |OMconnectTCP| |OMbindTCP| |OMopenFile| |OMopenString| |OMclose|
- |OMsetEncoding| |OMputApp| |OMputAtp| |OMputAttr| |OMputBind| |OMputBVar|
- |OMputError| |OMputObject| |OMputEndApp| |OMputEndAtp| |OMputEndAttr|
- |OMputEndBind| |OMputEndBVar| |OMputEndError| |OMputEndObject| |OMputInteger|
- |OMputFloat| |OMputVariable| |OMputString| |OMputSymbol| |OMgetApp| |OMgetAtp|
- |OMgetAttr| |OMgetBind| |OMgetBVar| |OMgetError| |OMgetObject| |OMgetEndApp|
- |OMgetEndAtp| |OMgetEndAttr| |OMgetEndBind| |OMgetEndBVar| |OMgetEndError|
- |OMgetEndObject| |OMgetInteger| |OMgetFloat| |OMgetVariable| |OMgetString|
- |OMgetSymbol| |OMgetType| |OMencodingBinary| |OMencodingSGML| |OMencodingXML|
- |OMencodingUnknown| |omError| |errorInfo| |errorKind| |OMReadError?|
- |OMUnknownSymbol?| |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread|
- |OMreadFile| |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?|
- |OMsupportsSymbol?| |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve|
- |infinity| |makeop| |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint|
- |arity| |getDatabase| |numericalOptimization| |optimize| |goodnessOfFit|
- |whatInfinity| |infinite?| |finite?| |minusInfinity| |plusInfinity| |pureLex|
- |totalLex| |reverseLex| |min| |leftLcm| |rightExtendedGcd| |rightGcd|
- |rightExactQuotient| |rightRemainder| |rightQuotient| |rightLcm|
- |leftExtendedGcd| |leftGcd| |leftExactQuotient| |leftRemainder| |leftQuotient|
- |times| |apply| |monicLeftDivide| |monicRightDivide| |leftDivide|
- |rightDivide| |hermiteH| |laguerreL| |legendreP| |outputList| |writeBytes!|
- |writeUInt8!| |writeInt8!| |writeByte!| |isOpen?| |outputBinaryFile| |quo|
- |rem| |div| >= > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile|
- |paren| |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub|
- |presuper| |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box|
- |label| |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace|
- |vspace| |hspace| |superHeight| |subHeight| |height| |width|
- |doubleFloatFormat| |messagePrint| |message| |members| |padecf| |pade| |root|
- |quotientByP| |moduloP| |modulus| |digits| |continuedFraction| |pair| |light|
- |pastel| |bright| |dim| |dark| |getSyntaxFormsFromFile| |surface| |coordinate|
- |partitions| |conjugates| |shuffle| |shufflein| |sequences| |permutations|
- |lists| |atoms| |makeResult| |is?| |Is| |addMatchRestricted| |insertMatch|
- |addMatch| |getMatch| |failed| |failed?| |optpair| |getBadValues|
- |resetBadValues| |hasTopPredicate?| |topPredicate| |setTopPredicate|
- |patternVariable| |withPredicates| |setPredicates| |predicates|
- |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| |inR?| |isList|
- |isQuotient| |isOp| |satisfy?| |addBadValue| |badValues| |retractable?|
- |ListOfTerms| |One| |PDESolve| |leftFactor| |rightFactorCandidate| |measure| D
- |ptree| |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles|
- |cyclePartition| |coerceListOfPairs| |coercePreimagesImages|
- |listRepresentation| |permanent| |cycles| |cycle|
- |initializeGroupForWordProblem| <= < |movedPoints| |wordInGenerators|
- |wordInStrongGenerators| |orbits| |orbit| |permutationGroup|
- |wordsForStrongGenerators| |strongGenerators| |base| |generators|
- |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
- |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
- |charthRoot| |conditionP| |solveLinearPolynomialEquation|
- |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
- |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
- |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
- |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
- |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
- |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
- |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
- |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
- |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
- |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
- |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
- |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
- |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
- |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
- |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
- |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
- |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
- |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
- |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
- |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
- |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
- |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
- |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
- |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
- |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
- |selectsecond| |selectfirst| |makeprod| |property| |disjunction| |conjunction|
- |isEquiv| |isImplies| |isOr| |isAnd| |isNot| |isTerm| |equiv| |implies| |or|
- |and| |false| |true| |merge!| |max| |resultantEuclidean|
- |semiResultantEuclidean2| |semiResultantEuclidean1| |indiceSubResultant|
- |indiceSubResultantEuclidean| |semiIndiceSubResultantEuclidean|
- |degreeSubResultant| |degreeSubResultantEuclidean|
- |semiDegreeSubResultantEuclidean| |lastSubResultantEuclidean|
- |semiLastSubResultantEuclidean| |subResultantGcdEuclidean|
- |semiSubResultantGcdEuclidean2| |semiSubResultantGcdEuclidean1|
- |discriminantEuclidean| |semiDiscriminantEuclidean| |chainSubResultants|
- |schema| |resultantReduit| |resultantReduitEuclidean|
- |semiResultantReduitEuclidean| |divide| |Lazard| |Lazard2|
- |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
- |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
- |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
- |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
- |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
- |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
- |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
- |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
- |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
- |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
- |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
- |linearPolynomials| |bivariate?| |bivariatePolynomials|
- |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
- |interReduce| |roughBasicSet| |crushedSet|
- |rewriteSetByReducingWithParticularGenerators|
- |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
- |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
- |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
- |irreducibleFactors| |lazyIrreducibleFactors|
- |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
- |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
- |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
- |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
- |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
- |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
- |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
- |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
- |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
- |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
- |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
- |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
- |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
- |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
- |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
- |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
- |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint|
- |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| =
- |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector|
- |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
- |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
- |symmetricTensors| |tensorProduct| |permutationRepresentation|
- |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
- |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
- |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues|
- |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate|
- |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal|
- |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue|
- |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric|
- |ridHack1| |interpolate| |Zero| |nullSpace| |nullity| |rank| |rowEchelon|
- |column| |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex|
- |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?|
- |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart|
- |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size|
- |right| |left| |roman| |recoverAfterFail| |showTheRoutinesTable|
- |deleteRoutine!| |getExplanations| |getMeasure| |changeMeasure|
- |changeThreshhold| |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
- |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
- |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
- |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
- |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
- |subResultantChain| |halfExtendedSubResultantGcd2|
- |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
- |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
- |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
- |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
- |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
- |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
- |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
- |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
- |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
- |invertibleSet| |invertible?| |invertibleElseSplit?|
- |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
- |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
- |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
- |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
- |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
- |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
- |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
- |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
- |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |before?|
- |latex| |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
- |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
- |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
- |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?|
- |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
- |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
- |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
- |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
- |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
- |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
- |stoseIntegralLastSubResultant| |stoseLastSubResultant|
- |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
- |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
- |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
- |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
- |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
- |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence|
- |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
- |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature|
- |signatureAst| |Or| |And| |Not| |xor| |not| |depth| |top| |pop!| |push!|
- |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix|
- |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith|
- |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear|
- |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic|
- |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise|
- |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp|
- |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve|
- |curve?| |curve| |point?| |enterPointData| |composites| |components|
- |numberOfComposites| |numberOfComponents| |create3Space| |parse|
- |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma|
- |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi|
- |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!|
- |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove|
- |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!|
- |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim|
- |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?|
- |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber|
- |numberOfVariables| |algebraicDecompose| |transcendentalDecompose|
- |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess|
- |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?|
- |explicitlyFinite?| |nextItem| |init| |step| |upperBound| |lowerBound|
- |iterationVar| |infiniteProduct| |evenInfiniteProduct| |oddInfiniteProduct|
- |generalInfiniteProduct| |filterUntil| |filterWhile| |generate| |showAll?|
- |showAllElements| |output| |cons| |delay| |findCycle| |repeating?| |repeating|
- |exquo| |recip| |integers| |oddintegers| |int| |mapmult| |deriv| |gderiv|
- |compose| |addiag| |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate|
- |power| |sincos| |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh|
- |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech|
- |acsch| |subresultantVector| |primitivePart| |pointData| |parent| |level|
- |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse|
- |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2|
- |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children|
- |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct|
- |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |list| |string|
- |argscript| |superscript| |subscript| |script| |scripts| |scripted?| |name|
- |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf|
- |printHeader| |returnType!| |argumentList!| |endSubProgram|
- |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
- |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
- |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
- |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
- |solve| |triangularSystems| |loadNativeModule| |nativeModuleExtension|
- |hostByteOrder| |hostPlatform| |rootDirectory| |bumprow| |bumptab| |bumptab1|
- |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
- |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
- |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
- |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
- |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
- |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
- |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
- |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
- |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
- |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
- |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
- |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
- |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
- |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
- |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
- |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
- |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
- |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
- |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
- |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
- |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
- |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
- |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
- |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
- |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction|
- |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree|
- |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator|
- |clearDenominator| |splitDenominator| |monicRightFactorIfCan|
- |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan|
- |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce|
- |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite|
- |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft|
- |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP|
- |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order|
- |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents|
- |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm|
- |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!|
- |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail|
- |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert|
- |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange|
- |differentiate| |univariatePolynomial| |integrate| ** |polynomial|
- |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2|
- |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP
- LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| -
- |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show|
- |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs|
- |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints|
- |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface|
- |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective|
- |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes|
- |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options|
- |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault|
- |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault|
- |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault|
- |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults|
- |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault|
- |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst|
- |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis|
- |localIntegralBasis| |qualifier| |mainExpression| |condition|
- |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet|
- |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree|
- |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror|
- |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
- |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?|
- |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| *
- |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve|
- |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?|
- |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite|
- |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical|
- |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
+ |Record| |Union| |ipow| |critM| |initializeGroupForWordProblem|
+ |e02ajf| |stoseInvertible?| |cond| |simplifyPower| |cCosh|
+ |asechIfCan| |factorial| |critB| |e02akf| |movedPoints|
+ |stoseInvertibleSet| |generate| |number?| |cSinh| |acschIfCan| |map|
+ |sec2cos| |multinomial| |critBonD| |wordInGenerators| |e02baf|
+ |stoseSquareFreePart| |kernel| |seriesSolve| |cAcsc| |pushdown|
+ |permutation| |sech2cosh| |previous| |isQuotient| |critMTonD1|
+ |incrementBy| |e02bbf| |wordInStrongGenerators| |coleman|
+ |outerProduct| |log10| |draw| |constantToUnaryFunction| |cAsec|
+ |pushup| |sin2csc| |stirling1| |critMonD1| |e02bcf| |orbits|
+ |inverseColeman| |expand| |bitand| |tubePlot| |cAcot|
+ |reducedDiscriminant| |sinh2csch| |stirling2| |currentEnv| |redPo|
+ |e02bdf| |orbit| |listYoungTableaus| |filterWhile| |bitior|
+ |exponentialOrder| |cAtan| |idealSimplify| |tan2trig| |summation|
+ |hMonic| |e02bef| |makeYoungTableau| |permutationGroup| |filterUntil|
+ |symbol| |completeEval| |cAcos| |definingInequation| |convert|
+ |tanh2trigh| |factorials| |updatF| |e02daf| |nextColeman|
+ |wordsForStrongGenerators| |select| |expression| |makeObject|
+ |lowerPolynomial| |cAsin| |definingEquations| |tan2cot|
+ |setProperties| |height| |mkcomm| |sPol| |e02dcf| |strongGenerators|
+ |nextLatticePermutation| |integer| |coef| |raisePolynomial| |cCsc|
+ |setStatus| |setright!| |tanh2coth| |setProperty| |polarCoordinates|
+ |updatD| |generators| |e02ddf| |nextPartition| |normalDeriv| |cSec|
+ |quasiAlgebraicSet| |setleft!| |cot2tan| |imaginary| |minGbasis|
+ |bivariateSLPEBR| |e02def| |numberOfImproperPartitions| |ran| |cCot|
+ |radicalSimplify| |brillhartIrreducible?| |coth2tanh| |elaborateFile|
+ |lepol| |solveLinearPolynomialEquationByRecursion| |e02dff| |subSet|
+ |highCommonTerms| |cTan| |denominator| |brillhartTrials| |removeCosSq|
+ |elaborate| |prinshINFO| |factorByRecursion| |e02gaf|
+ |unrankImproperPartitions0| |mapCoef| |cCos| |numerator| **
+ |removeSinSq| |solid| |prindINFO| |makeRecord| |e02zaf|
+ |factorSquareFreeByRecursion| |lo| |unrankImproperPartitions1|
+ |nthCoef| |cSin| |quadraticForm| |removeCoshSq| |solid?| |fprindINFO|
+ |e04dgf| |randomR| |incr| |subresultantSequence| |acsch|
+ |binomThmExpt| |label| |cLog| |back| |removeSinhSq| |initial|
+ |denominators| |prinpolINFO| |factorSFBRlcUnit| |e04fdf|
+ |SturmHabichtSequence| |pomopo!| |cExp| |front| |expandTrigProducts|
+ |numerators| |prinb| |charthRoot| |e04gcf| |SturmHabichtCoefficients|
+ |mapExponents| |cRationalPower| |rotate!| |fintegrate| |convergents|
+ |critpOrder| |conditionP| |e04jaf| |SturmHabicht|
+ |linearAssociatedLog| |cPower| |dequeue!| |coefficient| |approximants|
+ |makeCrit| |solveLinearPolynomialEquation| |e04mbf| |countRealRoots|
+ |linearAssociatedOrder| |seriesToOutputForm| |enqueue!| |coHeight|
+ |reducedForm| |virtualDegree| |factorSquareFreePolynomial| |e04naf|
+ |SturmHabichtMultiple| |linearAssociatedExp| |iCompose| |quatern|
+ |extendIfCan| Y |partialQuotients| |conditionsForIdempotents|
+ |factorPolynomial| |e04ucf| |countRealRootsMultiple| |tail|
+ |createNormalElement| |taylorQuoByVar| |imagK| |algebraicVariables|
+ |partialDenominators| |constructor| |rules| |genericRightDiscriminant|
+ |squareFreePolynomial| |e04ycf| |signatureAst| |zeroOf|
+ |setLabelValue| |iExquo| |imagJ| |zeroSetSplitIntoTriangularSystems|
+ |partialNumerators| |genericRightTraceForm| |gcdPolynomial| |f01brf|
+ |pop!| |rootsOf| |option| |getCode| |getStream| |imagI| |zeroSetSplit|
+ |reducedContinuedFraction| |showSummary| |genericLeftDiscriminant|
+ |torsion?| |f01bsf| |push!| |makeSketch| |printCode| |getRef|
+ |conjugate| |inc| |reduceByQuasiMonic| |push| |genericLeftTraceForm|
+ |torsionIfCan| |f01maf| |minordet| |inrootof| |printStatement|
+ |makeSeries| |queue| |collectQuasiMonic| |bindings| |showAttributes|
+ |genericRightNorm| |getGoodPrime| |f01mcf| |determinant| |droot|
+ |unknown| |putProperty| |block| |mappingMode| |nthRoot| |removeZero|
+ |macroExpand| |cartesian| |genericRightTrace| |f01qcf| |badNum|
+ |diagonalProduct| |rightTrim| |iroot| |putProperties| |returns|
+ |categoryMode| |fractRadix| |initiallyReduce| |polar|
+ |genericRightMinimalPolynomial| |f01qdf| |mix| |diagonal| |leftTrim|
+ |size?| |goto| |voidMode| |wholeRadix| |headReduce| |cylindrical|
+ |rightRankPolynomial| |doubleDisc| |f01qef| |diagonalMatrix| |eq?|
+ |repeatUntilLoop| |noValueMode| |cycleRagits| |stronglyReduce|
+ |spherical| |say| |genericLeftNorm| |polyred| |f01rcf| |scalarMatrix|
+ |doublyTransitive?| |whileLoop| |jokerMode| |prefixRagits|
+ |rewriteSetWithReduction| |parabolic| |genericLeftTrace|
+ |padicFraction| |f01rdf| |hermite| |knownInfBasis| |forLoop| GF2FG
+ |fractRagits| |autoReduced?| |parabolicCylindrical|
+ |genericLeftMinimalPolynomial| |padicallyExpand| F |f01ref|
+ |completeHermite| |rootSplit| |sin?| FG2F |wholeRagits|
+ |initiallyReduced?| |paraboloidal| |leftRankPolynomial|
+ |numberOfFractionalTerms| |f02aaf| |smith| |ratDenom| |zeroVector|
+ F2FG |radix| |result| |headReduced?| |ellipticCylindrical| |generic|
+ |nthFractionalTerm| |f02abf| |completeSmith| |ratPoly|
+ |zeroSquareMatrix| |open| |explogs2trigs| |randnum| |remove| |eval|
+ |stronglyReduced?| |reset| |prolateSpheroidal| |rightUnits|
+ |firstNumer| |f02adf| |diophantineSystem| |rootPower|
+ |identitySquareMatrix| |trigs2explogs| |reseed| |reduced?|
+ |oblateSpheroidal| |leftUnits| |firstDenom| |f02aef| |csubst|
+ |rootProduct| |lookupFunction| |swap!| |pattern| |seed| |last|
+ |normalized?| |write| |bipolar| |compBound| |compactFraction| |f02aff|
+ |particularSolution| |assoc| |rootSimp| |encodingDirectory| |fill!|
+ |null| |rational| |quasiComponent| |save| |bipolarCylindrical|
+ |tablePow| |partialFraction| |f02agf| |mapSolve| |rootKerSimp|
+ |operations| |attributeData| |minIndex| |rational?| |not| |taylor|
+ |initials| |toroidal| |solveid| |gcdPrimitive| |f02ajf| |quadratic|
+ |leftRank| |domainTemplate| |maxIndex| |and| |rationalIfCan| |laurent|
+ |basicSet| |conical| |testModulus| |symmetricGroup| |f02akf| |cubic|
+ |rightRank| |lSpaceBasis| |entry?| |message| |or| |setvalue!|
+ |puiseux| |infRittWu?| |HenselLift| |alternatingGroup| |f02awf|
+ |quartic| |doubleRank| |finiteBasis| |indices| |setchildren!| |xor|
+ |getCurve| |completeHensel| |f02axf| |abelianGroup| |hi| |aLinear|
+ |weakBiRank| |principal?| |index?| |node?| |case| |inv| |listLoops|
+ |multMonom| |cyclicGroup| |f02bbf| |aQuadratic| |biRank| |divisor|
+ |entries| |child?| |Zero| |ground?| |closed?| |build| |dihedralGroup|
+ |f02bjf| |aCubic| |basisOfCommutingElements| |ground| |key?| |One|
+ |distance| |lcm| |open?| |leadingIndex| |mathieu11| |f02fjf|
+ |aQuartic| |basisOfLeftAnnihilator| |elaboration| |symbolIfCan|
+ |nodes| |leadingMonomial| |setClosed| |leadingExponent| |mathieu12|
+ |cons| |f02wef| |radicalSolve| |basisOfRightAnnihilator| |select!|
+ |argument| |append| |rename| |leadingCoefficient| |tube|
+ |GospersMethod| |mathieu22| |f02xef| |radicalRoots|
+ |basisOfLeftNucleus| |delete!| |constantKernel| |primitiveMonomials|
+ |gcd| |rename!| |output| |unitVector| |integerBound| |f04adf|
+ |contractSolve| |basisOfRightNucleus| |dn| |constantIfCan| |false|
+ |mainValue| |reductum| |cosSinInfo| |iiabs| |quotientByP| |f04arf|
+ |decomposeFunc| |basisOfMiddleNucleus| |sncndn| |kovacic|
+ |mainDefiningPolynomial| |elt| |loopPoints| |bringDown| |moduloP|
+ |f04asf| |unvectorise| |basisOfNucleus| |categoryFrame| |laplace|
+ |mainForm| |generalTwoFactor| |newReduc| |modulus| |f04atf|
+ |bubbleSort!| |basisOfCenter| |interactiveEnv| |generalSqFr|
+ |logical?| |digits| |f04axf| |insertionSort!| |basisOfLeftNucloid|
+ |limitedint| |selectPolynomials| |twoFactor| |character?|
+ |continuedFraction| |f04faf| |check| |basisOfRightNucloid|
+ |getProperties| |integerIfCan| |selectOrPolynomials| |setOrder|
+ |doubleComplex?| |light| |f04jgf| |lprop| |basisOfCentroid|
+ |internalIntegrate| |selectAndPolynomials| |categories| |getOrder|
+ |complex?| |pastel| |radicalOfLeftTraceForm| |getProperty|
+ |infieldIntegrate| |quasiMonicPolynomials| |less?| |double?| |dark|
+ |coefChoose| |currentScope| |applyRules| |scopes| |limitedIntegrate|
+ |univariate?| |userOrdered?| |ffactor| |getSyntaxFormsFromFile|
+ |myDegree| |pushNewContour| |localUnquote| |eigenvalues|
+ |extendedIntegrate| |univariatePolynomials| |largest| |qfactor|
+ |surface| |normDeriv2| |findBinding| |arbitrary| |eigenvector|
+ |varselect| |linear?| |UP2ifCan| |coordinate| |plenaryPower|
+ |contours| |setColumn!| |generalizedEigenvector| |kmax|
+ |linearPolynomials| |maxrow| |anfactor| |partitions| |c02aff|
+ |structuralConstants| |generalizedEigenvectors| |ksec| |bivariate?|
+ |tableau| |fortranCharacter| |conjugates| |c02agf| |coordinates|
+ |plusInfinity| |eigenvectors| |vark| |bivariatePolynomials|
+ |listOfLists| |fortranDoubleComplex| |shuffle| |c05adf| |bounds|
+ |minusInfinity| |factorAndSplit| |removeConstantTerm|
+ |removeRoughlyRedundantFactorsInPols| |key| |tanSum| |fortranComplex|
+ |shufflein| |c05nbf| |high| |inGroundField?| |rightOne| |mkPrim|
+ |removeRoughlyRedundantFactorsInPol| |tanAn| |fortranLogical|
+ |sequences| |c05pbf| |low| |transcendent?| |leftOne| |filename|
+ |intPatternMatch| |interReduce| |tanNa| |fortranInteger|
+ |permutations| |c06eaf| |subset?| |algebraic?| |rightZero|
+ |primintegrate| |roughBasicSet| |initTable!| |fortranDouble| |atoms|
+ |c06ebf| |symmetricDifference| |sh| |leftZero| |expintegrate|
+ |crushedSet| |parse| |printInfo!| |fortranReal| |makeResult| |c06ecf|
+ |difference| |type| |mirror| |setRow!| |swap| |tanintegrate|
+ |rewriteSetByReducingWithParticularGenerators| |next| |startStats!|
+ |external?| |is?| |c06ekf| |intersect| |monomial?|
+ |oneDimensionalArray| |minPoly| |primextendedint|
+ |rewriteIdealWithQuasiMonicGenerators| |printStats!| |point|
+ |scalarTypeOf| |Is| |c06fpf| |part?| |rquo| |freeOf?| |expextendedint|
+ |squareFreeFactors| |clearTable!| |associatedEquations|
+ |fortranCarriageReturn| |c06fqf| |addMatchRestricted| |checkPrecision|
+ |before?| |lquo| |operators| |primlimitedint|
+ |univariatePolynomialsGcds| |usingTable?| |arrayStack|
+ |fortranLiteral| |insertMatch| |c06frf| |latex| |mindegTerm|
+ |mainKernel| |explimitedint| |removeRoughlyRedundantFactorsInContents|
+ |printingInfo?| |series| |fortranLiteralLine| |addMatch| |c06fuf|
+ |member?| |product| |distribute| |primextintfrac|
+ |removeRedundantFactorsInContents| |lhs| |makingStats?|
+ |processTemplate| |c06gbf| |getMatch| |enumerate| EQ |LiePolyIfCan|
+ |functionIsFracPolynomial?| |primlimintfrac|
+ |removeRedundantFactorsInPols| |rhs| |extractIfCan| |makeFR| |failed?|
+ |c06gcf| |setOfMinN| |trunc| |problemPoints| |primintfldpoly|
+ |irreducibleFactors| |insert!| |musserTrials| |optpair| |c06gqf|
+ |elements| |degree| |zerosOf| |expintfldpoly| |lazyIrreducibleFactors|
+ |min| |interpretString| |stopMusserTrials| |getBadValues| |c06gsf|
+ |replaceKthElement| |rule| |quasiRegular| |singularitiesOf|
+ |monomialIntegrate| |removeIrreducibleRedundantFactors|
+ |stripCommentsAndBlanks| |numberOfFactors| |resetBadValues| |d01ajf|
+ |incrementKthElement| |quasiRegular?| |polynomialZeros|
+ |monomialIntPoly| |index| |normalForm| |setPrologue!| |modularFactor|
+ |hasTopPredicate?| |d01akf| |float?| |constant?| |f2df|
+ |inverseLaplace| |changeBase| |setTex!| |useSingleFactorBound?|
+ |topPredicate| |d01alf| |integer?| |mindeg| |ef2edf| |center|
+ |inputOutputBinaryFile| |companionBlocks| |setEpilogue!|
+ |useSingleFactorBound| |setTopPredicate| |d01amf| |symbol?| |maxdeg|
+ |ocf2ocdf| |bothWays| |pair| |xCoord| |prologue|
+ |useEisensteinCriterion?| |d01anf| |patternVariable| |string?| |value|
+ |RemainderList| |socf2socdf| |bytes| |yCoord| |epilogue|
+ |useEisensteinCriterion| |withPredicates| |d01apf| |list?| |unexpand|
+ |df2fi| |ip4Address| |zCoord| |endOfFile?| |eisensteinIrreducible?|
+ |setPredicates| |d01aqf| |pair?| |triangSolve| |edf2fi| |iprint|
+ |rCoord| |readIfCan!| |parents| |tryFunctionalDecomposition?|
+ |predicates| |d01asf| |atom?| |entry| |univariateSolve| |edf2df|
+ |elem?| |thetaCoord| |readLineIfCan!| |tryFunctionalDecomposition|
+ |hasPredicate?| |d01bbf| |null?| |realSolve| |expenseOfEvaluation|
+ |notelem| |phiCoord| |readLine!| |btwFact| |optional?| |d01fcf|
+ |startTable!| |positiveSolve| |numberOfOperations| |logpart| |color|
+ |writeLine!| |beauzamyBound| |multiple?| |d01gaf| |stopTable!|
+ |squareFree| |edf2efi| |ratpart| |hue| |sign| |sn| |bombieriNorm|
+ |reverse| |generic?| |d01gbf| |supDimElseRittWu?|
+ |linearlyDependentOverZ?| |dfRange| |mkAnswer| |shade| |nonQsign|
+ |rootBound| |quoted?| |d02bbf| |algebraicSort| |linearDependenceOverZ|
+ |dflist| |call| |irDef| |nthRootIfCan| |direction| |singleFactorBound|
+ |inR?| |d02bhf| |moreAlgebraic?| |solveLinearlyOverQ| |leaves| |df2mf|
+ |tree| |irCtor| |expIfCan| |createThreeSpace| |quadraticNorm| |isList|
+ |d02cjf| |subTriSet?| |ldf2vmf| |irVar| |logIfCan| |cyclicParents|
+ |infinityNorm| |isOp| |d02ejf| |subPolSet?| |edf2ef|
+ |perfectNthPower?| |sinIfCan| |cyclicEqual?| |scaleRoots| |satisfy?|
+ |d02gaf| |internalSubPolSet?| |vedf2vef| |perfectNthRoot| |cosIfCan|
+ |init| |cyclicEntries| |shiftRoots| |addBadValue| |d02gbf|
+ |internalInfRittWu?| |df2st| |approxNthRoot| |tanIfCan| |cyclicCopy|
+ |degreePartition| |badValues| |d02kef| |internalSubQuasiComponent?|
+ |f2st| |perfectSquare?| |cotIfCan| |cyclic?| |factorOfDegree|
+ |retractable?| |d02raf| |subQuasiComponent?| |ldf2lst| |generator|
+ |perfectSqrt| |secIfCan| |complexNormalize| |factorsOfDegree|
+ |ListOfTerms| |d03edf| |removeSuperfluousQuasiComponents| |sdf2lst|
+ |approxSqrt| |cscIfCan| |complexElementary| |pascalTriangle|
+ |PDESolve| |d03eef| |subCase?| |getlo| |generateIrredPoly| |asinIfCan|
+ |trigs| |rangePascalTriangle| |search| |leftFactor| |d03faf|
+ |removeSuperfluousCases| |gethi| |complexExpand| |acosIfCan| |real?|
+ |stack| |sizePascalTriangle| |rightFactorCandidate| |e01baf|
+ |prepareDecompose| |outputMeasure| |complexIntegrate| |atanIfCan|
+ |complexForm| |fillPascalTriangle| |measure| |e01bef| |branchIfCan|
+ |dimensionOfIrreducibleRepresentation| |acotIfCan| |UpTriBddDenomInv|
+ |condition| |safeCeiling| |e01bff| |coerceImages| |rem|
+ |startTableGcd!| |weight| |irreducibleRepresentation| |asecIfCan|
+ |LowTriBddDenomInv| |safeFloor| |e01bgf| |fixedPoints| |quo|
+ |stopTableGcd!| |makeVariable| |checkRur| |acscIfCan| |simplify|
+ |safetyMargin| |odd?| |e01bhf| |startTableInvSet!| |dim| |finiteBound|
+ |cAcsch| |sinhIfCan| |htrigs| |e01daf| |div| |stopTableInvSet!|
+ |sortConstraints| |cAsech| |coshIfCan| |simplifyExp| |hclf|
+ |rightRemainder| |e01saf| |stosePrepareSubResAlgo| |exquo| |matrix|
+ |sumOfSquares| |cAcoth| |tanhIfCan| |simplifyLog| |writable?|
+ |rightQuotient| |e01sbf| ~= |stoseInternalLastSubResultant|
+ |splitLinear| |cAtanh| |cothIfCan| |coerce| |expandPower| |readable?|
+ |rightLcm| |e01sef| |stoseIntegralLastSubResultant| |#|
+ |simpleBounds?| |bezoutResultant| |expandLog| |exists?|
+ |leftExtendedGcd| ~ |e01sff| |stoseLastSubResultant| |printInfo|
+ |linearMatrix| |submod| |max| |bezoutDiscriminant| |clearCache|
+ |cos2sec| |extension| |leftGcd| |level| |e02adf|
+ |stoseInvertible?sqfreg| |linearPart| |addmod| |resultantEuclidean|
+ |cosh2sech| |shallowExpand| |leftExactQuotient| |e02aef|
+ |stoseInvertibleSetsqfreg| |nonLinearPart| |symmetricRemainder|
+ |semiResultantEuclidean2| |linear| |cot2trig| |deepExpand|
+ |leftRemainder| |substring?| |quadratic?| |positiveRemainder|
+ |semiResultantEuclidean1| |char| |coth2trigh|
+ |clearFortranOutputStack| |leftQuotient| |linears|
+ |extendedSubResultantGcd| |changeNameToObjf| |bit?|
+ |indiceSubResultant| |leader| |csc2sin| |polynomial|
+ |showFortranOutputStack| |ddFact| |monicLeftDivide| |exactQuotient!|
+ |suffix?| |optAttributes| |algint| |indiceSubResultantEuclidean|
+ |csch2sinh| |topFortranOutputStack| |monicRightDivide| |failed|
+ |separateFactors| |exactQuotient| |Nul| |algintegrate|
+ |semiIndiceSubResultantEuclidean| |setFormula!| |compile| |exptMod|
+ |leftDivide| |primPartElseUnitCanonical!| |prefix?| |status|
+ |exponents| |formula| |palgintegrate| |degreeSubResultant|
+ |shallowCopy| |linkToFortran| |rightDivide| |meshPar2Var|
+ |primPartElseUnitCanonical| |iisqrt2| |palginfieldint|
+ |degreeSubResultantEuclidean| |numberOfChildren|
+ |setLegalFortranSourceExtensions| |hermiteH| |meshFun2Var|
+ |lazyResidueClass| |second| |iisqrt3| |bitLength|
+ |semiDegreeSubResultantEuclidean| |erf| |children| |float| |fracPart|
+ |laguerreL| |meshPar1Var| |monicModulo| |third| |iiexp| |bitCoef|
+ |lastSubResultantEuclidean| |child| |polyPart| |legendreP| |ptFunc|
+ |lazyPseudoDivide| |hitherPlane| |iilog| |bitTruth|
+ |semiLastSubResultantEuclidean| |nrows| |birth| |void|
+ |fullPartialFraction| |writeBytes!| |minimumExponent|
+ |lazyPremWithDefault| |eyeDistance| |iisin| |contains?|
+ |subResultantGcdEuclidean| |ncols| |dilog| |internal?|
+ |primeFrobenius| |maximumExponent| |writeUInt8!| |lazyPquo| |infix?|
+ |perspective| |iicos| |inf| |semiSubResultantGcdEuclidean2| |sin|
+ |root?| |discreteLog| |mask| |writeInt8!| |rowEch| |lazyPrem| |zoom|
+ |iitan| |qinterval| |semiSubResultantGcdEuclidean1| |cos| |leaf?|
+ |decreasePrecision| |writeByte!| |rowEchLocal| |pquo| |rotate| |iicot|
+ |interval| |discriminantEuclidean| |expr| |tan| |outputForm|
+ |increasePrecision| |isOpen?| |rowEchelonLocal| |prem| |drawStyle|
+ |iisec| |unit?| |semiDiscriminantEuclidean| |cot| |argscript| |bits|
+ |outputBinaryFile| |normalizedDivide| |supRittWu?| |outlineRender|
+ |iicsc| |associates?| |chainSubResultants| |sec| |superscript| GE
+ |unitNormalize| |maxint| |blankSeparate| |double| |RittWuCompare|
+ |diagonals| |iiasin| |unitCanonical| |schema| |csc| |subscript| GT
+ |unit| |semicolonSeparate| |binaryFunction| |mainMonomials| |axes|
+ |bfEntry| |iiacos| |unitNormal| |variable| |resultantReduit| |asin|
+ |scripted?| LE |flagFactor| |commaSeparate| |makeFloatFunction|
+ |mainCoefficients| |controlPanel| |bfKeys| |iiatan| |lfextendedint|
+ |resetNew| |iterators| |resultantReduitEuclidean| |acos| |log| LT
+ |sqfrFactor| |pile| |unaryFunction| |leastMonomial| |viewpoint|
+ |iiacot| |lflimitedint| |semiResultantReduitEuclidean| |symFunc|
+ |atan| |primeFactor| |paren| |compiledFunction| |mainMonomial|
+ |dimensions| |iiasec| |lfinfieldint| BY |divide| |symbolTableOf|
+ |acot| |nthFlag| |bracket| |corrPoly| |quasiMonic?| |resize| |iiacsc|
+ |lfintegrate| |Lazard| |argumentListOf| |asec| |nthExponent| |prod|
+ |lifting| |monic?| |move| |iisinh| |lfextlimint| |Lazard2|
+ |returnTypeOf| |acsc| |irreducibleFactor| |lifting1| |overlabel|
+ |deepestInitial| |declare!| |modifyPointData| |iicosh| |BasicMethod|
+ |nextsousResultant2| |printHeader| |sinh| |sylvesterMatrix| |factors|
+ |overbar| |exprex| |iteratedInitials| |subspace| |iitanh|
+ |PollardSmallFactor| |resultantnaif| |returnType!| |cosh|
+ |bezoutMatrix| |nilFactor| |prime| |coerceL| |deepestTail|
+ |makeViewport3D| |iicoth| |showTheFTable| |resultantEuclideannaif|
+ |argumentList!| |tanh| |regularRepresentation| |quote| |coerceS|
+ |head| |viewport3D| |iisech| |clearTheFTable|
+ |semiResultantEuclideannaif| |endSubProgram| |coth| |traceMatrix|
+ |frobenius| |supersub| |mdeg| NOT |viewDeltaYDefault| |iicsch|
+ |fTable| |pdct| |currentSubProgram| |sech| |randomLC| |computePowers|
+ |keys| |presuper| |mvar| OR |viewDeltaXDefault| |iiasinh| |palgint0|
+ |powers| |depth| |newSubProgram| |csch| |minimize| |pow| |presub|
+ |relativeApprox| AND |viewZoomDefault| |iiacosh| |palgextint0|
+ |partition| |clearTheSymbolTable| |module| |An| |sub| |debug| |rootOf|
+ |segment| |viewPhiDefault| |iiatanh| |palglimint0| |complete|
+ |showTheSymbolTable| |rightRegularRepresentation| |rarrow| D
+ |UnVectorise| |allRootsOf| |viewThetaDefault| |iiacoth| |palgRDE0|
+ |pole?| |printTypes| |leftRegularRepresentation| |assign| |Vectorise|
+ |definingPolynomial| |pointColorDefault| |iiasech| |palgLODE0|
+ |listBranches| |newTypeLists| |rightTraceMatrix| |slash| |setPoly|
+ |positive?| |lineColorDefault| |iiacsch| |chineseRemainder|
+ |triangular?| |typeLists| |leftTraceMatrix| |over| |exponent|
+ |negative?| |associatedSystem| |axesColorDefault| |specialTrigs|
+ |divisors| |rewriteIdealWithRemainder| |externalList| |function|
+ |rightDiscriminant| |zag| |exQuo| |zero?| |uncouplingMatrices|
+ |unitsColorDefault| |localReal?| |eulerPhi|
+ |rewriteIdealWithHeadRemainder| |typeList| |parts| |leftDiscriminant|
+ |postfix| |moebius| |augment| |pointSizeDefault| |rischNormalize|
+ |fibonacci| |remainder| |parametersOf| |represents| |infix|
+ |rightRecip| |lastSubResultant| |viewPosDefault| |realElementary|
+ |harmonic| |headRemainder| |fortranTypeOf| |properties| |mergeFactors|
+ |leftRecip| |vconcat| |lastSubResultantElseSplit| * |viewSizeDefault|
+ |validExponential| |jacobi| |roughUnitIdeal?| |empty| |translate|
+ |isMult| |hconcat| |leftPower| |invertibleSet| |viewDefaults|
+ |rootNormalize| |moebiusMu| |roughEqualIdeals?| |compound?|
+ |exprToXXP| |optimize| |rspace| |print| |rightPower| |invertible?|
+ |viewWriteDefault| |tanQ| |numberOfDivisors| |roughSubIdeal?|
+ |getOperands| |operation| |exprToUPS| |resolve| |vspace|
+ |derivationCoordinates| |invertibleElseSplit?| = |viewWriteAvailable|
+ |callForm?| |sumOfDivisors| |roughBase?| |getOperator| |exprToGenUPS|
+ |hspace| |one?| |purelyAlgebraicLeadingMonomial?| |var1StepsDefault|
+ |getIdentifier| |sumOfKthPowerDivisors| |trivialIdeal?| |nil?|
+ |localAbs| |superHeight| |splitSquarefree| |algebraicCoefficients?| <
+ |var2StepsDefault| |variable?| |HermiteIntegrate| |collectUpper|
+ |buildSyntax| |universe| |subHeight| |normalDenom|
+ |purelyTranscendental?| > |tubePointsDefault| |setleaves!|
+ |getConstant| |palgint| |collect| |solve| |complement|
+ |doubleFloatFormat| |totalfract| |purelyAlgebraic?| <=
+ |tubeRadiusDefault| |balancedBinaryTree| |environment| |palgextint|
+ |collectUnder| |triangularSystems| |cardinality| |messagePrint|
+ |pushdterm| |prepareSubResAlgo| >= |dimension| |irForm| |palglimint|
+ |mainVariable?| |nativeModuleExtension| |interpret|
+ |internalIntegrate0| |members| |pushucoef| |internalLastSubResultant|
+ |crest| |palgRDE| |mainVariables| |hostByteOrder| |true| |makeCos|
+ |padecf| |pushuconst| |integralLastSubResultant| |cfirst|
+ |totalDifferential| |cn| |palgLODE| |removeSquaresIfCan|
+ |hostPlatform| |makeSin| |mantissa| |pade| |numberOfMonomials|
+ |toseLastSubResultant| + |sts2stst| |homogeneous?| |splitConstant|
+ |unprotectedRemoveRedundantFactors| |rootDirectory|
+ |resetAttributeButtons| |iiGamma| |root| |multiset| |toseInvertible?|
+ - |clikeUniv| |leadingBasisTerm| |pmComplexintegrate|
+ |removeRedundantFactors| |bumprow| |getButtonValue| |mergeDifference|
+ |toseInvertibleSet| |weierstrass| / |ignore?| |pmintegrate|
+ |certainlySubVariety?| |bumptab| |leastAffineMultiple| |OMgetEndAtp|
+ |squareFreePrim| |toseSquareFreePart| |qqq| |computeInt| |infieldint|
+ |possiblyNewVariety?| |bumptab1| |category| |reducedQPowers|
+ |OMgetEndAttr| |nil| |compdegd| |quotedOperators| |integralBasis|
+ |checkForZero| |extendedint| |shift| |probablyZeroDim?| |untab|
+ |domain| |rootOfIrreduciblePoly| |OMgetEndBind| |univcase| |rur|
+ |localIntegralBasis| |logGamma| |bat1| |package| |write!|
+ |OMgetEndBVar| |consnewpol| |create| |qualifier| |varList|
+ |hypergeometric0F1| |zeroDimPrime?| |pointPlot| |bat| |read!|
+ |OMgetEndError| |dec| |nsqfree| |enterInCache| |approximate| |qelt|
+ |mainExpression| |rotatez| |zeroDimPrimary?| |delta| |calcRanges|
+ |tab1| |iomode| |OMgetEndObject| |complex| |property| |intChoose|
+ |currentCategoryFrame| |qsetelt| |changeWeightLevel| |rotatey|
+ |primaryDecomp| |fixPredicate| |tab| |close!| |OMgetInteger| |xRange|
+ |characteristicSerie| |rotatex| |contract| |patternMatch| |show| |lex|
+ |reopen!| |OMgetFloat| |lyndonIfCan| |binomial| |yRange|
+ |characteristicSet| |identity| |gensym| |retract| |patternMatchTimes|
+ |slex| |deleteProperty!| |rightUnit| |lyndon| |OMgetVariable|
+ |poisson| |units| |zRange| |medialSet| |dictionary| |leadingSupport|
+ |bernoulli| |trace| |typeForm| |inverse| |has?| |leftUnit|
+ |OMgetString| |lyndon?| |geometric| |map!| |Hausdorff| |dioSolve|
+ |shrinkable| |chebyshevT| |rightMinimalPolynomial| |OMgetSymbol|
+ |numberOfComputedEntries| |ridHack1| |qsetelt!| |Frobenius| |newLine|
+ |physicalLength!| |chebyshevU| |isConnected?|
+ |transcendentalDecompose| |leftMinimalPolynomial| |OMgetType| |rst|
+ |interpolate| |transcendenceDegree| |copies| |physicalLength| |lambda|
+ |cyclotomic| |connectTo| |internalDecompose| |associatorDependence|
+ |OMencodingBinary| |frst| |nullSpace| |extensionDegree| |sayLength|
+ |flexibleArray| |euler| |normalizedAssociate| |decompose| |code|
+ |lieAlgebra?| |OMencodingSGML| |lazyEvaluate| |nullity| |setnext!|
+ |elseBranch| |fixedDivisor| |normalize| |upDateBranches|
+ |jordanAlgebra?| |OMencodingXML| |lazy?| |rowEchelon| |setrest!|
+ |setprevious!| |thenBranch| |laguerre| |outputArgs| |preprocess|
+ |datalist| |noncommutativeJordanAlgebra?| |OMencodingUnknown|
+ |explicitlyEmpty?| |column| |setfirst!| |shanksDiscLogAlgorithm|
+ |generalizedInverse| |legendre| |normInvertible?|
+ |internalZeroSetSplit| |jordanAdmissible?| |omError|
+ |explicitEntries?| |row| |cycleSplit!| |plus| |reflect| |imports|
+ |dmpToHdmp| |normFactors| |internalAugment| |comparison|
+ |lieAdmissible?| |errorInfo| |matrixDimensions| |maxColIndex|
+ |concat!| |reify| |sequence| |hdmpToDmp| |npcoef| |possiblyInfinite?|
+ |dom| |equality| |jacobiIdentity?| |errorKind| |matrixConcat3D|
+ |minColIndex| |cycleTail| |functorData| |readBytes!| |listexp|
+ |pToHdmp| |explicitlyFinite?| |sum| |powerAssociative?| |OMReadError?|
+ |setelt!| |maxRowIndex| |cycleLength| |separant| |readUInt32!|
+ |hdmpToP| |characteristicPolynomial| |nextItem| |alternative?|
+ |OMUnknownSymbol?| |identityMatrix| |minRowIndex| |cycleEntry| |times|
+ |isobaric?| |readInt32!| |dmpToP| |realEigenvalues| |upperBound|
+ |flexible?| |OMUnknownCD?| |zeroMatrix| |antisymmetric?|
+ |invmultisect| |morphism| |weights| |readUInt16!| |pToDmp|
+ |realEigenvectors| |lowerBound| |setButtonValue| |top|
+ |rightAlternative?| |OMParseError?| |mappingAst| |symmetric?|
+ |multisect| |lp| |systemCommand| |balancedFactorisation|
+ |differentialVariables| |readInt16!| |sylvesterSequence|
+ |halfExtendedResultant2| |iterationVar| |setAttributeButtonStep|
+ |leftAlternative?| |nullary| |OMwrite| |diagonal?| |symbolTable|
+ |title| |comp| |revert| |extractBottom!| |readUInt8!| |sturmSequence|
+ |halfExtendedResultant1| |infiniteProduct| |decrease|
+ |antiAssociative?| |po| |fixedPoint| |square?| |generalLambert| |node|
+ |monom| |extractTop!| |options| |readInt8!| |boundOfCauchy|
+ |extendedResultant| |evenInfiniteProduct| |increase| |continue|
+ |associative?| |sort| |pushFortranOutputStack| |OMread| |recur|
+ |rectangularMatrix| |evenlambert| |normal| |insertBottom!| |readByte!|
+ |sturmVariationsOf| |subResultantsChain| |oddInfiniteProduct| |e|
+ |antiCommutative?| |popFortranOutputStack| |OMreadFile| |const|
+ |characteristic| |oddlambert| |insertTop!| |setFieldInfo|
+ |lazyVariations| |lazyPseudoQuotient| |generalInfiniteProduct|
+ |commutative?| |list| |curry| |OMreadStr| |round| |outputAsFortran|
+ |lambert| |common| |bottom!| |string| |pol| |content|
+ |lazyPseudoRemainder| |showAll?| |car| |rightCharacteristicPolynomial|
+ |OMlistCDs| |diag| |fractionPart| |lagrange| |top!| |xn| |totalDegree|
+ |bernoulliB| |showAllElements| |random| |cdr|
+ |leftCharacteristicPolynomial| |OMlistSymbols| |curryRight|
+ |wholePart| |univariatePolynomial| |dequeue| |dAndcExp|
+ |minimumDegree| |eulerE| |delay| |rightNorm| |setDifference|
+ |curryLeft| |OMsupportsCD?| |nothing| |floor| |integrate| |recolor|
+ |repSq| |monomials| |numericIfCan| |findCycle| |setIntersection|
+ |leftNorm| |OMsupportsSymbol?| |constantRight| |ceiling|
+ |multiplyCoefficients| |drawComplex| |expPot| |isPlus|
+ |complexNumericIfCan| |repeating?| |setUnion| |rightTrace|
+ |OMunhandledSymbol| |constantLeft| |norm| |quoByVar|
+ |drawComplexVectorField| |qPot| |isTimes| |FormatArabic| |repeating|
+ |apply| |leftTrace| |OMreceive| |twist| |mightHaveRoots|
+ |coefficients| |setRealSteps| |lookup| |isExpt| |ScanArabic| |recip|
+ |someBasis| |OMsend| |setsubMatrix!| |refine| |stFunc1| |zero|
+ |setImagSteps| |normal?| |isPower| |FormatRoman| |integers| |size|
+ |sort!| |OMserve| |subMatrix| |middle| |stFunc2| |numeric|
+ |setClipValue| |basis| |ScanRoman| |rroot| |width| |oddintegers|
+ |copyInto!| |makeop| |swapColumns!| |roman| |stFuncN| |radical| |And|
+ |option?| |normalElement| |ScanFloatIgnoreSpaces| |qroot| |equation|
+ |mapmult| |sorted?| |precision| |opeval| |swapRows!|
+ |recoverAfterFail| |fixedPointExquo| |Or| |range| |minimalPolynomial|
+ |froot| |ScanFloatIgnoreSpacesIfCan| |deriv| |first| |LiePoly|
+ |evaluateInverse| |vertConcat| |showTheRoutinesTable| |ode1| |Not|
+ |colorFunction| |position!| |nthr| |numericalIntegration| |gderiv|
+ |quickSort| |rest| |horizConcat| |evaluate| |deleteRoutine!| |vector|
+ |ode2| |curveColor| |eof?| |firstUncouplingMatrix| |rk4| |compose|
+ |heapSort| |substitute| |squareTop| |conjug| |getExplanations|
+ |differentiate| |ode| |pointColor| |inputBinaryFile| |integral| |rk4a|
+ |addiag| |removeDuplicates| |shellSort| |adjoint| |elRow1!|
+ |getMeasure| |mpsode| |clip| |increment| |primitiveElement| |rk4qc|
+ |lazyIntegrate| |outputSpacing| |elRow2!| |arity| |mr| |changeMeasure|
+ |clipBoolean| UP2UTS |charpol| |nextPrime| |super| |name| |rk4f|
+ |optional| |hash| |nlde| |outputGeneral| |getDatabase| |elColumn2!|
+ |changeThreshhold| UTS2UP |style| |count| |solve1| |prevPrime| |lift|
+ |body| |aromberg| |powern| |outputFixed| |numericalOptimization|
+ |fractionFreeGauss!| |selectMultiDimensionalRoutines| LODO2FUN
+ |inspect| |toScale| |innerEigenvectors| |primes| |reduce| |asimpson|
+ |mapdiv| |outputFloating| |goodnessOfFit| |invertIfCan|
+ |selectNonFiniteRoutines| RF2UTS |extract!| |pointColorPalette|
+ |parseString| |selectsecond| |atrapezoidal| |lazyGintegrate| |exp1|
+ |whatInfinity| |copy!| |selectSumOfSquaresRoutines| |magnitude|
+ |curveColorPalette| |unparse| |selectfirst| |romberg| |power| |log2|
+ |infinite?| |plus!| |selectFiniteRoutines| |cross| |var1Steps|
+ |binary| |makeprod| |simpson| |sincos| |rationalApproximation|
+ |finite?| |minus!| |selectODEIVPRoutines| |dot| |var2Steps|
+ |packageCall| |disjunction| |trapezoidal| |sinhcosh| |relerror|
+ |leftScalarTimes!| |pureLex| |selectPDERoutines| SEGMENT |error|
+ |scan| |space| |innerSolve1| |conjunction| |port| |rombergo|
+ |subresultantVector| |constantOpIfCan| |any| |complexSolve| |totalLex|
+ |rightScalarTimes!| |selectOptimizationRoutines| |assert|
+ |graphCurves| |tower| |bag| |tubePoints| |innerSolve| |isEquiv|
+ |simpsono| |primitivePart| |complexRoots| |reverseLex| |times!|
+ |selectIntegrationRoutines| |drawCurves| |binding| |tubeRadius|
+ |makeEq| |isImplies| |t| |trapezoidalo| |pointData| |realRoots|
+ |leftLcm| |power!| |routines| |scale| |modularGcdPrimitive| |isOr|
+ |sup| |parent| |leadingTerm| |rightExtendedGcd| |just|
+ |mainSquareFreePart| |connect| |modTree| |modularGcd| |isAnd| |imagE|
+ |extractProperty| |overlap| |rightGcd| |gradient| |mainPrimitivePart|
+ |region| |multiEuclideanTree| |reduction| |isNot| |imagk|
+ |extractClosed| |hcrf| |loadNativeModule| |constant|
+ |rightExactQuotient| |divergence| |mainContent| |points|
+ |complexZeros| |complexNumeric| |mapDown!| |signAround| |isTerm|
+ |imagj| |extractIndex| |laplacian| |primitivePart!| |getGraph|
+ |mapUp!| |divisorCascade| |byte| |predicate| |invmod| |equiv| |imagi|
+ |extractPoint| |useNagFunctions| |algDsolve| |hessian|
+ |nextsubResultant2| |putGraph| |graeffe| |kernels| |powmod| |implies|
+ |concat| |octon| |traverse| |rationalPoints| |denomLODE|
+ |noLinearFactor?| |bandedHessian| |LazardQuotient2| |graphs|
+ |pleskenSplit| |operator| |mulmod| |merge!| |ODESolve|
+ |defineProperty| |nonSingularModel| |indicialEquations| |insertRoot!|
+ |jacobian| |LazardQuotient| |graphStates| |reciprocalPolynomial|
+ |constDsolve| |closeComponent| |algSplitSimple| |indicialEquation|
+ |binarySearchTree| |bandedJacobian| |subResultantChain| |graphState|
+ |rootRadius| |univariate| |nextSubsetGray| |mathieu23|
+ |showTheIFTable| |modifyPoint| |hyperelliptic| |denomRicDE| |nor|
+ |comment| |duplicates| |halfExtendedSubResultantGcd2| |schwerpunkt|
+ |makeViewport2D| |directory| |script| |firstSubsetGray| |mathieu24|
+ |clearTheIFTable| |step| |addPointLast| |elliptic|
+ |leadingCoefficientRicDE| |nand| |removeDuplicates!|
+ |halfExtendedSubResultantGcd1| |viewport2D| |setErrorBound|
+ |clipPointsDefault| |janko2| |iFTable| |addPoint2|
+ |integralDerivationMatrix| |constantCoefficientRicDE|
+ |binaryTournament| |getPickedPoints| |startPolynomial| |factor|
+ |drawToScale| |rubiksGroup| |showIntensityFunctions| |addPoint| |int|
+ |integralRepresents| |trailingCoefficient| |changeVar| |rischDE|
+ |construct| |binaryTree| |cycleElt| |adaptive| |colorDef| |sqrt| |tex|
+ |youngGroup| |source| |expint| |merge| |integralCoordinates|
+ |ratDsolve| |normalizeIfCan| |rischDEsys| |setLength!|
+ |computeCycleLength| |intensity| |figureUnits| |real| |parameters|
+ |lexGroebner| |diff| |deepCopy| |yCoordinates|
+ |indicialEquationAtInfinity| |polCase| |monomRDE| |capacity|
+ |lighting| |computeCycleEntry| |imag| |putColorInfo| |totalGroebner|
+ |inverseIntegralMatrixAtInfinity| |distFact| |reduceLODE| |baseRDE|
+ |length| |byteBuffer| |clipSurface| |findConstructor| |directProduct|
+ |appendPoint| |expressIdealMember| |f04maf| |llprop|
+ |integralMatrixAtInfinity| |identification| |singRicDE| |polyRDE|
+ |scripts| |unknownEndian| |showClipRegion| |dualSignature| |component|
+ |principalIdeal| |f04mbf| |lllp| |inverseIntegralMatrix| |polyRicDE|
+ |LyndonCoordinates| |monomRDEsys| |bigEndian| |coerceP| |ranges|
+ |showRegion| |brace| |LagrangeInterpolation| |target| |ptree| |f04mcf|
+ |lllip| |integralMatrix| |ricDsolve| |LyndonBasis| |baseRDEsys|
+ |littleEndian| |derivative| |powerSum| |destruct| |pointLists|
+ |psolve| |f04qaf| |mesh?| |reduceBasisAtInfinity| |triangulate|
+ |zeroDimensional?| |weighted| |subtractIfCan| |more?|
+ |constantOperator| |elementary| |makeGraphImage| |wrregime| |f07adf|
+ |mesh| |kind| |normalizeAtInfinity| |solveInField| |fglmIfCan|
+ |rdHack1| |setPosition| |setVariableOrder| |alternating| |graphImage|
+ |rdregime| |f07aef| |polygon?| |op| |complementaryBasis|
+ |wronskianMatrix| |groebner| |midpoint|
+ |generalizedContinuumHypothesisAssumed| |getVariableOrder| |cyclic|
+ |groebSolve| |bsolve| |f07fdf| |polygon| |integral?|
+ |variationOfParameters| |lexTriangular| |midpoints|
+ |generalizedContinuumHypothesisAssumed?| |resetVariableOrder| |ravel|
+ |dihedral| |monomial| |testDim| |dmp2rfi| |f07fef| |closedCurve?|
+ |integralAtInfinity?| |lexico| |squareFreeLexTriangular| |realZeros|
+ |countable?| |prime?| |cap| |genericPosition| |multivariate| |reshape|
+ |se2rfi| |s01eaf| |closedCurve| |arguments| |integralBasisAtInfinity|
+ |belong?| |OMmakeConn| |mainCharacterization| |setelt| |Aleph|
+ |sample| |cup| |variables| |lfunc| |pr2dmp| |s13aaf| |curve?|
+ |ramified?| |OMcloseConn| |Ci| |algebraicOf| |unravel|
+ |rationalFunction| |wreath| |inHallBasis?| |hasoln| |s13acf| |curve|
+ |ramifiedAtInfinity?| |Si| |OMconnInDevice| |ReduceOrder| |copy|
+ |leviCivitaSymbol| |taylorIfCan| |SFunction| |reorder| |ParCondList|
+ |s13adf| |point?| |union| |singular?| |OMconnOutDevice| |Ei| |setref|
+ |kroneckerDelta| |removeZeroes| |skewSFunction| |headAst| |s14aaf|
+ |redpps| |rank| |enterPointData| |singularAtInfinity?| |OMconnectTCP|
+ |linGenPos| |deref| |reindex| |taylorRep| |cyclotomicDecomposition|
+ |heap| |s14abf| |B1solve| |composites| |update| |branchPoint?|
+ |groebgen| |OMbindTCP| |ref| |autoCoerce| |principalAncestors|
+ |factorSquareFree| |cyclotomicFactorization| |gcdprim| |factorset|
+ |s14baf| |components| |branchPointAtInfinity?| |OMopenFile| |totolex|
+ |radicalEigenvectors| |exportedOperators| |henselFact| |rangeIsFinite|
+ |gcdcofact| |maxrank| |s15adf| |numberOfComposites| |rationalPoint?|
+ |OMopenString| |minPol| |radicalEigenvector| |alphanumeric| |hasHi|
+ |functionIsContinuousAtEndPoints| |gcdcofactprim| |minrank| |s15aef|
+ |numberOfComponents| |absolutelyIrreducible?| |OMclose| |computeBasis|
+ |radicalEigenvalues| |alphabetic| |fmecg| |functionIsOscillatory|
+ |lintgcd| |minset| |s17acf| |create3Space| |hexDigit| |genus|
+ |OMsetEncoding| |coord| |eigenMatrix| |digit?| |commonDenominator|
+ |changeName| |hex| |s17adf| |nextSublist| |outputAsScript| |position|
+ |getZechTable| |OMputApp| |anticoord| |normalise| |digit|
+ |clearDenominator| |exprHasWeightCosWXorSinWX| |every?| |s17aef|
+ |overset?| |match?| |lists| |outputAsTex| |createZechTable| |OMputAtp|
+ |intcompBasis| |gramschmidt| |charClass| |splitDenominator|
+ |exprHasAlgebraicWeight| |any?| |ParCond| |s17aff| |abs|
+ |createMultiplicationTable| |OMputAttr| |choosemon| |orthonormalBasis|
+ |alphanumeric?| |monicRightFactorIfCan| |exprHasLogarithmicWeights|
+ |host| |redmat| |s17agf| |Beta| |createMultiplicationMatrix|
+ |OMputBind| |transform| |antisymmetricTensors| |lowerCase?|
+ |rightFactorIfCan| |combineFeatureCompatibility| |trueEqual| |declare|
+ |regime| |s17ahf| |digamma| |createLowComplexityTable| |OMputBVar|
+ |pack!| |createGenericMatrix| |upperCase?| |leftFactorIfCan|
+ |sparsityIF| |factorList| |sqfree| |s17ajf| |polygamma|
+ |createLowComplexityNormalBasis| |OMputError| |complexLimit|
+ |symmetricTensors| |alphabetic?| |monicDecomposeIfCan|
+ |stiffnessAndStabilityFactor| |listConjugateBases| |inconsistent?|
+ |s17akf| |Gamma| |representationType| |OMputObject| |limit|
+ |tensorProduct| |hexDigit?| |monicCompleteDecompose|
+ |stiffnessAndStabilityOfODEIF| |matrixGcd| |numFunEvals| |s17dcf|
+ |besselJ| |createPrimitiveElement| |arg1| |OMputEndApp|
+ |linearlyDependent?| |permutationRepresentation| |escape|
+ |divideIfCan| |systemSizeIF| |divideIfCan!| |setAdaptive| |s17def|
+ |besselY| |tableForDiscreteLogarithm| |arg2| |OMputEndAtp|
+ |linearDependence| |completeEchelonBasis| |ord| |noKaratsuba|
+ |expenseOfEvaluationIF| |leastPower| |adaptive?| |s17dgf| |besselI|
+ |factorsOfCyclicGroupSize| |OMputEndAttr| |solveLinear|
+ |createRandomElement| |karatsubaOnce| |accuracyIF| |idealiser|
+ |setScreenResolution| |s17dhf| |besselK| |sizeMultiplication|
+ |reducedSystem| |conditions| |OMputEndBind| |asinh| |cyclicSubmodule|
+ |karatsuba| |intermediateResultsIF| |idealiserMatrix|
+ |screenResolution| |s17dlf| |airyAi| |getMultiplicationMatrix|
+ |duplicates?| |match| |OMputEndBVar| |acosh|
+ |standardBasisOfCyclicSubmodule| |separate| |subscriptedVariables|
+ |stop| |moduleSum| |setMaxPoints| |close| |s18acf| |airyBi|
+ |getMultiplicationTable| |mapGen| |OMputEndError| |atanh|
+ |areEquivalent?| |pseudoDivide| |central?| |mapUnivariate| |maxPoints|
+ |s18adf| |subNode?| |primitive?| |li| |mapExpon| |OMputEndObject|
+ |acoth| |isAbsolutelyIrreducible?| |pseudoQuotient| |elliptic?|
+ |mapUnivariateIfCan| |s18aef| |setMinPoints| |display| |infLex?|
+ |bright| |numberOfIrreduciblePoly| |commutativeEquality|
+ |OMputInteger| |asech| |meatAxe| |composite| |doubleResultant|
+ |mapMatrixIfCan| |minPoints| |s18aff| |setEmpty!|
+ |numberOfPrimitivePoly| |OMputFloat| |leftMult| |scanOneDimSubspaces|
+ |subResultantGcd| |distdfact| |mapBivariate| |parametric?| |s18dcf|
+ |setStatus!| |numberOfNormalPoly| |fortran| |rightMult|
+ |OMputVariable| |multiple| |expt| |resultant| |separateDegrees|
+ |fullDisplay| |plotPolar| |s18def| |setCondition!|
+ |createIrreduciblePoly| |applyQuote| |box| |OMputString| |makeUnit|
+ |showArrayValues| |discriminant| |trace2PowMod| |relationsIdeal|
+ |debug3D| |s19aaf| |setValue!| |createPrimitivePoly| |OMputSymbol|
+ |reverse!| |showScalarValues| |pseudoRemainder| |tracePowMod|
+ |saturate| |input| |numFunEvals3D| |s19abf| |empty?|
+ |createNormalPoly| |OMgetApp| |nthFactor| |solveRetract| |shiftLeft|
+ |irreducible?| |groebner?| |library| |setAdaptive3D| |s19acf|
+ |splitNodeOf!| |createNormalPrimitivePoly| |nthExpon| |OMgetAtp|
+ |ruleset| |mainVariable| |shiftRight| |decimal| |groebnerIdeal|
+ |adaptive3D?| |s19adf| |remove!| |createPrimitiveNormalPoly|
+ |OMgetAttr| |makeMulti| |uniform01| |karatsubaDivide| |innerint|
+ |ideal| |setScreenResolution3D| |s20acf| |subNodeOf?|
+ |nextIrreduciblePoly| |OMgetBind| |makeTerm| |normal01| |nary?|
+ |monicDivide| |test| |exteriorDifferential| |leadingIdeal| |id|
+ |screenResolution3D| |s20adf| |nodeOf?| |nextPrimitivePoly|
+ |listOfMonoms| |OMgetBVar| |suchThat| |exponential1| |divideExponents|
+ |backOldPos| |setMaxPoints3D| |set| |s21baf| |updateStatus!|
+ |nextNormalPoly| |OMgetError| |symmetricSquare| |chiSquare1| |unary?|
+ |unmakeSUP| |mkIntegral| |generalPosition| |table| |maxPoints3D|
+ |s21bbf| |extractSplittingLeaf| |nextNormalPrimitivePoly|
+ |OMgetObject| |factor1| |exponential| |nullary?| |makeSUP| |radPoly|
+ |subst| |quotient| |insert| |new| |setMinPoints3D| |s21bcf|
+ |squareMatrix| |obj| |nextPrimitiveNormalPoly| |OMgetEndApp|
+ |symmetricProduct| |chiSquare| |vectorise| |rootPoly| |zeroDim?|
+ |s21bdf| |minPoints3D| |eq| |transpose| |prefix| |symmetricPower|
+ |cache| |factorFraction| |extend| |goodPoint| |inRadical?| |iter|
+ |tValues| |fortranCompilerName| |trim| |measure2Result| |directSum|
+ |componentUpperBound| |truncate| |chvar| |in?| |fortranLinkerArgs|
+ |tRange| |split| |signature| |att2Result|
+ |solveLinearPolynomialEquationByFractions| |blue| |order| |find|
+ |element?| |plot| |aspFilename| |replace| |iflist2Result|
+ |hasSolution?| |green| |terms| |clipParametric| |delete|
+ |dimensionsOf| |upperCase!| |pdf2ef| |linSolve| |red| |squareFreePart|
+ |clipWithRanges| |objects| |sumSquares| |even?| |restorePrecision|
+ |upperCase| |pdf2df| |LyndonWordsList| |whitePoint| |BumInSepFFE|
+ |numberOfHues| |base| |euclideanNormalForm| |numberOfCycles|
+ |antiCommutator| |lowerCase!| |df2ef| |LyndonWordsList1| |uniform|
+ |multiplyExponents| |yellow| |euclideanGroebner| |cyclePartition|
+ |commutator| |lowerCase| |fi2df| |retractIfCan| |laurentIfCan|
+ |iifact| |factorGroebnerBasis| |coerceListOfPairs| |flatten|
+ |associator| |KrullNumber| |exp| |mat| |cAcosh| |sechIfCan|
+ |laurentRep| |iibinom| |groebnerFactorize| |coercePreimagesImages|
+ |left| |complexEigenvalues| |numberOfVariables| |numer| |neglist|
+ |cAsinh| |cschIfCan| |rationalPower| |iiperm| |credPol|
+ |listRepresentation| |right| |complexEigenvectors|
+ |algebraicDecompose| |outputList| |denom| |multiEuclidean| |cCsch|
+ |asinhIfCan| |dominantTerm| |iipow| |redPol| |permanent|
+ |extendedEuclidean| |cSech| |acoshIfCan| |limitPlus| |iidsum| |gbasis|
+ |/\\| |cycles| |e02agf| |stoseInvertible?reg| |pi| |euclideanSize|
+ |cCoth| |atanhIfCan| |split!| |iidprod| |critT| |\\/| |cycle| |e02ahf|
+ |stoseInvertibleSetreg| |infinity| |sizeLess?| |cTanh| |acothIfCan|
+ |setlast!| |nil| |infinite| |arbitraryExponent| |approximate|
+ |complex| |shallowMutable| |canonical| |noetherian| |central|
+ |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
+ |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
+ |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
+ |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 6d958286..8622df59 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5369 +1,5369 @@
-(3216747 . 3477490117)
-((-1910 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1908 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4237 ((|#2| $ (-551) |#2|) NIL) ((|#2| $ (-1239 (-551)) |#2|) 44)) (-2460 (($ $) 81)) (-4292 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3861 (((-551) (-1 (-112) |#2|) $) 27) (((-551) |#2| $) NIL) (((-551) |#2| $ (-551)) 97)) (-2134 (((-646 |#2|) $) 13)) (-3959 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2138 (($ (-1 |#2| |#2|) $) 37)) (-4408 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2467 (($ |#2| $ (-551)) NIL) (($ $ $ (-551)) 67)) (-1444 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2136 (((-112) (-1 (-112) |#2|) $) 23)) (-4249 ((|#2| $ (-551) |#2|) NIL) ((|#2| $ (-551)) NIL) (($ $ (-1239 (-551))) 66)) (-2468 (($ $ (-551)) 76) (($ $ (-1239 (-551))) 75)) (-2135 (((-776) (-1 (-112) |#2|) $) 34) (((-776) |#2| $) NIL)) (-1909 (($ $ $ (-551)) 69)) (-3842 (($ $) 68)) (-3971 (($ (-646 |#2|)) 73)) (-4251 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-646 $)) 86)) (-4396 (((-868) $) 93)) (-2137 (((-112) (-1 (-112) |#2|) $) 22)) (-3473 (((-112) $ $) 96)) (-3106 (((-112) $ $) 100)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -1909 (|#1| |#1| |#1| (-551))) (-15 -1910 ((-112) |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4237 (|#2| |#1| (-1239 (-551)) |#2|)) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4237 (|#2| |#1| (-551) |#2|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2134 ((-646 |#2|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3842 (|#1| |#1|))) (-19 |#2|) (-1222)) (T -18))
+(3226898 . 3477887529)
+((-3389 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3364 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3861 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-1240 (-569)) |#2|) 44)) (-4188 (($ $) 81)) (-3485 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3975 (((-569) (-1 (-112) |#2|) $) 27) (((-569) |#2| $) NIL) (((-569) |#2| $ (-569)) 97)) (-2796 (((-649 |#2|) $) 13)) (-3719 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3065 (($ (-1 |#2| |#2|) $) 37)) (-1324 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4274 (($ |#2| $ (-569)) NIL) (($ $ $ (-569)) 67)) (-4316 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3983 (((-112) (-1 (-112) |#2|) $) 23)) (-1852 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL) (($ $ (-1240 (-569))) 66)) (-4326 (($ $ (-569)) 76) (($ $ (-1240 (-569))) 75)) (-3469 (((-776) (-1 (-112) |#2|) $) 34) (((-776) |#2| $) NIL)) (-3376 (($ $ $ (-569)) 69)) (-3885 (($ $) 68)) (-3709 (($ (-649 |#2|)) 73)) (-3632 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-649 $)) 86)) (-2388 (((-867) $) 93)) (-3996 (((-112) (-1 (-112) |#2|) $) 22)) (-2853 (((-112) $ $) 96)) (-2872 (((-112) $ $) 100)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -3376 (|#1| |#1| |#1| (-569))) (-15 -3389 ((-112) |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3861 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -3861 (|#2| |#1| (-569) |#2|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3885 (|#1| |#1|))) (-19 |#2|) (-1223)) (T -18))
NIL
-(-10 -8 (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -1909 (|#1| |#1| |#1| (-551))) (-15 -1910 ((-112) |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4237 (|#2| |#1| (-1239 (-551)) |#2|)) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4237 (|#2| |#1| (-551) |#2|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2134 ((-646 |#2|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3842 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-3861 (((-551) (-1 (-112) |#1|) $) 98) (((-551) |#1| $) 97 (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) 96 (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 71)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 84 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) 86 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 83 (|has| |#1| (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-19 |#1|) (-140) (-1222)) (T -19))
+(-10 -8 (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -3376 (|#1| |#1| |#1| (-569))) (-15 -3389 ((-112) |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3861 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -3861 (|#2| |#1| (-569) |#2|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3885 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-3975 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 71)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-19 |#1|) (-140) (-1223)) (T -19))
NIL
-(-13 (-376 |t#1|) (-10 -7 (-6 -4444)))
-(((-34) . T) ((-102) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-376 |#1|) . T) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1107) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-1222) . T))
-((-1410 (((-3 $ "failed") $ $) 12)) (-4287 (($ $) NIL) (($ $ $) 9)) (* (($ (-925) $) NIL) (($ (-776) $) 16) (($ (-551) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 -1410 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|))) (-21)) (T -20))
+(-13 (-377 |t#1|) (-10 -7 (-6 -4444)))
+(((-34) . T) ((-102) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
+((-3798 (((-3 $ "failed") $ $) 12)) (-2946 (($ $) NIL) (($ $ $) 9)) (* (($ (-927) $) NIL) (($ (-776) $) 16) (($ (-569) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 -1410 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24)))
+(-10 -8 (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
(((-21) (-140)) (T -21))
-((-4287 (*1 *1 *1) (-4 *1 (-21))) (-4287 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-131) (-651 (-551)) (-10 -8 (-15 -4287 ($ $)) (-15 -4287 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-1107) . T))
-((-3626 (((-112) $) 10)) (-4174 (($) 15)) (* (($ (-925) $) 14) (($ (-776) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 -4174 (|#1|)) (-15 * (|#1| (-925) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 -4174 (|#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16)))
+((-2946 (*1 *1 *1) (-4 *1 (-21))) (-2946 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-131) (-651 (-569)) (-10 -8 (-15 -2946 ($ $)) (-15 -2946 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1106) . T))
+((-2789 (((-112) $) 10)) (-3863 (($) 15)) (* (($ (-927) $) 14) (($ (-776) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 -3863 (|#1|)) (-15 * (|#1| (-927) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 -3863 (|#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-23) (-140)) (T -23))
-((-3528 (*1 *1) (-4 *1 (-23))) (-4174 (*1 *1) (-4 *1 (-23))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776)))))
-(-13 (-25) (-10 -8 (-15 (-3528) ($) -4402) (-15 -4174 ($) -4402) (-15 -3626 ((-112) $)) (-15 * ($ (-776) $))))
-(((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((* (($ (-925) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-925) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14)))
+((-1786 (*1 *1) (-4 *1 (-23))) (-3863 (*1 *1) (-4 *1 (-23))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776)))))
+(-13 (-25) (-10 -8 (-15 (-1786) ($) -3600) (-15 -3863 ($) -3600) (-15 -2789 ((-112) $)) (-15 * ($ (-776) $))))
+(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((* (($ (-927) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-927) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14)))
(((-25) (-140)) (T -25))
-((-4289 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-925)))))
-(-13 (-1107) (-10 -8 (-15 -4289 ($ $ $)) (-15 * ($ (-925) $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-1725 (((-646 $) (-952 $)) 32) (((-646 $) (-1177 $)) 16) (((-646 $) (-1177 $) (-1183)) 20)) (-1306 (($ (-952 $)) 30) (($ (-1177 $)) 11) (($ (-1177 $) (-1183)) 60)) (-1307 (((-646 $) (-952 $)) 33) (((-646 $) (-1177 $)) 18) (((-646 $) (-1177 $) (-1183)) 19)) (-3621 (($ (-952 $)) 31) (($ (-1177 $)) 13) (($ (-1177 $) (-1183)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -1725 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1725 ((-646 |#1|) (-1177 |#1|))) (-15 -1725 ((-646 |#1|) (-952 |#1|))) (-15 -1306 (|#1| (-1177 |#1|) (-1183))) (-15 -1306 (|#1| (-1177 |#1|))) (-15 -1306 (|#1| (-952 |#1|))) (-15 -1307 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1307 ((-646 |#1|) (-1177 |#1|))) (-15 -1307 ((-646 |#1|) (-952 |#1|))) (-15 -3621 (|#1| (-1177 |#1|) (-1183))) (-15 -3621 (|#1| (-1177 |#1|))) (-15 -3621 (|#1| (-952 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -1725 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1725 ((-646 |#1|) (-1177 |#1|))) (-15 -1725 ((-646 |#1|) (-952 |#1|))) (-15 -1306 (|#1| (-1177 |#1|) (-1183))) (-15 -1306 (|#1| (-1177 |#1|))) (-15 -1306 (|#1| (-952 |#1|))) (-15 -1307 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1307 ((-646 |#1|) (-1177 |#1|))) (-15 -1307 ((-646 |#1|) (-952 |#1|))) (-15 -3621 (|#1| (-1177 |#1|) (-1183))) (-15 -3621 (|#1| (-1177 |#1|))) (-15 -3621 (|#1| (-952 |#1|))))
-((-2986 (((-112) $ $) 7)) (-1725 (((-646 $) (-952 $)) 88) (((-646 $) (-1177 $)) 87) (((-646 $) (-1177 $) (-1183)) 86)) (-1306 (($ (-952 $)) 91) (($ (-1177 $)) 90) (($ (-1177 $) (-1183)) 89)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-3456 (($ $) 100)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-1307 (((-646 $) (-952 $)) 94) (((-646 $) (-1177 $)) 93) (((-646 $) (-1177 $) (-1183)) 92)) (-3621 (($ (-952 $)) 97) (($ (-1177 $)) 96) (($ (-1177 $) (-1183)) 95)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 99)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77) (($ $ (-412 (-551))) 98)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
+((-2935 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927)))))
+(-13 (-1106) (-10 -8 (-15 -2935 ($ $ $)) (-15 * ($ (-927) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2092 (((-649 $) (-958 $)) 32) (((-649 $) (-1179 $)) 16) (((-649 $) (-1179 $) (-1183)) 20)) (-1540 (($ (-958 $)) 30) (($ (-1179 $)) 11) (($ (-1179 $) (-1183)) 60)) (-1550 (((-649 $) (-958 $)) 33) (((-649 $) (-1179 $)) 18) (((-649 $) (-1179 $) (-1183)) 19)) (-2740 (($ (-958 $)) 31) (($ (-1179 $)) 13) (($ (-1179 $) (-1183)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2092 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -2092 ((-649 |#1|) (-1179 |#1|))) (-15 -2092 ((-649 |#1|) (-958 |#1|))) (-15 -1540 (|#1| (-1179 |#1|) (-1183))) (-15 -1540 (|#1| (-1179 |#1|))) (-15 -1540 (|#1| (-958 |#1|))) (-15 -1550 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -1550 ((-649 |#1|) (-1179 |#1|))) (-15 -1550 ((-649 |#1|) (-958 |#1|))) (-15 -2740 (|#1| (-1179 |#1|) (-1183))) (-15 -2740 (|#1| (-1179 |#1|))) (-15 -2740 (|#1| (-958 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2092 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -2092 ((-649 |#1|) (-1179 |#1|))) (-15 -2092 ((-649 |#1|) (-958 |#1|))) (-15 -1540 (|#1| (-1179 |#1|) (-1183))) (-15 -1540 (|#1| (-1179 |#1|))) (-15 -1540 (|#1| (-958 |#1|))) (-15 -1550 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -1550 ((-649 |#1|) (-1179 |#1|))) (-15 -1550 ((-649 |#1|) (-958 |#1|))) (-15 -2740 (|#1| (-1179 |#1|) (-1183))) (-15 -2740 (|#1| (-1179 |#1|))) (-15 -2740 (|#1| (-958 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2092 (((-649 $) (-958 $)) 88) (((-649 $) (-1179 $)) 87) (((-649 $) (-1179 $) (-1183)) 86)) (-1540 (($ (-958 $)) 91) (($ (-1179 $)) 90) (($ (-1179 $) (-1183)) 89)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-3714 (($ $) 100)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-1550 (((-649 $) (-958 $)) 94) (((-649 $) (-1179 $)) 93) (((-649 $) (-1179 $) (-1183)) 92)) (-2740 (($ (-958 $)) 97) (($ (-1179 $)) 96) (($ (-1179 $) (-1183)) 95)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 99)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-27) (-140)) (T -27))
-((-3621 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-27)))) (-3621 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1)))) (-1307 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-646 *1)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-27)))) (-1306 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-646 *1)))))
-(-13 (-367) (-1008) (-10 -8 (-15 -3621 ($ (-952 $))) (-15 -3621 ($ (-1177 $))) (-15 -3621 ($ (-1177 $) (-1183))) (-15 -1307 ((-646 $) (-952 $))) (-15 -1307 ((-646 $) (-1177 $))) (-15 -1307 ((-646 $) (-1177 $) (-1183))) (-15 -1306 ($ (-952 $))) (-15 -1306 ($ (-1177 $))) (-15 -1306 ($ (-1177 $) (-1183))) (-15 -1725 ((-646 $) (-952 $))) (-15 -1725 ((-646 $) (-1177 $))) (-15 -1725 ((-646 $) (-1177 $) (-1183)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1008) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-1725 (((-646 $) (-952 $)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-1177 $) (-1183)) 55) (((-646 $) $) 22) (((-646 $) $ (-1183)) 46)) (-1306 (($ (-952 $)) NIL) (($ (-1177 $)) NIL) (($ (-1177 $) (-1183)) 57) (($ $) 20) (($ $ (-1183)) 40)) (-1307 (((-646 $) (-952 $)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-1177 $) (-1183)) 53) (((-646 $) $) 18) (((-646 $) $ (-1183)) 48)) (-3621 (($ (-952 $)) NIL) (($ (-1177 $)) NIL) (($ (-1177 $) (-1183)) NIL) (($ $) 15) (($ $ (-1183)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -1725 ((-646 |#1|) |#1| (-1183))) (-15 -1306 (|#1| |#1| (-1183))) (-15 -1725 ((-646 |#1|) |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -1307 ((-646 |#1|) |#1| (-1183))) (-15 -3621 (|#1| |#1| (-1183))) (-15 -1307 ((-646 |#1|) |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -1725 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1725 ((-646 |#1|) (-1177 |#1|))) (-15 -1725 ((-646 |#1|) (-952 |#1|))) (-15 -1306 (|#1| (-1177 |#1|) (-1183))) (-15 -1306 (|#1| (-1177 |#1|))) (-15 -1306 (|#1| (-952 |#1|))) (-15 -1307 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1307 ((-646 |#1|) (-1177 |#1|))) (-15 -1307 ((-646 |#1|) (-952 |#1|))) (-15 -3621 (|#1| (-1177 |#1|) (-1183))) (-15 -3621 (|#1| (-1177 |#1|))) (-15 -3621 (|#1| (-952 |#1|)))) (-29 |#2|) (-562)) (T -28))
-NIL
-(-10 -8 (-15 -1725 ((-646 |#1|) |#1| (-1183))) (-15 -1306 (|#1| |#1| (-1183))) (-15 -1725 ((-646 |#1|) |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -1307 ((-646 |#1|) |#1| (-1183))) (-15 -3621 (|#1| |#1| (-1183))) (-15 -1307 ((-646 |#1|) |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -1725 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1725 ((-646 |#1|) (-1177 |#1|))) (-15 -1725 ((-646 |#1|) (-952 |#1|))) (-15 -1306 (|#1| (-1177 |#1|) (-1183))) (-15 -1306 (|#1| (-1177 |#1|))) (-15 -1306 (|#1| (-952 |#1|))) (-15 -1307 ((-646 |#1|) (-1177 |#1|) (-1183))) (-15 -1307 ((-646 |#1|) (-1177 |#1|))) (-15 -1307 ((-646 |#1|) (-952 |#1|))) (-15 -3621 (|#1| (-1177 |#1|) (-1183))) (-15 -3621 (|#1| (-1177 |#1|))) (-15 -3621 (|#1| (-952 |#1|))))
-((-2986 (((-112) $ $) 7)) (-1725 (((-646 $) (-952 $)) 88) (((-646 $) (-1177 $)) 87) (((-646 $) (-1177 $) (-1183)) 86) (((-646 $) $) 134) (((-646 $) $ (-1183)) 132)) (-1306 (($ (-952 $)) 91) (($ (-1177 $)) 90) (($ (-1177 $) (-1183)) 89) (($ $) 135) (($ $ (-1183)) 133)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1183)) $) 203)) (-3505 (((-412 (-1177 $)) $ (-616 $)) 235 (|has| |#1| (-562)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1718 (((-646 (-616 $)) $) 166)) (-1410 (((-3 $ "failed") $ $) 20)) (-1722 (($ $ (-646 (-616 $)) (-646 $)) 156) (($ $ (-646 (-296 $))) 155) (($ $ (-296 $)) 154)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-3456 (($ $) 100)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-1307 (((-646 $) (-952 $)) 94) (((-646 $) (-1177 $)) 93) (((-646 $) (-1177 $) (-1183)) 92) (((-646 $) $) 138) (((-646 $) $ (-1183)) 136)) (-3621 (($ (-952 $)) 97) (($ (-1177 $)) 96) (($ (-1177 $) (-1183)) 95) (($ $) 139) (($ $ (-1183)) 137)) (-3595 (((-3 (-952 |#1|) #1="failed") $) 253 (|has| |#1| (-1055))) (((-3 (-412 (-952 |#1|)) #1#) $) 237 (|has| |#1| (-562))) (((-3 |#1| #1#) $) 199) (((-3 (-551) #1#) $) 196 (|has| |#1| (-1044 (-551)))) (((-3 (-1183) #1#) $) 190) (((-3 (-616 $) #1#) $) 141) (((-3 (-412 (-551)) #1#) $) 130 (-3978 (-12 (|has| |#1| (-1044 (-551))) (|has| |#1| (-562))) (|has| |#1| (-1044 (-412 (-551))))))) (-3594 (((-952 |#1|) $) 252 (|has| |#1| (-1055))) (((-412 (-952 |#1|)) $) 236 (|has| |#1| (-562))) ((|#1| $) 198) (((-551) $) 197 (|has| |#1| (-1044 (-551)))) (((-1183) $) 189) (((-616 $) $) 140) (((-412 (-551)) $) 131 (-3978 (-12 (|has| |#1| (-1044 (-551))) (|has| |#1| (-562))) (|has| |#1| (-1044 (-412 (-551))))))) (-2982 (($ $ $) 61)) (-2445 (((-694 |#1|) (-694 $)) 243 (|has| |#1| (-1055))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 242 (|has| |#1| (-1055))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 129 (-3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (-3274 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))) (((-694 (-551)) (-694 $)) 128 (-3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (-3274 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 195 (|has| |#1| (-892 (-382)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 194 (|has| |#1| (-892 (-551))))) (-2991 (($ (-646 $)) 160) (($ $) 159)) (-1717 (((-646 (-113)) $) 167)) (-3466 (((-113) (-113)) 168)) (-2591 (((-112) $) 35)) (-3094 (((-112) $) 188 (|has| $ (-1044 (-551))))) (-3415 (($ $) 220 (|has| |#1| (-1055)))) (-3417 (((-1131 |#1| (-616 $)) $) 219 (|has| |#1| (-1055)))) (-3430 (($ $ (-551)) 99)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 58)) (-1715 (((-1177 $) (-616 $)) 185 (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) 174)) (-1720 (((-3 (-616 $) "failed") $) 164)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-1719 (((-646 (-616 $)) $) 165)) (-2402 (($ (-113) (-646 $)) 173) (($ (-113) $) 172)) (-3244 (((-3 (-646 $) #3="failed") $) 214 (|has| |#1| (-1118)))) (-3246 (((-3 (-2 (|:| |val| $) (|:| -2582 (-551))) #3#) $) 223 (|has| |#1| (-1055)))) (-3243 (((-3 (-646 $) #3#) $) 216 (|has| |#1| (-25)))) (-1979 (((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 $))) #3#) $) 217 (|has| |#1| (-25)))) (-3245 (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $ (-1183)) 222 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $ (-113)) 221 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $) 215 (|has| |#1| (-1118)))) (-3053 (((-112) $ (-1183)) 171) (((-112) $ (-113)) 170)) (-2824 (($ $) 78)) (-3021 (((-776) $) 163)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 201)) (-1981 ((|#1| $) 202)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1716 (((-112) $ (-1183)) 176) (((-112) $ $) 175)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-3095 (((-112) $) 187 (|has| $ (-1044 (-551))))) (-4217 (($ $ (-1183) (-776) (-1 $ $)) 227 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-646 $))) 226 (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ (-646 $)))) 225 (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ $))) 224 (|has| |#1| (-1055))) (($ $ (-646 (-113)) (-646 $) (-1183)) 213 (|has| |#1| (-619 (-540)))) (($ $ (-113) $ (-1183)) 212 (|has| |#1| (-619 (-540)))) (($ $) 211 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-1183))) 210 (|has| |#1| (-619 (-540)))) (($ $ (-1183)) 209 (|has| |#1| (-619 (-540)))) (($ $ (-113) (-1 $ $)) 184) (($ $ (-113) (-1 $ (-646 $))) 183) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) 182) (($ $ (-646 (-113)) (-646 (-1 $ $))) 181) (($ $ (-1183) (-1 $ $)) 180) (($ $ (-1183) (-1 $ (-646 $))) 179) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) 178) (($ $ (-646 (-1183)) (-646 (-1 $ $))) 177) (($ $ (-646 $) (-646 $)) 148) (($ $ $ $) 147) (($ $ (-296 $)) 146) (($ $ (-646 (-296 $))) 145) (($ $ (-646 (-616 $)) (-646 $)) 144) (($ $ (-616 $) $) 143)) (-1762 (((-776) $) 64)) (-4249 (($ (-113) (-646 $)) 153) (($ (-113) $ $ $ $) 152) (($ (-113) $ $ $) 151) (($ (-113) $ $) 150) (($ (-113) $) 149)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-1721 (($ $ $) 162) (($ $) 161)) (-4260 (($ $ (-1183)) 251 (|has| |#1| (-1055))) (($ $ (-646 (-1183))) 250 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 249 (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) 248 (|has| |#1| (-1055)))) (-3414 (($ $) 230 (|has| |#1| (-562)))) (-3416 (((-1131 |#1| (-616 $)) $) 229 (|has| |#1| (-562)))) (-3623 (($ $) 186 (|has| $ (-1055)))) (-4420 (((-540) $) 257 (|has| |#1| (-619 (-540)))) (($ (-410 $)) 228 (|has| |#1| (-562))) (((-896 (-382)) $) 193 (|has| |#1| (-619 (-896 (-382))))) (((-896 (-551)) $) 192 (|has| |#1| (-619 (-896 (-551)))))) (-3428 (($ $ $) 256 (|has| |#1| (-478)))) (-2774 (($ $ $) 255 (|has| |#1| (-478)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ (-952 |#1|)) 254 (|has| |#1| (-1055))) (($ (-412 (-952 |#1|))) 238 (|has| |#1| (-562))) (($ (-412 (-952 (-412 |#1|)))) 234 (|has| |#1| (-562))) (($ (-952 (-412 |#1|))) 233 (|has| |#1| (-562))) (($ (-412 |#1|)) 232 (|has| |#1| (-562))) (($ (-1131 |#1| (-616 $))) 218 (|has| |#1| (-1055))) (($ |#1|) 200) (($ (-1183)) 191) (($ (-616 $)) 142)) (-3123 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3008 (($ (-646 $)) 158) (($ $) 157)) (-2421 (((-112) (-113)) 169)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-1980 (($ (-1183) (-646 $)) 208) (($ (-1183) $ $ $ $) 207) (($ (-1183) $ $ $) 206) (($ (-1183) $ $) 205) (($ (-1183) $) 204)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1183)) 247 (|has| |#1| (-1055))) (($ $ (-646 (-1183))) 246 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 245 (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) 244 (|has| |#1| (-1055)))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73) (($ (-1131 |#1| (-616 $)) (-1131 |#1| (-616 $))) 231 (|has| |#1| (-562)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77) (($ $ (-412 (-551))) 98)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173)))))
-(((-29 |#1|) (-140) (-562)) (T -29))
-((-3621 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-1307 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *3)))) (-3621 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-1307 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *4)))) (-1306 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-1725 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *3)))) (-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-1725 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-426 |t#1|) (-10 -8 (-15 -3621 ($ $)) (-15 -1307 ((-646 $) $)) (-15 -3621 ($ $ (-1183))) (-15 -1307 ((-646 $) $ (-1183))) (-15 -1306 ($ $)) (-15 -1725 ((-646 $) $)) (-15 -1306 ($ $ (-1183))) (-15 -1725 ((-646 $) $ (-1183)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) . T) ((-621 #2=(-412 (-952 |#1|))) |has| |#1| (-562)) ((-621 (-551)) . T) ((-621 #3=(-616 $)) . T) ((-621 #4=(-952 |#1|)) |has| |#1| (-1055)) ((-621 #5=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-619 (-896 (-382))) |has| |#1| (-619 (-896 (-382)))) ((-619 (-896 (-551))) |has| |#1| (-619 (-896 (-551)))) ((-244) . T) ((-293) . T) ((-310) . T) ((-312 $) . T) ((-301) . T) ((-367) . T) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-417 |#1|) . T) ((-426 |#1|) . T) ((-457) . T) ((-478) |has| |#1| (-478)) ((-519 (-616 $) $) . T) ((-519 $ $) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-653 #1#) . T) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) . T) ((-645 #1#) . T) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) . T) ((-644 (-551)) -12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #1#) . T) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-382)) |has| |#1| (-892 (-382))) ((-892 (-551)) |has| |#1| (-892 (-551))) ((-890 |#1|) . T) ((-927) . T) ((-1008) . T) ((-1044 (-412 (-551))) -3978 (|has| |#1| (-1044 (-412 (-551)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))))) ((-1044 #2#) |has| |#1| (-562)) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 #3#) . T) ((-1044 #4#) |has| |#1| (-1055)) ((-1044 #5#) . T) ((-1044 |#1|) . T) ((-1057 #1#) . T) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1222) . T) ((-1227) . T))
-((-3315 (((-1095 (-226)) $) NIL)) (-3316 (((-1095 (-226)) $) NIL)) (-3556 (($ $ (-226)) 164)) (-1308 (($ (-952 (-551)) (-1183) (-1183) (-1095 (-412 (-551))) (-1095 (-412 (-551)))) 104)) (-3317 (((-646 (-646 (-949 (-226)))) $) 180)) (-4396 (((-868) $) 194)))
-(((-30) (-13 (-961) (-10 -8 (-15 -1308 ($ (-952 (-551)) (-1183) (-1183) (-1095 (-412 (-551))) (-1095 (-412 (-551))))) (-15 -3556 ($ $ (-226)))))) (T -30))
-((-1308 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-952 (-551))) (-5 *3 (-1183)) (-5 *4 (-1095 (-412 (-551)))) (-5 *1 (-30)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))))
-(-13 (-961) (-10 -8 (-15 -1308 ($ (-952 (-551)) (-1183) (-1183) (-1095 (-412 (-551))) (-1095 (-412 (-551))))) (-15 -3556 ($ $ (-226)))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 11)) (-3680 (((-112) $ $) NIL)) (-3115 (((-1141) $) 9)) (-3473 (((-112) $ $) NIL)))
-(((-31) (-13 (-1089) (-10 -8 (-15 -3115 ((-1141) $)) (-15 -3671 ((-1141) $))))) (T -31))
-((-3115 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))))
-(-13 (-1089) (-10 -8 (-15 -3115 ((-1141) $)) (-15 -3671 ((-1141) $))))
-((-3621 ((|#2| (-1177 |#2|) (-1183)) 41)) (-3466 (((-113) (-113)) 55)) (-1715 (((-1177 |#2|) (-616 |#2|)) 149 (|has| |#1| (-1044 (-551))))) (-1311 ((|#2| |#1| (-551)) 137 (|has| |#1| (-1044 (-551))))) (-1309 ((|#2| (-1177 |#2|) |#2|) 29)) (-1310 (((-868) (-646 |#2|)) 86)) (-3623 ((|#2| |#2|) 144 (|has| |#1| (-1044 (-551))))) (-2421 (((-112) (-113)) 17)) (** ((|#2| |#2| (-412 (-551))) 103 (|has| |#1| (-1044 (-551))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3621 (|#2| (-1177 |#2|) (-1183))) (-15 -3466 ((-113) (-113))) (-15 -2421 ((-112) (-113))) (-15 -1309 (|#2| (-1177 |#2|) |#2|)) (-15 -1310 ((-868) (-646 |#2|))) (IF (|has| |#1| (-1044 (-551))) (PROGN (-15 ** (|#2| |#2| (-412 (-551)))) (-15 -1715 ((-1177 |#2|) (-616 |#2|))) (-15 -3623 (|#2| |#2|)) (-15 -1311 (|#2| |#1| (-551)))) |%noBranch|)) (-562) (-426 |#1|)) (T -32))
-((-1311 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-4 *2 (-426 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1044 *4)) (-4 *3 (-562)))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-1044 (-551))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2)) (-4 *2 (-426 *3)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-616 *5)) (-4 *5 (-426 *4)) (-4 *4 (-1044 (-551))) (-4 *4 (-562)) (-5 *2 (-1177 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-551))) (-4 *4 (-1044 (-551))) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)) (-4 *2 (-426 *4)))) (-1310 (*1 *2 *3) (-12 (-5 *3 (-646 *5)) (-4 *5 (-426 *4)) (-4 *4 (-562)) (-5 *2 (-868)) (-5 *1 (-32 *4 *5)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *3 (-1177 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-426 *4)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4)) (-4 *4 (-426 *3)))) (-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *2)) (-5 *4 (-1183)) (-4 *2 (-426 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-562)))))
-(-10 -7 (-15 -3621 (|#2| (-1177 |#2|) (-1183))) (-15 -3466 ((-113) (-113))) (-15 -2421 ((-112) (-113))) (-15 -1309 (|#2| (-1177 |#2|) |#2|)) (-15 -1310 ((-868) (-646 |#2|))) (IF (|has| |#1| (-1044 (-551))) (PROGN (-15 ** (|#2| |#2| (-412 (-551)))) (-15 -1715 ((-1177 |#2|) (-616 |#2|))) (-15 -3623 (|#2| |#2|)) (-15 -1311 (|#2| |#1| (-551)))) |%noBranch|))
-((-1312 (((-112) $ (-776)) 20)) (-4174 (($) 10)) (-4169 (((-112) $ (-776)) 19)) (-4166 (((-112) $ (-776)) 17)) (-1313 (((-112) $ $) 8)) (-3845 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -4174 (|#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))) (-15 -3845 ((-112) |#1|)) (-15 -1313 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -4174 (|#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))) (-15 -3845 ((-112) |#1|)) (-15 -1313 ((-112) |#1| |#1|)))
-((-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-4169 (((-112) $ (-776)) 9)) (-4166 (((-112) $ (-776)) 10)) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-3842 (($ $) 13)) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+((-2740 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27)))) (-2740 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27)))) (-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-649 *1)))))
+(-13 (-367) (-1008) (-10 -8 (-15 -2740 ($ (-958 $))) (-15 -2740 ($ (-1179 $))) (-15 -2740 ($ (-1179 $) (-1183))) (-15 -1550 ((-649 $) (-958 $))) (-15 -1550 ((-649 $) (-1179 $))) (-15 -1550 ((-649 $) (-1179 $) (-1183))) (-15 -1540 ($ (-958 $))) (-15 -1540 ($ (-1179 $))) (-15 -1540 ($ (-1179 $) (-1183))) (-15 -2092 ((-649 $) (-958 $))) (-15 -2092 ((-649 $) (-1179 $))) (-15 -2092 ((-649 $) (-1179 $) (-1183)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1008) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-2092 (((-649 $) (-958 $)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 $) (-1183)) 55) (((-649 $) $) 22) (((-649 $) $ (-1183)) 46)) (-1540 (($ (-958 $)) NIL) (($ (-1179 $)) NIL) (($ (-1179 $) (-1183)) 57) (($ $) 20) (($ $ (-1183)) 40)) (-1550 (((-649 $) (-958 $)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 $) (-1183)) 53) (((-649 $) $) 18) (((-649 $) $ (-1183)) 48)) (-2740 (($ (-958 $)) NIL) (($ (-1179 $)) NIL) (($ (-1179 $) (-1183)) NIL) (($ $) 15) (($ $ (-1183)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2092 ((-649 |#1|) |#1| (-1183))) (-15 -1540 (|#1| |#1| (-1183))) (-15 -2092 ((-649 |#1|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1550 ((-649 |#1|) |#1| (-1183))) (-15 -2740 (|#1| |#1| (-1183))) (-15 -1550 ((-649 |#1|) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2092 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -2092 ((-649 |#1|) (-1179 |#1|))) (-15 -2092 ((-649 |#1|) (-958 |#1|))) (-15 -1540 (|#1| (-1179 |#1|) (-1183))) (-15 -1540 (|#1| (-1179 |#1|))) (-15 -1540 (|#1| (-958 |#1|))) (-15 -1550 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -1550 ((-649 |#1|) (-1179 |#1|))) (-15 -1550 ((-649 |#1|) (-958 |#1|))) (-15 -2740 (|#1| (-1179 |#1|) (-1183))) (-15 -2740 (|#1| (-1179 |#1|))) (-15 -2740 (|#1| (-958 |#1|)))) (-29 |#2|) (-561)) (T -28))
+NIL
+(-10 -8 (-15 -2092 ((-649 |#1|) |#1| (-1183))) (-15 -1540 (|#1| |#1| (-1183))) (-15 -2092 ((-649 |#1|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1550 ((-649 |#1|) |#1| (-1183))) (-15 -2740 (|#1| |#1| (-1183))) (-15 -1550 ((-649 |#1|) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2092 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -2092 ((-649 |#1|) (-1179 |#1|))) (-15 -2092 ((-649 |#1|) (-958 |#1|))) (-15 -1540 (|#1| (-1179 |#1|) (-1183))) (-15 -1540 (|#1| (-1179 |#1|))) (-15 -1540 (|#1| (-958 |#1|))) (-15 -1550 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -1550 ((-649 |#1|) (-1179 |#1|))) (-15 -1550 ((-649 |#1|) (-958 |#1|))) (-15 -2740 (|#1| (-1179 |#1|) (-1183))) (-15 -2740 (|#1| (-1179 |#1|))) (-15 -2740 (|#1| (-958 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2092 (((-649 $) (-958 $)) 88) (((-649 $) (-1179 $)) 87) (((-649 $) (-1179 $) (-1183)) 86) (((-649 $) $) 134) (((-649 $) $ (-1183)) 132)) (-1540 (($ (-958 $)) 91) (($ (-1179 $)) 90) (($ (-1179 $) (-1183)) 89) (($ $) 135) (($ $ (-1183)) 133)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1183)) $) 203)) (-3663 (((-412 (-1179 $)) $ (-617 $)) 235 (|has| |#1| (-561)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3550 (((-649 (-617 $)) $) 166)) (-3798 (((-3 $ "failed") $ $) 20)) (-4272 (($ $ (-649 (-617 $)) (-649 $)) 156) (($ $ (-649 (-297 $))) 155) (($ $ (-297 $)) 154)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-3714 (($ $) 100)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-1550 (((-649 $) (-958 $)) 94) (((-649 $) (-1179 $)) 93) (((-649 $) (-1179 $) (-1183)) 92) (((-649 $) $) 138) (((-649 $) $ (-1183)) 136)) (-2740 (($ (-958 $)) 97) (($ (-1179 $)) 96) (($ (-1179 $) (-1183)) 95) (($ $) 139) (($ $ (-1183)) 137)) (-4359 (((-3 (-958 |#1|) "failed") $) 253 (|has| |#1| (-1055))) (((-3 (-412 (-958 |#1|)) "failed") $) 237 (|has| |#1| (-561))) (((-3 |#1| "failed") $) 199) (((-3 (-569) "failed") $) 196 (|has| |#1| (-1044 (-569)))) (((-3 (-1183) "failed") $) 190) (((-3 (-617 $) "failed") $) 141) (((-3 (-412 (-569)) "failed") $) 130 (-2718 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-3043 (((-958 |#1|) $) 252 (|has| |#1| (-1055))) (((-412 (-958 |#1|)) $) 236 (|has| |#1| (-561))) ((|#1| $) 198) (((-569) $) 197 (|has| |#1| (-1044 (-569)))) (((-1183) $) 189) (((-617 $) $) 140) (((-412 (-569)) $) 131 (-2718 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-2339 (($ $ $) 61)) (-4091 (((-694 |#1|) (-694 $)) 243 (|has| |#1| (-1055))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 242 (|has| |#1| (-1055))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 129 (-2718 (-1739 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-1739 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (((-694 (-569)) (-694 $)) 128 (-2718 (-1739 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-1739 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 195 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 194 (|has| |#1| (-892 (-569))))) (-2629 (($ (-649 $)) 160) (($ $) 159)) (-2042 (((-649 (-114)) $) 167)) (-3642 (((-114) (-114)) 168)) (-2861 (((-112) $) 35)) (-2355 (((-112) $) 188 (|has| $ (-1044 (-569))))) (-1450 (($ $) 220 (|has| |#1| (-1055)))) (-4378 (((-1131 |#1| (-617 $)) $) 219 (|has| |#1| (-1055)))) (-1589 (($ $ (-569)) 99)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2021 (((-1179 $) (-617 $)) 185 (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) 174)) (-2052 (((-3 (-617 $) "failed") $) 164)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3629 (((-649 (-617 $)) $) 165)) (-1331 (($ (-114) (-649 $)) 173) (($ (-114) $) 172)) (-3338 (((-3 (-649 $) "failed") $) 214 (|has| |#1| (-1118)))) (-3360 (((-3 (-2 (|:| |val| $) (|:| -2777 (-569))) "failed") $) 223 (|has| |#1| (-1055)))) (-3327 (((-3 (-649 $) "failed") $) 216 (|has| |#1| (-25)))) (-2827 (((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3349 (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-1183)) 222 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-114)) 221 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $) 215 (|has| |#1| (-1118)))) (-2016 (((-112) $ (-1183)) 171) (((-112) $ (-114)) 170)) (-1776 (($ $) 78)) (-1399 (((-776) $) 163)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 201)) (-1794 ((|#1| $) 202)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-2031 (((-112) $ (-1183)) 176) (((-112) $ $) 175)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4336 (((-112) $) 187 (|has| $ (-1044 (-569))))) (-1679 (($ $ (-1183) (-776) (-1 $ $)) 227 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) 226 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 225 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 224 (|has| |#1| (-1055))) (($ $ (-649 (-114)) (-649 $) (-1183)) 213 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 212 (|has| |#1| (-619 (-541)))) (($ $) 211 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) 210 (|has| |#1| (-619 (-541)))) (($ $ (-1183)) 209 (|has| |#1| (-619 (-541)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-649 $))) 183) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 182) (($ $ (-649 (-114)) (-649 (-1 $ $))) 181) (($ $ (-1183) (-1 $ $)) 180) (($ $ (-1183) (-1 $ (-649 $))) 179) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 178) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 177) (($ $ (-649 $) (-649 $)) 148) (($ $ $ $) 147) (($ $ (-297 $)) 146) (($ $ (-649 (-297 $))) 145) (($ $ (-649 (-617 $)) (-649 $)) 144) (($ $ (-617 $) $) 143)) (-4409 (((-776) $) 64)) (-1852 (($ (-114) (-649 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2062 (($ $ $) 162) (($ $) 161)) (-3430 (($ $ (-1183)) 251 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 250 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 249 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) 248 (|has| |#1| (-1055)))) (-1440 (($ $) 230 (|has| |#1| (-561)))) (-4390 (((-1131 |#1| (-617 $)) $) 229 (|has| |#1| (-561)))) (-2760 (($ $) 186 (|has| $ (-1055)))) (-1384 (((-541) $) 257 (|has| |#1| (-619 (-541)))) (($ (-423 $)) 228 (|has| |#1| (-561))) (((-898 (-383)) $) 193 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 192 (|has| |#1| (-619 (-898 (-569)))))) (-1565 (($ $ $) 256 (|has| |#1| (-478)))) (-4356 (($ $ $) 255 (|has| |#1| (-478)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-958 |#1|)) 254 (|has| |#1| (-1055))) (($ (-412 (-958 |#1|))) 238 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 234 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 233 (|has| |#1| (-561))) (($ (-412 |#1|)) 232 (|has| |#1| (-561))) (($ (-1131 |#1| (-617 $))) 218 (|has| |#1| (-1055))) (($ |#1|) 200) (($ (-1183)) 191) (($ (-617 $)) 142)) (-1488 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-4176 (($ (-649 $)) 158) (($ $) 157)) (-3858 (((-112) (-114)) 169)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-4175 (($ (-1183) (-649 $)) 208) (($ (-1183) $ $ $ $) 207) (($ (-1183) $ $ $) 206) (($ (-1183) $ $) 205) (($ (-1183) $) 204)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1183)) 247 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 246 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 245 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) 244 (|has| |#1| (-1055)))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73) (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 231 (|has| |#1| (-561)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173)))))
+(((-29 |#1|) (-140) (-561)) (T -29))
+((-2740 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-1550 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-2740 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-1550 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -2740 ($ $)) (-15 -1550 ((-649 $) $)) (-15 -2740 ($ $ (-1183))) (-15 -1550 ((-649 $) $ (-1183))) (-15 -1540 ($ $)) (-15 -2092 ((-649 $) $)) (-15 -1540 ($ $ (-1183))) (-15 -2092 ((-649 $) $ (-1183)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) . T) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1055)) ((-621 #4=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) . T) ((-293) . T) ((-310) . T) ((-312 $) . T) ((-305) . T) ((-367) . T) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-435 |#1|) . T) ((-457) . T) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) . T) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #0#) . T) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) . T) ((-1008) . T) ((-1044 (-412 (-569))) -2718 (|has| |#1| (-1044 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) ((-1044 #1#) |has| |#1| (-561)) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 #3#) |has| |#1| (-1055)) ((-1044 #4#) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1223) . T) ((-1227) . T))
+((-3039 (((-1100 (-226)) $) NIL)) (-3028 (((-1100 (-226)) $) NIL)) (-3355 (($ $ (-226)) 164)) (-1562 (($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569)))) 104)) (-2764 (((-649 (-649 (-949 (-226)))) $) 180)) (-2388 (((-867) $) 194)))
+(((-30) (-13 (-961) (-10 -8 (-15 -1562 ($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569))))) (-15 -3355 ($ $ (-226)))))) (T -30))
+((-1562 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1183)) (-5 *4 (-1100 (-412 (-569)))) (-5 *1 (-30)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))))
+(-13 (-961) (-10 -8 (-15 -1562 ($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569))))) (-15 -3355 ($ $ (-226)))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 11)) (-2040 (((-112) $ $) NIL)) (-4344 (((-1141) $) 9)) (-2853 (((-112) $ $) NIL)))
+(((-31) (-13 (-1089) (-10 -8 (-15 -4344 ((-1141) $)) (-15 -3473 ((-1141) $))))) (T -31))
+((-4344 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))))
+(-13 (-1089) (-10 -8 (-15 -4344 ((-1141) $)) (-15 -3473 ((-1141) $))))
+((-2740 ((|#2| (-1179 |#2|) (-1183)) 41)) (-3642 (((-114) (-114)) 55)) (-2021 (((-1179 |#2|) (-617 |#2|)) 149 (|has| |#1| (-1044 (-569))))) (-1598 ((|#2| |#1| (-569)) 137 (|has| |#1| (-1044 (-569))))) (-1573 ((|#2| (-1179 |#2|) |#2|) 29)) (-1584 (((-867) (-649 |#2|)) 86)) (-2760 ((|#2| |#2|) 144 (|has| |#1| (-1044 (-569))))) (-3858 (((-112) (-114)) 17)) (** ((|#2| |#2| (-412 (-569))) 103 (|has| |#1| (-1044 (-569))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -2740 (|#2| (-1179 |#2|) (-1183))) (-15 -3642 ((-114) (-114))) (-15 -3858 ((-112) (-114))) (-15 -1573 (|#2| (-1179 |#2|) |#2|)) (-15 -1584 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1044 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2021 ((-1179 |#2|) (-617 |#2|))) (-15 -2760 (|#2| |#2|)) (-15 -1598 (|#2| |#1| (-569)))) |%noBranch|)) (-561) (-435 |#1|)) (T -32))
+((-1598 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1044 *4)) (-4 *3 (-561)))) (-2760 (*1 *2 *2) (-12 (-4 *3 (-1044 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1044 (-569))) (-4 *4 (-561)) (-5 *2 (-1179 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1044 (-569))) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561)) (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))) (-1573 (*1 *2 *3 *2) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *2)) (-5 *4 (-1183)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-561)))))
+(-10 -7 (-15 -2740 (|#2| (-1179 |#2|) (-1183))) (-15 -3642 ((-114) (-114))) (-15 -3858 ((-112) (-114))) (-15 -1573 (|#2| (-1179 |#2|) |#2|)) (-15 -1584 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1044 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2021 ((-1179 |#2|) (-617 |#2|))) (-15 -2760 (|#2| |#2|)) (-15 -1598 (|#2| |#1| (-569)))) |%noBranch|))
+((-1610 (((-112) $ (-776)) 20)) (-3863 (($) 10)) (-3799 (((-112) $ (-776)) 19)) (-1902 (((-112) $ (-776)) 17)) (-1620 (((-112) $ $) 8)) (-4196 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -3863 (|#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))) (-15 -4196 ((-112) |#1|)) (-15 -1620 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3863 (|#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))) (-15 -4196 ((-112) |#1|)) (-15 -1620 ((-112) |#1| |#1|)))
+((-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-3799 (((-112) $ (-776)) 9)) (-1902 (((-112) $ (-776)) 10)) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3885 (($ $) 13)) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-34) (-140)) (T -34))
-((-1313 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3842 (*1 *1 *1) (-4 *1 (-34))) (-4014 (*1 *1) (-4 *1 (-34))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4166 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-4169 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-1312 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-4174 (*1 *1) (-4 *1 (-34))) (-4407 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-34)) (-5 *2 (-776)))))
-(-13 (-1222) (-10 -8 (-15 -1313 ((-112) $ $)) (-15 -3842 ($ $)) (-15 -4014 ($)) (-15 -3845 ((-112) $)) (-15 -4166 ((-112) $ (-776))) (-15 -4169 ((-112) $ (-776))) (-15 -1312 ((-112) $ (-776))) (-15 -4174 ($) -4402) (IF (|has| $ (-6 -4443)) (-15 -4407 ((-776) $)) |%noBranch|)))
-(((-1222) . T))
-((-3939 (($ $) 11)) (-3937 (($ $) 10)) (-3941 (($ $) 9)) (-3942 (($ $) 8)) (-3940 (($ $) 7)) (-3938 (($ $) 6)))
+((-1620 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3885 (*1 *1 *1) (-4 *1 (-34))) (-2825 (*1 *1) (-4 *1 (-34))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1902 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-3799 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-1610 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-3863 (*1 *1) (-4 *1 (-34))) (-2394 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-34)) (-5 *2 (-776)))))
+(-13 (-1223) (-10 -8 (-15 -1620 ((-112) $ $)) (-15 -3885 ($ $)) (-15 -2825 ($)) (-15 -4196 ((-112) $)) (-15 -1902 ((-112) $ (-776))) (-15 -3799 ((-112) $ (-776))) (-15 -1610 ((-112) $ (-776))) (-15 -3863 ($) -3600) (IF (|has| $ (-6 -4443)) (-15 -2394 ((-776) $)) |%noBranch|)))
+(((-1223) . T))
+((-4119 (($ $) 11)) (-4094 (($ $) 10)) (-4144 (($ $) 9)) (-1470 (($ $) 8)) (-4131 (($ $) 7)) (-4106 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-3939 (*1 *1 *1) (-4 *1 (-35))) (-3937 (*1 *1 *1) (-4 *1 (-35))) (-3941 (*1 *1 *1) (-4 *1 (-35))) (-3942 (*1 *1 *1) (-4 *1 (-35))) (-3940 (*1 *1 *1) (-4 *1 (-35))) (-3938 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3938 ($ $)) (-15 -3940 ($ $)) (-15 -3942 ($ $)) (-15 -3941 ($ $)) (-15 -3937 ($ $)) (-15 -3939 ($ $))))
-((-2986 (((-112) $ $) 19 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3844 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 126)) (-4244 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 149)) (-4246 (($ $) 147)) (-4047 (($) 73) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 72)) (-2390 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4444))) (((-1278) $ (-551) (-551)) 179 (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 160 (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-1908 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 201 (|has| $ (-6 -4444))) (($ $) 200 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-1312 (((-112) $ (-776)) 8)) (-3444 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 135 (|has| $ (-6 -4444)))) (-4236 (($ $ $) 156 (|has| $ (-6 -4444)))) (-4235 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 158 (|has| $ (-6 -4444)))) (-4238 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 154 (|has| $ (-6 -4444)))) (-4237 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 190 (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-1239 (-551)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 161 (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #1="last" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 159 (|has| $ (-6 -4444))) (($ $ #2="rest" $) 157 (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #3="first" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 155 (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #4="value" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 134 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 133 (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 46 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 217)) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 56 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 176 (|has| $ (-6 -4443)))) (-4245 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 148)) (-2399 (((-3 |#2| #5="failed") |#1| $) 62)) (-4174 (($) 7 T CONST)) (-2460 (($ $) 202 (|has| $ (-6 -4444)))) (-2461 (($ $) 212)) (-4248 (($ $ (-776)) 143) (($ $) 141)) (-2544 (($ $) 215 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-1443 (($ $) 59 (-3978 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))) (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| #5#) |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 221) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 216 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 55 (|has| $ (-6 -4443))) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 178 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 175 (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 57 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 53 (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 177 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 174 (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 173 (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 191 (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) 89) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) 189)) (-3884 (((-112) $) 193)) (-3861 (((-551) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 209) (((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 208 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) (((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) 207 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 31 (|has| $ (-6 -4443))) (((-646 |#2|) $) 80 (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 115 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 124)) (-3446 (((-112) $ $) 132 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-4064 (($ (-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 170)) (-4169 (((-112) $ (-776)) 9)) (-2392 ((|#1| $) 97 (|has| |#1| (-855))) (((-551) $) 181 (|has| (-551) (-855)))) (-2952 (($ $ $) 199 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3277 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3959 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 30 (|has| $ (-6 -4443))) (((-646 |#2|) $) 81 (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 116 (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443)))) (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))))) (-2393 ((|#1| $) 96 (|has| |#1| (-855))) (((-551) $) 182 (|has| (-551) (-855)))) (-3278 (($ $ $) 198 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 35 (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 111 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 110)) (-3983 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 226)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 129)) (-3968 (((-112) $) 125)) (-3681 (((-1165) $) 22 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-4247 (($ $ (-776)) 146) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 144)) (-2834 (((-646 |#1|) $) 64)) (-2400 (((-112) |#1| $) 65)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 40)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 41) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) 220) (($ $ $ (-551)) 219)) (-2467 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) 163) (($ $ $ (-551)) 162)) (-2395 (((-646 |#1|) $) 94) (((-646 (-551)) $) 184)) (-2396 (((-112) |#1| $) 93) (((-112) (-551) $) 185)) (-3682 (((-1126) $) 21 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-4250 ((|#2| $) 98 (|has| |#1| (-855))) (($ $ (-776)) 140) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 138)) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 52) (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #6#) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 172)) (-2391 (($ $ |#2|) 99 (|has| $ (-6 -4444))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 180 (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 42)) (-3885 (((-112) $) 192)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 33 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 113 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) 27 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 26 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 25 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 24 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 122 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 121 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 120 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) 119 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 183 (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-2397 (((-646 |#2|) $) 92) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 186)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 188) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) 187) (($ $ (-1239 (-551))) 166) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #1#) 145) (($ $ #2#) 142) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #3#) 139) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #4#) 127)) (-3448 (((-551) $ $) 130)) (-1573 (($) 50) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 49)) (-1689 (($ $ (-551)) 223) (($ $ (-1239 (-551))) 222)) (-2468 (($ $ (-551)) 165) (($ $ (-1239 (-551))) 164)) (-4083 (((-112) $) 128)) (-4241 (($ $) 152)) (-4239 (($ $) 153 (|has| $ (-6 -4444)))) (-4242 (((-776) $) 151)) (-4243 (($ $) 150)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 114 (|has| $ (-6 -4443)))) (-1909 (($ $ $ (-551)) 203 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540)))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 51) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 171)) (-4240 (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 225) (($ $ $) 224)) (-4251 (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 169) (($ (-646 $)) 168) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 137) (($ $ $) 136)) (-4396 (((-868) $) 18 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868)))))) (-3963 (((-646 $) $) 123)) (-3447 (((-112) $ $) 131 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-3680 (((-112) $ $) 23 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 43)) (-1314 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") |#1| $) 109)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 34 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 112 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 196 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-2985 (((-112) $ $) 195 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3473 (((-112) $ $) 20 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3105 (((-112) $ $) 197 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3106 (((-112) $ $) 194 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-36 |#1| |#2|) (-140) (-1107) (-1107)) (T -36))
-((-1314 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-2 (|:| -4310 *3) (|:| -2264 *4))))))
-(-13 (-1199 |t#1| |t#2|) (-671 (-2 (|:| -4310 |t#1|) (|:| -2264 |t#2|))) (-10 -8 (-15 -1314 ((-3 (-2 (|:| -4310 |t#1|) (|:| -2264 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((-102) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)) (|has| |#2| (-1107))) ((-618 (-868)) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-1107)) (|has| |#2| (-618 (-868)))) ((-151 #2=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((-619 (-540)) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))) ((-230 #1#) . T) ((-236 #1#) . T) ((-289 #3=(-551) #2#) . T) ((-289 |#1| |#2|) . T) ((-291 #3# #2#) . T) ((-291 |#1| |#2|) . T) ((-312 #2#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-285 #2#) . T) ((-376 #2#) . T) ((-494 #2#) . T) ((-494 |#2|) . T) ((-609 #3# #2#) . T) ((-609 |#1| |#2|) . T) ((-519 #2# #2#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-615 |#1| |#2|) . T) ((-656 #2#) . T) ((-671 #2#) . T) ((-855) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)) ((-1016 #2#) . T) ((-1107) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)) (|has| |#2| (-1107))) ((-1155 #2#) . T) ((-1199 |#1| |#2|) . T) ((-1222) . T) ((-1261 #2#) . T))
-((-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-38 |#2|) (-173)) (T -37))
-NIL
-(-10 -8 (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-4119 (*1 *1 *1) (-4 *1 (-35))) (-4094 (*1 *1 *1) (-4 *1 (-35))) (-4144 (*1 *1 *1) (-4 *1 (-35))) (-1470 (*1 *1 *1) (-4 *1 (-35))) (-4131 (*1 *1 *1) (-4 *1 (-35))) (-4106 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -4106 ($ $)) (-15 -4131 ($ $)) (-15 -1470 ($ $)) (-15 -4144 ($ $)) (-15 -4094 ($ $)) (-15 -4119 ($ $))))
+((-2383 (((-112) $ $) 19 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-2150 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 126)) (-2498 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 149)) (-1528 (($ $) 147)) (-4261 (($) 73) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 72)) (-1699 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4444))) (((-1278) $ (-569) (-569)) 179 (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 160 (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3364 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 201 (|has| $ (-6 -4444))) (($ $) 200 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-1610 (((-112) $ (-776)) 8)) (-1753 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 135 (|has| $ (-6 -4444)))) (-3116 (($ $ $) 156 (|has| $ (-6 -4444)))) (-4423 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 158 (|has| $ (-6 -4444)))) (-3127 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 154 (|has| $ (-6 -4444)))) (-3861 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 190 (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-1240 (-569)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 161 (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "last" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 159 (|has| $ (-6 -4444))) (($ $ "rest" $) 157 (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "first" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 155 (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "value" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 134 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 133 (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 46 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 217)) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 56 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 176 (|has| $ (-6 -4443)))) (-2487 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 148)) (-2311 (((-3 |#2| "failed") |#1| $) 62)) (-3863 (($) 7 T CONST)) (-4188 (($ $) 202 (|has| $ (-6 -4444)))) (-2214 (($ $) 212)) (-3414 (($ $ (-776)) 143) (($ $) 141)) (-3686 (($ $) 215 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-3437 (($ $) 59 (-2718 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))) (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 221) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 216 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 55 (|has| $ (-6 -4443))) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 175 (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 57 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 53 (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 177 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 174 (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 173 (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 191 (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) 89) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) 189)) (-3154 (((-112) $) 193)) (-3975 (((-569) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 209) (((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 208 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) (((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) 207 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 31 (|has| $ (-6 -4443))) (((-649 |#2|) $) 80 (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 115 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 124)) (-1774 (((-112) $ $) 132 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-4275 (($ (-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 170)) (-3799 (((-112) $ (-776)) 9)) (-1726 ((|#1| $) 97 (|has| |#1| (-855))) (((-569) $) 181 (|has| (-569) (-855)))) (-2095 (($ $ $) 199 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3644 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3719 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 30 (|has| $ (-6 -4443))) (((-649 |#2|) $) 81 (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 116 (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443)))) (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))))) (-1738 ((|#1| $) 96 (|has| |#1| (-855))) (((-569) $) 182 (|has| (-569) (-855)))) (-2406 (($ $ $) 198 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 35 (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 111 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 110)) (-3271 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 226)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 129)) (-2546 (((-112) $) 125)) (-2050 (((-1165) $) 22 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1702 (($ $ (-776)) 146) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 144)) (-2715 (((-649 |#1|) $) 64)) (-1795 (((-112) |#1| $) 65)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 40)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 41) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) 220) (($ $ $ (-569)) 219)) (-4274 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) 163) (($ $ $ (-569)) 162)) (-1762 (((-649 |#1|) $) 94) (((-649 (-569)) $) 184)) (-1773 (((-112) |#1| $) 93) (((-112) (-569) $) 185)) (-3461 (((-1126) $) 21 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-3401 ((|#2| $) 98 (|has| |#1| (-855))) (($ $ (-776)) 140) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 138)) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 52) (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 172)) (-1713 (($ $ |#2|) 99 (|has| $ (-6 -4444))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 180 (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 42)) (-3166 (((-112) $) 192)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 33 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 113 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) 27 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 26 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 25 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 24 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 122 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 121 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 120 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) 119 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 183 (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1784 (((-649 |#2|) $) 92) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 186)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 188) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) 187) (($ $ (-1240 (-569))) 166) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "first") 139) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "value") 127)) (-1797 (((-569) $ $) 130)) (-3054 (($) 50) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 49)) (-1827 (($ $ (-569)) 223) (($ $ (-1240 (-569))) 222)) (-4326 (($ $ (-569)) 165) (($ $ (-1240 (-569))) 164)) (-2284 (((-112) $) 128)) (-3161 (($ $) 152)) (-3137 (($ $) 153 (|has| $ (-6 -4444)))) (-3172 (((-776) $) 151)) (-3182 (($ $) 150)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 114 (|has| $ (-6 -4443)))) (-3376 (($ $ $ (-569)) 203 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541)))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 51) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 171)) (-3149 (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 225) (($ $ $) 224)) (-3632 (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 169) (($ (-649 $)) 168) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 137) (($ $ $) 136)) (-2388 (((-867) $) 18 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867)))))) (-2492 (((-649 $) $) 123)) (-1785 (((-112) $ $) 131 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2040 (((-112) $ $) 23 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 43)) (-1710 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") |#1| $) 109)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 34 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 112 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 196 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2882 (((-112) $ $) 195 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2853 (((-112) $ $) 20 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-2893 (((-112) $ $) 197 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2872 (((-112) $ $) 194 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-36 |#1| |#2|) (-140) (-1106) (-1106)) (T -36))
+((-1710 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| -1963 *3) (|:| -2179 *4))))))
+(-13 (-1199 |t#1| |t#2|) (-671 (-2 (|:| -1963 |t#1|) (|:| -2179 |t#2|))) (-10 -8 (-15 -1710 ((-3 (-2 (|:| -1963 |t#1|) (|:| -2179 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((-102) -2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855))) ((-618 (-867)) -2718 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867)))) ((-151 #1=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((-619 (-541)) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 #2=(-569) #1#) . T) ((-289 |#1| |#2|) . T) ((-291 #2# #1#) . T) ((-291 |#1| |#2|) . T) ((-312 #1#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-285 #1#) . T) ((-377 #1#) . T) ((-494 #1#) . T) ((-494 |#2|) . T) ((-609 #2# #1#) . T) ((-609 |#1| |#2|) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-615 |#1| |#2|) . T) ((-656 #1#) . T) ((-671 #1#) . T) ((-855) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)) ((-1016 #1#) . T) ((-1106) -2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855))) ((-1155 #1#) . T) ((-1199 |#1| |#2|) . T) ((-1223) . T) ((-1261 #1#) . T))
+((-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-38 |#2|) (-173)) (T -37))
+NIL
+(-10 -8 (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-140) (-173)) (T -38))
NIL
(-13 (-1055) (-722 |t#1|) (-621 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-3860 (((-410 |#1|) |#1|) 41)) (-4182 (((-410 |#1|) |#1|) 30) (((-410 |#1|) |#1| (-646 (-48))) 33)) (-1315 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -4182 ((-410 |#1|) |#1| (-646 (-48)))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3860 ((-410 |#1|) |#1|)) (-15 -1315 ((-112) |#1|))) (-1248 (-48))) (T -39))
-((-1315 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48))))) (-3860 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48))))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48))))))
-(-10 -7 (-15 -4182 ((-410 |#1|) |#1| (-646 (-48)))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3860 ((-410 |#1|) |#1|)) (-15 -1315 ((-112) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1825 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-2251 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2249 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1967 (((-694 (-412 |#2|)) (-1272 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3772 (((-412 |#2|) $) NIL)) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-412 |#2|) (-354)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4419 (((-410 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1763 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3558 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-1839 (((-112)) NIL)) (-1838 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| (-412 |#2|) (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-3 (-412 |#2|) #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| (-412 |#2|) (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-412 |#2|) $) NIL)) (-1977 (($ (-1272 (-412 |#2|)) (-1272 $)) NIL) (($ (-1272 (-412 |#2|))) 61) (($ (-1272 |#2|) |#2|) 134)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-354)))) (-2982 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1966 (((-694 (-412 |#2|)) $ (-1272 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-412 |#2|))) (|:| |vec| (-1272 (-412 |#2|)))) (-694 $) (-1272 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-1830 (((-1272 $) (-1272 $)) NIL)) (-4292 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3908 (((-3 $ "failed") $) NIL)) (-1817 (((-646 (-646 |#1|))) NIL (|has| |#1| (-372)))) (-1842 (((-112) |#1| |#1|) NIL)) (-3531 (((-925)) NIL)) (-3413 (($) NIL (|has| (-412 |#2|) (-372)))) (-1837 (((-112)) NIL)) (-1836 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2981 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| (-412 |#2|) (-367)))) (-3944 (($ $) NIL)) (-3254 (($) NIL (|has| (-412 |#2|) (-354)))) (-1858 (((-112) $) NIL (|has| (-412 |#2|) (-354)))) (-1951 (($ $ (-776)) NIL (|has| (-412 |#2|) (-354))) (($ $) NIL (|has| (-412 |#2|) (-354)))) (-4173 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-4221 (((-925) $) NIL (|has| (-412 |#2|) (-354))) (((-837 (-925)) $) NIL (|has| (-412 |#2|) (-354)))) (-2591 (((-112) $) NIL)) (-3819 (((-776)) NIL)) (-1831 (((-1272 $) (-1272 $)) 109)) (-3554 (((-412 |#2|) $) NIL)) (-1818 (((-646 (-952 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2202 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2198 (((-925) $) NIL (|has| (-412 |#2|) (-372)))) (-3499 ((|#3| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3681 (((-1165) $) NIL)) (-1316 (((-1278) (-776)) 87)) (-1826 (((-694 (-412 |#2|))) 56)) (-1828 (((-694 (-412 |#2|))) 49)) (-2824 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-1823 (($ (-1272 |#2|) |#2|) 135)) (-1827 (((-694 (-412 |#2|))) 50)) (-1829 (((-694 (-412 |#2|))) 48)) (-1822 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-1824 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) 68)) (-1835 (((-1272 $)) 47)) (-4368 (((-1272 $)) 46)) (-1834 (((-112) $) NIL)) (-1833 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3887 (($) NIL (|has| (-412 |#2|) (-354)) CONST)) (-2581 (($ (-925)) NIL (|has| (-412 |#2|) (-372)))) (-1820 (((-3 |#2| #3="failed")) NIL)) (-3682 (((-1126) $) NIL)) (-1844 (((-776)) NIL)) (-2590 (($) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| (-412 |#2|) (-367)))) (-3582 (($ (-646 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-412 |#2|) (-354)))) (-4182 (((-410 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3907 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1762 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-4249 ((|#1| $ |#1| |#1|) NIL)) (-1821 (((-3 |#2| #3#)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4207 (((-412 |#2|) (-1272 $)) NIL) (((-412 |#2|)) 44)) (-1952 (((-776) $) NIL (|has| (-412 |#2|) (-354))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-354)))) (-4260 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-2589 (((-694 (-412 |#2|)) (-1272 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-3623 ((|#3|) 55)) (-1852 (($) NIL (|has| (-412 |#2|) (-354)))) (-3662 (((-1272 (-412 |#2|)) $ (-1272 $)) NIL) (((-694 (-412 |#2|)) (-1272 $) (-1272 $)) NIL) (((-1272 (-412 |#2|)) $) 62) (((-694 (-412 |#2|)) (-1272 $)) 110)) (-4420 (((-1272 (-412 |#2|)) $) NIL) (($ (-1272 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-354)))) (-1832 (((-1272 $) (-1272 $)) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-551))) NIL (-3978 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1044 (-412 (-551)))))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3123 (($ $) NIL (|has| (-412 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-2788 ((|#3| $) NIL)) (-3548 (((-776)) NIL T CONST)) (-1841 (((-112)) 42)) (-1840 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL)) (-2250 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-1819 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1843 (((-112)) NIL)) (-3528 (($) 17 T CONST)) (-3085 (($) 27 T CONST)) (-3090 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-551)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-551))) NIL (|has| (-412 |#2|) (-367)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1316 ((-1278) (-776))))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) |#3|) (T -40))
-((-1316 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1248 *4)) (-5 *2 (-1278)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1248 (-412 *5))) (-14 *7 *6))))
-(-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1316 ((-1278) (-776)))))
-((-1317 ((|#2| |#2|) 47)) (-1322 ((|#2| |#2|) 139 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-551))))))) (-1321 ((|#2| |#2|) 100 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-551))))))) (-1320 ((|#2| |#2|) 101 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-551))))))) (-1323 ((|#2| (-113) |#2| (-776)) 135 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-551))))))) (-1319 (((-1177 |#2|) |#2|) 44)) (-1318 ((|#2| |#2| (-646 (-616 |#2|))) 18) ((|#2| |#2| (-646 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1318 (|#2| |#2| |#2|)) (-15 -1318 (|#2| |#2| (-646 |#2|))) (-15 -1318 (|#2| |#2| (-646 (-616 |#2|)))) (-15 -1319 ((-1177 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-551)))) (IF (|has| |#2| (-426 |#1|)) (PROGN (-15 -1320 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1323 (|#2| (-113) |#2| (-776)))) |%noBranch|) |%noBranch|)) (-562) (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 |#1| (-616 $)) $)) (-15 -3416 ((-1131 |#1| (-616 $)) $)) (-15 -4396 ($ (-1131 |#1| (-616 $))))))) (T -41))
-((-1323 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-551)))) (-4 *5 (-562)) (-5 *1 (-41 *5 *2)) (-4 *2 (-426 *5)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *5 (-616 $)) $)) (-15 -3416 ((-1131 *5 (-616 $)) $)) (-15 -4396 ($ (-1131 *5 (-616 $))))))))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))) (-1321 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1177 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $)) (-15 -3416 ((-1131 *4 (-616 $)) $)) (-15 -4396 ($ (-1131 *4 (-616 $))))))))) (-1318 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-616 *2))) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $)) (-15 -3416 ((-1131 *4 (-616 $)) $)) (-15 -4396 ($ (-1131 *4 (-616 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-1318 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $)) (-15 -3416 ((-1131 *4 (-616 $)) $)) (-15 -4396 ($ (-1131 *4 (-616 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-1318 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-301) (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $)) (-15 -3416 ((-1131 *3 (-616 $)) $)) (-15 -4396 ($ (-1131 *3 (-616 $))))))))))
-(-10 -7 (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1318 (|#2| |#2| |#2|)) (-15 -1318 (|#2| |#2| (-646 |#2|))) (-15 -1318 (|#2| |#2| (-646 (-616 |#2|)))) (-15 -1319 ((-1177 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-551)))) (IF (|has| |#2| (-426 |#1|)) (PROGN (-15 -1320 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1323 (|#2| (-113) |#2| (-776)))) |%noBranch|) |%noBranch|))
-((-4182 (((-410 (-1177 |#3|)) (-1177 |#3|) (-646 (-48))) 23) (((-410 |#3|) |#3| (-646 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4182 ((-410 |#3|) |#3| (-646 (-48)))) (-15 -4182 ((-410 (-1177 |#3|)) (-1177 |#3|) (-646 (-48))))) (-855) (-798) (-956 (-48) |#2| |#1|)) (T -42))
-((-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-410 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#3|) |#3| (-646 (-48)))) (-15 -4182 ((-410 (-1177 |#3|)) (-1177 |#3|) (-646 (-48)))))
-((-1327 (((-776) |#2|) 72)) (-1325 (((-776) |#2|) 76)) (-1340 (((-646 |#2|)) 39)) (-1324 (((-776) |#2|) 75)) (-1326 (((-776) |#2|) 71)) (-1328 (((-776) |#2|) 74)) (-1338 (((-646 (-694 |#1|))) 67)) (-1333 (((-646 |#2|)) 62)) (-1331 (((-646 |#2|) |#2|) 50)) (-1335 (((-646 |#2|)) 64)) (-1334 (((-646 |#2|)) 63)) (-1337 (((-646 (-694 |#1|))) 55)) (-1332 (((-646 |#2|)) 61)) (-1330 (((-646 |#2|) |#2|) 49)) (-1329 (((-646 |#2|)) 57)) (-1339 (((-646 (-694 |#1|))) 68)) (-1336 (((-646 |#2|)) 66)) (-2200 (((-1272 |#2|) (-1272 |#2|)) 101 (|has| |#1| (-310)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1324 ((-776) |#2|)) (-15 -1325 ((-776) |#2|)) (-15 -1326 ((-776) |#2|)) (-15 -1327 ((-776) |#2|)) (-15 -1328 ((-776) |#2|)) (-15 -1329 ((-646 |#2|))) (-15 -1330 ((-646 |#2|) |#2|)) (-15 -1331 ((-646 |#2|) |#2|)) (-15 -1332 ((-646 |#2|))) (-15 -1333 ((-646 |#2|))) (-15 -1334 ((-646 |#2|))) (-15 -1335 ((-646 |#2|))) (-15 -1336 ((-646 |#2|))) (-15 -1337 ((-646 (-694 |#1|)))) (-15 -1338 ((-646 (-694 |#1|)))) (-15 -1339 ((-646 (-694 |#1|)))) (-15 -1340 ((-646 |#2|))) (IF (|has| |#1| (-310)) (-15 -2200 ((-1272 |#2|) (-1272 |#2|))) |%noBranch|)) (-562) (-423 |#1|)) (T -43))
-((-2200 (*1 *2 *2) (-12 (-5 *2 (-1272 *4)) (-4 *4 (-423 *3)) (-4 *3 (-310)) (-4 *3 (-562)) (-5 *1 (-43 *3 *4)))) (-1340 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1339 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1338 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1337 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1336 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1335 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1334 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1333 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1329 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(-10 -7 (-15 -1324 ((-776) |#2|)) (-15 -1325 ((-776) |#2|)) (-15 -1326 ((-776) |#2|)) (-15 -1327 ((-776) |#2|)) (-15 -1328 ((-776) |#2|)) (-15 -1329 ((-646 |#2|))) (-15 -1330 ((-646 |#2|) |#2|)) (-15 -1331 ((-646 |#2|) |#2|)) (-15 -1332 ((-646 |#2|))) (-15 -1333 ((-646 |#2|))) (-15 -1334 ((-646 |#2|))) (-15 -1335 ((-646 |#2|))) (-15 -1336 ((-646 |#2|))) (-15 -1337 ((-646 (-694 |#1|)))) (-15 -1338 ((-646 (-694 |#1|)))) (-15 -1339 ((-646 (-694 |#1|)))) (-15 -1340 ((-646 |#2|))) (IF (|has| |#1| (-310)) (-15 -2200 ((-1272 |#2|) (-1272 |#2|))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1957 (((-3 $ #1="failed")) NIL (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3661 (((-1272 (-694 |#1|)) (-1272 $)) NIL) (((-1272 (-694 |#1|))) 24)) (-1907 (((-1272 $)) 55)) (-4174 (($) NIL T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (|has| |#1| (-562)))) (-1881 (((-3 $ #1#)) NIL (|has| |#1| (-562)))) (-1973 (((-694 |#1|) (-1272 $)) NIL) (((-694 |#1|)) NIL)) (-1905 ((|#1| $) NIL)) (-1971 (((-694 |#1|) $ (-1272 $)) NIL) (((-694 |#1|) $) NIL)) (-2585 (((-3 $ #1#) $) NIL (|has| |#1| (-562)))) (-2088 (((-1177 (-952 |#1|))) NIL (|has| |#1| (-367)))) (-2588 (($ $ (-925)) NIL)) (-1903 ((|#1| $) NIL)) (-1883 (((-1177 |#1|) $) NIL (|has| |#1| (-562)))) (-1975 ((|#1| (-1272 $)) NIL) ((|#1|) NIL)) (-1901 (((-1177 |#1|) $) NIL)) (-1895 (((-112)) 101)) (-1977 (($ (-1272 |#1|) (-1272 $)) NIL) (($ (-1272 |#1|)) NIL)) (-3908 (((-3 $ #1#) $) 14 (|has| |#1| (-562)))) (-3531 (((-925)) 56)) (-1892 (((-112)) NIL)) (-2612 (($ $ (-925)) NIL)) (-1888 (((-112)) NIL)) (-1886 (((-112)) NIL)) (-1890 (((-112)) 103)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (|has| |#1| (-562)))) (-1882 (((-3 $ #1#)) NIL (|has| |#1| (-562)))) (-1974 (((-694 |#1|) (-1272 $)) NIL) (((-694 |#1|)) NIL)) (-1906 ((|#1| $) NIL)) (-1972 (((-694 |#1|) $ (-1272 $)) NIL) (((-694 |#1|) $) NIL)) (-2586 (((-3 $ #1#) $) NIL (|has| |#1| (-562)))) (-2092 (((-1177 (-952 |#1|))) NIL (|has| |#1| (-367)))) (-2587 (($ $ (-925)) NIL)) (-1904 ((|#1| $) NIL)) (-1884 (((-1177 |#1|) $) NIL (|has| |#1| (-562)))) (-1976 ((|#1| (-1272 $)) NIL) ((|#1|) NIL)) (-1902 (((-1177 |#1|) $) NIL)) (-1896 (((-112)) 100)) (-3681 (((-1165) $) NIL)) (-1887 (((-112)) 108)) (-1889 (((-112)) 107)) (-1891 (((-112)) 109)) (-3682 (((-1126) $) NIL)) (-1894 (((-112)) 102)) (-4249 ((|#1| $ (-551)) 58)) (-3662 (((-1272 |#1|) $ (-1272 $)) 52) (((-694 |#1|) (-1272 $) (-1272 $)) NIL) (((-1272 |#1|) $) 28) (((-694 |#1|) (-1272 $)) NIL)) (-4420 (((-1272 |#1|) $) NIL) (($ (-1272 |#1|)) NIL)) (-2080 (((-646 (-952 |#1|)) (-1272 $)) NIL) (((-646 (-952 |#1|))) NIL)) (-2774 (($ $ $) NIL)) (-1900 (((-112)) 97)) (-4396 (((-868) $) 74) (($ (-1272 |#1|)) 22)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 54)) (-1885 (((-646 (-1272 |#1|))) NIL (|has| |#1| (-562)))) (-2775 (($ $ $ $) NIL)) (-1898 (((-112)) 93)) (-2966 (($ (-694 |#1|) $) 18)) (-2773 (($ $ $) NIL)) (-1899 (((-112)) 99)) (-1897 (((-112)) 94)) (-1893 (((-112)) 92)) (-3528 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1148 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-423 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -4396 ($ (-1272 |#1|))))) (-367) (-925) (-646 (-1183)) (-1272 (-694 |#1|))) (T -44))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-367)) (-14 *6 (-1272 (-694 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))))))
-(-13 (-423 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -4396 ($ (-1272 |#1|)))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-3844 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4244 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4246 (($ $) NIL)) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444))) (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-1908 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855))))) (-3328 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-3444 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444)))) (-4236 (($ $ $) 33 (|has| $ (-6 -4444)))) (-4235 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444)))) (-4238 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 35 (|has| $ (-6 -4444)))) (-4237 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-1239 (-551)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #1="last" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #3="first" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #4="value" (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4245 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2399 (((-3 |#2| #5="failed") |#1| $) 43)) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-4248 (($ $ (-776)) NIL) (($ $) 29)) (-2544 (($ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #5#) |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) NIL)) (-3884 (((-112) $) NIL)) (-3861 (((-551) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) (((-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 20 (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 20 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-4064 (($ (-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855))) (((-551) $) 38 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3277 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3959 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855))) (((-551) $) 40 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-3983 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) 49 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4247 (($ $ (-776)) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2834 (((-646 |#1|) $) 22)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2467 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 |#1|) $) NIL) (((-646 (-551)) $) NIL)) (-2396 (((-112) |#1| $) NIL) (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855))) (($ $ (-776)) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 27)) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) #6#) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-3885 (((-112) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-2397 (((-646 |#2|) $) NIL) (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 19)) (-3845 (((-112) $) 18)) (-4014 (($) 14)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ (-551)) NIL) (($ $ (-1239 (-551))) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #3#) NIL) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $ #4#) NIL)) (-3448 (((-551) $ $) NIL)) (-1573 (($) 13) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-1689 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4083 (((-112) $) NIL)) (-4241 (($ $) NIL)) (-4239 (($ $) NIL (|has| $ (-6 -4444)))) (-4242 (((-776) $) NIL)) (-4243 (($ $) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4240 (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL) (($ $ $) NIL)) (-4251 (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL) (($ (-646 $)) NIL) (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 31) (($ $ $) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-1314 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") |#1| $) 51)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-3105 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-855)))) (-4407 (((-776) $) 25 (|has| $ (-6 -4443)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1107) (-1107)) (T -45))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-4310 (((-423 |#1|) |#1|) 41)) (-3699 (((-423 |#1|) |#1|) 30) (((-423 |#1|) |#1| (-649 (-48))) 33)) (-1631 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -3699 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -4310 ((-423 |#1|) |#1|)) (-15 -1631 ((-112) |#1|))) (-1249 (-48))) (T -39))
+((-1631 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-4310 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))))
+(-10 -7 (-15 -3699 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -4310 ((-423 |#1|) |#1|)) (-15 -1631 ((-112) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3733 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-2586 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2564 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-2702 (((-694 (-412 |#2|)) (-1273 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3057 (((-412 |#2|) $) NIL)) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2207 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4420 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3363 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-3906 (((-112)) NIL)) (-3894 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2806 (($ (-1273 (-412 |#2|)) (-1273 $)) NIL) (($ (-1273 (-412 |#2|))) 61) (($ (-1273 |#2|) |#2|) 134)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2339 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2692 (((-694 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-3794 (((-1273 $) (-1273 $)) NIL)) (-3485 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3351 (((-3 $ "failed") $) NIL)) (-3635 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-3941 (((-112) |#1| |#1|) NIL)) (-3904 (((-927)) NIL)) (-3295 (($) NIL (|has| (-412 |#2|) (-372)))) (-3881 (((-112)) NIL)) (-3870 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2348 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-3556 (($ $) NIL)) (-3445 (($) NIL (|has| (-412 |#2|) (-353)))) (-4127 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-2525 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-3848 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-4315 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2861 (((-112) $) NIL)) (-3951 (((-776)) NIL)) (-3807 (((-1273 $) (-1273 $)) 109)) (-3334 (((-412 |#2|) $) NIL)) (-3647 (((-649 (-958 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3397 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-3348 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3472 ((|#3| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2050 (((-1165) $) NIL)) (-1641 (((-1278) (-776)) 87)) (-3743 (((-694 (-412 |#2|))) 56)) (-3768 (((-694 (-412 |#2|))) 49)) (-1776 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3705 (($ (-1273 |#2|) |#2|) 135)) (-3756 (((-694 (-412 |#2|))) 50)) (-3782 (((-694 (-412 |#2|))) 48)) (-3694 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-3720 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 68)) (-3857 (((-1273 $)) 47)) (-2976 (((-1273 $)) 46)) (-3843 (((-112) $) NIL)) (-3830 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2267 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2114 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3668 (((-3 |#2| "failed")) NIL)) (-3461 (((-1126) $) NIL)) (-3964 (((-776)) NIL)) (-2290 (($) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-412 |#2|) (-367)))) (-1830 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3699 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2374 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4409 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1852 ((|#1| $ |#1| |#1|) NIL)) (-3683 (((-3 |#2| "failed")) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4180 (((-412 |#2|) (-1273 $)) NIL) (((-412 |#2|)) 44)) (-2536 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3430 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2851 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-2760 ((|#3|) 55)) (-4056 (($) NIL (|has| (-412 |#2|) (-353)))) (-1949 (((-1273 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 |#2|)) $) 62) (((-694 (-412 |#2|)) (-1273 $)) 110)) (-1384 (((-1273 (-412 |#2|)) $) NIL) (($ (-1273 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3819 (((-1273 $) (-1273 $)) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2718 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-1488 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-3176 ((|#3| $) NIL)) (-3263 (((-776)) NIL T CONST)) (-3930 (((-112)) 42)) (-3918 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL)) (-2574 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3656 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3952 (((-112)) NIL)) (-1786 (($) 17 T CONST)) (-1796 (($) 27 T CONST)) (-2749 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1641 ((-1278) (-776))))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) |#3|) (T -40))
+((-1641 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *2 (-1278)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1249 (-412 *5))) (-14 *7 *6))))
+(-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1641 ((-1278) (-776)))))
+((-1652 ((|#2| |#2|) 47)) (-1711 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-1697 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-1687 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-1723 ((|#2| (-114) |#2| (-776)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-1673 (((-1179 |#2|) |#2|) 44)) (-1662 ((|#2| |#2| (-649 (-617 |#2|))) 18) ((|#2| |#2| (-649 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1652 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| |#2|)) (-15 -1662 (|#2| |#2| (-649 |#2|))) (-15 -1662 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -1673 ((-1179 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1687 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1723 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|)) (-561) (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 |#1| (-617 $)) $)) (-15 -4390 ((-1131 |#1| (-617 $)) $)) (-15 -2388 ($ (-1131 |#1| (-617 $))))))) (T -41))
+((-1723 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)))) (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *5 (-617 $)) $)) (-15 -4390 ((-1131 *5 (-617 $)) $)) (-15 -2388 ($ (-1131 *5 (-617 $))))))))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))) (-1673 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1179 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $)) (-15 -4390 ((-1131 *4 (-617 $)) $)) (-15 -2388 ($ (-1131 *4 (-617 $))))))))) (-1662 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-617 *2))) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $)) (-15 -4390 ((-1131 *4 (-617 $)) $)) (-15 -2388 ($ (-1131 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1662 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $)) (-15 -4390 ((-1131 *4 (-617 $)) $)) (-15 -2388 ($ (-1131 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1662 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $)) (-15 -4390 ((-1131 *3 (-617 $)) $)) (-15 -2388 ($ (-1131 *3 (-617 $))))))))))
+(-10 -7 (-15 -1652 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| |#2|)) (-15 -1662 (|#2| |#2| (-649 |#2|))) (-15 -1662 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -1673 ((-1179 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1687 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1723 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|))
+((-3699 (((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48))) 23) (((-423 |#3|) |#3| (-649 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3699 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3699 ((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48))))) (-855) (-798) (-955 (-48) |#2| |#1|)) (T -42))
+((-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3699 ((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48)))))
+((-1771 (((-776) |#2|) 72)) (-1748 (((-776) |#2|) 76)) (-1898 (((-649 |#2|)) 39)) (-1736 (((-776) |#2|) 75)) (-1760 (((-776) |#2|) 71)) (-1782 (((-776) |#2|) 74)) (-1882 (((-649 (-694 |#1|))) 67)) (-1837 (((-649 |#2|)) 62)) (-1815 (((-649 |#2|) |#2|) 50)) (-1858 (((-649 |#2|)) 64)) (-1848 (((-649 |#2|)) 63)) (-1874 (((-649 (-694 |#1|))) 55)) (-1826 (((-649 |#2|)) 61)) (-1804 (((-649 |#2|) |#2|) 49)) (-1793 (((-649 |#2|)) 57)) (-1891 (((-649 (-694 |#1|))) 68)) (-1867 (((-649 |#2|)) 66)) (-3371 (((-1273 |#2|) (-1273 |#2|)) 101 (|has| |#1| (-310)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1736 ((-776) |#2|)) (-15 -1748 ((-776) |#2|)) (-15 -1760 ((-776) |#2|)) (-15 -1771 ((-776) |#2|)) (-15 -1782 ((-776) |#2|)) (-15 -1793 ((-649 |#2|))) (-15 -1804 ((-649 |#2|) |#2|)) (-15 -1815 ((-649 |#2|) |#2|)) (-15 -1826 ((-649 |#2|))) (-15 -1837 ((-649 |#2|))) (-15 -1848 ((-649 |#2|))) (-15 -1858 ((-649 |#2|))) (-15 -1867 ((-649 |#2|))) (-15 -1874 ((-649 (-694 |#1|)))) (-15 -1882 ((-649 (-694 |#1|)))) (-15 -1891 ((-649 (-694 |#1|)))) (-15 -1898 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -3371 ((-1273 |#2|) (-1273 |#2|))) |%noBranch|)) (-561) (-422 |#1|)) (T -43))
+((-3371 (*1 *2 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) (-1898 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1891 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1882 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1874 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1867 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1858 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1848 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1837 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1826 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1793 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1771 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1760 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1736 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))))
+(-10 -7 (-15 -1736 ((-776) |#2|)) (-15 -1748 ((-776) |#2|)) (-15 -1760 ((-776) |#2|)) (-15 -1771 ((-776) |#2|)) (-15 -1782 ((-776) |#2|)) (-15 -1793 ((-649 |#2|))) (-15 -1804 ((-649 |#2|) |#2|)) (-15 -1815 ((-649 |#2|) |#2|)) (-15 -1826 ((-649 |#2|))) (-15 -1837 ((-649 |#2|))) (-15 -1848 ((-649 |#2|))) (-15 -1858 ((-649 |#2|))) (-15 -1867 ((-649 |#2|))) (-15 -1874 ((-649 (-694 |#1|)))) (-15 -1882 ((-649 (-694 |#1|)))) (-15 -1891 ((-649 (-694 |#1|)))) (-15 -1898 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -3371 ((-1273 |#2|) (-1273 |#2|))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2591 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1941 (((-1273 (-694 |#1|)) (-1273 $)) NIL) (((-1273 (-694 |#1|))) 24)) (-3352 (((-1273 $)) 55)) (-3863 (($) NIL T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-3047 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2766 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-3331 ((|#1| $) NIL)) (-2747 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-1616 (((-1179 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2840 (($ $ (-927)) NIL)) (-3307 ((|#1| $) NIL)) (-3070 (((-1179 |#1|) $) NIL (|has| |#1| (-561)))) (-2786 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-3285 (((-1179 |#1|) $) NIL)) (-3202 (((-112)) 101)) (-2806 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) NIL)) (-3351 (((-3 $ "failed") $) 14 (|has| |#1| (-561)))) (-3904 (((-927)) 56)) (-3168 (((-112)) NIL)) (-1931 (($ $ (-927)) NIL)) (-3123 (((-112)) NIL)) (-3103 (((-112)) NIL)) (-3145 (((-112)) 103)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-3061 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2775 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-3342 ((|#1| $) NIL)) (-2757 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-2817 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-1658 (((-1179 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2829 (($ $ (-927)) NIL)) (-3320 ((|#1| $) NIL)) (-3081 (((-1179 |#1|) $) NIL (|has| |#1| (-561)))) (-2797 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-3297 (((-1179 |#1|) $) NIL)) (-3216 (((-112)) 100)) (-2050 (((-1165) $) NIL)) (-3112 (((-112)) 108)) (-3133 (((-112)) 107)) (-3157 (((-112)) 109)) (-3461 (((-1126) $) NIL)) (-3189 (((-112)) 102)) (-1852 ((|#1| $ (-569)) 58)) (-1949 (((-1273 |#1|) $ (-1273 $)) 52) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) 28) (((-694 |#1|) (-1273 $)) NIL)) (-1384 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL)) (-1524 (((-649 (-958 |#1|)) (-1273 $)) NIL) (((-649 (-958 |#1|))) NIL)) (-4356 (($ $ $) NIL)) (-3270 (((-112)) 97)) (-2388 (((-867) $) 74) (($ (-1273 |#1|)) 22)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 54)) (-3092 (((-649 (-1273 |#1|))) NIL (|has| |#1| (-561)))) (-4365 (($ $ $ $) NIL)) (-3245 (((-112)) 93)) (-3341 (($ (-694 |#1|) $) 18)) (-4347 (($ $ $) NIL)) (-3259 (((-112)) 99)) (-3230 (((-112)) 94)) (-3178 (((-112)) 92)) (-1786 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1148 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-422 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -2388 ($ (-1273 |#1|))))) (-367) (-927) (-649 (-1183)) (-1273 (-694 |#1|))) (T -44))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-14 *6 (-1273 (-694 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))))))
+(-13 (-422 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -2388 ($ (-1273 |#1|)))))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2150 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2498 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1528 (($ $) NIL)) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444))) (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3364 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855))))) (-3246 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-1753 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444)))) (-3116 (($ $ $) 33 (|has| $ (-6 -4444)))) (-4423 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444)))) (-3127 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 35 (|has| $ (-6 -4444)))) (-3861 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-1240 (-569)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "last" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444))) (($ $ "rest" $) NIL (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "first" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "value" (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2487 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2311 (((-3 |#2| "failed") |#1| $) 43)) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3414 (($ $ (-776)) NIL) (($ $) 29)) (-3686 (($ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) NIL)) (-3154 (((-112) $) NIL)) (-3975 (((-569) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) (((-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 20 (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 20 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-4275 (($ (-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 38 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3644 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3719 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 40 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-3271 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) 49 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-1702 (($ $ (-776)) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2715 (((-649 |#1|) $) 22)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-4274 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 |#1|) $) NIL) (((-649 (-569)) $) NIL)) (-1773 (((-112) |#1| $) NIL) (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855))) (($ $ (-776)) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 27)) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3166 (((-112) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1784 (((-649 |#2|) $) NIL) (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 19)) (-4196 (((-112) $) 18)) (-2825 (($) 14)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "first") NIL) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $ "value") NIL)) (-1797 (((-569) $ $) NIL)) (-3054 (($) 13) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1827 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-2284 (((-112) $) NIL)) (-3161 (($ $) NIL)) (-3137 (($ $) NIL (|has| $ (-6 -4444)))) (-3172 (((-776) $) NIL)) (-3182 (($ $) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3149 (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL) (($ $ $) NIL)) (-3632 (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL) (($ (-649 $)) NIL) (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 31) (($ $ $) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1710 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") |#1| $) 51)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2893 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-855)))) (-2394 (((-776) $) 25 (|has| $ (-6 -4443)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1106) (-1106)) (T -45))
NIL
(-36 |#1| |#2|)
-((-4387 (((-112) $) 12)) (-4408 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-412 (-551)) $) 25) (($ $ (-412 (-551))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4387 ((-112) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|))) (-47 |#2| |#3|) (-1055) (-797)) (T -46))
+((-2019 (((-112) $) 12)) (-1324 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-412 (-569)) $) 25) (($ $ (-412 (-569))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2019 ((-112) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-47 |#2| |#3|) (-1055) (-797)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4387 ((-112) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-4387 (((-112) $) 74)) (-3312 (($ |#1| |#2|) 73)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4398 ((|#2| $) 76)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4127 ((|#1| $ |#2|) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
+(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2019 ((-112) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2019 (((-112) $) 74)) (-3838 (($ |#1| |#2|) 73)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2091 ((|#2| $) 76)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-1503 ((|#1| $ |#2|) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
(((-47 |#1| |#2|) (-140) (-1055) (-797)) (T -47))
-((-3612 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-3312 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-4409 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-4127 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-4399 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-367)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (-15 -3612 (|t#1| $)) (-15 -3313 ($ $)) (-15 -4398 (|t#2| $)) (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (-15 -4387 ((-112) $)) (-15 -3312 ($ |t#1| |t#2|)) (-15 -4409 ($ $)) (-15 -4127 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-367)) (-15 -4399 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-562)) (-6 (-562)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-551)))) (-6 (-38 (-412 (-551)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-293) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-1725 (((-646 $) (-1177 $) (-1183)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-952 $)) NIL)) (-1306 (($ (-1177 $) (-1183)) NIL) (($ (-1177 $)) NIL) (($ (-952 $)) NIL)) (-3626 (((-112) $) 9)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1718 (((-646 (-616 $)) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1722 (($ $ (-296 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-1307 (((-646 $) (-1177 $) (-1183)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-952 $)) NIL)) (-3621 (($ (-1177 $) (-1183)) NIL) (($ (-1177 $)) NIL) (($ (-952 $)) NIL)) (-3595 (((-3 (-616 $) #1="failed") $) NIL) (((-3 (-551) #1#) $) NIL) (((-3 (-412 (-551)) #1#) $) NIL)) (-3594 (((-616 $) $) NIL) (((-551) $) NIL) (((-412 (-551)) $) NIL)) (-2982 (($ $ $) NIL)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-412 (-551)))) (|:| |vec| (-1272 (-412 (-551))))) (-694 $) (-1272 $)) NIL) (((-694 (-412 (-551))) (-694 $)) NIL)) (-4292 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2991 (($ $) NIL) (($ (-646 $)) NIL)) (-1717 (((-646 (-113)) $) NIL)) (-3466 (((-113) (-113)) NIL)) (-2591 (((-112) $) 11)) (-3094 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-3417 (((-1131 (-551) (-616 $)) $) NIL)) (-3430 (($ $ (-551)) NIL)) (-3554 (((-1177 $) (-1177 $) (-616 $)) NIL) (((-1177 $) (-1177 $) (-646 (-616 $))) NIL) (($ $ (-616 $)) NIL) (($ $ (-646 (-616 $))) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-1715 (((-1177 $) (-616 $)) NIL (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) NIL)) (-1720 (((-3 (-616 $) "failed") $) NIL)) (-2079 (($ (-646 $)) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-1719 (((-646 (-616 $)) $) NIL)) (-2402 (($ (-113) $) NIL) (($ (-113) (-646 $)) NIL)) (-3053 (((-112) $ (-113)) NIL) (((-112) $ (-1183)) NIL)) (-2824 (($ $) NIL)) (-3021 (((-776) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ (-646 $)) NIL) (($ $ $) NIL)) (-1716 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-1183) (-1 $ (-646 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-646 (-113)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-113) (-1 $ (-646 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1762 (((-776) $) NIL)) (-4249 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-646 $)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1721 (($ $) NIL) (($ $ $) NIL)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-3416 (((-1131 (-551) (-616 $)) $) NIL)) (-3623 (($ $) NIL (|has| $ (-1055)))) (-4420 (((-382) $) NIL) (((-226) $) NIL) (((-169 (-382)) $) NIL)) (-4396 (((-868) $) NIL) (($ (-616 $)) NIL) (($ (-412 (-551))) NIL) (($ $) NIL) (($ (-551)) NIL) (($ (-1131 (-551) (-616 $))) NIL)) (-3548 (((-776)) NIL T CONST)) (-3008 (($ $) NIL) (($ (-646 $)) NIL)) (-2421 (((-112) (-113)) NIL)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 6 T CONST)) (-3085 (($) 10 T CONST)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3473 (((-112) $ $) 13)) (-4399 (($ $ $) NIL)) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-412 (-551))) NIL) (($ $ (-551)) NIL) (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL) (($ $ $) NIL) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL)))
-(((-48) (-13 (-301) (-27) (-1044 (-551)) (-1044 (-412 (-551))) (-644 (-551)) (-1026) (-644 (-412 (-551))) (-147) (-619 (-169 (-382))) (-234) (-10 -8 (-15 -4396 ($ (-1131 (-551) (-616 $)))) (-15 -3417 ((-1131 (-551) (-616 $)) $)) (-15 -3416 ((-1131 (-551) (-616 $)) $)) (-15 -4292 ($ $)) (-15 -3554 ((-1177 $) (-1177 $) (-616 $))) (-15 -3554 ((-1177 $) (-1177 $) (-646 (-616 $)))) (-15 -3554 ($ $ (-616 $))) (-15 -3554 ($ $ (-646 (-616 $))))))) (T -48))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48)))) (-4292 (*1 *1 *1) (-5 *1 (-48))) (-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-48))) (-5 *3 (-616 (-48))) (-5 *1 (-48)))) (-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-48))) (-5 *3 (-646 (-616 (-48)))) (-5 *1 (-48)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-616 (-48))) (-5 *1 (-48)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-616 (-48)))) (-5 *1 (-48)))))
-(-13 (-301) (-27) (-1044 (-551)) (-1044 (-412 (-551))) (-644 (-551)) (-1026) (-644 (-412 (-551))) (-147) (-619 (-169 (-382))) (-234) (-10 -8 (-15 -4396 ($ (-1131 (-551) (-616 $)))) (-15 -3417 ((-1131 (-551) (-616 $)) $)) (-15 -3416 ((-1131 (-551) (-616 $)) $)) (-15 -4292 ($ $)) (-15 -3554 ((-1177 $) (-1177 $) (-616 $))) (-15 -3554 ((-1177 $) (-1177 $) (-646 (-616 $)))) (-15 -3554 ($ $ (-616 $))) (-15 -3554 ($ $ (-646 (-616 $))))))
-((-2986 (((-112) $ $) NIL)) (-2126 (((-646 (-511)) $) 17)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 7)) (-3671 (((-1188) $) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-49) (-13 (-1107) (-10 -8 (-15 -2126 ((-646 (-511)) $)) (-15 -3671 ((-1188) $))))) (T -49))
-((-2126 (*1 *2 *1) (-12 (-5 *2 (-646 (-511))) (-5 *1 (-49)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49)))))
-(-13 (-1107) (-10 -8 (-15 -2126 ((-646 (-511)) $)) (-15 -3671 ((-1188) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 87)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3083 (((-112) $) 30)) (-3595 (((-3 |#1| "failed") $) 33)) (-3594 ((|#1| $) 34)) (-4409 (($ $) 40)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3612 ((|#1| $) 31)) (-1563 (($ $) 76)) (-3681 (((-1165) $) NIL)) (-1562 (((-112) $) 43)) (-3682 (((-1126) $) NIL)) (-2590 (($ (-776)) 74)) (-4393 (($ (-646 (-551))) 75)) (-4398 (((-776) $) 44)) (-4396 (((-868) $) 93) (($ (-551)) 71) (($ |#1|) 69)) (-4127 ((|#1| $ $) 28)) (-3548 (((-776)) 73 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 45 T CONST)) (-3085 (($) 17 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 66)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-626 |#1|) (-1044 |#1|) (-10 -8 (-15 -3612 (|#1| $)) (-15 -1563 ($ $)) (-15 -4409 ($ $)) (-15 -4127 (|#1| $ $)) (-15 -2590 ($ (-776))) (-15 -4393 ($ (-646 (-551)))) (-15 -1562 ((-112) $)) (-15 -3083 ((-112) $)) (-15 -4398 ((-776) $)) (-15 -4408 ($ (-1 |#1| |#1|) $)))) (-1055) (-646 (-1183))) (T -50))
-((-3612 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-646 (-1183))))) (-1563 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-646 (-1183))))) (-4409 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-646 (-1183))))) (-4127 (*1 *2 *1 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-646 (-1183))))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-646 (-1183))))) (-4393 (*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-646 (-1183))))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-646 (-1183))))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-646 (-1183))))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-646 (-1183))))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4)) (-14 *4 (-646 (-1183))))))
-(-13 (-626 |#1|) (-1044 |#1|) (-10 -8 (-15 -3612 (|#1| $)) (-15 -1563 ($ $)) (-15 -4409 ($ $)) (-15 -4127 (|#1| $ $)) (-15 -2590 ($ (-776))) (-15 -4393 ($ (-646 (-551)))) (-15 -1562 ((-112) $)) (-15 -3083 ((-112) $)) (-15 -4398 ((-776) $)) (-15 -4408 ($ (-1 |#1| |#1|) $))))
-((-2986 (((-112) $ $) NIL)) (-1341 (((-778) $) 8)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1342 (((-1109) $) 10)) (-4396 (((-868) $) 15)) (-3680 (((-112) $ $) NIL)) (-1343 (($ (-1109) (-778)) 16)) (-3473 (((-112) $ $) 12)))
-(((-51) (-13 (-1107) (-10 -8 (-15 -1343 ($ (-1109) (-778))) (-15 -1342 ((-1109) $)) (-15 -1341 ((-778) $))))) (T -51))
-((-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *3 (-778)) (-5 *1 (-51)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-51)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-778)) (-5 *1 (-51)))))
-(-13 (-1107) (-10 -8 (-15 -1343 ($ (-1109) (-778))) (-15 -1342 ((-1109) $)) (-15 -1341 ((-778) $))))
-((-3083 (((-112) (-51)) 18)) (-3595 (((-3 |#1| "failed") (-51)) 20)) (-3594 ((|#1| (-51)) 21)) (-4396 (((-51) |#1|) 14)))
-(((-52 |#1|) (-10 -7 (-15 -4396 ((-51) |#1|)) (-15 -3595 ((-3 |#1| "failed") (-51))) (-15 -3083 ((-112) (-51))) (-15 -3594 (|#1| (-51)))) (-1222)) (T -52))
-((-3594 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1222)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1222)))) (-3595 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1222)))) (-4396 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1222)))))
-(-10 -7 (-15 -4396 ((-51) |#1|)) (-15 -3595 ((-3 |#1| "failed") (-51))) (-15 -3083 ((-112) (-51))) (-15 -3594 (|#1| (-51))))
-((-2966 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2966 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1055) (-653 |#1|) (-857 |#1|)) (T -53))
-((-2966 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5)))))
-(-10 -7 (-15 -2966 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1345 ((|#3| |#3| (-646 (-1183))) 46)) (-1344 ((|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3| (-925)) 32) ((|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1344 (|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3|)) (-15 -1344 (|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3| (-925))) (-15 -1345 (|#3| |#3| (-646 (-1183))))) (-1107) (-13 (-1055) (-892 |#1|) (-619 (-896 |#1|))) (-13 (-426 |#2|) (-892 |#1|) (-619 (-896 |#1|)))) (T -54))
-((-1345 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))))) (-1344 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-646 (-1081 *5 *6 *2))) (-5 *4 (-925)) (-4 *5 (-1107)) (-4 *6 (-13 (-1055) (-892 *5) (-619 (-896 *5)))) (-4 *2 (-13 (-426 *6) (-892 *5) (-619 (-896 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1344 (*1 *2 *3 *2) (-12 (-5 *3 (-646 (-1081 *4 *5 *2))) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1344 (|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3|)) (-15 -1344 (|#3| (-646 (-1081 |#1| |#2| |#3|)) |#3| (-925))) (-15 -1345 (|#3| |#3| (-646 (-1183)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 14)) (-3595 (((-3 (-776) "failed") $) 34)) (-3594 (((-776) $) NIL)) (-2591 (((-112) $) 16)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) 18)) (-4396 (((-868) $) 23) (($ (-776)) 29)) (-3680 (((-112) $ $) NIL)) (-1346 (($) 11 T CONST)) (-3473 (((-112) $ $) 20)))
-(((-55) (-13 (-1107) (-1044 (-776)) (-10 -8 (-15 -1346 ($) -4402) (-15 -3626 ((-112) $)) (-15 -2591 ((-112) $))))) (T -55))
-((-1346 (*1 *1) (-5 *1 (-55))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1107) (-1044 (-776)) (-10 -8 (-15 -1346 ($) -4402) (-15 -3626 ((-112) $)) (-15 -2591 ((-112) $))))
-((-1312 (((-112) $ (-776)) 27)) (-1348 (($ $ (-551) |#3|) 66)) (-1347 (($ $ (-551) |#4|) 70)) (-3534 ((|#3| $ (-551)) 79)) (-2134 (((-646 |#2|) $) 47)) (-4169 (((-112) $ (-776)) 31)) (-3684 (((-112) |#2| $) 74)) (-2138 (($ (-1 |#2| |#2|) $) 55)) (-4408 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4166 (((-112) $ (-776)) 29)) (-2391 (($ $ |#2|) 52)) (-2136 (((-112) (-1 (-112) |#2|) $) 21)) (-4249 ((|#2| $ (-551) (-551)) NIL) ((|#2| $ (-551) (-551) |#2|) 35)) (-2135 (((-776) (-1 (-112) |#2|) $) 41) (((-776) |#2| $) 76)) (-3842 (($ $) 51)) (-3533 ((|#4| $ (-551)) 82)) (-4396 (((-868) $) 88)) (-2137 (((-112) (-1 (-112) |#2|) $) 20)) (-3473 (((-112) $ $) 73)) (-4407 (((-776) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1347 (|#1| |#1| (-551) |#4|)) (-15 -1348 (|#1| |#1| (-551) |#3|)) (-15 -2134 ((-646 |#2|) |#1|)) (-15 -3533 (|#4| |#1| (-551))) (-15 -3534 (|#3| |#1| (-551))) (-15 -4249 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551))) (-15 -2391 (|#1| |#1| |#2|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -3684 ((-112) |#2| |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))) (-15 -3842 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1222) (-376 |#2|) (-376 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1347 (|#1| |#1| (-551) |#4|)) (-15 -1348 (|#1| |#1| (-551) |#3|)) (-15 -2134 ((-646 |#2|) |#1|)) (-15 -3533 (|#4| |#1| (-551))) (-15 -3534 (|#3| |#1| (-551))) (-15 -4249 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551))) (-15 -2391 (|#1| |#1| |#2|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -3684 ((-112) |#2| |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))) (-15 -3842 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) (-551) |#1|) 45)) (-1348 (($ $ (-551) |#2|) 43)) (-1347 (($ $ (-551) |#3|) 42)) (-4174 (($) 7 T CONST)) (-3534 ((|#2| $ (-551)) 47)) (-1694 ((|#1| $ (-551) (-551) |#1|) 44)) (-3535 ((|#1| $ (-551) (-551)) 49)) (-2134 (((-646 |#1|) $) 31)) (-3537 (((-776) $) 52)) (-4064 (($ (-776) (-776) |#1|) 58)) (-3536 (((-776) $) 51)) (-4169 (((-112) $ (-776)) 9)) (-3541 (((-551) $) 56)) (-3539 (((-551) $) 54)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3540 (((-551) $) 55)) (-3538 (((-551) $) 53)) (-2138 (($ (-1 |#1| |#1|) $) 35)) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) 57)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) (-551)) 50) ((|#1| $ (-551) (-551) |#1|) 48)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-3533 ((|#3| $ (-551)) 46)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1222) (-376 |t#1|) (-376 |t#1|)) (T -57))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4064 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1222)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-2391 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-551)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-551)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-551)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-551)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-776)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-776)))) (-4249 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-1222)))) (-3535 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-1222)))) (-4249 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2)) (-4 *5 (-376 *2)))) (-3534 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1222)) (-4 *5 (-376 *4)) (-4 *2 (-376 *4)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1222)) (-4 *5 (-376 *4)) (-4 *2 (-376 *4)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-646 *3)))) (-4237 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2)) (-4 *5 (-376 *2)))) (-1694 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2)) (-4 *5 (-376 *2)))) (-1348 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-551)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-376 *4)) (-4 *5 (-376 *4)))) (-1347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-551)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1222)) (-4 *5 (-376 *4)) (-4 *3 (-376 *4)))) (-2138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4408 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4408 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))))
-(-13 (-494 |t#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -4064 ($ (-776) (-776) |t#1|)) (-15 -2391 ($ $ |t#1|)) (-15 -3541 ((-551) $)) (-15 -3540 ((-551) $)) (-15 -3539 ((-551) $)) (-15 -3538 ((-551) $)) (-15 -3537 ((-776) $)) (-15 -3536 ((-776) $)) (-15 -4249 (|t#1| $ (-551) (-551))) (-15 -3535 (|t#1| $ (-551) (-551))) (-15 -4249 (|t#1| $ (-551) (-551) |t#1|)) (-15 -3534 (|t#2| $ (-551))) (-15 -3533 (|t#3| $ (-551))) (-15 -2134 ((-646 |t#1|) $)) (-15 -4237 (|t#1| $ (-551) (-551) |t#1|)) (-15 -1694 (|t#1| $ (-551) (-551) |t#1|)) (-15 -1348 ($ $ (-551) |t#2|)) (-15 -1347 ($ $ (-551) |t#3|)) (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (-15 -2138 ($ (-1 |t#1| |t#1|) $)) (-15 -4408 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4408 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1349 (($ (-646 |#1|)) 11) (($ (-776) |#1|) 14)) (-4064 (($ (-776) |#1|) 13)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 10)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1349 ($ (-646 |#1|))) (-15 -1349 ($ (-776) |#1|)))) (-1222)) (T -58))
-((-1349 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-58 *3)))) (-1349 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-58 *3)) (-4 *3 (-1222)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1349 ($ (-646 |#1|))) (-15 -1349 ($ (-776) |#1|))))
-((-4291 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4292 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4408 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
-(((-59 |#1| |#2|) (-10 -7 (-15 -4291 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4408 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1222) (-1222)) (T -59))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-59 *5 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
-(-10 -7 (-15 -4291 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4408 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) NIL)) (-1348 (($ $ (-551) (-58 |#1|)) NIL)) (-1347 (($ $ (-551) (-58 |#1|)) NIL)) (-4174 (($) NIL T CONST)) (-3534 (((-58 |#1|) $ (-551)) NIL)) (-1694 ((|#1| $ (-551) (-551) |#1|) NIL)) (-3535 ((|#1| $ (-551) (-551)) NIL)) (-2134 (((-646 |#1|) $) NIL)) (-3537 (((-776) $) NIL)) (-4064 (($ (-776) (-776) |#1|) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) (-551)) NIL) ((|#1| $ (-551) (-551) |#1|) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3533 (((-58 |#1|) $ (-551)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4444))) (-1222)) (T -60))
-NIL
-(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4444)))
-((-3595 (((-3 $ #1="failed") (-317 (-382))) 41) (((-3 $ #1#) (-317 (-551))) 46) (((-3 $ #1#) (-952 (-382))) 50) (((-3 $ #1#) (-952 (-551))) 54) (((-3 $ #1#) (-412 (-952 (-382)))) 36) (((-3 $ #1#) (-412 (-952 (-551)))) 29)) (-3594 (($ (-317 (-382))) 39) (($ (-317 (-551))) 44) (($ (-952 (-382))) 48) (($ (-952 (-551))) 52) (($ (-412 (-952 (-382)))) 34) (($ (-412 (-952 (-551)))) 26)) (-3822 (((-1278) $) 76)) (-4396 (((-868) $) 69) (($ (-646 (-333))) 61) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 64) (($ (-343 (-3971 (QUOTE X)) (-3971) (-704))) 25)))
-(((-61 |#1|) (-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971 (QUOTE X)) (-3971) (-704)))))) (-1183)) (T -61))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-343 (-3971 (QUOTE X)) (-3971) (-704))) (-5 *1 (-61 *3)) (-14 *3 (-1183)))))
-(-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971 (QUOTE X)) (-3971) (-704))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 74) (((-3 $ #1#) (-1272 (-317 (-551)))) 63) (((-3 $ #1#) (-1272 (-952 (-382)))) 94) (((-3 $ #1#) (-1272 (-952 (-551)))) 84) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 52) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 39)) (-3594 (($ (-1272 (-317 (-382)))) 70) (($ (-1272 (-317 (-551)))) 59) (($ (-1272 (-952 (-382)))) 90) (($ (-1272 (-952 (-551)))) 80) (($ (-1272 (-412 (-952 (-382))))) 48) (($ (-1272 (-412 (-952 (-551))))) 32)) (-3822 (((-1278) $) 124)) (-4396 (((-868) $) 118) (($ (-646 (-333))) 103) (($ (-333)) 97) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 101) (($ (-1272 (-343 (-3971 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3971) (-704)))) 31)))
-(((-62 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3971) (-704))))))) (-1183)) (T -62))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3971) (-704)))) (-5 *1 (-62 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3971) (-704)))))))
-((-3822 (((-1278) $) 54) (((-1278)) 55)) (-4396 (((-868) $) 51)))
-(((-63 |#1|) (-13 (-401) (-10 -7 (-15 -3822 ((-1278))))) (-1183)) (T -63))
-((-3822 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-63 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -7 (-15 -3822 ((-1278)))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 153) (((-3 $ #1#) (-1272 (-317 (-551)))) 143) (((-3 $ #1#) (-1272 (-952 (-382)))) 173) (((-3 $ #1#) (-1272 (-952 (-551)))) 163) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 132) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 120)) (-3594 (($ (-1272 (-317 (-382)))) 149) (($ (-1272 (-317 (-551)))) 139) (($ (-1272 (-952 (-382)))) 169) (($ (-1272 (-952 (-551)))) 159) (($ (-1272 (-412 (-952 (-382))))) 128) (($ (-1272 (-412 (-952 (-551))))) 113)) (-3822 (((-1278) $) 106)) (-4396 (((-868) $) 100) (($ (-646 (-333))) 30) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 33) (($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))) 98)))
-(((-64 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704))))))) (-1183)) (T -64))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))) (-5 *1 (-64 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-694 (-317 (-382)))) 114) (((-3 $ #1#) (-694 (-317 (-551)))) 102) (((-3 $ #1#) (-694 (-952 (-382)))) 136) (((-3 $ #1#) (-694 (-952 (-551)))) 125) (((-3 $ #1#) (-694 (-412 (-952 (-382))))) 90) (((-3 $ #1#) (-694 (-412 (-952 (-551))))) 76)) (-3594 (($ (-694 (-317 (-382)))) 110) (($ (-694 (-317 (-551)))) 98) (($ (-694 (-952 (-382)))) 132) (($ (-694 (-952 (-551)))) 121) (($ (-694 (-412 (-952 (-382))))) 86) (($ (-694 (-412 (-952 (-551))))) 69)) (-3822 (((-1278) $) 144)) (-4396 (((-868) $) 138) (($ (-646 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 32) (($ (-694 (-343 (-3971) (-3971 (QUOTE X) (QUOTE HESS)) (-704)))) 59)))
-(((-65 |#1|) (-13 (-389) (-621 (-694 (-343 (-3971) (-3971 (QUOTE X) (QUOTE HESS)) (-704))))) (-1183)) (T -65))
-NIL
-(-13 (-389) (-621 (-694 (-343 (-3971) (-3971 (QUOTE X) (QUOTE HESS)) (-704)))))
-((-3595 (((-3 $ #1="failed") (-317 (-382))) 60) (((-3 $ #1#) (-317 (-551))) 65) (((-3 $ #1#) (-952 (-382))) 69) (((-3 $ #1#) (-952 (-551))) 73) (((-3 $ #1#) (-412 (-952 (-382)))) 55) (((-3 $ #1#) (-412 (-952 (-551)))) 48)) (-3594 (($ (-317 (-382))) 58) (($ (-317 (-551))) 63) (($ (-952 (-382))) 67) (($ (-952 (-551))) 71) (($ (-412 (-952 (-382)))) 53) (($ (-412 (-952 (-551)))) 45)) (-3822 (((-1278) $) 82)) (-4396 (((-868) $) 76) (($ (-646 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 32) (($ (-343 (-3971) (-3971 (QUOTE XC)) (-704))) 40)))
-(((-66 |#1|) (-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE XC)) (-704)))))) (-1183)) (T -66))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-343 (-3971) (-3971 (QUOTE XC)) (-704))) (-5 *1 (-66 *3)) (-14 *3 (-1183)))))
-(-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE XC)) (-704))))))
-((-3822 (((-1278) $) 68)) (-4396 (((-868) $) 62) (($ (-694 (-704))) 54) (($ (-646 (-333))) 53) (($ (-333)) 60) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 58)))
+((-1820 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-3838 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-1503 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-367)))))
+(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (-15 -1820 (|t#1| $)) (-15 -1808 ($ $)) (-15 -2091 (|t#2| $)) (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (-15 -2019 ((-112) $)) (-15 -3838 ($ |t#1| |t#2|)) (-15 -1842 ($ $)) (-15 -1503 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-367)) (-15 -2956 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-561)) (-6 (-561)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-6 (-38 (-412 (-569)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2092 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-1540 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-2789 (((-112) $) 9)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3550 (((-649 (-617 $)) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4272 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-1550 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2740 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-4359 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3043 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2339 (($ $ $) NIL)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-412 (-569)))) (|:| |vec| (-1273 (-412 (-569))))) (-694 $) (-1273 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3485 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2629 (($ $) NIL) (($ (-649 $)) NIL)) (-2042 (((-649 (-114)) $) NIL)) (-3642 (((-114) (-114)) NIL)) (-2861 (((-112) $) 11)) (-2355 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-4378 (((-1131 (-569) (-617 $)) $) NIL)) (-1589 (($ $ (-569)) NIL)) (-3334 (((-1179 $) (-1179 $) (-617 $)) NIL) (((-1179 $) (-1179 $) (-649 (-617 $))) NIL) (($ $ (-617 $)) NIL) (($ $ (-649 (-617 $))) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2021 (((-1179 $) (-617 $)) NIL (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) NIL)) (-2052 (((-3 (-617 $) "failed") $) NIL)) (-1798 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3629 (((-649 (-617 $)) $) NIL)) (-1331 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-2016 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1776 (($ $) NIL)) (-1399 (((-776) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2031 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4409 (((-776) $) NIL)) (-1852 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2062 (($ $) NIL) (($ $ $) NIL)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-4390 (((-1131 (-569) (-617 $)) $) NIL)) (-2760 (($ $) NIL (|has| $ (-1055)))) (-1384 (((-383) $) NIL) (((-226) $) NIL) (((-170 (-383)) $) NIL)) (-2388 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1131 (-569) (-617 $))) NIL)) (-3263 (((-776)) NIL T CONST)) (-4176 (($ $) NIL) (($ (-649 $)) NIL)) (-3858 (((-112) (-114)) NIL)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 6 T CONST)) (-1796 (($) 10 T CONST)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2853 (((-112) $ $) 13)) (-2956 (($ $ $) NIL)) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) NIL) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-48) (-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -2388 ($ (-1131 (-569) (-617 $)))) (-15 -4378 ((-1131 (-569) (-617 $)) $)) (-15 -4390 ((-1131 (-569) (-617 $)) $)) (-15 -3485 ($ $)) (-15 -3334 ((-1179 $) (-1179 $) (-617 $))) (-15 -3334 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -3334 ($ $ (-617 $))) (-15 -3334 ($ $ (-649 (-617 $))))))) (T -48))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-3485 (*1 *1 *1) (-5 *1 (-48))) (-3334 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48)))) (-3334 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48)))))
+(-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -2388 ($ (-1131 (-569) (-617 $)))) (-15 -4378 ((-1131 (-569) (-617 $)) $)) (-15 -4390 ((-1131 (-569) (-617 $)) $)) (-15 -3485 ($ $)) (-15 -3334 ((-1179 $) (-1179 $) (-617 $))) (-15 -3334 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -3334 ($ $ (-617 $))) (-15 -3334 ($ $ (-649 (-617 $))))))
+((-2383 (((-112) $ $) NIL)) (-3729 (((-649 (-511)) $) 17)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 7)) (-3473 (((-1188) $) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-49) (-13 (-1106) (-10 -8 (-15 -3729 ((-649 (-511)) $)) (-15 -3473 ((-1188) $))))) (T -49))
+((-3729 (*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49)))))
+(-13 (-1106) (-10 -8 (-15 -3729 ((-649 (-511)) $)) (-15 -3473 ((-1188) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 87)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2286 (((-112) $) 30)) (-4359 (((-3 |#1| "failed") $) 33)) (-3043 ((|#1| $) 34)) (-1842 (($ $) 40)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1820 ((|#1| $) 31)) (-2948 (($ $) 76)) (-2050 (((-1165) $) NIL)) (-2937 (((-112) $) 43)) (-3461 (((-1126) $) NIL)) (-2290 (($ (-776)) 74)) (-4367 (($ (-649 (-569))) 75)) (-2091 (((-776) $) 44)) (-2388 (((-867) $) 93) (($ (-569)) 71) (($ |#1|) 69)) (-1503 ((|#1| $ $) 28)) (-3263 (((-776)) 73 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 45 T CONST)) (-1796 (($) 17 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-625 |#1|) (-1044 |#1|) (-10 -8 (-15 -1820 (|#1| $)) (-15 -2948 ($ $)) (-15 -1842 ($ $)) (-15 -1503 (|#1| $ $)) (-15 -2290 ($ (-776))) (-15 -4367 ($ (-649 (-569)))) (-15 -2937 ((-112) $)) (-15 -2286 ((-112) $)) (-15 -2091 ((-776) $)) (-15 -1324 ($ (-1 |#1| |#1|) $)))) (-1055) (-649 (-1183))) (T -50))
+((-1820 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183))))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))))) (-1503 (*1 *2 *1 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183))))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-4367 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4)) (-14 *4 (-649 (-1183))))))
+(-13 (-625 |#1|) (-1044 |#1|) (-10 -8 (-15 -1820 (|#1| $)) (-15 -2948 ($ $)) (-15 -1842 ($ $)) (-15 -1503 (|#1| $ $)) (-15 -2290 ($ (-776))) (-15 -4367 ($ (-649 (-569)))) (-15 -2937 ((-112) $)) (-15 -2286 ((-112) $)) (-15 -2091 ((-776) $)) (-15 -1324 ($ (-1 |#1| |#1|) $))))
+((-2286 (((-112) (-52)) 18)) (-4359 (((-3 |#1| "failed") (-52)) 20)) (-3043 ((|#1| (-52)) 21)) (-2388 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -2388 ((-52) |#1|)) (-15 -4359 ((-3 |#1| "failed") (-52))) (-15 -2286 ((-112) (-52))) (-15 -3043 (|#1| (-52)))) (-1223)) (T -51))
+((-3043 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1223)))) (-4359 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1223)))))
+(-10 -7 (-15 -2388 ((-52) |#1|)) (-15 -4359 ((-3 |#1| "failed") (-52))) (-15 -2286 ((-112) (-52))) (-15 -3043 (|#1| (-52))))
+((-2383 (((-112) $ $) NIL)) (-4279 (((-779) $) 8)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3155 (((-1110) $) 10)) (-2388 (((-867) $) 15)) (-2040 (((-112) $ $) NIL)) (-3543 (($ (-1110) (-779)) 16)) (-2853 (((-112) $ $) 12)))
+(((-52) (-13 (-1106) (-10 -8 (-15 -3543 ($ (-1110) (-779))) (-15 -3155 ((-1110) $)) (-15 -4279 ((-779) $))))) (T -52))
+((-3543 (*1 *1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *3 (-779)) (-5 *1 (-52)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-52)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52)))))
+(-13 (-1106) (-10 -8 (-15 -3543 ($ (-1110) (-779))) (-15 -3155 ((-1110) $)) (-15 -4279 ((-779) $))))
+((-3341 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3341 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1055) (-653 |#1|) (-857 |#1|)) (T -53))
+((-3341 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5)))))
+(-10 -7 (-15 -3341 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1916 ((|#3| |#3| (-649 (-1183))) 46)) (-1907 ((|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927)) 32) ((|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1907 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|)) (-15 -1907 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1916 (|#3| |#3| (-649 (-1183))))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -54))
+((-1916 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-1907 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 (-1082 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1106)) (-4 *6 (-13 (-1055) (-892 *5) (-619 (-898 *5)))) (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1907 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-1082 *4 *5 *2))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1907 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|)) (-15 -1907 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1916 (|#3| |#3| (-649 (-1183)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 14)) (-4359 (((-3 (-776) "failed") $) 34)) (-3043 (((-776) $) NIL)) (-2861 (((-112) $) 16)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) 18)) (-2388 (((-867) $) 23) (($ (-776)) 29)) (-2040 (((-112) $ $) NIL)) (-1925 (($) 11 T CONST)) (-2853 (((-112) $ $) 20)))
+(((-55) (-13 (-1106) (-1044 (-776)) (-10 -8 (-15 -1925 ($) -3600) (-15 -2789 ((-112) $)) (-15 -2861 ((-112) $))))) (T -55))
+((-1925 (*1 *1) (-5 *1 (-55))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1106) (-1044 (-776)) (-10 -8 (-15 -1925 ($) -3600) (-15 -2789 ((-112) $)) (-15 -2861 ((-112) $))))
+((-1610 (((-112) $ (-776)) 27)) (-2009 (($ $ (-569) |#3|) 66)) (-1933 (($ $ (-569) |#4|) 70)) (-3136 ((|#3| $ (-569)) 79)) (-2796 (((-649 |#2|) $) 47)) (-3799 (((-112) $ (-776)) 31)) (-2060 (((-112) |#2| $) 74)) (-3065 (($ (-1 |#2| |#2|) $) 55)) (-1324 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1902 (((-112) $ (-776)) 29)) (-1713 (($ $ |#2|) 52)) (-3983 (((-112) (-1 (-112) |#2|) $) 21)) (-1852 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) 35)) (-3469 (((-776) (-1 (-112) |#2|) $) 41) (((-776) |#2| $) 76)) (-3885 (($ $) 51)) (-3126 ((|#4| $ (-569)) 82)) (-2388 (((-867) $) 88)) (-3996 (((-112) (-1 (-112) |#2|) $) 20)) (-2853 (((-112) $ $) 73)) (-2394 (((-776) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1933 (|#1| |#1| (-569) |#4|)) (-15 -2009 (|#1| |#1| (-569) |#3|)) (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3126 (|#4| |#1| (-569))) (-15 -3136 (|#3| |#1| (-569))) (-15 -1852 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569))) (-15 -1713 (|#1| |#1| |#2|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2060 ((-112) |#2| |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))) (-15 -3885 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1223) (-377 |#2|) (-377 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1933 (|#1| |#1| (-569) |#4|)) (-15 -2009 (|#1| |#1| (-569) |#3|)) (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3126 (|#4| |#1| (-569))) (-15 -3136 (|#3| |#1| (-569))) (-15 -1852 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569))) (-15 -1713 (|#1| |#1| |#2|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2060 ((-112) |#2| |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))) (-15 -3885 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) (-569) |#1|) 45)) (-2009 (($ $ (-569) |#2|) 43)) (-1933 (($ $ (-569) |#3|) 42)) (-3863 (($) 7 T CONST)) (-3136 ((|#2| $ (-569)) 47)) (-3074 ((|#1| $ (-569) (-569) |#1|) 44)) (-3007 ((|#1| $ (-569) (-569)) 49)) (-2796 (((-649 |#1|) $) 31)) (-2511 (((-776) $) 52)) (-4275 (($ (-776) (-776) |#1|) 58)) (-2522 (((-776) $) 51)) (-3799 (((-112) $ (-776)) 9)) (-3181 (((-569) $) 56)) (-3160 (((-569) $) 54)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3171 (((-569) $) 55)) (-3148 (((-569) $) 53)) (-3065 (($ (-1 |#1| |#1|) $) 35)) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) 57)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-3126 ((|#3| $ (-569)) 46)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1223) (-377 |t#1|) (-377 |t#1|)) (T -57))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-4275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1223)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1713 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-1852 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1223)))) (-3007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1223)))) (-1852 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 *3)))) (-3861 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-3074 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-2009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1324 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1324 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(-13 (-494 |t#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -4275 ($ (-776) (-776) |t#1|)) (-15 -1713 ($ $ |t#1|)) (-15 -3181 ((-569) $)) (-15 -3171 ((-569) $)) (-15 -3160 ((-569) $)) (-15 -3148 ((-569) $)) (-15 -2511 ((-776) $)) (-15 -2522 ((-776) $)) (-15 -1852 (|t#1| $ (-569) (-569))) (-15 -3007 (|t#1| $ (-569) (-569))) (-15 -1852 (|t#1| $ (-569) (-569) |t#1|)) (-15 -3136 (|t#2| $ (-569))) (-15 -3126 (|t#3| $ (-569))) (-15 -2796 ((-649 |t#1|) $)) (-15 -3861 (|t#1| $ (-569) (-569) |t#1|)) (-15 -3074 (|t#1| $ (-569) (-569) |t#1|)) (-15 -2009 ($ $ (-569) |t#2|)) (-15 -1933 ($ $ (-569) |t#3|)) (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (-15 -3065 ($ (-1 |t#1| |t#1|) $)) (-15 -1324 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1324 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3535 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3485 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1324 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3535 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1324 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1223) (-1223)) (T -58))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-58 *5 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3535 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1324 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2020 (($ (-649 |#1|)) 11) (($ (-776) |#1|) 14)) (-4275 (($ (-776) |#1|) 13)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 10)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2020 ($ (-649 |#1|))) (-15 -2020 ($ (-776) |#1|)))) (-1223)) (T -59))
+((-2020 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-59 *3)))) (-2020 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1223)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2020 ($ (-649 |#1|))) (-15 -2020 ($ (-776) |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2009 (($ $ (-569) (-59 |#1|)) NIL)) (-1933 (($ $ (-569) (-59 |#1|)) NIL)) (-3863 (($) NIL T CONST)) (-3136 (((-59 |#1|) $ (-569)) NIL)) (-3074 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3007 ((|#1| $ (-569) (-569)) NIL)) (-2796 (((-649 |#1|) $) NIL)) (-2511 (((-776) $) NIL)) (-4275 (($ (-776) (-776) |#1|) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3126 (((-59 |#1|) $ (-569)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4444))) (-1223)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4444)))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 74) (((-3 $ "failed") (-1273 (-319 (-569)))) 63) (((-3 $ "failed") (-1273 (-958 (-383)))) 94) (((-3 $ "failed") (-1273 (-958 (-569)))) 84) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 52) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 39)) (-3043 (($ (-1273 (-319 (-383)))) 70) (($ (-1273 (-319 (-569)))) 59) (($ (-1273 (-958 (-383)))) 90) (($ (-1273 (-958 (-569)))) 80) (($ (-1273 (-412 (-958 (-383))))) 48) (($ (-1273 (-412 (-958 (-569))))) 32)) (-3275 (((-1278) $) 124)) (-2388 (((-867) $) 118) (($ (-649 (-333))) 103) (($ (-333)) 97) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 101) (($ (-1273 (-343 (-3709 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3709) (-704)))) 31)))
+(((-61 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3709) (-704))))))) (-1183)) (T -61))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3709) (-704)))) (-5 *1 (-61 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3709) (-704)))))))
+((-3275 (((-1278) $) 54) (((-1278)) 55)) (-2388 (((-867) $) 51)))
+(((-62 |#1|) (-13 (-400) (-10 -7 (-15 -3275 ((-1278))))) (-1183)) (T -62))
+((-3275 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-62 *3)) (-14 *3 (-1183)))))
+(-13 (-400) (-10 -7 (-15 -3275 ((-1278)))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 153) (((-3 $ "failed") (-1273 (-319 (-569)))) 143) (((-3 $ "failed") (-1273 (-958 (-383)))) 173) (((-3 $ "failed") (-1273 (-958 (-569)))) 163) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 132) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 120)) (-3043 (($ (-1273 (-319 (-383)))) 149) (($ (-1273 (-319 (-569)))) 139) (($ (-1273 (-958 (-383)))) 169) (($ (-1273 (-958 (-569)))) 159) (($ (-1273 (-412 (-958 (-383))))) 128) (($ (-1273 (-412 (-958 (-569))))) 113)) (-3275 (((-1278) $) 106)) (-2388 (((-867) $) 100) (($ (-649 (-333))) 30) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 33) (($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))) 98)))
+(((-63 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704))))))) (-1183)) (T -63))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))) (-5 *1 (-63 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))))))
+((-4359 (((-3 $ "failed") (-319 (-383))) 41) (((-3 $ "failed") (-319 (-569))) 46) (((-3 $ "failed") (-958 (-383))) 50) (((-3 $ "failed") (-958 (-569))) 54) (((-3 $ "failed") (-412 (-958 (-383)))) 36) (((-3 $ "failed") (-412 (-958 (-569)))) 29)) (-3043 (($ (-319 (-383))) 39) (($ (-319 (-569))) 44) (($ (-958 (-383))) 48) (($ (-958 (-569))) 52) (($ (-412 (-958 (-383)))) 34) (($ (-412 (-958 (-569)))) 26)) (-3275 (((-1278) $) 76)) (-2388 (((-867) $) 69) (($ (-649 (-333))) 61) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 64) (($ (-343 (-3709 (QUOTE X)) (-3709) (-704))) 25)))
+(((-64 |#1|) (-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709 (QUOTE X)) (-3709) (-704)))))) (-1183)) (T -64))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-343 (-3709 (QUOTE X)) (-3709) (-704))) (-5 *1 (-64 *3)) (-14 *3 (-1183)))))
+(-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709 (QUOTE X)) (-3709) (-704))))))
+((-4359 (((-3 $ "failed") (-694 (-319 (-383)))) 114) (((-3 $ "failed") (-694 (-319 (-569)))) 102) (((-3 $ "failed") (-694 (-958 (-383)))) 136) (((-3 $ "failed") (-694 (-958 (-569)))) 125) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 90) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 76)) (-3043 (($ (-694 (-319 (-383)))) 110) (($ (-694 (-319 (-569)))) 98) (($ (-694 (-958 (-383)))) 132) (($ (-694 (-958 (-569)))) 121) (($ (-694 (-412 (-958 (-383))))) 86) (($ (-694 (-412 (-958 (-569))))) 69)) (-3275 (((-1278) $) 144)) (-2388 (((-867) $) 138) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 32) (($ (-694 (-343 (-3709) (-3709 (QUOTE X) (QUOTE HESS)) (-704)))) 59)))
+(((-65 |#1|) (-13 (-388) (-621 (-694 (-343 (-3709) (-3709 (QUOTE X) (QUOTE HESS)) (-704))))) (-1183)) (T -65))
+NIL
+(-13 (-388) (-621 (-694 (-343 (-3709) (-3709 (QUOTE X) (QUOTE HESS)) (-704)))))
+((-4359 (((-3 $ "failed") (-319 (-383))) 60) (((-3 $ "failed") (-319 (-569))) 65) (((-3 $ "failed") (-958 (-383))) 69) (((-3 $ "failed") (-958 (-569))) 73) (((-3 $ "failed") (-412 (-958 (-383)))) 55) (((-3 $ "failed") (-412 (-958 (-569)))) 48)) (-3043 (($ (-319 (-383))) 58) (($ (-319 (-569))) 63) (($ (-958 (-383))) 67) (($ (-958 (-569))) 71) (($ (-412 (-958 (-383)))) 53) (($ (-412 (-958 (-569)))) 45)) (-3275 (((-1278) $) 82)) (-2388 (((-867) $) 76) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 32) (($ (-343 (-3709) (-3709 (QUOTE XC)) (-704))) 40)))
+(((-66 |#1|) (-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE XC)) (-704)))))) (-1183)) (T -66))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-343 (-3709) (-3709 (QUOTE XC)) (-704))) (-5 *1 (-66 *3)) (-14 *3 (-1183)))))
+(-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE XC)) (-704))))))
+((-3275 (((-1278) $) 68)) (-2388 (((-867) $) 62) (($ (-694 (-704))) 54) (($ (-649 (-333))) 53) (($ (-333)) 60) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 58)))
(((-67 |#1|) (-387) (-1183)) (T -67))
NIL
(-387)
-((-3822 (((-1278) $) 69)) (-4396 (((-868) $) 63) (($ (-694 (-704))) 55) (($ (-646 (-333))) 54) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 60)))
+((-3275 (((-1278) $) 69)) (-2388 (((-867) $) 63) (($ (-694 (-704))) 55) (($ (-649 (-333))) 54) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 60)))
(((-68 |#1|) (-387) (-1183)) (T -68))
NIL
(-387)
-((-3822 (((-1278) $) NIL) (((-1278)) 33)) (-4396 (((-868) $) NIL)))
-(((-69 |#1|) (-13 (-401) (-10 -7 (-15 -3822 ((-1278))))) (-1183)) (T -69))
-((-3822 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -7 (-15 -3822 ((-1278)))))
-((-3822 (((-1278) $) 75)) (-4396 (((-868) $) 69) (($ (-694 (-704))) 61) (($ (-646 (-333))) 63) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 60)))
+((-3275 (((-1278) $) NIL) (((-1278)) 33)) (-2388 (((-867) $) NIL)))
+(((-69 |#1|) (-13 (-400) (-10 -7 (-15 -3275 ((-1278))))) (-1183)) (T -69))
+((-3275 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183)))))
+(-13 (-400) (-10 -7 (-15 -3275 ((-1278)))))
+((-3275 (((-1278) $) 75)) (-2388 (((-867) $) 69) (($ (-694 (-704))) 61) (($ (-649 (-333))) 63) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 60)))
(((-70 |#1|) (-387) (-1183)) (T -70))
NIL
(-387)
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 111) (((-3 $ #1#) (-1272 (-317 (-551)))) 100) (((-3 $ #1#) (-1272 (-952 (-382)))) 131) (((-3 $ #1#) (-1272 (-952 (-551)))) 121) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 89) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 76)) (-3594 (($ (-1272 (-317 (-382)))) 107) (($ (-1272 (-317 (-551)))) 96) (($ (-1272 (-952 (-382)))) 127) (($ (-1272 (-952 (-551)))) 117) (($ (-1272 (-412 (-952 (-382))))) 85) (($ (-1272 (-412 (-952 (-551))))) 69)) (-3822 (((-1278) $) 144)) (-4396 (((-868) $) 138) (($ (-646 (-333))) 133) (($ (-333)) 136) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 61) (($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))) 62)))
-(((-71 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704))))))) (-1183)) (T -71))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))) (-5 *1 (-71 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))))))
-((-3822 (((-1278) $) 33) (((-1278)) 32)) (-4396 (((-868) $) 36)))
-(((-72 |#1|) (-13 (-401) (-10 -7 (-15 -3822 ((-1278))))) (-1183)) (T -72))
-((-3822 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -7 (-15 -3822 ((-1278)))))
-((-3822 (((-1278) $) 65)) (-4396 (((-868) $) 59) (($ (-694 (-704))) 51) (($ (-646 (-333))) 53) (($ (-333)) 56) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 50)))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 111) (((-3 $ "failed") (-1273 (-319 (-569)))) 100) (((-3 $ "failed") (-1273 (-958 (-383)))) 131) (((-3 $ "failed") (-1273 (-958 (-569)))) 121) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 76)) (-3043 (($ (-1273 (-319 (-383)))) 107) (($ (-1273 (-319 (-569)))) 96) (($ (-1273 (-958 (-383)))) 127) (($ (-1273 (-958 (-569)))) 117) (($ (-1273 (-412 (-958 (-383))))) 85) (($ (-1273 (-412 (-958 (-569))))) 69)) (-3275 (((-1278) $) 144)) (-2388 (((-867) $) 138) (($ (-649 (-333))) 133) (($ (-333)) 136) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 61) (($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))) 62)))
+(((-71 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704))))))) (-1183)) (T -71))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))) (-5 *1 (-71 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))))))
+((-3275 (((-1278) $) 33) (((-1278)) 32)) (-2388 (((-867) $) 36)))
+(((-72 |#1|) (-13 (-400) (-10 -7 (-15 -3275 ((-1278))))) (-1183)) (T -72))
+((-3275 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183)))))
+(-13 (-400) (-10 -7 (-15 -3275 ((-1278)))))
+((-3275 (((-1278) $) 65)) (-2388 (((-867) $) 59) (($ (-694 (-704))) 51) (($ (-649 (-333))) 53) (($ (-333)) 56) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 50)))
(((-73 |#1|) (-387) (-1183)) (T -73))
NIL
(-387)
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 130) (((-3 $ #1#) (-1272 (-317 (-551)))) 120) (((-3 $ #1#) (-1272 (-952 (-382)))) 150) (((-3 $ #1#) (-1272 (-952 (-551)))) 140) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 110) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 98)) (-3594 (($ (-1272 (-317 (-382)))) 126) (($ (-1272 (-317 (-551)))) 116) (($ (-1272 (-952 (-382)))) 146) (($ (-1272 (-952 (-551)))) 136) (($ (-1272 (-412 (-952 (-382))))) 106) (($ (-1272 (-412 (-952 (-551))))) 91)) (-3822 (((-1278) $) 83)) (-4396 (((-868) $) 28) (($ (-646 (-333))) 73) (($ (-333)) 69) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 76) (($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) 70)))
-(((-74 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704))))))) (-1183)) (T -74))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) (-5 *1 (-74 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-317 (-382))) 47) (((-3 $ #1#) (-317 (-551))) 52) (((-3 $ #1#) (-952 (-382))) 56) (((-3 $ #1#) (-952 (-551))) 60) (((-3 $ #1#) (-412 (-952 (-382)))) 42) (((-3 $ #1#) (-412 (-952 (-551)))) 35)) (-3594 (($ (-317 (-382))) 45) (($ (-317 (-551))) 50) (($ (-952 (-382))) 54) (($ (-952 (-551))) 58) (($ (-412 (-952 (-382)))) 40) (($ (-412 (-952 (-551)))) 32)) (-3822 (((-1278) $) 81)) (-4396 (((-868) $) 75) (($ (-646 (-333))) 67) (($ (-333)) 72) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 70) (($ (-343 (-3971) (-3971 (QUOTE X)) (-704))) 31)))
-(((-75 |#1|) (-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE X)) (-704)))))) (-1183)) (T -75))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-343 (-3971) (-3971 (QUOTE X)) (-704))) (-5 *1 (-75 *3)) (-14 *3 (-1183)))))
-(-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE X)) (-704))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 135) (((-3 $ #1#) (-1272 (-317 (-551)))) 124) (((-3 $ #1#) (-1272 (-952 (-382)))) 155) (((-3 $ #1#) (-1272 (-952 (-551)))) 145) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 113) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 100)) (-3594 (($ (-1272 (-317 (-382)))) 131) (($ (-1272 (-317 (-551)))) 120) (($ (-1272 (-952 (-382)))) 151) (($ (-1272 (-952 (-551)))) 141) (($ (-1272 (-412 (-952 (-382))))) 109) (($ (-1272 (-412 (-952 (-551))))) 93)) (-3822 (((-1278) $) 85)) (-4396 (((-868) $) 77) (($ (-646 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) NIL) (($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE EPS)) (-3971 (QUOTE -4414)) (-704)))) 72)))
-(((-76 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE EPS)) (-3971 (QUOTE -4414)) (-704))))))) (-1183) (-1183) (-1183)) (T -76))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE X) (QUOTE EPS)) (-3971 (QUOTE -4414)) (-704)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE EPS)) (-3971 (QUOTE -4414)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 141) (((-3 $ #1#) (-1272 (-317 (-551)))) 130) (((-3 $ #1#) (-1272 (-952 (-382)))) 161) (((-3 $ #1#) (-1272 (-952 (-551)))) 151) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 119) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 106)) (-3594 (($ (-1272 (-317 (-382)))) 137) (($ (-1272 (-317 (-551)))) 126) (($ (-1272 (-952 (-382)))) 157) (($ (-1272 (-952 (-551)))) 147) (($ (-1272 (-412 (-952 (-382))))) 115) (($ (-1272 (-412 (-952 (-551))))) 99)) (-3822 (((-1278) $) 91)) (-4396 (((-868) $) 83) (($ (-646 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) NIL) (($ (-1272 (-343 (-3971 (QUOTE EPS)) (-3971 (QUOTE YA) (QUOTE YB)) (-704)))) 78)))
-(((-77 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE EPS)) (-3971 (QUOTE YA) (QUOTE YB)) (-704))))))) (-1183) (-1183) (-1183)) (T -77))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE EPS)) (-3971 (QUOTE YA) (QUOTE YB)) (-704)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE EPS)) (-3971 (QUOTE YA) (QUOTE YB)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-317 (-382))) 83) (((-3 $ #1#) (-317 (-551))) 88) (((-3 $ #1#) (-952 (-382))) 92) (((-3 $ #1#) (-952 (-551))) 96) (((-3 $ #1#) (-412 (-952 (-382)))) 78) (((-3 $ #1#) (-412 (-952 (-551)))) 71)) (-3594 (($ (-317 (-382))) 81) (($ (-317 (-551))) 86) (($ (-952 (-382))) 90) (($ (-952 (-551))) 94) (($ (-412 (-952 (-382)))) 76) (($ (-412 (-952 (-551)))) 68)) (-3822 (((-1278) $) 63)) (-4396 (((-868) $) 51) (($ (-646 (-333))) 47) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 55) (($ (-343 (-3971) (-3971 (QUOTE X)) (-704))) 48)))
-(((-78 |#1|) (-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE X)) (-704)))))) (-1183)) (T -78))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-343 (-3971) (-3971 (QUOTE X)) (-704))) (-5 *1 (-78 *3)) (-14 *3 (-1183)))))
-(-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971) (-3971 (QUOTE X)) (-704))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 90) (((-3 $ #1#) (-1272 (-317 (-551)))) 79) (((-3 $ #1#) (-1272 (-952 (-382)))) 110) (((-3 $ #1#) (-1272 (-952 (-551)))) 100) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 68) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 55)) (-3594 (($ (-1272 (-317 (-382)))) 86) (($ (-1272 (-317 (-551)))) 75) (($ (-1272 (-952 (-382)))) 106) (($ (-1272 (-952 (-551)))) 96) (($ (-1272 (-412 (-952 (-382))))) 64) (($ (-1272 (-412 (-952 (-551))))) 48)) (-3822 (((-1278) $) 126)) (-4396 (((-868) $) 120) (($ (-646 (-333))) 113) (($ (-333)) 38) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 116) (($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))) 39)))
-(((-79 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704))))))) (-1183)) (T -79))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))) (-5 *1 (-79 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE XC)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 154) (((-3 $ #1#) (-1272 (-317 (-551)))) 144) (((-3 $ #1#) (-1272 (-952 (-382)))) 174) (((-3 $ #1#) (-1272 (-952 (-551)))) 164) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 134) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 122)) (-3594 (($ (-1272 (-317 (-382)))) 150) (($ (-1272 (-317 (-551)))) 140) (($ (-1272 (-952 (-382)))) 170) (($ (-1272 (-952 (-551)))) 160) (($ (-1272 (-412 (-952 (-382))))) 130) (($ (-1272 (-412 (-952 (-551))))) 115)) (-3822 (((-1278) $) 108)) (-4396 (((-868) $) 102) (($ (-646 (-333))) 93) (($ (-333)) 100) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 98) (($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) 94)))
-(((-80 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704))))))) (-1183)) (T -80))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) (-5 *1 (-80 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 79) (((-3 $ #1#) (-1272 (-317 (-551)))) 68) (((-3 $ #1#) (-1272 (-952 (-382)))) 99) (((-3 $ #1#) (-1272 (-952 (-551)))) 89) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 57) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 44)) (-3594 (($ (-1272 (-317 (-382)))) 75) (($ (-1272 (-317 (-551)))) 64) (($ (-1272 (-952 (-382)))) 95) (($ (-1272 (-952 (-551)))) 85) (($ (-1272 (-412 (-952 (-382))))) 53) (($ (-1272 (-412 (-952 (-551))))) 37)) (-3822 (((-1278) $) 125)) (-4396 (((-868) $) 119) (($ (-646 (-333))) 110) (($ (-333)) 116) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 114) (($ (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))) 36)))
-(((-81 |#1|) (-13 (-446) (-621 (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704))))) (-1183)) (T -81))
-NIL
-(-13 (-446) (-621 (-1272 (-343 (-3971) (-3971 (QUOTE X)) (-704)))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 80) (((-3 $ #1#) (-1272 (-317 (-551)))) 69) (((-3 $ #1#) (-1272 (-952 (-382)))) 100) (((-3 $ #1#) (-1272 (-952 (-551)))) 90) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 58) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 45)) (-3594 (($ (-1272 (-317 (-382)))) 76) (($ (-1272 (-317 (-551)))) 65) (($ (-1272 (-952 (-382)))) 96) (($ (-1272 (-952 (-551)))) 86) (($ (-1272 (-412 (-952 (-382))))) 54) (($ (-1272 (-412 (-952 (-551))))) 38)) (-3822 (((-1278) $) 126)) (-4396 (((-868) $) 120) (($ (-646 (-333))) 111) (($ (-333)) 117) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 115) (($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))) 37)))
-(((-82 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704))))))) (-1183)) (T -82))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))) (-5 *1 (-82 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 98) (((-3 $ #1#) (-1272 (-317 (-551)))) 87) (((-3 $ #1#) (-1272 (-952 (-382)))) 118) (((-3 $ #1#) (-1272 (-952 (-551)))) 108) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 76) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 63)) (-3594 (($ (-1272 (-317 (-382)))) 94) (($ (-1272 (-317 (-551)))) 83) (($ (-1272 (-952 (-382)))) 114) (($ (-1272 (-952 (-551)))) 104) (($ (-1272 (-412 (-952 (-382))))) 72) (($ (-1272 (-412 (-952 (-551))))) 56)) (-3822 (((-1278) $) 48)) (-4396 (((-868) $) 42) (($ (-646 (-333))) 32) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 38) (($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))) 33)))
-(((-83 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704))))))) (-1183)) (T -83))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))) (-5 *1 (-83 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-694 (-317 (-382)))) 118) (((-3 $ #1#) (-694 (-317 (-551)))) 107) (((-3 $ #1#) (-694 (-952 (-382)))) 140) (((-3 $ #1#) (-694 (-952 (-551)))) 129) (((-3 $ #1#) (-694 (-412 (-952 (-382))))) 96) (((-3 $ #1#) (-694 (-412 (-952 (-551))))) 83)) (-3594 (($ (-694 (-317 (-382)))) 114) (($ (-694 (-317 (-551)))) 103) (($ (-694 (-952 (-382)))) 136) (($ (-694 (-952 (-551)))) 125) (($ (-694 (-412 (-952 (-382))))) 92) (($ (-694 (-412 (-952 (-551))))) 76)) (-3822 (((-1278) $) 66)) (-4396 (((-868) $) 53) (($ (-646 (-333))) 60) (($ (-333)) 49) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 58) (($ (-694 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))) 50)))
-(((-84 |#1|) (-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704))))))) (-1183)) (T -84))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))) (-5 *1 (-84 *3)) (-14 *3 (-1183)))))
-(-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE X) (QUOTE -4414)) (-3971) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-694 (-317 (-382)))) 113) (((-3 $ #1#) (-694 (-317 (-551)))) 101) (((-3 $ #1#) (-694 (-952 (-382)))) 135) (((-3 $ #1#) (-694 (-952 (-551)))) 124) (((-3 $ #1#) (-694 (-412 (-952 (-382))))) 89) (((-3 $ #1#) (-694 (-412 (-952 (-551))))) 75)) (-3594 (($ (-694 (-317 (-382)))) 109) (($ (-694 (-317 (-551)))) 97) (($ (-694 (-952 (-382)))) 131) (($ (-694 (-952 (-551)))) 120) (($ (-694 (-412 (-952 (-382))))) 85) (($ (-694 (-412 (-952 (-551))))) 68)) (-3822 (((-1278) $) 60)) (-4396 (((-868) $) 54) (($ (-646 (-333))) 48) (($ (-333)) 51) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 45) (($ (-694 (-343 (-3971 (QUOTE X)) (-3971) (-704)))) 46)))
-(((-85 |#1|) (-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE X)) (-3971) (-704))))))) (-1183)) (T -85))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3971 (QUOTE X)) (-3971) (-704)))) (-5 *1 (-85 *3)) (-14 *3 (-1183)))))
-(-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE X)) (-3971) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-1272 (-317 (-382)))) 105) (((-3 $ #1#) (-1272 (-317 (-551)))) 94) (((-3 $ #1#) (-1272 (-952 (-382)))) 125) (((-3 $ #1#) (-1272 (-952 (-551)))) 115) (((-3 $ #1#) (-1272 (-412 (-952 (-382))))) 83) (((-3 $ #1#) (-1272 (-412 (-952 (-551))))) 70)) (-3594 (($ (-1272 (-317 (-382)))) 101) (($ (-1272 (-317 (-551)))) 90) (($ (-1272 (-952 (-382)))) 121) (($ (-1272 (-952 (-551)))) 111) (($ (-1272 (-412 (-952 (-382))))) 79) (($ (-1272 (-412 (-952 (-551))))) 63)) (-3822 (((-1278) $) 47)) (-4396 (((-868) $) 41) (($ (-646 (-333))) 50) (($ (-333)) 37) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 53) (($ (-1272 (-343 (-3971 (QUOTE X)) (-3971) (-704)))) 38)))
-(((-86 |#1|) (-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971) (-704))))))) (-1183)) (T -86))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-343 (-3971 (QUOTE X)) (-3971) (-704)))) (-5 *1 (-86 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -4396 ($ (-1272 (-343 (-3971 (QUOTE X)) (-3971) (-704)))))))
-((-3822 (((-1278) $) 45)) (-4396 (((-868) $) 39) (($ (-1272 (-704))) 100) (($ (-646 (-333))) 31) (($ (-333)) 36) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 34)))
-(((-87 |#1|) (-445) (-1183)) (T -87))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 130) (((-3 $ "failed") (-1273 (-319 (-569)))) 120) (((-3 $ "failed") (-1273 (-958 (-383)))) 150) (((-3 $ "failed") (-1273 (-958 (-569)))) 140) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 110) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 98)) (-3043 (($ (-1273 (-319 (-383)))) 126) (($ (-1273 (-319 (-569)))) 116) (($ (-1273 (-958 (-383)))) 146) (($ (-1273 (-958 (-569)))) 136) (($ (-1273 (-412 (-958 (-383))))) 106) (($ (-1273 (-412 (-958 (-569))))) 91)) (-3275 (((-1278) $) 83)) (-2388 (((-867) $) 28) (($ (-649 (-333))) 73) (($ (-333)) 69) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 76) (($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) 70)))
+(((-74 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704))))))) (-1183)) (T -74))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) (-5 *1 (-74 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 135) (((-3 $ "failed") (-1273 (-319 (-569)))) 124) (((-3 $ "failed") (-1273 (-958 (-383)))) 155) (((-3 $ "failed") (-1273 (-958 (-569)))) 145) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 113) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 100)) (-3043 (($ (-1273 (-319 (-383)))) 131) (($ (-1273 (-319 (-569)))) 120) (($ (-1273 (-958 (-383)))) 151) (($ (-1273 (-958 (-569)))) 141) (($ (-1273 (-412 (-958 (-383))))) 109) (($ (-1273 (-412 (-958 (-569))))) 93)) (-3275 (((-1278) $) 85)) (-2388 (((-867) $) 77) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) NIL) (($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE EPS)) (-3709 (QUOTE -1522)) (-704)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE EPS)) (-3709 (QUOTE -1522)) (-704))))))) (-1183) (-1183) (-1183)) (T -75))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE X) (QUOTE EPS)) (-3709 (QUOTE -1522)) (-704)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE EPS)) (-3709 (QUOTE -1522)) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 141) (((-3 $ "failed") (-1273 (-319 (-569)))) 130) (((-3 $ "failed") (-1273 (-958 (-383)))) 161) (((-3 $ "failed") (-1273 (-958 (-569)))) 151) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 119) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 106)) (-3043 (($ (-1273 (-319 (-383)))) 137) (($ (-1273 (-319 (-569)))) 126) (($ (-1273 (-958 (-383)))) 157) (($ (-1273 (-958 (-569)))) 147) (($ (-1273 (-412 (-958 (-383))))) 115) (($ (-1273 (-412 (-958 (-569))))) 99)) (-3275 (((-1278) $) 91)) (-2388 (((-867) $) 83) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) NIL) (($ (-1273 (-343 (-3709 (QUOTE EPS)) (-3709 (QUOTE YA) (QUOTE YB)) (-704)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE EPS)) (-3709 (QUOTE YA) (QUOTE YB)) (-704))))))) (-1183) (-1183) (-1183)) (T -76))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE EPS)) (-3709 (QUOTE YA) (QUOTE YB)) (-704)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE EPS)) (-3709 (QUOTE YA) (QUOTE YB)) (-704)))))))
+((-4359 (((-3 $ "failed") (-319 (-383))) 83) (((-3 $ "failed") (-319 (-569))) 88) (((-3 $ "failed") (-958 (-383))) 92) (((-3 $ "failed") (-958 (-569))) 96) (((-3 $ "failed") (-412 (-958 (-383)))) 78) (((-3 $ "failed") (-412 (-958 (-569)))) 71)) (-3043 (($ (-319 (-383))) 81) (($ (-319 (-569))) 86) (($ (-958 (-383))) 90) (($ (-958 (-569))) 94) (($ (-412 (-958 (-383)))) 76) (($ (-412 (-958 (-569)))) 68)) (-3275 (((-1278) $) 63)) (-2388 (((-867) $) 51) (($ (-649 (-333))) 47) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 55) (($ (-343 (-3709) (-3709 (QUOTE X)) (-704))) 48)))
+(((-77 |#1|) (-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE X)) (-704)))))) (-1183)) (T -77))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-343 (-3709) (-3709 (QUOTE X)) (-704))) (-5 *1 (-77 *3)) (-14 *3 (-1183)))))
+(-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE X)) (-704))))))
+((-4359 (((-3 $ "failed") (-319 (-383))) 47) (((-3 $ "failed") (-319 (-569))) 52) (((-3 $ "failed") (-958 (-383))) 56) (((-3 $ "failed") (-958 (-569))) 60) (((-3 $ "failed") (-412 (-958 (-383)))) 42) (((-3 $ "failed") (-412 (-958 (-569)))) 35)) (-3043 (($ (-319 (-383))) 45) (($ (-319 (-569))) 50) (($ (-958 (-383))) 54) (($ (-958 (-569))) 58) (($ (-412 (-958 (-383)))) 40) (($ (-412 (-958 (-569)))) 32)) (-3275 (((-1278) $) 81)) (-2388 (((-867) $) 75) (($ (-649 (-333))) 67) (($ (-333)) 72) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 70) (($ (-343 (-3709) (-3709 (QUOTE X)) (-704))) 31)))
+(((-78 |#1|) (-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE X)) (-704)))))) (-1183)) (T -78))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-343 (-3709) (-3709 (QUOTE X)) (-704))) (-5 *1 (-78 *3)) (-14 *3 (-1183)))))
+(-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709) (-3709 (QUOTE X)) (-704))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 90) (((-3 $ "failed") (-1273 (-319 (-569)))) 79) (((-3 $ "failed") (-1273 (-958 (-383)))) 110) (((-3 $ "failed") (-1273 (-958 (-569)))) 100) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 68) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 55)) (-3043 (($ (-1273 (-319 (-383)))) 86) (($ (-1273 (-319 (-569)))) 75) (($ (-1273 (-958 (-383)))) 106) (($ (-1273 (-958 (-569)))) 96) (($ (-1273 (-412 (-958 (-383))))) 64) (($ (-1273 (-412 (-958 (-569))))) 48)) (-3275 (((-1278) $) 126)) (-2388 (((-867) $) 120) (($ (-649 (-333))) 113) (($ (-333)) 38) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 116) (($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))) 39)))
+(((-79 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704))))))) (-1183)) (T -79))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))) (-5 *1 (-79 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE XC)) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 154) (((-3 $ "failed") (-1273 (-319 (-569)))) 144) (((-3 $ "failed") (-1273 (-958 (-383)))) 174) (((-3 $ "failed") (-1273 (-958 (-569)))) 164) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 134) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 122)) (-3043 (($ (-1273 (-319 (-383)))) 150) (($ (-1273 (-319 (-569)))) 140) (($ (-1273 (-958 (-383)))) 170) (($ (-1273 (-958 (-569)))) 160) (($ (-1273 (-412 (-958 (-383))))) 130) (($ (-1273 (-412 (-958 (-569))))) 115)) (-3275 (((-1278) $) 108)) (-2388 (((-867) $) 102) (($ (-649 (-333))) 93) (($ (-333)) 100) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 98) (($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) 94)))
+(((-80 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704))))))) (-1183)) (T -80))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) (-5 *1 (-80 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 79) (((-3 $ "failed") (-1273 (-319 (-569)))) 68) (((-3 $ "failed") (-1273 (-958 (-383)))) 99) (((-3 $ "failed") (-1273 (-958 (-569)))) 89) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 57) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 44)) (-3043 (($ (-1273 (-319 (-383)))) 75) (($ (-1273 (-319 (-569)))) 64) (($ (-1273 (-958 (-383)))) 95) (($ (-1273 (-958 (-569)))) 85) (($ (-1273 (-412 (-958 (-383))))) 53) (($ (-1273 (-412 (-958 (-569))))) 37)) (-3275 (((-1278) $) 125)) (-2388 (((-867) $) 119) (($ (-649 (-333))) 110) (($ (-333)) 116) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 114) (($ (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))) 36)))
+(((-81 |#1|) (-13 (-446) (-621 (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704))))) (-1183)) (T -81))
+NIL
+(-13 (-446) (-621 (-1273 (-343 (-3709) (-3709 (QUOTE X)) (-704)))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 98) (((-3 $ "failed") (-1273 (-319 (-569)))) 87) (((-3 $ "failed") (-1273 (-958 (-383)))) 118) (((-3 $ "failed") (-1273 (-958 (-569)))) 108) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 76) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 63)) (-3043 (($ (-1273 (-319 (-383)))) 94) (($ (-1273 (-319 (-569)))) 83) (($ (-1273 (-958 (-383)))) 114) (($ (-1273 (-958 (-569)))) 104) (($ (-1273 (-412 (-958 (-383))))) 72) (($ (-1273 (-412 (-958 (-569))))) 56)) (-3275 (((-1278) $) 48)) (-2388 (((-867) $) 42) (($ (-649 (-333))) 32) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 38) (($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))) 33)))
+(((-82 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704))))))) (-1183)) (T -82))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))) (-5 *1 (-82 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))))))
+((-4359 (((-3 $ "failed") (-694 (-319 (-383)))) 118) (((-3 $ "failed") (-694 (-319 (-569)))) 107) (((-3 $ "failed") (-694 (-958 (-383)))) 140) (((-3 $ "failed") (-694 (-958 (-569)))) 129) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 96) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 83)) (-3043 (($ (-694 (-319 (-383)))) 114) (($ (-694 (-319 (-569)))) 103) (($ (-694 (-958 (-383)))) 136) (($ (-694 (-958 (-569)))) 125) (($ (-694 (-412 (-958 (-383))))) 92) (($ (-694 (-412 (-958 (-569))))) 76)) (-3275 (((-1278) $) 66)) (-2388 (((-867) $) 53) (($ (-649 (-333))) 60) (($ (-333)) 49) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 58) (($ (-694 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))) 50)))
+(((-83 |#1|) (-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704))))))) (-1183)) (T -83))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))) (-5 *1 (-83 *3)) (-14 *3 (-1183)))))
+(-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE X) (QUOTE -1522)) (-3709) (-704)))))))
+((-4359 (((-3 $ "failed") (-694 (-319 (-383)))) 113) (((-3 $ "failed") (-694 (-319 (-569)))) 101) (((-3 $ "failed") (-694 (-958 (-383)))) 135) (((-3 $ "failed") (-694 (-958 (-569)))) 124) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 75)) (-3043 (($ (-694 (-319 (-383)))) 109) (($ (-694 (-319 (-569)))) 97) (($ (-694 (-958 (-383)))) 131) (($ (-694 (-958 (-569)))) 120) (($ (-694 (-412 (-958 (-383))))) 85) (($ (-694 (-412 (-958 (-569))))) 68)) (-3275 (((-1278) $) 60)) (-2388 (((-867) $) 54) (($ (-649 (-333))) 48) (($ (-333)) 51) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 45) (($ (-694 (-343 (-3709 (QUOTE X)) (-3709) (-704)))) 46)))
+(((-84 |#1|) (-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE X)) (-3709) (-704))))))) (-1183)) (T -84))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3709 (QUOTE X)) (-3709) (-704)))) (-5 *1 (-84 *3)) (-14 *3 (-1183)))))
+(-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE X)) (-3709) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 105) (((-3 $ "failed") (-1273 (-319 (-569)))) 94) (((-3 $ "failed") (-1273 (-958 (-383)))) 125) (((-3 $ "failed") (-1273 (-958 (-569)))) 115) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 83) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 70)) (-3043 (($ (-1273 (-319 (-383)))) 101) (($ (-1273 (-319 (-569)))) 90) (($ (-1273 (-958 (-383)))) 121) (($ (-1273 (-958 (-569)))) 111) (($ (-1273 (-412 (-958 (-383))))) 79) (($ (-1273 (-412 (-958 (-569))))) 63)) (-3275 (((-1278) $) 47)) (-2388 (((-867) $) 41) (($ (-649 (-333))) 50) (($ (-333)) 37) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 53) (($ (-1273 (-343 (-3709 (QUOTE X)) (-3709) (-704)))) 38)))
+(((-85 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709) (-704))))))) (-1183)) (T -85))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE X)) (-3709) (-704)))) (-5 *1 (-85 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709) (-704)))))))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 80) (((-3 $ "failed") (-1273 (-319 (-569)))) 69) (((-3 $ "failed") (-1273 (-958 (-383)))) 100) (((-3 $ "failed") (-1273 (-958 (-569)))) 90) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 58) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 45)) (-3043 (($ (-1273 (-319 (-383)))) 76) (($ (-1273 (-319 (-569)))) 65) (($ (-1273 (-958 (-383)))) 96) (($ (-1273 (-958 (-569)))) 86) (($ (-1273 (-412 (-958 (-383))))) 54) (($ (-1273 (-412 (-958 (-569))))) 38)) (-3275 (((-1278) $) 126)) (-2388 (((-867) $) 120) (($ (-649 (-333))) 111) (($ (-333)) 117) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 115) (($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))) 37)))
+(((-86 |#1|) (-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704))))))) (-1183)) (T -86))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))) (-5 *1 (-86 *3)) (-14 *3 (-1183)))))
+(-13 (-446) (-10 -8 (-15 -2388 ($ (-1273 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))))))
+((-4359 (((-3 $ "failed") (-694 (-319 (-383)))) 117) (((-3 $ "failed") (-694 (-319 (-569)))) 105) (((-3 $ "failed") (-694 (-958 (-383)))) 139) (((-3 $ "failed") (-694 (-958 (-569)))) 128) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 93) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 79)) (-3043 (($ (-694 (-319 (-383)))) 113) (($ (-694 (-319 (-569)))) 101) (($ (-694 (-958 (-383)))) 135) (($ (-694 (-958 (-569)))) 124) (($ (-694 (-412 (-958 (-383))))) 89) (($ (-694 (-412 (-958 (-569))))) 72)) (-3275 (((-1278) $) 63)) (-2388 (((-867) $) 57) (($ (-649 (-333))) 47) (($ (-333)) 54) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 52) (($ (-694 (-343 (-3709 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3709) (-704)))) 48)))
+(((-87 |#1|) (-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3709) (-704))))))) (-1183)) (T -87))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3709 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3709) (-704)))) (-5 *1 (-87 *3)) (-14 *3 (-1183)))))
+(-13 (-388) (-10 -8 (-15 -2388 ($ (-694 (-343 (-3709 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3709) (-704)))))))
+((-3275 (((-1278) $) 45)) (-2388 (((-867) $) 39) (($ (-1273 (-704))) 100) (($ (-649 (-333))) 31) (($ (-333)) 36) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 34)))
+(((-88 |#1|) (-445) (-1183)) (T -88))
NIL
(-445)
-((-3595 (((-3 $ #1="failed") (-694 (-317 (-382)))) 117) (((-3 $ #1#) (-694 (-317 (-551)))) 105) (((-3 $ #1#) (-694 (-952 (-382)))) 139) (((-3 $ #1#) (-694 (-952 (-551)))) 128) (((-3 $ #1#) (-694 (-412 (-952 (-382))))) 93) (((-3 $ #1#) (-694 (-412 (-952 (-551))))) 79)) (-3594 (($ (-694 (-317 (-382)))) 113) (($ (-694 (-317 (-551)))) 101) (($ (-694 (-952 (-382)))) 135) (($ (-694 (-952 (-551)))) 124) (($ (-694 (-412 (-952 (-382))))) 89) (($ (-694 (-412 (-952 (-551))))) 72)) (-3822 (((-1278) $) 63)) (-4396 (((-868) $) 57) (($ (-646 (-333))) 47) (($ (-333)) 54) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 52) (($ (-694 (-343 (-3971 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3971) (-704)))) 48)))
-(((-88 |#1|) (-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3971) (-704))))))) (-1183)) (T -88))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3971 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3971) (-704)))) (-5 *1 (-88 *3)) (-14 *3 (-1183)))))
-(-13 (-389) (-10 -8 (-15 -4396 ($ (-694 (-343 (-3971 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3971) (-704)))))))
-((-3595 (((-3 $ #1="failed") (-317 (-382))) 48) (((-3 $ #1#) (-317 (-551))) 53) (((-3 $ #1#) (-952 (-382))) 57) (((-3 $ #1#) (-952 (-551))) 61) (((-3 $ #1#) (-412 (-952 (-382)))) 43) (((-3 $ #1#) (-412 (-952 (-551)))) 36)) (-3594 (($ (-317 (-382))) 46) (($ (-317 (-551))) 51) (($ (-952 (-382))) 55) (($ (-952 (-551))) 59) (($ (-412 (-952 (-382)))) 41) (($ (-412 (-952 (-551)))) 33)) (-3822 (((-1278) $) 91)) (-4396 (((-868) $) 85) (($ (-646 (-333))) 79) (($ (-333)) 82) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 77) (($ (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704))) 32)))
-(((-89 |#1|) (-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704)))))) (-1183)) (T -89))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704))) (-5 *1 (-89 *3)) (-14 *3 (-1183)))))
-(-13 (-402) (-10 -8 (-15 -4396 ($ (-343 (-3971 (QUOTE X)) (-3971 (QUOTE -4414)) (-704))))))
-((-1351 (((-1272 (-694 |#1|)) (-694 |#1|)) 64)) (-1350 (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 (-646 (-925))))) |#2| (-925)) 54)) (-1352 (((-2 (|:| |minor| (-646 (-925))) (|:| -3705 |#2|) (|:| |minors| (-646 (-646 (-925)))) (|:| |ops| (-646 |#2|))) |#2| (-925)) 75 (|has| |#1| (-367)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -1350 ((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 (-646 (-925))))) |#2| (-925))) (-15 -1351 ((-1272 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -1352 ((-2 (|:| |minor| (-646 (-925))) (|:| -3705 |#2|) (|:| |minors| (-646 (-646 (-925)))) (|:| |ops| (-646 |#2|))) |#2| (-925))) |%noBranch|)) (-562) (-663 |#1|)) (T -90))
-((-1352 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |minor| (-646 (-925))) (|:| -3705 *3) (|:| |minors| (-646 (-646 (-925)))) (|:| |ops| (-646 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-925)) (-4 *3 (-663 *5)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1272 (-694 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-694 *4)) (-4 *5 (-663 *4)))) (-1350 (*1 *2 *3 *4) (-12 (-4 *5 (-562)) (-5 *2 (-2 (|:| -1758 (-694 *5)) (|:| |vec| (-1272 (-646 (-925)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-925)) (-4 *3 (-663 *5)))))
-(-10 -7 (-15 -1350 ((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 (-646 (-925))))) |#2| (-925))) (-15 -1351 ((-1272 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -1352 ((-2 (|:| |minor| (-646 (-925))) (|:| -3705 |#2|) (|:| |minors| (-646 (-646 (-925)))) (|:| |ops| (-646 |#2|))) |#2| (-925))) |%noBranch|))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3766 ((|#1| $) 42)) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-3768 ((|#1| |#1| $) 37)) (-3767 ((|#1| $) 35)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) NIL)) (-4057 (($ |#1| $) 38)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-1373 ((|#1| $) 36)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 18)) (-4014 (($) 46)) (-3765 (((-776) $) 33)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 17)) (-4396 (((-868) $) 32 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) NIL)) (-1353 (($ (-646 |#1|)) 44)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 15 (|has| |#1| (-1107)))) (-4407 (((-776) $) 12 (|has| $ (-6 -4443)))))
-(((-91 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -1353 ($ (-646 |#1|))))) (-1107)) (T -91))
-((-1353 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-91 *3)))))
-(-13 (-1127 |#1|) (-10 -8 (-15 -1353 ($ (-646 |#1|)))))
-((-4396 (((-868) $) 13) (($ (-1188)) 9) (((-1188) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -4396 ((-1188) |#1|)) (-15 -4396 (|#1| (-1188))) (-15 -4396 ((-868) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -4396 ((-1188) |#1|)) (-15 -4396 (|#1| (-1188))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-4359 (((-3 $ "failed") (-319 (-383))) 48) (((-3 $ "failed") (-319 (-569))) 53) (((-3 $ "failed") (-958 (-383))) 57) (((-3 $ "failed") (-958 (-569))) 61) (((-3 $ "failed") (-412 (-958 (-383)))) 43) (((-3 $ "failed") (-412 (-958 (-569)))) 36)) (-3043 (($ (-319 (-383))) 46) (($ (-319 (-569))) 51) (($ (-958 (-383))) 55) (($ (-958 (-569))) 59) (($ (-412 (-958 (-383)))) 41) (($ (-412 (-958 (-569)))) 33)) (-3275 (((-1278) $) 91)) (-2388 (((-867) $) 85) (($ (-649 (-333))) 79) (($ (-333)) 82) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 77) (($ (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704))) 32)))
+(((-89 |#1|) (-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704)))))) (-1183)) (T -89))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704))) (-5 *1 (-89 *3)) (-14 *3 (-1183)))))
+(-13 (-401) (-10 -8 (-15 -2388 ($ (-343 (-3709 (QUOTE X)) (-3709 (QUOTE -1522)) (-704))))))
+((-2790 (((-1273 (-694 |#1|)) (-694 |#1|)) 64)) (-2779 (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927)) 54)) (-2035 (((-2 (|:| |minor| (-649 (-927))) (|:| -4289 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927)) 75 (|has| |#1| (-367)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -2779 ((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927))) (-15 -2790 ((-1273 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -2035 ((-2 (|:| |minor| (-649 (-927))) (|:| -4289 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|)) (-561) (-661 |#1|)) (T -90))
+((-2035 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |minor| (-649 (-927))) (|:| -4289 *3) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))) (-2779 (*1 *2 *3 *4) (-12 (-4 *5 (-561)) (-5 *2 (-2 (|:| -4368 (-694 *5)) (|:| |vec| (-1273 (-649 (-927)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
+(-10 -7 (-15 -2779 ((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927))) (-15 -2790 ((-1273 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -2035 ((-2 (|:| |minor| (-649 (-927))) (|:| -4289 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3201 ((|#1| $) 42)) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-1561 ((|#1| |#1| $) 37)) (-1549 ((|#1| $) 35)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) NIL)) (-2086 (($ |#1| $) 38)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3493 ((|#1| $) 36)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 18)) (-2825 (($) 46)) (-2723 (((-776) $) 33)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 17)) (-2388 (((-867) $) 32 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) NIL)) (-2046 (($ (-649 |#1|)) 44)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 15 (|has| |#1| (-1106)))) (-2394 (((-776) $) 12 (|has| $ (-6 -4443)))))
+(((-91 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -2046 ($ (-649 |#1|))))) (-1106)) (T -91))
+((-2046 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-91 *3)))))
+(-13 (-1127 |#1|) (-10 -8 (-15 -2046 ($ (-649 |#1|)))))
+((-2388 (((-867) $) 13) (($ (-1188)) 9) (((-1188) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -2388 ((-1188) |#1|)) (-15 -2388 (|#1| (-1188))) (-15 -2388 ((-867) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -2388 ((-1188) |#1|)) (-15 -2388 (|#1| (-1188))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1107) (-495 (-1188)))
-(((-102) . T) ((-621 #1=(-1188)) . T) ((-618 (-868)) . T) ((-618 #1#) . T) ((-495 #1#) . T) ((-1107) . T))
-((-3929 (($ $) 10)) (-3930 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3930 (|#1| |#1|)) (-15 -3929 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1106) (-495 (-1188)))
+(((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
+((-2648 (($ $) 10)) (-2658 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -2658 (|#1| |#1|)) (-15 -2648 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3930 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)))
-((-3927 (($ $) 11)) (-3925 (($ $) 10)) (-3929 (($ $) 9)) (-3930 (($ $) 8)) (-3928 (($ $) 7)) (-3926 (($ $) 6)))
+(-10 -8 (-15 -2658 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)))
+((-2627 (($ $) 11)) (-2601 (($ $) 10)) (-2648 (($ $) 9)) (-2658 (($ $) 8)) (-2638 (($ $) 7)) (-2615 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-3927 (*1 *1 *1) (-4 *1 (-95))) (-3925 (*1 *1 *1) (-4 *1 (-95))) (-3929 (*1 *1 *1) (-4 *1 (-95))) (-3930 (*1 *1 *1) (-4 *1 (-95))) (-3928 (*1 *1 *1) (-4 *1 (-95))) (-3926 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3926 ($ $)) (-15 -3928 ($ $)) (-15 -3930 ($ $)) (-15 -3929 ($ $)) (-15 -3925 ($ $)) (-15 -3927 ($ $))))
-((-2986 (((-112) $ $) NIL)) (-3991 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-96) (-13 (-1089) (-10 -8 (-15 -3991 ((-1141) $))))) (T -96))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-96)))))
-(-13 (-1089) (-10 -8 (-15 -3991 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-1354 (((-382) (-1165) (-382)) 46) (((-382) (-1165) (-1165) (-382)) 44)) (-1355 (((-382) (-382)) 35)) (-1356 (((-1278)) 37)) (-3681 (((-1165) $) NIL)) (-1359 (((-382) (-1165) (-1165)) 50) (((-382) (-1165)) 52)) (-3682 (((-1126) $) NIL)) (-1357 (((-382) (-1165) (-1165)) 51)) (-1358 (((-382) (-1165) (-1165)) 53) (((-382) (-1165)) 54)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-97) (-13 (-1107) (-10 -7 (-15 -1359 ((-382) (-1165) (-1165))) (-15 -1359 ((-382) (-1165))) (-15 -1358 ((-382) (-1165) (-1165))) (-15 -1358 ((-382) (-1165))) (-15 -1357 ((-382) (-1165) (-1165))) (-15 -1356 ((-1278))) (-15 -1355 ((-382) (-382))) (-15 -1354 ((-382) (-1165) (-382))) (-15 -1354 ((-382) (-1165) (-1165) (-382))) (-6 -4443)))) (T -97))
-((-1359 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))) (-1358 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))) (-1357 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))) (-1356 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-97)))) (-1354 (*1 *2 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-1165)) (-5 *1 (-97)))) (-1354 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-1165)) (-5 *1 (-97)))))
-(-13 (-1107) (-10 -7 (-15 -1359 ((-382) (-1165) (-1165))) (-15 -1359 ((-382) (-1165))) (-15 -1358 ((-382) (-1165) (-1165))) (-15 -1358 ((-382) (-1165))) (-15 -1357 ((-382) (-1165) (-1165))) (-15 -1356 ((-1278))) (-15 -1355 ((-382) (-382))) (-15 -1354 ((-382) (-1165) (-382))) (-15 -1354 ((-382) (-1165) (-1165) (-382))) (-6 -4443)))
+((-2627 (*1 *1 *1) (-4 *1 (-95))) (-2601 (*1 *1 *1) (-4 *1 (-95))) (-2648 (*1 *1 *1) (-4 *1 (-95))) (-2658 (*1 *1 *1) (-4 *1 (-95))) (-2638 (*1 *1 *1) (-4 *1 (-95))) (-2615 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2615 ($ $)) (-15 -2638 ($ $)) (-15 -2658 ($ $)) (-15 -2648 ($ $)) (-15 -2601 ($ $)) (-15 -2627 ($ $))))
+((-2383 (((-112) $ $) NIL)) (-3458 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-96) (-13 (-1089) (-10 -8 (-15 -3458 ((-1141) $))))) (T -96))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-96)))))
+(-13 (-1089) (-10 -8 (-15 -3458 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-3200 (((-383) (-1165) (-383)) 46) (((-383) (-1165) (-1165) (-383)) 44)) (-3215 (((-383) (-383)) 35)) (-2941 (((-1278)) 37)) (-2050 (((-1165) $) NIL)) (-3243 (((-383) (-1165) (-1165)) 50) (((-383) (-1165)) 52)) (-3461 (((-1126) $) NIL)) (-2952 (((-383) (-1165) (-1165)) 51)) (-3229 (((-383) (-1165) (-1165)) 53) (((-383) (-1165)) 54)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-97) (-13 (-1106) (-10 -7 (-15 -3243 ((-383) (-1165) (-1165))) (-15 -3243 ((-383) (-1165))) (-15 -3229 ((-383) (-1165) (-1165))) (-15 -3229 ((-383) (-1165))) (-15 -2952 ((-383) (-1165) (-1165))) (-15 -2941 ((-1278))) (-15 -3215 ((-383) (-383))) (-15 -3200 ((-383) (-1165) (-383))) (-15 -3200 ((-383) (-1165) (-1165) (-383))) (-6 -4443)))) (T -97))
+((-3243 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2941 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))) (-3200 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))))
+(-13 (-1106) (-10 -7 (-15 -3243 ((-383) (-1165) (-1165))) (-15 -3243 ((-383) (-1165))) (-15 -3229 ((-383) (-1165) (-1165))) (-15 -3229 ((-383) (-1165))) (-15 -2952 ((-383) (-1165) (-1165))) (-15 -2941 ((-1278))) (-15 -3215 ((-383) (-383))) (-15 -3200 ((-383) (-1165) (-383))) (-15 -3200 ((-383) (-1165) (-1165) (-383))) (-6 -4443)))
NIL
(((-98) (-140)) (T -98))
NIL
(-13 (-10 -7 (-6 -4443) (-6 (-4445 "*")) (-6 -4444) (-6 -4440) (-6 -4438) (-6 -4437) (-6 -4436) (-6 -4441) (-6 -4435) (-6 -4434) (-6 -4433) (-6 -4432) (-6 -4431) (-6 -4439) (-6 -4442) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4430)))
-((-2986 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-1360 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-551))) 24)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 16)) (-3682 (((-1126) $) NIL)) (-4249 ((|#1| $ |#1|) 13)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) 22)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 8 T CONST)) (-3473 (((-112) $ $) 10)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) 34) (($ $ (-776)) NIL) (($ $ (-551)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -1360 ($ (-1 |#1| |#1|))) (-15 -1360 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1360 ($ (-1 |#1| |#1| (-551)))))) (-1055)) (T -99))
-((-1360 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-1360 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-551))) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
-(-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -1360 ($ (-1 |#1| |#1|))) (-15 -1360 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1360 ($ (-1 |#1| |#1| (-551))))))
-((-1361 (((-410 |#2|) |#2| (-646 |#2|)) 10) (((-410 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -1361 ((-410 |#2|) |#2| |#2|)) (-15 -1361 ((-410 |#2|) |#2| (-646 |#2|)))) (-13 (-457) (-147)) (-1248 |#1|)) (T -100))
-((-1361 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-13 (-457) (-147))) (-5 *2 (-410 *3)) (-5 *1 (-100 *5 *3)))) (-1361 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-410 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -1361 ((-410 |#2|) |#2| |#2|)) (-15 -1361 ((-410 |#2|) |#2| (-646 |#2|))))
-((-2986 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2986 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3473 (((-112) $ $) 6)))
+((-2383 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-3194 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-569))) 24)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 16)) (-3461 (((-1126) $) NIL)) (-1852 ((|#1| $ |#1|) 13)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) 22)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 8 T CONST)) (-2853 (((-112) $ $) 10)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) 34) (($ $ (-776)) NIL) (($ $ (-569)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -3194 ($ (-1 |#1| |#1|))) (-15 -3194 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3194 ($ (-1 |#1| |#1| (-569)))))) (-1055)) (T -99))
+((-3194 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-3194 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
+(-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -3194 ($ (-1 |#1| |#1|))) (-15 -3194 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3194 ($ (-1 |#1| |#1| (-569))))))
+((-3209 (((-423 |#2|) |#2| (-649 |#2|)) 10) (((-423 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -3209 ((-423 |#2|) |#2| |#2|)) (-15 -3209 ((-423 |#2|) |#2| (-649 |#2|)))) (-13 (-457) (-147)) (-1249 |#1|)) (T -100))
+((-3209 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3209 ((-423 |#2|) |#2| |#2|)) (-15 -3209 ((-423 |#2|) |#2| (-649 |#2|))))
+((-2383 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2383 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2853 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3473 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -3473 ((-112) $ $)) (-15 -2986 ((-112) $ $))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) 24 (|has| $ (-6 -4444)))) (-1391 (($ $ $) NIL (|has| $ (-6 -4444)))) (-1392 (($ $ $) NIL (|has| $ (-6 -4444)))) (-1364 (($ $ (-646 |#1|)) 34)) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #2="left" $) NIL (|has| $ (-6 -4444))) (($ $ #3="right" $) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3559 (($ $) 12)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1400 (($ $ |#1| $) 36)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1363 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1362 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-646 |#1|) |#1| |#1| |#1|)) 53)) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3560 (($ $) 11)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) 13)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 9)) (-4014 (($) 35)) (-4249 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1365 (($ (-776) |#1|) 37)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -1365 ($ (-776) |#1|)) (-15 -1364 ($ $ (-646 |#1|))) (-15 -1363 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1363 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1362 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1362 ($ $ |#1| (-1 (-646 |#1|) |#1| |#1| |#1|))))) (-1107)) (T -103))
-((-1365 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1107)))) (-1364 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-103 *3)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1107)))) (-1363 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-103 *3)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1107)) (-5 *1 (-103 *2)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-646 *2) *2 *2 *2)) (-4 *2 (-1107)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -1365 ($ (-776) |#1|)) (-15 -1364 ($ $ (-646 |#1|))) (-15 -1363 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1363 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1362 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1362 ($ $ |#1| (-1 (-646 |#1|) |#1| |#1| |#1|)))))
-((-1366 ((|#3| |#2| |#2|) 36)) (-1368 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4445 #1="*"))))) (-1367 ((|#3| |#2| |#2|) 38)) (-1369 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4445 #1#))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1366 (|#3| |#2| |#2|)) (-15 -1367 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4445 "*"))) (PROGN (-15 -1368 (|#1| |#2| |#2|)) (-15 -1369 (|#1| |#2|))) |%noBranch|)) (-1055) (-1248 |#1|) (-691 |#1| |#4| |#5|) (-376 |#1|) (-376 |#1|)) (T -104))
-((-1369 (*1 *2 *3) (-12 (|has| *2 (-6 (-4445 #1="*"))) (-4 *5 (-376 *2)) (-4 *6 (-376 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1248 *2)) (-4 *4 (-691 *2 *5 *6)))) (-1368 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4445 #1#))) (-4 *5 (-376 *2)) (-4 *6 (-376 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1248 *2)) (-4 *4 (-691 *2 *5 *6)))) (-1367 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-691 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1248 *4)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)))) (-1366 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-691 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1248 *4)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)))))
-(-10 -7 (-15 -1366 (|#3| |#2| |#2|)) (-15 -1367 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4445 "*"))) (PROGN (-15 -1368 (|#1| |#2| |#2|)) (-15 -1369 (|#1| |#2|))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-1371 (((-646 (-1183))) 37)) (-1370 (((-2 (|:| |zeros| (-1160 (-226))) (|:| |ones| (-1160 (-226))) (|:| |singularities| (-1160 (-226)))) (-1183)) 39)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-105) (-13 (-1107) (-10 -7 (-15 -1371 ((-646 (-1183)))) (-15 -1370 ((-2 (|:| |zeros| (-1160 (-226))) (|:| |ones| (-1160 (-226))) (|:| |singularities| (-1160 (-226)))) (-1183))) (-6 -4443)))) (T -105))
-((-1371 (*1 *2) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-105)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-2 (|:| |zeros| (-1160 (-226))) (|:| |ones| (-1160 (-226))) (|:| |singularities| (-1160 (-226))))) (-5 *1 (-105)))))
-(-13 (-1107) (-10 -7 (-15 -1371 ((-646 (-1183)))) (-15 -1370 ((-2 (|:| |zeros| (-1160 (-226))) (|:| |ones| (-1160 (-226))) (|:| |singularities| (-1160 (-226)))) (-1183))) (-6 -4443)))
-((-1374 (($ (-646 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -1374 (|#1| (-646 |#2|)))) (-107 |#2|) (-1222)) (T -106))
-NIL
-(-10 -8 (-15 -1374 (|#1| (-646 |#2|))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-107 |#1|) (-140) (-1222)) (T -107))
-((-1374 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-107 *3)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222)))) (-4057 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222)))))
-(-13 (-494 |t#1|) (-10 -8 (-6 -4444) (-15 -1374 ($ (-646 |t#1|))) (-15 -1373 (|t#1| $)) (-15 -4057 ($ |t#1| $)) (-15 -1372 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-551) $) NIL (|has| (-551) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-551) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-551) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-551) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-551) (-1044 (-551))))) (-3594 (((-551) $) NIL) (((-1183) $) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-551) (-1044 (-551)))) (((-551) $) NIL (|has| (-551) (-1044 (-551))))) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-551) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-551) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-551) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-551) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-551) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-551) (-1157)))) (-3625 (((-112) $) NIL (|has| (-551) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-551) (-855)))) (-4408 (($ (-1 (-551) (-551)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-551) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-551) (-310))) (((-412 (-551)) $) NIL)) (-3552 (((-551) $) NIL (|has| (-551) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-551)) (-646 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-551) (-551)) NIL (|has| (-551) (-312 (-551)))) (($ $ (-296 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-296 (-551)))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-1183)) (-646 (-551))) NIL (|has| (-551) (-519 (-1183) (-551)))) (($ $ (-1183) (-551)) NIL (|has| (-551) (-519 (-1183) (-551))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-551)) NIL (|has| (-551) (-289 (-551) (-551))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-551) $) NIL)) (-4420 (((-896 (-551)) $) NIL (|has| (-551) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-551) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-551) (-619 (-540)))) (((-382) $) NIL (|has| (-551) (-1026))) (((-226) $) NIL (|has| (-551) (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-551) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) 8) (($ (-551)) NIL) (($ (-1183)) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL) (((-1010 2) $) 10)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-551) (-916))) (|has| (-551) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-551) $) NIL (|has| (-551) (-550)))) (-2217 (($ (-412 (-551))) 9)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| (-551) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-551) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-551) (-855)))) (-4399 (($ $ $) NIL) (($ (-551) (-551)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-551) $) NIL) (($ $ (-551)) NIL)))
-(((-108) (-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 2)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -2217 ($ (-412 (-551))))))) (T -108))
-((-3550 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-108)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-108)))))
-(-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 2)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -2217 ($ (-412 (-551))))))
-((-1386 (((-646 (-971)) $) 13)) (-3991 (((-511) $) 9)) (-4396 (((-868) $) 20)) (-1375 (($ (-511) (-646 (-971))) 15)))
-(((-109) (-13 (-618 (-868)) (-10 -8 (-15 -3991 ((-511) $)) (-15 -1386 ((-646 (-971)) $)) (-15 -1375 ($ (-511) (-646 (-971))))))) (T -109))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-646 (-971))) (-5 *1 (-109)))) (-1375 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-971))) (-5 *1 (-109)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -3991 ((-511) $)) (-15 -1386 ((-646 (-971)) $)) (-15 -1375 ($ (-511) (-646 (-971))))))
-((-2986 (((-112) $ $) NIL)) (-2476 (($ $) NIL)) (-3763 (($ $ $) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1908 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-3328 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-112) $ (-1239 (-551)) (-112)) NIL (|has| $ (-6 -4444))) (((-112) $ (-551) (-112)) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-3848 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-4292 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-1694 (((-112) $ (-551) (-112)) NIL (|has| $ (-6 -4444)))) (-3535 (((-112) $ (-551)) NIL)) (-3861 (((-551) (-112) $ (-551)) NIL (|has| (-112) (-1107))) (((-551) (-112) $) NIL (|has| (-112) (-1107))) (((-551) (-1 (-112) (-112)) $) NIL)) (-2134 (((-646 (-112)) $) NIL (|has| $ (-6 -4443)))) (-3273 (($ $ $) NIL)) (-3764 (($ $) NIL)) (-1398 (($ $ $) NIL)) (-4064 (($ (-776) (-112)) 10)) (-1399 (($ $ $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL)) (-3959 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3026 (((-646 (-112)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL)) (-2138 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ (-112) $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-112) $) NIL (|has| (-551) (-855)))) (-1444 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2391 (($ $ (-112)) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-112)) (-646 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-296 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-646 (-296 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-2397 (((-646 (-112)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 (($ $ (-1239 (-551))) NIL) (((-112) $ (-551)) NIL) (((-112) $ (-551) (-112)) NIL)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2135 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-112) (-619 (-540))))) (-3971 (($ (-646 (-112))) NIL)) (-4251 (($ (-646 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4396 (((-868) $) NIL)) (-1955 (($ (-776) (-112)) 11)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3274 (($ $ $) NIL)) (-2474 (($ $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-2475 (($ $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -1955 ($ (-776) (-112)))))) (T -110))
-((-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -1955 ($ (-776) (-112)))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+((-2383 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2853 ((-112) $ $)) (-15 -2383 ((-112) $ $))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) 24 (|has| $ (-6 -4444)))) (-1410 (($ $ $) NIL (|has| $ (-6 -4444)))) (-1421 (($ $ $) NIL (|has| $ (-6 -4444)))) (-2884 (($ $ (-649 |#1|)) 34)) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "left" $) NIL (|has| $ (-6 -4444))) (($ $ "right" $) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4386 (($ $) 12)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3235 (($ $ |#1| $) 36)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3615 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3607 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)) 53)) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-4375 (($ $) 11)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) 13)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 9)) (-2825 (($) 35)) (-1852 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2895 (($ (-776) |#1|) 37)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2895 ($ (-776) |#1|)) (-15 -2884 ($ $ (-649 |#1|))) (-15 -3615 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3615 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3607 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3607 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|))))) (-1106)) (T -103))
+((-2895 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1106)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1106)))) (-3615 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))) (-3607 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))) (-3607 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2895 ($ (-776) |#1|)) (-15 -2884 ($ $ (-649 |#1|))) (-15 -3615 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3615 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3607 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3607 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)))))
+((-2670 ((|#3| |#2| |#2|) 36)) (-2396 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4445 "*"))))) (-2681 ((|#3| |#2| |#2|) 38)) (-2407 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4445 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2670 (|#3| |#2| |#2|)) (-15 -2681 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4445 "*"))) (PROGN (-15 -2396 (|#1| |#2| |#2|)) (-15 -2407 (|#1| |#2|))) |%noBranch|)) (-1055) (-1249 |#1|) (-692 |#1| |#4| |#5|) (-377 |#1|) (-377 |#1|)) (T -104))
+((-2407 (*1 *2 *3) (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2)) (-4 *4 (-692 *2 *5 *6)))) (-2396 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2)) (-4 *4 (-692 *2 *5 *6)))) (-2681 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))) (-2670 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))))
+(-10 -7 (-15 -2670 (|#3| |#2| |#2|)) (-15 -2681 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4445 "*"))) (PROGN (-15 -2396 (|#1| |#2| |#2|)) (-15 -2407 (|#1| |#2|))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2609 (((-649 (-1183))) 37)) (-2596 (((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183)) 39)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-105) (-13 (-1106) (-10 -7 (-15 -2609 ((-649 (-1183)))) (-15 -2596 ((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183))) (-6 -4443)))) (T -105))
+((-2609 (*1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-105)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226))))) (-5 *1 (-105)))))
+(-13 (-1106) (-10 -7 (-15 -2609 ((-649 (-1183)))) (-15 -2596 ((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183))) (-6 -4443)))
+((-3551 (($ (-649 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3551 (|#1| (-649 |#2|)))) (-107 |#2|) (-1223)) (T -106))
+NIL
+(-10 -8 (-15 -3551 (|#1| (-649 |#2|))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-107 |#1|) (-140) (-1223)) (T -107))
+((-3551 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-107 *3)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))) (-2086 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
+(-13 (-494 |t#1|) (-10 -8 (-6 -4444) (-15 -3551 ($ (-649 |t#1|))) (-15 -3493 (|t#1| $)) (-15 -2086 ($ |t#1| $)) (-15 -3481 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-569) $) NIL (|has| (-569) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-569) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3043 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-569) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-569) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-569) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-2778 (((-112) $) NIL (|has| (-569) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-569) (-855)))) (-1324 (($ (-1 (-569) (-569)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-569) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3312 (((-569) $) NIL (|has| (-569) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-569) $) NIL)) (-1384 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 2) $) 10)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-569) $) NIL (|has| (-569) (-550)))) (-3515 (($ (-412 (-569))) 9)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| (-569) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-108) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 2)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -3515 ($ (-412 (-569))))))) (T -108))
+((-3288 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))))
+(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 2)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -3515 ($ (-412 (-569))))))
+((-2815 (((-649 (-971)) $) 13)) (-3458 (((-511) $) 9)) (-2388 (((-867) $) 20)) (-3562 (($ (-511) (-649 (-971))) 15)))
+(((-109) (-13 (-618 (-867)) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2815 ((-649 (-971)) $)) (-15 -3562 ($ (-511) (-649 (-971))))))) (T -109))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2815 ((-649 (-971)) $)) (-15 -3562 ($ (-511) (-649 (-971))))))
+((-2383 (((-112) $ $) NIL)) (-2400 (($ $) NIL)) (-1764 (($ $ $) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3364 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-3246 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-112) $ (-1240 (-569)) (-112)) NIL (|has| $ (-6 -4444))) (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1678 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-3485 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-3074 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4444)))) (-3007 (((-112) $ (-569)) NIL)) (-3975 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1106))) (((-569) (-112) $) NIL (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2796 (((-649 (-112)) $) NIL (|has| $ (-6 -4443)))) (-1752 (($ $ $) NIL)) (-1728 (($ $) NIL)) (-3670 (($ $ $) NIL)) (-4275 (($ (-776) (-112)) 10)) (-3685 (($ $ $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL)) (-3719 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2912 (((-649 (-112)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL)) (-3065 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-112) $) NIL (|has| (-569) (-855)))) (-4316 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1713 (($ $ (-112)) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1784 (((-649 (-112)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 (($ $ (-1240 (-569))) NIL) (((-112) $ (-569)) NIL) (((-112) $ (-569) (-112)) NIL)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3469 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3709 (($ (-649 (-112))) NIL)) (-3632 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2388 (((-867) $) NIL)) (-2568 (($ (-776) (-112)) 11)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1739 (($ $ $) NIL)) (-4415 (($ $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-4404 (($ $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -2568 ($ (-776) (-112)))))) (T -110))
+((-2568 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -2568 ($ (-776) (-112)))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
(((-111 |#1| |#2|) (-140) (-1055) (-1055)) (T -111))
NIL
(-13 (-653 |t#1|) (-1062 |t#2|) (-10 -7 (-6 -4438) (-6 -4437)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-2476 (($ $) 10)) (-3763 (($ $ $) 15)) (-3276 (($) 7 T CONST)) (-1376 (($ $) 6)) (-3558 (((-776)) 24)) (-3413 (($) 32)) (-3273 (($ $ $) 13)) (-3764 (($ $) 9)) (-1398 (($ $ $) 16)) (-1399 (($ $ $) 17)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) 30)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) 28)) (-3272 (($ $ $) 20)) (-3682 (((-1126) $) NIL)) (-3275 (($) 8 T CONST)) (-3271 (($ $ $) 21)) (-4420 (((-540) $) 34)) (-4396 (((-868) $) 36)) (-3680 (((-112) $ $) NIL)) (-3274 (($ $ $) 11)) (-2474 (($ $ $) 14)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 19)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 22)) (-2475 (($ $ $) 12)))
-(((-112) (-13 (-849) (-667) (-973) (-619 (-540)) (-10 -8 (-15 -3763 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -1398 ($ $ $)) (-15 -1376 ($ $))))) (T -112))
-((-3763 (*1 *1 *1 *1) (-5 *1 (-112))) (-1399 (*1 *1 *1 *1) (-5 *1 (-112))) (-1398 (*1 *1 *1 *1) (-5 *1 (-112))) (-1376 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-849) (-667) (-973) (-619 (-540)) (-10 -8 (-15 -3763 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -1398 ($ $ $)) (-15 -1376 ($ $))))
-((-2986 (((-112) $ $) NIL)) (-1629 (((-776) $) 91) (($ $ (-776)) 37)) (-1384 (((-112) $) 41)) (-1378 (($ $ (-1165) (-778)) 58) (($ $ (-511) (-778)) 33)) (-1377 (($ $ (-45 (-1165) (-778))) 16)) (-3262 (((-3 (-778) "failed") $ (-1165)) 27) (((-696 (-778)) $ (-511)) 32)) (-1386 (((-45 (-1165) (-778)) $) 15)) (-3466 (($ (-1183)) 20) (($ (-1183) (-776)) 23) (($ (-1183) (-55)) 24)) (-1385 (((-112) $) 39)) (-1383 (((-112) $) 43)) (-3991 (((-1183) $) 8)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3053 (((-112) $ (-1183)) 11)) (-2320 (($ $ (-1 (-540) (-646 (-540)))) 64) (((-3 (-1 (-540) (-646 (-540))) "failed") $) 71)) (-3682 (((-1126) $) NIL)) (-1380 (((-112) $ (-511)) 36)) (-1382 (($ $ (-1 (-112) $ $)) 45)) (-4067 (((-3 (-1 (-868) (-646 (-868))) "failed") $) 69) (($ $ (-1 (-868) (-646 (-868)))) 51) (($ $ (-1 (-868) (-868))) 53)) (-1379 (($ $ (-1165)) 55) (($ $ (-511)) 56)) (-3842 (($ $) 77)) (-1381 (($ $ (-1 (-112) $ $)) 46)) (-4396 (((-868) $) 60)) (-3680 (((-112) $ $) NIL)) (-3213 (($ $ (-511)) 34)) (-2939 (((-55) $) 72)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 89)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 103)))
-(((-113) (-13 (-855) (-841 (-1183)) (-10 -8 (-15 -1386 ((-45 (-1165) (-778)) $)) (-15 -3842 ($ $)) (-15 -3466 ($ (-1183))) (-15 -3466 ($ (-1183) (-776))) (-15 -3466 ($ (-1183) (-55))) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1629 ((-776) $)) (-15 -1629 ($ $ (-776))) (-15 -1382 ($ $ (-1 (-112) $ $))) (-15 -1381 ($ $ (-1 (-112) $ $))) (-15 -4067 ((-3 (-1 (-868) (-646 (-868))) "failed") $)) (-15 -4067 ($ $ (-1 (-868) (-646 (-868))))) (-15 -4067 ($ $ (-1 (-868) (-868)))) (-15 -2320 ($ $ (-1 (-540) (-646 (-540))))) (-15 -2320 ((-3 (-1 (-540) (-646 (-540))) "failed") $)) (-15 -1380 ((-112) $ (-511))) (-15 -3213 ($ $ (-511))) (-15 -1379 ($ $ (-1165))) (-15 -1379 ($ $ (-511))) (-15 -3262 ((-3 (-778) "failed") $ (-1165))) (-15 -3262 ((-696 (-778)) $ (-511))) (-15 -1378 ($ $ (-1165) (-778))) (-15 -1378 ($ $ (-511) (-778))) (-15 -1377 ($ $ (-45 (-1165) (-778))))))) (T -113))
-((-1386 (*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-778))) (-5 *1 (-113)))) (-3842 (*1 *1 *1) (-5 *1 (-113))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-113)))) (-3466 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-113)))) (-3466 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-113)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-113)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-113)))) (-1382 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4067 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-868) (-646 (-868)))) (-5 *1 (-113)))) (-4067 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-646 (-868)))) (-5 *1 (-113)))) (-4067 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-113)))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-540) (-646 (-540)))) (-5 *1 (-113)))) (-2320 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-540) (-646 (-540)))) (-5 *1 (-113)))) (-1380 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-113)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-113)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-113)))) (-3262 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-778)) (-5 *1 (-113)))) (-3262 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-778))) (-5 *1 (-113)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-778)) (-5 *1 (-113)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-778)) (-5 *1 (-113)))) (-1377 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-778))) (-5 *1 (-113)))))
-(-13 (-855) (-841 (-1183)) (-10 -8 (-15 -1386 ((-45 (-1165) (-778)) $)) (-15 -3842 ($ $)) (-15 -3466 ($ (-1183))) (-15 -3466 ($ (-1183) (-776))) (-15 -3466 ($ (-1183) (-55))) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1629 ((-776) $)) (-15 -1629 ($ $ (-776))) (-15 -1382 ($ $ (-1 (-112) $ $))) (-15 -1381 ($ $ (-1 (-112) $ $))) (-15 -4067 ((-3 (-1 (-868) (-646 (-868))) "failed") $)) (-15 -4067 ($ $ (-1 (-868) (-646 (-868))))) (-15 -4067 ($ $ (-1 (-868) (-868)))) (-15 -2320 ($ $ (-1 (-540) (-646 (-540))))) (-15 -2320 ((-3 (-1 (-540) (-646 (-540))) "failed") $)) (-15 -1380 ((-112) $ (-511))) (-15 -3213 ($ $ (-511))) (-15 -1379 ($ $ (-1165))) (-15 -1379 ($ $ (-511))) (-15 -3262 ((-3 (-778) "failed") $ (-1165))) (-15 -3262 ((-696 (-778)) $ (-511))) (-15 -1378 ($ $ (-1165) (-778))) (-15 -1378 ($ $ (-511) (-778))) (-15 -1377 ($ $ (-45 (-1165) (-778))))))
-((-2936 (((-3 (-1 |#1| (-646 |#1|)) "failed") (-113)) 23) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-646 |#1|))) 11) (((-3 |#1| "failed") (-113) (-646 |#1|)) 25)) (-1387 (((-3 (-646 (-1 |#1| (-646 |#1|))) "failed") (-113)) 29) (((-113) (-113) (-1 |#1| |#1|)) 33) (((-113) (-113) (-646 (-1 |#1| (-646 |#1|)))) 30)) (-1388 (((-113) |#1|) 63)) (-1389 (((-3 |#1| "failed") (-113)) 58)))
-(((-114 |#1|) (-10 -7 (-15 -2936 ((-3 |#1| "failed") (-113) (-646 |#1|))) (-15 -2936 ((-113) (-113) (-1 |#1| (-646 |#1|)))) (-15 -2936 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2936 ((-3 (-1 |#1| (-646 |#1|)) "failed") (-113))) (-15 -1387 ((-113) (-113) (-646 (-1 |#1| (-646 |#1|))))) (-15 -1387 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1387 ((-3 (-646 (-1 |#1| (-646 |#1|))) "failed") (-113))) (-15 -1388 ((-113) |#1|)) (-15 -1389 ((-3 |#1| "failed") (-113)))) (-1107)) (T -114))
-((-1389 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1107)))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1107)))) (-1387 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-646 (-1 *4 (-646 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1107)))) (-1387 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1107)) (-5 *1 (-114 *4)))) (-1387 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 (-1 *4 (-646 *4)))) (-4 *4 (-1107)) (-5 *1 (-114 *4)))) (-2936 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-646 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1107)))) (-2936 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1107)) (-5 *1 (-114 *4)))) (-2936 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-646 *4))) (-4 *4 (-1107)) (-5 *1 (-114 *4)))) (-2936 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-646 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1107)))))
-(-10 -7 (-15 -2936 ((-3 |#1| "failed") (-113) (-646 |#1|))) (-15 -2936 ((-113) (-113) (-1 |#1| (-646 |#1|)))) (-15 -2936 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2936 ((-3 (-1 |#1| (-646 |#1|)) "failed") (-113))) (-15 -1387 ((-113) (-113) (-646 (-1 |#1| (-646 |#1|))))) (-15 -1387 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1387 ((-3 (-646 (-1 |#1| (-646 |#1|))) "failed") (-113))) (-15 -1388 ((-113) |#1|)) (-15 -1389 ((-3 |#1| "failed") (-113))))
-((-1390 (((-551) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -1390 ((-551) |#2|))) (-13 (-367) (-1044 (-412 (-551)))) (-1248 |#1|)) (T -115))
-((-1390 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-551)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -1390 ((-551) |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $ (-551)) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3029 (($ (-1177 (-551)) (-551)) NIL)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3030 (($ $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4221 (((-776) $) NIL)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-3032 (((-551)) NIL)) (-3031 (((-551) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4218 (($ $ (-551)) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3033 (((-1160 (-551)) $) NIL)) (-3310 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-551) $ (-551)) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-875 |#1|) (-551)) (T -116))
-NIL
-(-875 |#1|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-116 |#1|) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-116 |#1|) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-116 |#1|) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-116 |#1|) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-116 |#1|) (-1044 (-551))))) (-3594 (((-116 |#1|) $) NIL) (((-1183) $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-116 |#1|) (-1044 (-551)))) (((-551) $) NIL (|has| (-116 |#1|) (-1044 (-551))))) (-4180 (($ $) NIL) (($ (-551) $) NIL)) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-116 |#1|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-116 |#1|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-116 |#1|))) (|:| |vec| (-1272 (-116 |#1|)))) (-694 $) (-1272 $)) NIL) (((-694 (-116 |#1|)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-116 |#1|) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-116 |#1|) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-116 |#1|) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-116 |#1|) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1157)))) (-3625 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-3278 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-4408 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-116 |#1|) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-116 |#1|) (-310)))) (-3552 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-116 |#1|) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-116 |#1|) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-116 |#1|)) (-646 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-296 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-646 (-296 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-646 (-1183)) (-646 (-116 |#1|))) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|)))) (($ $ (-1183) (-116 |#1|)) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-289 (-116 |#1|) (-116 |#1|))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-116 |#1|) $) NIL)) (-4420 (((-896 (-551)) $) NIL (|has| (-116 |#1|) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-116 |#1|) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-116 |#1|) (-619 (-540)))) (((-382) $) NIL (|has| (-116 |#1|) (-1026))) (((-226) $) NIL (|has| (-116 |#1|) (-1026)))) (-3034 (((-175 (-412 (-551))) $) NIL)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-116 |#1|)) NIL) (($ (-1183)) NIL (|has| (-116 |#1|) (-1044 (-1183))))) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-916))) (|has| (-116 |#1|) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-412 (-551)) $ (-551)) NIL)) (-3825 (($ $) NIL (|has| (-116 |#1|) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-4399 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-997 (-116 |#1|)) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $)))) (-551)) (T -117))
-((-4219 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-551)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-117 *3)) (-14 *3 (-551)))) (-4180 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-551)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-997 (-116 |#1|)) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $))))
-((-4237 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3450 (((-646 $) $) 31)) (-3446 (((-112) $ $) 36)) (-3684 (((-112) |#2| $) 40)) (-3449 (((-646 |#2|) $) 25)) (-3968 (((-112) $) 18)) (-4249 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4083 (((-112) $) 57)) (-4396 (((-868) $) 47)) (-3963 (((-646 $) $) 32)) (-3473 (((-112) $ $) 38)) (-4407 (((-776) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4237 (|#1| |#1| "right" |#1|)) (-15 -4237 (|#1| |#1| "left" |#1|)) (-15 -4249 (|#1| |#1| "right")) (-15 -4249 (|#1| |#1| "left")) (-15 -4237 (|#2| |#1| #1="value" |#2|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -3449 ((-646 |#2|) |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -3684 ((-112) |#2| |#1|)) (-15 -4407 ((-776) |#1|))) (-119 |#2|) (-1222)) (T -118))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4237 (|#1| |#1| "right" |#1|)) (-15 -4237 (|#1| |#1| "left" |#1|)) (-15 -4249 (|#1| |#1| "right")) (-15 -4249 (|#1| |#1| "left")) (-15 -4237 (|#2| |#1| #1="value" |#2|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -3449 ((-646 |#2|) |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -3684 ((-112) |#2| |#1|)) (-15 -4407 ((-776) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-1391 (($ $ $) 53 (|has| $ (-6 -4444)))) (-1392 (($ $ $) 55 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) (($ $ "left" $) 56 (|has| $ (-6 -4444))) (($ $ "right" $) 54 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-3559 (($ $) 58)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3560 (($ $) 60)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) (($ $ "left") 59) (($ $ "right") 57)) (-3448 (((-551) $ $) 45)) (-4083 (((-112) $) 47)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-119 |#1|) (-140) (-1222)) (T -119))
-((-3560 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1222)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1222)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1222)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1222)))) (-4237 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3)) (-4 *3 (-1222)))) (-1392 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1222)))) (-4237 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3)) (-4 *3 (-1222)))) (-1391 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1222)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -3560 ($ $)) (-15 -4249 ($ $ "left")) (-15 -3559 ($ $)) (-15 -4249 ($ $ "right")) (IF (|has| $ (-6 -4444)) (PROGN (-15 -4237 ($ $ "left" $)) (-15 -1392 ($ $ $)) (-15 -4237 ($ $ "right" $)) (-15 -1391 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-1395 (((-112) |#1|) 29)) (-1394 (((-776) (-776)) 28) (((-776)) 27)) (-1393 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -1393 ((-112) |#1|)) (-15 -1393 ((-112) |#1| (-112))) (-15 -1394 ((-776))) (-15 -1394 ((-776) (-776))) (-15 -1395 ((-112) |#1|))) (-1248 (-551))) (T -120))
-((-1395 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))) (-1394 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))) (-1393 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))))
-(-10 -7 (-15 -1393 ((-112) |#1|)) (-15 -1393 ((-112) |#1| (-112))) (-15 -1394 ((-776))) (-15 -1394 ((-776) (-776))) (-15 -1395 ((-112) |#1|)))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) 18)) (-3860 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ $ $) 21 (|has| $ (-6 -4444)))) (-1392 (($ $ $) 23 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #2="left" $) NIL (|has| $ (-6 -4444))) (($ $ #3="right" $) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3559 (($ $) 20)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1400 (($ $ |#1| $) 27)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3560 (($ $) 22)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1396 (($ |#1| $) 28)) (-4057 (($ |#1| $) 15)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 11)) (-4249 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1397 (($ (-646 |#1|)) 16)) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -1397 ($ (-646 |#1|))) (-15 -4057 ($ |#1| $)) (-15 -1396 ($ |#1| $)) (-15 -3860 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-855)) (T -121))
-((-1397 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))) (-4057 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-1396 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-3860 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-855)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -1397 ($ (-646 |#1|))) (-15 -4057 ($ |#1| $)) (-15 -1396 ($ |#1| $)) (-15 -3860 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2476 (($ $) 13)) (-3764 (($ $) 11)) (-1398 (($ $ $) 23)) (-1399 (($ $ $) 21)) (-2474 (($ $ $) 19)) (-2475 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -1398 (|#1| |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -1398 (|#1| |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-2476 (($ $) 104)) (-3763 (($ $ $) 26)) (-2390 (((-1278) $ (-551) (-551)) 67 (|has| $ (-6 -4444)))) (-1910 (((-112) $) 99 (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1908 (($ $) 103 (-12 (|has| (-112) (-855)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4444)))) (-3328 (($ $) 98 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1312 (((-112) $ (-776)) 38)) (-4237 (((-112) $ (-1239 (-551)) (-112)) 89 (|has| $ (-6 -4444))) (((-112) $ (-551) (-112)) 55 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4443)))) (-4174 (($) 39 T CONST)) (-2460 (($ $) 101 (|has| $ (-6 -4444)))) (-2461 (($ $) 91)) (-1443 (($ $) 69 (-12 (|has| (-112) (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4443))) (($ (-112) $) 70 (-12 (|has| (-112) (-1107)) (|has| $ (-6 -4443))))) (-4292 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1107)) (|has| $ (-6 -4443))))) (-1694 (((-112) $ (-551) (-112)) 54 (|has| $ (-6 -4444)))) (-3535 (((-112) $ (-551)) 56)) (-3861 (((-551) (-112) $ (-551)) 96 (|has| (-112) (-1107))) (((-551) (-112) $) 95 (|has| (-112) (-1107))) (((-551) (-1 (-112) (-112)) $) 94)) (-2134 (((-646 (-112)) $) 46 (|has| $ (-6 -4443)))) (-3273 (($ $ $) 27)) (-3764 (($ $) 31)) (-1398 (($ $ $) 29)) (-4064 (($ (-776) (-112)) 78)) (-1399 (($ $ $) 30)) (-4169 (((-112) $ (-776)) 37)) (-2392 (((-551) $) 64 (|has| (-551) (-855)))) (-2952 (($ $ $) 14)) (-3959 (($ $ $) 97 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3026 (((-646 (-112)) $) 47 (|has| $ (-6 -4443)))) (-3684 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 63 (|has| (-551) (-855)))) (-3278 (($ $ $) 15)) (-2138 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4166 (((-112) $ (-776)) 36)) (-3681 (((-1165) $) 10)) (-2467 (($ $ $ (-551)) 88) (($ (-112) $ (-551)) 87)) (-2395 (((-646 (-551)) $) 61)) (-2396 (((-112) (-551) $) 60)) (-3682 (((-1126) $) 11)) (-4250 (((-112) $) 65 (|has| (-551) (-855)))) (-1444 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2391 (($ $ (-112)) 66 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-112)) (-646 (-112))) 53 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-296 (-112))) 51 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-646 (-296 (-112)))) 50 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107))))) (-1313 (((-112) $ $) 32)) (-2394 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-2397 (((-646 (-112)) $) 59)) (-3845 (((-112) $) 35)) (-4014 (($) 34)) (-4249 (($ $ (-1239 (-551))) 84) (((-112) $ (-551)) 58) (((-112) $ (-551) (-112)) 57)) (-2468 (($ $ (-1239 (-551))) 86) (($ $ (-551)) 85)) (-2135 (((-776) (-112) $) 48 (-12 (|has| (-112) (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4443)))) (-1909 (($ $ $ (-551)) 100 (|has| $ (-6 -4444)))) (-3842 (($ $) 33)) (-4420 (((-540) $) 68 (|has| (-112) (-619 (-540))))) (-3971 (($ (-646 (-112))) 77)) (-4251 (($ (-646 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2137 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4443)))) (-3274 (($ $ $) 28)) (-2474 (($ $ $) 106)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-2475 (($ $ $) 105)) (-4407 (((-776) $) 40 (|has| $ (-6 -4443)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2400 (($ $) 10)) (-1764 (($ $ $) 15)) (-2919 (($) 7 T CONST)) (-4235 (($ $) 6)) (-3363 (((-776)) 24)) (-3295 (($) 32)) (-1752 (($ $ $) 13)) (-1728 (($ $) 9)) (-3670 (($ $ $) 16)) (-3685 (($ $ $) 17)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) 30)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) 28)) (-3631 (($ $ $) 20)) (-3461 (((-1126) $) NIL)) (-1840 (($) 8 T CONST)) (-3620 (($ $ $) 21)) (-1384 (((-541) $) 34)) (-2388 (((-867) $) 36)) (-2040 (((-112) $ $) NIL)) (-1739 (($ $ $) 11)) (-4415 (($ $ $) 14)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 19)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 22)) (-4404 (($ $ $) 12)))
+(((-112) (-13 (-849) (-666) (-973) (-619 (-541)) (-10 -8 (-15 -1764 ($ $ $)) (-15 -3685 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -4235 ($ $))))) (T -112))
+((-1764 (*1 *1 *1 *1) (-5 *1 (-112))) (-3685 (*1 *1 *1 *1) (-5 *1 (-112))) (-3670 (*1 *1 *1 *1) (-5 *1 (-112))) (-4235 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-849) (-666) (-973) (-619 (-541)) (-10 -8 (-15 -1764 ($ $ $)) (-15 -3685 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -4235 ($ $))))
+((-3416 (((-3 (-1 |#1| (-649 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-649 |#1|))) 11) (((-3 |#1| "failed") (-114) (-649 |#1|)) 25)) (-3787 (((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-649 (-1 |#1| (-649 |#1|)))) 30)) (-3800 (((-114) |#1|) 63)) (-3542 (((-3 |#1| "failed") (-114)) 58)))
+(((-113 |#1|) (-10 -7 (-15 -3416 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -3416 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -3416 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3416 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3787 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3787 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3787 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -3800 ((-114) |#1|)) (-15 -3542 ((-3 |#1| "failed") (-114)))) (-1106)) (T -113))
+((-3542 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1106)))) (-3787 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1106)))) (-3787 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-3787 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-3416 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1106)))) (-3416 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-3416 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-3416 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))))
+(-10 -7 (-15 -3416 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -3416 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -3416 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3416 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3787 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3787 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3787 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -3800 ((-114) |#1|)) (-15 -3542 ((-3 |#1| "failed") (-114))))
+((-2383 (((-112) $ $) NIL)) (-2341 (((-776) $) 91) (($ $ (-776)) 37)) (-4257 (((-112) $) 41)) (-1412 (($ $ (-1165) (-779)) 58) (($ $ (-511) (-779)) 33)) (-1398 (($ $ (-45 (-1165) (-779))) 16)) (-3017 (((-3 (-779) "failed") $ (-1165)) 27) (((-696 (-779)) $ (-511)) 32)) (-2815 (((-45 (-1165) (-779)) $) 15)) (-3642 (($ (-1183)) 20) (($ (-1183) (-776)) 23) (($ (-1183) (-55)) 24)) (-4269 (((-112) $) 39)) (-4233 (((-112) $) 43)) (-3458 (((-1183) $) 8)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2016 (((-112) $ (-1183)) 11)) (-4193 (($ $ (-1 (-541) (-649 (-541)))) 64) (((-3 (-1 (-541) (-649 (-541))) "failed") $) 71)) (-3461 (((-1126) $) NIL)) (-3060 (((-112) $ (-511)) 36)) (-3156 (($ $ (-1 (-112) $ $)) 45)) (-4138 (((-3 (-1 (-867) (-649 (-867))) "failed") $) 69) (($ $ (-1 (-867) (-649 (-867)))) 51) (($ $ (-1 (-867) (-867))) 53)) (-3046 (($ $ (-1165)) 55) (($ $ (-511)) 56)) (-3885 (($ $) 77)) (-3144 (($ $ (-1 (-112) $ $)) 46)) (-2388 (((-867) $) 60)) (-2040 (((-112) $ $) NIL)) (-3548 (($ $ (-511)) 34)) (-3450 (((-55) $) 72)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 89)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 103)))
+(((-114) (-13 (-855) (-840 (-1183)) (-10 -8 (-15 -2815 ((-45 (-1165) (-779)) $)) (-15 -3885 ($ $)) (-15 -3642 ($ (-1183))) (-15 -3642 ($ (-1183) (-776))) (-15 -3642 ($ (-1183) (-55))) (-15 -4269 ((-112) $)) (-15 -4257 ((-112) $)) (-15 -4233 ((-112) $)) (-15 -2341 ((-776) $)) (-15 -2341 ($ $ (-776))) (-15 -3156 ($ $ (-1 (-112) $ $))) (-15 -3144 ($ $ (-1 (-112) $ $))) (-15 -4138 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4138 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4138 ($ $ (-1 (-867) (-867)))) (-15 -4193 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4193 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -3060 ((-112) $ (-511))) (-15 -3548 ($ $ (-511))) (-15 -3046 ($ $ (-1165))) (-15 -3046 ($ $ (-511))) (-15 -3017 ((-3 (-779) "failed") $ (-1165))) (-15 -3017 ((-696 (-779)) $ (-511))) (-15 -1412 ($ $ (-1165) (-779))) (-15 -1412 ($ $ (-511) (-779))) (-15 -1398 ($ $ (-45 (-1165) (-779))))))) (T -114))
+((-2815 (*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))) (-3885 (*1 *1 *1) (-5 *1 (-114))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-114)))) (-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-114)))) (-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-114)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-2341 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4138 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114)))) (-4193 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-4193 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-3060 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3548 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-114)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3017 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-779)) (-5 *1 (-114)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114)))) (-1412 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-779)) (-5 *1 (-114)))) (-1412 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
+(-13 (-855) (-840 (-1183)) (-10 -8 (-15 -2815 ((-45 (-1165) (-779)) $)) (-15 -3885 ($ $)) (-15 -3642 ($ (-1183))) (-15 -3642 ($ (-1183) (-776))) (-15 -3642 ($ (-1183) (-55))) (-15 -4269 ((-112) $)) (-15 -4257 ((-112) $)) (-15 -4233 ((-112) $)) (-15 -2341 ((-776) $)) (-15 -2341 ($ $ (-776))) (-15 -3156 ($ $ (-1 (-112) $ $))) (-15 -3144 ($ $ (-1 (-112) $ $))) (-15 -4138 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4138 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4138 ($ $ (-1 (-867) (-867)))) (-15 -4193 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4193 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -3060 ((-112) $ (-511))) (-15 -3548 ($ $ (-511))) (-15 -3046 ($ $ (-1165))) (-15 -3046 ($ $ (-511))) (-15 -3017 ((-3 (-779) "failed") $ (-1165))) (-15 -3017 ((-696 (-779)) $ (-511))) (-15 -1412 ($ $ (-1165) (-779))) (-15 -1412 ($ $ (-511) (-779))) (-15 -1398 ($ $ (-45 (-1165) (-779))))))
+((-1834 (((-569) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1834 ((-569) |#2|))) (-13 (-367) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -115))
+((-1834 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-569)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -1834 ((-569) |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $ (-569)) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2943 (($ (-1179 (-569)) (-569)) NIL)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-1845 (($ $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-4315 (((-776) $) NIL)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1864 (((-569)) NIL)) (-1855 (((-569) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4295 (($ $ (-569)) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1871 (((-1163 (-569)) $) NIL)) (-2745 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-569) $ (-569)) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-874 |#1|) (-569)) (T -116))
+NIL
+(-874 |#1|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-116 |#1|) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-569))))) (-3043 (((-116 |#1|) $) NIL) (((-1183) $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-116 |#1|) (-1044 (-569)))) (((-569) $) NIL (|has| (-116 |#1|) (-1044 (-569))))) (-3899 (($ $) NIL) (($ (-569) $) NIL)) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-116 |#1|))) (|:| |vec| (-1273 (-116 |#1|)))) (-694 $) (-1273 $)) NIL) (((-694 (-116 |#1|)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-116 |#1|) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-116 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-116 |#1|) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-116 |#1|) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1158)))) (-2778 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-2406 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-1324 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-116 |#1|) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-116 |#1|) (-310)))) (-3312 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-116 |#1|)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-297 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-297 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-1183)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|)))) (($ $ (-1183) (-116 |#1|)) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-289 (-116 |#1|) (-116 |#1|))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-116 |#1|) $) NIL)) (-1384 (((-898 (-569)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-116 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-116 |#1|) (-1028))) (((-226) $) NIL (|has| (-116 |#1|) (-1028)))) (-1879 (((-175 (-412 (-569))) $) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-116 |#1|)) NIL) (($ (-1183)) NIL (|has| (-116 |#1|) (-1044 (-1183))))) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))) (|has| (-116 |#1|) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-412 (-569)) $ (-569)) NIL)) (-3999 (($ $) NIL (|has| (-116 |#1|) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2956 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-998 (-116 |#1|)) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $)))) (-569)) (T -117))
+((-3006 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569)))) (-3899 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569)))) (-3899 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-998 (-116 |#1|)) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $))))
+((-3861 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1807 (((-649 $) $) 31)) (-1774 (((-112) $ $) 36)) (-2060 (((-112) |#2| $) 40)) (-2238 (((-649 |#2|) $) 25)) (-2546 (((-112) $) 18)) (-1852 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2284 (((-112) $) 57)) (-2388 (((-867) $) 47)) (-2492 (((-649 $) $) 32)) (-2853 (((-112) $ $) 38)) (-2394 (((-776) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -3861 (|#1| |#1| "right" |#1|)) (-15 -3861 (|#1| |#1| "left" |#1|)) (-15 -1852 (|#1| |#1| "right")) (-15 -1852 (|#1| |#1| "left")) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1774 ((-112) |#1| |#1|)) (-15 -2238 ((-649 |#2|) |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2060 ((-112) |#2| |#1|)) (-15 -2394 ((-776) |#1|))) (-119 |#2|) (-1223)) (T -118))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -3861 (|#1| |#1| "right" |#1|)) (-15 -3861 (|#1| |#1| "left" |#1|)) (-15 -1852 (|#1| |#1| "right")) (-15 -1852 (|#1| |#1| "left")) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1774 ((-112) |#1| |#1|)) (-15 -2238 ((-649 |#2|) |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2060 ((-112) |#2| |#1|)) (-15 -2394 ((-776) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-1410 (($ $ $) 53 (|has| $ (-6 -4444)))) (-1421 (($ $ $) 55 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) (($ $ "left" $) 56 (|has| $ (-6 -4444))) (($ $ "right" $) 54 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-4386 (($ $) 58)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-4375 (($ $) 60)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1797 (((-569) $ $) 45)) (-2284 (((-112) $) 47)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-119 |#1|) (-140) (-1223)) (T -119))
+((-4375 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-3861 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-1421 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-3861 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-1410 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
+(-13 (-1016 |t#1|) (-10 -8 (-15 -4375 ($ $)) (-15 -1852 ($ $ "left")) (-15 -4386 ($ $)) (-15 -1852 ($ $ "right")) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3861 ($ $ "left" $)) (-15 -1421 ($ $ $)) (-15 -3861 ($ $ "right" $)) (-15 -1410 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3637 (((-112) |#1|) 29)) (-1441 (((-776) (-776)) 28) (((-776)) 27)) (-1431 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -1431 ((-112) |#1|)) (-15 -1431 ((-112) |#1| (-112))) (-15 -1441 ((-776))) (-15 -1441 ((-776) (-776))) (-15 -3637 ((-112) |#1|))) (-1249 (-569))) (T -120))
+((-3637 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1441 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1431 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
+(-10 -7 (-15 -1431 ((-112) |#1|)) (-15 -1431 ((-112) |#1| (-112))) (-15 -1441 ((-776))) (-15 -1441 ((-776) (-776))) (-15 -3637 ((-112) |#1|)))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) 18)) (-4310 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-1410 (($ $ $) 21 (|has| $ (-6 -4444)))) (-1421 (($ $ $) 23 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "left" $) NIL (|has| $ (-6 -4444))) (($ $ "right" $) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4386 (($ $) 20)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3235 (($ $ |#1| $) 27)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-4375 (($ $) 22)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3649 (($ |#1| $) 28)) (-2086 (($ |#1| $) 15)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 11)) (-1852 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3658 (($ (-649 |#1|)) 16)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3658 ($ (-649 |#1|))) (-15 -2086 ($ |#1| $)) (-15 -3649 ($ |#1| $)) (-15 -4310 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-855)) (T -121))
+((-3658 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))) (-2086 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-3649 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-4310 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-855)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3658 ($ (-649 |#1|))) (-15 -2086 ($ |#1| $)) (-15 -3649 ($ |#1| $)) (-15 -4310 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2400 (($ $) 13)) (-1728 (($ $) 11)) (-3670 (($ $ $) 23)) (-3685 (($ $ $) 21)) (-4415 (($ $ $) 19)) (-4404 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -3670 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4415 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -3670 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4415 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2400 (($ $) 104)) (-1764 (($ $ $) 26)) (-1699 (((-1278) $ (-569) (-569)) 67 (|has| $ (-6 -4444)))) (-3389 (((-112) $) 99 (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3364 (($ $) 103 (-12 (|has| (-112) (-855)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4444)))) (-3246 (($ $) 98 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1610 (((-112) $ (-776)) 38)) (-3861 (((-112) $ (-1240 (-569)) (-112)) 89 (|has| $ (-6 -4444))) (((-112) $ (-569) (-112)) 55 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4443)))) (-3863 (($) 39 T CONST)) (-4188 (($ $) 101 (|has| $ (-6 -4444)))) (-2214 (($ $) 91)) (-3437 (($ $) 69 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4443))) (($ (-112) $) 70 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4443))))) (-3485 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4443))))) (-3074 (((-112) $ (-569) (-112)) 54 (|has| $ (-6 -4444)))) (-3007 (((-112) $ (-569)) 56)) (-3975 (((-569) (-112) $ (-569)) 96 (|has| (-112) (-1106))) (((-569) (-112) $) 95 (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) 94)) (-2796 (((-649 (-112)) $) 46 (|has| $ (-6 -4443)))) (-1752 (($ $ $) 27)) (-1728 (($ $) 31)) (-3670 (($ $ $) 29)) (-4275 (($ (-776) (-112)) 78)) (-3685 (($ $ $) 30)) (-3799 (((-112) $ (-776)) 37)) (-1726 (((-569) $) 64 (|has| (-569) (-855)))) (-2095 (($ $ $) 14)) (-3719 (($ $ $) 97 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2912 (((-649 (-112)) $) 47 (|has| $ (-6 -4443)))) (-2060 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 63 (|has| (-569) (-855)))) (-2406 (($ $ $) 15)) (-3065 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-1902 (((-112) $ (-776)) 36)) (-2050 (((-1165) $) 10)) (-4274 (($ $ $ (-569)) 88) (($ (-112) $ (-569)) 87)) (-1762 (((-649 (-569)) $) 61)) (-1773 (((-112) (-569) $) 60)) (-3461 (((-1126) $) 11)) (-3401 (((-112) $) 65 (|has| (-569) (-855)))) (-4316 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1713 (($ $ (-112)) 66 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-112)) (-649 (-112))) 53 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) 51 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) 50 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-1620 (((-112) $ $) 32)) (-1750 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1784 (((-649 (-112)) $) 59)) (-4196 (((-112) $) 35)) (-2825 (($) 34)) (-1852 (($ $ (-1240 (-569))) 84) (((-112) $ (-569)) 58) (((-112) $ (-569) (-112)) 57)) (-4326 (($ $ (-1240 (-569))) 86) (($ $ (-569)) 85)) (-3469 (((-776) (-112) $) 48 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4443)))) (-3376 (($ $ $ (-569)) 100 (|has| $ (-6 -4444)))) (-3885 (($ $) 33)) (-1384 (((-541) $) 68 (|has| (-112) (-619 (-541))))) (-3709 (($ (-649 (-112))) 77)) (-3632 (($ (-649 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3996 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4443)))) (-1739 (($ $ $) 28)) (-4415 (($ $ $) 106)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-4404 (($ $ $) 105)) (-2394 (((-776) $) 40 (|has| $ (-6 -4443)))))
(((-123) (-140)) (T -123))
-((-3764 (*1 *1 *1) (-4 *1 (-123))) (-1399 (*1 *1 *1 *1) (-4 *1 (-123))) (-1398 (*1 *1 *1 *1) (-4 *1 (-123))) (-3274 (*1 *1 *1 *1) (-4 *1 (-123))) (-3273 (*1 *1 *1 *1) (-4 *1 (-123))) (-3763 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-855) (-667) (-19 (-112)) (-10 -8 (-15 -3764 ($ $)) (-15 -1399 ($ $ $)) (-15 -1398 ($ $ $)) (-15 -3274 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -3763 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 #1=(-112)) . T) ((-619 (-540)) |has| (-112) (-619 (-540))) ((-289 #2=(-551) #1#) . T) ((-291 #2# #1#) . T) ((-312 #1#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107))) ((-376 #1#) . T) ((-494 #1#) . T) ((-609 #2# #1#) . T) ((-519 #1# #1#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107))) ((-656 #1#) . T) ((-667) . T) ((-19 #1#) . T) ((-855) . T) ((-1107) . T) ((-1222) . T))
-((-2138 (($ (-1 |#2| |#2|) $) 22)) (-3842 (($ $) 16)) (-4407 (((-776) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -3842 (|#1| |#1|))) (-125 |#2|) (-1107)) (T -124))
-NIL
-(-10 -8 (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -3842 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-1391 (($ $ $) 53 (|has| $ (-6 -4444)))) (-1392 (($ $ $) 55 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) (($ $ #2="left" $) 56 (|has| $ (-6 -4444))) (($ $ #3="right" $) 54 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-3559 (($ $) 58)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-1400 (($ $ |#1| $) 61)) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3560 (($ $) 60)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) (($ $ #2#) 59) (($ $ #3#) 57)) (-3448 (((-551) $ $) 45)) (-4083 (((-112) $) 47)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-125 |#1|) (-140) (-1107)) (T -125))
-((-1400 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1107)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -1400 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-119 |#1|) . T) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) 18)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) 22 (|has| $ (-6 -4444)))) (-1391 (($ $ $) 23 (|has| $ (-6 -4444)))) (-1392 (($ $ $) 21 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #2="left" $) NIL (|has| $ (-6 -4444))) (($ $ #3="right" $) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3559 (($ $) 24)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1400 (($ $ |#1| $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3560 (($ $) NIL)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4057 (($ |#1| $) 15)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 11)) (-4249 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 20)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1401 (($ (-646 |#1|)) 16)) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4444) (-15 -1401 ($ (-646 |#1|))) (-15 -4057 ($ |#1| $)))) (-855)) (T -126))
-((-1401 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))) (-4057 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4444) (-15 -1401 ($ (-646 |#1|))) (-15 -4057 ($ |#1| $))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) 30)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) 32 (|has| $ (-6 -4444)))) (-1391 (($ $ $) 36 (|has| $ (-6 -4444)))) (-1392 (($ $ $) 34 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #2="left" $) NIL (|has| $ (-6 -4444))) (($ $ #3="right" $) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3559 (($ $) 23)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1400 (($ $ |#1| $) 16)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3560 (($ $) 22)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) 25)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 20)) (-4014 (($) 11)) (-4249 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1402 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 10 (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1402 ($ |#1|)) (-15 -1402 ($ $ |#1| $)))) (-1107)) (T -127))
-((-1402 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1107)))) (-1402 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1107)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -1402 ($ |#1|)) (-15 -1402 ($ $ |#1| $))))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) 26)) (-4174 (($) NIL T CONST)) (-3413 (($) 35)) (-2952 (($ $ $) NIL) (($) 24 T CONST)) (-3278 (($ $ $) NIL) (($) 25 T CONST)) (-2198 (((-925) $) 33)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) 31)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-1403 (($ (-776)) 8)) (-4175 (($ $ $) 37)) (-4176 (($ $ $) 36)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) 22)) (-2985 (((-112) $ $) 20)) (-3473 (((-112) $ $) 18)) (-3105 (((-112) $ $) 21)) (-3106 (((-112) $ $) 19)))
-(((-128) (-13 (-849) (-495 (-144)) (-10 -8 (-15 -1403 ($ (-776))) (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))) (T -128))
-((-1403 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-4176 (*1 *1 *1 *1) (-5 *1 (-128))) (-4175 (*1 *1 *1 *1) (-5 *1 (-128))) (-4174 (*1 *1) (-5 *1 (-128))))
-(-13 (-849) (-495 (-144)) (-10 -8 (-15 -1403 ($ (-776))) (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-1728 (*1 *1 *1) (-4 *1 (-123))) (-3685 (*1 *1 *1 *1) (-4 *1 (-123))) (-3670 (*1 *1 *1 *1) (-4 *1 (-123))) (-1739 (*1 *1 *1 *1) (-4 *1 (-123))) (-1752 (*1 *1 *1 *1) (-4 *1 (-123))) (-1764 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-855) (-666) (-19 (-112)) (-10 -8 (-15 -1728 ($ $)) (-15 -3685 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -1739 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -1764 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-112)) . T) ((-619 (-541)) |has| (-112) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))) ((-656 #0#) . T) ((-666) . T) ((-19 #0#) . T) ((-855) . T) ((-1106) . T) ((-1223) . T))
+((-3065 (($ (-1 |#2| |#2|) $) 22)) (-3885 (($ $) 16)) (-2394 (((-776) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -3885 (|#1| |#1|))) (-125 |#2|) (-1106)) (T -124))
+NIL
+(-10 -8 (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -3885 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-1410 (($ $ $) 53 (|has| $ (-6 -4444)))) (-1421 (($ $ $) 55 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) (($ $ "left" $) 56 (|has| $ (-6 -4444))) (($ $ "right" $) 54 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-4386 (($ $) 58)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-3235 (($ $ |#1| $) 61)) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-4375 (($ $) 60)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1797 (((-569) $ $) 45)) (-2284 (((-112) $) 47)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-125 |#1|) (-140) (-1106)) (T -125))
+((-3235 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1106)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3235 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-119 |#1|) . T) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) 18)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) 22 (|has| $ (-6 -4444)))) (-1410 (($ $ $) 23 (|has| $ (-6 -4444)))) (-1421 (($ $ $) 21 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "left" $) NIL (|has| $ (-6 -4444))) (($ $ "right" $) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4386 (($ $) 24)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3235 (($ $ |#1| $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-4375 (($ $) NIL)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-2086 (($ |#1| $) 15)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 11)) (-1852 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 20)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3696 (($ (-649 |#1|)) 16)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4444) (-15 -3696 ($ (-649 |#1|))) (-15 -2086 ($ |#1| $)))) (-855)) (T -126))
+((-3696 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))) (-2086 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4444) (-15 -3696 ($ (-649 |#1|))) (-15 -2086 ($ |#1| $))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) 30)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) 32 (|has| $ (-6 -4444)))) (-1410 (($ $ $) 36 (|has| $ (-6 -4444)))) (-1421 (($ $ $) 34 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "left" $) NIL (|has| $ (-6 -4444))) (($ $ "right" $) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4386 (($ $) 23)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3235 (($ $ |#1| $) 16)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-4375 (($ $) 22)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) 25)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 20)) (-2825 (($) 11)) (-1852 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3710 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 10 (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3710 ($ |#1|)) (-15 -3710 ($ $ |#1| $)))) (-1106)) (T -127))
+((-3710 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))) (-3710 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -3710 ($ |#1|)) (-15 -3710 ($ $ |#1| $))))
+((-2383 (((-112) $ $) NIL (|has| (-129) (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-855)))) (-3364 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-855))))) (-3246 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-129) $ (-569) (-129)) 26 (|has| $ (-6 -4444))) (((-129) $ (-1240 (-569)) (-129)) NIL (|has| $ (-6 -4444)))) (-3724 (((-776) $ (-776)) 34)) (-1391 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106))))) (-1678 (($ (-129) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4443))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4443)))) (-3074 (((-129) $ (-569) (-129)) 25 (|has| $ (-6 -4444)))) (-3007 (((-129) $ (-569)) 20)) (-3975 (((-569) (-1 (-112) (-129)) $) NIL) (((-569) (-129) $) NIL (|has| (-129) (-1106))) (((-569) (-129) $ (-569)) NIL (|has| (-129) (-1106)))) (-2796 (((-649 (-129)) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) (-129)) 14)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 27 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| (-129) (-855)))) (-3719 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-855)))) (-2912 (((-649 (-129)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106))))) (-1738 (((-569) $) 30 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-129) (-855)))) (-3065 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| (-129) (-1106)))) (-4274 (($ (-129) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| (-129) (-1106)))) (-3401 (((-129) $) NIL (|has| (-569) (-855)))) (-4316 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1713 (($ $ (-129)) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-129)))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-297 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-649 (-129)) (-649 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106))))) (-1784 (((-649 (-129)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 12)) (-1852 (((-129) $ (-569) (-129)) NIL) (((-129) $ (-569)) 23) (($ $ (-1240 (-569))) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4443))) (((-776) (-129) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-129) (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-129) (-619 (-541))))) (-3709 (($ (-649 (-129))) 47)) (-3632 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-649 $)) NIL)) (-2388 (((-964 (-129)) $) 35) (((-1165) $) 44) (((-867) $) NIL (|has| (-129) (-618 (-867))))) (-3737 (((-776) $) 18)) (-3748 (($ (-776)) 8)) (-2040 (((-112) $ $) NIL (|has| (-129) (-1106)))) (-3996 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2853 (((-112) $ $) 32 (|has| (-129) (-1106)))) (-2893 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2394 (((-776) $) 15 (|has| $ (-6 -4443)))))
+(((-128) (-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1165)) (-10 -8 (-15 -3748 ($ (-776))) (-15 -3737 ((-776) $)) (-15 -3724 ((-776) $ (-776))) (-6 -4443)))) (T -128))
+((-3748 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-3724 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1165)) (-10 -8 (-15 -3748 ($ (-776))) (-15 -3737 ((-776) $)) (-15 -3724 ((-776) $ (-776))) (-6 -4443)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) 26)) (-3863 (($) NIL T CONST)) (-3295 (($) 35)) (-2095 (($ $ $) NIL) (($) 24 T CONST)) (-2406 (($ $ $) NIL) (($) 25 T CONST)) (-3348 (((-927) $) 33)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) 31)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-3617 (($ (-776)) 8)) (-1369 (($ $ $) 37)) (-1357 (($ $ $) 36)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) 22)) (-2882 (((-112) $ $) 20)) (-2853 (((-112) $ $) 18)) (-2893 (((-112) $ $) 21)) (-2872 (((-112) $ $) 19)))
+(((-129) (-13 (-849) (-495 (-144)) (-10 -8 (-15 -3617 ($ (-776))) (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))) (T -129))
+((-3617 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1357 (*1 *1 *1 *1) (-5 *1 (-129))) (-1369 (*1 *1 *1 *1) (-5 *1 (-129))) (-3863 (*1 *1) (-5 *1 (-129))))
+(-13 (-849) (-495 (-144)) (-10 -8 (-15 -3617 ($ (-776))) (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (< |#1| 256))
-((-2986 (((-112) $ $) NIL (|has| (-128) (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-855)))) (-1908 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-128) (-855))))) (-3328 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-128) $ (-551) (-128)) 26 (|has| $ (-6 -4444))) (((-128) $ (-1239 (-551)) (-128)) NIL (|has| $ (-6 -4444)))) (-1404 (((-776) $ (-776)) 34)) (-4160 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107))))) (-3848 (($ (-128) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4443))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4443)))) (-1694 (((-128) $ (-551) (-128)) 25 (|has| $ (-6 -4444)))) (-3535 (((-128) $ (-551)) 20)) (-3861 (((-551) (-1 (-112) (-128)) $) NIL) (((-551) (-128) $) NIL (|has| (-128) (-1107))) (((-551) (-128) $ (-551)) NIL (|has| (-128) (-1107)))) (-2134 (((-646 (-128)) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) (-128)) 14)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 27 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| (-128) (-855)))) (-3959 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-855)))) (-3026 (((-646 (-128)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107))))) (-2393 (((-551) $) 30 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-128) (-855)))) (-2138 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| (-128) (-1107)))) (-2467 (($ (-128) $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| (-128) (-1107)))) (-4250 (((-128) $) NIL (|has| (-551) (-855)))) (-1444 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2391 (($ $ (-128)) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-128)))) NIL (-12 (|has| (-128) (-312 (-128))) (|has| (-128) (-1107)))) (($ $ (-296 (-128))) NIL (-12 (|has| (-128) (-312 (-128))) (|has| (-128) (-1107)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-312 (-128))) (|has| (-128) (-1107)))) (($ $ (-646 (-128)) (-646 (-128))) NIL (-12 (|has| (-128) (-312 (-128))) (|has| (-128) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107))))) (-2397 (((-646 (-128)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 12)) (-4249 (((-128) $ (-551) (-128)) NIL) (((-128) $ (-551)) 23) (($ $ (-1239 (-551))) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4443))) (((-776) (-128) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-128) (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-128) (-619 (-540))))) (-3971 (($ (-646 (-128))) 47)) (-4251 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 48) (($ (-646 $)) NIL)) (-4396 (((-964 (-128)) $) 35) (((-1165) $) 44) (((-868) $) NIL (|has| (-128) (-618 (-868))))) (-1405 (((-776) $) 18)) (-1406 (($ (-776)) 8)) (-3680 (((-112) $ $) NIL (|has| (-128) (-1107)))) (-2137 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| (-128) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-128) (-855)))) (-3473 (((-112) $ $) 32 (|has| (-128) (-1107)))) (-3105 (((-112) $ $) NIL (|has| (-128) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-128) (-855)))) (-4407 (((-776) $) 15 (|has| $ (-6 -4443)))))
-(((-129) (-13 (-19 (-128)) (-618 (-964 (-128))) (-618 (-1165)) (-10 -8 (-15 -1406 ($ (-776))) (-15 -1405 ((-776) $)) (-15 -1404 ((-776) $ (-776))) (-6 -4443)))) (T -129))
-((-1406 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1404 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
-(-13 (-19 (-128)) (-618 (-964 (-128))) (-618 (-1165)) (-10 -8 (-15 -1406 ($ (-776))) (-15 -1405 ((-776) $)) (-15 -1404 ((-776) $ (-776))) (-6 -4443)))
-((-2986 (((-112) $ $) NIL)) (-1407 (($) 6 T CONST)) (-1409 (($) 7 T CONST)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 14)) (-1408 (($) 8 T CONST)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 10)))
-(((-130) (-13 (-1107) (-10 -8 (-15 -1409 ($) -4402) (-15 -1408 ($) -4402) (-15 -1407 ($) -4402)))) (T -130))
-((-1409 (*1 *1) (-5 *1 (-130))) (-1408 (*1 *1) (-5 *1 (-130))) (-1407 (*1 *1) (-5 *1 (-130))))
-(-13 (-1107) (-10 -8 (-15 -1409 ($) -4402) (-15 -1408 ($) -4402) (-15 -1407 ($) -4402)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16)))
+((-2383 (((-112) $ $) NIL)) (-3761 (($) 6 T CONST)) (-3786 (($) 7 T CONST)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 14)) (-3772 (($) 8 T CONST)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 10)))
+(((-130) (-13 (-1106) (-10 -8 (-15 -3786 ($) -3600) (-15 -3772 ($) -3600) (-15 -3761 ($) -3600)))) (T -130))
+((-3786 (*1 *1) (-5 *1 (-130))) (-3772 (*1 *1) (-5 *1 (-130))) (-3761 (*1 *1) (-5 *1 (-130))))
+(-13 (-1106) (-10 -8 (-15 -3786 ($) -3600) (-15 -3772 ($) -3600) (-15 -3761 ($) -3600)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-131) (-140)) (T -131))
-((-1410 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -1410 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-1411 (((-1278) $ (-776)) 14)) (-3861 (((-776) $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-3798 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -3798 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-3811 (((-1278) $ (-776)) 14)) (-3975 (((-776) $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-132) (-140)) (T -132))
-((-3861 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) (-1411 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
-(-13 (-1107) (-10 -8 (-15 -3861 ((-776) $)) (-15 -1411 ((-1278) $ (-776)))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-646 (-1141)) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-133) (-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $))))) (T -133))
-((-3671 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-133)))))
-(-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $))))
-((-2986 (((-112) $ $) 49)) (-3626 (((-112) $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-776) "failed") $) 58)) (-3594 (((-776) $) 56)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) 37)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1413 (((-112)) 59)) (-1412 (((-112) (-112)) 61)) (-2946 (((-112) $) 30)) (-1414 (((-112) $) 55)) (-4396 (((-868) $) 28) (($ (-776)) 20)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 18 T CONST)) (-3085 (($) 19 T CONST)) (-1415 (($ (-776)) 21)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 40)) (-3473 (((-112) $ $) 32)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 35)) (-4287 (((-3 $ "failed") $ $) 42)) (-4289 (($ $ $) 38)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL) (($ $ $) 54)) (* (($ (-776) $) 48) (($ (-925) $) NIL) (($ $ $) 45)))
-(((-134) (-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4445 "*")) (-15 -4287 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1415 ($ (-776))) (-15 -2946 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112))) (-15 -1412 ((-112) (-112)))))) (T -134))
-((-4287 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1415 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1413 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4445 "*")) (-15 -4287 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1415 ($ (-776))) (-15 -2946 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112))) (-15 -1412 ((-112) (-112)))))
-((-2986 (((-112) $ $) NIL)) (-1416 (($ (-646 |#3|)) 64)) (-3856 (($ $) 126) (($ $ (-551) (-551)) 125)) (-4174 (($) 20)) (-3595 (((-3 |#3| "failed") $) 86)) (-3594 ((|#3| $) NIL)) (-1420 (($ $ (-646 (-551))) 127)) (-1417 (((-646 |#3|) $) 59)) (-3531 (((-776) $) 69)) (-4394 (($ $ $) 120)) (-1418 (($) 68)) (-3681 (((-1165) $) NIL)) (-1419 (($) 19)) (-3682 (((-1126) $) NIL)) (-4249 ((|#3| $) 71) ((|#3| $ (-551)) 72) ((|#3| $ (-551) (-551)) 73) ((|#3| $ (-551) (-551) (-551)) 74) ((|#3| $ (-551) (-551) (-551) (-551)) 75) ((|#3| $ (-646 (-551))) 76)) (-4398 (((-776) $) 70)) (-2171 (($ $ (-551) $ (-551)) 121) (($ $ (-551) (-551)) 123)) (-4396 (((-868) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1148 |#2| |#3|)) 105) (($ (-646 |#3|)) 77) (($ (-646 $)) 83)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 96 T CONST)) (-3085 (($) 97 T CONST)) (-3473 (((-112) $ $) 107)) (-4287 (($ $) 113) (($ $ $) 111)) (-4289 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-551)) 116) (($ (-551) $) 115) (($ $ $) 122)))
-(((-135 |#1| |#2| |#3|) (-13 (-470 |#3| (-776)) (-475 (-551) (-776)) (-10 -8 (-15 -4396 ($ (-240 |#2| |#3|))) (-15 -4396 ($ (-1148 |#2| |#3|))) (-15 -4396 ($ (-646 |#3|))) (-15 -4396 ($ (-646 $))) (-15 -3531 ((-776) $)) (-15 -4249 (|#3| $)) (-15 -4249 (|#3| $ (-551))) (-15 -4249 (|#3| $ (-551) (-551))) (-15 -4249 (|#3| $ (-551) (-551) (-551))) (-15 -4249 (|#3| $ (-551) (-551) (-551) (-551))) (-15 -4249 (|#3| $ (-646 (-551)))) (-15 -4394 ($ $ $)) (-15 * ($ $ $)) (-15 -2171 ($ $ (-551) $ (-551))) (-15 -2171 ($ $ (-551) (-551))) (-15 -3856 ($ $)) (-15 -3856 ($ $ (-551) (-551))) (-15 -1420 ($ $ (-646 (-551)))) (-15 -1419 ($)) (-15 -1418 ($)) (-15 -1417 ((-646 |#3|) $)) (-15 -1416 ($ (-646 |#3|))) (-15 -4174 ($)))) (-551) (-776) (-173)) (T -135))
-((-4394 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 (-776)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 *2) (-4 *5 (-173)))) (-4249 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-551)) (-14 *4 (-776)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-4249 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-4249 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-4249 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-646 (-551))) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-551)) (-14 *5 (-776)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2171 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-2171 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3856 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-1420 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 (-776)) (-4 *5 (-173)))) (-1419 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))) (-1418 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-646 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 (-776)) (-4 *5 (-173)))) (-1416 (*1 *1 *2) (-12 (-5 *2 (-646 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 (-776)))) (-4174 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))))
-(-13 (-470 |#3| (-776)) (-475 (-551) (-776)) (-10 -8 (-15 -4396 ($ (-240 |#2| |#3|))) (-15 -4396 ($ (-1148 |#2| |#3|))) (-15 -4396 ($ (-646 |#3|))) (-15 -4396 ($ (-646 $))) (-15 -3531 ((-776) $)) (-15 -4249 (|#3| $)) (-15 -4249 (|#3| $ (-551))) (-15 -4249 (|#3| $ (-551) (-551))) (-15 -4249 (|#3| $ (-551) (-551) (-551))) (-15 -4249 (|#3| $ (-551) (-551) (-551) (-551))) (-15 -4249 (|#3| $ (-646 (-551)))) (-15 -4394 ($ $ $)) (-15 * ($ $ $)) (-15 -2171 ($ $ (-551) $ (-551))) (-15 -2171 ($ $ (-551) (-551))) (-15 -3856 ($ $)) (-15 -3856 ($ $ (-551) (-551))) (-15 -1420 ($ $ (-646 (-551)))) (-15 -1419 ($)) (-15 -1418 ($)) (-15 -1417 ((-646 |#3|) $)) (-15 -1416 ($ (-646 |#3|))) (-15 -4174 ($))))
-((-2594 (((-135 |#1| |#2| |#4|) (-646 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4408 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2594 ((-135 |#1| |#2| |#4|) (-646 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4408 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-551) (-776) (-173) (-173)) (T -136))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-551)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-551)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2594 ((-135 |#1| |#2| |#4|) (-646 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4408 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-2986 (((-112) $ $) NIL)) (-3969 (((-1141) $) 11)) (-3970 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-137) (-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))) (T -137))
-((-3970 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))))
-(-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-1516 (((-188) $) 10)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-646 (-1141)) $) 13)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-138) (-13 (-1089) (-10 -8 (-15 -1516 ((-188) $)) (-15 -3671 ((-646 (-1141)) $))))) (T -138))
-((-1516 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-138)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-138)))))
-(-13 (-1089) (-10 -8 (-15 -1516 ((-188) $)) (-15 -3671 ((-646 (-1141)) $))))
-((-2986 (((-112) $ $) NIL)) (-1514 (((-646 (-870)) $) NIL)) (-3991 (((-511) $) NIL)) (-3681 (((-1165) $) NIL)) (-1516 (((-188) $) NIL)) (-3053 (((-112) $ (-511)) NIL)) (-3682 (((-1126) $) NIL)) (-1515 (((-646 (-112)) $) NIL)) (-4396 (((-868) $) NIL) (((-184) $) 6)) (-3680 (((-112) $ $) NIL)) (-2939 (((-55) $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-139) (-13 (-187) (-618 (-184)))) (T -139))
-NIL
-(-13 (-187) (-618 (-184)))
-((-1422 (((-646 (-185 (-139))) $) 13)) (-1421 (((-646 (-185 (-139))) $) 14)) (-1423 (((-646 (-843)) $) 10)) (-1589 (((-139) $) 7)) (-4396 (((-868) $) 16)))
-(((-140) (-13 (-618 (-868)) (-10 -8 (-15 -1589 ((-139) $)) (-15 -1423 ((-646 (-843)) $)) (-15 -1422 ((-646 (-185 (-139))) $)) (-15 -1421 ((-646 (-185 (-139))) $))))) (T -140))
-((-1589 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-646 (-843))) (-5 *1 (-140)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-646 (-185 (-139)))) (-5 *1 (-140)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-646 (-185 (-139)))) (-5 *1 (-140)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -1589 ((-139) $)) (-15 -1423 ((-646 (-843)) $)) (-15 -1422 ((-646 (-185 (-139))) $)) (-15 -1421 ((-646 (-185 (-139))) $))))
-((-2986 (((-112) $ $) NIL)) (-3869 (($) 17 T CONST)) (-1987 (($) NIL (|has| (-144) (-372)))) (-3672 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3674 (($ $ $) NIL)) (-3673 (((-112) $ $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| (-144) (-372)))) (-3677 (($) NIL) (($ (-646 (-144))) NIL)) (-1688 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-3847 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (($ (-144) $) 61 (|has| $ (-6 -4443)))) (-3848 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-4292 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-3413 (($) NIL (|has| (-144) (-372)))) (-2134 (((-646 (-144)) $) 70 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2952 (((-144) $) NIL (|has| (-144) (-855)))) (-3026 (((-646 (-144)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-3278 (((-144) $) NIL (|has| (-144) (-855)))) (-2138 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-144) (-144)) $) 65)) (-3871 (($) 18 T CONST)) (-2198 (((-925) $) NIL (|has| (-144) (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3676 (($ $ $) 30)) (-1372 (((-144) $) 62)) (-4057 (($ (-144) $) 60)) (-2581 (($ (-925)) NIL (|has| (-144) (-372)))) (-1426 (($) 16 T CONST)) (-3682 (((-1126) $) NIL)) (-1444 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1373 (((-144) $) 63)) (-2136 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-144)) (-646 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-296 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-646 (-296 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 58)) (-1427 (($) 15 T CONST)) (-3675 (($ $ $) 32) (($ $ (-144)) NIL)) (-1573 (($ (-646 (-144))) NIL) (($) NIL)) (-2135 (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107)))) (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-1165) $) 37) (((-540) $) NIL (|has| (-144) (-619 (-540)))) (((-646 (-144)) $) 35)) (-3971 (($ (-646 (-144))) NIL)) (-1988 (($ $) 33 (|has| (-144) (-372)))) (-4396 (((-868) $) 55)) (-1428 (($ (-1165)) 14) (($ (-646 (-144))) 52)) (-1989 (((-776) $) NIL)) (-3678 (($) 59) (($ (-646 (-144))) NIL)) (-3680 (((-112) $ $) NIL)) (-1374 (($ (-646 (-144))) NIL)) (-2137 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1424 (($) 21 T CONST)) (-1425 (($) 20 T CONST)) (-3473 (((-112) $ $) 24)) (-4407 (((-776) $) 57 (|has| $ (-6 -4443)))))
-(((-141) (-13 (-1107) (-619 (-1165)) (-431 (-144)) (-619 (-646 (-144))) (-10 -8 (-15 -1428 ($ (-1165))) (-15 -1428 ($ (-646 (-144)))) (-15 -1427 ($) -4402) (-15 -1426 ($) -4402) (-15 -3869 ($) -4402) (-15 -3871 ($) -4402) (-15 -1425 ($) -4402) (-15 -1424 ($) -4402)))) (T -141))
-((-1428 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))) (-1428 (*1 *1 *2) (-12 (-5 *2 (-646 (-144))) (-5 *1 (-141)))) (-1427 (*1 *1) (-5 *1 (-141))) (-1426 (*1 *1) (-5 *1 (-141))) (-3869 (*1 *1) (-5 *1 (-141))) (-3871 (*1 *1) (-5 *1 (-141))) (-1425 (*1 *1) (-5 *1 (-141))) (-1424 (*1 *1) (-5 *1 (-141))))
-(-13 (-1107) (-619 (-1165)) (-431 (-144)) (-619 (-646 (-144))) (-10 -8 (-15 -1428 ($ (-1165))) (-15 -1428 ($ (-646 (-144)))) (-15 -1427 ($) -4402) (-15 -1426 ($) -4402) (-15 -3869 ($) -4402) (-15 -3871 ($) -4402) (-15 -1425 ($) -4402) (-15 -1424 ($) -4402)))
-((-4191 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4189 ((|#1| |#3|) 9)) (-4190 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -4190 (|#3| |#3|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-997 |#1|) (-376 |#2|)) (T -142))
-((-4191 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-997 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-376 *5)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-997 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-376 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-376 *4)))))
-(-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -4190 (|#3| |#3|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1459 (($ $ $) 8)) (-1457 (($ $) 7)) (-3523 (($ $ $) 6)))
+((-3975 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) (-3811 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
+(-13 (-1106) (-10 -8 (-15 -3975 ((-776) $)) (-15 -3811 ((-1278) $ (-776)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-649 (-1141)) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-133) (-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $))))) (T -133))
+((-3473 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-133)))))
+(-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $))))
+((-2383 (((-112) $ $) 49)) (-2789 (((-112) $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-776) "failed") $) 58)) (-3043 (((-776) $) 56)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) 37)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3834 (((-112)) 59)) (-3823 (((-112) (-112)) 61)) (-3520 (((-112) $) 30)) (-3847 (((-112) $) 55)) (-2388 (((-867) $) 28) (($ (-776)) 20)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 18 T CONST)) (-1796 (($) 19 T CONST)) (-3862 (($ (-776)) 21)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) 40)) (-2853 (((-112) $ $) 32)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 35)) (-2946 (((-3 $ "failed") $ $) 42)) (-2935 (($ $ $) 38)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ $) 54)) (* (($ (-776) $) 48) (($ (-927) $) NIL) (($ $ $) 45)))
+(((-134) (-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4445 "*")) (-15 -2946 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3862 ($ (-776))) (-15 -3520 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -3834 ((-112))) (-15 -3823 ((-112) (-112)))))) (T -134))
+((-2946 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3834 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4445 "*")) (-15 -2946 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3862 ($ (-776))) (-15 -3520 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -3834 ((-112))) (-15 -3823 ((-112) (-112)))))
+((-3852 (((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-1324 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3852 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1324 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-569) (-776) (-173) (-173)) (T -135))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3852 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1324 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-2383 (((-112) $ $) NIL)) (-3874 (($ (-649 |#3|)) 64)) (-4290 (($ $) 126) (($ $ (-569) (-569)) 125)) (-3863 (($) 20)) (-4359 (((-3 |#3| "failed") $) 86)) (-3043 ((|#3| $) NIL)) (-3910 (($ $ (-649 (-569))) 127)) (-3836 (((-649 |#3|) $) 59)) (-3904 (((-776) $) 69)) (-2061 (($ $ $) 120)) (-3886 (($) 68)) (-2050 (((-1165) $) NIL)) (-3898 (($) 19)) (-3461 (((-1126) $) NIL)) (-1852 ((|#3| $) 71) ((|#3| $ (-569)) 72) ((|#3| $ (-569) (-569)) 73) ((|#3| $ (-569) (-569) (-569)) 74) ((|#3| $ (-569) (-569) (-569) (-569)) 75) ((|#3| $ (-649 (-569))) 76)) (-2091 (((-776) $) 70)) (-3031 (($ $ (-569) $ (-569)) 121) (($ $ (-569) (-569)) 123)) (-2388 (((-867) $) 94) (($ |#3|) 95) (($ (-241 |#2| |#3|)) 102) (($ (-1148 |#2| |#3|)) 105) (($ (-649 |#3|)) 77) (($ (-649 $)) 83)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 96 T CONST)) (-1796 (($) 97 T CONST)) (-2853 (((-112) $ $) 107)) (-2946 (($ $) 113) (($ $ $) 111)) (-2935 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-569)) 116) (($ (-569) $) 115) (($ $ $) 122)))
+(((-136 |#1| |#2| |#3|) (-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -2388 ($ (-241 |#2| |#3|))) (-15 -2388 ($ (-1148 |#2| |#3|))) (-15 -2388 ($ (-649 |#3|))) (-15 -2388 ($ (-649 $))) (-15 -3904 ((-776) $)) (-15 -1852 (|#3| $)) (-15 -1852 (|#3| $ (-569))) (-15 -1852 (|#3| $ (-569) (-569))) (-15 -1852 (|#3| $ (-569) (-569) (-569))) (-15 -1852 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1852 (|#3| $ (-649 (-569)))) (-15 -2061 ($ $ $)) (-15 * ($ $ $)) (-15 -3031 ($ $ (-569) $ (-569))) (-15 -3031 ($ $ (-569) (-569))) (-15 -4290 ($ $)) (-15 -4290 ($ $ (-569) (-569))) (-15 -3910 ($ $ (-649 (-569)))) (-15 -3898 ($)) (-15 -3886 ($)) (-15 -3836 ((-649 |#3|) $)) (-15 -3874 ($ (-649 |#3|))) (-15 -3863 ($)))) (-569) (-776) (-173)) (T -136))
+((-2061 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 *2) (-4 *5 (-173)))) (-1852 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569)) (-14 *4 (-776)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1852 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1852 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1852 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-569)) (-14 *5 (-776)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3031 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3031 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-4290 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-4290 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3898 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3886 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-3863 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))))
+(-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -2388 ($ (-241 |#2| |#3|))) (-15 -2388 ($ (-1148 |#2| |#3|))) (-15 -2388 ($ (-649 |#3|))) (-15 -2388 ($ (-649 $))) (-15 -3904 ((-776) $)) (-15 -1852 (|#3| $)) (-15 -1852 (|#3| $ (-569))) (-15 -1852 (|#3| $ (-569) (-569))) (-15 -1852 (|#3| $ (-569) (-569) (-569))) (-15 -1852 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1852 (|#3| $ (-649 (-569)))) (-15 -2061 ($ $ $)) (-15 * ($ $ $)) (-15 -3031 ($ $ (-569) $ (-569))) (-15 -3031 ($ $ (-569) (-569))) (-15 -4290 ($ $)) (-15 -4290 ($ $ (-569) (-569))) (-15 -3910 ($ $ (-649 (-569)))) (-15 -3898 ($)) (-15 -3886 ($)) (-15 -3836 ((-649 |#3|) $)) (-15 -3874 ($ (-649 |#3|))) (-15 -3863 ($))))
+((-2383 (((-112) $ $) NIL)) (-2076 (((-1141) $) 11)) (-2065 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-137) (-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))) (T -137))
+((-2065 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))))
+(-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3806 (((-187) $) 10)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-649 (-1141)) $) 13)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-138) (-13 (-1089) (-10 -8 (-15 -3806 ((-187) $)) (-15 -3473 ((-649 (-1141)) $))))) (T -138))
+((-3806 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-138)))))
+(-13 (-1089) (-10 -8 (-15 -3806 ((-187) $)) (-15 -3473 ((-649 (-1141)) $))))
+((-2383 (((-112) $ $) NIL)) (-1724 (((-649 (-870)) $) NIL)) (-3458 (((-511) $) NIL)) (-2050 (((-1165) $) NIL)) (-3806 (((-187) $) NIL)) (-2016 (((-112) $ (-511)) NIL)) (-3461 (((-1126) $) NIL)) (-3763 (((-649 (-112)) $) NIL)) (-2388 (((-867) $) NIL) (((-188) $) 6)) (-2040 (((-112) $ $) NIL)) (-3450 (((-55) $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-139) (-13 (-186) (-618 (-188)))) (T -139))
+NIL
+(-13 (-186) (-618 (-188)))
+((-3923 (((-649 (-184 (-139))) $) 13)) (-2174 (((-649 (-184 (-139))) $) 14)) (-3934 (((-649 (-843)) $) 10)) (-1534 (((-139) $) 7)) (-2388 (((-867) $) 16)))
+(((-140) (-13 (-618 (-867)) (-10 -8 (-15 -1534 ((-139) $)) (-15 -3934 ((-649 (-843)) $)) (-15 -3923 ((-649 (-184 (-139))) $)) (-15 -2174 ((-649 (-184 (-139))) $))))) (T -140))
+((-1534 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1534 ((-139) $)) (-15 -3934 ((-649 (-843)) $)) (-15 -3923 ((-649 (-184 (-139))) $)) (-15 -2174 ((-649 (-184 (-139))) $))))
+((-2383 (((-112) $ $) NIL)) (-4338 (($) 17 T CONST)) (-2878 (($) NIL (|has| (-144) (-372)))) (-3893 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-1996 (($ $ $) NIL)) (-1987 (((-112) $ $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| (-144) (-372)))) (-4250 (($) NIL) (($ (-649 (-144))) NIL)) (-1816 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-4218 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (($ (-144) $) 61 (|has| $ (-6 -4443)))) (-1678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-3485 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-3295 (($) NIL (|has| (-144) (-372)))) (-2796 (((-649 (-144)) $) 70 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-2095 (((-144) $) NIL (|has| (-144) (-855)))) (-2912 (((-649 (-144)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-2406 (((-144) $) NIL (|has| (-144) (-855)))) (-3065 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-144) (-144)) $) 65)) (-4357 (($) 18 T CONST)) (-3348 (((-927) $) NIL (|has| (-144) (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2018 (($ $ $) 30)) (-3481 (((-144) $) 62)) (-2086 (($ (-144) $) 60)) (-2114 (($ (-927)) NIL (|has| (-144) (-372)))) (-3963 (($) 16 T CONST)) (-3461 (((-1126) $) NIL)) (-4316 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3493 (((-144) $) 63)) (-3983 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 58)) (-3980 (($) 15 T CONST)) (-2006 (($ $ $) 32) (($ $ (-144)) NIL)) (-3054 (($ (-649 (-144))) NIL) (($) NIL)) (-3469 (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106)))) (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-1165) $) 37) (((-541) $) NIL (|has| (-144) (-619 (-541)))) (((-649 (-144)) $) 35)) (-3709 (($ (-649 (-144))) NIL)) (-2889 (($ $) 33 (|has| (-144) (-372)))) (-2388 (((-867) $) 55)) (-3993 (($ (-1165)) 14) (($ (-649 (-144))) 52)) (-2900 (((-776) $) NIL)) (-3776 (($) 59) (($ (-649 (-144))) NIL)) (-2040 (((-112) $ $) NIL)) (-3551 (($ (-649 (-144))) NIL)) (-3996 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3945 (($) 21 T CONST)) (-3956 (($) 20 T CONST)) (-2853 (((-112) $ $) 24)) (-2394 (((-776) $) 57 (|has| $ (-6 -4443)))))
+(((-141) (-13 (-1106) (-619 (-1165)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -3993 ($ (-1165))) (-15 -3993 ($ (-649 (-144)))) (-15 -3980 ($) -3600) (-15 -3963 ($) -3600) (-15 -4338 ($) -3600) (-15 -4357 ($) -3600) (-15 -3956 ($) -3600) (-15 -3945 ($) -3600)))) (T -141))
+((-3993 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))) (-3993 (*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141)))) (-3980 (*1 *1) (-5 *1 (-141))) (-3963 (*1 *1) (-5 *1 (-141))) (-4338 (*1 *1) (-5 *1 (-141))) (-4357 (*1 *1) (-5 *1 (-141))) (-3956 (*1 *1) (-5 *1 (-141))) (-3945 (*1 *1) (-5 *1 (-141))))
+(-13 (-1106) (-619 (-1165)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -3993 ($ (-1165))) (-15 -3993 ($ (-649 (-144)))) (-15 -3980 ($) -3600) (-15 -3963 ($) -3600) (-15 -4338 ($) -3600) (-15 -4357 ($) -3600) (-15 -3956 ($) -3600) (-15 -3945 ($) -3600)))
+((-3994 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3969 ((|#1| |#3|) 9)) (-3981 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3969 (|#1| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-998 |#1|) (-377 |#2|)) (T -142))
+((-3994 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-377 *5)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-377 *4)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-377 *4)))))
+(-10 -7 (-15 -3969 (|#1| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1335 (($ $ $) 8)) (-1315 (($ $) 7)) (-3038 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-1459 (*1 *1 *1 *1) (-4 *1 (-143))) (-1457 (*1 *1 *1) (-4 *1 (-143))) (-3523 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -3523 ($ $ $)) (-15 -1457 ($ $)) (-15 -1459 ($ $ $))))
-((-2986 (((-112) $ $) NIL)) (-1431 (((-112) $) 39)) (-3869 (($ $) 55)) (-1625 (($) 26 T CONST)) (-3558 (((-776)) 13)) (-3413 (($) 25)) (-2997 (($) 27 T CONST)) (-1437 (((-776) $) 21)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-1430 (((-112) $) 41)) (-3871 (($ $) 56)) (-2198 (((-925) $) 23)) (-3681 (((-1165) $) 49)) (-2581 (($ (-925)) 20)) (-1433 (((-112) $) 37)) (-3682 (((-1126) $) NIL)) (-1435 (($) 28 T CONST)) (-1434 (((-112) $) 35)) (-4396 (((-868) $) 30)) (-1436 (($ (-776)) 19) (($ (-1165)) 54)) (-3680 (((-112) $ $) NIL)) (-1429 (((-112) $) 45)) (-1432 (((-112) $) 43)) (-2984 (((-112) $ $) 11)) (-2985 (((-112) $ $) 9)) (-3473 (((-112) $ $) 7)) (-3105 (((-112) $ $) 10)) (-3106 (((-112) $ $) 8)))
-(((-144) (-13 (-849) (-10 -8 (-15 -1437 ((-776) $)) (-15 -1436 ($ (-776))) (-15 -1436 ($ (-1165))) (-15 -1625 ($) -4402) (-15 -2997 ($) -4402) (-15 -1435 ($) -4402) (-15 -3869 ($ $)) (-15 -3871 ($ $)) (-15 -1434 ((-112) $)) (-15 -1433 ((-112) $)) (-15 -1432 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $))))) (T -144))
-((-1437 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144)))) (-1625 (*1 *1) (-5 *1 (-144))) (-2997 (*1 *1) (-5 *1 (-144))) (-1435 (*1 *1) (-5 *1 (-144))) (-3869 (*1 *1 *1) (-5 *1 (-144))) (-3871 (*1 *1 *1) (-5 *1 (-144))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-849) (-10 -8 (-15 -1437 ((-776) $)) (-15 -1436 ($ (-776))) (-15 -1436 ($ (-1165))) (-15 -1625 ($) -4402) (-15 -2997 ($) -4402) (-15 -1435 ($) -4402) (-15 -3869 ($ $)) (-15 -3871 ($ $)) (-15 -1434 ((-112) $)) (-15 -1433 ((-112) $)) (-15 -1432 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3123 (((-3 $ "failed") $) 39)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-1335 (*1 *1 *1 *1) (-4 *1 (-143))) (-1315 (*1 *1 *1) (-4 *1 (-143))) (-3038 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -3038 ($ $ $)) (-15 -1315 ($ $)) (-15 -1335 ($ $ $))))
+((-2383 (((-112) $ $) NIL)) (-4027 (((-112) $) 39)) (-4338 (($ $) 55)) (-3536 (($) 26 T CONST)) (-3363 (((-776)) 13)) (-3295 (($) 25)) (-2693 (($) 27 T CONST)) (-4073 (((-776) $) 21)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-4015 (((-112) $) 41)) (-4357 (($ $) 56)) (-3348 (((-927) $) 23)) (-2050 (((-1165) $) 49)) (-2114 (($ (-927)) 20)) (-4049 (((-112) $) 37)) (-3461 (((-1126) $) NIL)) (-4061 (($) 28 T CONST)) (-3968 (((-112) $) 35)) (-2388 (((-867) $) 30)) (-2434 (($ (-776)) 19) (($ (-1165)) 54)) (-2040 (((-112) $ $) NIL)) (-4004 (((-112) $) 45)) (-4038 (((-112) $) 43)) (-2904 (((-112) $ $) 11)) (-2882 (((-112) $ $) 9)) (-2853 (((-112) $ $) 7)) (-2893 (((-112) $ $) 10)) (-2872 (((-112) $ $) 8)))
+(((-144) (-13 (-849) (-10 -8 (-15 -4073 ((-776) $)) (-15 -2434 ($ (-776))) (-15 -2434 ($ (-1165))) (-15 -3536 ($) -3600) (-15 -2693 ($) -3600) (-15 -4061 ($) -3600) (-15 -4338 ($ $)) (-15 -4357 ($ $)) (-15 -3968 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -4027 ((-112) $)) (-15 -4015 ((-112) $)) (-15 -4004 ((-112) $))))) (T -144))
+((-4073 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144)))) (-3536 (*1 *1) (-5 *1 (-144))) (-2693 (*1 *1) (-5 *1 (-144))) (-4061 (*1 *1) (-5 *1 (-144))) (-4338 (*1 *1 *1) (-5 *1 (-144))) (-4357 (*1 *1 *1) (-5 *1 (-144))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-849) (-10 -8 (-15 -4073 ((-776) $)) (-15 -2434 ($ (-776))) (-15 -2434 ($ (-1165))) (-15 -3536 ($) -3600) (-15 -2693 ($) -3600) (-15 -4061 ($) -3600) (-15 -4338 ($ $)) (-15 -4357 ($ $)) (-15 -3968 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -4027 ((-112) $)) (-15 -4015 ((-112) $)) (-15 -4004 ((-112) $))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-1488 (((-3 $ "failed") $) 39)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-145) (-140)) (T -145))
-((-3123 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1055) (-10 -8 (-15 -3123 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2788 ((|#1| (-694 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -2788 (|#1| (-694 |#1|) |#1|))) (-173)) (T -146))
-((-2788 (*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -2788 (|#1| (-694 |#1|) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-1488 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1055) (-10 -8 (-15 -1488 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3176 ((|#1| (-694 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -3176 (|#1| (-694 |#1|) |#1|))) (-173)) (T -146))
+((-3176 (*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -3176 (|#1| (-694 |#1|) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-147) (-140)) (T -147))
NIL
(-13 (-1055))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-1440 (((-2 (|:| -2582 (-776)) (|:| -4404 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776)) 76)) (-1439 (((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|) 56)) (-1438 (((-2 (|:| -4404 (-412 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1441 ((|#1| |#3| |#3|) 44)) (-4217 ((|#3| |#3| (-412 |#2|) (-412 |#2|)) 20)) (-1442 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|) 53)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1438 ((-2 (|:| -4404 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1439 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -1440 ((-2 (|:| -2582 (-776)) (|:| -4404 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -1441 (|#1| |#3| |#3|)) (-15 -4217 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1442 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) (-1227) (-1248 |#1|) (-1248 (-412 |#2|))) (T -148))
-((-1442 (*1 *2 *3 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1248 (-412 *5))))) (-4217 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1248 *3)))) (-1441 (*1 *2 *3 *3) (-12 (-4 *4 (-1248 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1248 (-412 *4))))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1248 *5)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1248 *3)))) (-1439 (*1 *2 *3) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1248 (-412 *5))))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| -4404 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1248 (-412 *5))))))
-(-10 -7 (-15 -1438 ((-2 (|:| -4404 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1439 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -1440 ((-2 (|:| -2582 (-776)) (|:| -4404 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -1441 (|#1| |#3| |#3|)) (-15 -4217 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1442 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|)))
-((-3125 (((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|)) 35)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -3125 ((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|)))) (-550) (-166 |#1|)) (T -149))
-((-3125 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 *5))) (-5 *3 (-1177 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -3125 ((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|))))
-((-4160 (($ (-1 (-112) |#2|) $) 35)) (-1443 (($ $) 42)) (-3848 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-4292 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1444 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2136 (((-112) (-1 (-112) |#2|) $) 22)) (-2135 (((-776) (-1 (-112) |#2|) $) 18) (((-776) |#2| $) NIL)) (-2137 (((-112) (-1 (-112) |#2|) $) 21)) (-4407 (((-776) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -1443 (|#1| |#1|)) (-15 -3848 (|#1| |#2| |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4160 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|))) (-151 |#2|) (-1222)) (T -150))
-NIL
-(-10 -8 (-15 -1443 (|#1| |#1|)) (-15 -3848 (|#1| |#2| |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4160 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4160 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-1443 (($ $) 42 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443))) (($ |#1| $) 43 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 41 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 50)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-151 |#1|) (-140) (-1222)) (T -151))
-((-3971 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-151 *3)))) (-1444 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1222)))) (-4292 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222)))) (-4292 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3)) (-4 *3 (-1222)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3)) (-4 *3 (-1222)))) (-4292 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1107)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222)))) (-3848 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222)) (-4 *2 (-1107)))) (-1443 (*1 *1 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222)) (-4 *2 (-1107)))))
-(-13 (-494 |t#1|) (-10 -8 (-15 -3971 ($ (-646 |t#1|))) (-15 -1444 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4443)) (PROGN (-15 -4292 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4292 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3848 ($ (-1 (-112) |t#1|) $)) (-15 -4160 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1107)) (PROGN (-15 -4292 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3848 ($ |t#1| $)) (-15 -1443 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) 113)) (-2591 (((-112) $) NIL)) (-3312 (($ |#2| (-646 (-925))) 73)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1445 (($ (-925)) 60)) (-4361 (((-134)) 26)) (-4396 (((-868) $) 88) (($ (-551)) 56) (($ |#2|) 57)) (-4127 ((|#2| $ (-646 (-925))) 76)) (-3548 (((-776)) 23 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 51 T CONST)) (-3085 (($) 54 T CONST)) (-3473 (((-112) $ $) 37)) (-4399 (($ $ |#2|) NIL)) (-4287 (($ $) 46) (($ $ $) 44)) (-4289 (($ $ $) 42)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -1445 ($ (-925))) (-15 -3312 ($ |#2| (-646 (-925)))) (-15 -4127 (|#2| $ (-646 (-925)))) (-15 -3908 ((-3 $ "failed") $)))) (-925) (-367) (-999 |#1| |#2|)) (T -152))
-((-3908 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-925)) (-4 *3 (-367)) (-14 *4 (-999 *2 *3)))) (-1445 (*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367)) (-14 *5 (-999 *3 *4)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *3 (-646 (-925))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-925)) (-4 *2 (-367)) (-14 *5 (-999 *4 *2)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-646 (-925))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-925)) (-14 *5 (-999 *4 *2)))))
-(-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -1445 ($ (-925))) (-15 -3312 ($ |#2| (-646 (-925)))) (-15 -4127 (|#2| $ (-646 (-925)))) (-15 -3908 ((-3 $ "failed") $))))
-((-1447 (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-1446 (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551))) 99) (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931)) 100)) (-1617 (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226))))) 103) (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-949 (-226)))) 102) (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551))) 94) (((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931)) 95)))
-(((-153) (-10 -7 (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551)))) (-15 -1446 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931))) (-15 -1446 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551)))) (-15 -1447 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-949 (-226))))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226)))))))) (T -153))
-((-1617 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)) (-5 *3 (-646 (-646 (-949 (-226))))))) (-1617 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)) (-5 *3 (-646 (-949 (-226)))))) (-1447 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 *4)))) (|:| |xValues| (-1095 *4)) (|:| |yValues| (-1095 *4)))) (-5 *1 (-153)) (-5 *3 (-646 (-646 (-949 *4)))))) (-1446 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-412 (-551))) (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-412 (-551))) (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551)))) (-15 -1446 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931))) (-15 -1446 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-931) (-412 (-551)) (-412 (-551)))) (-15 -1447 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-949 (-226))))) (-15 -1617 ((-2 (|:| |brans| (-646 (-646 (-949 (-226))))) (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))) (-646 (-646 (-949 (-226)))))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3619 (((-646 (-1141)) $) 20)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 9)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-154) (-13 (-1089) (-10 -8 (-15 -3619 ((-646 (-1141)) $)) (-15 -3671 ((-1141) $))))) (T -154))
-((-3619 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-154)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154)))))
-(-13 (-1089) (-10 -8 (-15 -3619 ((-646 (-1141)) $)) (-15 -3671 ((-1141) $))))
-((-1500 (((-646 (-169 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -1500 ((-646 (-169 |#2|)) |#1| |#2|))) (-1248 (-169 (-551))) (-13 (-367) (-853))) (T -155))
-((-1500 (*1 *2 *3 *4) (-12 (-5 *2 (-646 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1248 (-169 (-551)))) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -1500 ((-646 (-169 |#2|)) |#1| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3969 (((-1223) $) 12)) (-3970 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-156) (-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1223) $))))) (T -156))
-((-3970 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-156)))))
-(-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1223) $))))
-((-2986 (((-112) $ $) NIL)) (-1449 (($) 41)) (-3520 (($) 40)) (-1448 (((-925)) 46)) (-3681 (((-1165) $) NIL)) (-3375 (((-551) $) 44)) (-3682 (((-1126) $) NIL)) (-3519 (($) 42)) (-3374 (($ (-551)) 47)) (-4396 (((-868) $) 53)) (-3518 (($) 43)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 38)) (-4289 (($ $ $) 35)) (* (($ (-925) $) 45) (($ (-226) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-925) $)) (-15 * ($ (-226) $)) (-15 -4289 ($ $ $)) (-15 -3520 ($)) (-15 -1449 ($)) (-15 -3519 ($)) (-15 -3518 ($)) (-15 -3375 ((-551) $)) (-15 -1448 ((-925))) (-15 -3374 ($ (-551)))))) (T -157))
-((-4289 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-3520 (*1 *1) (-5 *1 (-157))) (-1449 (*1 *1) (-5 *1 (-157))) (-3519 (*1 *1) (-5 *1 (-157))) (-3518 (*1 *1) (-5 *1 (-157))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-157)))) (-1448 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-157)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-925) $)) (-15 * ($ (-226) $)) (-15 -4289 ($ $ $)) (-15 -3520 ($)) (-15 -1449 ($)) (-15 -3519 ($)) (-15 -3518 ($)) (-15 -3375 ((-551) $)) (-15 -1448 ((-925))) (-15 -3374 ($ (-551)))))
-((-1462 ((|#2| |#2| (-1098 |#2|)) 98) ((|#2| |#2| (-1183)) 75)) (-4394 ((|#2| |#2| (-1098 |#2|)) 97) ((|#2| |#2| (-1183)) 74)) (-1459 ((|#2| |#2| |#2|) 25)) (-3466 (((-113) (-113)) 111)) (-1456 ((|#2| (-646 |#2|)) 130)) (-1453 ((|#2| (-646 |#2|)) 152)) (-1452 ((|#2| (-646 |#2|)) 138)) (-1450 ((|#2| |#2|) 136)) (-1454 ((|#2| (-646 |#2|)) 124)) (-1455 ((|#2| (-646 |#2|)) 125)) (-1451 ((|#2| (-646 |#2|)) 150)) (-1463 ((|#2| |#2| (-1183)) 63) ((|#2| |#2|) 62)) (-1457 ((|#2| |#2|) 21)) (-3523 ((|#2| |#2| |#2|) 24)) (-2421 (((-112) (-113)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3523 (|#2| |#2| |#2|)) (-15 -1459 (|#2| |#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -1463 (|#2| |#2| (-1183))) (-15 -1462 (|#2| |#2| (-1183))) (-15 -1462 (|#2| |#2| (-1098 |#2|))) (-15 -4394 (|#2| |#2| (-1183))) (-15 -4394 (|#2| |#2| (-1098 |#2|))) (-15 -1450 (|#2| |#2|)) (-15 -1451 (|#2| (-646 |#2|))) (-15 -1452 (|#2| (-646 |#2|))) (-15 -1453 (|#2| (-646 |#2|))) (-15 -1454 (|#2| (-646 |#2|))) (-15 -1455 (|#2| (-646 |#2|))) (-15 -1456 (|#2| (-646 |#2|)))) (-562) (-426 |#1|)) (T -158))
-((-1456 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-562)))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (-4394 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)))) (-4394 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4)))) (-1462 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)))) (-1462 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4)))) (-1463 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4)))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (-1459 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (-3523 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-158 *3 *4)) (-4 *4 (-426 *3)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-426 *4)))))
-(-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3523 (|#2| |#2| |#2|)) (-15 -1459 (|#2| |#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -1463 (|#2| |#2| (-1183))) (-15 -1462 (|#2| |#2| (-1183))) (-15 -1462 (|#2| |#2| (-1098 |#2|))) (-15 -4394 (|#2| |#2| (-1183))) (-15 -4394 (|#2| |#2| (-1098 |#2|))) (-15 -1450 (|#2| |#2|)) (-15 -1451 (|#2| (-646 |#2|))) (-15 -1452 (|#2| (-646 |#2|))) (-15 -1453 (|#2| (-646 |#2|))) (-15 -1454 (|#2| (-646 |#2|))) (-15 -1455 (|#2| (-646 |#2|))) (-15 -1456 (|#2| (-646 |#2|))))
-((-1461 ((|#1| |#1| |#1|) 67)) (-1460 ((|#1| |#1| |#1|) 64)) (-1459 ((|#1| |#1| |#1|) 58)) (-3309 ((|#1| |#1|) 45)) (-1458 ((|#1| |#1| (-646 |#1|)) 55)) (-1457 ((|#1| |#1|) 48)) (-3523 ((|#1| |#1| |#1|) 51)))
-(((-159 |#1|) (-10 -7 (-15 -3523 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -1458 (|#1| |#1| (-646 |#1|))) (-15 -3309 (|#1| |#1|)) (-15 -1459 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1| |#1|)) (-15 -1461 (|#1| |#1| |#1|))) (-550)) (T -159))
-((-1461 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1460 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1459 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3309 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1458 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))) (-1457 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3523 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(-10 -7 (-15 -3523 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -1458 (|#1| |#1| (-646 |#1|))) (-15 -3309 (|#1| |#1|)) (-15 -1459 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1| |#1|)) (-15 -1461 (|#1| |#1| |#1|)))
-((-1462 (($ $ (-1183)) 12) (($ $ (-1098 $)) 11)) (-4394 (($ $ (-1183)) 10) (($ $ (-1098 $)) 9)) (-1459 (($ $ $) 8)) (-1463 (($ $) 14) (($ $ (-1183)) 13)) (-1457 (($ $) 7)) (-3523 (($ $ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-4285 (((-2 (|:| -2777 (-776)) (|:| -1406 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776)) 76)) (-4271 (((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|) 56)) (-4259 (((-2 (|:| -1406 (-412 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4296 ((|#1| |#3| |#3|) 44)) (-1679 ((|#3| |#3| (-412 |#2|) (-412 |#2|)) 20)) (-4306 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|) 53)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4259 ((-2 (|:| -1406 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4271 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -4285 ((-2 (|:| -2777 (-776)) (|:| -1406 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -4296 (|#1| |#3| |#3|)) (-15 -1679 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -4306 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) (-1227) (-1249 |#1|) (-1249 (-412 |#2|))) (T -148))
+((-4306 (*1 *2 *3 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))) (-1679 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1249 *3)))) (-4296 (*1 *2 *3 *3) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1249 *5)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1249 *3)))) (-4271 (*1 *2 *3) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -1406 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+(-10 -7 (-15 -4259 ((-2 (|:| -1406 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4271 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -4285 ((-2 (|:| -2777 (-776)) (|:| -1406 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -4296 (|#1| |#3| |#3|)) (-15 -1679 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -4306 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|)))
+((-1506 (((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)) 35)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -1506 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)))) (-550) (-166 |#1|)) (T -149))
+((-1506 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -1506 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))))
+((-1391 (($ (-1 (-112) |#2|) $) 35)) (-3437 (($ $) 42)) (-1678 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3485 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-4316 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3983 (((-112) (-1 (-112) |#2|) $) 22)) (-3469 (((-776) (-1 (-112) |#2|) $) 18) (((-776) |#2| $) NIL)) (-3996 (((-112) (-1 (-112) |#2|) $) 21)) (-2394 (((-776) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1678 (|#1| |#2| |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|))) (-151 |#2|) (-1223)) (T -150))
+NIL
+(-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1678 (|#1| |#2| |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-1391 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3437 (($ $) 42 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443))) (($ |#1| $) 43 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 41 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 50)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-151 |#1|) (-140) (-1223)) (T -151))
+((-3709 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-151 *3)))) (-4316 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-3485 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-3485 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3)) (-4 *3 (-1223)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3)) (-4 *3 (-1223)))) (-3485 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-1678 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-3437 (*1 *1 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))))
+(-13 (-494 |t#1|) (-10 -8 (-15 -3709 ($ (-649 |t#1|))) (-15 -4316 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4443)) (PROGN (-15 -3485 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3485 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1678 ($ (-1 (-112) |t#1|) $)) (-15 -1391 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3485 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1678 ($ |t#1| $)) (-15 -3437 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) 113)) (-2861 (((-112) $) NIL)) (-3838 (($ |#2| (-649 (-927))) 73)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3258 (($ (-927)) 60)) (-2905 (((-134)) 26)) (-2388 (((-867) $) 88) (($ (-569)) 56) (($ |#2|) 57)) (-1503 ((|#2| $ (-649 (-927))) 76)) (-3263 (((-776)) 23 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 51 T CONST)) (-1796 (($) 54 T CONST)) (-2853 (((-112) $ $) 37)) (-2956 (($ $ |#2|) NIL)) (-2946 (($ $) 46) (($ $ $) 44)) (-2935 (($ $ $) 42)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -3258 ($ (-927))) (-15 -3838 ($ |#2| (-649 (-927)))) (-15 -1503 (|#2| $ (-649 (-927)))) (-15 -3351 ((-3 $ "failed") $)))) (-927) (-367) (-999 |#1| |#2|)) (T -152))
+((-3351 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367)) (-14 *4 (-999 *2 *3)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367)) (-14 *5 (-999 *3 *4)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-4 *2 (-367)) (-14 *5 (-999 *4 *2)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-14 *5 (-999 *4 *2)))))
+(-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -3258 ($ (-927))) (-15 -3838 ($ |#2| (-649 (-927)))) (-15 -1503 (|#2| $ (-649 (-927)))) (-15 -3351 ((-3 $ "failed") $))))
+((-4333 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-4325 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 99) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933)) 100)) (-3443 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226))))) 103) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226)))) 102) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 94) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933)) 95)))
+(((-153) (-10 -7 (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -4325 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -4325 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -4333 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226))))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))))))) (T -153))
+((-3443 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226))))))) (-3443 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226)))))) (-4333 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 *4)))) (|:| |xValues| (-1100 *4)) (|:| |yValues| (-1100 *4)))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))) (-4325 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-3443 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -4325 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -4325 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -4333 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226))))) (-15 -3443 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2613 (((-649 (-1141)) $) 20)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 9)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-154) (-13 (-1089) (-10 -8 (-15 -2613 ((-649 (-1141)) $)) (-15 -3473 ((-1141) $))))) (T -154))
+((-2613 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-154)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154)))))
+(-13 (-1089) (-10 -8 (-15 -2613 ((-649 (-1141)) $)) (-15 -3473 ((-1141) $))))
+((-3605 (((-649 (-170 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -3605 ((-649 (-170 |#2|)) |#1| |#2|))) (-1249 (-170 (-569))) (-13 (-367) (-853))) (T -155))
+((-3605 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1249 (-170 (-569)))) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3605 ((-649 (-170 |#2|)) |#1| |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2076 (((-1222) $) 12)) (-2065 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-156) (-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1222) $))))) (T -156))
+((-2065 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-156)))))
+(-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1222) $))))
+((-2383 (((-112) $ $) NIL)) (-4353 (($) 41)) (-4331 (($) 40)) (-4343 (((-927)) 46)) (-2050 (((-1165) $) NIL)) (-2210 (((-569) $) 44)) (-3461 (((-1126) $) NIL)) (-4323 (($) 42)) (-2201 (($ (-569)) 47)) (-2388 (((-867) $) 53)) (-4314 (($) 43)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 38)) (-2935 (($ $ $) 35)) (* (($ (-927) $) 45) (($ (-226) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -2935 ($ $ $)) (-15 -4331 ($)) (-15 -4353 ($)) (-15 -4323 ($)) (-15 -4314 ($)) (-15 -2210 ((-569) $)) (-15 -4343 ((-927))) (-15 -2201 ($ (-569)))))) (T -157))
+((-2935 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-4331 (*1 *1) (-5 *1 (-157))) (-4353 (*1 *1) (-5 *1 (-157))) (-4323 (*1 *1) (-5 *1 (-157))) (-4314 (*1 *1) (-5 *1 (-157))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) (-4343 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -2935 ($ $ $)) (-15 -4331 ($)) (-15 -4353 ($)) (-15 -4323 ($)) (-15 -4314 ($)) (-15 -2210 ((-569) $)) (-15 -4343 ((-927))) (-15 -2201 ($ (-569)))))
+((-1374 ((|#2| |#2| (-1098 |#2|)) 98) ((|#2| |#2| (-1183)) 75)) (-2061 ((|#2| |#2| (-1098 |#2|)) 97) ((|#2| |#2| (-1183)) 74)) (-1335 ((|#2| |#2| |#2|) 25)) (-3642 (((-114) (-114)) 111)) (-1306 ((|#2| (-649 |#2|)) 130)) (-4395 ((|#2| (-649 |#2|)) 152)) (-4383 ((|#2| (-649 |#2|)) 138)) (-4361 ((|#2| |#2|) 136)) (-4402 ((|#2| (-649 |#2|)) 124)) (-4413 ((|#2| (-649 |#2|)) 125)) (-4372 ((|#2| (-649 |#2|)) 150)) (-1386 ((|#2| |#2| (-1183)) 63) ((|#2| |#2|) 62)) (-1315 ((|#2| |#2|) 21)) (-3038 ((|#2| |#2| |#2|) 24)) (-3858 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3038 (|#2| |#2| |#2|)) (-15 -1335 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1386 (|#2| |#2|)) (-15 -1386 (|#2| |#2| (-1183))) (-15 -1374 (|#2| |#2| (-1183))) (-15 -1374 (|#2| |#2| (-1098 |#2|))) (-15 -2061 (|#2| |#2| (-1183))) (-15 -2061 (|#2| |#2| (-1098 |#2|))) (-15 -4361 (|#2| |#2|)) (-15 -4372 (|#2| (-649 |#2|))) (-15 -4383 (|#2| (-649 |#2|))) (-15 -4395 (|#2| (-649 |#2|))) (-15 -4402 (|#2| (-649 |#2|))) (-15 -4413 (|#2| (-649 |#2|))) (-15 -1306 (|#2| (-649 |#2|)))) (-561) (-435 |#1|)) (T -158))
+((-1306 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-2061 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-2061 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1315 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1335 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3038 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-435 *3)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3038 (|#2| |#2| |#2|)) (-15 -1335 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1386 (|#2| |#2|)) (-15 -1386 (|#2| |#2| (-1183))) (-15 -1374 (|#2| |#2| (-1183))) (-15 -1374 (|#2| |#2| (-1098 |#2|))) (-15 -2061 (|#2| |#2| (-1183))) (-15 -2061 (|#2| |#2| (-1098 |#2|))) (-15 -4361 (|#2| |#2|)) (-15 -4372 (|#2| (-649 |#2|))) (-15 -4383 (|#2| (-649 |#2|))) (-15 -4395 (|#2| (-649 |#2|))) (-15 -4402 (|#2| (-649 |#2|))) (-15 -4413 (|#2| (-649 |#2|))) (-15 -1306 (|#2| (-649 |#2|))))
+((-1362 ((|#1| |#1| |#1|) 67)) (-1351 ((|#1| |#1| |#1|) 64)) (-1335 ((|#1| |#1| |#1|) 58)) (-2734 ((|#1| |#1|) 45)) (-1326 ((|#1| |#1| (-649 |#1|)) 55)) (-1315 ((|#1| |#1|) 48)) (-3038 ((|#1| |#1| |#1|) 51)))
+(((-159 |#1|) (-10 -7 (-15 -3038 (|#1| |#1| |#1|)) (-15 -1315 (|#1| |#1|)) (-15 -1326 (|#1| |#1| (-649 |#1|))) (-15 -2734 (|#1| |#1|)) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -1362 (|#1| |#1| |#1|))) (-550)) (T -159))
+((-1362 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1351 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1335 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-2734 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))) (-1315 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3038 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(-10 -7 (-15 -3038 (|#1| |#1| |#1|)) (-15 -1315 (|#1| |#1|)) (-15 -1326 (|#1| |#1| (-649 |#1|))) (-15 -2734 (|#1| |#1|)) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -1362 (|#1| |#1| |#1|)))
+((-1374 (($ $ (-1183)) 12) (($ $ (-1098 $)) 11)) (-2061 (($ $ (-1183)) 10) (($ $ (-1098 $)) 9)) (-1335 (($ $ $) 8)) (-1386 (($ $) 14) (($ $ (-1183)) 13)) (-1315 (($ $) 7)) (-3038 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-1463 (*1 *1 *1) (-4 *1 (-160))) (-1463 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-1462 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))) (-4394 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-4394 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -1463 ($ $)) (-15 -1463 ($ $ (-1183))) (-15 -1462 ($ $ (-1183))) (-15 -1462 ($ $ (-1098 $))) (-15 -4394 ($ $ (-1183))) (-15 -4394 ($ $ (-1098 $)))))
+((-1386 (*1 *1 *1) (-4 *1 (-160))) (-1386 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))) (-2061 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -1386 ($ $)) (-15 -1386 ($ $ (-1183))) (-15 -1374 ($ $ (-1183))) (-15 -1374 ($ $ (-1098 $))) (-15 -2061 ($ $ (-1183))) (-15 -2061 ($ $ (-1098 $)))))
(((-143) . T))
-((-2986 (((-112) $ $) NIL)) (-1464 (($ (-551)) 14) (($ $ $) 15)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)))
-(((-161) (-13 (-1107) (-10 -8 (-15 -1464 ($ (-551))) (-15 -1464 ($ $ $))))) (T -161))
-((-1464 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-161)))) (-1464 (*1 *1 *1 *1) (-5 *1 (-161))))
-(-13 (-1107) (-10 -8 (-15 -1464 ($ (-551))) (-15 -1464 ($ $ $))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-646 (-1141)) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-162) (-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $))))) (T -162))
-((-3671 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-162)))))
-(-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $))))
-((-3466 (((-113) (-1183)) 102)))
-(((-163) (-10 -7 (-15 -3466 ((-113) (-1183))))) (T -163))
-((-3466 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-113)) (-5 *1 (-163)))))
-(-10 -7 (-15 -3466 ((-113) (-1183))))
-((-1713 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1713 (|#3| |#3|))) (-1055) (-1248 |#1|) (-1248 |#2|)) (T -164))
-((-1713 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-1248 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1248 *4)))))
-(-10 -7 (-15 -1713 (|#3| |#3|)))
-((-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 223)) (-3772 ((|#2| $) 102)) (-3933 (($ $) 256)) (-4089 (($ $) 250)) (-3125 (((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $)) 47)) (-3931 (($ $) 254)) (-4088 (($ $) 248)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#2| #1#) $) 146)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL) ((|#2| $) 144)) (-2982 (($ $ $) 229)) (-2445 (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 160) (((-694 |#2|) (-694 $)) 154)) (-4292 (($ (-1177 |#2|)) 125) (((-3 $ "failed") (-412 (-1177 |#2|))) NIL)) (-3908 (((-3 $ "failed") $) 214)) (-3443 (((-3 (-412 (-551)) "failed") $) 204)) (-3442 (((-112) $) 199)) (-3441 (((-412 (-551)) $) 202)) (-3531 (((-925)) 96)) (-2981 (($ $ $) 231)) (-1465 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-4077 (($) 245)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 193) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 198)) (-3554 ((|#2| $) 100)) (-2202 (((-1177 |#2|) $) 127)) (-4408 (($ (-1 |#2| |#2|) $) 108)) (-4392 (($ $) 247)) (-3499 (((-1177 |#2|) $) 126)) (-2824 (($ $) 207)) (-1467 (($) 103)) (-3126 (((-410 (-1177 $)) (-1177 $)) 95)) (-3127 (((-410 (-1177 $)) (-1177 $)) 64)) (-3907 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4393 (($ $) 246)) (-1762 (((-776) $) 226)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 236)) (-4207 ((|#2| (-1272 $)) NIL) ((|#2|) 98)) (-4260 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3623 (((-1177 |#2|)) 120)) (-3932 (($ $) 255)) (-4084 (($ $) 249)) (-3662 (((-1272 |#2|) $ (-1272 $)) 136) (((-694 |#2|) (-1272 $) (-1272 $)) NIL) (((-1272 |#2|) $) 116) (((-694 |#2|) (-1272 $)) NIL)) (-4420 (((-1272 |#2|) $) NIL) (($ (-1272 |#2|)) NIL) (((-1177 |#2|) $) NIL) (($ (-1177 |#2|)) NIL) (((-896 (-551)) $) 184) (((-896 (-382)) $) 188) (((-169 (-382)) $) 172) (((-169 (-226)) $) 167) (((-540) $) 180)) (-3428 (($ $) 104)) (-4396 (((-868) $) 143) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-412 (-551))) NIL) (($ $) NIL)) (-2788 (((-1177 |#2|) $) 32)) (-3548 (((-776)) 106)) (-3680 (((-112) $ $) 13)) (-3939 (($ $) 259)) (-3927 (($ $) 253)) (-3937 (($ $) 257)) (-3925 (($ $) 251)) (-2403 ((|#2| $) 242)) (-3938 (($ $) 258)) (-3926 (($ $) 252)) (-3825 (($ $) 162)) (-3473 (((-112) $ $) 110)) (-4287 (($ $) 112) (($ $ $) NIL)) (-4289 (($ $ $) 111)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-551))) 276) (($ $ $) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4396 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -1762 ((-776) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-169 (-226)) |#1|)) (-15 -4420 ((-169 (-382)) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -4392 (|#1| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4077 (|#1|)) (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -1465 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -1467 (|#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4292 ((-3 |#1| "failed") (-412 (-1177 |#2|)))) (-15 -3499 ((-1177 |#2|) |#1|)) (-15 -4420 (|#1| (-1177 |#2|))) (-15 -4292 (|#1| (-1177 |#2|))) (-15 -3623 ((-1177 |#2|))) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 ((-1177 |#2|) |#1|)) (-15 -4207 (|#2|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -2202 ((-1177 |#2|) |#1|)) (-15 -2788 ((-1177 |#2|) |#1|)) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -3554 (|#2| |#1|)) (-15 -3772 (|#2| |#1|)) (-15 -3531 ((-925))) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165))
-((-3548 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3531 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-925)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4207 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3623 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1177 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4396 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -1762 ((-776) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-169 (-226)) |#1|)) (-15 -4420 ((-169 (-382)) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -4392 (|#1| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4077 (|#1|)) (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -1465 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -1467 (|#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4292 ((-3 |#1| "failed") (-412 (-1177 |#2|)))) (-15 -3499 ((-1177 |#2|) |#1|)) (-15 -4420 (|#1| (-1177 |#2|))) (-15 -4292 (|#1| (-1177 |#2|))) (-15 -3623 ((-1177 |#2|))) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 ((-1177 |#2|) |#1|)) (-15 -4207 (|#2|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -2202 ((-1177 |#2|) |#1|)) (-15 -2788 ((-1177 |#2|) |#1|)) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -3554 (|#2| |#1|)) (-15 -3772 (|#2| |#1|)) (-15 -3531 ((-925))) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-2251 (($ $) 103 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-2249 (((-112) $) 105 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-1967 (((-694 |#1|) (-1272 $)) 53) (((-694 |#1|)) 68)) (-3772 ((|#1| $) 59)) (-3933 (($ $) 229 (|has| |#1| (-1208)))) (-4089 (($ $) 212 (|has| |#1| (-1208)))) (-1853 (((-1195 (-925) (-776)) (-551)) 155 (|has| |#1| (-354)))) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 243 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-4224 (($ $) 122 (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-4419 (((-410 $) $) 123 (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-3456 (($ $) 242 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3125 (((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $)) 246 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-1763 (((-112) $ $) 113 (|has| |#1| (-310)))) (-3558 (((-776)) 96 (|has| |#1| (-372)))) (-3931 (($ $) 228 (|has| |#1| (-1208)))) (-4088 (($ $) 213 (|has| |#1| (-1208)))) (-3935 (($ $) 227 (|has| |#1| (-1208)))) (-4087 (($ $) 214 (|has| |#1| (-1208)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 178 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 176 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 173)) (-3594 (((-551) $) 177 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 175 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 174)) (-1977 (($ (-1272 |#1|) (-1272 $)) 55) (($ (-1272 |#1|)) 71)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2982 (($ $ $) 117 (|has| |#1| (-310)))) (-1966 (((-694 |#1|) $ (-1272 $)) 60) (((-694 |#1|) $) 66)) (-2445 (((-694 (-551)) (-694 $)) 172 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 171 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-4292 (($ (-1177 |#1|)) 166) (((-3 $ "failed") (-412 (-1177 |#1|))) 163 (|has| |#1| (-367)))) (-3908 (((-3 $ "failed") $) 37)) (-4093 ((|#1| $) 254)) (-3443 (((-3 (-412 (-551)) "failed") $) 247 (|has| |#1| (-550)))) (-3442 (((-112) $) 249 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 248 (|has| |#1| (-550)))) (-3531 (((-925)) 61)) (-3413 (($) 99 (|has| |#1| (-372)))) (-2981 (($ $ $) 116 (|has| |#1| (-310)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 111 (|has| |#1| (-310)))) (-3254 (($) 157 (|has| |#1| (-354)))) (-1858 (((-112) $) 158 (|has| |#1| (-354)))) (-1951 (($ $ (-776)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-4173 (((-112) $) 124 (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-1465 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-4077 (($) 239 (|has| |#1| (-1208)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 262 (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 261 (|has| |#1| (-892 (-382))))) (-4221 (((-925) $) 160 (|has| |#1| (-354))) (((-837 (-925)) $) 146 (|has| |#1| (-354)))) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 241 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3554 ((|#1| $) 58)) (-3886 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 120 (|has| |#1| (-310)))) (-2202 (((-1177 |#1|) $) 51 (|has| |#1| (-367)))) (-4408 (($ (-1 |#1| |#1|) $) 263)) (-2198 (((-925) $) 98 (|has| |#1| (-372)))) (-4392 (($ $) 236 (|has| |#1| (-1208)))) (-3499 (((-1177 |#1|) $) 164)) (-2079 (($ (-646 $)) 109 (-3978 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (($ $ $) 108 (-3978 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 125 (|has| |#1| (-367)))) (-3887 (($) 151 (|has| |#1| (-354)) CONST)) (-2581 (($ (-925)) 97 (|has| |#1| (-372)))) (-1467 (($) 258)) (-4094 ((|#1| $) 255)) (-3682 (((-1126) $) 11)) (-2590 (($) 168)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 110 (-3978 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-3582 (($ (-646 $)) 107 (-3978 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (($ $ $) 106 (-3978 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 154 (|has| |#1| (-354)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 245 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-3127 (((-410 (-1177 $)) (-1177 $)) 244 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-4182 (((-410 $) $) 121 (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 118 (|has| |#1| (-310)))) (-3907 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 101 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 112 (|has| |#1| (-310)))) (-4393 (($ $) 237 (|has| |#1| (-1208)))) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) 269 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) 267 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) 266 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 265 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 264 (|has| |#1| (-519 (-1183) |#1|)))) (-1762 (((-776) $) 114 (|has| |#1| (-310)))) (-4249 (($ $ |#1|) 270 (|has| |#1| (-289 |#1| |#1|)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 115 (|has| |#1| (-310)))) (-4207 ((|#1| (-1272 $)) 54) ((|#1|) 67)) (-1952 (((-776) $) 159 (|has| |#1| (-354))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-354)))) (-4260 (($ $ (-1 |#1| |#1|) (-776)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-646 (-1183)) (-646 (-776))) 138 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 139 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 140 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 141 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 143 (-3978 (-3274 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 145 (-3978 (-3274 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3274 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2589 (((-694 |#1|) (-1272 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-3623 (((-1177 |#1|)) 167)) (-3936 (($ $) 226 (|has| |#1| (-1208)))) (-4086 (($ $) 215 (|has| |#1| (-1208)))) (-1852 (($) 156 (|has| |#1| (-354)))) (-3934 (($ $) 225 (|has| |#1| (-1208)))) (-4085 (($ $) 216 (|has| |#1| (-1208)))) (-3932 (($ $) 224 (|has| |#1| (-1208)))) (-4084 (($ $) 217 (|has| |#1| (-1208)))) (-3662 (((-1272 |#1|) $ (-1272 $)) 57) (((-694 |#1|) (-1272 $) (-1272 $)) 56) (((-1272 |#1|) $) 73) (((-694 |#1|) (-1272 $)) 72)) (-4420 (((-1272 |#1|) $) 70) (($ (-1272 |#1|)) 69) (((-1177 |#1|) $) 179) (($ (-1177 |#1|)) 165) (((-896 (-551)) $) 260 (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) 259 (|has| |#1| (-619 (-896 (-382))))) (((-169 (-382)) $) 211 (|has| |#1| (-1026))) (((-169 (-226)) $) 210 (|has| |#1| (-1026))) (((-540) $) 209 (|has| |#1| (-619 (-540))))) (-3428 (($ $) 257)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 153 (-3978 (-3274 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (|has| |#1| (-354))))) (-1466 (($ |#1| |#1|) 256)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44) (($ (-412 (-551))) 95 (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) 100 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-3123 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (-3978 (-3274 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (|has| |#1| (-145))))) (-2788 (((-1177 |#1|) $) 52)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 74)) (-3939 (($ $) 235 (|has| |#1| (-1208)))) (-3927 (($ $) 223 (|has| |#1| (-1208)))) (-2250 (((-112) $ $) 104 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))) (-3937 (($ $) 234 (|has| |#1| (-1208)))) (-3925 (($ $) 222 (|has| |#1| (-1208)))) (-3941 (($ $) 233 (|has| |#1| (-1208)))) (-3929 (($ $) 221 (|has| |#1| (-1208)))) (-2403 ((|#1| $) 251 (|has| |#1| (-1208)))) (-3942 (($ $) 232 (|has| |#1| (-1208)))) (-3930 (($ $) 220 (|has| |#1| (-1208)))) (-3940 (($ $) 231 (|has| |#1| (-1208)))) (-3928 (($ $) 219 (|has| |#1| (-1208)))) (-3938 (($ $) 230 (|has| |#1| (-1208)))) (-3926 (($ $) 218 (|has| |#1| (-1208)))) (-3825 (($ $) 252 (|has| |#1| (-1066)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1 |#1| |#1|) (-776)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-646 (-1183)) (-646 (-776))) 134 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 135 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 136 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 137 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 142 (-3978 (-3274 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 144 (-3978 (-3274 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3274 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 129 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-412 (-551))) 240 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) 238 (|has| |#1| (-1208))) (($ $ (-551)) 126 (|has| |#1| (-367)))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-551)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-551))) 127 (|has| |#1| (-367)))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-649 (-1141)) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-161) (-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $))))) (T -161))
+((-3473 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-161)))))
+(-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $))))
+((-2383 (((-112) $ $) NIL)) (-1400 (($ (-569)) 14) (($ $ $) 15)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)))
+(((-162) (-13 (-1106) (-10 -8 (-15 -1400 ($ (-569))) (-15 -1400 ($ $ $))))) (T -162))
+((-1400 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))) (-1400 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1106) (-10 -8 (-15 -1400 ($ (-569))) (-15 -1400 ($ $ $))))
+((-3642 (((-114) (-1183)) 102)))
+(((-163) (-10 -7 (-15 -3642 ((-114) (-1183))))) (T -163))
+((-3642 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -3642 ((-114) (-1183))))
+((-2010 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2010 (|#3| |#3|))) (-1055) (-1249 |#1|) (-1249 |#2|)) (T -164))
+((-2010 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-1249 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1249 *4)))))
+(-10 -7 (-15 -2010 (|#3| |#3|)))
+((-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 223)) (-3057 ((|#2| $) 102)) (-2691 (($ $) 256)) (-2556 (($ $) 250)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 47)) (-2669 (($ $) 254)) (-2534 (($ $) 248)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 144)) (-2339 (($ $ $) 229)) (-4091 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 160) (((-694 |#2|) (-694 $)) 154)) (-3485 (($ (-1179 |#2|)) 125) (((-3 $ "failed") (-412 (-1179 |#2|))) NIL)) (-3351 (((-3 $ "failed") $) 214)) (-1740 (((-3 (-412 (-569)) "failed") $) 204)) (-1727 (((-112) $) 199)) (-1715 (((-412 (-569)) $) 202)) (-3904 (((-927)) 96)) (-2348 (($ $ $) 231)) (-1413 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-4408 (($) 245)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 193) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 198)) (-3334 ((|#2| $) 100)) (-3397 (((-1179 |#2|) $) 127)) (-1324 (($ (-1 |#2| |#2|) $) 108)) (-2616 (($ $) 247)) (-3472 (((-1179 |#2|) $) 126)) (-1776 (($ $) 207)) (-1423 (($) 103)) (-1515 (((-423 (-1179 $)) (-1179 $)) 95)) (-1525 (((-423 (-1179 $)) (-1179 $)) 64)) (-2374 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4367 (($ $) 246)) (-4409 (((-776) $) 226)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 236)) (-4180 ((|#2| (-1273 $)) NIL) ((|#2|) 98)) (-3430 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2760 (((-1179 |#2|)) 120)) (-2680 (($ $) 255)) (-2545 (($ $) 249)) (-1949 (((-1273 |#2|) $ (-1273 $)) 136) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 116) (((-694 |#2|) (-1273 $)) NIL)) (-1384 (((-1273 |#2|) $) NIL) (($ (-1273 |#2|)) NIL) (((-1179 |#2|) $) NIL) (($ (-1179 |#2|)) NIL) (((-898 (-569)) $) 184) (((-898 (-383)) $) 188) (((-170 (-383)) $) 172) (((-170 (-226)) $) 167) (((-541) $) 180)) (-1565 (($ $) 104)) (-2388 (((-867) $) 143) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-412 (-569))) NIL) (($ $) NIL)) (-3176 (((-1179 |#2|) $) 32)) (-3263 (((-776)) 106)) (-2040 (((-112) $ $) 13)) (-4119 (($ $) 259)) (-2627 (($ $) 253)) (-4094 (($ $) 257)) (-2601 (($ $) 251)) (-1817 ((|#2| $) 242)) (-4106 (($ $) 258)) (-2615 (($ $) 252)) (-3999 (($ $) 162)) (-2853 (((-112) $ $) 110)) (-2946 (($ $) 112) (($ $ $) NIL)) (-2935 (($ $ $) 111)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) 276) (($ $ $) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2388 (|#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -4409 ((-776) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-170 (-226)) |#1|)) (-15 -1384 ((-170 (-383)) |#1|)) (-15 -2556 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4408 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -1413 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1565 (|#1| |#1|)) (-15 -1423 (|#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3485 ((-3 |#1| "failed") (-412 (-1179 |#2|)))) (-15 -3472 ((-1179 |#2|) |#1|)) (-15 -1384 (|#1| (-1179 |#2|))) (-15 -3485 (|#1| (-1179 |#2|))) (-15 -2760 ((-1179 |#2|))) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 ((-1179 |#2|) |#1|)) (-15 -4180 (|#2|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3397 ((-1179 |#2|) |#1|)) (-15 -3176 ((-1179 |#2|) |#1|)) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -3334 (|#2| |#1|)) (-15 -3057 (|#2| |#1|)) (-15 -3904 ((-927))) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165))
+((-3263 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3904 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4180 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2760 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2388 (|#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -4409 ((-776) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-170 (-226)) |#1|)) (-15 -1384 ((-170 (-383)) |#1|)) (-15 -2556 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4408 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -1413 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1565 (|#1| |#1|)) (-15 -1423 (|#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3485 ((-3 |#1| "failed") (-412 (-1179 |#2|)))) (-15 -3472 ((-1179 |#2|) |#1|)) (-15 -1384 (|#1| (-1179 |#2|))) (-15 -3485 (|#1| (-1179 |#2|))) (-15 -2760 ((-1179 |#2|))) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 ((-1179 |#2|) |#1|)) (-15 -4180 (|#2|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3397 ((-1179 |#2|) |#1|)) (-15 -3176 ((-1179 |#2|) |#1|)) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -3334 (|#2| |#1|)) (-15 -3057 (|#2| |#1|)) (-15 -3904 ((-927))) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2586 (($ $) 103 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2564 (((-112) $) 105 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2702 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3057 ((|#1| $) 59)) (-2691 (($ $) 229 (|has| |#1| (-1208)))) (-2556 (($ $) 212 (|has| |#1| (-1208)))) (-4068 (((-1196 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 243 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-4332 (($ $) 122 (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2207 (((-423 $) $) 123 (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3714 (($ $) 242 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 246 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-4420 (((-112) $ $) 113 (|has| |#1| (-310)))) (-3363 (((-776)) 96 (|has| |#1| (-372)))) (-2669 (($ $) 228 (|has| |#1| (-1208)))) (-2534 (($ $) 213 (|has| |#1| (-1208)))) (-2712 (($ $) 227 (|has| |#1| (-1208)))) (-2576 (($ $) 214 (|has| |#1| (-1208)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3043 (((-569) $) 177 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 174)) (-2806 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2339 (($ $ $) 117 (|has| |#1| (-310)))) (-2692 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-4091 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3485 (($ (-1179 |#1|)) 166) (((-3 $ "failed") (-412 (-1179 |#1|))) 163 (|has| |#1| (-367)))) (-3351 (((-3 $ "failed") $) 37)) (-3728 ((|#1| $) 254)) (-1740 (((-3 (-412 (-569)) "failed") $) 247 (|has| |#1| (-550)))) (-1727 (((-112) $) 249 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 248 (|has| |#1| (-550)))) (-3904 (((-927)) 61)) (-3295 (($) 99 (|has| |#1| (-372)))) (-2348 (($ $ $) 116 (|has| |#1| (-310)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 111 (|has| |#1| (-310)))) (-3445 (($) 157 (|has| |#1| (-353)))) (-4127 (((-112) $) 158 (|has| |#1| (-353)))) (-2525 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-3848 (((-112) $) 124 (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-1413 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-4408 (($) 239 (|has| |#1| (-1208)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 262 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 261 (|has| |#1| (-892 (-383))))) (-4315 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 241 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3334 ((|#1| $) 58)) (-3177 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-310)))) (-3397 (((-1179 |#1|) $) 51 (|has| |#1| (-367)))) (-1324 (($ (-1 |#1| |#1|) $) 263)) (-3348 (((-927) $) 98 (|has| |#1| (-372)))) (-2616 (($ $) 236 (|has| |#1| (-1208)))) (-3472 (((-1179 |#1|) $) 164)) (-1798 (($ (-649 $)) 109 (-2718 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 108 (-2718 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 125 (|has| |#1| (-367)))) (-2267 (($) 151 (|has| |#1| (-353)) CONST)) (-2114 (($ (-927)) 97 (|has| |#1| (-372)))) (-1423 (($) 258)) (-3740 ((|#1| $) 255)) (-3461 (((-1126) $) 11)) (-2290 (($) 168)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 110 (-2718 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1830 (($ (-649 $)) 107 (-2718 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 106 (-2718 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 154 (|has| |#1| (-353)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 245 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1525 (((-423 (-1179 $)) (-1179 $)) 244 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3699 (((-423 $) $) 121 (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 118 (|has| |#1| (-310)))) (-2374 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 101 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-310)))) (-4367 (($ $) 237 (|has| |#1| (-1208)))) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) 269 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 267 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 266 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 265 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 264 (|has| |#1| (-519 (-1183) |#1|)))) (-4409 (((-776) $) 114 (|has| |#1| (-310)))) (-1852 (($ $ |#1|) 270 (|has| |#1| (-289 |#1| |#1|)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 115 (|has| |#1| (-310)))) (-4180 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-2536 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3430 (($ $ (-1 |#1| |#1|) (-776)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-649 (-1183)) (-649 (-776))) 138 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 139 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 140 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 141 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 143 (-2718 (-1739 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 145 (-2718 (-1739 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1739 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2851 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-2760 (((-1179 |#1|)) 167)) (-2725 (($ $) 226 (|has| |#1| (-1208)))) (-2588 (($ $) 215 (|has| |#1| (-1208)))) (-4056 (($) 156 (|has| |#1| (-353)))) (-2701 (($ $) 225 (|has| |#1| (-1208)))) (-2566 (($ $) 216 (|has| |#1| (-1208)))) (-2680 (($ $) 224 (|has| |#1| (-1208)))) (-2545 (($ $) 217 (|has| |#1| (-1208)))) (-1949 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1384 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69) (((-1179 |#1|) $) 179) (($ (-1179 |#1|)) 165) (((-898 (-569)) $) 260 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 259 (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) 211 (|has| |#1| (-1028))) (((-170 (-226)) $) 210 (|has| |#1| (-1028))) (((-541) $) 209 (|has| |#1| (-619 (-541))))) (-1565 (($ $) 257)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 153 (-2718 (-1739 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-353))))) (-3016 (($ |#1| |#1|) 256)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 95 (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) 100 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1488 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (-2718 (-1739 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-145))))) (-3176 (((-1179 |#1|) $) 52)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 74)) (-4119 (($ $) 235 (|has| |#1| (-1208)))) (-2627 (($ $) 223 (|has| |#1| (-1208)))) (-2574 (((-112) $ $) 104 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4094 (($ $) 234 (|has| |#1| (-1208)))) (-2601 (($ $) 222 (|has| |#1| (-1208)))) (-4144 (($ $) 233 (|has| |#1| (-1208)))) (-2648 (($ $) 221 (|has| |#1| (-1208)))) (-1817 ((|#1| $) 251 (|has| |#1| (-1208)))) (-1470 (($ $) 232 (|has| |#1| (-1208)))) (-2658 (($ $) 220 (|has| |#1| (-1208)))) (-4131 (($ $) 231 (|has| |#1| (-1208)))) (-2638 (($ $) 219 (|has| |#1| (-1208)))) (-4106 (($ $) 230 (|has| |#1| (-1208)))) (-2615 (($ $) 218 (|has| |#1| (-1208)))) (-3999 (($ $) 252 (|has| |#1| (-1066)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1 |#1| |#1|) (-776)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-649 (-1183)) (-649 (-776))) 134 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 135 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 136 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 137 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 142 (-2718 (-1739 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 144 (-2718 (-1739 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1739 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 129 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-412 (-569))) 240 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) 238 (|has| |#1| (-1208))) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
(((-166 |#1|) (-140) (-173)) (T -166))
-((-3554 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1467 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1466 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-562)))) (-3825 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))))
-(-13 (-729 |t#1| (-1177 |t#1|)) (-417 |t#1|) (-232 |t#1|) (-342 |t#1|) (-405 |t#1|) (-890 |t#1|) (-381 |t#1|) (-173) (-10 -8 (-6 -1466) (-15 -1467 ($)) (-15 -3428 ($ $)) (-15 -1466 ($ |t#1| |t#1|)) (-15 -4094 (|t#1| $)) (-15 -4093 (|t#1| $)) (-15 -3554 (|t#1| $)) (IF (|has| |t#1| (-562)) (PROGN (-6 (-562)) (-15 -3907 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-310)) (-6 (-310)) |%noBranch|) (IF (|has| |t#1| (-6 -4442)) (-6 -4442) |%noBranch|) (IF (|has| |t#1| (-6 -4439)) (-6 -4439) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-619 (-169 (-226)))) (-6 (-619 (-169 (-382))))) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3825 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1208)) (PROGN (-6 (-1208)) (-15 -2403 (|t#1| $)) (IF (|has| |t#1| (-1008)) (-6 (-1008)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -1465 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-310)) (-6 (-916)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-35) |has| |#1| (-1208)) ((-95) |has| |#1| (-1208)) ((-102) . T) ((-111 #1# #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3978 (|has| |#1| (-354)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-354)) (|has| |#1| (-367))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-618 (-868)) . T) ((-173) . T) ((-619 (-169 (-226))) |has| |#1| (-1026)) ((-619 (-169 (-382))) |has| |#1| (-1026)) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-619 (-896 (-382))) |has| |#1| (-619 (-896 (-382)))) ((-619 (-896 (-551))) |has| |#1| (-619 (-896 (-551)))) ((-619 #2=(-1177 |#1|)) . T) ((-232 |#1|) . T) ((-234) -3978 (|has| |#1| (-354)) (|has| |#1| (-234))) ((-244) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-287) |has| |#1| (-1208)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-310) -3978 (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-407) |has| |#1| (-354)) ((-372) -3978 (|has| |#1| (-354)) (|has| |#1| (-372))) ((-354) |has| |#1| (-354)) ((-374 |#1| #2#) . T) ((-415 |#1| #2#) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-498) |has| |#1| (-1208)) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-562) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-651 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-729 |#1| #2#) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-382)) |has| |#1| (-892 (-382))) ((-892 (-551)) |has| |#1| (-892 (-551))) ((-890 |#1|) . T) ((-916) -12 (|has| |#1| (-310)) (|has| |#1| (-916))) ((-927) -3978 (|has| |#1| (-354)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-1008) -12 (|has| |#1| (-1008)) (|has| |#1| (-1208))) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| |#1| (-354)) ((-1208) |has| |#1| (-1208)) ((-1211) |has| |#1| (-1208)) ((-1222) . T) ((-1227) -3978 (|has| |#1| (-354)) (|has| |#1| (-367)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))))
-((-4182 (((-410 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4182 ((-410 |#2|) |#2|))) (-310) (-1248 (-169 |#1|))) (T -167))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1248 (-169 *4))))))
-(-10 -7 (-15 -4182 ((-410 |#2|) |#2|)))
-((-1470 (((-1141) (-1141) (-294)) 8)) (-1468 (((-646 (-696 (-283))) (-1165)) 78)) (-1469 (((-696 (-283)) (-1141)) 73)))
-(((-168) (-13 (-1222) (-10 -7 (-15 -1470 ((-1141) (-1141) (-294))) (-15 -1469 ((-696 (-283)) (-1141))) (-15 -1468 ((-646 (-696 (-283))) (-1165)))))) (T -168))
-((-1470 (*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-696 (-283)))) (-5 *1 (-168)))))
-(-13 (-1222) (-10 -7 (-15 -1470 ((-1141) (-1141) (-294))) (-15 -1469 ((-696 (-283)) (-1141))) (-15 -1468 ((-646 (-696 (-283))) (-1165)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 34)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2251 (($ $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2249 (((-112) $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-1967 (((-694 |#1|) (-1272 $)) NIL) (((-694 |#1|)) NIL)) (-3772 ((|#1| $) NIL)) (-3933 (($ $) NIL (|has| |#1| (-1208)))) (-4089 (($ $) NIL (|has| |#1| (-1208)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| |#1| (-354)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-4224 (($ $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-4419 (((-410 $) $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-3456 (($ $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-310)))) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-3931 (($ $) NIL (|has| |#1| (-1208)))) (-4088 (($ $) NIL (|has| |#1| (-1208)))) (-3935 (($ $) NIL (|has| |#1| (-1208)))) (-4087 (($ $) NIL (|has| |#1| (-1208)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-1977 (($ (-1272 |#1|) (-1272 $)) NIL) (($ (-1272 |#1|)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2982 (($ $ $) NIL (|has| |#1| (-310)))) (-1966 (((-694 |#1|) $ (-1272 $)) NIL) (((-694 |#1|) $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-4292 (($ (-1177 |#1|)) NIL) (((-3 $ "failed") (-412 (-1177 |#1|))) NIL (|has| |#1| (-367)))) (-3908 (((-3 $ "failed") $) NIL)) (-4093 ((|#1| $) 13)) (-3443 (((-3 (-412 (-551)) #3="failed") $) NIL (|has| |#1| (-550)))) (-3442 (((-112) $) NIL (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) NIL (|has| |#1| (-550)))) (-3531 (((-925)) NIL)) (-3413 (($) NIL (|has| |#1| (-372)))) (-2981 (($ $ $) NIL (|has| |#1| (-310)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-310)))) (-3254 (($) NIL (|has| |#1| (-354)))) (-1858 (((-112) $) NIL (|has| |#1| (-354)))) (-1951 (($ $ (-776)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-4173 (((-112) $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-1465 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-4077 (($) NIL (|has| |#1| (-1208)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| |#1| (-892 (-382))))) (-4221 (((-925) $) NIL (|has| |#1| (-354))) (((-837 (-925)) $) NIL (|has| |#1| (-354)))) (-2591 (((-112) $) 36)) (-3430 (($ $ (-551)) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3554 ((|#1| $) 47)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-1760 (((-3 (-646 $) #4="failed") (-646 $) $) NIL (|has| |#1| (-310)))) (-2202 (((-1177 |#1|) $) NIL (|has| |#1| (-367)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-4392 (($ $) NIL (|has| |#1| (-1208)))) (-3499 (((-1177 |#1|) $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-3887 (($) NIL (|has| |#1| (-354)) CONST)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-1467 (($) NIL)) (-4094 ((|#1| $) 15)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-310)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| |#1| (-354)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-916))))) (-4182 (((-410 $) $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-367))))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-310)))) (-3907 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 48 (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-310)))) (-4393 (($ $) NIL (|has| |#1| (-1208)))) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1762 (((-776) $) NIL (|has| |#1| (-310)))) (-4249 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-310)))) (-4207 ((|#1| (-1272 $)) NIL) ((|#1|) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-354))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-354)))) (-4260 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2589 (((-694 |#1|) (-1272 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-3623 (((-1177 |#1|)) NIL)) (-3936 (($ $) NIL (|has| |#1| (-1208)))) (-4086 (($ $) NIL (|has| |#1| (-1208)))) (-1852 (($) NIL (|has| |#1| (-354)))) (-3934 (($ $) NIL (|has| |#1| (-1208)))) (-4085 (($ $) NIL (|has| |#1| (-1208)))) (-3932 (($ $) NIL (|has| |#1| (-1208)))) (-4084 (($ $) NIL (|has| |#1| (-1208)))) (-3662 (((-1272 |#1|) $ (-1272 $)) NIL) (((-694 |#1|) (-1272 $) (-1272 $)) NIL) (((-1272 |#1|) $) NIL) (((-694 |#1|) (-1272 $)) NIL)) (-4420 (((-1272 |#1|) $) NIL) (($ (-1272 |#1|)) NIL) (((-1177 |#1|) $) NIL) (($ (-1177 |#1|)) NIL) (((-896 (-551)) $) NIL (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| |#1| (-619 (-896 (-382))))) (((-169 (-382)) $) NIL (|has| |#1| (-1026))) (((-169 (-226)) $) NIL (|has| |#1| (-1026))) (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3428 (($ $) 46)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-354))))) (-1466 (($ |#1| |#1|) 38)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) 37) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3123 (($ $) NIL (|has| |#1| (-354))) (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-2788 (((-1177 |#1|) $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL)) (-3939 (($ $) NIL (|has| |#1| (-1208)))) (-3927 (($ $) NIL (|has| |#1| (-1208)))) (-2250 (((-112) $ $) NIL (-3978 (-12 (|has| |#1| (-310)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3937 (($ $) NIL (|has| |#1| (-1208)))) (-3925 (($ $) NIL (|has| |#1| (-1208)))) (-3941 (($ $) NIL (|has| |#1| (-1208)))) (-3929 (($ $) NIL (|has| |#1| (-1208)))) (-2403 ((|#1| $) NIL (|has| |#1| (-1208)))) (-3942 (($ $) NIL (|has| |#1| (-1208)))) (-3930 (($ $) NIL (|has| |#1| (-1208)))) (-3940 (($ $) NIL (|has| |#1| (-1208)))) (-3928 (($ $) NIL (|has| |#1| (-1208)))) (-3938 (($ $) NIL (|has| |#1| (-1208)))) (-3926 (($ $) NIL (|has| |#1| (-1208)))) (-3825 (($ $) NIL (|has| |#1| (-1066)))) (-3528 (($) 28 T CONST)) (-3085 (($) 30 T CONST)) (-2918 (((-1165) $) 23 (|has| |#1| (-826))) (((-1165) $ (-112)) 25 (|has| |#1| (-826))) (((-1278) (-828) $) 26 (|has| |#1| (-826))) (((-1278) (-828) $ (-112)) 27 (|has| |#1| (-826)))) (-3090 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 40)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-551))) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) NIL (|has| |#1| (-1208))) (($ $ (-551)) NIL (|has| |#1| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-551)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-551))) NIL (|has| |#1| (-367)))))
-(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-173)) (T -169))
-NIL
-(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|)))
-((-4408 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -4408 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-173) (-173)) (T -170))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-169 *6)) (-5 *1 (-170 *5 *6)))))
-(-10 -7 (-15 -4408 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-4420 (((-896 |#1|) |#3|) 22)))
-(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -4420 ((-896 |#1|) |#3|))) (-1107) (-13 (-619 (-896 |#1|)) (-173)) (-166 |#2|)) (T -171))
-((-4420 (*1 *2 *3) (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-896 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1107)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -4420 ((-896 |#1|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-1472 (((-112) $) 9)) (-1471 (((-112) $ (-112)) 11)) (-4064 (($) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3842 (($ $) 14)) (-4396 (((-868) $) 18)) (-4152 (((-112) $) 8)) (-4311 (((-112) $ (-112)) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-172) (-13 (-1107) (-10 -8 (-15 -4064 ($)) (-15 -4152 ((-112) $)) (-15 -1472 ((-112) $)) (-15 -4311 ((-112) $ (-112))) (-15 -1471 ((-112) $ (-112))) (-15 -3842 ($ $))))) (T -172))
-((-4064 (*1 *1) (-5 *1 (-172))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4311 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1471 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3842 (*1 *1 *1) (-5 *1 (-172))))
-(-13 (-1107) (-10 -8 (-15 -4064 ($)) (-15 -4152 ((-112) $)) (-15 -1472 ((-112) $)) (-15 -4311 ((-112) $ (-112))) (-15 -1471 ((-112) $ (-112))) (-15 -3842 ($ $))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-3334 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1423 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1565 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3016 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3999 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1740 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
+(-13 (-729 |t#1| (-1179 |t#1|)) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-405 |t#1|) (-890 |t#1|) (-381 |t#1|) (-173) (-10 -8 (-6 -3016) (-15 -1423 ($)) (-15 -1565 ($ $)) (-15 -3016 ($ |t#1| |t#1|)) (-15 -3740 (|t#1| $)) (-15 -3728 (|t#1| $)) (-15 -3334 (|t#1| $)) (IF (|has| |t#1| (-561)) (PROGN (-6 (-561)) (-15 -2374 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-310)) (-6 (-310)) |%noBranch|) (IF (|has| |t#1| (-6 -4442)) (-6 -4442) |%noBranch|) (IF (|has| |t#1| (-6 -4439)) (-6 -4439) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-619 (-170 (-226)))) (-6 (-619 (-170 (-383))))) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3999 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1208)) (PROGN (-6 (-1208)) (-15 -1817 (|t#1| $)) (IF (|has| |t#1| (-1008)) (-6 (-1008)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -1413 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-310)) (-6 (-915)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-35) |has| |#1| (-1208)) ((-95) |has| |#1| (-1208)) ((-102) . T) ((-111 #0# #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2718 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-618 (-867)) . T) ((-173) . T) ((-619 (-170 (-226))) |has| |#1| (-1028)) ((-619 (-170 (-383))) |has| |#1| (-1028)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-619 #1=(-1179 |#1|)) . T) ((-232 |#1|) . T) ((-234) -2718 (|has| |#1| (-353)) (|has| |#1| (-234))) ((-244) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-287) |has| |#1| (-1208)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-310) -2718 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2718 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| #1#) . T) ((-414 |#1| #1#) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-498) |has| |#1| (-1208)) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-651 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-729 |#1| #1#) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) -12 (|has| |#1| (-310)) (|has| |#1| (-915))) ((-926) -2718 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-1008) -12 (|has| |#1| (-1008)) (|has| |#1| (-1208))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-353)) ((-1208) |has| |#1| (-1208)) ((-1211) |has| |#1| (-1208)) ((-1223) . T) ((-1227) -2718 (|has| |#1| (-353)) (|has| |#1| (-367)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))
+((-3699 (((-423 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3699 ((-423 |#2|) |#2|))) (-310) (-1249 (-170 |#1|))) (T -167))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(-10 -7 (-15 -3699 ((-423 |#2|) |#2|)))
+((-1591 (((-1141) (-1141) (-294)) 8)) (-1433 (((-649 (-696 (-283))) (-1165)) 81)) (-1443 (((-696 (-283)) (-1141)) 76)))
+(((-168) (-13 (-1223) (-10 -7 (-15 -1591 ((-1141) (-1141) (-294))) (-15 -1443 ((-696 (-283)) (-1141))) (-15 -1433 ((-649 (-696 (-283))) (-1165)))))) (T -168))
+((-1591 (*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
+(-13 (-1223) (-10 -7 (-15 -1591 ((-1141) (-1141) (-294))) (-15 -1443 ((-696 (-283)) (-1141))) (-15 -1433 ((-649 (-696 (-283))) (-1165)))))
+((-1324 (((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)) 14)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -1324 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)))) (-173) (-173)) (T -169))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6)))))
+(-10 -7 (-15 -1324 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 34)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2586 (($ $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2564 (((-112) $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2702 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-3057 ((|#1| $) NIL)) (-2691 (($ $) NIL (|has| |#1| (-1208)))) (-2556 (($ $) NIL (|has| |#1| (-1208)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-4332 (($ $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2207 (((-423 $) $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3714 (($ $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-310)))) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-2669 (($ $) NIL (|has| |#1| (-1208)))) (-2534 (($ $) NIL (|has| |#1| (-1208)))) (-2712 (($ $) NIL (|has| |#1| (-1208)))) (-2576 (($ $) NIL (|has| |#1| (-1208)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-2806 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2339 (($ $ $) NIL (|has| |#1| (-310)))) (-2692 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3485 (($ (-1179 |#1|)) NIL) (((-3 $ "failed") (-412 (-1179 |#1|))) NIL (|has| |#1| (-367)))) (-3351 (((-3 $ "failed") $) NIL)) (-3728 ((|#1| $) 13)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1727 (((-112) $) NIL (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3904 (((-927)) NIL)) (-3295 (($) NIL (|has| |#1| (-372)))) (-2348 (($ $ $) NIL (|has| |#1| (-310)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-310)))) (-3445 (($) NIL (|has| |#1| (-353)))) (-4127 (((-112) $) NIL (|has| |#1| (-353)))) (-2525 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-3848 (((-112) $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-1413 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-4408 (($) NIL (|has| |#1| (-1208)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-4315 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2861 (((-112) $) 36)) (-1589 (($ $ (-569)) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-3334 ((|#1| $) 47)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-3397 (((-1179 |#1|) $) NIL (|has| |#1| (-367)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-2616 (($ $) NIL (|has| |#1| (-1208)))) (-3472 (((-1179 |#1|) $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-2267 (($) NIL (|has| |#1| (-353)) CONST)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-1423 (($) NIL)) (-3740 ((|#1| $) 15)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-310)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| |#1| (-353)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3699 (((-423 $) $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-310)))) (-2374 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 48 (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-4367 (($ $) NIL (|has| |#1| (-1208)))) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-4409 (((-776) $) NIL (|has| |#1| (-310)))) (-1852 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-310)))) (-4180 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3430 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2851 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2760 (((-1179 |#1|)) NIL)) (-2725 (($ $) NIL (|has| |#1| (-1208)))) (-2588 (($ $) NIL (|has| |#1| (-1208)))) (-4056 (($) NIL (|has| |#1| (-353)))) (-2701 (($ $) NIL (|has| |#1| (-1208)))) (-2566 (($ $) NIL (|has| |#1| (-1208)))) (-2680 (($ $) NIL (|has| |#1| (-1208)))) (-2545 (($ $) NIL (|has| |#1| (-1208)))) (-1949 (((-1273 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-1384 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL) (((-1179 |#1|) $) NIL) (($ (-1179 |#1|)) NIL) (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) NIL (|has| |#1| (-1028))) (((-170 (-226)) $) NIL (|has| |#1| (-1028))) (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-1565 (($ $) 46)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-353))))) (-3016 (($ |#1| |#1|) 38)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 37) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-1488 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3176 (((-1179 |#1|) $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL)) (-4119 (($ $) NIL (|has| |#1| (-1208)))) (-2627 (($ $) NIL (|has| |#1| (-1208)))) (-2574 (((-112) $ $) NIL (-2718 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4094 (($ $) NIL (|has| |#1| (-1208)))) (-2601 (($ $) NIL (|has| |#1| (-1208)))) (-4144 (($ $) NIL (|has| |#1| (-1208)))) (-2648 (($ $) NIL (|has| |#1| (-1208)))) (-1817 ((|#1| $) NIL (|has| |#1| (-1208)))) (-1470 (($ $) NIL (|has| |#1| (-1208)))) (-2658 (($ $) NIL (|has| |#1| (-1208)))) (-4131 (($ $) NIL (|has| |#1| (-1208)))) (-2638 (($ $) NIL (|has| |#1| (-1208)))) (-4106 (($ $) NIL (|has| |#1| (-1208)))) (-2615 (($ $) NIL (|has| |#1| (-1208)))) (-3999 (($ $) NIL (|has| |#1| (-1066)))) (-1786 (($) 28 T CONST)) (-1796 (($) 30 T CONST)) (-3218 (((-1165) $) 23 (|has| |#1| (-833))) (((-1165) $ (-112)) 25 (|has| |#1| (-833))) (((-1278) (-827) $) 26 (|has| |#1| (-833))) (((-1278) (-827) $ (-112)) 27 (|has| |#1| (-833)))) (-2749 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 40)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) NIL (|has| |#1| (-1208))) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
+(((-170 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-173)) (T -170))
+NIL
+(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|)))
+((-1384 (((-898 |#1|) |#3|) 22)))
+(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -1384 ((-898 |#1|) |#3|))) (-1106) (-13 (-619 (-898 |#1|)) (-173)) (-166 |#2|)) (T -171))
+((-1384 (*1 *2 *3) (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1106)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -1384 ((-898 |#1|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-1464 (((-112) $) 9)) (-1453 (((-112) $ (-112)) 11)) (-4275 (($) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3885 (($ $) 14)) (-2388 (((-867) $) 18)) (-1788 (((-112) $) 8)) (-4113 (((-112) $ (-112)) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-172) (-13 (-1106) (-10 -8 (-15 -4275 ($)) (-15 -1788 ((-112) $)) (-15 -1464 ((-112) $)) (-15 -4113 ((-112) $ (-112))) (-15 -1453 ((-112) $ (-112))) (-15 -3885 ($ $))))) (T -172))
+((-4275 (*1 *1) (-5 *1 (-172))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4113 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1453 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3885 (*1 *1 *1) (-5 *1 (-172))))
+(-13 (-1106) (-10 -8 (-15 -4275 ($)) (-15 -1788 ((-112) $)) (-15 -1464 ((-112) $)) (-15 -4113 ((-112) $ (-112))) (-15 -1453 ((-112) $ (-112))) (-15 -3885 ($ $))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-173) (-140)) (T -173))
NIL
(-13 (-1055) (-111 $ $) (-10 -7 (-6 (-4445 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-1878 (($ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3026 (($ $) 6)))
(((-174) (-140)) (T -174))
-((-1878 (*1 *1 *1) (-4 *1 (-174))))
-(-13 (-10 -8 (-15 -1878 ($ $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 ((|#1| $) 81)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL)) (-1477 (($ $) 21)) (-1481 (($ |#1| (-1160 |#1|)) 50)) (-3908 (((-3 $ "failed") $) 123)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-1478 (((-1160 |#1|) $) 88)) (-1480 (((-1160 |#1|) $) 85)) (-1479 (((-1160 |#1|) $) 86)) (-2591 (((-112) $) NIL)) (-1474 (((-1160 |#1|) $) 94)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2079 (($ (-646 $)) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ (-646 $)) NIL) (($ $ $) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-4218 (($ $ (-551)) 97)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1473 (((-1160 |#1|) $) 95)) (-1475 (((-1160 (-412 |#1|)) $) 14)) (-3034 (($ (-412 |#1|)) 17) (($ |#1| (-1160 |#1|) (-1160 |#1|)) 40)) (-3310 (($ $) 99)) (-4396 (((-868) $) 140) (($ (-551)) 53) (($ |#1|) 54) (($ (-412 |#1|)) 38) (($ (-412 (-551))) NIL) (($ $) NIL)) (-3548 (((-776)) 69 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-1476 (((-1160 (-412 |#1|)) $) 20)) (-3528 (($) 27 T CONST)) (-3085 (($) 30 T CONST)) (-3473 (((-112) $ $) 37)) (-4399 (($ $ $) 121)) (-4287 (($ $) 112) (($ $ $) 109)) (-4289 (($ $ $) 107)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-412 |#1|) $) 117) (($ $ (-412 |#1|)) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL)))
-(((-175 |#1|) (-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -3034 ($ (-412 |#1|))) (-15 -3034 ($ |#1| (-1160 |#1|) (-1160 |#1|))) (-15 -1481 ($ |#1| (-1160 |#1|))) (-15 -1480 ((-1160 |#1|) $)) (-15 -1479 ((-1160 |#1|) $)) (-15 -1478 ((-1160 |#1|) $)) (-15 -3551 (|#1| $)) (-15 -1477 ($ $)) (-15 -1476 ((-1160 (-412 |#1|)) $)) (-15 -1475 ((-1160 (-412 |#1|)) $)) (-15 -1474 ((-1160 |#1|) $)) (-15 -1473 ((-1160 |#1|) $)) (-15 -4218 ($ $ (-551))) (-15 -3310 ($ $)))) (-310)) (T -175))
-((-3034 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) (-3034 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-1481 (*1 *1 *2 *3) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3551 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1477 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1160 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1160 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
-(-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -3034 ($ (-412 |#1|))) (-15 -3034 ($ |#1| (-1160 |#1|) (-1160 |#1|))) (-15 -1481 ($ |#1| (-1160 |#1|))) (-15 -1480 ((-1160 |#1|) $)) (-15 -1479 ((-1160 |#1|) $)) (-15 -1478 ((-1160 |#1|) $)) (-15 -3551 (|#1| $)) (-15 -1477 ($ $)) (-15 -1476 ((-1160 (-412 |#1|)) $)) (-15 -1475 ((-1160 (-412 |#1|)) $)) (-15 -1474 ((-1160 |#1|) $)) (-15 -1473 ((-1160 |#1|) $)) (-15 -4218 ($ $ (-551))) (-15 -3310 ($ $))))
-((-1482 (($ (-109) $) 15)) (-3659 (((-696 (-109)) (-511) $) 14)) (-4396 (((-868) $) 18)) (-1483 (((-646 (-109)) $) 8)))
-(((-176) (-13 (-618 (-868)) (-10 -8 (-15 -1483 ((-646 (-109)) $)) (-15 -1482 ($ (-109) $)) (-15 -3659 ((-696 (-109)) (-511) $))))) (T -176))
-((-1483 (*1 *2 *1) (-12 (-5 *2 (-646 (-109))) (-5 *1 (-176)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-3659 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -1483 ((-646 (-109)) $)) (-15 -1482 ($ (-109) $)) (-15 -3659 ((-696 (-109)) (-511) $))))
-((-1496 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 38)) (-1487 (((-949 |#1|) (-949 |#1|)) 22)) (-1492 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 34)) (-1485 (((-949 |#1|) (-949 |#1|)) 20)) (-1490 (((-949 |#1|) (-949 |#1|)) 28)) (-1489 (((-949 |#1|) (-949 |#1|)) 27)) (-1488 (((-949 |#1|) (-949 |#1|)) 26)) (-1493 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 35)) (-1491 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 33)) (-1821 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 32)) (-1486 (((-949 |#1|) (-949 |#1|)) 21)) (-1497 (((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|) 41)) (-1484 (((-949 |#1|) (-949 |#1|)) 8)) (-1495 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 37)) (-1494 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 36)))
-(((-177 |#1|) (-10 -7 (-15 -1484 ((-949 |#1|) (-949 |#1|))) (-15 -1485 ((-949 |#1|) (-949 |#1|))) (-15 -1486 ((-949 |#1|) (-949 |#1|))) (-15 -1487 ((-949 |#1|) (-949 |#1|))) (-15 -1488 ((-949 |#1|) (-949 |#1|))) (-15 -1489 ((-949 |#1|) (-949 |#1|))) (-15 -1490 ((-949 |#1|) (-949 |#1|))) (-15 -1821 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1491 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1492 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1493 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1494 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1495 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1496 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1497 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) (-13 (-367) (-1208) (-1008))) (T -177))
-((-1497 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1495 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1494 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1493 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1491 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1821 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1490 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))))
-(-10 -7 (-15 -1484 ((-949 |#1|) (-949 |#1|))) (-15 -1485 ((-949 |#1|) (-949 |#1|))) (-15 -1486 ((-949 |#1|) (-949 |#1|))) (-15 -1487 ((-949 |#1|) (-949 |#1|))) (-15 -1488 ((-949 |#1|) (-949 |#1|))) (-15 -1489 ((-949 |#1|) (-949 |#1|))) (-15 -1490 ((-949 |#1|) (-949 |#1|))) (-15 -1821 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1491 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1492 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1493 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1494 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1495 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1496 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1497 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|)))
-((-2788 ((|#2| |#3|) 28)))
-(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -2788 (|#2| |#3|))) (-173) (-1248 |#1|) (-729 |#1| |#2|)) (T -178))
-((-2788 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1248 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-729 *4 *2)))))
-(-10 -7 (-15 -2788 (|#2| |#3|)))
-((-3217 (((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)) 44 (|has| (-952 |#2|) (-892 |#1|)))))
-(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-952 |#2|) (-892 |#1|)) (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))) |%noBranch|)) (-1107) (-13 (-892 |#1|) (-173)) (-166 |#2|)) (T -179))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *3)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *3 (-166 *6)) (-4 (-952 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-952 |#2|) (-892 |#1|)) (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))) |%noBranch|))
-((-1499 (((-646 |#1|) (-646 |#1|) |#1|) 41)) (-1498 (((-646 |#1|) |#1| (-646 |#1|)) 20)) (-2270 (((-646 |#1|) (-646 (-646 |#1|)) (-646 |#1|)) 36) ((|#1| (-646 |#1|) (-646 |#1|)) 32)))
-(((-180 |#1|) (-10 -7 (-15 -1498 ((-646 |#1|) |#1| (-646 |#1|))) (-15 -2270 (|#1| (-646 |#1|) (-646 |#1|))) (-15 -2270 ((-646 |#1|) (-646 (-646 |#1|)) (-646 |#1|))) (-15 -1499 ((-646 |#1|) (-646 |#1|) |#1|))) (-310)) (T -180))
-((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-646 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))) (-2270 (*1 *2 *3 *2) (-12 (-5 *3 (-646 (-646 *4))) (-5 *2 (-646 *4)) (-4 *4 (-310)) (-5 *1 (-180 *4)))) (-2270 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) (-1498 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
-(-10 -7 (-15 -1498 ((-646 |#1|) |#1| (-646 |#1|))) (-15 -2270 (|#1| (-646 |#1|) (-646 |#1|))) (-15 -2270 ((-646 |#1|) (-646 (-646 |#1|)) (-646 |#1|))) (-15 -1499 ((-646 |#1|) (-646 |#1|) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3757 (((-1223) $) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 10)) (-4396 (((-868) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-181) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))) (T -181))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-181)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))
-((-1508 (((-2 (|:| |start| |#2|) (|:| -1964 (-410 |#2|))) |#2|) 66)) (-1507 ((|#1| |#1|) 58)) (-1506 (((-169 |#1|) |#2|) 93)) (-1505 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-1504 ((|#2| |#2|) 91)) (-1503 (((-410 |#2|) |#2| |#1|) 121) (((-410 |#2|) |#2| |#1| (-112)) 88)) (-3554 ((|#1| |#2|) 120)) (-1502 ((|#2| |#2|) 135)) (-4182 (((-410 |#2|) |#2|) 158) (((-410 |#2|) |#2| |#1|) 33) (((-410 |#2|) |#2| |#1| (-112)) 157)) (-1501 (((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2|) 156) (((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2| (-112)) 81)) (-1500 (((-646 (-169 |#1|)) |#2| |#1|) 42) (((-646 (-169 |#1|)) |#2|) 43)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -1500 ((-646 (-169 |#1|)) |#2|)) (-15 -1500 ((-646 (-169 |#1|)) |#2| |#1|)) (-15 -1501 ((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2| (-112))) (-15 -1501 ((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2|)) (-15 -4182 ((-410 |#2|) |#2| |#1| (-112))) (-15 -4182 ((-410 |#2|) |#2| |#1|)) (-15 -4182 ((-410 |#2|) |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -3554 (|#1| |#2|)) (-15 -1503 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1503 ((-410 |#2|) |#2| |#1|)) (-15 -1504 (|#2| |#2|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#2|)) (-15 -1506 ((-169 |#1|) |#2|)) (-15 -1507 (|#1| |#1|)) (-15 -1508 ((-2 (|:| |start| |#2|) (|:| -1964 (-410 |#2|))) |#2|))) (-13 (-367) (-853)) (-1248 (-169 |#1|))) (T -182))
-((-1508 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-2 (|:| |start| *3) (|:| -1964 (-410 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-1507 (*1 *2 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1248 (-169 *2))))) (-1506 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1248 *2)))) (-1505 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1248 (-169 *2))))) (-1505 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1248 (-169 *2))))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1248 (-169 *3))))) (-1503 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-3554 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1248 (-169 *2))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1248 (-169 *3))))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-4182 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-4182 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-1501 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-646 (-2 (|:| -1964 (-646 *3)) (|:| -1714 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-1501 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) (-5 *2 (-646 (-2 (|:| -1964 (-646 *3)) (|:| -1714 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1248 (-169 *5))))) (-1500 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-646 (-169 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))) (-1500 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-646 (-169 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))))
-(-10 -7 (-15 -1500 ((-646 (-169 |#1|)) |#2|)) (-15 -1500 ((-646 (-169 |#1|)) |#2| |#1|)) (-15 -1501 ((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2| (-112))) (-15 -1501 ((-646 (-2 (|:| -1964 (-646 |#2|)) (|:| -1714 |#1|))) |#2| |#2|)) (-15 -4182 ((-410 |#2|) |#2| |#1| (-112))) (-15 -4182 ((-410 |#2|) |#2| |#1|)) (-15 -4182 ((-410 |#2|) |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -3554 (|#1| |#2|)) (-15 -1503 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1503 ((-410 |#2|) |#2| |#1|)) (-15 -1504 (|#2| |#2|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#2|)) (-15 -1506 ((-169 |#1|) |#2|)) (-15 -1507 (|#1| |#1|)) (-15 -1508 ((-2 (|:| |start| |#2|) (|:| -1964 (-410 |#2|))) |#2|)))
-((-1509 (((-3 |#2| "failed") |#2|) 20)) (-1510 (((-776) |#2|) 23)) (-1511 ((|#2| |#2| |#2|) 25)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -1509 ((-3 |#2| "failed") |#2|)) (-15 -1510 ((-776) |#2|)) (-15 -1511 (|#2| |#2| |#2|))) (-1222) (-679 |#1|)) (T -183))
-((-1511 (*1 *2 *2 *2) (-12 (-4 *3 (-1222)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-1222)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))) (-1509 (*1 *2 *2) (|partial| -12 (-4 *3 (-1222)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
-(-10 -7 (-15 -1509 ((-3 |#2| "failed") |#2|)) (-15 -1510 ((-776) |#2|)) (-15 -1511 (|#2| |#2| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-1514 (((-646 (-870)) $) NIL)) (-3991 (((-511) $) 8)) (-3681 (((-1165) $) NIL)) (-1516 (((-188) $) 10)) (-3053 (((-112) $ (-511)) NIL)) (-3682 (((-1126) $) NIL)) (-1512 (((-696 $) (-511)) 17)) (-1515 (((-646 (-112)) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2939 (((-55) $) 12)) (-3473 (((-112) $ $) NIL)))
-(((-184) (-13 (-187) (-10 -8 (-15 -1512 ((-696 $) (-511)))))) (T -184))
-((-1512 (*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-184))) (-5 *1 (-184)))))
-(-13 (-187) (-10 -8 (-15 -1512 ((-696 $) (-511)))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1589 ((|#1| $) 7)) (-4396 (((-868) $) 14)) (-3680 (((-112) $ $) NIL)) (-1513 (((-646 (-1188)) $) 10)) (-3473 (((-112) $ $) 12)))
-(((-185 |#1|) (-13 (-1107) (-10 -8 (-15 -1589 (|#1| $)) (-15 -1513 ((-646 (-1188)) $)))) (-187)) (T -185))
-((-1589 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(-13 (-1107) (-10 -8 (-15 -1589 (|#1| $)) (-15 -1513 ((-646 (-1188)) $))))
-((-1514 (((-646 (-870)) $) 16)) (-1516 (((-188) $) 8)) (-1515 (((-646 (-112)) $) 13)) (-2939 (((-55) $) 10)))
-(((-186 |#1|) (-10 -8 (-15 -1514 ((-646 (-870)) |#1|)) (-15 -1515 ((-646 (-112)) |#1|)) (-15 -1516 ((-188) |#1|)) (-15 -2939 ((-55) |#1|))) (-187)) (T -186))
-NIL
-(-10 -8 (-15 -1514 ((-646 (-870)) |#1|)) (-15 -1515 ((-646 (-112)) |#1|)) (-15 -1516 ((-188) |#1|)) (-15 -2939 ((-55) |#1|)))
-((-2986 (((-112) $ $) 7)) (-1514 (((-646 (-870)) $) 19)) (-3991 (((-511) $) 16)) (-3681 (((-1165) $) 10)) (-1516 (((-188) $) 21)) (-3053 (((-112) $ (-511)) 14)) (-3682 (((-1126) $) 11)) (-1515 (((-646 (-112)) $) 20)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2939 (((-55) $) 15)) (-3473 (((-112) $ $) 6)))
-(((-187) (-140)) (T -187))
-((-1516 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-646 (-112))))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-646 (-870))))))
-(-13 (-841 (-511)) (-10 -8 (-15 -1516 ((-188) $)) (-15 -1515 ((-646 (-112)) $)) (-15 -1514 ((-646 (-870)) $))))
-(((-102) . T) ((-618 (-868)) . T) ((-841 (-511)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-8 (($) 7 T CONST)) (-4396 (((-868) $) 12)) (-9 (($) 6 T CONST)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 10)))
-(((-188) (-13 (-1107) (-10 -8 (-15 -9 ($) -4402) (-15 -8 ($) -4402) (-15 -7 ($) -4402)))) (T -188))
-((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188))))
-(-13 (-1107) (-10 -8 (-15 -9 ($) -4402) (-15 -8 ($) -4402) (-15 -7 ($) -4402)))
-((-4092 ((|#2| |#2|) 28)) (-4095 (((-112) |#2|) 19)) (-4093 (((-317 |#1|) |#2|) 12)) (-4094 (((-317 |#1|) |#2|) 14)) (-4090 ((|#2| |#2| (-1183)) 69) ((|#2| |#2|) 70)) (-4096 (((-169 (-317 |#1|)) |#2|) 10)) (-4091 ((|#2| |#2| (-1183)) 66) ((|#2| |#2|) 60)))
-(((-189 |#1| |#2|) (-10 -7 (-15 -4090 (|#2| |#2|)) (-15 -4090 (|#2| |#2| (-1183))) (-15 -4091 (|#2| |#2|)) (-15 -4091 (|#2| |#2| (-1183))) (-15 -4093 ((-317 |#1|) |#2|)) (-15 -4094 ((-317 |#1|) |#2|)) (-15 -4095 ((-112) |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4096 ((-169 (-317 |#1|)) |#2|))) (-13 (-562) (-1044 (-551))) (-13 (-27) (-1208) (-426 (-169 |#1|)))) (T -189))
-((-4096 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3)))))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-317 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-317 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4091 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3)))))) (-4090 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 (-169 *4)))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3)))))))
-(-10 -7 (-15 -4090 (|#2| |#2|)) (-15 -4090 (|#2| |#2| (-1183))) (-15 -4091 (|#2| |#2|)) (-15 -4091 (|#2| |#2| (-1183))) (-15 -4093 ((-317 |#1|) |#2|)) (-15 -4094 ((-317 |#1|) |#2|)) (-15 -4095 ((-112) |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4096 ((-169 (-317 |#1|)) |#2|)))
-((-1520 (((-1272 (-694 (-952 |#1|))) (-1272 (-694 |#1|))) 26)) (-4396 (((-1272 (-694 (-412 (-952 |#1|)))) (-1272 (-694 |#1|))) 37)))
-(((-190 |#1|) (-10 -7 (-15 -1520 ((-1272 (-694 (-952 |#1|))) (-1272 (-694 |#1|)))) (-15 -4396 ((-1272 (-694 (-412 (-952 |#1|)))) (-1272 (-694 |#1|))))) (-173)) (T -190))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-1272 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1272 (-694 (-412 (-952 *4))))) (-5 *1 (-190 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-1272 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1272 (-694 (-952 *4)))) (-5 *1 (-190 *4)))))
-(-10 -7 (-15 -1520 ((-1272 (-694 (-952 |#1|))) (-1272 (-694 |#1|)))) (-15 -4396 ((-1272 (-694 (-412 (-952 |#1|)))) (-1272 (-694 |#1|)))))
-((-1528 (((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551)))) 88)) (-1530 (((-1185 (-412 (-551))) (-646 (-551)) (-646 (-551))) 99)) (-1521 (((-1185 (-412 (-551))) (-551)) 55)) (-4304 (((-1185 (-412 (-551))) (-551)) 74)) (-4217 (((-412 (-551)) (-1185 (-412 (-551)))) 84)) (-1522 (((-1185 (-412 (-551))) (-551)) 37)) (-1525 (((-1185 (-412 (-551))) (-551)) 67)) (-1524 (((-1185 (-412 (-551))) (-551)) 61)) (-1527 (((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551)))) 82)) (-3310 (((-1185 (-412 (-551))) (-551)) 29)) (-1526 (((-412 (-551)) (-1185 (-412 (-551))) (-1185 (-412 (-551)))) 86)) (-1523 (((-1185 (-412 (-551))) (-551)) 35)) (-1529 (((-1185 (-412 (-551))) (-646 (-551))) 95)))
-(((-191) (-10 -7 (-15 -3310 ((-1185 (-412 (-551))) (-551))) (-15 -1521 ((-1185 (-412 (-551))) (-551))) (-15 -1522 ((-1185 (-412 (-551))) (-551))) (-15 -1523 ((-1185 (-412 (-551))) (-551))) (-15 -1524 ((-1185 (-412 (-551))) (-551))) (-15 -1525 ((-1185 (-412 (-551))) (-551))) (-15 -4304 ((-1185 (-412 (-551))) (-551))) (-15 -1526 ((-412 (-551)) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -1527 ((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -4217 ((-412 (-551)) (-1185 (-412 (-551))))) (-15 -1528 ((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -1529 ((-1185 (-412 (-551))) (-646 (-551)))) (-15 -1530 ((-1185 (-412 (-551))) (-646 (-551)) (-646 (-551)))))) (T -191))
-((-1530 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))) (-1528 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1185 (-412 (-551)))) (-5 *2 (-412 (-551))) (-5 *1 (-191)))) (-1527 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))) (-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-1185 (-412 (-551)))) (-5 *2 (-412 (-551))) (-5 *1 (-191)))) (-4304 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-1524 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-1523 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-1522 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-1521 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))) (-3310 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(-10 -7 (-15 -3310 ((-1185 (-412 (-551))) (-551))) (-15 -1521 ((-1185 (-412 (-551))) (-551))) (-15 -1522 ((-1185 (-412 (-551))) (-551))) (-15 -1523 ((-1185 (-412 (-551))) (-551))) (-15 -1524 ((-1185 (-412 (-551))) (-551))) (-15 -1525 ((-1185 (-412 (-551))) (-551))) (-15 -4304 ((-1185 (-412 (-551))) (-551))) (-15 -1526 ((-412 (-551)) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -1527 ((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -4217 ((-412 (-551)) (-1185 (-412 (-551))))) (-15 -1528 ((-1185 (-412 (-551))) (-1185 (-412 (-551))) (-1185 (-412 (-551))))) (-15 -1529 ((-1185 (-412 (-551))) (-646 (-551)))) (-15 -1530 ((-1185 (-412 (-551))) (-646 (-551)) (-646 (-551)))))
-((-1532 (((-410 (-1177 (-551))) (-551)) 38)) (-1531 (((-646 (-1177 (-551))) (-551)) 33)) (-3222 (((-1177 (-551)) (-551)) 28)))
-(((-192) (-10 -7 (-15 -1531 ((-646 (-1177 (-551))) (-551))) (-15 -3222 ((-1177 (-551)) (-551))) (-15 -1532 ((-410 (-1177 (-551))) (-551))))) (T -192))
-((-1532 (*1 *2 *3) (-12 (-5 *2 (-410 (-1177 (-551)))) (-5 *1 (-192)) (-5 *3 (-551)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-192)) (-5 *3 (-551)))) (-1531 (*1 *2 *3) (-12 (-5 *2 (-646 (-1177 (-551)))) (-5 *1 (-192)) (-5 *3 (-551)))))
-(-10 -7 (-15 -1531 ((-646 (-1177 (-551))) (-551))) (-15 -3222 ((-1177 (-551)) (-551))) (-15 -1532 ((-410 (-1177 (-551))) (-551))))
-((-1726 (((-1160 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-1747 (((-646 (-1165)) (-1160 (-226))) NIL)) (-1533 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-1724 (((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226)))) NIL)) (-1746 (((-646 (-1165)) (-646 (-226))) NIL)) (-1748 (((-226) (-1095 (-847 (-226)))) 31)) (-1749 (((-226) (-1095 (-847 (-226)))) 32)) (-1535 (((-382) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-1534 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-1744 (((-1165) (-226)) NIL)) (-2989 (((-1165) (-646 (-1165))) 27)) (-1536 (((-1041) (-1183) (-1183) (-1041)) 13)))
-(((-193) (-10 -7 (-15 -1533 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1534 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -1535 ((-382) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1724 ((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))) (-15 -2989 ((-1165) (-646 (-1165)))) (-15 -1536 ((-1041) (-1183) (-1183) (-1041))))) (T -193))
-((-1536 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-193)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-193)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-193)))) (-1724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-226))) (-5 *4 (-1183)) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-646 (-226))) (-5 *1 (-193)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-382)) (-5 *1 (-193)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193)))))
-(-10 -7 (-15 -1533 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1534 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -1535 ((-382) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1724 ((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))) (-15 -2989 ((-1165) (-646 (-1165)))) (-15 -1536 ((-1041) (-1183) (-1183) (-1041))))
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 61) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-3026 (*1 *1 *1) (-4 *1 (-174))))
+(-13 (-10 -8 (-15 -3026 ($ $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 ((|#1| $) 81)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL)) (-1513 (($ $) 21)) (-1556 (($ |#1| (-1163 |#1|)) 50)) (-3351 (((-3 $ "failed") $) 123)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-1523 (((-1163 |#1|) $) 88)) (-1545 (((-1163 |#1|) $) 85)) (-1533 (((-1163 |#1|) $) 86)) (-2861 (((-112) $) NIL)) (-1486 (((-1163 |#1|) $) 94)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1798 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-4295 (($ $ (-569)) 97)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1477 (((-1163 |#1|) $) 95)) (-1495 (((-1163 (-412 |#1|)) $) 14)) (-1879 (($ (-412 |#1|)) 17) (($ |#1| (-1163 |#1|) (-1163 |#1|)) 40)) (-2745 (($ $) 99)) (-2388 (((-867) $) 140) (($ (-569)) 53) (($ |#1|) 54) (($ (-412 |#1|)) 38) (($ (-412 (-569))) NIL) (($ $) NIL)) (-3263 (((-776)) 69 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1504 (((-1163 (-412 |#1|)) $) 20)) (-1786 (($) 27 T CONST)) (-1796 (($) 30 T CONST)) (-2853 (((-112) $ $) 37)) (-2956 (($ $ $) 121)) (-2946 (($ $) 112) (($ $ $) 109)) (-2935 (($ $ $) 107)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-412 |#1|) $) 117) (($ $ (-412 |#1|)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
+(((-175 |#1|) (-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1879 ($ (-412 |#1|))) (-15 -1879 ($ |#1| (-1163 |#1|) (-1163 |#1|))) (-15 -1556 ($ |#1| (-1163 |#1|))) (-15 -1545 ((-1163 |#1|) $)) (-15 -1533 ((-1163 |#1|) $)) (-15 -1523 ((-1163 |#1|) $)) (-15 -3300 (|#1| $)) (-15 -1513 ($ $)) (-15 -1504 ((-1163 (-412 |#1|)) $)) (-15 -1495 ((-1163 (-412 |#1|)) $)) (-15 -1486 ((-1163 |#1|) $)) (-15 -1477 ((-1163 |#1|) $)) (-15 -4295 ($ $ (-569))) (-15 -2745 ($ $)))) (-310)) (T -175))
+((-1879 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) (-1879 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-1556 (*1 *1 *2 *3) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3300 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2745 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
+(-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1879 ($ (-412 |#1|))) (-15 -1879 ($ |#1| (-1163 |#1|) (-1163 |#1|))) (-15 -1556 ($ |#1| (-1163 |#1|))) (-15 -1545 ((-1163 |#1|) $)) (-15 -1533 ((-1163 |#1|) $)) (-15 -1523 ((-1163 |#1|) $)) (-15 -3300 (|#1| $)) (-15 -1513 ($ $)) (-15 -1504 ((-1163 (-412 |#1|)) $)) (-15 -1495 ((-1163 (-412 |#1|)) $)) (-15 -1486 ((-1163 |#1|) $)) (-15 -1477 ((-1163 |#1|) $)) (-15 -4295 ($ $ (-569))) (-15 -2745 ($ $))))
+((-1568 (($ (-109) $) 15)) (-1924 (((-696 (-109)) (-511) $) 14)) (-2388 (((-867) $) 18)) (-1578 (((-649 (-109)) $) 8)))
+(((-176) (-13 (-618 (-867)) (-10 -8 (-15 -1578 ((-649 (-109)) $)) (-15 -1568 ($ (-109) $)) (-15 -1924 ((-696 (-109)) (-511) $))))) (T -176))
+((-1578 (*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-1924 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1578 ((-649 (-109)) $)) (-15 -1568 ($ (-109) $)) (-15 -1924 ((-696 (-109)) (-511) $))))
+((-1731 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 38)) (-1625 (((-949 |#1|) (-949 |#1|)) 22)) (-1682 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 34)) (-1604 (((-949 |#1|) (-949 |#1|)) 20)) (-1657 (((-949 |#1|) (-949 |#1|)) 28)) (-1646 (((-949 |#1|) (-949 |#1|)) 27)) (-1636 (((-949 |#1|) (-949 |#1|)) 26)) (-1692 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 35)) (-1668 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 33)) (-3683 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 32)) (-1615 (((-949 |#1|) (-949 |#1|)) 21)) (-1743 (((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|) 41)) (-1592 (((-949 |#1|) (-949 |#1|)) 8)) (-1718 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 37)) (-1705 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 36)))
+(((-177 |#1|) (-10 -7 (-15 -1592 ((-949 |#1|) (-949 |#1|))) (-15 -1604 ((-949 |#1|) (-949 |#1|))) (-15 -1615 ((-949 |#1|) (-949 |#1|))) (-15 -1625 ((-949 |#1|) (-949 |#1|))) (-15 -1636 ((-949 |#1|) (-949 |#1|))) (-15 -1646 ((-949 |#1|) (-949 |#1|))) (-15 -1657 ((-949 |#1|) (-949 |#1|))) (-15 -3683 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1668 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1682 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1692 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1705 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1718 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1731 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1743 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) (-13 (-367) (-1208) (-1008))) (T -177))
+((-1743 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1731 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1718 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1705 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1692 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-3683 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))))
+(-10 -7 (-15 -1592 ((-949 |#1|) (-949 |#1|))) (-15 -1604 ((-949 |#1|) (-949 |#1|))) (-15 -1615 ((-949 |#1|) (-949 |#1|))) (-15 -1625 ((-949 |#1|) (-949 |#1|))) (-15 -1636 ((-949 |#1|) (-949 |#1|))) (-15 -1646 ((-949 |#1|) (-949 |#1|))) (-15 -1657 ((-949 |#1|) (-949 |#1|))) (-15 -3683 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1668 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1682 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1692 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1705 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1718 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1731 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1743 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|)))
+((-3176 ((|#2| |#3|) 28)))
+(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -3176 (|#2| |#3|))) (-173) (-1249 |#1|) (-729 |#1| |#2|)) (T -178))
+((-3176 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1249 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-729 *4 *2)))))
+(-10 -7 (-15 -3176 (|#2| |#3|)))
+((-3032 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 44 (|has| (-958 |#2|) (-892 |#1|)))))
+(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|)) (-1106) (-13 (-892 |#1|) (-173)) (-166 |#2|)) (T -179))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|))
+((-3593 (((-649 |#1|) (-649 |#1|) |#1|) 41)) (-3583 (((-649 |#1|) |#1| (-649 |#1|)) 20)) (-2772 (((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|)) 36) ((|#1| (-649 |#1|) (-649 |#1|)) 32)))
+(((-180 |#1|) (-10 -7 (-15 -3583 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2772 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2772 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -3593 ((-649 |#1|) (-649 |#1|) |#1|))) (-310)) (T -180))
+((-3593 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))) (-2772 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310)) (-5 *1 (-180 *4)))) (-2772 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) (-3583 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+(-10 -7 (-15 -3583 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2772 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2772 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -3593 ((-649 |#1|) (-649 |#1|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-3778 (((-1222) $) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 10)) (-2388 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-181) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))) (T -181))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-181)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))
+((-3698 (((-2 (|:| |start| |#2|) (|:| -2671 (-423 |#2|))) |#2|) 66)) (-3689 ((|#1| |#1|) 58)) (-3674 (((-170 |#1|) |#2|) 93)) (-3662 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3653 ((|#2| |#2|) 91)) (-3641 (((-423 |#2|) |#2| |#1|) 121) (((-423 |#2|) |#2| |#1| (-112)) 88)) (-3334 ((|#1| |#2|) 120)) (-3628 ((|#2| |#2|) 135)) (-3699 (((-423 |#2|) |#2|) 158) (((-423 |#2|) |#2| |#1|) 33) (((-423 |#2|) |#2| |#1| (-112)) 157)) (-3616 (((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2|) 156) (((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2| (-112)) 81)) (-3605 (((-649 (-170 |#1|)) |#2| |#1|) 42) (((-649 (-170 |#1|)) |#2|) 43)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3605 ((-649 (-170 |#1|)) |#2|)) (-15 -3605 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3616 ((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2| (-112))) (-15 -3616 ((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2|)) (-15 -3699 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3699 ((-423 |#2|) |#2| |#1|)) (-15 -3699 ((-423 |#2|) |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3334 (|#1| |#2|)) (-15 -3641 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3641 ((-423 |#2|) |#2| |#1|)) (-15 -3653 (|#2| |#2|)) (-15 -3662 (|#1| |#2| |#1|)) (-15 -3662 (|#1| |#2|)) (-15 -3674 ((-170 |#1|) |#2|)) (-15 -3689 (|#1| |#1|)) (-15 -3698 ((-2 (|:| |start| |#2|) (|:| -2671 (-423 |#2|))) |#2|))) (-13 (-367) (-853)) (-1249 (-170 |#1|))) (T -182))
+((-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-2 (|:| |start| *3) (|:| -2671 (-423 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3689 (*1 *2 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-3674 (*1 *2 *3) (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1249 *2)))) (-3662 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-3662 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1249 (-170 *3))))) (-3641 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3641 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3334 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1249 (-170 *3))))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3699 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3699 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3616 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -2671 (-649 *3)) (|:| -3534 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3616 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -2671 (-649 *3)) (|:| -3534 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1249 (-170 *5))))) (-3605 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3605 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(-10 -7 (-15 -3605 ((-649 (-170 |#1|)) |#2|)) (-15 -3605 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3616 ((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2| (-112))) (-15 -3616 ((-649 (-2 (|:| -2671 (-649 |#2|)) (|:| -3534 |#1|))) |#2| |#2|)) (-15 -3699 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3699 ((-423 |#2|) |#2| |#1|)) (-15 -3699 ((-423 |#2|) |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3334 (|#1| |#2|)) (-15 -3641 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3641 ((-423 |#2|) |#2| |#1|)) (-15 -3653 (|#2| |#2|)) (-15 -3662 (|#1| |#2| |#1|)) (-15 -3662 (|#1| |#2|)) (-15 -3674 ((-170 |#1|) |#2|)) (-15 -3689 (|#1| |#1|)) (-15 -3698 ((-2 (|:| |start| |#2|) (|:| -2671 (-423 |#2|))) |#2|)))
+((-3711 (((-3 |#2| "failed") |#2|) 20)) (-3725 (((-776) |#2|) 23)) (-3739 ((|#2| |#2| |#2|) 25)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -3711 ((-3 |#2| "failed") |#2|)) (-15 -3725 ((-776) |#2|)) (-15 -3739 (|#2| |#2| |#2|))) (-1223) (-679 |#1|)) (T -183))
+((-3739 (*1 *2 *2 *2) (-12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-1223)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))) (-3711 (*1 *2 *2) (|partial| -12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
+(-10 -7 (-15 -3711 ((-3 |#2| "failed") |#2|)) (-15 -3725 ((-776) |#2|)) (-15 -3739 (|#2| |#2| |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1534 ((|#1| $) 7)) (-2388 (((-867) $) 14)) (-2040 (((-112) $ $) NIL)) (-3856 (((-649 (-1188)) $) 10)) (-2853 (((-112) $ $) 12)))
+(((-184 |#1|) (-13 (-1106) (-10 -8 (-15 -1534 (|#1| $)) (-15 -3856 ((-649 (-1188)) $)))) (-186)) (T -184))
+((-1534 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
+(-13 (-1106) (-10 -8 (-15 -1534 (|#1| $)) (-15 -3856 ((-649 (-1188)) $))))
+((-1724 (((-649 (-870)) $) 16)) (-3806 (((-187) $) 8)) (-3763 (((-649 (-112)) $) 13)) (-3450 (((-55) $) 10)))
+(((-185 |#1|) (-10 -8 (-15 -1724 ((-649 (-870)) |#1|)) (-15 -3763 ((-649 (-112)) |#1|)) (-15 -3806 ((-187) |#1|)) (-15 -3450 ((-55) |#1|))) (-186)) (T -185))
+NIL
+(-10 -8 (-15 -1724 ((-649 (-870)) |#1|)) (-15 -3763 ((-649 (-112)) |#1|)) (-15 -3806 ((-187) |#1|)) (-15 -3450 ((-55) |#1|)))
+((-2383 (((-112) $ $) 7)) (-1724 (((-649 (-870)) $) 19)) (-3458 (((-511) $) 16)) (-2050 (((-1165) $) 10)) (-3806 (((-187) $) 21)) (-2016 (((-112) $ (-511)) 14)) (-3461 (((-1126) $) 11)) (-3763 (((-649 (-112)) $) 20)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3450 (((-55) $) 15)) (-2853 (((-112) $ $) 6)))
+(((-186) (-140)) (T -186))
+((-3806 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
+(-13 (-840 (-511)) (-10 -8 (-15 -3806 ((-187) $)) (-15 -3763 ((-649 (-112)) $)) (-15 -1724 ((-649 (-870)) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-840 (-511)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-8 (($) 7 T CONST)) (-2388 (((-867) $) 12)) (-9 (($) 6 T CONST)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 10)))
+(((-187) (-13 (-1106) (-10 -8 (-15 -9 ($) -3600) (-15 -8 ($) -3600) (-15 -7 ($) -3600)))) (T -187))
+((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187))))
+(-13 (-1106) (-10 -8 (-15 -9 ($) -3600) (-15 -8 ($) -3600) (-15 -7 ($) -3600)))
+((-2383 (((-112) $ $) NIL)) (-1724 (((-649 (-870)) $) NIL)) (-3458 (((-511) $) 8)) (-2050 (((-1165) $) NIL)) (-3806 (((-187) $) 10)) (-2016 (((-112) $ (-511)) NIL)) (-3461 (((-1126) $) NIL)) (-3750 (((-696 $) (-511)) 17)) (-3763 (((-649 (-112)) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3450 (((-55) $) 12)) (-2853 (((-112) $ $) NIL)))
+(((-188) (-13 (-186) (-10 -8 (-15 -3750 ((-696 $) (-511)))))) (T -188))
+((-3750 (*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
+(-13 (-186) (-10 -8 (-15 -3750 ((-696 $) (-511)))))
+((-2309 ((|#2| |#2|) 28)) (-2318 (((-112) |#2|) 19)) (-3728 (((-319 |#1|) |#2|) 12)) (-3740 (((-319 |#1|) |#2|) 14)) (-2293 ((|#2| |#2| (-1183)) 69) ((|#2| |#2|) 70)) (-2327 (((-170 (-319 |#1|)) |#2|) 10)) (-2301 ((|#2| |#2| (-1183)) 66) ((|#2| |#2|) 60)))
+(((-189 |#1| |#2|) (-10 -7 (-15 -2293 (|#2| |#2|)) (-15 -2293 (|#2| |#2| (-1183))) (-15 -2301 (|#2| |#2|)) (-15 -2301 (|#2| |#2| (-1183))) (-15 -3728 ((-319 |#1|) |#2|)) (-15 -3740 ((-319 |#1|) |#2|)) (-15 -2318 ((-112) |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2327 ((-170 (-319 |#1|)) |#2|))) (-13 (-561) (-1044 (-569))) (-13 (-27) (-1208) (-435 (-170 |#1|)))) (T -189))
+((-2327 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-170 (-319 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))) (-2293 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))))
+(-10 -7 (-15 -2293 (|#2| |#2|)) (-15 -2293 (|#2| |#2| (-1183))) (-15 -2301 (|#2| |#2|)) (-15 -2301 (|#2| |#2| (-1183))) (-15 -3728 ((-319 |#1|) |#2|)) (-15 -3740 ((-319 |#1|) |#2|)) (-15 -2318 ((-112) |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2327 ((-170 (-319 |#1|)) |#2|)))
+((-3773 (((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|))) 26)) (-2388 (((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|))) 37)))
+(((-190 |#1|) (-10 -7 (-15 -3773 ((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|)))) (-15 -2388 ((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|))))) (-173)) (T -190))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1273 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1273 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
+(-10 -7 (-15 -3773 ((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|)))) (-15 -2388 ((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|)))))
+((-3876 (((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 88)) (-3900 (((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569))) 99)) (-3788 (((-1185 (-412 (-569))) (-569)) 55)) (-3640 (((-1185 (-412 (-569))) (-569)) 74)) (-1679 (((-412 (-569)) (-1185 (-412 (-569)))) 84)) (-3801 (((-1185 (-412 (-569))) (-569)) 37)) (-3837 (((-1185 (-412 (-569))) (-569)) 67)) (-3825 (((-1185 (-412 (-569))) (-569)) 61)) (-3864 (((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 82)) (-2745 (((-1185 (-412 (-569))) (-569)) 29)) (-3849 (((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 86)) (-3813 (((-1185 (-412 (-569))) (-569)) 35)) (-3888 (((-1185 (-412 (-569))) (-649 (-569))) 95)))
+(((-191) (-10 -7 (-15 -2745 ((-1185 (-412 (-569))) (-569))) (-15 -3788 ((-1185 (-412 (-569))) (-569))) (-15 -3801 ((-1185 (-412 (-569))) (-569))) (-15 -3813 ((-1185 (-412 (-569))) (-569))) (-15 -3825 ((-1185 (-412 (-569))) (-569))) (-15 -3837 ((-1185 (-412 (-569))) (-569))) (-15 -3640 ((-1185 (-412 (-569))) (-569))) (-15 -3849 ((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3864 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -1679 ((-412 (-569)) (-1185 (-412 (-569))))) (-15 -3876 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3888 ((-1185 (-412 (-569))) (-649 (-569)))) (-15 -3900 ((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569)))))) (T -191))
+((-3900 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-3876 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-3864 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-3849 (*1 *2 *3 *3) (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-3640 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3837 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3825 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3788 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(-10 -7 (-15 -2745 ((-1185 (-412 (-569))) (-569))) (-15 -3788 ((-1185 (-412 (-569))) (-569))) (-15 -3801 ((-1185 (-412 (-569))) (-569))) (-15 -3813 ((-1185 (-412 (-569))) (-569))) (-15 -3825 ((-1185 (-412 (-569))) (-569))) (-15 -3837 ((-1185 (-412 (-569))) (-569))) (-15 -3640 ((-1185 (-412 (-569))) (-569))) (-15 -3849 ((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3864 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -1679 ((-412 (-569)) (-1185 (-412 (-569))))) (-15 -3876 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3888 ((-1185 (-412 (-569))) (-649 (-569)))) (-15 -3900 ((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569)))))
+((-3925 (((-423 (-1179 (-569))) (-569)) 38)) (-3912 (((-649 (-1179 (-569))) (-569)) 33)) (-3089 (((-1179 (-569)) (-569)) 28)))
+(((-192) (-10 -7 (-15 -3912 ((-649 (-1179 (-569))) (-569))) (-15 -3089 ((-1179 (-569)) (-569))) (-15 -3925 ((-423 (-1179 (-569))) (-569))))) (T -192))
+((-3925 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-192)) (-5 *3 (-569)))) (-3912 (*1 *2 *3) (-12 (-5 *2 (-649 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
+(-10 -7 (-15 -3912 ((-649 (-1179 (-569))) (-569))) (-15 -3089 ((-1179 (-569)) (-569))) (-15 -3925 ((-423 (-1179 (-569))) (-569))))
+((-2103 (((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-2298 (((-649 (-1165)) (-1163 (-226))) NIL)) (-3936 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-2083 (((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226)))) NIL)) (-2289 (((-649 (-1165)) (-649 (-226))) NIL)) (-2306 (((-226) (-1100 (-848 (-226)))) 31)) (-2315 (((-226) (-1100 (-848 (-226)))) 32)) (-3958 (((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-3947 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-2273 (((-1165) (-226)) NIL)) (-2605 (((-1165) (-649 (-1165))) 27)) (-3970 (((-1041) (-1183) (-1183) (-1041)) 13)))
+(((-193) (-10 -7 (-15 -3936 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3947 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -3958 ((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2083 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))) (-15 -2605 ((-1165) (-649 (-1165)))) (-15 -3970 ((-1041) (-1183) (-1183) (-1041))))) (T -193))
+((-3970 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-193)))) (-2083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-193)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193)))))
+(-10 -7 (-15 -3936 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3947 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -3958 ((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2083 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))) (-15 -2605 ((-1165) (-649 (-1165)))) (-15 -3970 ((-1041) (-1183) (-1183) (-1041))))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 61) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-194) (-792)) (T -194))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 66) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 66) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-195) (-792)) (T -195))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 81) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 81) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-196) (-792)) (T -196))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 63) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 63) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-197) (-792)) (T -197))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 75) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 75) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-198) (-792)) (T -198))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-199) (-792)) (T -199))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-200) (-792)) (T -200))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 77) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 77) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-201) (-792)) (T -201))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 78)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 78)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-202) (-792)) (T -202))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 79)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 79)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-203) (-792)) (T -203))
NIL
(-792)
-((-2986 (((-112) $ $) NIL)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 105) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 105) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-204) (-792)) (T -204))
NIL
(-792)
-((-1537 (((-3 (-2 (|:| -2920 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-1539 (((-551) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-1538 (((-3 (-646 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91)))
-(((-205) (-10 -7 (-15 -1537 ((-3 (-2 (|:| -2920 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1538 ((-3 (-646 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1539 ((-551) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205))
-((-1539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-551)) (-5 *1 (-205)))) (-1538 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-646 (-226))) (-5 *1 (-205)))) (-1537 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -2920 (-113)) (|:| |w| (-226)))) (-5 *1 (-205)))))
-(-10 -7 (-15 -1537 ((-3 (-2 (|:| -2920 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1538 ((-3 (-646 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1539 ((-551) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-1544 (((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-1543 (((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-1542 (((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-694 (-317 (-226)))) 112)) (-1541 (((-382) (-694 (-317 (-226)))) 140)) (-2541 (((-694 (-317 (-226))) (-1272 (-317 (-226))) (-646 (-1183))) 136)) (-1547 (((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-1545 (((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-4217 (((-694 (-317 (-226))) (-694 (-317 (-226))) (-646 (-1183)) (-1272 (-317 (-226)))) 125)) (-1540 (((-382) (-382) (-646 (-382))) 133) (((-382) (-382) (-382)) 128)) (-1546 (((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45)))
-(((-206) (-10 -7 (-15 -1540 ((-382) (-382) (-382))) (-15 -1540 ((-382) (-382) (-646 (-382)))) (-15 -1541 ((-382) (-694 (-317 (-226))))) (-15 -2541 ((-694 (-317 (-226))) (-1272 (-317 (-226))) (-646 (-1183)))) (-15 -4217 ((-694 (-317 (-226))) (-694 (-317 (-226))) (-646 (-1183)) (-1272 (-317 (-226))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-694 (-317 (-226))))) (-15 -1543 ((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1544 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1545 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1546 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1547 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206))
-((-1547 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382)))) (-5 *1 (-206)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-694 (-317 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382)))) (-5 *1 (-206)))) (-4217 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-694 (-317 (-226)))) (-5 *3 (-646 (-1183))) (-5 *4 (-1272 (-317 (-226)))) (-5 *1 (-206)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *4 (-646 (-1183))) (-5 *2 (-694 (-317 (-226)))) (-5 *1 (-206)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-694 (-317 (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-382))) (-5 *2 (-382)) (-5 *1 (-206)))) (-1540 (*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-206)))))
-(-10 -7 (-15 -1540 ((-382) (-382) (-382))) (-15 -1540 ((-382) (-382) (-646 (-382)))) (-15 -1541 ((-382) (-694 (-317 (-226))))) (-15 -2541 ((-694 (-317 (-226))) (-1272 (-317 (-226))) (-646 (-1183)))) (-15 -4217 ((-694 (-317 (-226))) (-694 (-317 (-226))) (-646 (-1183)) (-1272 (-317 (-226))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-694 (-317 (-226))))) (-15 -1543 ((-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1544 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1545 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1546 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1547 ((-382) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2830 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-3473 (((-112) $ $) NIL)))
+((-3982 (((-3 (-2 (|:| -3818 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-4006 (((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-3995 (((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91)))
+(((-205) (-10 -7 (-15 -3982 ((-3 (-2 (|:| -3818 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3995 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4006 ((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205))
+((-4006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-569)) (-5 *1 (-205)))) (-3995 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-205)))) (-3982 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3818 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
+(-10 -7 (-15 -3982 ((-3 (-2 (|:| -3818 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3995 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4006 ((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-4063 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-4051 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-4040 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226)))) 112)) (-4029 (((-383) (-694 (-319 (-226)))) 140)) (-3650 (((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183))) 136)) (-4097 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-4075 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-1679 (((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226)))) 125)) (-4017 (((-383) (-383) (-649 (-383))) 133) (((-383) (-383) (-383)) 128)) (-4085 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45)))
+(((-206) (-10 -7 (-15 -4017 ((-383) (-383) (-383))) (-15 -4017 ((-383) (-383) (-649 (-383)))) (-15 -4029 ((-383) (-694 (-319 (-226))))) (-15 -3650 ((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183)))) (-15 -1679 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226))))) (-15 -4040 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -4051 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4063 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4075 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4085 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4097 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206))
+((-4097 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-1679 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1183))) (-5 *4 (-1273 (-319 (-226)))) (-5 *1 (-206)))) (-3650 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183))) (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206)))))
+(-10 -7 (-15 -4017 ((-383) (-383) (-383))) (-15 -4017 ((-383) (-383) (-649 (-383)))) (-15 -4029 ((-383) (-694 (-319 (-226))))) (-15 -3650 ((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183)))) (-15 -1679 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226))))) (-15 -4040 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -4051 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4063 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4075 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4085 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4097 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3645 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-2853 (((-112) $ $) NIL)))
(((-207) (-805)) (T -207))
NIL
(-805)
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2830 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3645 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-2853 (((-112) $ $) NIL)))
(((-208) (-805)) (T -208))
NIL
(-805)
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2830 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3645 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-2853 (((-112) $ $) NIL)))
(((-209) (-805)) (T -209))
NIL
(-805)
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2830 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3645 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-2853 (((-112) $ $) NIL)))
(((-210) (-805)) (T -210))
NIL
(-805)
-((-4384 (((-646 (-1183)) (-1183) (-776)) 26)) (-1548 (((-317 (-226)) (-317 (-226))) 35)) (-1550 (((-112) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 87)) (-1549 (((-112) (-226) (-226) (-646 (-317 (-226)))) 47)))
-(((-211) (-10 -7 (-15 -4384 ((-646 (-1183)) (-1183) (-776))) (-15 -1548 ((-317 (-226)) (-317 (-226)))) (-15 -1549 ((-112) (-226) (-226) (-646 (-317 (-226))))) (-15 -1550 ((-112) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))) (T -211))
-((-1550 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-1549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-646 (-317 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-317 (-226))) (-5 *1 (-211)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-646 (-1183))) (-5 *1 (-211)) (-5 *3 (-1183)))))
-(-10 -7 (-15 -4384 ((-646 (-1183)) (-1183) (-776))) (-15 -1548 ((-317 (-226)) (-317 (-226)))) (-15 -1549 ((-112) (-226) (-226) (-646 (-317 (-226))))) (-15 -1550 ((-112) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 28)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3086 (((-1041) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 70)) (-3473 (((-112) $ $) NIL)))
+((-2996 (((-649 (-1183)) (-1183) (-776)) 26)) (-4109 (((-319 (-226)) (-319 (-226))) 35)) (-4134 (((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 87)) (-4122 (((-112) (-226) (-226) (-649 (-319 (-226)))) 47)))
+(((-211) (-10 -7 (-15 -2996 ((-649 (-1183)) (-1183) (-776))) (-15 -4109 ((-319 (-226)) (-319 (-226)))) (-15 -4122 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -4134 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))) (T -211))
+((-4134 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-4122 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-211)) (-5 *3 (-1183)))))
+(-10 -7 (-15 -2996 ((-649 (-1183)) (-1183) (-776))) (-15 -4109 ((-319 (-226)) (-319 (-226)))) (-15 -4122 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -4134 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 28)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2303 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 70)) (-2853 (((-112) $ $) NIL)))
(((-212) (-901)) (T -212))
NIL
(-901)
-((-2986 (((-112) $ $) NIL)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 24)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3086 (((-1041) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 24)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2303 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) NIL)) (-2853 (((-112) $ $) NIL)))
(((-213) (-901)) (T -213))
NIL
(-901)
-((-2986 (((-112) $ $) NIL)) (-1551 ((|#2| $ (-776) |#2|) 11)) (-3535 ((|#2| $ (-776)) 10)) (-4064 (($) 8)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 26)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 13)))
-(((-214 |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -4064 ($)) (-15 -3535 (|#2| $ (-776))) (-15 -1551 (|#2| $ (-776) |#2|)))) (-925) (-1107)) (T -214))
-((-4064 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1107)))) (-3535 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-1107)) (-5 *1 (-214 *4 *2)) (-14 *4 (-925)))) (-1551 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-925)) (-4 *2 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -4064 ($)) (-15 -3535 (|#2| $ (-776))) (-15 -1551 (|#2| $ (-776) |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2153 (((-1278) $) 37) (((-1278) $ (-925) (-925)) 44)) (-4249 (($ $ (-995)) 19) (((-246 (-1165)) $ (-1183)) 15)) (-4067 (((-1278) $) 35)) (-4396 (((-868) $) 32) (($ (-646 |#1|)) 8)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $ $) 27)) (-4289 (($ $ $) 22)))
-(((-215 |#1|) (-13 (-1107) (-621 (-646 |#1|)) (-10 -8 (-15 -4249 ($ $ (-995))) (-15 -4249 ((-246 (-1165)) $ (-1183))) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $)) (-15 -2153 ((-1278) $ (-925) (-925))))) (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $))))) (T -215))
-((-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-995)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $))))))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ *3)) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $))))))) (-4289 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $))))))) (-4287 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $))))))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $)) (-15 -2153 (*2 $))))))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $)) (-15 -2153 (*2 $))))))) (-2153 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $)) (-15 -2153 (*2 $))))))))
-(-13 (-1107) (-621 (-646 |#1|)) (-10 -8 (-15 -4249 ($ $ (-995))) (-15 -4249 ((-246 (-1165)) $ (-1183))) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $)) (-15 -2153 ((-1278) $ (-925) (-925)))))
-((-1552 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1552 (|#2| |#4| (-1 |#2| |#2|)))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -216))
-((-1552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1248 (-412 *2))) (-4 *2 (-1248 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6)))))
-(-10 -7 (-15 -1552 (|#2| |#4| (-1 |#2| |#2|))))
-((-1556 ((|#2| |#2| (-776) |#2|) 58)) (-1555 ((|#2| |#2| (-776) |#2|) 54)) (-2547 (((-646 |#2|) (-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|)))) 82)) (-1554 (((-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|))) |#2|) 76)) (-1557 (((-112) |#2|) 74)) (-4183 (((-410 |#2|) |#2|) 94)) (-4182 (((-410 |#2|) |#2|) 93)) (-2548 ((|#2| |#2| (-776) |#2|) 52)) (-1553 (((-2 (|:| |cont| |#1|) (|:| -1964 (-646 (-2 (|:| |irr| |#2|) (|:| -2576 (-551)))))) |#2| (-112)) 88)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -4182 ((-410 |#2|) |#2|)) (-15 -4183 ((-410 |#2|) |#2|)) (-15 -1553 ((-2 (|:| |cont| |#1|) (|:| -1964 (-646 (-2 (|:| |irr| |#2|) (|:| -2576 (-551)))))) |#2| (-112))) (-15 -1554 ((-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|))) |#2|)) (-15 -2547 ((-646 |#2|) (-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|))))) (-15 -2548 (|#2| |#2| (-776) |#2|)) (-15 -1555 (|#2| |#2| (-776) |#2|)) (-15 -1556 (|#2| |#2| (-776) |#2|)) (-15 -1557 ((-112) |#2|))) (-354) (-1248 |#1|)) (T -217))
-((-1557 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))) (-1556 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4)))) (-1555 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4)))) (-2548 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| |deg| (-776)) (|:| -2993 *5)))) (-4 *5 (-1248 *4)) (-4 *4 (-354)) (-5 *2 (-646 *5)) (-5 *1 (-217 *4 *5)))) (-1554 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-646 (-2 (|:| |deg| (-776)) (|:| -2993 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1248 *5)))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-410 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-410 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -4182 ((-410 |#2|) |#2|)) (-15 -4183 ((-410 |#2|) |#2|)) (-15 -1553 ((-2 (|:| |cont| |#1|) (|:| -1964 (-646 (-2 (|:| |irr| |#2|) (|:| -2576 (-551)))))) |#2| (-112))) (-15 -1554 ((-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|))) |#2|)) (-15 -2547 ((-646 |#2|) (-646 (-2 (|:| |deg| (-776)) (|:| -2993 |#2|))))) (-15 -2548 (|#2| |#2| (-776) |#2|)) (-15 -1555 (|#2| |#2| (-776) |#2|)) (-15 -1556 (|#2| |#2| (-776) |#2|)) (-15 -1557 ((-112) |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-551) $) NIL (|has| (-551) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-551) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-551) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-551) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-551) (-1044 (-551))))) (-3594 (((-551) $) NIL) (((-1183) $) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-551) (-1044 (-551)))) (((-551) $) NIL (|has| (-551) (-1044 (-551))))) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-551) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-551) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-551) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-551) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-551) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-551) (-1157)))) (-3625 (((-112) $) NIL (|has| (-551) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-551) (-855)))) (-4408 (($ (-1 (-551) (-551)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-551) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-551) (-310))) (((-412 (-551)) $) NIL)) (-3552 (((-551) $) NIL (|has| (-551) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-551)) (-646 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-551) (-551)) NIL (|has| (-551) (-312 (-551)))) (($ $ (-296 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-296 (-551)))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-1183)) (-646 (-551))) NIL (|has| (-551) (-519 (-1183) (-551)))) (($ $ (-1183) (-551)) NIL (|has| (-551) (-519 (-1183) (-551))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-551)) NIL (|has| (-551) (-289 (-551) (-551))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-551) $) NIL)) (-1558 (($ (-412 (-551))) 9)) (-4420 (((-896 (-551)) $) NIL (|has| (-551) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-551) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-551) (-619 (-540)))) (((-382) $) NIL (|has| (-551) (-1026))) (((-226) $) NIL (|has| (-551) (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-551) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) 8) (($ (-551)) NIL) (($ (-1183)) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL) (((-1010 10) $) 10)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-551) (-916))) (|has| (-551) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-551) $) NIL (|has| (-551) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| (-551) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-551) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-551) (-855)))) (-4399 (($ $ $) NIL) (($ (-551) (-551)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-551) $) NIL) (($ $ (-551)) NIL)))
-(((-218) (-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 10)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -1558 ($ (-412 (-551))))))) (T -218))
-((-3550 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-218)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-218)))))
-(-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 10)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -1558 ($ (-412 (-551))))))
-((-2986 (((-112) $ $) NIL)) (-3758 (((-1121) $) 13)) (-3681 (((-1165) $) NIL)) (-3616 (((-488) $) 10)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 23) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 15)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-219) (-13 (-1089) (-10 -8 (-15 -3616 ((-488) $)) (-15 -3758 ((-1121) $)) (-15 -3671 ((-1141) $))))) (T -219))
-((-3616 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-219)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219)))))
-(-13 (-1089) (-10 -8 (-15 -3616 ((-488) $)) (-15 -3758 ((-1121) $)) (-15 -3671 ((-1141) $))))
-((-4262 (((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1098 (-847 |#2|)) (-1165)) 29) (((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098 (-847 |#2|))) 25)) (-1559 (((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1183) (-847 |#2|) (-847 |#2|) (-112)) 17)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -4262 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1098 (-847 |#2|)))) (-15 -4262 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098 (-847 |#2|)) (-1165))) (-15 -1559 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1183) (-847 |#2|) (-847 |#2|) (-112)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-966) (-29 |#1|))) (T -220))
-((-1559 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1183)) (-5 *6 (-112)) (-4 *7 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-4 *3 (-13 (-1208) (-966) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-847 *3)))) (-4262 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-847 *3))) (-5 *5 (-1165)) (-4 *3 (-13 (-1208) (-966) (-29 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *6 *3)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-847 *3))) (-4 *3 (-13 (-1208) (-966) (-29 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5 *3)))))
-(-10 -7 (-15 -4262 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1098 (-847 |#2|)))) (-15 -4262 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098 (-847 |#2|)) (-1165))) (-15 -1559 ((-3 (|:| |f1| (-847 |#2|)) (|:| |f2| (-646 (-847 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1183) (-847 |#2|) (-847 |#2|) (-112))))
-((-4262 (((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|)))) (-1165)) 49) (((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|))))) 46) (((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|))) (-1165)) 50) (((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|)))) 22)))
-(((-221 |#1|) (-10 -7 (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|))))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|))) (-1165))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|)))))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|)))) (-1165)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (T -221))
-((-4262 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-847 (-412 (-952 *6))))) (-5 *5 (-1165)) (-5 *3 (-412 (-952 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 (-317 *6))) (|:| |f2| (-646 (-847 (-317 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-221 *6)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-847 (-412 (-952 *5))))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 (-317 *5))) (|:| |f2| (-646 (-847 (-317 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *5)))) (-4262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-412 (-952 *6))) (-5 *4 (-1098 (-847 (-317 *6)))) (-5 *5 (-1165)) (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 (-317 *6))) (|:| |f2| (-646 (-847 (-317 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *6)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1098 (-847 (-317 *5)))) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |f1| (-847 (-317 *5))) (|:| |f2| (-646 (-847 (-317 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *5)))))
-(-10 -7 (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|))))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-317 |#1|))) (-1165))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|)))))) (-15 -4262 ((-3 (|:| |f1| (-847 (-317 |#1|))) (|:| |f2| (-646 (-847 (-317 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-412 (-952 |#1|)) (-1098 (-847 (-412 (-952 |#1|)))) (-1165))))
-((-4292 (((-2 (|:| -2192 (-1177 |#1|)) (|:| |deg| (-925))) (-1177 |#1|)) 26)) (-4413 (((-646 (-317 |#2|)) (-317 |#2|) (-925)) 54)))
-(((-222 |#1| |#2|) (-10 -7 (-15 -4292 ((-2 (|:| -2192 (-1177 |#1|)) (|:| |deg| (-925))) (-1177 |#1|))) (-15 -4413 ((-646 (-317 |#2|)) (-317 |#2|) (-925)))) (-1055) (-562)) (T -222))
-((-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-4 *6 (-562)) (-5 *2 (-646 (-317 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1055)))) (-4292 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-2 (|:| -2192 (-1177 *4)) (|:| |deg| (-925)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1177 *4)) (-4 *5 (-562)))))
-(-10 -7 (-15 -4292 ((-2 (|:| -2192 (-1177 |#1|)) (|:| |deg| (-925))) (-1177 |#1|))) (-15 -4413 ((-646 (-317 |#2|)) (-317 |#2|) (-925))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1602 ((|#1| $) NIL)) (-3766 ((|#1| $) 30)) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-3421 (($ $) NIL)) (-2460 (($ $) 39)) (-3768 ((|#1| |#1| $) NIL)) (-3767 ((|#1| $) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-4283 (((-776) $) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) NIL)) (-1600 ((|#1| |#1| $) 35)) (-1599 ((|#1| |#1| $) 37)) (-4057 (($ |#1| $) NIL)) (-3021 (((-776) $) 33)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-3420 ((|#1| $) NIL)) (-1598 ((|#1| $) 31)) (-1597 ((|#1| $) 29)) (-1373 ((|#1| $) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3423 ((|#1| |#1| $) NIL)) (-3845 (((-112) $) 9)) (-4014 (($) NIL)) (-3422 ((|#1| $) NIL)) (-1603 (($) NIL) (($ (-646 |#1|)) 16)) (-3765 (((-776) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-1601 ((|#1| $) 13)) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) NIL)) (-3419 ((|#1| $) NIL)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -1603 ($ (-646 |#1|))))) (-1107)) (T -223))
-((-1603 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-223 *3)))))
-(-13 (-256 |#1|) (-10 -8 (-15 -1603 ($ (-646 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1561 (($ (-317 |#1|)) 27)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3083 (((-112) $) NIL)) (-3595 (((-3 (-317 |#1|) "failed") $) NIL)) (-3594 (((-317 |#1|) $) NIL)) (-4409 (($ $) 35)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-4408 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-3612 (((-317 |#1|) $) NIL)) (-1563 (($ $) 34)) (-3681 (((-1165) $) NIL)) (-1562 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($ (-776)) NIL)) (-1560 (($ $) 36)) (-4398 (((-551) $) NIL)) (-4396 (((-868) $) 68) (($ (-551)) NIL) (($ (-317 |#1|)) NIL)) (-4127 (((-317 |#1|) $ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 29 T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) 32)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 23)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22)))
-(((-224 |#1| |#2|) (-13 (-626 (-317 |#1|)) (-1044 (-317 |#1|)) (-10 -8 (-15 -3612 ((-317 |#1|) $)) (-15 -1563 ($ $)) (-15 -4409 ($ $)) (-15 -4127 ((-317 |#1|) $ $)) (-15 -2590 ($ (-776))) (-15 -1562 ((-112) $)) (-15 -3083 ((-112) $)) (-15 -4398 ((-551) $)) (-15 -4408 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -1561 ($ (-317 |#1|))) (-15 -1560 ($ $)))) (-13 (-1055) (-855)) (-646 (-1183))) (T -224))
-((-3612 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-1563 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-646 (-1183))))) (-4409 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-646 (-1183))))) (-4127 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-646 (-1183))))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-646 (-1183))))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-646 (-1183))))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-646 (-1183))))))
-(-13 (-626 (-317 |#1|)) (-1044 (-317 |#1|)) (-10 -8 (-15 -3612 ((-317 |#1|) $)) (-15 -1563 ($ $)) (-15 -4409 ($ $)) (-15 -4127 ((-317 |#1|) $ $)) (-15 -2590 ($ (-776))) (-15 -1562 ((-112) $)) (-15 -3083 ((-112) $)) (-15 -4398 ((-551) $)) (-15 -4408 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -1561 ($ (-317 |#1|))) (-15 -1560 ($ $))))
-((-1564 (((-112) (-1165)) 26)) (-1565 (((-3 (-847 |#2|) "failed") (-616 |#2|) |#2| (-847 |#2|) (-847 |#2|) (-112)) 35)) (-1566 (((-3 (-112) "failed") (-1177 |#2|) (-847 |#2|) (-847 |#2|) (-112)) 84) (((-3 (-112) "failed") (-952 |#1|) (-1183) (-847 |#2|) (-847 |#2|) (-112)) 85)))
-(((-225 |#1| |#2|) (-10 -7 (-15 -1564 ((-112) (-1165))) (-15 -1565 ((-3 (-847 |#2|) "failed") (-616 |#2|) |#2| (-847 |#2|) (-847 |#2|) (-112))) (-15 -1566 ((-3 (-112) "failed") (-952 |#1|) (-1183) (-847 |#2|) (-847 |#2|) (-112))) (-15 -1566 ((-3 (-112) "failed") (-1177 |#2|) (-847 |#2|) (-847 |#2|) (-112)))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-29 |#1|))) (T -225))
-((-1566 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1177 *6)) (-5 *4 (-847 *6)) (-4 *6 (-13 (-1208) (-29 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-225 *5 *6)))) (-1566 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1183)) (-5 *5 (-847 *7)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-1565 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-847 *4)) (-5 *3 (-616 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1208) (-29 *6))) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-225 *6 *4)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
-(-10 -7 (-15 -1564 ((-112) (-1165))) (-15 -1565 ((-3 (-847 |#2|) "failed") (-616 |#2|) |#2| (-847 |#2|) (-847 |#2|) (-112))) (-15 -1566 ((-3 (-112) "failed") (-952 |#1|) (-1183) (-847 |#2|) (-847 |#2|) (-112))) (-15 -1566 ((-3 (-112) "failed") (-1177 |#2|) (-847 |#2|) (-847 |#2|) (-112))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 99)) (-3551 (((-551) $) 35)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4220 (($ $) NIL)) (-3933 (($ $) 88)) (-4089 (($ $) 76)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) 67)) (-1763 (((-112) $ $) NIL)) (-3931 (($ $) 86)) (-4088 (($ $) 74)) (-4073 (((-551) $) 129)) (-3935 (($ $) 91)) (-4087 (($ $) 78)) (-4174 (($) NIL T CONST)) (-3549 (($ $) NIL)) (-3595 (((-3 (-551) #1="failed") $) 128) (((-3 (-412 (-551)) #1#) $) 125)) (-3594 (((-551) $) 126) (((-412 (-551)) $) 123)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) 104)) (-1922 (((-412 (-551)) $ (-776)) 118) (((-412 (-551)) $ (-776) (-776)) 117)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2555 (((-925)) 29) (((-925) (-925)) NIL (|has| $ (-6 -4434)))) (-3624 (((-112) $) NIL)) (-4077 (($) 46)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL)) (-4221 (((-551) $) 42)) (-2591 (((-112) $) 100)) (-3430 (($ $ (-551)) NIL)) (-3554 (($ $) NIL)) (-3625 (((-112) $) 98)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-2952 (($ $ $) 64) (($) 38 (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-3278 (($ $ $) 63) (($) 37 (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-2556 (((-551) $) 27)) (-1921 (($ $) 33)) (-1920 (($ $) 68)) (-4392 (($ $) 73)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-1954 (((-925) (-551)) NIL (|has| $ (-6 -4434)))) (-3682 (((-1126) $) 102)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL)) (-3552 (($ $) NIL)) (-3693 (($ (-551) (-551)) NIL) (($ (-551) (-551) (-925)) 111)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-2582 (((-551) $) 28)) (-1919 (($) 45)) (-4393 (($ $) 72)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3033 (((-925)) NIL) (((-925) (-925)) NIL (|has| $ (-6 -4434)))) (-4260 (($ $ (-776)) NIL) (($ $) 105)) (-1953 (((-925) (-551)) NIL (|has| $ (-6 -4434)))) (-3936 (($ $) 89)) (-4086 (($ $) 79)) (-3934 (($ $) 90)) (-4085 (($ $) 77)) (-3932 (($ $) 87)) (-4084 (($ $) 75)) (-4420 (((-382) $) 114) (((-226) $) 14) (((-896 (-382)) $) NIL) (((-540) $) 52)) (-4396 (((-868) $) 49) (($ (-551)) 71) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-551)) 71) (($ (-412 (-551))) NIL)) (-3548 (((-776)) NIL T CONST)) (-3553 (($ $) NIL)) (-1955 (((-925)) 36) (((-925) (-925)) NIL (|has| $ (-6 -4434)))) (-3680 (((-112) $ $) NIL)) (-3115 (((-925)) 25)) (-3939 (($ $) 94)) (-3927 (($ $) 82) (($ $ $) 121)) (-2250 (((-112) $ $) NIL)) (-3937 (($ $) 92)) (-3925 (($ $) 80)) (-3941 (($ $) 97)) (-3929 (($ $) 85)) (-3942 (($ $) 95)) (-3930 (($ $) 83)) (-3940 (($ $) 96)) (-3928 (($ $) 84)) (-3938 (($ $) 93)) (-3926 (($ $) 81)) (-3825 (($ $) 120)) (-3528 (($) 23 T CONST)) (-3085 (($) 43 T CONST)) (-2918 (((-1165) $) 18) (((-1165) $ (-112)) 20) (((-1278) (-828) $) 21) (((-1278) (-828) $ (-112)) 22)) (-3829 (($ $) 108)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3826 (($ $ $) 110)) (-2984 (((-112) $ $) 57)) (-2985 (((-112) $ $) 54)) (-3473 (((-112) $ $) 65)) (-3105 (((-112) $ $) 56)) (-3106 (((-112) $ $) 53)) (-4399 (($ $ $) 44) (($ $ (-551)) 66)) (-4287 (($ $) 58) (($ $ $) 60)) (-4289 (($ $ $) 59)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 69) (($ $ (-412 (-551))) 153) (($ $ $) 70)) (* (($ (-925) $) 34) (($ (-776) $) NIL) (($ (-551) $) 62) (($ $ $) 61) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-226) (-13 (-409) (-234) (-826) (-1208) (-619 (-540)) (-10 -8 (-15 -4399 ($ $ (-551))) (-15 ** ($ $ $)) (-15 -1919 ($)) (-15 -1921 ($ $)) (-15 -1920 ($ $)) (-15 -3927 ($ $ $)) (-15 -3829 ($ $)) (-15 -3826 ($ $ $)) (-15 -1922 ((-412 (-551)) $ (-776))) (-15 -1922 ((-412 (-551)) $ (-776) (-776)))))) (T -226))
-((** (*1 *1 *1 *1) (-5 *1 (-226))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-226)))) (-1919 (*1 *1) (-5 *1 (-226))) (-1921 (*1 *1 *1) (-5 *1 (-226))) (-1920 (*1 *1 *1) (-5 *1 (-226))) (-3927 (*1 *1 *1 *1) (-5 *1 (-226))) (-3829 (*1 *1 *1) (-5 *1 (-226))) (-3826 (*1 *1 *1 *1) (-5 *1 (-226))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-226)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-226)))))
-(-13 (-409) (-234) (-826) (-1208) (-619 (-540)) (-10 -8 (-15 -4399 ($ $ (-551))) (-15 ** ($ $ $)) (-15 -1919 ($)) (-15 -1921 ($ $)) (-15 -1920 ($ $)) (-15 -3927 ($ $ $)) (-15 -3829 ($ $)) (-15 -3826 ($ $ $)) (-15 -1922 ((-412 (-551)) $ (-776))) (-15 -1922 ((-412 (-551)) $ (-776) (-776)))))
-((-3828 (((-169 (-226)) (-776) (-169 (-226))) 11) (((-226) (-776) (-226)) 12)) (-1567 (((-169 (-226)) (-169 (-226))) 13) (((-226) (-226)) 14)) (-1568 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 19) (((-226) (-226) (-226)) 22)) (-3827 (((-169 (-226)) (-169 (-226))) 27) (((-226) (-226)) 26)) (-3831 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 57) (((-226) (-226) (-226)) 49)) (-3833 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 62) (((-226) (-226) (-226)) 60)) (-3830 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 15) (((-226) (-226) (-226)) 16)) (-3832 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 17) (((-226) (-226) (-226)) 18)) (-3835 (((-169 (-226)) (-169 (-226))) 74) (((-226) (-226)) 73)) (-3834 (((-226) (-226)) 68) (((-169 (-226)) (-169 (-226))) 72)) (-3829 (((-169 (-226)) (-169 (-226))) 8) (((-226) (-226)) 9)) (-3826 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 35) (((-226) (-226) (-226)) 31)))
-(((-227) (-10 -7 (-15 -3829 ((-226) (-226))) (-15 -3829 ((-169 (-226)) (-169 (-226)))) (-15 -3826 ((-226) (-226) (-226))) (-15 -3826 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -1567 ((-226) (-226))) (-15 -1567 ((-169 (-226)) (-169 (-226)))) (-15 -3827 ((-226) (-226))) (-15 -3827 ((-169 (-226)) (-169 (-226)))) (-15 -3828 ((-226) (-776) (-226))) (-15 -3828 ((-169 (-226)) (-776) (-169 (-226)))) (-15 -3830 ((-226) (-226) (-226))) (-15 -3830 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3831 ((-226) (-226) (-226))) (-15 -3831 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3832 ((-226) (-226) (-226))) (-15 -3832 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3833 ((-226) (-226) (-226))) (-15 -3833 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3834 ((-169 (-226)) (-169 (-226)))) (-15 -3834 ((-226) (-226))) (-15 -3835 ((-226) (-226))) (-15 -3835 ((-169 (-226)) (-169 (-226)))) (-15 -1568 ((-226) (-226) (-226))) (-15 -1568 ((-169 (-226)) (-169 (-226)) (-169 (-226)))))) (T -227))
-((-1568 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-1568 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3832 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3832 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3830 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3830 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3828 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) (-3828 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3826 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3826 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))))
-(-10 -7 (-15 -3829 ((-226) (-226))) (-15 -3829 ((-169 (-226)) (-169 (-226)))) (-15 -3826 ((-226) (-226) (-226))) (-15 -3826 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -1567 ((-226) (-226))) (-15 -1567 ((-169 (-226)) (-169 (-226)))) (-15 -3827 ((-226) (-226))) (-15 -3827 ((-169 (-226)) (-169 (-226)))) (-15 -3828 ((-226) (-776) (-226))) (-15 -3828 ((-169 (-226)) (-776) (-169 (-226)))) (-15 -3830 ((-226) (-226) (-226))) (-15 -3830 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3831 ((-226) (-226) (-226))) (-15 -3831 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3832 ((-226) (-226) (-226))) (-15 -3832 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3833 ((-226) (-226) (-226))) (-15 -3833 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3834 ((-169 (-226)) (-169 (-226)))) (-15 -3834 ((-226) (-226))) (-15 -3835 ((-226) (-226))) (-15 -3835 ((-169 (-226)) (-169 (-226)))) (-15 -1568 ((-226) (-226) (-226))) (-15 -1568 ((-169 (-226)) (-169 (-226)) (-169 (-226)))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776) (-776)) NIL)) (-2519 (($ $ $) NIL)) (-3856 (($ (-1272 |#1|)) NIL) (($ $) NIL)) (-4323 (($ |#1| |#1| |#1|) 33)) (-3543 (((-112) $) NIL)) (-2518 (($ $ (-551) (-551)) NIL)) (-2517 (($ $ (-551) (-551)) NIL)) (-2516 (($ $ (-551) (-551) (-551) (-551)) NIL)) (-2521 (($ $) NIL)) (-3545 (((-112) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-2515 (($ $ (-551) (-551) $) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551)) $) NIL)) (-1348 (($ $ (-551) (-1272 |#1|)) NIL)) (-1347 (($ $ (-551) (-1272 |#1|)) NIL)) (-4297 (($ |#1| |#1| |#1|) 32)) (-3775 (($ (-776) |#1|) NIL)) (-4174 (($) NIL T CONST)) (-3532 (($ $) NIL (|has| |#1| (-310)))) (-3534 (((-1272 |#1|) $ (-551)) NIL)) (-1569 (($ |#1|) 31)) (-1570 (($ |#1|) 30)) (-1571 (($ |#1|) 29)) (-3531 (((-776) $) NIL (|has| |#1| (-562)))) (-1694 ((|#1| $ (-551) (-551) |#1|) NIL)) (-3535 ((|#1| $ (-551) (-551)) NIL)) (-2134 (((-646 |#1|) $) NIL)) (-3530 (((-776) $) NIL (|has| |#1| (-562)))) (-3529 (((-646 (-1272 |#1|)) $) NIL (|has| |#1| (-562)))) (-3537 (((-776) $) NIL)) (-4064 (($ (-776) (-776) |#1|) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3769 ((|#1| $) NIL (|has| |#1| (-6 (-4445 #1="*"))))) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-3546 (($ (-646 (-646 |#1|))) 11)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-646 (-646 |#1|)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4039 (((-3 $ #2="failed") $) NIL (|has| |#1| (-367)))) (-1572 (($) 12)) (-2520 (($ $ $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-3907 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-562)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) (-551)) NIL) ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551))) NIL)) (-3774 (($ (-646 |#1|)) NIL) (($ (-646 $)) NIL)) (-3544 (((-112) $) NIL)) (-3770 ((|#1| $) NIL (|has| |#1| (-6 (-4445 #1#))))) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3533 (((-1272 |#1|) $ (-551)) NIL)) (-4396 (($ (-1272 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-551) $) NIL) (((-1272 |#1|) $ (-1272 |#1|)) 15) (((-1272 |#1|) (-1272 |#1|) $) NIL) (((-949 |#1|) $ (-949 |#1|)) 21)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-228 |#1|) (-13 (-691 |#1| (-1272 |#1|) (-1272 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -1572 ($)) (-15 -1571 ($ |#1|)) (-15 -1570 ($ |#1|)) (-15 -1569 ($ |#1|)) (-15 -4297 ($ |#1| |#1| |#1|)) (-15 -4323 ($ |#1| |#1| |#1|)))) (-13 (-367) (-1208))) (T -228))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208))) (-5 *1 (-228 *3)))) (-1572 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-1571 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-1570 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-1569 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-4297 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-4323 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(-13 (-691 |#1| (-1272 |#1|) (-1272 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -1572 ($)) (-15 -1571 ($ |#1|)) (-15 -1570 ($ |#1|)) (-15 -1569 ($ |#1|)) (-15 -4297 ($ |#1| |#1| |#1|)) (-15 -4323 ($ |#1| |#1| |#1|))))
-((-1688 (($ (-1 (-112) |#2|) $) 16)) (-3847 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1573 (($) NIL) (($ (-646 |#2|)) 11)) (-3473 (((-112) $ $) 25)))
-(((-229 |#1| |#2|) (-10 -8 (-15 -1688 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -1573 (|#1| (-646 |#2|))) (-15 -1573 (|#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-230 |#2|) (-1107)) (T -229))
-NIL
-(-10 -8 (-15 -1688 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -1573 (|#1| (-646 |#2|))) (-15 -1573 (|#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-230 |#1|) (-140) (-1107)) (T -230))
+((-2383 (((-112) $ $) NIL)) (-3020 ((|#2| $ (-776) |#2|) 11)) (-3007 ((|#2| $ (-776)) 10)) (-4275 (($) 8)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 26)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 13)))
+(((-214 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -4275 ($)) (-15 -3007 (|#2| $ (-776))) (-15 -3020 (|#2| $ (-776) |#2|)))) (-927) (-1106)) (T -214))
+((-4275 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1106)))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-1106)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)))) (-3020 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)) (-4 *2 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -4275 ($)) (-15 -3007 (|#2| $ (-776))) (-15 -3020 (|#2| $ (-776) |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-4170 (((-1278) $) 37) (((-1278) $ (-927) (-927)) 44)) (-1852 (($ $ (-995)) 19) (((-246 (-1165)) $ (-1183)) 15)) (-4138 (((-1278) $) 35)) (-2388 (((-867) $) 32) (($ (-649 |#1|)) 8)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $ $) 27)) (-2935 (($ $ $) 22)))
+(((-215 |#1|) (-13 (-1106) (-621 (-649 |#1|)) (-10 -8 (-15 -1852 ($ $ (-995))) (-15 -1852 ((-246 (-1165)) $ (-1183))) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $)) (-15 -4170 ((-1278) $ (-927) (-927))))) (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $))))) (T -215))
+((-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-995)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $))))))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ *3)) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $))))))) (-2935 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $))))))) (-2946 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $))))))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $)) (-15 -4170 (*2 $))))))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $)) (-15 -4170 (*2 $))))))) (-4170 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $)) (-15 -4170 (*2 $))))))))
+(-13 (-1106) (-621 (-649 |#1|)) (-10 -8 (-15 -1852 ($ $ (-995))) (-15 -1852 ((-246 (-1165)) $ (-1183))) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $)) (-15 -4170 ((-1278) $ (-927) (-927)))))
+((-4147 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 (|#2| |#4| (-1 |#2| |#2|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -216))
+((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1249 (-412 *2))) (-4 *2 (-1249 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6)))))
+(-10 -7 (-15 -4147 (|#2| |#4| (-1 |#2| |#2|))))
+((-4191 ((|#2| |#2| (-776) |#2|) 58)) (-4181 ((|#2| |#2| (-776) |#2|) 54)) (-2458 (((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|)))) 82)) (-4169 (((-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|))) |#2|) 76)) (-4202 (((-112) |#2|) 74)) (-3924 (((-423 |#2|) |#2|) 94)) (-3699 (((-423 |#2|) |#2|) 93)) (-2465 ((|#2| |#2| (-776) |#2|) 52)) (-4157 (((-2 (|:| |cont| |#1|) (|:| -2671 (-649 (-2 (|:| |irr| |#2|) (|:| -2727 (-569)))))) |#2| (-112)) 88)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -3699 ((-423 |#2|) |#2|)) (-15 -3924 ((-423 |#2|) |#2|)) (-15 -4157 ((-2 (|:| |cont| |#1|) (|:| -2671 (-649 (-2 (|:| |irr| |#2|) (|:| -2727 (-569)))))) |#2| (-112))) (-15 -4169 ((-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|))) |#2|)) (-15 -2458 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|))))) (-15 -2465 (|#2| |#2| (-776) |#2|)) (-15 -4181 (|#2| |#2| (-776) |#2|)) (-15 -4191 (|#2| |#2| (-776) |#2|)) (-15 -4202 ((-112) |#2|))) (-353) (-1249 |#1|)) (T -217))
+((-4202 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-4191 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-4181 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-2465 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -2650 *5)))) (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5)) (-5 *1 (-217 *4 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -2650 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1249 *5)))) (-3924 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3699 ((-423 |#2|) |#2|)) (-15 -3924 ((-423 |#2|) |#2|)) (-15 -4157 ((-2 (|:| |cont| |#1|) (|:| -2671 (-649 (-2 (|:| |irr| |#2|) (|:| -2727 (-569)))))) |#2| (-112))) (-15 -4169 ((-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|))) |#2|)) (-15 -2458 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2650 |#2|))))) (-15 -2465 (|#2| |#2| (-776) |#2|)) (-15 -4181 (|#2| |#2| (-776) |#2|)) (-15 -4191 (|#2| |#2| (-776) |#2|)) (-15 -4202 ((-112) |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-569) $) NIL (|has| (-569) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-569) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3043 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-569) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-569) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-569) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-2778 (((-112) $) NIL (|has| (-569) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-569) (-855)))) (-1324 (($ (-1 (-569) (-569)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-569) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3312 (((-569) $) NIL (|has| (-569) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-569) $) NIL)) (-4214 (($ (-412 (-569))) 9)) (-1384 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 10) $) 10)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-569) $) NIL (|has| (-569) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| (-569) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-218) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 10)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -4214 ($ (-412 (-569))))))) (T -218))
+((-3288 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
+(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 10)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -4214 ($ (-412 (-569))))))
+((-2383 (((-112) $ $) NIL)) (-4311 (((-1124) $) 13)) (-2050 (((-1165) $) NIL)) (-2695 (((-488) $) 10)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 23) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 15)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-219) (-13 (-1089) (-10 -8 (-15 -2695 ((-488) $)) (-15 -4311 ((-1124) $)) (-15 -3473 ((-1141) $))))) (T -219))
+((-2695 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219)))))
+(-13 (-1089) (-10 -8 (-15 -2695 ((-488) $)) (-15 -4311 ((-1124) $)) (-15 -3473 ((-1141) $))))
+((-3313 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165)) 29) (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|))) 25)) (-4224 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112)) 17)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)))) (-15 -3313 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165))) (-15 -4224 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -220))
+((-4224 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1183)) (-5 *6 (-112)) (-4 *7 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-1208) (-965) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-848 *3))) (-5 *5 (-1165)) (-4 *3 (-13 (-1208) (-965) (-29 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6 *3)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-848 *3))) (-4 *3 (-13 (-1208) (-965) (-29 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5 *3)))))
+(-10 -7 (-15 -3313 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)))) (-15 -3313 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165))) (-15 -4224 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112))))
+((-3313 (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165)) 49) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|))))) 46) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165)) 50) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|)))) 22)))
+(((-221 |#1|) (-10 -7 (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (T -221))
+((-3313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-848 (-412 (-958 *6))))) (-5 *5 (-1165)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1098 (-848 (-319 *6)))) (-5 *5 (-1165)) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1098 (-848 (-319 *5)))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))))
+(-10 -7 (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))))) (-15 -3313 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165))))
+((-3485 (((-2 (|:| -3280 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|)) 26)) (-1356 (((-649 (-319 |#2|)) (-319 |#2|) (-927)) 54)))
+(((-222 |#1| |#2|) (-10 -7 (-15 -3485 ((-2 (|:| -3280 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|))) (-15 -1356 ((-649 (-319 |#2|)) (-319 |#2|) (-927)))) (-1055) (-561)) (T -222))
+((-1356 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1055)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-2 (|:| -3280 (-1179 *4)) (|:| |deg| (-927)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-561)))))
+(-10 -7 (-15 -3485 ((-2 (|:| -3280 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|))) (-15 -1356 ((-649 (-319 |#2|)) (-319 |#2|) (-927))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3290 ((|#1| $) NIL)) (-3201 ((|#1| $) 30)) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-1493 (($ $) NIL)) (-4188 (($ $) 39)) (-1561 ((|#1| |#1| $) NIL)) (-1549 ((|#1| $) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-3747 (((-776) $) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) NIL)) (-3265 ((|#1| |#1| $) 35)) (-3253 ((|#1| |#1| $) 37)) (-2086 (($ |#1| $) NIL)) (-1399 (((-776) $) 33)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1484 ((|#1| $) NIL)) (-3237 ((|#1| $) 31)) (-3224 ((|#1| $) 29)) (-3493 ((|#1| $) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1511 ((|#1| |#1| $) NIL)) (-4196 (((-112) $) 9)) (-2825 (($) NIL)) (-1502 ((|#1| $) NIL)) (-3302 (($) NIL) (($ (-649 |#1|)) 16)) (-2723 (((-776) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3278 ((|#1| $) 13)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) NIL)) (-1474 ((|#1| $) NIL)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -3302 ($ (-649 |#1|))))) (-1106)) (T -223))
+((-3302 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-223 *3)))))
+(-13 (-256 |#1|) (-10 -8 (-15 -3302 ($ (-649 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2925 (($ (-319 |#1|)) 27)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2286 (((-112) $) NIL)) (-4359 (((-3 (-319 |#1|) "failed") $) NIL)) (-3043 (((-319 |#1|) $) NIL)) (-1842 (($ $) 35)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-1324 (($ (-1 (-319 |#1|) (-319 |#1|)) $) NIL)) (-1820 (((-319 |#1|) $) NIL)) (-2948 (($ $) 34)) (-2050 (((-1165) $) NIL)) (-2937 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($ (-776)) NIL)) (-4236 (($ $) 36)) (-2091 (((-569) $) NIL)) (-2388 (((-867) $) 68) (($ (-569)) NIL) (($ (-319 |#1|)) NIL)) (-1503 (((-319 |#1|) $ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 29 T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) 32)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 28) (($ (-319 |#1|) $) 22)))
+(((-224 |#1| |#2|) (-13 (-625 (-319 |#1|)) (-1044 (-319 |#1|)) (-10 -8 (-15 -1820 ((-319 |#1|) $)) (-15 -2948 ($ $)) (-15 -1842 ($ $)) (-15 -1503 ((-319 |#1|) $ $)) (-15 -2290 ($ (-776))) (-15 -2937 ((-112) $)) (-15 -2286 ((-112) $)) (-15 -2091 ((-569) $)) (-15 -1324 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -2925 ($ (-319 |#1|))) (-15 -4236 ($ $)))) (-13 (-1055) (-855)) (-649 (-1183))) (T -224))
+((-1820 (*1 *2 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))) (-1503 (*1 *2 *1 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))))
+(-13 (-625 (-319 |#1|)) (-1044 (-319 |#1|)) (-10 -8 (-15 -1820 ((-319 |#1|) $)) (-15 -2948 ($ $)) (-15 -1842 ($ $)) (-15 -1503 ((-319 |#1|) $ $)) (-15 -2290 ($ (-776))) (-15 -2937 ((-112) $)) (-15 -2286 ((-112) $)) (-15 -2091 ((-569) $)) (-15 -1324 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -2925 ($ (-319 |#1|))) (-15 -4236 ($ $))))
+((-2957 (((-112) (-1165)) 26)) (-2966 (((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112)) 35)) (-2977 (((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112)) 84) (((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112)) 85)))
+(((-225 |#1| |#2|) (-10 -7 (-15 -2957 ((-112) (-1165))) (-15 -2966 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -2977 ((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112))) (-15 -2977 ((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-29 |#1|))) (T -225))
+((-2977 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1179 *6)) (-5 *4 (-848 *6)) (-4 *6 (-13 (-1208) (-29 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-225 *5 *6)))) (-2977 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1183)) (-5 *5 (-848 *7)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-2966 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1208) (-29 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-225 *6 *4)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
+(-10 -7 (-15 -2957 ((-112) (-1165))) (-15 -2966 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -2977 ((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112))) (-15 -2977 ((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 99)) (-3300 (((-569) $) 35)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-4305 (($ $) NIL)) (-2691 (($ $) 88)) (-2556 (($ $) 76)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) 67)) (-4420 (((-112) $ $) NIL)) (-2669 (($ $) 86)) (-2534 (($ $) 74)) (-2211 (((-569) $) 129)) (-2712 (($ $) 91)) (-2576 (($ $) 78)) (-3863 (($) NIL T CONST)) (-3274 (($ $) NIL)) (-4359 (((-3 (-569) "failed") $) 128) (((-3 (-412 (-569)) "failed") $) 125)) (-3043 (((-569) $) 126) (((-412 (-569)) $) 123)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) 104)) (-3519 (((-412 (-569)) $ (-776)) 118) (((-412 (-569)) $ (-776) (-776)) 117)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3390 (((-927)) 29) (((-927) (-927)) NIL (|has| $ (-6 -4434)))) (-2769 (((-112) $) NIL)) (-4408 (($) 46)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-4315 (((-569) $) 42)) (-2861 (((-112) $) 100)) (-1589 (($ $ (-569)) NIL)) (-3334 (($ $) NIL)) (-2778 (((-112) $) 98)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) 64) (($) 38 (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2406 (($ $ $) 63) (($) 37 (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2931 (((-569) $) 27)) (-3509 (($ $) 33)) (-1345 (($ $) 68)) (-2616 (($ $) 73)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2558 (((-927) (-569)) NIL (|has| $ (-6 -4434)))) (-3461 (((-1126) $) 102)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL)) (-3312 (($ $) NIL)) (-2493 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) 111)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2777 (((-569) $) 28)) (-3499 (($) 45)) (-4367 (($ $) 72)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1871 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4434)))) (-3430 (($ $ (-776)) NIL) (($ $) 105)) (-2547 (((-927) (-569)) NIL (|has| $ (-6 -4434)))) (-2725 (($ $) 89)) (-2588 (($ $) 79)) (-2701 (($ $) 90)) (-2566 (($ $) 77)) (-2680 (($ $) 87)) (-2545 (($ $) 75)) (-1384 (((-383) $) 114) (((-226) $) 14) (((-898 (-383)) $) NIL) (((-541) $) 52)) (-2388 (((-867) $) 49) (($ (-569)) 71) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 71) (($ (-412 (-569))) NIL)) (-3263 (((-776)) NIL T CONST)) (-3323 (($ $) NIL)) (-2568 (((-927)) 36) (((-927) (-927)) NIL (|has| $ (-6 -4434)))) (-2040 (((-112) $ $) NIL)) (-4344 (((-927)) 25)) (-4119 (($ $) 94)) (-2627 (($ $) 82) (($ $ $) 121)) (-2574 (((-112) $ $) NIL)) (-4094 (($ $) 92)) (-2601 (($ $) 80)) (-4144 (($ $) 97)) (-2648 (($ $) 85)) (-1470 (($ $) 95)) (-2658 (($ $) 83)) (-4131 (($ $) 96)) (-2638 (($ $) 84)) (-4106 (($ $) 93)) (-2615 (($ $) 81)) (-3999 (($ $) 120)) (-1786 (($) 23 T CONST)) (-1796 (($) 43 T CONST)) (-3218 (((-1165) $) 18) (((-1165) $ (-112)) 20) (((-1278) (-827) $) 21) (((-1278) (-827) $ (-112)) 22)) (-4044 (($ $) 108)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-4010 (($ $ $) 110)) (-2904 (((-112) $ $) 57)) (-2882 (((-112) $ $) 54)) (-2853 (((-112) $ $) 65)) (-2893 (((-112) $ $) 56)) (-2872 (((-112) $ $) 53)) (-2956 (($ $ $) 44) (($ $ (-569)) 66)) (-2946 (($ $) 58) (($ $ $) 60)) (-2935 (($ $ $) 59)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 69) (($ $ (-412 (-569))) 153) (($ $ $) 70)) (* (($ (-927) $) 34) (($ (-776) $) NIL) (($ (-569) $) 62) (($ $ $) 61) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-226) (-13 (-409) (-234) (-833) (-1208) (-619 (-541)) (-10 -8 (-15 -2956 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3499 ($)) (-15 -3509 ($ $)) (-15 -1345 ($ $)) (-15 -2627 ($ $ $)) (-15 -4044 ($ $)) (-15 -4010 ($ $ $)) (-15 -3519 ((-412 (-569)) $ (-776))) (-15 -3519 ((-412 (-569)) $ (-776) (-776)))))) (T -226))
+((** (*1 *1 *1 *1) (-5 *1 (-226))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226)))) (-3499 (*1 *1) (-5 *1 (-226))) (-3509 (*1 *1 *1) (-5 *1 (-226))) (-1345 (*1 *1 *1) (-5 *1 (-226))) (-2627 (*1 *1 *1 *1) (-5 *1 (-226))) (-4044 (*1 *1 *1) (-5 *1 (-226))) (-4010 (*1 *1 *1 *1) (-5 *1 (-226))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) (-3519 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))))
+(-13 (-409) (-234) (-833) (-1208) (-619 (-541)) (-10 -8 (-15 -2956 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3499 ($)) (-15 -3509 ($ $)) (-15 -1345 ($ $)) (-15 -2627 ($ $ $)) (-15 -4044 ($ $)) (-15 -4010 ($ $ $)) (-15 -3519 ((-412 (-569)) $ (-776))) (-15 -3519 ((-412 (-569)) $ (-776) (-776)))))
+((-4033 (((-170 (-226)) (-776) (-170 (-226))) 11) (((-226) (-776) (-226)) 12)) (-2988 (((-170 (-226)) (-170 (-226))) 13) (((-226) (-226)) 14)) (-2997 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 19) (((-226) (-226) (-226)) 22)) (-4022 (((-170 (-226)) (-170 (-226))) 27) (((-226) (-226)) 26)) (-4067 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 57) (((-226) (-226) (-226)) 49)) (-4089 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 62) (((-226) (-226) (-226)) 60)) (-4055 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 15) (((-226) (-226) (-226)) 16)) (-4079 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 17) (((-226) (-226) (-226)) 18)) (-4115 (((-170 (-226)) (-170 (-226))) 74) (((-226) (-226)) 73)) (-4101 (((-226) (-226)) 68) (((-170 (-226)) (-170 (-226))) 72)) (-4044 (((-170 (-226)) (-170 (-226))) 8) (((-226) (-226)) 9)) (-4010 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 35) (((-226) (-226) (-226)) 31)))
+(((-227) (-10 -7 (-15 -4044 ((-226) (-226))) (-15 -4044 ((-170 (-226)) (-170 (-226)))) (-15 -4010 ((-226) (-226) (-226))) (-15 -4010 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2988 ((-226) (-226))) (-15 -2988 ((-170 (-226)) (-170 (-226)))) (-15 -4022 ((-226) (-226))) (-15 -4022 ((-170 (-226)) (-170 (-226)))) (-15 -4033 ((-226) (-776) (-226))) (-15 -4033 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4055 ((-226) (-226) (-226))) (-15 -4055 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4067 ((-226) (-226) (-226))) (-15 -4067 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4079 ((-226) (-226) (-226))) (-15 -4079 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4089 ((-226) (-226) (-226))) (-15 -4089 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4101 ((-170 (-226)) (-170 (-226)))) (-15 -4101 ((-226) (-226))) (-15 -4115 ((-226) (-226))) (-15 -4115 ((-170 (-226)) (-170 (-226)))) (-15 -2997 ((-226) (-226) (-226))) (-15 -2997 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))) (T -227))
+((-2997 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2997 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4089 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4089 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4079 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4079 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4067 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4067 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4055 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4055 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4010 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4010 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))))
+(-10 -7 (-15 -4044 ((-226) (-226))) (-15 -4044 ((-170 (-226)) (-170 (-226)))) (-15 -4010 ((-226) (-226) (-226))) (-15 -4010 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2988 ((-226) (-226))) (-15 -2988 ((-170 (-226)) (-170 (-226)))) (-15 -4022 ((-226) (-226))) (-15 -4022 ((-170 (-226)) (-170 (-226)))) (-15 -4033 ((-226) (-776) (-226))) (-15 -4033 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4055 ((-226) (-226) (-226))) (-15 -4055 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4067 ((-226) (-226) (-226))) (-15 -4067 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4079 ((-226) (-226) (-226))) (-15 -4079 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4089 ((-226) (-226) (-226))) (-15 -4089 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4101 ((-170 (-226)) (-170 (-226)))) (-15 -4101 ((-226) (-226))) (-15 -4115 ((-226) (-226))) (-15 -4115 ((-170 (-226)) (-170 (-226)))) (-15 -2997 ((-226) (-226) (-226))) (-15 -2997 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776) (-776)) NIL)) (-3404 (($ $ $) NIL)) (-4290 (($ (-1273 |#1|)) NIL) (($ $) NIL)) (-2826 (($ |#1| |#1| |#1|) 33)) (-3205 (((-112) $) NIL)) (-3392 (($ $ (-569) (-569)) NIL)) (-3378 (($ $ (-569) (-569)) NIL)) (-3366 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-3427 (($ $) NIL)) (-3233 (((-112) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3354 (($ $ (-569) (-569) $) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2009 (($ $ (-569) (-1273 |#1|)) NIL)) (-1933 (($ $ (-569) (-1273 |#1|)) NIL)) (-3573 (($ |#1| |#1| |#1|) 32)) (-1630 (($ (-776) |#1|) NIL)) (-3863 (($) NIL T CONST)) (-3115 (($ $) NIL (|has| |#1| (-310)))) (-3136 (((-1273 |#1|) $ (-569)) NIL)) (-3009 (($ |#1|) 31)) (-3022 (($ |#1|) 30)) (-3030 (($ |#1|) 29)) (-3904 (((-776) $) NIL (|has| |#1| (-561)))) (-3074 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3007 ((|#1| $ (-569) (-569)) NIL)) (-2796 (((-649 |#1|) $) NIL)) (-3106 (((-776) $) NIL (|has| |#1| (-561)))) (-3095 (((-649 (-1273 |#1|)) $) NIL (|has| |#1| (-561)))) (-2511 (((-776) $) NIL)) (-4275 (($ (-776) (-776) |#1|) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1572 ((|#1| $) NIL (|has| |#1| (-6 (-4445 "*"))))) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-2375 (($ (-649 (-649 |#1|))) 11)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1954 (((-649 (-649 |#1|)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3059 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3041 (($) 12)) (-3415 (($ $ $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-1619 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3219 (((-112) $) NIL)) (-1583 ((|#1| $) NIL (|has| |#1| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3126 (((-1273 |#1|) $ (-569)) NIL)) (-2388 (($ (-1273 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1273 |#1|) $ (-1273 |#1|)) 15) (((-1273 |#1|) (-1273 |#1|) $) NIL) (((-949 |#1|) $ (-949 |#1|)) 21)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-228 |#1|) (-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -3041 ($)) (-15 -3030 ($ |#1|)) (-15 -3022 ($ |#1|)) (-15 -3009 ($ |#1|)) (-15 -3573 ($ |#1| |#1| |#1|)) (-15 -2826 ($ |#1| |#1| |#1|)))) (-13 (-367) (-1208))) (T -228))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208))) (-5 *1 (-228 *3)))) (-3041 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-3030 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-3022 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-3009 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-3573 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-2826 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
+(-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -3041 ($)) (-15 -3030 ($ |#1|)) (-15 -3022 ($ |#1|)) (-15 -3009 ($ |#1|)) (-15 -3573 ($ |#1| |#1| |#1|)) (-15 -2826 ($ |#1| |#1| |#1|))))
+((-1816 (($ (-1 (-112) |#2|) $) 16)) (-4218 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-3054 (($) NIL) (($ (-649 |#2|)) 11)) (-2853 (((-112) $ $) 25)))
+(((-229 |#1| |#2|) (-10 -8 (-15 -1816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3054 (|#1| (-649 |#2|))) (-15 -3054 (|#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-230 |#2|) (-1106)) (T -229))
+NIL
+(-10 -8 (-15 -1816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3054 (|#1| (-649 |#2|))) (-15 -3054 (|#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-230 |#1|) (-140) (-1106)) (T -230))
NIL
(-13 (-236 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-4260 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) 14) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) 22) (($ $ (-776)) NIL) (($ $) 19)) (-3090 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-776)) 17) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)))
-(((-231 |#1| |#2|) (-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3090 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3090 (|#1| |#1| (-1183))) (-15 -3090 (|#1| |#1| (-646 (-1183)))) (-15 -3090 (|#1| |#1| (-1183) (-776))) (-15 -3090 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3090 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3090 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1055)) (T -231))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3430 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) 14) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) 22) (($ $ (-776)) NIL) (($ $) 19)) (-2749 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-776)) 17) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)))
+(((-231 |#1| |#2|) (-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2749 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2749 (|#1| |#1| (-1183))) (-15 -2749 (|#1| |#1| (-649 (-1183)))) (-15 -2749 (|#1| |#1| (-1183) (-776))) (-15 -2749 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2749 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2749 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1055)) (T -231))
NIL
-(-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3090 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3090 (|#1| |#1| (-1183))) (-15 -3090 (|#1| |#1| (-646 (-1183)))) (-15 -3090 (|#1| |#1| (-1183) (-776))) (-15 -3090 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3090 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3090 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4260 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-776)) 55) (($ $ (-646 (-1183)) (-646 (-776))) 48 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 46 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-776)) 53) (($ $ (-646 (-1183)) (-646 (-776))) 52 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 50 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+(-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2749 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2749 (|#1| |#1| (-1183))) (-15 -2749 (|#1| |#1| (-649 (-1183)))) (-15 -2749 (|#1| |#1| (-1183) (-776))) (-15 -2749 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2749 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2749 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3430 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-776)) 55) (($ $ (-649 (-1183)) (-649 (-776))) 48 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 46 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-776)) 53) (($ $ (-649 (-1183)) (-649 (-776))) 52 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 50 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-232 |#1|) (-140) (-1055)) (T -232))
-((-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-4260 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-3090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))))
-(-13 (-1055) (-10 -8 (-15 -4260 ($ $ (-1 |t#1| |t#1|))) (-15 -4260 ($ $ (-1 |t#1| |t#1|) (-776))) (-15 -3090 ($ $ (-1 |t#1| |t#1|))) (-15 -3090 ($ $ (-1 |t#1| |t#1|) (-776))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-234) |has| |#1| (-234)) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-4260 (($ $) NIL) (($ $ (-776)) 13)) (-3090 (($ $) 8) (($ $ (-776)) 15)))
-(((-233 |#1|) (-10 -8 (-15 -3090 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-776))) (-15 -3090 (|#1| |#1|)) (-15 -4260 (|#1| |#1|))) (-234)) (T -233))
-NIL
-(-10 -8 (-15 -3090 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-776))) (-15 -3090 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4260 (($ $) 42) (($ $ (-776)) 40)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $) 41) (($ $ (-776)) 39)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-2749 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))))
+(-13 (-1055) (-10 -8 (-15 -3430 ($ $ (-1 |t#1| |t#1|))) (-15 -3430 ($ $ (-1 |t#1| |t#1|) (-776))) (-15 -2749 ($ $ (-1 |t#1| |t#1|))) (-15 -2749 ($ $ (-1 |t#1| |t#1|) (-776))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-234) |has| |#1| (-234)) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3430 (($ $) NIL) (($ $ (-776)) 13)) (-2749 (($ $) 8) (($ $ (-776)) 15)))
+(((-233 |#1|) (-10 -8 (-15 -2749 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-776))) (-15 -2749 (|#1| |#1|)) (-15 -3430 (|#1| |#1|))) (-234)) (T -233))
+NIL
+(-10 -8 (-15 -2749 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-776))) (-15 -2749 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3430 (($ $) 42) (($ $ (-776)) 40)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $) 41) (($ $ (-776)) 39)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-234) (-140)) (T -234))
-((-4260 (*1 *1 *1) (-4 *1 (-234))) (-3090 (*1 *1 *1) (-4 *1 (-234))) (-4260 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) (-3090 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))))
-(-13 (-1055) (-10 -8 (-15 -4260 ($ $)) (-15 -3090 ($ $)) (-15 -4260 ($ $ (-776))) (-15 -3090 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-1573 (($) 12) (($ (-646 |#2|)) NIL)) (-3842 (($ $) 14)) (-3971 (($ (-646 |#2|)) 10)) (-4396 (((-868) $) 21)))
-(((-235 |#1| |#2|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -1573 (|#1| (-646 |#2|))) (-15 -1573 (|#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -3842 (|#1| |#1|))) (-236 |#2|) (-1107)) (T -235))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -1573 (|#1| (-646 |#2|))) (-15 -1573 (|#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -3842 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-236 |#1|) (-140) (-1107)) (T -236))
-((-1573 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1107)))) (-1573 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-236 *3)))) (-3847 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-236 *2)) (-4 *2 (-1107)))) (-3847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3)) (-4 *3 (-1107)))) (-1688 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3)) (-4 *3 (-1107)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1573 ($)) (-15 -1573 ($ (-646 |t#1|))) (IF (|has| $ (-6 -4443)) (PROGN (-15 -3847 ($ |t#1| $)) (-15 -3847 ($ (-1 (-112) |t#1|) $)) (-15 -1688 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-1574 (((-2 (|:| |varOrder| (-646 (-1183))) (|:| |inhom| (-3 (-646 (-1272 (-776))) "failed")) (|:| |hom| (-646 (-1272 (-776))))) (-296 (-952 (-551)))) 42)))
-(((-237) (-10 -7 (-15 -1574 ((-2 (|:| |varOrder| (-646 (-1183))) (|:| |inhom| (-3 (-646 (-1272 (-776))) "failed")) (|:| |hom| (-646 (-1272 (-776))))) (-296 (-952 (-551))))))) (T -237))
-((-1574 (*1 *2 *3) (-12 (-5 *3 (-296 (-952 (-551)))) (-5 *2 (-2 (|:| |varOrder| (-646 (-1183))) (|:| |inhom| (-3 (-646 (-1272 (-776))) "failed")) (|:| |hom| (-646 (-1272 (-776)))))) (-5 *1 (-237)))))
-(-10 -7 (-15 -1574 ((-2 (|:| |varOrder| (-646 (-1183))) (|:| |inhom| (-3 (-646 (-1272 (-776))) "failed")) (|:| |hom| (-646 (-1272 (-776))))) (-296 (-952 (-551))))))
-((-3558 (((-776)) 56)) (-2445 (((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 $) (-1272 $)) 53) (((-694 |#3|) (-694 $)) 44) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-4361 (((-134)) 62)) (-4260 (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-4396 (((-1272 |#3|) $) NIL) (($ |#3|) NIL) (((-868) $) NIL) (($ (-551)) 12) (($ (-412 (-551))) NIL)) (-3548 (((-776)) 15)) (-4399 (($ $ |#3|) 59)))
-(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)) (-15 -3548 ((-776))) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -4396 (|#1| |#3|)) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2445 ((-694 |#3|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 |#1|) (-1272 |#1|))) (-15 -3558 ((-776))) (-15 -4399 (|#1| |#1| |#3|)) (-15 -4361 ((-134))) (-15 -4396 ((-1272 |#3|) |#1|))) (-239 |#2| |#3|) (-776) (-1222)) (T -238))
-((-4361 (*1 *2) (-12 (-14 *4 (-776)) (-4 *5 (-1222)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3558 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1222)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3548 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1222)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))))
-(-10 -8 (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)) (-15 -3548 ((-776))) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -4396 (|#1| |#3|)) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2445 ((-694 |#3|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 |#1|) (-1272 |#1|))) (-15 -3558 ((-776))) (-15 -4399 (|#1| |#1| |#3|)) (-15 -4361 ((-134))) (-15 -4396 ((-1272 |#3|) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#2| (-1107)))) (-3626 (((-112) $) 73 (|has| |#2| (-131)))) (-4157 (($ (-925)) 126 (|has| |#2| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-2823 (($ $ $) 122 (|has| |#2| (-798)))) (-1410 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1312 (((-112) $ (-776)) 8)) (-3558 (((-776)) 108 (|has| |#2| (-372)))) (-4073 (((-551) $) 120 (|has| |#2| (-853)))) (-4237 ((|#2| $ (-551) |#2|) 53 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 68 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-3 (-412 (-551)) #1#) $) 65 (-3274 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (((-3 |#2| #1#) $) 62 (|has| |#2| (-1107)))) (-3594 (((-551) $) 67 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-412 (-551)) $) 64 (-3274 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) ((|#2| $) 63 (|has| |#2| (-1107)))) (-2445 (((-694 (-551)) (-694 $)) 107 (-3274 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 106 (-3274 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 105 (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) 104 (|has| |#2| (-1055)))) (-3908 (((-3 $ "failed") $) 80 (|has| |#2| (-731)))) (-3413 (($) 111 (|has| |#2| (-372)))) (-1694 ((|#2| $ (-551) |#2|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#2| $ (-551)) 52)) (-3624 (((-112) $) 118 (|has| |#2| (-853)))) (-2134 (((-646 |#2|) $) 31 (|has| $ (-6 -4443)))) (-2591 (((-112) $) 82 (|has| |#2| (-731)))) (-3625 (((-112) $) 119 (|has| |#2| (-853)))) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 117 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3026 (((-646 |#2|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 116 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2138 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2|) $) 36)) (-2198 (((-925) $) 110 (|has| |#2| (-372)))) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#2| (-1107)))) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-2581 (($ (-925)) 109 (|has| |#2| (-372)))) (-3682 (((-1126) $) 21 (|has| |#2| (-1107)))) (-4250 ((|#2| $) 43 (|has| (-551) (-855)))) (-2391 (($ $ |#2|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#2| $ (-551) |#2|) 51) ((|#2| $ (-551)) 50)) (-4286 ((|#2| $ $) 125 (|has| |#2| (-1055)))) (-1575 (($ (-1272 |#2|)) 127)) (-4361 (((-134)) 124 (|has| |#2| (-367)))) (-4260 (($ $) 99 (-3274 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 97 (-3274 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 95 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) 94 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 93 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) 92 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 85 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1055)))) (-2135 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4443))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-1272 |#2|) $) 128) (($ (-551)) 69 (-3978 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055)))) (($ (-412 (-551))) 66 (-3274 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (($ |#2|) 61 (|has| |#2| (-1107))) (((-868) $) 18 (|has| |#2| (-618 (-868))))) (-3548 (((-776)) 103 (|has| |#2| (-1055)) CONST)) (-3680 (((-112) $ $) 23 (|has| |#2| (-1107)))) (-2137 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4443)))) (-3825 (($ $) 121 (|has| |#2| (-853)))) (-3528 (($) 72 (|has| |#2| (-131)) CONST)) (-3085 (($) 83 (|has| |#2| (-731)) CONST)) (-3090 (($ $) 98 (-3274 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 96 (-3274 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 91 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) 90 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 89 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) 88 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 87 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1055)))) (-2984 (((-112) $ $) 114 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2985 (((-112) $ $) 113 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3473 (((-112) $ $) 20 (|has| |#2| (-1107)))) (-3105 (((-112) $ $) 115 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3106 (((-112) $ $) 112 (-3978 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-4399 (($ $ |#2|) 123 (|has| |#2| (-367)))) (-4287 (($ $ $) 102 (|has| |#2| (-1055))) (($ $) 101 (|has| |#2| (-1055)))) (-4289 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-776)) 81 (|has| |#2| (-731))) (($ $ (-925)) 78 (|has| |#2| (-731)))) (* (($ (-551) $) 100 (|has| |#2| (-1055))) (($ $ $) 79 (|has| |#2| (-731))) (($ $ |#2|) 77 (|has| |#2| (-731))) (($ |#2| $) 76 (|has| |#2| (-731))) (($ (-776) $) 74 (|has| |#2| (-131))) (($ (-925) $) 71 (|has| |#2| (-25)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-239 |#1| |#2|) (-140) (-776) (-1222)) (T -239))
-((-1575 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1222)) (-4 *1 (-239 *3 *4)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055)) (-4 *4 (-1222)))) (-4286 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-1055)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-731)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-731)))))
-(-13 (-609 (-551) |t#2|) (-618 (-1272 |t#2|)) (-10 -8 (-6 -4443) (-15 -1575 ($ (-1272 |t#2|))) (IF (|has| |t#2| (-1107)) (-6 (-417 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1055)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-381 |t#2|)) (-15 -4157 ($ (-925))) (-15 -4286 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-731)) (PROGN (-6 (-731)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |t#2| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#2| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-1280 |t#2|)) |%noBranch|)))
-(((-21) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-23) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -3978 (|has| |#2| (-1107)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3978 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-621 #1=(-412 (-551))) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))) ((-621 (-551)) -3978 (|has| |#2| (-1055)) (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-621 |#2|) -3978 (|has| |#2| (-1107)) (|has| |#2| (-173))) ((-618 (-868)) -3978 (|has| |#2| (-1107)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-618 (-868))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-618 (-1272 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1055)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1055))) ((-289 #2=(-551) |#2|) . T) ((-291 #2# |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-372) |has| |#2| (-372)) ((-381 |#2|) |has| |#2| (-1055)) ((-417 |#2|) |has| |#2| (-1107)) ((-494 |#2|) . T) ((-609 #2# |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-651 (-551)) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 |#2|) -3978 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 $) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-653 |#2|) -3978 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-653 $) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-645 |#2|) -3978 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-644 (-551)) -12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055))) ((-644 |#2|) |has| |#2| (-1055)) ((-722 |#2|) -3978 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-731) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-796) |has| |#2| (-853)) ((-797) -3978 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-798) |has| |#2| (-798)) ((-799) -3978 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-802) -3978 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-853) |has| |#2| (-853)) ((-855) -3978 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-906 (-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))) ((-1044 #1#) -12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107))) ((-1044 (-551)) -12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) ((-1044 |#2|) |has| |#2| (-1107)) ((-1057 |#2|) -3978 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1057 $) |has| |#2| (-173)) ((-1062 |#2|) -3978 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1062 $) |has| |#2| (-173)) ((-1055) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1063) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1118) -3978 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-1107) -3978 (|has| |#2| (-1107)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1222) . T) ((-1280 |#2|) |has| |#2| (-367)))
-((-2986 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-3626 (((-112) $) NIL (|has| |#2| (-131)))) (-4157 (($ (-925)) 65 (|has| |#2| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) 70 (|has| |#2| (-798)))) (-1410 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1312 (((-112) $ (-776)) 17)) (-3558 (((-776)) NIL (|has| |#2| (-372)))) (-4073 (((-551) $) NIL (|has| |#2| (-853)))) (-4237 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (((-3 |#2| #1#) $) 34 (|has| |#2| (-1107)))) (-3594 (((-551) $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) ((|#2| $) 32 (|has| |#2| (-1107)))) (-2445 (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3908 (((-3 $ "failed") $) 61 (|has| |#2| (-731)))) (-3413 (($) NIL (|has| |#2| (-372)))) (-1694 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ (-551)) 59)) (-3624 (((-112) $) NIL (|has| |#2| (-853)))) (-2134 (((-646 |#2|) $) 15 (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (|has| |#2| (-731)))) (-3625 (((-112) $) NIL (|has| |#2| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 20 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3026 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 (((-551) $) 58 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2138 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2|) $) 47)) (-2198 (((-925) $) NIL (|has| |#2| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#2| (-1107)))) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#2| (-372)))) (-3682 (((-1126) $) NIL (|has| |#2| (-1107)))) (-4250 ((|#2| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ (-551) |#2|) NIL) ((|#2| $ (-551)) 21)) (-4286 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-1575 (($ (-1272 |#2|)) 18)) (-4361 (((-134)) NIL (|has| |#2| (-367)))) (-4260 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2135 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#2|) $) 10) (($ (-551)) NIL (-3978 (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (($ |#2|) 13 (|has| |#2| (-1107))) (((-868) $) NIL (|has| |#2| (-618 (-868))))) (-3548 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-3680 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-2137 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#2| (-853)))) (-3528 (($) 40 (|has| |#2| (-131)) CONST)) (-3085 (($) 44 (|has| |#2| (-731)) CONST)) (-3090 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3473 (((-112) $ $) 31 (|has| |#2| (-1107)))) (-3105 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3106 (((-112) $ $) 68 (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-4289 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-925)) NIL (|has| |#2| (-731)))) (* (($ (-551) $) NIL (|has| |#2| (-1055))) (($ $ $) 50 (|has| |#2| (-731))) (($ $ |#2|) 48 (|has| |#2| (-731))) (($ |#2| $) 49 (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-925) $) NIL (|has| |#2| (-25)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-240 |#1| |#2|) (-239 |#1| |#2|) (-776) (-1222)) (T -240))
+((-3430 (*1 *1 *1) (-4 *1 (-234))) (-2749 (*1 *1 *1) (-4 *1 (-234))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) (-2749 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))))
+(-13 (-1055) (-10 -8 (-15 -3430 ($ $)) (-15 -2749 ($ $)) (-15 -3430 ($ $ (-776))) (-15 -2749 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3054 (($) 12) (($ (-649 |#2|)) NIL)) (-3885 (($ $) 14)) (-3709 (($ (-649 |#2|)) 10)) (-2388 (((-867) $) 21)))
+(((-235 |#1| |#2|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -3054 (|#1| (-649 |#2|))) (-15 -3054 (|#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -3885 (|#1| |#1|))) (-236 |#2|) (-1106)) (T -235))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -3054 (|#1| (-649 |#2|))) (-15 -3054 (|#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -3885 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-236 |#1|) (-140) (-1106)) (T -236))
+((-3054 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1106)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-236 *3)))) (-4218 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-236 *2)) (-4 *2 (-1106)))) (-4218 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3)) (-4 *3 (-1106)))) (-1816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3)) (-4 *3 (-1106)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3054 ($)) (-15 -3054 ($ (-649 |t#1|))) (IF (|has| $ (-6 -4443)) (PROGN (-15 -4218 ($ |t#1| $)) (-15 -4218 ($ (-1 (-112) |t#1|) $)) (-15 -1816 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3067 (((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569)))) 42)))
+(((-237) (-10 -7 (-15 -3067 ((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569))))))) (T -237))
+((-3067 (*1 *2 *3) (-12 (-5 *3 (-297 (-958 (-569)))) (-5 *2 (-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776)))))) (-5 *1 (-237)))))
+(-10 -7 (-15 -3067 ((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569))))))
+((-3363 (((-776)) 56)) (-4091 (((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) 53) (((-694 |#3|) (-694 $)) 44) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2905 (((-134)) 62)) (-3430 (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2388 (((-1273 |#3|) $) NIL) (($ |#3|) NIL) (((-867) $) NIL) (($ (-569)) 12) (($ (-412 (-569))) NIL)) (-3263 (((-776)) 15)) (-2956 (($ $ |#3|) 59)))
+(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)) (-15 -3263 ((-776))) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -2388 (|#1| |#3|)) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -4091 ((-694 |#3|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -3363 ((-776))) (-15 -2956 (|#1| |#1| |#3|)) (-15 -2905 ((-134))) (-15 -2388 ((-1273 |#3|) |#1|))) (-239 |#2| |#3|) (-776) (-1223)) (T -238))
+((-2905 (*1 *2) (-12 (-14 *4 (-776)) (-4 *5 (-1223)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3363 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3263 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))))
+(-10 -8 (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)) (-15 -3263 ((-776))) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -2388 (|#1| |#3|)) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -4091 ((-694 |#3|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -3363 ((-776))) (-15 -2956 (|#1| |#1| |#3|)) (-15 -2905 ((-134))) (-15 -2388 ((-1273 |#3|) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#2| (-1106)))) (-2789 (((-112) $) 73 (|has| |#2| (-131)))) (-1833 (($ (-927)) 126 (|has| |#2| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-3576 (($ $ $) 122 (|has| |#2| (-798)))) (-3798 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1610 (((-112) $ (-776)) 8)) (-3363 (((-776)) 108 (|has| |#2| (-372)))) (-2211 (((-569) $) 120 (|has| |#2| (-853)))) (-3861 ((|#2| $ (-569) |#2|) 53 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-4359 (((-3 (-569) "failed") $) 68 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) 65 (-1739 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1106)))) (-3043 (((-569) $) 67 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) 64 (-1739 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) 63 (|has| |#2| (-1106)))) (-4091 (((-694 (-569)) (-694 $)) 107 (-1739 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 106 (-1739 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 105 (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) 104 (|has| |#2| (-1055)))) (-3351 (((-3 $ "failed") $) 80 (|has| |#2| (-731)))) (-3295 (($) 111 (|has| |#2| (-372)))) (-3074 ((|#2| $ (-569) |#2|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#2| $ (-569)) 52)) (-2769 (((-112) $) 118 (|has| |#2| (-853)))) (-2796 (((-649 |#2|) $) 31 (|has| $ (-6 -4443)))) (-2861 (((-112) $) 82 (|has| |#2| (-731)))) (-2778 (((-112) $) 119 (|has| |#2| (-853)))) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 117 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2912 (((-649 |#2|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 116 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3065 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2|) $) 36)) (-3348 (((-927) $) 110 (|has| |#2| (-372)))) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#2| (-1106)))) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-2114 (($ (-927)) 109 (|has| |#2| (-372)))) (-3461 (((-1126) $) 21 (|has| |#2| (-1106)))) (-3401 ((|#2| $) 43 (|has| (-569) (-855)))) (-1713 (($ $ |#2|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#2| $ (-569) |#2|) 51) ((|#2| $ (-569)) 50)) (-3523 ((|#2| $ $) 125 (|has| |#2| (-1055)))) (-3751 (($ (-1273 |#2|)) 127)) (-2905 (((-134)) 124 (|has| |#2| (-367)))) (-3430 (($ $) 99 (-1739 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 97 (-1739 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 95 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) 94 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 93 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) 92 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 85 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1055)))) (-3469 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4443))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-1273 |#2|) $) 128) (($ (-569)) 69 (-2718 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) 66 (-1739 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) 61 (|has| |#2| (-1106))) (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-3263 (((-776)) 103 (|has| |#2| (-1055)) CONST)) (-2040 (((-112) $ $) 23 (|has| |#2| (-1106)))) (-3996 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4443)))) (-3999 (($ $) 121 (|has| |#2| (-853)))) (-1786 (($) 72 (|has| |#2| (-131)) CONST)) (-1796 (($) 83 (|has| |#2| (-731)) CONST)) (-2749 (($ $) 98 (-1739 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 96 (-1739 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 91 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) 90 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 89 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) 88 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 87 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1055)))) (-2904 (((-112) $ $) 114 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2882 (((-112) $ $) 113 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2853 (((-112) $ $) 20 (|has| |#2| (-1106)))) (-2893 (((-112) $ $) 115 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2872 (((-112) $ $) 112 (-2718 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2956 (($ $ |#2|) 123 (|has| |#2| (-367)))) (-2946 (($ $ $) 102 (|has| |#2| (-1055))) (($ $) 101 (|has| |#2| (-1055)))) (-2935 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-776)) 81 (|has| |#2| (-731))) (($ $ (-927)) 78 (|has| |#2| (-731)))) (* (($ (-569) $) 100 (|has| |#2| (-1055))) (($ $ $) 79 (|has| |#2| (-731))) (($ $ |#2|) 77 (|has| |#2| (-731))) (($ |#2| $) 76 (|has| |#2| (-731))) (($ (-776) $) 74 (|has| |#2| (-131))) (($ (-927) $) 71 (|has| |#2| (-25)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-239 |#1| |#2|) (-140) (-776) (-1223)) (T -239))
+((-3751 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1223)) (-4 *1 (-239 *3 *4)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055)) (-4 *4 (-1223)))) (-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))))
+(-13 (-609 (-569) |t#2|) (-618 (-1273 |t#2|)) (-10 -8 (-6 -4443) (-15 -3751 ($ (-1273 |t#2|))) (IF (|has| |t#2| (-1106)) (-6 (-416 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1055)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-381 |t#2|)) (-15 -1833 ($ (-927))) (-15 -3523 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-731)) (PROGN (-6 (-731)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |t#2| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#2| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-1280 |t#2|)) |%noBranch|)))
+(((-21) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-23) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -2718 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2718 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-621 #0=(-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))) ((-621 (-569)) -2718 (|has| |#2| (-1055)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-621 |#2|) -2718 (|has| |#2| (-1106)) (|has| |#2| (-173))) ((-618 (-867)) -2718 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-618 (-867))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-618 (-1273 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1055)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1055))) ((-289 #1=(-569) |#2|) . T) ((-291 #1# |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-372) |has| |#2| (-372)) ((-381 |#2|) |has| |#2| (-1055)) ((-416 |#2|) |has| |#2| (-1106)) ((-494 |#2|) . T) ((-609 #1# |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-651 (-569)) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 |#2|) -2718 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 $) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-653 |#2|) -2718 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-653 $) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-645 |#2|) -2718 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-644 (-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))) ((-644 |#2|) |has| |#2| (-1055)) ((-722 |#2|) -2718 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-731) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-796) |has| |#2| (-853)) ((-797) -2718 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-798) |has| |#2| (-798)) ((-799) -2718 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-800) -2718 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-853) |has| |#2| (-853)) ((-855) -2718 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-906 (-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))) ((-1044 #0#) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))) ((-1044 (-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) ((-1044 |#2|) |has| |#2| (-1106)) ((-1057 |#2|) -2718 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1057 $) |has| |#2| (-173)) ((-1062 |#2|) -2718 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1062 $) |has| |#2| (-173)) ((-1055) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1064) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1118) -2718 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-1106) -2718 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1223) . T) ((-1280 |#2|) |has| |#2| (-367)))
+((-3535 (((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 21)) (-3485 ((|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 23)) (-1324 (((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)) 18)))
+(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -3535 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3485 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1324 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)))) (-776) (-1223) (-1223)) (T -240))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-5 *2 (-241 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1223)) (-4 *2 (-1223)) (-5 *1 (-240 *5 *6 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776)) (-4 *7 (-1223)) (-4 *5 (-1223)) (-5 *2 (-241 *6 *5)) (-5 *1 (-240 *6 *7 *5)))))
+(-10 -7 (-15 -3535 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3485 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1324 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|))))
+((-2383 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2789 (((-112) $) NIL (|has| |#2| (-131)))) (-1833 (($ (-927)) 65 (|has| |#2| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) 70 (|has| |#2| (-798)))) (-3798 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1610 (((-112) $ (-776)) 17)) (-3363 (((-776)) NIL (|has| |#2| (-372)))) (-2211 (((-569) $) NIL (|has| |#2| (-853)))) (-3861 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1106)))) (-3043 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) 32 (|has| |#2| (-1106)))) (-4091 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3351 (((-3 $ "failed") $) 61 (|has| |#2| (-731)))) (-3295 (($) NIL (|has| |#2| (-372)))) (-3074 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ (-569)) 59)) (-2769 (((-112) $) NIL (|has| |#2| (-853)))) (-2796 (((-649 |#2|) $) 15 (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (|has| |#2| (-731)))) (-2778 (((-112) $) NIL (|has| |#2| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 20 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2912 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 (((-569) $) 58 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2|) $) 47)) (-3348 (((-927) $) NIL (|has| |#2| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#2| (-372)))) (-3461 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3401 ((|#2| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) 21)) (-3523 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3751 (($ (-1273 |#2|)) 18)) (-2905 (((-134)) NIL (|has| |#2| (-367)))) (-3430 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3469 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#2|) $) 10) (($ (-569)) NIL (-2718 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) 13 (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3263 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-2040 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3996 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#2| (-853)))) (-1786 (($) 40 (|has| |#2| (-131)) CONST)) (-1796 (($) 44 (|has| |#2| (-731)) CONST)) (-2749 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2853 (((-112) $ $) 31 (|has| |#2| (-1106)))) (-2893 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2872 (((-112) $ $) 68 (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-2935 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) 50 (|has| |#2| (-731))) (($ $ |#2|) 48 (|has| |#2| (-731))) (($ |#2| $) 49 (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-241 |#1| |#2|) (-239 |#1| |#2|) (-776) (-1223)) (T -241))
NIL
(-239 |#1| |#2|)
-((-4291 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-4292 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-4408 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -4291 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4292 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4408 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-776) (-1222) (-1222)) (T -241))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-5 *2 (-240 *5 *7)) (-5 *1 (-241 *5 *6 *7)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1222)) (-4 *2 (-1222)) (-5 *1 (-241 *5 *6 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-776)) (-4 *7 (-1222)) (-4 *5 (-1222)) (-5 *2 (-240 *6 *5)) (-5 *1 (-241 *6 *7 *5)))))
-(-10 -7 (-15 -4291 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4292 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4408 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-1579 (((-551) (-646 (-1165))) 36) (((-551) (-1165)) 29)) (-1578 (((-1278) (-646 (-1165))) 40) (((-1278) (-1165)) 39)) (-1576 (((-1165)) 16)) (-1577 (((-1165) (-551) (-1165)) 23)) (-4222 (((-646 (-1165)) (-646 (-1165)) (-551) (-1165)) 37) (((-1165) (-1165) (-551) (-1165)) 35)) (-3038 (((-646 (-1165)) (-646 (-1165))) 15) (((-646 (-1165)) (-1165)) 11)))
-(((-242) (-10 -7 (-15 -3038 ((-646 (-1165)) (-1165))) (-15 -3038 ((-646 (-1165)) (-646 (-1165)))) (-15 -1576 ((-1165))) (-15 -1577 ((-1165) (-551) (-1165))) (-15 -4222 ((-1165) (-1165) (-551) (-1165))) (-15 -4222 ((-646 (-1165)) (-646 (-1165)) (-551) (-1165))) (-15 -1578 ((-1278) (-1165))) (-15 -1578 ((-1278) (-646 (-1165)))) (-15 -1579 ((-551) (-1165))) (-15 -1579 ((-551) (-646 (-1165)))))) (T -242))
-((-1579 (*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-551)) (-5 *1 (-242)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-551)) (-5 *1 (-242)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242)))) (-4222 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-646 (-1165))) (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *1 (-242)))) (-4222 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-242)))) (-1577 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-242)))) (-1576 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-242)))) (-3038 (*1 *2 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165)))))
-(-10 -7 (-15 -3038 ((-646 (-1165)) (-1165))) (-15 -3038 ((-646 (-1165)) (-646 (-1165)))) (-15 -1576 ((-1165))) (-15 -1577 ((-1165) (-551) (-1165))) (-15 -4222 ((-1165) (-1165) (-551) (-1165))) (-15 -4222 ((-646 (-1165)) (-646 (-1165)) (-551) (-1165))) (-15 -1578 ((-1278) (-1165))) (-15 -1578 ((-1278) (-646 (-1165)))) (-15 -1579 ((-551) (-1165))) (-15 -1579 ((-551) (-646 (-1165)))))
-((** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 20)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ (-412 (-551)) $) 27) (($ $ (-412 (-551))) NIL)))
-(((-243 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-551))) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|))) (-244)) (T -243))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-551))) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 47)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 51)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 48)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ (-412 (-551)) $) 50) (($ $ (-412 (-551))) 49)))
+((-3097 (((-569) (-649 (-1165))) 36) (((-569) (-1165)) 29)) (-1626 (((-1278) (-649 (-1165))) 40) (((-1278) (-1165)) 39)) (-3076 (((-1165)) 16)) (-3086 (((-1165) (-569) (-1165)) 23)) (-2132 (((-649 (-1165)) (-649 (-1165)) (-569) (-1165)) 37) (((-1165) (-1165) (-569) (-1165)) 35)) (-4140 (((-649 (-1165)) (-649 (-1165))) 15) (((-649 (-1165)) (-1165)) 11)))
+(((-242) (-10 -7 (-15 -4140 ((-649 (-1165)) (-1165))) (-15 -4140 ((-649 (-1165)) (-649 (-1165)))) (-15 -3076 ((-1165))) (-15 -3086 ((-1165) (-569) (-1165))) (-15 -2132 ((-1165) (-1165) (-569) (-1165))) (-15 -2132 ((-649 (-1165)) (-649 (-1165)) (-569) (-1165))) (-15 -1626 ((-1278) (-1165))) (-15 -1626 ((-1278) (-649 (-1165)))) (-15 -3097 ((-569) (-1165))) (-15 -3097 ((-569) (-649 (-1165)))))) (T -242))
+((-3097 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-569)) (-5 *1 (-242)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-242)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242)))) (-2132 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-1165))) (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *1 (-242)))) (-2132 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))) (-3086 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))) (-3076 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)))) (-4140 (*1 *2 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165)))))
+(-10 -7 (-15 -4140 ((-649 (-1165)) (-1165))) (-15 -4140 ((-649 (-1165)) (-649 (-1165)))) (-15 -3076 ((-1165))) (-15 -3086 ((-1165) (-569) (-1165))) (-15 -2132 ((-1165) (-1165) (-569) (-1165))) (-15 -2132 ((-649 (-1165)) (-649 (-1165)) (-569) (-1165))) (-15 -1626 ((-1278) (-1165))) (-15 -1626 ((-1278) (-649 (-1165)))) (-15 -3097 ((-569) (-1165))) (-15 -3097 ((-569) (-649 (-1165)))))
+((** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) NIL)))
+(((-243 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-244)) (T -243))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 47)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 51)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 48)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 50) (($ $ (-412 (-569))) 49)))
(((-244) (-140)) (T -244))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-551)))) (-2824 (*1 *1 *1) (-4 *1 (-244))))
-(-13 (-293) (-38 (-412 (-551))) (-10 -8 (-15 ** ($ $ (-551))) (-15 -2824 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-293) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-722 #1#) . T) ((-731) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-4246 (($ $) 58)) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-1581 (($ $ $) 54 (|has| $ (-6 -4444)))) (-1580 (($ $ $) 53 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-1583 (($ $) 57)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-1582 (($ $) 56)) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4247 ((|#1| $) 60)) (-3616 (($ $) 59)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48)) (-3448 (((-551) $ $) 45)) (-4083 (((-112) $) 47)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4240 (($ $ $) 55 (|has| $ (-6 -4444)))) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-245 |#1|) (-140) (-1222)) (T -245))
-((-4247 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-1582 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-4240 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-1581 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222)))) (-1580 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -4247 (|t#1| $)) (-15 -3616 ($ $)) (-15 -4246 ($ $)) (-15 -1583 ($ $)) (-15 -1582 ($ $)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -4240 ($ $ $)) (-15 -1581 ($ $ $)) (-15 -1580 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) NIL)) (-4244 ((|#1| $) NIL)) (-4246 (($ $) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1908 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3328 (($ $) 10 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4236 (($ $ $) NIL (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) NIL)) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4245 ((|#1| $) NIL)) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-4248 (($ $) NIL) (($ $ (-776)) NIL)) (-2544 (($ $) NIL (|has| |#1| (-1107)))) (-1443 (($ $) 7 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) NIL (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) NIL)) (-3848 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3884 (((-112) $) NIL)) (-3861 (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107))) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) (-1 (-112) |#1|) $) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3277 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3959 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3983 (($ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4247 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4057 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3885 (((-112) $) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1239 (-551))) NIL) ((|#1| $ (-551)) NIL) ((|#1| $ (-551) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-776) $ "count") 16)) (-3448 (((-551) $ $) NIL)) (-1689 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-1584 (($ (-646 |#1|)) 22)) (-4083 (((-112) $) NIL)) (-4241 (($ $) NIL)) (-4239 (($ $) NIL (|has| $ (-6 -4444)))) (-4242 (((-776) $) NIL)) (-4243 (($ $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-4240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4251 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-646 $)) NIL) (($ $ |#1|) NIL)) (-4396 (($ (-646 |#1|)) 17) (((-646 |#1|) $) 18) (((-868) $) 21 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) 14 (|has| $ (-6 -4443)))))
-(((-246 |#1|) (-13 (-671 |#1|) (-495 (-646 |#1|)) (-10 -8 (-15 -1584 ($ (-646 |#1|))) (-15 -4249 ($ $ "unique")) (-15 -4249 ($ $ "sort")) (-15 -4249 ((-776) $ "count")))) (-855)) (T -246))
-((-1584 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855)))))
-(-13 (-671 |#1|) (-495 (-646 |#1|)) (-10 -8 (-15 -1584 ($ (-646 |#1|))) (-15 -4249 ($ $ "unique")) (-15 -4249 ($ $ "sort")) (-15 -4249 ((-776) $ "count"))))
-((-1585 (((-3 (-776) "failed") |#1| |#1| (-776)) 43)))
-(((-247 |#1|) (-10 -7 (-15 -1585 ((-3 (-776) "failed") |#1| |#1| (-776)))) (-13 (-731) (-372) (-10 -7 (-15 ** (|#1| |#1| (-551)))))) (T -247))
-((-1585 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-776)) (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-551)))))) (-5 *1 (-247 *3)))))
-(-10 -7 (-15 -1585 ((-3 (-776) "failed") |#1| |#1| (-776))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-869 |#1|)) $) NIL)) (-3505 (((-1177 $) $ (-869 |#1|)) NIL) (((-1177 |#2|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2251 (($ $) NIL (|has| |#2| (-562)))) (-2249 (((-112) $) NIL (|has| |#2| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-869 |#1|))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL (|has| |#2| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-869 |#1|) #2#) $) NIL)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-869 |#1|) $) NIL)) (-4206 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-2125 (($ $ (-646 (-551))) NIL)) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#2| (-916)))) (-1779 (($ $ |#2| (-240 (-4407 |#1|) (-776)) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#2|) (-869 |#1|)) NIL) (($ (-1177 $) (-869 |#1|)) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#2| (-240 (-4407 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-869 |#1|)) NIL)) (-3241 (((-240 (-4407 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-1780 (($ (-1 (-240 (-4407 |#1|) (-776)) (-240 (-4407 |#1|) (-776))) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-3504 (((-3 (-869 |#1|) #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#2| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2582 (-776))) #3#) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#2| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-916)))) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-646 (-869 |#1|)) (-646 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-646 (-869 |#1|)) (-646 $)) NIL)) (-4207 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4260 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4398 (((-240 (-4407 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-869 |#1|) (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#2| (-562)))) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-240 (-4407 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#2| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#2| (-38 (-412 (-551))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-248 |#1| |#2|) (-13 (-956 |#2| (-240 (-4407 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551)))))) (-646 (-1183)) (-1055)) (T -248))
-((-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-248 *3 *4)) (-14 *3 (-646 (-1183))) (-4 *4 (-1055)))))
-(-13 (-956 |#2| (-240 (-4407 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551))))))
-((-2986 (((-112) $ $) NIL)) (-1586 (((-1278) $) 17)) (-1588 (((-185 (-250)) $) 11)) (-1587 (($ (-185 (-250))) 12)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1589 (((-250) $) 7)) (-4396 (((-868) $) 9)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 15)))
-(((-249) (-13 (-1107) (-10 -8 (-15 -1589 ((-250) $)) (-15 -1588 ((-185 (-250)) $)) (-15 -1587 ($ (-185 (-250)))) (-15 -1586 ((-1278) $))))) (T -249))
-((-1589 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))) (-1587 (*1 *1 *2) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
-(-13 (-1107) (-10 -8 (-15 -1589 ((-250) $)) (-15 -1588 ((-185 (-250)) $)) (-15 -1587 ($ (-185 (-250)))) (-15 -1586 ((-1278) $))))
-((-2986 (((-112) $ $) NIL)) (-1514 (((-646 (-870)) $) NIL)) (-3991 (((-511) $) NIL)) (-3681 (((-1165) $) NIL)) (-1516 (((-188) $) NIL)) (-3053 (((-112) $ (-511)) NIL)) (-3682 (((-1126) $) NIL)) (-1590 (((-336) $) 7)) (-1515 (((-646 (-112)) $) NIL)) (-4396 (((-868) $) NIL) (((-184) $) 8)) (-3680 (((-112) $ $) NIL)) (-2939 (((-55) $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-250) (-13 (-187) (-618 (-184)) (-10 -8 (-15 -1590 ((-336) $))))) (T -250))
-((-1590 (*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
-(-13 (-187) (-618 (-184)) (-10 -8 (-15 -1590 ((-336) $))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4249 (((-1188) $ (-776)) 13)) (-4396 (((-868) $) 20)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 16)) (-4407 (((-776) $) 9)))
-(((-251) (-13 (-1107) (-10 -8 (-15 -4407 ((-776) $)) (-15 -4249 ((-1188) $ (-776)))))) (T -251))
-((-4407 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251)))))
-(-13 (-1107) (-10 -8 (-15 -4407 ((-776) $)) (-15 -4249 ((-1188) $ (-776)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4157 (($ (-925)) NIL (|has| |#4| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) NIL (|has| |#4| (-798)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#4| (-372)))) (-4073 (((-551) $) NIL (|has| |#4| (-853)))) (-4237 ((|#4| $ (-551) |#4|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1107))) (((-3 (-551) #1#) $) NIL (-12 (|has| |#4| (-1044 (-551))) (|has| |#4| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#4| (-1044 (-412 (-551)))) (|has| |#4| (-1107))))) (-3594 ((|#4| $) NIL (|has| |#4| (-1107))) (((-551) $) NIL (-12 (|has| |#4| (-1044 (-551))) (|has| |#4| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#4| (-1044 (-412 (-551)))) (|has| |#4| (-1107))))) (-2445 (((-2 (|:| -1758 (-694 |#4|)) (|:| |vec| (-1272 |#4|))) (-694 $) (-1272 $)) NIL (|has| |#4| (-1055))) (((-694 |#4|) (-694 $)) NIL (|has| |#4| (-1055))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055)))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))))) (-3908 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-3413 (($) NIL (|has| |#4| (-372)))) (-1694 ((|#4| $ (-551) |#4|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#4| $ (-551)) NIL)) (-3624 (((-112) $) NIL (|has| |#4| (-853)))) (-2134 (((-646 |#4|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-3625 (((-112) $) NIL (|has| |#4| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3026 (((-646 |#4|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2138 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#4| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#4| (-372)))) (-3682 (((-1126) $) NIL)) (-4250 ((|#4| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#4|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2397 (((-646 |#4|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#4| $ (-551) |#4|) NIL) ((|#4| $ (-551)) 16)) (-4286 ((|#4| $ $) NIL (|has| |#4| (-1055)))) (-1575 (($ (-1272 |#4|)) NIL)) (-4361 (((-134)) NIL (|has| |#4| (-367)))) (-4260 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-2135 (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#4|) $) NIL) (((-868) $) NIL) (($ |#4|) NIL (|has| |#4| (-1107))) (($ (-551)) NIL (-3978 (-12 (|has| |#4| (-1044 (-551))) (|has| |#4| (-1107))) (|has| |#4| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#4| (-1044 (-412 (-551)))) (|has| |#4| (-1107))))) (-3548 (((-776)) NIL (|has| |#4| (-1055)) CONST)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#4| (-853)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) CONST)) (-3090 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3106 (((-112) $ $) NIL (-3978 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-4399 (($ $ |#4|) NIL (|has| |#4| (-367)))) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))) (($ $ (-925)) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (* (($ |#2| $) 18) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-731))) (($ |#4| $) NIL (|has| |#4| (-731))) (($ $ $) NIL (-3978 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-551))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) (-925) (-1055) (-1129 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-653 |#2|)) (T -252))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569)))) (-1776 (*1 *1 *1) (-4 *1 (-244))))
+(-13 (-293) (-38 (-412 (-569))) (-10 -8 (-15 ** ($ $ (-569))) (-15 -1776 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-293) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-722 #0#) . T) ((-731) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-1528 (($ $) 58)) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3117 (($ $ $) 54 (|has| $ (-6 -4444)))) (-3107 (($ $ $) 53 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-1337 (($ $) 57)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-2013 (($ $) 56)) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1702 ((|#1| $) 60)) (-2695 (($ $) 59)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48)) (-1797 (((-569) $ $) 45)) (-2284 (((-112) $) 47)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-3149 (($ $ $) 55 (|has| $ (-6 -4444)))) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-245 |#1|) (-140) (-1223)) (T -245))
+((-1702 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-2695 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-3149 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-3117 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-3107 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
+(-13 (-1016 |t#1|) (-10 -8 (-15 -1702 (|t#1| $)) (-15 -2695 ($ $)) (-15 -1528 ($ $)) (-15 -1337 ($ $)) (-15 -2013 ($ $)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3149 ($ $ $)) (-15 -3117 ($ $ $)) (-15 -3107 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) NIL)) (-2498 ((|#1| $) NIL)) (-1528 (($ $) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3364 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3246 (($ $) 10 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3116 (($ $ $) NIL (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "rest" $) NIL (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) NIL)) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2487 ((|#1| $) NIL)) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3414 (($ $) NIL) (($ $ (-776)) NIL)) (-3686 (($ $) NIL (|has| |#1| (-1106)))) (-3437 (($ $) 7 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3154 (((-112) $) NIL)) (-3975 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3644 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3719 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3271 (($ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1702 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-2086 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3166 (((-112) $) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-776) $ "count") 16)) (-1797 (((-569) $ $) NIL)) (-1827 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3122 (($ (-649 |#1|)) 22)) (-2284 (((-112) $) NIL)) (-3161 (($ $) NIL)) (-3137 (($ $) NIL (|has| $ (-6 -4444)))) (-3172 (((-776) $) NIL)) (-3182 (($ $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-3149 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3632 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-2388 (($ (-649 |#1|)) 17) (((-649 |#1|) $) 18) (((-867) $) 21 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) 14 (|has| $ (-6 -4443)))))
+(((-246 |#1|) (-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3122 ($ (-649 |#1|))) (-15 -1852 ($ $ "unique")) (-15 -1852 ($ $ "sort")) (-15 -1852 ((-776) $ "count")))) (-855)) (T -246))
+((-3122 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855)))))
+(-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3122 ($ (-649 |#1|))) (-15 -1852 ($ $ "unique")) (-15 -1852 ($ $ "sort")) (-15 -1852 ((-776) $ "count"))))
+((-3128 (((-3 (-776) "failed") |#1| |#1| (-776)) 43)))
+(((-247 |#1|) (-10 -7 (-15 -3128 ((-3 (-776) "failed") |#1| |#1| (-776)))) (-13 (-731) (-372) (-10 -7 (-15 ** (|#1| |#1| (-569)))))) (T -247))
+((-3128 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-776)) (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569)))))) (-5 *1 (-247 *3)))))
+(-10 -7 (-15 -3128 ((-3 (-776) "failed") |#1| |#1| (-776))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-869 |#1|)) $) NIL)) (-3663 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2586 (($ $) NIL (|has| |#2| (-561)))) (-2564 (((-112) $) NIL (|has| |#2| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL (|has| |#2| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4168 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3889 (($ $ (-649 (-569))) NIL)) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-915)))) (-1482 (($ $ |#2| (-241 (-2394 |#1|) (-776)) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#2| (-241 (-2394 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-869 |#1|)) NIL)) (-3304 (((-241 (-2394 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1491 (($ (-1 (-241 (-2394 |#1|) (-776)) (-241 (-2394 |#1|) (-776))) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-4212 (((-3 (-869 |#1|) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#2| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2777 (-776))) "failed") $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#2| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4180 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3430 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2091 (((-241 (-2394 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-241 (-2394 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-248 |#1| |#2|) (-13 (-955 |#2| (-241 (-2394 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055)) (T -248))
+((-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4)) (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
+(-13 (-955 |#2| (-241 (-2394 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569))))))
+((-2383 (((-112) $ $) NIL)) (-1557 (((-1278) $) 17)) (-3150 (((-184 (-250)) $) 11)) (-3139 (($ (-184 (-250))) 12)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1534 (((-250) $) 7)) (-2388 (((-867) $) 9)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 15)))
+(((-249) (-13 (-1106) (-10 -8 (-15 -1534 ((-250) $)) (-15 -3150 ((-184 (-250)) $)) (-15 -3139 ($ (-184 (-250)))) (-15 -1557 ((-1278) $))))) (T -249))
+((-1534 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
+(-13 (-1106) (-10 -8 (-15 -1534 ((-250) $)) (-15 -3150 ((-184 (-250)) $)) (-15 -3139 ($ (-184 (-250)))) (-15 -1557 ((-1278) $))))
+((-2383 (((-112) $ $) NIL)) (-1724 (((-649 (-870)) $) NIL)) (-3458 (((-511) $) NIL)) (-2050 (((-1165) $) NIL)) (-3806 (((-187) $) NIL)) (-2016 (((-112) $ (-511)) NIL)) (-3461 (((-1126) $) NIL)) (-3162 (((-336) $) 7)) (-3763 (((-649 (-112)) $) NIL)) (-2388 (((-867) $) NIL) (((-188) $) 8)) (-2040 (((-112) $ $) NIL)) (-3450 (((-55) $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-250) (-13 (-186) (-618 (-188)) (-10 -8 (-15 -3162 ((-336) $))))) (T -250))
+((-3162 (*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
+(-13 (-186) (-618 (-188)) (-10 -8 (-15 -3162 ((-336) $))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1852 (((-1188) $ (-776)) 13)) (-2388 (((-867) $) 20)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 16)) (-2394 (((-776) $) 9)))
+(((-251) (-13 (-1106) (-10 -8 (-15 -2394 ((-776) $)) (-15 -1852 ((-1188) $ (-776)))))) (T -251))
+((-2394 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251)))))
+(-13 (-1106) (-10 -8 (-15 -2394 ((-776) $)) (-15 -1852 ((-1188) $ (-776)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-1833 (($ (-927)) NIL (|has| |#4| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) NIL (|has| |#4| (-798)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#4| (-372)))) (-2211 (((-569) $) NIL (|has| |#4| (-853)))) (-3861 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1106))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-3043 ((|#4| $) NIL (|has| |#4| (-1106))) (((-569) $) NIL (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-4091 (((-2 (|:| -4368 (-694 |#4|)) (|:| |vec| (-1273 |#4|))) (-694 $) (-1273 $)) NIL (|has| |#4| (-1055))) (((-694 |#4|) (-694 $)) NIL (|has| |#4| (-1055))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))))) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-3295 (($) NIL (|has| |#4| (-372)))) (-3074 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#4| $ (-569)) NIL)) (-2769 (((-112) $) NIL (|has| |#4| (-853)))) (-2796 (((-649 |#4|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-2778 (((-112) $) NIL (|has| |#4| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2912 (((-649 |#4|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3065 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#4| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#4| (-372)))) (-3461 (((-1126) $) NIL)) (-3401 ((|#4| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#4|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1784 (((-649 |#4|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#4| $ (-569) |#4|) NIL) ((|#4| $ (-569)) 16)) (-3523 ((|#4| $ $) NIL (|has| |#4| (-1055)))) (-3751 (($ (-1273 |#4|)) NIL)) (-2905 (((-134)) NIL (|has| |#4| (-367)))) (-3430 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-3469 (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#4|) $) NIL) (((-867) $) NIL) (($ |#4|) NIL (|has| |#4| (-1106))) (($ (-569)) NIL (-2718 (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (|has| |#4| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-3263 (((-776)) NIL (|has| |#4| (-1055)) CONST)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#4| (-853)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) CONST)) (-2749 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2872 (((-112) $ $) NIL (-2718 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2956 (($ $ |#4|) NIL (|has| |#4| (-367)))) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))) (($ $ (-927)) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (* (($ |#2| $) 18) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-731))) (($ |#4| $) NIL (|has| |#4| (-731))) (($ $ $) NIL (-2718 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) (-927) (-1055) (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-653 |#2|)) (T -252))
NIL
(-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4157 (($ (-925)) NIL (|has| |#3| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) NIL (|has| |#3| (-798)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#3| (-372)))) (-4073 (((-551) $) NIL (|has| |#3| (-853)))) (-4237 ((|#3| $ (-551) |#3|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1107))) (((-3 (-551) #1#) $) NIL (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))) (-3594 ((|#3| $) NIL (|has| |#3| (-1107))) (((-551) $) NIL (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))) (-2445 (((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 $) (-1272 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055)))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))))) (-3908 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-3413 (($) NIL (|has| |#3| (-372)))) (-1694 ((|#3| $ (-551) |#3|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#3| $ (-551)) NIL)) (-3624 (((-112) $) NIL (|has| |#3| (-853)))) (-2134 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-3625 (((-112) $) NIL (|has| |#3| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3026 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2138 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#3| |#3|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#3| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#3| (-372)))) (-3682 (((-1126) $) NIL)) (-4250 ((|#3| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#3|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-296 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-646 |#3|) (-646 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-2397 (((-646 |#3|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#3| $ (-551) |#3|) NIL) ((|#3| $ (-551)) 15)) (-4286 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-1575 (($ (-1272 |#3|)) NIL)) (-4361 (((-134)) NIL (|has| |#3| (-367)))) (-4260 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-2135 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#3|) $) NIL) (((-868) $) NIL) (($ |#3|) NIL (|has| |#3| (-1107))) (($ (-551)) NIL (-3978 (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (|has| |#3| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107))))) (-3548 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#3| (-853)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) CONST)) (-3090 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3106 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-4399 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))) (($ $ (-925)) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (* (($ |#2| $) 17) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ $ $) NIL (-3978 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-1833 (($ (-927)) NIL (|has| |#3| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) NIL (|has| |#3| (-798)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#3| (-372)))) (-2211 (((-569) $) NIL (|has| |#3| (-853)))) (-3861 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1106))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-3043 ((|#3| $) NIL (|has| |#3| (-1106))) (((-569) $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-4091 (((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-3295 (($) NIL (|has| |#3| (-372)))) (-3074 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#3| $ (-569)) NIL)) (-2769 (((-112) $) NIL (|has| |#3| (-853)))) (-2796 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-2778 (((-112) $) NIL (|has| |#3| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2912 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#3| |#3|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#3| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#3| (-372)))) (-3461 (((-1126) $) NIL)) (-3401 ((|#3| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#3|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-1784 (((-649 |#3|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) 15)) (-3523 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-3751 (($ (-1273 |#3|)) NIL)) (-2905 (((-134)) NIL (|has| |#3| (-367)))) (-3430 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-3469 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#3|) $) NIL) (((-867) $) NIL) (($ |#3|) NIL (|has| |#3| (-1106))) (($ (-569)) NIL (-2718 (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-3263 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#3| (-853)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) CONST)) (-2749 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2872 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))) (($ $ (-927)) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (* (($ |#2| $) 17) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ $ $) NIL (-2718 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
(((-253 |#1| |#2| |#3|) (-13 (-239 |#1| |#3|) (-653 |#2|)) (-776) (-1055) (-653 |#2|)) (T -253))
NIL
(-13 (-239 |#1| |#3|) (-653 |#2|))
-((-1595 (((-646 (-776)) $) 56) (((-646 (-776)) $ |#3|) 59)) (-1629 (((-776) $) 58) (((-776) $ |#3|) 61)) (-1591 (($ $) 76)) (-3595 (((-3 |#2| #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 (-551) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 83)) (-4221 (((-776) $ |#3|) 43) (((-776) $) 38)) (-1630 (((-1 $ (-776)) |#3|) 15) (((-1 $ (-776)) $) 88)) (-1593 ((|#4| $) 69)) (-1594 (((-112) $) 67)) (-1592 (($ $) 75)) (-4217 (($ $ (-646 (-296 $))) 114) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-646 |#4|) (-646 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-646 |#4|) (-646 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-646 |#3|) (-646 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-646 |#3|) (-646 |#2|)) 100)) (-4260 (($ $ |#4|) NIL) (($ $ (-646 |#4|)) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-646 |#4|) (-646 (-776))) NIL) (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1596 (((-646 |#3|) $) 86)) (-4398 ((|#5| $) NIL) (((-776) $ |#4|) NIL) (((-646 (-776)) $ (-646 |#4|)) NIL) (((-776) $ |#3|) 49)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-412 (-551))) NIL) (($ $) NIL)))
-(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4217 (|#1| |#1| (-646 |#3|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#3| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#3|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#3| |#1|)) (-15 -1630 ((-1 |#1| (-776)) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1593 (|#4| |#1|)) (-15 -1594 ((-112) |#1|)) (-15 -1629 ((-776) |#1| |#3|)) (-15 -1595 ((-646 (-776)) |#1| |#3|)) (-15 -1629 ((-776) |#1|)) (-15 -1595 ((-646 (-776)) |#1|)) (-15 -4398 ((-776) |#1| |#3|)) (-15 -4221 ((-776) |#1|)) (-15 -4221 ((-776) |#1| |#3|)) (-15 -1596 ((-646 |#3|) |#1|)) (-15 -1630 ((-1 |#1| (-776)) |#3|)) (-15 -4396 (|#1| |#3|)) (-15 -3595 ((-3 |#3| #1="failed") |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -4398 ((-646 (-776)) |#1| (-646 |#4|))) (-15 -4398 ((-776) |#1| |#4|)) (-15 -4396 (|#1| |#4|)) (-15 -3595 ((-3 |#4| #1#) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#4| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4398 (|#5| |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4260 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -4260 (|#1| |#1| |#4| (-776))) (-15 -4260 (|#1| |#1| (-646 |#4|))) (-15 -4260 (|#1| |#1| |#4|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1055) (-855) (-268 |#3|) (-798)) (T -254))
+((-3195 (((-649 (-776)) $) 56) (((-649 (-776)) $ |#3|) 59)) (-2341 (((-776) $) 58) (((-776) $ |#3|) 61)) (-3173 (($ $) 76)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-4315 (((-776) $ |#3|) 43) (((-776) $) 38)) (-2350 (((-1 $ (-776)) |#3|) 15) (((-1 $ (-776)) $) 88)) (-2443 ((|#4| $) 69)) (-3184 (((-112) $) 67)) (-1476 (($ $) 75)) (-1679 (($ $ (-649 (-297 $))) 114) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-649 |#3|) (-649 |#2|)) 100)) (-3430 (($ $ |#4|) NIL) (($ $ (-649 |#4|)) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) NIL) (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3210 (((-649 |#3|) $) 86)) (-2091 ((|#5| $) NIL) (((-776) $ |#4|) NIL) (((-649 (-776)) $ (-649 |#4|)) NIL) (((-776) $ |#3|) 49)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-412 (-569))) NIL) (($ $) NIL)))
+(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -1679 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#3| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#3| |#1|)) (-15 -2350 ((-1 |#1| (-776)) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -2443 (|#4| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2341 ((-776) |#1| |#3|)) (-15 -3195 ((-649 (-776)) |#1| |#3|)) (-15 -2341 ((-776) |#1|)) (-15 -3195 ((-649 (-776)) |#1|)) (-15 -2091 ((-776) |#1| |#3|)) (-15 -4315 ((-776) |#1|)) (-15 -4315 ((-776) |#1| |#3|)) (-15 -3210 ((-649 |#3|) |#1|)) (-15 -2350 ((-1 |#1| (-776)) |#3|)) (-15 -2388 (|#1| |#3|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -2091 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -2091 ((-776) |#1| |#4|)) (-15 -2388 (|#1| |#4|)) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#4| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -2091 (|#5| |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -3430 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3430 (|#1| |#1| |#4| (-776))) (-15 -3430 (|#1| |#1| (-649 |#4|))) (-15 -3430 (|#1| |#1| |#4|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1055) (-855) (-268 |#3|) (-798)) (T -254))
NIL
-(-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4217 (|#1| |#1| (-646 |#3|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#3| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#3|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#3| |#1|)) (-15 -1630 ((-1 |#1| (-776)) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1593 (|#4| |#1|)) (-15 -1594 ((-112) |#1|)) (-15 -1629 ((-776) |#1| |#3|)) (-15 -1595 ((-646 (-776)) |#1| |#3|)) (-15 -1629 ((-776) |#1|)) (-15 -1595 ((-646 (-776)) |#1|)) (-15 -4398 ((-776) |#1| |#3|)) (-15 -4221 ((-776) |#1|)) (-15 -4221 ((-776) |#1| |#3|)) (-15 -1596 ((-646 |#3|) |#1|)) (-15 -1630 ((-1 |#1| (-776)) |#3|)) (-15 -4396 (|#1| |#3|)) (-15 -3595 ((-3 |#3| #1="failed") |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -4398 ((-646 (-776)) |#1| (-646 |#4|))) (-15 -4398 ((-776) |#1| |#4|)) (-15 -4396 (|#1| |#4|)) (-15 -3595 ((-3 |#4| #1#) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#4| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4398 (|#5| |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4260 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -4260 (|#1| |#1| |#4| (-776))) (-15 -4260 (|#1| |#1| (-646 |#4|))) (-15 -4260 (|#1| |#1| |#4|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1595 (((-646 (-776)) $) 216) (((-646 (-776)) $ |#2|) 214)) (-1629 (((-776) $) 215) (((-776) $ |#2|) 213)) (-3503 (((-646 |#3|) $) 112)) (-3505 (((-1177 $) $ |#3|) 127) (((-1177 |#1|) $) 126)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2251 (($ $) 90 (|has| |#1| (-562)))) (-2249 (((-112) $) 92 (|has| |#1| (-562)))) (-3240 (((-776) $) 114) (((-776) $ (-646 |#3|)) 113)) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 102 (|has| |#1| (-916)))) (-4224 (($ $) 100 (|has| |#1| (-457)))) (-4419 (((-410 $) $) 99 (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 105 (|has| |#1| (-916)))) (-1591 (($ $) 209)) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| #2="failed") $) 166) (((-3 (-412 (-551)) #2#) $) 163 (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) 161 (|has| |#1| (-1044 (-551)))) (((-3 |#3| #2#) $) 138) (((-3 |#2| #2#) $) 223)) (-3594 ((|#1| $) 165) (((-412 (-551)) $) 164 (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) 162 (|has| |#1| (-1044 (-551)))) ((|#3| $) 139) ((|#2| $) 224)) (-4206 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-4409 (($ $) 156)) (-2445 (((-694 (-551)) (-694 $)) 136 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 135 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3908 (((-3 $ "failed") $) 37)) (-3944 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-3239 (((-646 $) $) 111)) (-4173 (((-112) $) 98 (|has| |#1| (-916)))) (-1779 (($ $ |#1| |#4| $) 174)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 86 (-12 (|has| |#3| (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 85 (-12 (|has| |#3| (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ |#2|) 219) (((-776) $) 218)) (-2591 (((-112) $) 35)) (-2599 (((-776) $) 171)) (-3506 (($ (-1177 |#1|) |#3|) 119) (($ (-1177 $) |#3|) 118)) (-3242 (((-646 $) $) 128)) (-4387 (((-112) $) 154)) (-3312 (($ |#1| |#4|) 155) (($ $ |#3| (-776)) 121) (($ $ (-646 |#3|) (-646 (-776))) 120)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#3|) 122)) (-3241 ((|#4| $) 172) (((-776) $ |#3|) 124) (((-646 (-776)) $ (-646 |#3|)) 123)) (-1780 (($ (-1 |#4| |#4|) $) 173)) (-4408 (($ (-1 |#1| |#1|) $) 153)) (-1630 (((-1 $ (-776)) |#2|) 221) (((-1 $ (-776)) $) 208 (|has| |#1| (-234)))) (-3504 (((-3 |#3| #3="failed") $) 125)) (-3313 (($ $) 151)) (-3612 ((|#1| $) 150)) (-1593 ((|#3| $) 211)) (-2079 (($ (-646 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3681 (((-1165) $) 10)) (-1594 (((-112) $) 212)) (-3244 (((-3 (-646 $) #3#) $) 116)) (-3243 (((-3 (-646 $) #3#) $) 117)) (-3245 (((-3 (-2 (|:| |var| |#3|) (|:| -2582 (-776))) #3#) $) 115)) (-1592 (($ $) 210)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 168)) (-1981 ((|#1| $) 169)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 97 (|has| |#1| (-457)))) (-3582 (($ (-646 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 104 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 103 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 101 (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) 147) (($ $ (-296 $)) 146) (($ $ $ $) 145) (($ $ (-646 $) (-646 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-646 |#3|) (-646 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-646 |#3|) (-646 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-646 |#2|) (-646 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-646 |#2|) (-646 |#1|)) 204 (|has| |#1| (-234)))) (-4207 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4260 (($ $ |#3|) 46) (($ $ (-646 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-646 |#3|) (-646 (-776))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-776)) 238 (|has| |#1| (-234))) (($ $ (-1183)) 236 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 235 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 234 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 233 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1596 (((-646 |#2|) $) 220)) (-4398 ((|#4| $) 152) (((-776) $ |#3|) 132) (((-646 (-776)) $ (-646 |#3|)) 131) (((-776) $ |#2|) 217)) (-4420 (((-896 (-382)) $) 84 (-12 (|has| |#3| (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) 83 (-12 (|has| |#3| (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) 82 (-12 (|has| |#3| (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 106 (-3274 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-412 (-551))) 80 (-3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551)))))) (($ $) 87 (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) 170)) (-4127 ((|#1| $ |#4|) 157) (($ $ |#3| (-776)) 130) (($ $ (-646 |#3|) (-646 (-776))) 129)) (-3123 (((-3 $ #1#) $) 81 (-3978 (-3274 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 32 T CONST)) (-1778 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 91 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ |#3|) 42) (($ $ (-646 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-646 |#3|) (-646 (-776))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-776)) 237 (|has| |#1| (-234))) (($ $ (-1183)) 232 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 231 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 230 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 229 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 160 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 159 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -1679 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#3| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#3| |#1|)) (-15 -2350 ((-1 |#1| (-776)) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -2443 (|#4| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2341 ((-776) |#1| |#3|)) (-15 -3195 ((-649 (-776)) |#1| |#3|)) (-15 -2341 ((-776) |#1|)) (-15 -3195 ((-649 (-776)) |#1|)) (-15 -2091 ((-776) |#1| |#3|)) (-15 -4315 ((-776) |#1|)) (-15 -4315 ((-776) |#1| |#3|)) (-15 -3210 ((-649 |#3|) |#1|)) (-15 -2350 ((-1 |#1| (-776)) |#3|)) (-15 -2388 (|#1| |#3|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -2091 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -2091 ((-776) |#1| |#4|)) (-15 -2388 (|#1| |#4|)) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#4| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -2091 (|#5| |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -3430 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3430 (|#1| |#1| |#4| (-776))) (-15 -3430 (|#1| |#1| (-649 |#4|))) (-15 -3430 (|#1| |#1| |#4|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3195 (((-649 (-776)) $) 216) (((-649 (-776)) $ |#2|) 214)) (-2341 (((-776) $) 215) (((-776) $ |#2|) 213)) (-3865 (((-649 |#3|) $) 112)) (-3663 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2586 (($ $) 90 (|has| |#1| (-561)))) (-2564 (((-112) $) 92 (|has| |#1| (-561)))) (-3292 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-4332 (($ $) 100 (|has| |#1| (-457)))) (-2207 (((-423 $) $) 99 (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-3173 (($ $) 209)) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3043 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139) ((|#2| $) 224)) (-4168 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1842 (($ $) 156)) (-4091 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3351 (((-3 $ "failed") $) 37)) (-3556 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1829 (((-649 $) $) 111)) (-3848 (((-112) $) 98 (|has| |#1| (-915)))) (-1482 (($ $ |#1| |#4| $) 174)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ |#2|) 219) (((-776) $) 218)) (-2861 (((-112) $) 35)) (-2933 (((-776) $) 171)) (-3851 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-3316 (((-649 $) $) 128)) (-2019 (((-112) $) 154)) (-3838 (($ |#1| |#4|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#3|) 122)) (-3304 ((|#4| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-1491 (($ (-1 |#4| |#4|) $) 173)) (-1324 (($ (-1 |#1| |#1|) $) 153)) (-2350 (((-1 $ (-776)) |#2|) 221) (((-1 $ (-776)) $) 208 (|has| |#1| (-234)))) (-4212 (((-3 |#3| "failed") $) 125)) (-1808 (($ $) 151)) (-1820 ((|#1| $) 150)) (-2443 ((|#3| $) 211)) (-1798 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-2050 (((-1165) $) 10)) (-3184 (((-112) $) 212)) (-3338 (((-3 (-649 $) "failed") $) 116)) (-3327 (((-3 (-649 $) "failed") $) 117)) (-3349 (((-3 (-2 (|:| |var| |#3|) (|:| -2777 (-776))) "failed") $) 115)) (-1476 (($ $) 210)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 168)) (-1794 ((|#1| $) 169)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1830 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) 204 (|has| |#1| (-234)))) (-4180 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3430 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-776)) 238 (|has| |#1| (-234))) (($ $ (-1183)) 236 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 235 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 234 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 233 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3210 (((-649 |#2|) $) 220)) (-2091 ((|#4| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131) (((-776) $ |#2|) 217)) (-1384 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1739 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-412 (-569))) 80 (-2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) 170)) (-1503 ((|#1| $ |#4|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-1488 (((-3 $ "failed") $) 81 (-2718 (-1739 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 32 T CONST)) (-1471 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-776)) 237 (|has| |#1| (-234))) (($ $ (-1183)) 232 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 231 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 230 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 229 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
(((-255 |#1| |#2| |#3| |#4|) (-140) (-1055) (-855) (-268 |t#2|) (-798)) (T -255))
-((-1630 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-646 *4)))) (-4221 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-4398 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-646 (-776))))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-1595 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-646 (-776))))) (-1629 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-798)) (-4 *2 (-268 *4)))) (-1592 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-1630 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6)))))
-(-13 (-956 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1044 |t#2|) (-10 -8 (-15 -1630 ((-1 $ (-776)) |t#2|)) (-15 -1596 ((-646 |t#2|) $)) (-15 -4221 ((-776) $ |t#2|)) (-15 -4221 ((-776) $)) (-15 -4398 ((-776) $ |t#2|)) (-15 -1595 ((-646 (-776)) $)) (-15 -1629 ((-776) $)) (-15 -1595 ((-646 (-776)) $ |t#2|)) (-15 -1629 ((-776) $ |t#2|)) (-15 -1594 ((-112) $)) (-15 -1593 (|t#3| $)) (-15 -1592 ($ $)) (-15 -1591 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-519 |t#2| |t#1|)) (-6 (-519 |t#2| $)) (-6 (-312 $)) (-15 -1630 ((-1 $ (-776)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#3| (-619 (-540)))) ((-619 (-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#3| (-619 (-896 (-382))))) ((-619 (-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#3| (-619 (-896 (-551))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-293) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#4|) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-916)) (|has| |#1| (-457))) ((-519 |#2| |#1|) |has| |#1| (-234)) ((-519 |#2| $) |has| |#1| (-234)) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-562) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-906 |#3|) . T) ((-892 (-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#3| (-892 (-382)))) ((-892 (-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#3| (-892 (-551)))) ((-956 |#1| |#4| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1044 |#2|) . T) ((-1044 |#3|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) |has| |#1| (-916)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1602 ((|#1| $) 55)) (-3766 ((|#1| $) 45)) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-3421 (($ $) 61)) (-2460 (($ $) 49)) (-3768 ((|#1| |#1| $) 47)) (-3767 ((|#1| $) 46)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-4283 (((-776) $) 62)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-1600 ((|#1| |#1| $) 53)) (-1599 ((|#1| |#1| $) 52)) (-4057 (($ |#1| $) 41)) (-3021 (((-776) $) 56)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-3420 ((|#1| $) 63)) (-1598 ((|#1| $) 51)) (-1597 ((|#1| $) 50)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3423 ((|#1| |#1| $) 59)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-3422 ((|#1| $) 60)) (-1603 (($) 58) (($ (-646 |#1|)) 57)) (-3765 (((-776) $) 44)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-1601 ((|#1| $) 54)) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-3419 ((|#1| $) 64)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-256 |#1|) (-140) (-1222)) (T -256))
-((-1603 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-256 *3)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1600 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1599 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))) (-2460 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(-13 (-1127 |t#1|) (-1001 |t#1|) (-10 -8 (-15 -1603 ($)) (-15 -1603 ($ (-646 |t#1|))) (-15 -3021 ((-776) $)) (-15 -1602 (|t#1| $)) (-15 -1601 (|t#1| $)) (-15 -1600 (|t#1| |t#1| $)) (-15 -1599 (|t#1| |t#1| $)) (-15 -1598 (|t#1| $)) (-15 -1597 (|t#1| $)) (-15 -2460 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1001 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1127 |#1|) . T) ((-1222) . T))
-((-1604 (((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382))) 75) (((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263))) 74) (((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382))) 65) (((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263))) 64) (((-1139 (-226)) (-885 |#1|) (-1098 (-382))) 56) (((-1139 (-226)) (-885 |#1|) (-1098 (-382)) (-646 (-263))) 55)) (-1611 (((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382))) 78) (((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263))) 77) (((-1276) |#1| (-1098 (-382)) (-1098 (-382))) 68) (((-1276) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263))) 67) (((-1276) (-885 |#1|) (-1098 (-382))) 60) (((-1276) (-885 |#1|) (-1098 (-382)) (-646 (-263))) 59) (((-1275) (-883 |#1|) (-1098 (-382))) 47) (((-1275) (-883 |#1|) (-1098 (-382)) (-646 (-263))) 46) (((-1275) |#1| (-1098 (-382))) 38) (((-1275) |#1| (-1098 (-382)) (-646 (-263))) 36)))
-(((-257 |#1|) (-10 -7 (-15 -1611 ((-1275) |#1| (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) |#1| (-1098 (-382)))) (-15 -1611 ((-1275) (-883 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-883 |#1|) (-1098 (-382)))) (-15 -1611 ((-1276) (-885 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-885 |#1|) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) (-885 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-885 |#1|) (-1098 (-382)))) (-15 -1611 ((-1276) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) |#1| (-1098 (-382)) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382)))) (-15 -1611 ((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382))))) (-13 (-619 (-540)) (-1107))) (T -257))
-((-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-382))) (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *5)))) (-1604 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *6)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-382))) (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *5)))) (-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *6)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))) (-1604 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1276)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))) (-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-382))) (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *5)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *6)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-382))) (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *5)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *6)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-382))) (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1275)) (-5 *1 (-257 *5)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1275)) (-5 *1 (-257 *6)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1275)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107))))))
-(-10 -7 (-15 -1611 ((-1275) |#1| (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) |#1| (-1098 (-382)))) (-15 -1611 ((-1275) (-883 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-883 |#1|) (-1098 (-382)))) (-15 -1611 ((-1276) (-885 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-885 |#1|) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) (-885 |#1|) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-885 |#1|) (-1098 (-382)))) (-15 -1611 ((-1276) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) |#1| (-1098 (-382)) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) |#1| (-1098 (-382)) (-1098 (-382)))) (-15 -1611 ((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-888 |#1|) (-1098 (-382)) (-1098 (-382)))) (-15 -1604 ((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-888 |#1|) (-1098 (-382)) (-1098 (-382)))))
-((-1605 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1604 (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382))) 173) (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 171) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382))) 176) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 172) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382))) 164) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 163) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382))) 145) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263))) 143) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382))) 144) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263))) 141)) (-1611 (((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382))) 175) (((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 174) (((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382))) 178) (((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 177) (((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382))) 166) (((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263))) 165) (((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382))) 151) (((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263))) 150) (((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382))) 149) (((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263))) 148) (((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382))) 113) (((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263))) 112) (((-1275) (-1 (-226) (-226)) (-1095 (-382))) 107) (((-1275) (-1 (-226) (-226)) (-1095 (-382)) (-646 (-263))) 105)))
-(((-258) (-10 -7 (-15 -1611 ((-1275) (-1 (-226) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-1 (-226) (-226)) (-1095 (-382)))) (-15 -1611 ((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1611 ((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1611 ((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)))) (-15 -1605 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -258))
-((-1605 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1275)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1275)) (-5 *1 (-258)))) (-1611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-258)))))
-(-10 -7 (-15 -1611 ((-1275) (-1 (-226) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-1 (-226) (-226)) (-1095 (-382)))) (-15 -1611 ((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1275) (-883 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1611 ((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-885 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-382)) (-1095 (-382)))) (-15 -1611 ((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1611 ((-1276) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)))) (-15 -1604 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)) (-646 (-263)))) (-15 -1604 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1095 (-382)) (-1095 (-382)))) (-15 -1605 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
-((-1611 (((-1275) (-296 |#2|) (-1183) (-1183) (-646 (-263))) 101)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -1611 ((-1275) (-296 |#2|) (-1183) (-1183) (-646 (-263))))) (-13 (-562) (-855) (-1044 (-551))) (-426 |#1|)) (T -259))
-((-1611 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-296 *7)) (-5 *4 (-1183)) (-5 *5 (-646 (-263))) (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-855) (-1044 (-551)))) (-5 *2 (-1275)) (-5 *1 (-259 *6 *7)))))
-(-10 -7 (-15 -1611 ((-1275) (-296 |#2|) (-1183) (-1183) (-646 (-263)))))
-((-1608 (((-551) (-551)) 73)) (-1609 (((-551) (-551)) 74)) (-1610 (((-226) (-226)) 75)) (-1607 (((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226))) 72)) (-1606 (((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226)) (-112)) 70)))
-(((-260) (-10 -7 (-15 -1606 ((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226)) (-112))) (-15 -1607 ((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226)))) (-15 -1608 ((-551) (-551))) (-15 -1609 ((-551) (-551))) (-15 -1610 ((-226) (-226))))) (T -260))
-((-1610 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-260)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-260)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-260)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1095 (-226))) (-5 *2 (-1276)) (-5 *1 (-260)))) (-1606 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1095 (-226))) (-5 *5 (-112)) (-5 *2 (-1276)) (-5 *1 (-260)))))
-(-10 -7 (-15 -1606 ((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226)) (-112))) (-15 -1607 ((-1276) (-1 (-169 (-226)) (-169 (-226))) (-1095 (-226)) (-1095 (-226)))) (-15 -1608 ((-551) (-551))) (-15 -1609 ((-551) (-551))) (-15 -1610 ((-226) (-226))))
-((-4396 (((-1098 (-382)) (-1098 (-317 |#1|))) 16)))
-(((-261 |#1|) (-10 -7 (-15 -4396 ((-1098 (-382)) (-1098 (-317 |#1|))))) (-13 (-855) (-562) (-619 (-382)))) (T -261))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-1098 (-317 *4))) (-4 *4 (-13 (-855) (-562) (-619 (-382)))) (-5 *2 (-1098 (-382))) (-5 *1 (-261 *4)))))
-(-10 -7 (-15 -4396 ((-1098 (-382)) (-1098 (-317 |#1|)))))
-((-1611 (((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226)) (-646 (-263))) 23) (((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226))) 24) (((-1275) (-646 (-949 (-226))) (-646 (-263))) 16) (((-1275) (-646 (-949 (-226)))) 17) (((-1275) (-646 (-226)) (-646 (-226)) (-646 (-263))) 20) (((-1275) (-646 (-226)) (-646 (-226))) 21)))
-(((-262) (-10 -7 (-15 -1611 ((-1275) (-646 (-226)) (-646 (-226)))) (-15 -1611 ((-1275) (-646 (-226)) (-646 (-226)) (-646 (-263)))) (-15 -1611 ((-1275) (-646 (-949 (-226))))) (-15 -1611 ((-1275) (-646 (-949 (-226))) (-646 (-263)))) (-15 -1611 ((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226)))) (-15 -1611 ((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226)) (-646 (-263)))))) (T -262))
-((-1611 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-646 (-226))) (-5 *4 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1611 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *4 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1611 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-646 (-226))) (-5 *4 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1611 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1275)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1611 ((-1275) (-646 (-226)) (-646 (-226)))) (-15 -1611 ((-1275) (-646 (-226)) (-646 (-226)) (-646 (-263)))) (-15 -1611 ((-1275) (-646 (-949 (-226))))) (-15 -1611 ((-1275) (-646 (-949 (-226))) (-646 (-263)))) (-15 -1611 ((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226)))) (-15 -1611 ((-1276) (-646 (-226)) (-646 (-226)) (-646 (-226)) (-646 (-263)))))
-((-2986 (((-112) $ $) NIL)) (-4331 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-1624 (($ (-925)) 81)) (-1623 (($ (-925)) 80)) (-1957 (($ (-646 (-382))) 87)) (-1627 (($ (-382)) 66)) (-1626 (($ (-925)) 82)) (-1620 (($ (-112)) 33)) (-4333 (($ (-1165)) 28)) (-1619 (($ (-1165)) 29)) (-1625 (($ (-1139 (-226))) 76)) (-2116 (($ (-646 (-1095 (-382)))) 72)) (-1613 (($ (-646 (-1095 (-382)))) 68) (($ (-646 (-1095 (-412 (-551))))) 71)) (-1616 (($ (-382)) 38) (($ (-879)) 42)) (-1612 (((-112) (-646 $) (-1183)) 100)) (-1628 (((-3 (-51) "failed") (-646 $) (-1183)) 102)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1615 (($ (-382)) 43) (($ (-879)) 44)) (-3662 (($ (-1 (-949 (-226)) (-949 (-226)))) 65)) (-2433 (($ (-1 (-949 (-226)) (-949 (-226)))) 83)) (-1614 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-4396 (((-868) $) 93)) (-1617 (($ (-112)) 34) (($ (-646 (-1095 (-382)))) 60)) (-3680 (((-112) $ $) NIL)) (-2111 (($ (-112)) 35)) (-3473 (((-112) $ $) 97)))
-(((-263) (-13 (-1107) (-10 -8 (-15 -2111 ($ (-112))) (-15 -1617 ($ (-112))) (-15 -4331 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4333 ($ (-1165))) (-15 -1619 ($ (-1165))) (-15 -1620 ($ (-112))) (-15 -1617 ($ (-646 (-1095 (-382))))) (-15 -3662 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1616 ($ (-382))) (-15 -1616 ($ (-879))) (-15 -1615 ($ (-382))) (-15 -1615 ($ (-879))) (-15 -1614 ($ (-1 (-226) (-226)))) (-15 -1614 ($ (-1 (-226) (-226) (-226)))) (-15 -1614 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -1627 ($ (-382))) (-15 -1613 ($ (-646 (-1095 (-382))))) (-15 -1613 ($ (-646 (-1095 (-412 (-551)))))) (-15 -2116 ($ (-646 (-1095 (-382))))) (-15 -1625 ($ (-1139 (-226)))) (-15 -1623 ($ (-925))) (-15 -1624 ($ (-925))) (-15 -1626 ($ (-925))) (-15 -2433 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1957 ($ (-646 (-382)))) (-15 -1628 ((-3 (-51) "failed") (-646 $) (-1183))) (-15 -1612 ((-112) (-646 $) (-1183)))))) (T -263))
-((-2111 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-263)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-263)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-263)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263)))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-263)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-263)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-263)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-263)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-263)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-263)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-412 (-551))))) (-5 *1 (-263)))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-263)))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-263)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-263)))) (-1628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *2 (-51)) (-5 *1 (-263)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-263)))))
-(-13 (-1107) (-10 -8 (-15 -2111 ($ (-112))) (-15 -1617 ($ (-112))) (-15 -4331 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4333 ($ (-1165))) (-15 -1619 ($ (-1165))) (-15 -1620 ($ (-112))) (-15 -1617 ($ (-646 (-1095 (-382))))) (-15 -3662 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1616 ($ (-382))) (-15 -1616 ($ (-879))) (-15 -1615 ($ (-382))) (-15 -1615 ($ (-879))) (-15 -1614 ($ (-1 (-226) (-226)))) (-15 -1614 ($ (-1 (-226) (-226) (-226)))) (-15 -1614 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -1627 ($ (-382))) (-15 -1613 ($ (-646 (-1095 (-382))))) (-15 -1613 ($ (-646 (-1095 (-412 (-551)))))) (-15 -2116 ($ (-646 (-1095 (-382))))) (-15 -1625 ($ (-1139 (-226)))) (-15 -1623 ($ (-925))) (-15 -1624 ($ (-925))) (-15 -1626 ($ (-925))) (-15 -2433 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1957 ($ (-646 (-382)))) (-15 -1628 ((-3 (-51) "failed") (-646 $) (-1183))) (-15 -1612 ((-112) (-646 $) (-1183)))))
-((-4331 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-646 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-1624 (((-925) (-646 (-263)) (-925)) 52)) (-1623 (((-925) (-646 (-263)) (-925)) 51)) (-4301 (((-646 (-382)) (-646 (-263)) (-646 (-382))) 68)) (-1627 (((-382) (-646 (-263)) (-382)) 57)) (-1626 (((-925) (-646 (-263)) (-925)) 53)) (-1620 (((-112) (-646 (-263)) (-112)) 27)) (-4333 (((-1165) (-646 (-263)) (-1165)) 19)) (-1619 (((-1165) (-646 (-263)) (-1165)) 26)) (-1625 (((-1139 (-226)) (-646 (-263))) 46)) (-2116 (((-646 (-1095 (-382))) (-646 (-263)) (-646 (-1095 (-382)))) 40)) (-1621 (((-879) (-646 (-263)) (-879)) 32)) (-1622 (((-879) (-646 (-263)) (-879)) 33)) (-2433 (((-1 (-949 (-226)) (-949 (-226))) (-646 (-263)) (-1 (-949 (-226)) (-949 (-226)))) 63)) (-1618 (((-112) (-646 (-263)) (-112)) 14)) (-2111 (((-112) (-646 (-263)) (-112)) 13)))
-(((-264) (-10 -7 (-15 -2111 ((-112) (-646 (-263)) (-112))) (-15 -1618 ((-112) (-646 (-263)) (-112))) (-15 -4331 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-646 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4333 ((-1165) (-646 (-263)) (-1165))) (-15 -1619 ((-1165) (-646 (-263)) (-1165))) (-15 -1620 ((-112) (-646 (-263)) (-112))) (-15 -1621 ((-879) (-646 (-263)) (-879))) (-15 -1622 ((-879) (-646 (-263)) (-879))) (-15 -2116 ((-646 (-1095 (-382))) (-646 (-263)) (-646 (-1095 (-382))))) (-15 -1623 ((-925) (-646 (-263)) (-925))) (-15 -1624 ((-925) (-646 (-263)) (-925))) (-15 -1625 ((-1139 (-226)) (-646 (-263)))) (-15 -1626 ((-925) (-646 (-263)) (-925))) (-15 -1627 ((-382) (-646 (-263)) (-382))) (-15 -2433 ((-1 (-949 (-226)) (-949 (-226))) (-646 (-263)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -4301 ((-646 (-382)) (-646 (-263)) (-646 (-382)))))) (T -264))
-((-4301 (*1 *2 *3 *2) (-12 (-5 *2 (-646 (-382))) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-2433 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1627 (*1 *2 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1626 (*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-264)))) (-1624 (*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-2116 (*1 *2 *3 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1622 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1621 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1620 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1619 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-4333 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-4331 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))) (-2111 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(-10 -7 (-15 -2111 ((-112) (-646 (-263)) (-112))) (-15 -1618 ((-112) (-646 (-263)) (-112))) (-15 -4331 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-646 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4333 ((-1165) (-646 (-263)) (-1165))) (-15 -1619 ((-1165) (-646 (-263)) (-1165))) (-15 -1620 ((-112) (-646 (-263)) (-112))) (-15 -1621 ((-879) (-646 (-263)) (-879))) (-15 -1622 ((-879) (-646 (-263)) (-879))) (-15 -2116 ((-646 (-1095 (-382))) (-646 (-263)) (-646 (-1095 (-382))))) (-15 -1623 ((-925) (-646 (-263)) (-925))) (-15 -1624 ((-925) (-646 (-263)) (-925))) (-15 -1625 ((-1139 (-226)) (-646 (-263)))) (-15 -1626 ((-925) (-646 (-263)) (-925))) (-15 -1627 ((-382) (-646 (-263)) (-382))) (-15 -2433 ((-1 (-949 (-226)) (-949 (-226))) (-646 (-263)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -4301 ((-646 (-382)) (-646 (-263)) (-646 (-382)))))
-((-1628 (((-3 |#1| "failed") (-646 (-263)) (-1183)) 17)))
-(((-265 |#1|) (-10 -7 (-15 -1628 ((-3 |#1| "failed") (-646 (-263)) (-1183)))) (-1222)) (T -265))
-((-1628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *1 (-265 *2)) (-4 *2 (-1222)))))
-(-10 -7 (-15 -1628 ((-3 |#1| "failed") (-646 (-263)) (-1183))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1595 (((-646 (-776)) $) NIL) (((-646 (-776)) $ |#2|) NIL)) (-1629 (((-776) $) NIL) (((-776) $ |#2|) NIL)) (-3503 (((-646 |#3|) $) NIL)) (-3505 (((-1177 $) $ |#3|) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 |#3|)) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1591 (($ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1131 |#1| |#2|) #2#) $) 23)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1131 |#1| |#2|) $) NIL)) (-4206 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-536 |#3|) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| |#1| (-892 (-382))) (|has| |#3| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| |#1| (-892 (-551))) (|has| |#3| (-892 (-551)))))) (-4221 (((-776) $ |#2|) NIL) (((-776) $) 10)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#1|) |#3|) NIL) (($ (-1177 $) |#3|) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-646 |#3|) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#3|) NIL)) (-3241 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-646 (-776)) $ (-646 |#3|)) NIL)) (-1780 (($ (-1 (-536 |#3|) (-536 |#3|)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-1630 (((-1 $ (-776)) |#2|) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3504 (((-3 |#3| #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-1593 ((|#3| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-1594 (((-112) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| |#3|) (|:| -2582 (-776))) #3#) $) NIL)) (-1592 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-646 |#3|) (-646 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-646 |#3|) (-646 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-646 |#2|) (-646 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-646 |#2|) (-646 |#1|)) NIL (|has| |#1| (-234)))) (-4207 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-4260 (($ $ |#3|) NIL) (($ $ (-646 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-646 |#3|) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1596 (((-646 |#2|) $) NIL)) (-4398 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-646 (-776)) $ (-646 |#3|)) NIL) (((-776) $ |#2|) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#3| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#3| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| |#1| (-619 (-540))) (|has| |#3| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1131 |#1| |#2|)) 32) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-646 |#3|) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ |#3|) NIL) (($ $ (-646 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-646 |#3|) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2350 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))) (-4315 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-2091 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3195 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-2341 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-798)) (-4 *2 (-268 *4)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-2350 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6)))))
+(-13 (-955 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1044 |t#2|) (-10 -8 (-15 -2350 ((-1 $ (-776)) |t#2|)) (-15 -3210 ((-649 |t#2|) $)) (-15 -4315 ((-776) $ |t#2|)) (-15 -4315 ((-776) $)) (-15 -2091 ((-776) $ |t#2|)) (-15 -3195 ((-649 (-776)) $)) (-15 -2341 ((-776) $)) (-15 -3195 ((-649 (-776)) $ |t#2|)) (-15 -2341 ((-776) $ |t#2|)) (-15 -3184 ((-112) $)) (-15 -2443 (|t#3| $)) (-15 -1476 ($ $)) (-15 -3173 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-519 |t#2| |t#1|)) (-6 (-519 |t#2| $)) (-6 (-312 $)) (-15 -2350 ((-1 $ (-776)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-293) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#4|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#2| |#1|) |has| |#1| (-234)) ((-519 |#2| $) |has| |#1| (-234)) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#4| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#2|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3290 ((|#1| $) 55)) (-3201 ((|#1| $) 45)) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-1493 (($ $) 61)) (-4188 (($ $) 49)) (-1561 ((|#1| |#1| $) 47)) (-1549 ((|#1| $) 46)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-3747 (((-776) $) 62)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-3265 ((|#1| |#1| $) 53)) (-3253 ((|#1| |#1| $) 52)) (-2086 (($ |#1| $) 41)) (-1399 (((-776) $) 56)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1484 ((|#1| $) 63)) (-3237 ((|#1| $) 51)) (-3224 ((|#1| $) 50)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1511 ((|#1| |#1| $) 59)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1502 ((|#1| $) 60)) (-3302 (($) 58) (($ (-649 |#1|)) 57)) (-2723 (((-776) $) 44)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3278 ((|#1| $) 54)) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-1474 ((|#1| $) 64)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-256 |#1|) (-140) (-1223)) (T -256))
+((-3302 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-256 *3)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3265 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3253 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-4188 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(-13 (-1127 |t#1|) (-1001 |t#1|) (-10 -8 (-15 -3302 ($)) (-15 -3302 ($ (-649 |t#1|))) (-15 -1399 ((-776) $)) (-15 -3290 (|t#1| $)) (-15 -3278 (|t#1| $)) (-15 -3265 (|t#1| |t#1| $)) (-15 -3253 (|t#1| |t#1| $)) (-15 -3237 (|t#1| $)) (-15 -3224 (|t#1| $)) (-15 -4188 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1001 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1127 |#1|) . T) ((-1223) . T))
+((-3314 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1393 (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383))) 173) (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 171) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 176) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 172) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 164) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 163) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383))) 145) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265))) 143) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383))) 144) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 141)) (-1346 (((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383))) 175) (((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 174) (((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 178) (((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 177) (((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 166) (((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 165) (((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383))) 151) (((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265))) 150) (((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383))) 149) (((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 148) (((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383))) 113) (((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 112) (((-1274) (-1 (-226) (-226)) (-1100 (-383))) 107) (((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265))) 105)))
+(((-257) (-10 -7 (-15 -1346 ((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-1 (-226) (-226)) (-1100 (-383)))) (-15 -1346 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1346 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1346 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -3314 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -257))
+((-3314 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257)))))
+(-10 -7 (-15 -1346 ((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-1 (-226) (-226)) (-1100 (-383)))) (-15 -1346 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1346 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1346 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -1393 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -3314 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
+((-1346 (((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265))) 101)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -1346 ((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265))))) (-13 (-561) (-855) (-1044 (-569))) (-435 |#1|)) (T -258))
+((-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-1183)) (-5 *5 (-649 (-265))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1044 (-569)))) (-5 *2 (-1274)) (-5 *1 (-258 *6 *7)))))
+(-10 -7 (-15 -1346 ((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265)))))
+((-3347 (((-569) (-569)) 73)) (-3358 (((-569) (-569)) 74)) (-3370 (((-226) (-226)) 75)) (-3336 (((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226))) 72)) (-3325 (((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112)) 70)))
+(((-259) (-10 -7 (-15 -3325 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112))) (-15 -3336 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -3347 ((-569) (-569))) (-15 -3358 ((-569) (-569))) (-15 -3370 ((-226) (-226))))) (T -259))
+((-3370 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-3336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226))) (-5 *2 (-1275)) (-5 *1 (-259)))) (-3325 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226))) (-5 *5 (-112)) (-5 *2 (-1275)) (-5 *1 (-259)))))
+(-10 -7 (-15 -3325 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112))) (-15 -3336 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -3347 ((-569) (-569))) (-15 -3358 ((-569) (-569))) (-15 -3370 ((-226) (-226))))
+((-2388 (((-1098 (-383)) (-1098 (-319 |#1|))) 16)))
+(((-260 |#1|) (-10 -7 (-15 -2388 ((-1098 (-383)) (-1098 (-319 |#1|))))) (-13 (-855) (-561) (-619 (-383)))) (T -260))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-1098 (-319 *4))) (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1098 (-383))) (-5 *1 (-260 *4)))))
+(-10 -7 (-15 -2388 ((-1098 (-383)) (-1098 (-319 |#1|)))))
+((-1393 (((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383))) 75) (((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 74) (((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383))) 65) (((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 64) (((-1139 (-226)) (-885 |#1|) (-1098 (-383))) 56) (((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265))) 55)) (-1346 (((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383))) 78) (((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 77) (((-1275) |#1| (-1098 (-383)) (-1098 (-383))) 68) (((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 67) (((-1275) (-885 |#1|) (-1098 (-383))) 60) (((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265))) 59) (((-1274) (-883 |#1|) (-1098 (-383))) 47) (((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265))) 46) (((-1274) |#1| (-1098 (-383))) 38) (((-1274) |#1| (-1098 (-383)) (-649 (-265))) 36)))
+(((-261 |#1|) (-10 -7 (-15 -1346 ((-1274) |#1| (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) |#1| (-1098 (-383)))) (-15 -1346 ((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-883 |#1|) (-1098 (-383)))) (-15 -1346 ((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-885 |#1|) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)))) (-15 -1346 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1346 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383))))) (-13 (-619 (-541)) (-1106))) (T -261))
+((-1393 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *5)))) (-1393 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *6)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *5)))) (-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *6)))) (-1393 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1393 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1275)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1346 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *5)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *5)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274)) (-5 *1 (-261 *5)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274)) (-5 *1 (-261 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1274)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))))
+(-10 -7 (-15 -1346 ((-1274) |#1| (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) |#1| (-1098 (-383)))) (-15 -1346 ((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1274) (-883 |#1|) (-1098 (-383)))) (-15 -1346 ((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-885 |#1|) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)))) (-15 -1346 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1346 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1346 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))) (-15 -1393 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1393 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))))
+((-1346 (((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265))) 23) (((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226))) 24) (((-1274) (-649 (-949 (-226))) (-649 (-265))) 16) (((-1274) (-649 (-949 (-226)))) 17) (((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265))) 20) (((-1274) (-649 (-226)) (-649 (-226))) 21)))
+(((-262) (-10 -7 (-15 -1346 ((-1274) (-649 (-226)) (-649 (-226)))) (-15 -1346 ((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1346 ((-1274) (-649 (-949 (-226))))) (-15 -1346 ((-1274) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1346 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1346 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))) (T -262))
+((-1346 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1346 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1346 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1274)) (-5 *1 (-262)))))
+(-10 -7 (-15 -1346 ((-1274) (-649 (-226)) (-649 (-226)))) (-15 -1346 ((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1346 ((-1274) (-649 (-949 (-226))))) (-15 -1346 ((-1274) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1346 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1346 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))
+((-2622 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-3524 (((-927) (-649 (-265)) (-927)) 52)) (-3514 (((-927) (-649 (-265)) (-927)) 51)) (-3051 (((-649 (-383)) (-649 (-265)) (-649 (-383))) 68)) (-3563 (((-383) (-649 (-265)) (-383)) 57)) (-3552 (((-927) (-649 (-265)) (-927)) 53)) (-3482 (((-112) (-649 (-265)) (-112)) 27)) (-3221 (((-1165) (-649 (-265)) (-1165)) 19)) (-3468 (((-1165) (-649 (-265)) (-1165)) 26)) (-3536 (((-1139 (-226)) (-649 (-265))) 46)) (-3774 (((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383)))) 40)) (-3494 (((-879) (-649 (-265)) (-879)) 32)) (-3504 (((-879) (-649 (-265)) (-879)) 33)) (-3966 (((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226)))) 63)) (-3453 (((-112) (-649 (-265)) (-112)) 14)) (-3712 (((-112) (-649 (-265)) (-112)) 13)))
+(((-263) (-10 -7 (-15 -3712 ((-112) (-649 (-265)) (-112))) (-15 -3453 ((-112) (-649 (-265)) (-112))) (-15 -2622 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3221 ((-1165) (-649 (-265)) (-1165))) (-15 -3468 ((-1165) (-649 (-265)) (-1165))) (-15 -3482 ((-112) (-649 (-265)) (-112))) (-15 -3494 ((-879) (-649 (-265)) (-879))) (-15 -3504 ((-879) (-649 (-265)) (-879))) (-15 -3774 ((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383))))) (-15 -3514 ((-927) (-649 (-265)) (-927))) (-15 -3524 ((-927) (-649 (-265)) (-927))) (-15 -3536 ((-1139 (-226)) (-649 (-265)))) (-15 -3552 ((-927) (-649 (-265)) (-927))) (-15 -3563 ((-383) (-649 (-265)) (-383))) (-15 -3966 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3051 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))) (T -263))
+((-3051 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3966 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3552 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-263)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3514 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3774 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3504 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3494 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3482 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3468 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2622 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3453 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3712 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(-10 -7 (-15 -3712 ((-112) (-649 (-265)) (-112))) (-15 -3453 ((-112) (-649 (-265)) (-112))) (-15 -2622 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3221 ((-1165) (-649 (-265)) (-1165))) (-15 -3468 ((-1165) (-649 (-265)) (-1165))) (-15 -3482 ((-112) (-649 (-265)) (-112))) (-15 -3494 ((-879) (-649 (-265)) (-879))) (-15 -3504 ((-879) (-649 (-265)) (-879))) (-15 -3774 ((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383))))) (-15 -3514 ((-927) (-649 (-265)) (-927))) (-15 -3524 ((-927) (-649 (-265)) (-927))) (-15 -3536 ((-1139 (-226)) (-649 (-265)))) (-15 -3552 ((-927) (-649 (-265)) (-927))) (-15 -3563 ((-383) (-649 (-265)) (-383))) (-15 -3966 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3051 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))
+((-1551 (((-3 |#1| "failed") (-649 (-265)) (-1183)) 17)))
+(((-264 |#1|) (-10 -7 (-15 -1551 ((-3 |#1| "failed") (-649 (-265)) (-1183)))) (-1223)) (T -264))
+((-1551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *1 (-264 *2)) (-4 *2 (-1223)))))
+(-10 -7 (-15 -1551 ((-3 |#1| "failed") (-649 (-265)) (-1183))))
+((-2383 (((-112) $ $) NIL)) (-2622 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-3524 (($ (-927)) 81)) (-3514 (($ (-927)) 80)) (-2591 (($ (-649 (-383))) 87)) (-3563 (($ (-383)) 66)) (-3552 (($ (-927)) 82)) (-3482 (($ (-112)) 33)) (-3221 (($ (-1165)) 28)) (-3468 (($ (-1165)) 29)) (-3536 (($ (-1139 (-226))) 76)) (-3774 (($ (-649 (-1100 (-383)))) 72)) (-3396 (($ (-649 (-1100 (-383)))) 68) (($ (-649 (-1100 (-412 (-569))))) 71)) (-3432 (($ (-383)) 38) (($ (-879)) 42)) (-3383 (((-112) (-649 $) (-1183)) 100)) (-1551 (((-3 (-52) "failed") (-649 $) (-1183)) 102)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3420 (($ (-383)) 43) (($ (-879)) 44)) (-1949 (($ (-1 (-949 (-226)) (-949 (-226)))) 65)) (-3966 (($ (-1 (-949 (-226)) (-949 (-226)))) 83)) (-3408 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-2388 (((-867) $) 93)) (-3443 (($ (-112)) 34) (($ (-649 (-1100 (-383)))) 60)) (-2040 (((-112) $ $) NIL)) (-3712 (($ (-112)) 35)) (-2853 (((-112) $ $) 97)))
+(((-265) (-13 (-1106) (-10 -8 (-15 -3712 ($ (-112))) (-15 -3443 ($ (-112))) (-15 -2622 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3221 ($ (-1165))) (-15 -3468 ($ (-1165))) (-15 -3482 ($ (-112))) (-15 -3443 ($ (-649 (-1100 (-383))))) (-15 -1949 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -3432 ($ (-383))) (-15 -3432 ($ (-879))) (-15 -3420 ($ (-383))) (-15 -3420 ($ (-879))) (-15 -3408 ($ (-1 (-226) (-226)))) (-15 -3408 ($ (-1 (-226) (-226) (-226)))) (-15 -3408 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -3563 ($ (-383))) (-15 -3396 ($ (-649 (-1100 (-383))))) (-15 -3396 ($ (-649 (-1100 (-412 (-569)))))) (-15 -3774 ($ (-649 (-1100 (-383))))) (-15 -3536 ($ (-1139 (-226)))) (-15 -3514 ($ (-927))) (-15 -3524 ($ (-927))) (-15 -3552 ($ (-927))) (-15 -3966 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2591 ($ (-649 (-383)))) (-15 -1551 ((-3 (-52) "failed") (-649 $) (-1183))) (-15 -3383 ((-112) (-649 $) (-1183)))))) (T -265))
+((-3712 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-265)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-412 (-569))))) (-5 *1 (-265)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-265)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265)))) (-1551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-52)) (-5 *1 (-265)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-265)))))
+(-13 (-1106) (-10 -8 (-15 -3712 ($ (-112))) (-15 -3443 ($ (-112))) (-15 -2622 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3221 ($ (-1165))) (-15 -3468 ($ (-1165))) (-15 -3482 ($ (-112))) (-15 -3443 ($ (-649 (-1100 (-383))))) (-15 -1949 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -3432 ($ (-383))) (-15 -3432 ($ (-879))) (-15 -3420 ($ (-383))) (-15 -3420 ($ (-879))) (-15 -3408 ($ (-1 (-226) (-226)))) (-15 -3408 ($ (-1 (-226) (-226) (-226)))) (-15 -3408 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -3563 ($ (-383))) (-15 -3396 ($ (-649 (-1100 (-383))))) (-15 -3396 ($ (-649 (-1100 (-412 (-569)))))) (-15 -3774 ($ (-649 (-1100 (-383))))) (-15 -3536 ($ (-1139 (-226)))) (-15 -3514 ($ (-927))) (-15 -3524 ($ (-927))) (-15 -3552 ($ (-927))) (-15 -3966 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2591 ($ (-649 (-383)))) (-15 -1551 ((-3 (-52) "failed") (-649 $) (-1183))) (-15 -3383 ((-112) (-649 $) (-1183)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3195 (((-649 (-776)) $) NIL) (((-649 (-776)) $ |#2|) NIL)) (-2341 (((-776) $) NIL) (((-776) $ |#2|) NIL)) (-3865 (((-649 |#3|) $) NIL)) (-3663 (((-1179 $) $ |#3|) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 |#3|)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3173 (($ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1131 |#1| |#2|) "failed") $) 23)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1131 |#1| |#2|) $) NIL)) (-4168 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-536 |#3|) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))))) (-4315 (((-776) $ |#2|) NIL) (((-776) $) 10)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#1|) |#3|) NIL) (($ (-1179 $) |#3|) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#3|) NIL)) (-3304 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL)) (-1491 (($ (-1 (-536 |#3|) (-536 |#3|)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-1 $ (-776)) |#2|) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-4212 (((-3 |#3| "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2443 ((|#3| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-3184 (((-112) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| |#3|) (|:| -2777 (-776))) "failed") $) NIL)) (-1476 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-649 |#3|) (-649 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4180 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-3430 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3210 (((-649 |#2|) $) NIL)) (-2091 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL) (((-776) $ |#2|) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1131 |#1| |#2|)) 32) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-266 |#1| |#2| |#3|) (-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1044 (-1131 |#1| |#2|))) (-1055) (-855) (-268 |#2|)) (T -266))
NIL
(-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1044 (-1131 |#1| |#2|)))
-((-1629 (((-776) $) 37)) (-3595 (((-3 |#2| "failed") $) 22)) (-3594 ((|#2| $) 33)) (-4260 (($ $) 14) (($ $ (-776)) 18)) (-4396 (((-868) $) 32) (($ |#2|) 11)) (-3473 (((-112) $ $) 26)) (-3106 (((-112) $ $) 36)))
-(((-267 |#1| |#2|) (-10 -8 (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -1629 ((-776) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| "failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-268 |#2|) (-855)) (T -267))
+((-2341 (((-776) $) 37)) (-4359 (((-3 |#2| "failed") $) 22)) (-3043 ((|#2| $) 33)) (-3430 (($ $) 14) (($ $ (-776)) 18)) (-2388 (((-867) $) 32) (($ |#2|) 11)) (-2853 (((-112) $ $) 26)) (-2872 (((-112) $ $) 36)))
+(((-267 |#1| |#2|) (-10 -8 (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -2341 ((-776) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-268 |#2|) (-855)) (T -267))
NIL
-(-10 -8 (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -1629 ((-776) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| "failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-1629 (((-776) $) 23)) (-4281 ((|#1| $) 24)) (-3595 (((-3 |#1| "failed") $) 28)) (-3594 ((|#1| $) 29)) (-4221 (((-776) $) 25)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-1630 (($ |#1| (-776)) 26)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4260 (($ $) 22) (($ $ (-776)) 21)) (-4396 (((-868) $) 12) (($ |#1|) 27)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)))
+(-10 -8 (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -2341 ((-776) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2341 (((-776) $) 23)) (-2599 ((|#1| $) 24)) (-4359 (((-3 |#1| "failed") $) 28)) (-3043 ((|#1| $) 29)) (-4315 (((-776) $) 25)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2350 (($ |#1| (-776)) 26)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3430 (($ $) 22) (($ $ (-776)) 21)) (-2388 (((-867) $) 12) (($ |#1|) 27)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)))
(((-268 |#1|) (-140) (-855)) (T -268))
-((-4396 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1630 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 |t#1|) (-10 -8 (-15 -1630 ($ |t#1| (-776))) (-15 -4221 ((-776) $)) (-15 -4281 (|t#1| $)) (-15 -1629 ((-776) $)) (-15 -4260 ($ $)) (-15 -4260 ($ $ (-776))) (-15 -4396 ($ |t#1|))))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-855) . T) ((-1044 |#1|) . T) ((-1107) . T))
-((-3503 (((-646 (-1183)) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 54)) (-4384 (((-646 (-1183)) (-317 (-226)) (-776)) 96)) (-1633 (((-3 (-317 (-226)) "failed") (-317 (-226))) 64)) (-1634 (((-317 (-226)) (-317 (-226))) 82)) (-1632 (((-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 39)) (-1635 (((-112) (-646 (-317 (-226)))) 106)) (-1639 (((-112) (-317 (-226))) 37)) (-1641 (((-646 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))))) 134)) (-1638 (((-646 (-317 (-226))) (-646 (-317 (-226)))) 110)) (-1637 (((-646 (-317 (-226))) (-646 (-317 (-226)))) 108)) (-1636 (((-694 (-226)) (-646 (-317 (-226))) (-776)) 122)) (-3346 (((-112) (-317 (-226))) 32) (((-112) (-646 (-317 (-226)))) 107)) (-1631 (((-646 (-226)) (-646 (-847 (-226))) (-226)) 15)) (-1735 (((-382) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 128)) (-1640 (((-1041) (-1183) (-1041)) 47)))
-(((-269) (-10 -7 (-15 -1631 ((-646 (-226)) (-646 (-847 (-226))) (-226))) (-15 -1632 ((-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))))) (-15 -1633 ((-3 (-317 (-226)) "failed") (-317 (-226)))) (-15 -1634 ((-317 (-226)) (-317 (-226)))) (-15 -1635 ((-112) (-646 (-317 (-226))))) (-15 -3346 ((-112) (-646 (-317 (-226))))) (-15 -3346 ((-112) (-317 (-226)))) (-15 -1636 ((-694 (-226)) (-646 (-317 (-226))) (-776))) (-15 -1637 ((-646 (-317 (-226))) (-646 (-317 (-226))))) (-15 -1638 ((-646 (-317 (-226))) (-646 (-317 (-226))))) (-15 -1639 ((-112) (-317 (-226)))) (-15 -3503 ((-646 (-1183)) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -4384 ((-646 (-1183)) (-317 (-226)) (-776))) (-15 -1640 ((-1041) (-1183) (-1041))) (-15 -1735 ((-382) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -1641 ((-646 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))))) (T -269))
-((-1641 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))))) (-5 *2 (-646 (-1165))) (-5 *1 (-269)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) (-5 *2 (-382)) (-5 *1 (-269)))) (-1640 (*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-226))) (-5 *4 (-776)) (-5 *2 (-646 (-1183))) (-5 *1 (-269)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) (-5 *2 (-646 (-1183))) (-5 *1 (-269)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-646 (-317 (-226)))) (-5 *1 (-269)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-646 (-317 (-226)))) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-269)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-317 (-226))) (-5 *1 (-269)))) (-1633 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-226))) (-5 *1 (-269)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (-5 *1 (-269)))) (-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-847 (-226)))) (-5 *4 (-226)) (-5 *2 (-646 *4)) (-5 *1 (-269)))))
-(-10 -7 (-15 -1631 ((-646 (-226)) (-646 (-847 (-226))) (-226))) (-15 -1632 ((-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))))) (-15 -1633 ((-3 (-317 (-226)) "failed") (-317 (-226)))) (-15 -1634 ((-317 (-226)) (-317 (-226)))) (-15 -1635 ((-112) (-646 (-317 (-226))))) (-15 -3346 ((-112) (-646 (-317 (-226))))) (-15 -3346 ((-112) (-317 (-226)))) (-15 -1636 ((-694 (-226)) (-646 (-317 (-226))) (-776))) (-15 -1637 ((-646 (-317 (-226))) (-646 (-317 (-226))))) (-15 -1638 ((-646 (-317 (-226))) (-646 (-317 (-226))))) (-15 -1639 ((-112) (-317 (-226)))) (-15 -3503 ((-646 (-1183)) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -4384 ((-646 (-1183)) (-317 (-226)) (-776))) (-15 -1640 ((-1041) (-1183) (-1041))) (-15 -1735 ((-382) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -1641 ((-646 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))))
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 56)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 32) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2388 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3430 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1044 |t#1|) (-10 -8 (-15 -2350 ($ |t#1| (-776))) (-15 -4315 ((-776) $)) (-15 -2599 (|t#1| $)) (-15 -2341 ((-776) $)) (-15 -3430 ($ $)) (-15 -3430 ($ $ (-776))) (-15 -2388 ($ |t#1|))))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-855) . T) ((-1044 |#1|) . T) ((-1106) . T))
+((-3865 (((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 54)) (-2996 (((-649 (-1183)) (-319 (-226)) (-776)) 96)) (-2376 (((-3 (-319 (-226)) "failed") (-319 (-226))) 64)) (-2385 (((-319 (-226)) (-319 (-226))) 82)) (-2366 (((-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 39)) (-2395 (((-112) (-649 (-319 (-226)))) 106)) (-2431 (((-112) (-319 (-226))) 37)) (-2451 (((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))))) 134)) (-2423 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 110)) (-2415 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 108)) (-2404 (((-694 (-226)) (-649 (-319 (-226))) (-776)) 122)) (-1928 (((-112) (-319 (-226))) 32) (((-112) (-649 (-319 (-226)))) 107)) (-2359 (((-649 (-226)) (-649 (-848 (-226))) (-226)) 15)) (-2190 (((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 128)) (-2440 (((-1041) (-1183) (-1041)) 47)))
+(((-269) (-10 -7 (-15 -2359 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -2366 ((-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -2376 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2385 ((-319 (-226)) (-319 (-226)))) (-15 -2395 ((-112) (-649 (-319 (-226))))) (-15 -1928 ((-112) (-649 (-319 (-226))))) (-15 -1928 ((-112) (-319 (-226)))) (-15 -2404 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2415 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -2423 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -2431 ((-112) (-319 (-226)))) (-15 -3865 ((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2996 ((-649 (-1183)) (-319 (-226)) (-776))) (-15 -2440 ((-1041) (-1183) (-1041))) (-15 -2190 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2451 ((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))))))) (T -269))
+((-2451 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))))) (-5 *2 (-649 (-1165))) (-5 *1 (-269)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) (-5 *2 (-383)) (-5 *1 (-269)))) (-2440 (*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-269)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) (-5 *2 (-649 (-1183))) (-5 *1 (-269)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-269)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-2385 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-2376 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-269)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4)) (-5 *1 (-269)))))
+(-10 -7 (-15 -2359 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -2366 ((-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -2376 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2385 ((-319 (-226)) (-319 (-226)))) (-15 -2395 ((-112) (-649 (-319 (-226))))) (-15 -1928 ((-112) (-649 (-319 (-226))))) (-15 -1928 ((-112) (-319 (-226)))) (-15 -2404 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2415 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -2423 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -2431 ((-112) (-319 (-226)))) (-15 -3865 ((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2996 ((-649 (-1183)) (-319 (-226)) (-776))) (-15 -2440 ((-1041) (-1183) (-1041))) (-15 -2190 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2451 ((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))))))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 56)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-270) (-844)) (T -270))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 72) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 63)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 41) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 43)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 72) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 63)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 41) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 43)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-271) (-844)) (T -271))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 90) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 85)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 52) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 65)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 85)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 52) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 65)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-272) (-844)) (T -272))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 73)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 45) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 73)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 45) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-273) (-844)) (T -273))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 65)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 31) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 65)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 31) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-274) (-844)) (T -274))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 90)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 33) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 90)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 33) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-275) (-844)) (T -275))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 87)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 32) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 87)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-276) (-844)) (T -276))
NIL
(-844)
-((-2986 (((-112) $ $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1643 (((-646 (-551)) $) 29)) (-4398 (((-776) $) 27)) (-4396 (((-868) $) 36) (($ (-646 (-551))) 23)) (-3680 (((-112) $ $) NIL)) (-1642 (($ (-776)) 33)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 17)))
-(((-277) (-13 (-855) (-10 -8 (-15 -4396 ($ (-646 (-551)))) (-15 -4398 ((-776) $)) (-15 -1643 ((-646 (-551)) $)) (-15 -1642 ($ (-776)))))) (T -277))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-277)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-277)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
-(-13 (-855) (-10 -8 (-15 -4396 ($ (-646 (-551)))) (-15 -4398 ((-776) $)) (-15 -1643 ((-646 (-551)) $)) (-15 -1642 ($ (-776)))))
-((-3933 ((|#2| |#2|) 77)) (-4089 ((|#2| |#2|) 65)) (-1672 (((-3 |#2| "failed") |#2| (-646 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3931 ((|#2| |#2|) 75)) (-4088 ((|#2| |#2|) 63)) (-3935 ((|#2| |#2|) 79)) (-4087 ((|#2| |#2|) 67)) (-4077 ((|#2|) 46)) (-3466 (((-113) (-113)) 100)) (-4392 ((|#2| |#2|) 61)) (-1673 (((-112) |#2|) 147)) (-1662 ((|#2| |#2|) 195)) (-1650 ((|#2| |#2|) 171)) (-1645 ((|#2|) 59)) (-1644 ((|#2|) 58)) (-1660 ((|#2| |#2|) 191)) (-1648 ((|#2| |#2|) 167)) (-1664 ((|#2| |#2|) 199)) (-1652 ((|#2| |#2|) 175)) (-1647 ((|#2| |#2|) 163)) (-1646 ((|#2| |#2|) 165)) (-1665 ((|#2| |#2|) 201)) (-1653 ((|#2| |#2|) 177)) (-1663 ((|#2| |#2|) 197)) (-1651 ((|#2| |#2|) 173)) (-1661 ((|#2| |#2|) 193)) (-1649 ((|#2| |#2|) 169)) (-1668 ((|#2| |#2|) 207)) (-1656 ((|#2| |#2|) 183)) (-1666 ((|#2| |#2|) 203)) (-1654 ((|#2| |#2|) 179)) (-1670 ((|#2| |#2|) 211)) (-1658 ((|#2| |#2|) 187)) (-1671 ((|#2| |#2|) 213)) (-1659 ((|#2| |#2|) 189)) (-1669 ((|#2| |#2|) 209)) (-1657 ((|#2| |#2|) 185)) (-1667 ((|#2| |#2|) 205)) (-1655 ((|#2| |#2|) 181)) (-4393 ((|#2| |#2|) 62)) (-3936 ((|#2| |#2|) 80)) (-4086 ((|#2| |#2|) 68)) (-3934 ((|#2| |#2|) 78)) (-4085 ((|#2| |#2|) 66)) (-3932 ((|#2| |#2|) 76)) (-4084 ((|#2| |#2|) 64)) (-2421 (((-112) (-113)) 98)) (-3939 ((|#2| |#2|) 83)) (-3927 ((|#2| |#2|) 71)) (-3937 ((|#2| |#2|) 81)) (-3925 ((|#2| |#2|) 69)) (-3941 ((|#2| |#2|) 85)) (-3929 ((|#2| |#2|) 73)) (-3942 ((|#2| |#2|) 86)) (-3930 ((|#2| |#2|) 74)) (-3940 ((|#2| |#2|) 84)) (-3928 ((|#2| |#2|) 72)) (-3938 ((|#2| |#2|) 82)) (-3926 ((|#2| |#2|) 70)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -4393 (|#2| |#2|)) (-15 -4392 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3934 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -4077 (|#2|)) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1644 (|#2|)) (-15 -1645 (|#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1672 ((-3 |#2| "failed") |#2| (-646 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1673 ((-112) |#2|))) (-562) (-13 (-426 |#1|) (-1008))) (T -278))
-((-1673 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-426 *4) (-1008))))) (-1672 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-646 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-426 *4) (-1008))) (-4 *4 (-562)) (-5 *1 (-278 *4 *2)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-1645 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562)))) (-1644 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-426 *3) (-1008))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-426 *4) (-1008))))) (-4077 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4392 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))) (-4393 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(-10 -7 (-15 -4393 (|#2| |#2|)) (-15 -4392 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3934 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -4077 (|#2|)) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1644 (|#2|)) (-15 -1645 (|#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1672 ((-3 |#2| "failed") |#2| (-646 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1673 ((-112) |#2|)))
-((-1676 (((-3 |#2| "failed") (-646 (-616 |#2|)) |#2| (-1183)) 153)) (-1678 ((|#2| (-412 (-551)) |#2|) 49)) (-1677 ((|#2| |#2| (-616 |#2|)) 146)) (-1674 (((-2 (|:| |func| |#2|) (|:| |kers| (-646 (-616 |#2|))) (|:| |vals| (-646 |#2|))) |#2| (-1183)) 145)) (-1675 ((|#2| |#2| (-1183)) 20) ((|#2| |#2|) 23)) (-2782 ((|#2| |#2| (-1183)) 159) ((|#2| |#2|) 157)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -2782 (|#2| |#2|)) (-15 -2782 (|#2| |#2| (-1183))) (-15 -1674 ((-2 (|:| |func| |#2|) (|:| |kers| (-646 (-616 |#2|))) (|:| |vals| (-646 |#2|))) |#2| (-1183))) (-15 -1675 (|#2| |#2|)) (-15 -1675 (|#2| |#2| (-1183))) (-15 -1676 ((-3 |#2| "failed") (-646 (-616 |#2|)) |#2| (-1183))) (-15 -1677 (|#2| |#2| (-616 |#2|))) (-15 -1678 (|#2| (-412 (-551)) |#2|))) (-13 (-562) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -279))
-((-1678 (*1 *2 *3 *2) (-12 (-5 *3 (-412 (-551))) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-1677 (*1 *2 *2 *3) (-12 (-5 *3 (-616 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *4 *2)))) (-1676 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-646 (-616 *2))) (-5 *4 (-1183)) (-4 *2 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *5 *2)))) (-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-646 (-616 *3))) (|:| |vals| (-646 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-2782 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-2782 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))))
-(-10 -7 (-15 -2782 (|#2| |#2|)) (-15 -2782 (|#2| |#2| (-1183))) (-15 -1674 ((-2 (|:| |func| |#2|) (|:| |kers| (-646 (-616 |#2|))) (|:| |vals| (-646 |#2|))) |#2| (-1183))) (-15 -1675 (|#2| |#2|)) (-15 -1675 (|#2| |#2| (-1183))) (-15 -1676 ((-3 |#2| "failed") (-646 (-616 |#2|)) |#2| (-1183))) (-15 -1677 (|#2| |#2| (-616 |#2|))) (-15 -1678 (|#2| (-412 (-551)) |#2|)))
-((-3394 (((-3 |#3| #1="failed") |#3|) 120)) (-3933 ((|#3| |#3|) 142)) (-3382 (((-3 |#3| #1#) |#3|) 89)) (-4089 ((|#3| |#3|) 132)) (-3392 (((-3 |#3| #1#) |#3|) 65)) (-3931 ((|#3| |#3|) 140)) (-3380 (((-3 |#3| #1#) |#3|) 53)) (-4088 ((|#3| |#3|) 130)) (-3396 (((-3 |#3| #1#) |#3|) 122)) (-3935 ((|#3| |#3|) 144)) (-3384 (((-3 |#3| #1#) |#3|) 91)) (-4087 ((|#3| |#3|) 134)) (-3377 (((-3 |#3| #1#) |#3| (-776)) 41)) (-3379 (((-3 |#3| #1#) |#3|) 81)) (-4392 ((|#3| |#3|) 129)) (-3378 (((-3 |#3| #1#) |#3|) 51)) (-4393 ((|#3| |#3|) 128)) (-3397 (((-3 |#3| #1#) |#3|) 123)) (-3936 ((|#3| |#3|) 145)) (-3385 (((-3 |#3| #1#) |#3|) 92)) (-4086 ((|#3| |#3|) 135)) (-3395 (((-3 |#3| #1#) |#3|) 121)) (-3934 ((|#3| |#3|) 143)) (-3383 (((-3 |#3| #1#) |#3|) 90)) (-4085 ((|#3| |#3|) 133)) (-3393 (((-3 |#3| #1#) |#3|) 67)) (-3932 ((|#3| |#3|) 141)) (-3381 (((-3 |#3| #1#) |#3|) 55)) (-4084 ((|#3| |#3|) 131)) (-3400 (((-3 |#3| #1#) |#3|) 73)) (-3939 ((|#3| |#3|) 148)) (-3388 (((-3 |#3| #1#) |#3|) 114)) (-3927 ((|#3| |#3|) 152)) (-3398 (((-3 |#3| #1#) |#3|) 69)) (-3937 ((|#3| |#3|) 146)) (-3386 (((-3 |#3| #1#) |#3|) 57)) (-3925 ((|#3| |#3|) 136)) (-3402 (((-3 |#3| #1#) |#3|) 77)) (-3941 ((|#3| |#3|) 150)) (-3390 (((-3 |#3| #1#) |#3|) 61)) (-3929 ((|#3| |#3|) 138)) (-3403 (((-3 |#3| #1#) |#3|) 79)) (-3942 ((|#3| |#3|) 151)) (-3391 (((-3 |#3| #1#) |#3|) 63)) (-3930 ((|#3| |#3|) 139)) (-3401 (((-3 |#3| #1#) |#3|) 75)) (-3940 ((|#3| |#3|) 149)) (-3389 (((-3 |#3| #1#) |#3|) 117)) (-3928 ((|#3| |#3|) 153)) (-3399 (((-3 |#3| #1#) |#3|) 71)) (-3938 ((|#3| |#3|) 147)) (-3387 (((-3 |#3| #1#) |#3|) 59)) (-3926 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-412 (-551))) 47 (|has| |#1| (-367)))))
-(((-280 |#1| |#2| |#3|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-551)))) |%noBranch|) (-15 -4393 (|#3| |#3|)) (-15 -4392 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4089 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4086 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3932 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3934 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)))) (-38 (-412 (-551))) (-1265 |#1|) (-1236 |#1| |#2|)) (T -280))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-551))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1265 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1236 *4 *5)))) (-4393 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4392 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1236 *3 *4)))))
-(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-551)))) |%noBranch|) (-15 -4393 (|#3| |#3|)) (-15 -4392 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4089 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4086 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3932 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3934 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3942 (|#3| |#3|))))
-((-3394 (((-3 |#3| #1="failed") |#3|) 70)) (-3933 ((|#3| |#3|) 137)) (-3382 (((-3 |#3| #1#) |#3|) 54)) (-4089 ((|#3| |#3|) 125)) (-3392 (((-3 |#3| #1#) |#3|) 66)) (-3931 ((|#3| |#3|) 135)) (-3380 (((-3 |#3| #1#) |#3|) 50)) (-4088 ((|#3| |#3|) 123)) (-3396 (((-3 |#3| #1#) |#3|) 74)) (-3935 ((|#3| |#3|) 139)) (-3384 (((-3 |#3| #1#) |#3|) 58)) (-4087 ((|#3| |#3|) 127)) (-3377 (((-3 |#3| #1#) |#3| (-776)) 38)) (-3379 (((-3 |#3| #1#) |#3|) 48)) (-4392 ((|#3| |#3|) 111)) (-3378 (((-3 |#3| #1#) |#3|) 46)) (-4393 ((|#3| |#3|) 122)) (-3397 (((-3 |#3| #1#) |#3|) 76)) (-3936 ((|#3| |#3|) 140)) (-3385 (((-3 |#3| #1#) |#3|) 60)) (-4086 ((|#3| |#3|) 128)) (-3395 (((-3 |#3| #1#) |#3|) 72)) (-3934 ((|#3| |#3|) 138)) (-3383 (((-3 |#3| #1#) |#3|) 56)) (-4085 ((|#3| |#3|) 126)) (-3393 (((-3 |#3| #1#) |#3|) 68)) (-3932 ((|#3| |#3|) 136)) (-3381 (((-3 |#3| #1#) |#3|) 52)) (-4084 ((|#3| |#3|) 124)) (-3400 (((-3 |#3| #1#) |#3|) 78)) (-3939 ((|#3| |#3|) 143)) (-3388 (((-3 |#3| #1#) |#3|) 62)) (-3927 ((|#3| |#3|) 131)) (-3398 (((-3 |#3| #1#) |#3|) 112)) (-3937 ((|#3| |#3|) 141)) (-3386 (((-3 |#3| #1#) |#3|) 100)) (-3925 ((|#3| |#3|) 129)) (-3402 (((-3 |#3| #1#) |#3|) 116)) (-3941 ((|#3| |#3|) 145)) (-3390 (((-3 |#3| #1#) |#3|) 107)) (-3929 ((|#3| |#3|) 133)) (-3403 (((-3 |#3| #1#) |#3|) 117)) (-3942 ((|#3| |#3|) 146)) (-3391 (((-3 |#3| #1#) |#3|) 109)) (-3930 ((|#3| |#3|) 134)) (-3401 (((-3 |#3| #1#) |#3|) 80)) (-3940 ((|#3| |#3|) 144)) (-3389 (((-3 |#3| #1#) |#3|) 64)) (-3928 ((|#3| |#3|) 132)) (-3399 (((-3 |#3| #1#) |#3|) 113)) (-3938 ((|#3| |#3|) 142)) (-3387 (((-3 |#3| #1#) |#3|) 103)) (-3926 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-412 (-551))) 44 (|has| |#1| (-367)))))
-(((-281 |#1| |#2| |#3| |#4|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-551)))) |%noBranch|) (-15 -4393 (|#3| |#3|)) (-15 -4392 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4089 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4086 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3932 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3934 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)))) (-38 (-412 (-551))) (-1234 |#1|) (-1257 |#1| |#2|) (-989 |#2|)) (T -281))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-551))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1234 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1257 *4 *5)) (-4 *6 (-989 *5)))) (-4393 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4392 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4)))))
-(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-551)))) |%noBranch|) (-15 -4393 (|#3| |#3|)) (-15 -4392 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4089 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4086 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3932 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3934 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3942 (|#3| |#3|))))
-((-1681 (((-112) $) 20)) (-1683 (((-1188) $) 7)) (-4018 (((-3 (-511) "failed") $) 14)) (-4017 (((-3 (-646 $) "failed") $) NIL)) (-1680 (((-3 (-511) "failed") $) 21)) (-1682 (((-3 (-1109) "failed") $) 18)) (-4403 (((-112) $) 16)) (-4396 (((-868) $) NIL)) (-1679 (((-112) $) 9)))
-(((-282) (-13 (-618 (-868)) (-10 -8 (-15 -1683 ((-1188) $)) (-15 -4403 ((-112) $)) (-15 -1682 ((-3 (-1109) "failed") $)) (-15 -1681 ((-112) $)) (-15 -1680 ((-3 (-511) "failed") $)) (-15 -1679 ((-112) $)) (-15 -4018 ((-3 (-511) "failed") $)) (-15 -4017 ((-3 (-646 $) "failed") $))))) (T -282))
-((-1683 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1682 (*1 *2 *1) (|partial| -12 (-5 *2 (-1109)) (-5 *1 (-282)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1680 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-4018 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-4017 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 (-282))) (-5 *1 (-282)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -1683 ((-1188) $)) (-15 -4403 ((-112) $)) (-15 -1682 ((-3 (-1109) "failed") $)) (-15 -1681 ((-112) $)) (-15 -1680 ((-3 (-511) "failed") $)) (-15 -1679 ((-112) $)) (-15 -4018 ((-3 (-511) "failed") $)) (-15 -4017 ((-3 (-646 $) "failed") $))))
-((-1685 (((-602) $) 10)) (-1686 (((-591) $) 8)) (-1684 (((-294) $) 12)) (-1687 (($ (-591) (-602) (-294)) NIL)) (-4396 (((-868) $) 19)))
-(((-283) (-13 (-618 (-868)) (-10 -8 (-15 -1687 ($ (-591) (-602) (-294))) (-15 -1686 ((-591) $)) (-15 -1685 ((-602) $)) (-15 -1684 ((-294) $))))) (T -283))
-((-1687 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-591)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-283)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -1687 ($ (-591) (-602) (-294))) (-15 -1686 ((-591) $)) (-15 -1685 ((-602) $)) (-15 -1684 ((-294) $))))
-((-4160 (($ (-1 (-112) |#2|) $) 24)) (-1443 (($ $) 38)) (-3847 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3848 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3277 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2467 (($ |#2| $ (-551)) 20) (($ $ $ (-551)) 22)) (-2468 (($ $ (-551)) 11) (($ $ (-1239 (-551))) 14)) (-4240 (($ $ |#2|) 32) (($ $ $) NIL)) (-4251 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-646 $)) NIL)))
-(((-284 |#1| |#2|) (-10 -8 (-15 -3277 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -3277 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -3848 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4160 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3848 (|#1| |#2| |#1|)) (-15 -1443 (|#1| |#1|))) (-285 |#2|) (-1222)) (T -284))
-NIL
-(-10 -8 (-15 -3277 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -3277 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -3848 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4160 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3848 (|#1| |#2| |#1|)) (-15 -1443 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) 86)) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2544 (($ $) 84 (|has| |#1| (-1107)))) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1107)))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-3277 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4057 (($ |#1| $ (-551)) 89) (($ $ $ (-551)) 88)) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-1689 (($ $ (-551)) 92) (($ $ (-1239 (-551))) 91)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 71)) (-4240 (($ $ |#1|) 94) (($ $ $) 93)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-285 |#1|) (-140) (-1222)) (T -285))
-((-4240 (*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)))) (-4240 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-3847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-4057 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-285 *2)) (-4 *2 (-1222)))) (-4057 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-3277 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-1688 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))) (-3847 (*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-1107)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-1107)))) (-3277 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-855)))))
-(-13 (-656 |t#1|) (-10 -8 (-6 -4444) (-15 -4240 ($ $ |t#1|)) (-15 -4240 ($ $ $)) (-15 -1689 ($ $ (-551))) (-15 -1689 ($ $ (-1239 (-551)))) (-15 -3847 ($ (-1 (-112) |t#1|) $)) (-15 -4057 ($ |t#1| $ (-551))) (-15 -4057 ($ $ $ (-551))) (-15 -3277 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1688 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1107)) (PROGN (-15 -3847 ($ |t#1| $)) (-15 -2544 ($ $))) |%noBranch|) (IF (|has| |t#1| (-855)) (-15 -3277 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
+((-2383 (((-112) $ $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2470 (((-649 (-569)) $) 29)) (-2091 (((-776) $) 27)) (-2388 (((-867) $) 36) (($ (-649 (-569))) 23)) (-2040 (((-112) $ $) NIL)) (-2460 (($ (-776)) 33)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 17)))
+(((-277) (-13 (-855) (-10 -8 (-15 -2388 ($ (-649 (-569)))) (-15 -2091 ((-776) $)) (-15 -2470 ((-649 (-569)) $)) (-15 -2460 ($ (-776)))))) (T -277))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
+(-13 (-855) (-10 -8 (-15 -2388 ($ (-649 (-569)))) (-15 -2091 ((-776) $)) (-15 -2470 ((-649 (-569)) $)) (-15 -2460 ($ (-776)))))
+((-2691 ((|#2| |#2|) 77)) (-2556 ((|#2| |#2|) 65)) (-2781 (((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2669 ((|#2| |#2|) 75)) (-2534 ((|#2| |#2|) 63)) (-2712 ((|#2| |#2|) 79)) (-2576 ((|#2| |#2|) 67)) (-4408 ((|#2|) 46)) (-3642 (((-114) (-114)) 100)) (-2616 ((|#2| |#2|) 61)) (-2792 (((-112) |#2|) 147)) (-2676 ((|#2| |#2|) 195)) (-2542 ((|#2| |#2|) 171)) (-2488 ((|#2|) 59)) (-2479 ((|#2|) 58)) (-2654 ((|#2| |#2|) 191)) (-2519 ((|#2| |#2|) 167)) (-2697 ((|#2| |#2|) 199)) (-2563 ((|#2| |#2|) 175)) (-2508 ((|#2| |#2|) 163)) (-2499 ((|#2| |#2|) 165)) (-2708 ((|#2| |#2|) 201)) (-2573 ((|#2| |#2|) 177)) (-2687 ((|#2| |#2|) 197)) (-2552 ((|#2| |#2|) 173)) (-2665 ((|#2| |#2|) 193)) (-2531 ((|#2| |#2|) 169)) (-2743 ((|#2| |#2|) 207)) (-2610 ((|#2| |#2|) 183)) (-2720 ((|#2| |#2|) 203)) (-2585 ((|#2| |#2|) 179)) (-2762 ((|#2| |#2|) 211)) (-2633 ((|#2| |#2|) 187)) (-2771 ((|#2| |#2|) 213)) (-2644 ((|#2| |#2|) 189)) (-2753 ((|#2| |#2|) 209)) (-2623 ((|#2| |#2|) 185)) (-2732 ((|#2| |#2|) 205)) (-2597 ((|#2| |#2|) 181)) (-4367 ((|#2| |#2|) 62)) (-2725 ((|#2| |#2|) 80)) (-2588 ((|#2| |#2|) 68)) (-2701 ((|#2| |#2|) 78)) (-2566 ((|#2| |#2|) 66)) (-2680 ((|#2| |#2|) 76)) (-2545 ((|#2| |#2|) 64)) (-3858 (((-112) (-114)) 98)) (-4119 ((|#2| |#2|) 83)) (-2627 ((|#2| |#2|) 71)) (-4094 ((|#2| |#2|) 81)) (-2601 ((|#2| |#2|) 69)) (-4144 ((|#2| |#2|) 85)) (-2648 ((|#2| |#2|) 73)) (-1470 ((|#2| |#2|) 86)) (-2658 ((|#2| |#2|) 74)) (-4131 ((|#2| |#2|) 84)) (-2638 ((|#2| |#2|) 72)) (-4106 ((|#2| |#2|) 82)) (-2615 ((|#2| |#2|) 70)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -4367 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2556 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2576 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -4408 (|#2|)) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -2479 (|#2|)) (-15 -2488 (|#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2508 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2633 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2654 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -2676 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2781 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2792 ((-112) |#2|))) (-561) (-13 (-435 |#1|) (-1008))) (T -278))
+((-2792 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-435 *4) (-1008))))) (-2781 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-435 *4) (-1008))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2654 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2633 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2531 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2508 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2488 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-2479 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-435 *3) (-1008))))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008))))) (-4408 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2691 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2556 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))))
+(-10 -7 (-15 -4367 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2556 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2576 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -4408 (|#2|)) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -2479 (|#2|)) (-15 -2488 (|#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2508 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2633 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2654 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -2676 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2781 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2792 ((-112) |#2|)))
+((-2822 (((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183)) 153)) (-2843 ((|#2| (-412 (-569)) |#2|) 49)) (-2832 ((|#2| |#2| (-617 |#2|)) 146)) (-2802 (((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183)) 145)) (-2811 ((|#2| |#2| (-1183)) 20) ((|#2| |#2|) 23)) (-3110 ((|#2| |#2| (-1183)) 159) ((|#2| |#2|) 157)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -3110 (|#2| |#2|)) (-15 -3110 (|#2| |#2| (-1183))) (-15 -2802 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183))) (-15 -2811 (|#2| |#2|)) (-15 -2811 (|#2| |#2| (-1183))) (-15 -2822 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183))) (-15 -2832 (|#2| |#2| (-617 |#2|))) (-15 -2843 (|#2| (-412 (-569)) |#2|))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -279))
+((-2843 (*1 *2 *3 *2) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)))) (-2822 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1183)) (-4 *2 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *5 *2)))) (-2811 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3))) (|:| |vals| (-649 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-3110 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
+(-10 -7 (-15 -3110 (|#2| |#2|)) (-15 -3110 (|#2| |#2| (-1183))) (-15 -2802 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183))) (-15 -2811 (|#2| |#2|)) (-15 -2811 (|#2| |#2| (-1183))) (-15 -2822 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183))) (-15 -2832 (|#2| |#2| (-617 |#2|))) (-15 -2843 (|#2| (-412 (-569)) |#2|)))
+((-2378 (((-3 |#3| "failed") |#3|) 120)) (-2691 ((|#3| |#3|) 142)) (-2275 (((-3 |#3| "failed") |#3|) 89)) (-2556 ((|#3| |#3|) 132)) (-2361 (((-3 |#3| "failed") |#3|) 65)) (-2669 ((|#3| |#3|) 140)) (-2258 (((-3 |#3| "failed") |#3|) 53)) (-2534 ((|#3| |#3|) 130)) (-4370 (((-3 |#3| "failed") |#3|) 122)) (-2712 ((|#3| |#3|) 144)) (-2292 (((-3 |#3| "failed") |#3|) 91)) (-2576 ((|#3| |#3|) 134)) (-2231 (((-3 |#3| "failed") |#3| (-776)) 41)) (-2250 (((-3 |#3| "failed") |#3|) 81)) (-2616 ((|#3| |#3|) 129)) (-2242 (((-3 |#3| "failed") |#3|) 51)) (-4367 ((|#3| |#3|) 128)) (-4381 (((-3 |#3| "failed") |#3|) 123)) (-2725 ((|#3| |#3|) 145)) (-2300 (((-3 |#3| "failed") |#3|) 92)) (-2588 ((|#3| |#3|) 135)) (-2387 (((-3 |#3| "failed") |#3|) 121)) (-2701 ((|#3| |#3|) 143)) (-2283 (((-3 |#3| "failed") |#3|) 90)) (-2566 ((|#3| |#3|) 133)) (-2368 (((-3 |#3| "failed") |#3|) 67)) (-2680 ((|#3| |#3|) 141)) (-2266 (((-3 |#3| "failed") |#3|) 55)) (-2545 ((|#3| |#3|) 131)) (-4411 (((-3 |#3| "failed") |#3|) 73)) (-4119 ((|#3| |#3|) 148)) (-2326 (((-3 |#3| "failed") |#3|) 114)) (-2627 ((|#3| |#3|) 152)) (-4393 (((-3 |#3| "failed") |#3|) 69)) (-4094 ((|#3| |#3|) 146)) (-2308 (((-3 |#3| "failed") |#3|) 57)) (-2601 ((|#3| |#3|) 136)) (-1314 (((-3 |#3| "failed") |#3|) 77)) (-4144 ((|#3| |#3|) 150)) (-2343 (((-3 |#3| "failed") |#3|) 61)) (-2648 ((|#3| |#3|) 138)) (-1323 (((-3 |#3| "failed") |#3|) 79)) (-1470 ((|#3| |#3|) 151)) (-2352 (((-3 |#3| "failed") |#3|) 63)) (-2658 ((|#3| |#3|) 139)) (-4422 (((-3 |#3| "failed") |#3|) 75)) (-4131 ((|#3| |#3|) 149)) (-2333 (((-3 |#3| "failed") |#3|) 117)) (-2638 ((|#3| |#3|) 153)) (-4400 (((-3 |#3| "failed") |#3|) 71)) (-4106 ((|#3| |#3|) 147)) (-2317 (((-3 |#3| "failed") |#3|) 59)) (-2615 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-412 (-569))) 47 (|has| |#1| (-367)))))
+(((-280 |#1| |#2| |#3|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4367 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2556 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2627 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2658 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2691 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -4094 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4131 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)))) (-38 (-412 (-569))) (-1264 |#1|) (-1235 |#1| |#2|)) (T -280))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1235 *4 *5)))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2556 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2691 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))))
+(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4367 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2556 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2627 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2658 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2691 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -4094 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4131 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -1470 (|#3| |#3|))))
+((-2378 (((-3 |#3| "failed") |#3|) 70)) (-2691 ((|#3| |#3|) 137)) (-2275 (((-3 |#3| "failed") |#3|) 54)) (-2556 ((|#3| |#3|) 125)) (-2361 (((-3 |#3| "failed") |#3|) 66)) (-2669 ((|#3| |#3|) 135)) (-2258 (((-3 |#3| "failed") |#3|) 50)) (-2534 ((|#3| |#3|) 123)) (-4370 (((-3 |#3| "failed") |#3|) 74)) (-2712 ((|#3| |#3|) 139)) (-2292 (((-3 |#3| "failed") |#3|) 58)) (-2576 ((|#3| |#3|) 127)) (-2231 (((-3 |#3| "failed") |#3| (-776)) 38)) (-2250 (((-3 |#3| "failed") |#3|) 48)) (-2616 ((|#3| |#3|) 111)) (-2242 (((-3 |#3| "failed") |#3|) 46)) (-4367 ((|#3| |#3|) 122)) (-4381 (((-3 |#3| "failed") |#3|) 76)) (-2725 ((|#3| |#3|) 140)) (-2300 (((-3 |#3| "failed") |#3|) 60)) (-2588 ((|#3| |#3|) 128)) (-2387 (((-3 |#3| "failed") |#3|) 72)) (-2701 ((|#3| |#3|) 138)) (-2283 (((-3 |#3| "failed") |#3|) 56)) (-2566 ((|#3| |#3|) 126)) (-2368 (((-3 |#3| "failed") |#3|) 68)) (-2680 ((|#3| |#3|) 136)) (-2266 (((-3 |#3| "failed") |#3|) 52)) (-2545 ((|#3| |#3|) 124)) (-4411 (((-3 |#3| "failed") |#3|) 78)) (-4119 ((|#3| |#3|) 143)) (-2326 (((-3 |#3| "failed") |#3|) 62)) (-2627 ((|#3| |#3|) 131)) (-4393 (((-3 |#3| "failed") |#3|) 112)) (-4094 ((|#3| |#3|) 141)) (-2308 (((-3 |#3| "failed") |#3|) 100)) (-2601 ((|#3| |#3|) 129)) (-1314 (((-3 |#3| "failed") |#3|) 116)) (-4144 ((|#3| |#3|) 145)) (-2343 (((-3 |#3| "failed") |#3|) 107)) (-2648 ((|#3| |#3|) 133)) (-1323 (((-3 |#3| "failed") |#3|) 117)) (-1470 ((|#3| |#3|) 146)) (-2352 (((-3 |#3| "failed") |#3|) 109)) (-2658 ((|#3| |#3|) 134)) (-4422 (((-3 |#3| "failed") |#3|) 80)) (-4131 ((|#3| |#3|) 144)) (-2333 (((-3 |#3| "failed") |#3|) 64)) (-2638 ((|#3| |#3|) 132)) (-4400 (((-3 |#3| "failed") |#3|) 113)) (-4106 ((|#3| |#3|) 142)) (-2317 (((-3 |#3| "failed") |#3|) 103)) (-2615 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-412 (-569))) 44 (|has| |#1| (-367)))))
+(((-281 |#1| |#2| |#3| |#4|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4367 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2556 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2627 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2658 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2691 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -4094 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4131 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)))) (-38 (-412 (-569))) (-1233 |#1|) (-1256 |#1| |#2|) (-989 |#2|)) (T -281))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1233 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1256 *4 *5)) (-4 *6 (-989 *5)))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2556 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2691 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))))
+(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4367 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2556 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2627 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2658 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2691 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -4094 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4131 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -1470 (|#3| |#3|))))
+((-2874 (((-112) $) 20)) (-2007 (((-1188) $) 7)) (-2858 (((-3 (-511) "failed") $) 14)) (-2846 (((-3 (-649 $) "failed") $) NIL)) (-2864 (((-3 (-511) "failed") $) 21)) (-2885 (((-3 (-1110) "failed") $) 18)) (-2121 (((-112) $) 16)) (-2388 (((-867) $) NIL)) (-2855 (((-112) $) 9)))
+(((-282) (-13 (-618 (-867)) (-10 -8 (-15 -2007 ((-1188) $)) (-15 -2121 ((-112) $)) (-15 -2885 ((-3 (-1110) "failed") $)) (-15 -2874 ((-112) $)) (-15 -2864 ((-3 (-511) "failed") $)) (-15 -2855 ((-112) $)) (-15 -2858 ((-3 (-511) "failed") $)) (-15 -2846 ((-3 (-649 $) "failed") $))))) (T -282))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2885 (*1 *2 *1) (|partial| -12 (-5 *2 (-1110)) (-5 *1 (-282)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2864 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2858 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-2846 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2007 ((-1188) $)) (-15 -2121 ((-112) $)) (-15 -2885 ((-3 (-1110) "failed") $)) (-15 -2874 ((-112) $)) (-15 -2864 ((-3 (-511) "failed") $)) (-15 -2855 ((-112) $)) (-15 -2858 ((-3 (-511) "failed") $)) (-15 -2846 ((-3 (-649 $) "failed") $))))
+((-3058 (((-602) $) 10)) (-2906 (((-590) $) 8)) (-2896 (((-294) $) 12)) (-1805 (($ (-590) (-602) (-294)) NIL)) (-2388 (((-867) $) 19)))
+(((-283) (-13 (-618 (-867)) (-10 -8 (-15 -1805 ($ (-590) (-602) (-294))) (-15 -2906 ((-590) $)) (-15 -3058 ((-602) $)) (-15 -2896 ((-294) $))))) (T -283))
+((-1805 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1805 ($ (-590) (-602) (-294))) (-15 -2906 ((-590) $)) (-15 -3058 ((-602) $)) (-15 -2896 ((-294) $))))
+((-1391 (($ (-1 (-112) |#2|) $) 24)) (-3437 (($ $) 38)) (-4218 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1678 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3644 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4274 (($ |#2| $ (-569)) 20) (($ $ $ (-569)) 22)) (-4326 (($ $ (-569)) 11) (($ $ (-1240 (-569))) 14)) (-3149 (($ $ |#2|) 32) (($ $ $) NIL)) (-3632 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-649 $)) NIL)))
+(((-284 |#1| |#2|) (-10 -8 (-15 -3644 (|#1| |#1| |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1678 (|#1| |#2| |#1|)) (-15 -3437 (|#1| |#1|))) (-285 |#2|) (-1223)) (T -284))
+NIL
+(-10 -8 (-15 -3644 (|#1| |#1| |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1678 (|#1| |#2| |#1|)) (-15 -3437 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) 86)) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3686 (($ $) 84 (|has| |#1| (-1106)))) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1106)))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-3644 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-2086 (($ |#1| $ (-569)) 89) (($ $ $ (-569)) 88)) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-1827 (($ $ (-569)) 92) (($ $ (-1240 (-569))) 91)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 71)) (-3149 (($ $ |#1|) 94) (($ $ $) 93)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-285 |#1|) (-140) (-1223)) (T -285))
+((-3149 (*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-3149 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-4218 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-2086 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-2086 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-3644 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-1816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-4218 (*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))))
+(-13 (-656 |t#1|) (-10 -8 (-6 -4444) (-15 -3149 ($ $ |t#1|)) (-15 -3149 ($ $ $)) (-15 -1827 ($ $ (-569))) (-15 -1827 ($ $ (-1240 (-569)))) (-15 -4218 ($ (-1 (-112) |t#1|) $)) (-15 -2086 ($ |t#1| $ (-569))) (-15 -2086 ($ $ $ (-569))) (-15 -3644 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1816 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -4218 ($ |t#1| $)) (-15 -3686 ($ $))) |%noBranch|) (IF (|has| |t#1| (-855)) (-15 -3644 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
((** (($ $ $) 10)))
(((-286 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-287)) (T -286))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-4392 (($ $) 6)) (-4393 (($ $) 7)) (** (($ $ $) 8)))
+((-2616 (($ $) 6)) (-4367 (($ $) 7)) (** (($ $ $) 8)))
(((-287) (-140)) (T -287))
-((** (*1 *1 *1 *1) (-4 *1 (-287))) (-4393 (*1 *1 *1) (-4 *1 (-287))) (-4392 (*1 *1 *1) (-4 *1 (-287))))
-(-13 (-10 -8 (-15 -4392 ($ $)) (-15 -4393 ($ $)) (-15 ** ($ $ $))))
-((-1693 (((-646 (-1160 |#1|)) (-1160 |#1|) |#1|) 35)) (-1690 ((|#2| |#2| |#1|) 39)) (-1692 ((|#2| |#2| |#1|) 41)) (-1691 ((|#2| |#2| |#1|) 40)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -1690 (|#2| |#2| |#1|)) (-15 -1691 (|#2| |#2| |#1|)) (-15 -1692 (|#2| |#2| |#1|)) (-15 -1693 ((-646 (-1160 |#1|)) (-1160 |#1|) |#1|))) (-367) (-1265 |#1|)) (T -288))
-((-1693 (*1 *2 *3 *4) (-12 (-4 *4 (-367)) (-5 *2 (-646 (-1160 *4))) (-5 *1 (-288 *4 *5)) (-5 *3 (-1160 *4)) (-4 *5 (-1265 *4)))) (-1692 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))) (-1691 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))) (-1690 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))))
-(-10 -7 (-15 -1690 (|#2| |#2| |#1|)) (-15 -1691 (|#2| |#2| |#1|)) (-15 -1692 (|#2| |#2| |#1|)) (-15 -1693 ((-646 (-1160 |#1|)) (-1160 |#1|) |#1|)))
-((-4249 ((|#2| $ |#1|) 6)))
-(((-289 |#1| |#2|) (-140) (-1107) (-1222)) (T -289))
-((-4249 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))))
-(-13 (-10 -8 (-15 -4249 (|t#2| $ |t#1|))))
-((-1694 ((|#3| $ |#2| |#3|) 12)) (-3535 ((|#3| $ |#2|) 10)))
-(((-290 |#1| |#2| |#3|) (-10 -8 (-15 -1694 (|#3| |#1| |#2| |#3|)) (-15 -3535 (|#3| |#1| |#2|))) (-291 |#2| |#3|) (-1107) (-1222)) (T -290))
-NIL
-(-10 -8 (-15 -1694 (|#3| |#1| |#2| |#3|)) (-15 -3535 (|#3| |#1| |#2|)))
-((-4237 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4444)))) (-1694 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) 11)) (-4249 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-291 |#1| |#2|) (-140) (-1107) (-1222)) (T -291))
-((-4249 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))) (-3535 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))) (-4237 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))) (-1694 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))))
-(-13 (-289 |t#1| |t#2|) (-10 -8 (-15 -4249 (|t#2| $ |t#1| |t#2|)) (-15 -3535 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -4237 (|t#2| $ |t#1| |t#2|)) (-15 -1694 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-287))) (-4367 (*1 *1 *1) (-4 *1 (-287))) (-2616 (*1 *1 *1) (-4 *1 (-287))))
+(-13 (-10 -8 (-15 -2616 ($ $)) (-15 -4367 ($ $)) (-15 ** ($ $ $))))
+((-1849 (((-649 (-1163 |#1|)) (-1163 |#1|) |#1|) 35)) (-2212 ((|#2| |#2| |#1|) 39)) (-1838 ((|#2| |#2| |#1|) 41)) (-2926 ((|#2| |#2| |#1|) 40)))
+(((-288 |#1| |#2|) (-10 -7 (-15 -2212 (|#2| |#2| |#1|)) (-15 -2926 (|#2| |#2| |#1|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -1849 ((-649 (-1163 |#1|)) (-1163 |#1|) |#1|))) (-367) (-1264 |#1|)) (T -288))
+((-1849 (*1 *2 *3 *4) (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1163 *4))) (-5 *1 (-288 *4 *5)) (-5 *3 (-1163 *4)) (-4 *5 (-1264 *4)))) (-1838 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))) (-2926 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))) (-2212 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
+(-10 -7 (-15 -2212 (|#2| |#2| |#1|)) (-15 -2926 (|#2| |#2| |#1|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -1849 ((-649 (-1163 |#1|)) (-1163 |#1|) |#1|)))
+((-1852 ((|#2| $ |#1|) 6)))
+(((-289 |#1| |#2|) (-140) (-1106) (-1223)) (T -289))
+((-1852 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))))
+(-13 (-10 -8 (-15 -1852 (|t#2| $ |t#1|))))
+((-3074 ((|#3| $ |#2| |#3|) 12)) (-3007 ((|#3| $ |#2|) 10)))
+(((-290 |#1| |#2| |#3|) (-10 -8 (-15 -3074 (|#3| |#1| |#2| |#3|)) (-15 -3007 (|#3| |#1| |#2|))) (-291 |#2| |#3|) (-1106) (-1223)) (T -290))
+NIL
+(-10 -8 (-15 -3074 (|#3| |#1| |#2| |#3|)) (-15 -3007 (|#3| |#1| |#2|)))
+((-3861 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4444)))) (-3074 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) 11)) (-1852 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-291 |#1| |#2|) (-140) (-1106) (-1223)) (T -291))
+((-1852 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3007 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3861 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3074 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))))
+(-13 (-289 |t#1| |t#2|) (-10 -8 (-15 -1852 (|t#2| $ |t#1| |t#2|)) (-15 -3007 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3861 (|t#2| $ |t#1| |t#2|)) (-15 -3074 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-289 |#1| |#2|) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 37)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 44)) (-2251 (($ $) 41)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) 35)) (-4292 (($ |#2| |#3|) 18)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-3032 ((|#3| $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 19)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-2583 (((-3 $ "failed") $ $) NIL)) (-1762 (((-776) $) 36)) (-4249 ((|#2| $ |#2|) 46)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 23)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 31 T CONST)) (-3085 (($) 39 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 40)))
-(((-292 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-310) (-10 -8 (-15 -3032 (|#3| $)) (-15 -4396 (|#2| $)) (-15 -4292 ($ |#2| |#3|)) (-15 -2583 ((-3 $ "failed") $ $)) (-15 -3908 ((-3 $ "failed") $)) (-15 -2824 ($ $)) (-15 -4249 (|#2| $ |#2|)))) (-173) (-1248 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -292))
-((-3908 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3032 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1248 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4396 (*1 *2 *1) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4292 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1248 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2583 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2824 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4249 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1248 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
-(-13 (-310) (-10 -8 (-15 -3032 (|#3| $)) (-15 -4396 (|#2| $)) (-15 -4292 ($ |#2| |#3|)) (-15 -2583 ((-3 $ "failed") $ $)) (-15 -3908 ((-3 $ "failed") $)) (-15 -2824 ($ $)) (-15 -4249 (|#2| $ |#2|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 37)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 44)) (-2586 (($ $) 41)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) 35)) (-3485 (($ |#2| |#3|) 18)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1864 ((|#3| $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 19)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2788 (((-3 $ "failed") $ $) NIL)) (-4409 (((-776) $) 36)) (-1852 ((|#2| $ |#2|) 46)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 23)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 31 T CONST)) (-1796 (($) 39 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40)))
+(((-292 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-310) (-10 -8 (-15 -1864 (|#3| $)) (-15 -2388 (|#2| $)) (-15 -3485 ($ |#2| |#3|)) (-15 -2788 ((-3 $ "failed") $ $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -1776 ($ $)) (-15 -1852 (|#2| $ |#2|)))) (-173) (-1249 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -292))
+((-3351 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1249 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3485 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1249 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2788 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1776 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1852 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1249 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-310) (-10 -8 (-15 -1864 (|#3| $)) (-15 -2388 (|#2| $)) (-15 -3485 ($ |#2| |#3|)) (-15 -2788 ((-3 $ "failed") $ $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -1776 ($ $)) (-15 -1852 (|#2| $ |#2|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-293) (-140)) (T -293))
NIL
(-13 (-1055) (-111 $ $) (-10 -7 (-6 -4436)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-1700 (($ (-511) (-511) (-1109) $) 19)) (-1698 (($ (-511) (-646 (-971)) $) 23)) (-1702 (((-646 (-1091)) $) 10)) (-1696 (($) 25)) (-1701 (((-696 (-1109)) (-511) (-511) $) 18)) (-1699 (((-646 (-971)) (-511) $) 22)) (-4014 (($) 7)) (-1697 (($) 24)) (-4396 (((-868) $) 29)) (-1695 (($) 26)))
-(((-294) (-13 (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -1702 ((-646 (-1091)) $)) (-15 -1701 ((-696 (-1109)) (-511) (-511) $)) (-15 -1700 ($ (-511) (-511) (-1109) $)) (-15 -1699 ((-646 (-971)) (-511) $)) (-15 -1698 ($ (-511) (-646 (-971)) $)) (-15 -1697 ($)) (-15 -1696 ($)) (-15 -1695 ($))))) (T -294))
-((-4014 (*1 *1) (-5 *1 (-294))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-646 (-1091))) (-5 *1 (-294)))) (-1701 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1109))) (-5 *1 (-294)))) (-1700 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1109)) (-5 *1 (-294)))) (-1699 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-646 (-971))) (-5 *1 (-294)))) (-1698 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-971))) (-5 *1 (-294)))) (-1697 (*1 *1) (-5 *1 (-294))) (-1696 (*1 *1) (-5 *1 (-294))) (-1695 (*1 *1) (-5 *1 (-294))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -1702 ((-646 (-1091)) $)) (-15 -1701 ((-696 (-1109)) (-511) (-511) $)) (-15 -1700 ($ (-511) (-511) (-1109) $)) (-15 -1699 ((-646 (-971)) (-511) $)) (-15 -1698 ($ (-511) (-646 (-971)) $)) (-15 -1697 ($)) (-15 -1696 ($)) (-15 -1695 ($))))
-((-1706 (((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |geneigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|)))) 104)) (-1705 (((-646 (-694 (-412 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|)))))) (-694 (-412 (-952 |#1|)))) 99) (((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|))) (-776) (-776)) 41)) (-1707 (((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|)))) 101)) (-1704 (((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|)))) 77)) (-1703 (((-646 (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (-694 (-412 (-952 |#1|)))) 76)) (-2788 (((-952 |#1|) (-694 (-412 (-952 |#1|)))) 57) (((-952 |#1|) (-694 (-412 (-952 |#1|))) (-1183)) 58)))
-(((-295 |#1|) (-10 -7 (-15 -2788 ((-952 |#1|) (-694 (-412 (-952 |#1|))) (-1183))) (-15 -2788 ((-952 |#1|) (-694 (-412 (-952 |#1|))))) (-15 -1703 ((-646 (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (-694 (-412 (-952 |#1|))))) (-15 -1704 ((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|))))) (-15 -1705 ((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|))) (-776) (-776))) (-15 -1705 ((-646 (-694 (-412 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|)))))) (-694 (-412 (-952 |#1|))))) (-15 -1706 ((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |geneigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|))))) (-15 -1707 ((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|)))))) (-457)) (T -295))
-((-1707 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-646 (-2 (|:| |eigval| (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-952 *4)))))) (-1706 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-646 (-2 (|:| |eigval| (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4)))) (|:| |geneigvec| (-646 (-694 (-412 (-952 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-952 *4)))))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-412 (-952 *5)) (-1172 (-1183) (-952 *5)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 *4)))) (-4 *5 (-457)) (-5 *2 (-646 (-694 (-412 (-952 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-952 *5)))))) (-1705 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-412 (-952 *6)) (-1172 (-1183) (-952 *6)))) (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-646 (-694 (-412 (-952 *6))))) (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-952 *6)))))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-412 (-952 *5)) (-1172 (-1183) (-952 *5)))) (-4 *5 (-457)) (-5 *2 (-646 (-694 (-412 (-952 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-952 *5)))))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-952 *4)))) (-4 *4 (-457)) (-5 *2 (-646 (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4))))) (-5 *1 (-295 *4)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-295 *4)) (-4 *4 (-457)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-952 *5)))) (-5 *4 (-1183)) (-5 *2 (-952 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457)))))
-(-10 -7 (-15 -2788 ((-952 |#1|) (-694 (-412 (-952 |#1|))) (-1183))) (-15 -2788 ((-952 |#1|) (-694 (-412 (-952 |#1|))))) (-15 -1703 ((-646 (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (-694 (-412 (-952 |#1|))))) (-15 -1704 ((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|))))) (-15 -1705 ((-646 (-694 (-412 (-952 |#1|)))) (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|))) (-694 (-412 (-952 |#1|))) (-776) (-776))) (-15 -1705 ((-646 (-694 (-412 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|)))))) (-694 (-412 (-952 |#1|))))) (-15 -1706 ((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |geneigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|))))) (-15 -1707 ((-646 (-2 (|:| |eigval| (-3 (-412 (-952 |#1|)) (-1172 (-1183) (-952 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 |#1|))))))) (-694 (-412 (-952 |#1|))))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3626 (((-112) $) NIL (|has| |#1| (-21)))) (-1713 (($ $) 12)) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1722 (($ $ $) 95 (|has| |#1| (-301)))) (-4174 (($) NIL (-3978 (|has| |#1| (-21)) (|has| |#1| (-731))) CONST)) (-1711 (($ $) 51 (|has| |#1| (-21)))) (-1709 (((-3 $ "failed") $) 62 (|has| |#1| (-731)))) (-3969 ((|#1| $) 11)) (-3908 (((-3 $ "failed") $) 60 (|has| |#1| (-731)))) (-2591 (((-112) $) NIL (|has| |#1| (-731)))) (-4408 (($ (-1 |#1| |#1|) $) 14)) (-3970 ((|#1| $) 10)) (-1712 (($ $) 50 (|has| |#1| (-21)))) (-1710 (((-3 $ "failed") $) 61 (|has| |#1| (-731)))) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2824 (($ $) 64 (-3978 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-1708 (((-646 $) $) 85 (|has| |#1| (-562)))) (-4217 (($ $ $) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 $)) 28 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 21 (|has| |#1| (-519 (-1183) |#1|)))) (-3664 (($ |#1| |#1|) 9)) (-4361 (((-134)) 90 (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 87 (|has| |#1| (-906 (-1183))))) (-3428 (($ $ $) NIL (|has| |#1| (-478)))) (-2774 (($ $ $) NIL (|has| |#1| (-478)))) (-4396 (($ (-551)) NIL (|has| |#1| (-1055))) (((-112) $) 37 (|has| |#1| (-1107))) (((-868) $) 36 (|has| |#1| (-1107)))) (-3548 (((-776)) 67 (|has| |#1| (-1055)) CONST)) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3528 (($) 47 (|has| |#1| (-21)) CONST)) (-3085 (($) 57 (|has| |#1| (-731)) CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183))))) (-3473 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1107)))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 92 (-3978 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-4287 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4289 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-551)) NIL (|has| |#1| (-478))) (($ $ (-776)) NIL (|has| |#1| (-731))) (($ $ (-925)) NIL (|has| |#1| (-1118)))) (* (($ $ |#1|) 55 (|has| |#1| (-1118))) (($ |#1| $) 54 (|has| |#1| (-1118))) (($ $ $) 53 (|has| |#1| (-1118))) (($ (-551) $) 70 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-925) $) NIL (|has| |#1| (-25)))))
-(((-296 |#1|) (-13 (-1222) (-10 -8 (-15 -3473 ($ |#1| |#1|)) (-15 -3664 ($ |#1| |#1|)) (-15 -1713 ($ $)) (-15 -3970 (|#1| $)) (-15 -3969 (|#1| $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1107)) (PROGN (-6 (-1107)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -4217 ($ $ $)) (-15 -4217 ($ $ (-646 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4289 ($ |#1| $)) (-15 -4289 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1712 ($ $)) (-15 -1711 ($ $)) (-15 -4287 ($ |#1| $)) (-15 -4287 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1710 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1710 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -1708 ((-646 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -4399 ($ $ $)) (-15 -2824 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -1722 ($ $ $)) |%noBranch|))) (-1222)) (T -296))
-((-3473 (*1 *1 *2 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))) (-3664 (*1 *1 *2 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))) (-1713 (*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))) (-3970 (*1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))) (-3969 (*1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-296 *3)))) (-4217 (*1 *1 *1 *1) (-12 (-4 *2 (-312 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)) (-5 *1 (-296 *2)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-296 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1107)) (-4 *3 (-1222)) (-5 *1 (-296 *3)))) (-4289 (*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-25)) (-4 *2 (-1222)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-25)) (-4 *2 (-1222)))) (-1712 (*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))) (-1711 (*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))) (-4287 (*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))) (-4287 (*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))) (-1710 (*1 *1 *1) (|partial| -12 (-5 *1 (-296 *2)) (-4 *2 (-731)) (-4 *2 (-1222)))) (-1709 (*1 *1 *1) (|partial| -12 (-5 *1 (-296 *2)) (-4 *2 (-731)) (-4 *2 (-1222)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-646 (-296 *3))) (-5 *1 (-296 *3)) (-4 *3 (-562)) (-4 *3 (-1222)))) (-1722 (*1 *1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-301)) (-4 *2 (-1222)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1118)) (-4 *2 (-1222)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1118)) (-4 *2 (-1222)))) (-4399 (*1 *1 *1 *1) (-3978 (-12 (-5 *1 (-296 *2)) (-4 *2 (-367)) (-4 *2 (-1222))) (-12 (-5 *1 (-296 *2)) (-4 *2 (-478)) (-4 *2 (-1222))))) (-2824 (*1 *1 *1) (-3978 (-12 (-5 *1 (-296 *2)) (-4 *2 (-367)) (-4 *2 (-1222))) (-12 (-5 *1 (-296 *2)) (-4 *2 (-478)) (-4 *2 (-1222))))))
-(-13 (-1222) (-10 -8 (-15 -3473 ($ |#1| |#1|)) (-15 -3664 ($ |#1| |#1|)) (-15 -1713 ($ $)) (-15 -3970 (|#1| $)) (-15 -3969 (|#1| $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1107)) (PROGN (-6 (-1107)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -4217 ($ $ $)) (-15 -4217 ($ $ (-646 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4289 ($ |#1| $)) (-15 -4289 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1712 ($ $)) (-15 -1711 ($ $)) (-15 -4287 ($ |#1| $)) (-15 -4287 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1710 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1710 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -1708 ((-646 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -4399 ($ $ $)) (-15 -2824 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -1722 ($ $ $)) |%noBranch|)))
-((-4408 (((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|)) 14)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -4408 ((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|)))) (-1222) (-1222)) (T -297))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-296 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-296 *6)) (-5 *1 (-297 *5 *6)))))
-(-10 -7 (-15 -4408 ((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) NIL)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-298 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1107) (-1107)) (T -298))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-1908 (((-649 (-1091)) $) 10)) (-1586 (($ (-511) (-511) (-1110) $) 19)) (-1599 (($ (-511) (-649 (-971)) $) 23)) (-1868 (($) 25)) (-1899 (((-696 (-1110)) (-511) (-511) $) 18)) (-1883 (((-649 (-971)) (-511) $) 22)) (-2825 (($) 7)) (-1363 (($) 24)) (-2388 (((-867) $) 29)) (-1859 (($) 26)))
+(((-294) (-13 (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1908 ((-649 (-1091)) $)) (-15 -1899 ((-696 (-1110)) (-511) (-511) $)) (-15 -1586 ($ (-511) (-511) (-1110) $)) (-15 -1883 ((-649 (-971)) (-511) $)) (-15 -1599 ($ (-511) (-649 (-971)) $)) (-15 -1363 ($)) (-15 -1868 ($)) (-15 -1859 ($))))) (T -294))
+((-2825 (*1 *1) (-5 *1 (-294))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-649 (-1091))) (-5 *1 (-294)))) (-1899 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1110))) (-5 *1 (-294)))) (-1586 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-294)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))) (-1599 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))) (-1363 (*1 *1) (-5 *1 (-294))) (-1868 (*1 *1) (-5 *1 (-294))) (-1859 (*1 *1) (-5 *1 (-294))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1908 ((-649 (-1091)) $)) (-15 -1899 ((-696 (-1110)) (-511) (-511) $)) (-15 -1586 ($ (-511) (-511) (-1110) $)) (-15 -1883 ((-649 (-971)) (-511) $)) (-15 -1599 ($ (-511) (-649 (-971)) $)) (-15 -1363 ($)) (-15 -1868 ($)) (-15 -1859 ($))))
+((-1942 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 104)) (-1934 (((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|)))) 99) (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776)) 41)) (-1951 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 101)) (-1926 (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|)))) 77)) (-1917 (((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|)))) 76)) (-3176 (((-958 |#1|) (-694 (-412 (-958 |#1|)))) 57) (((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183)) 58)))
+(((-295 |#1|) (-10 -7 (-15 -3176 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183))) (-15 -3176 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -1917 ((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1926 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -1934 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -1934 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -1942 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -1951 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))))) (-457)) (T -295))
+((-1951 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-1934 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-1934 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1172 (-1183) (-958 *6)))) (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6))))) (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6)))))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457)) (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))) (-5 *1 (-295 *4)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4)) (-5 *1 (-295 *4)) (-4 *4 (-457)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1183)) (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457)))))
+(-10 -7 (-15 -3176 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183))) (-15 -3176 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -1917 ((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1926 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -1934 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -1934 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -1942 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -1951 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))))
+((-1324 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 14)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -1324 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-1223) (-1223)) (T -296))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6)))))
+(-10 -7 (-15 -1324 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2789 (((-112) $) NIL (|has| |#1| (-21)))) (-2010 (($ $) 12)) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4272 (($ $ $) 95 (|has| |#1| (-305)))) (-3863 (($) NIL (-2718 (|has| |#1| (-21)) (|has| |#1| (-731))) CONST)) (-1989 (($ $) 51 (|has| |#1| (-21)))) (-1970 (((-3 $ "failed") $) 62 (|has| |#1| (-731)))) (-2076 ((|#1| $) 11)) (-3351 (((-3 $ "failed") $) 60 (|has| |#1| (-731)))) (-2861 (((-112) $) NIL (|has| |#1| (-731)))) (-1324 (($ (-1 |#1| |#1|) $) 14)) (-2065 ((|#1| $) 10)) (-1998 (($ $) 50 (|has| |#1| (-21)))) (-1979 (((-3 $ "failed") $) 61 (|has| |#1| (-731)))) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1776 (($ $) 64 (-2718 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1960 (((-649 $) $) 85 (|has| |#1| (-561)))) (-1679 (($ $ $) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 $)) 28 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 21 (|has| |#1| (-519 (-1183) |#1|)))) (-3387 (($ |#1| |#1|) 9)) (-2905 (((-134)) 90 (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 87 (|has| |#1| (-906 (-1183))))) (-1565 (($ $ $) NIL (|has| |#1| (-478)))) (-4356 (($ $ $) NIL (|has| |#1| (-478)))) (-2388 (($ (-569)) NIL (|has| |#1| (-1055))) (((-112) $) 37 (|has| |#1| (-1106))) (((-867) $) 36 (|has| |#1| (-1106)))) (-3263 (((-776)) 67 (|has| |#1| (-1055)) CONST)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1786 (($) 47 (|has| |#1| (-21)) CONST)) (-1796 (($) 57 (|has| |#1| (-731)) CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183))))) (-2853 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1106)))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 92 (-2718 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-2946 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2935 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-569)) NIL (|has| |#1| (-478))) (($ $ (-776)) NIL (|has| |#1| (-731))) (($ $ (-927)) NIL (|has| |#1| (-1118)))) (* (($ $ |#1|) 55 (|has| |#1| (-1118))) (($ |#1| $) 54 (|has| |#1| (-1118))) (($ $ $) 53 (|has| |#1| (-1118))) (($ (-569) $) 70 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-25)))))
+(((-297 |#1|) (-13 (-1223) (-10 -8 (-15 -2853 ($ |#1| |#1|)) (-15 -3387 ($ |#1| |#1|)) (-15 -2010 ($ $)) (-15 -2065 (|#1| $)) (-15 -2076 (|#1| $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1679 ($ $ $)) (-15 -1679 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2935 ($ |#1| $)) (-15 -2935 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1998 ($ $)) (-15 -1989 ($ $)) (-15 -2946 ($ |#1| $)) (-15 -2946 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1979 ((-3 $ "failed") $)) (-15 -1970 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1979 ((-3 $ "failed") $)) (-15 -1970 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1960 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -2956 ($ $ $)) (-15 -1776 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4272 ($ $ $)) |%noBranch|))) (-1223)) (T -297))
+((-2853 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-3387 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2010 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2065 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2076 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-297 *3)))) (-1679 (*1 *1 *1 *1) (-12 (-4 *2 (-312 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)) (-5 *1 (-297 *2)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)) (-5 *1 (-297 *3)))) (-2935 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223)))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-2946 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-1979 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))) (-1970 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561)) (-4 *3 (-1223)))) (-4272 (*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1223)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223)))) (-2956 (*1 *1 *1 *1) (-2718 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223))))) (-1776 (*1 *1 *1) (-2718 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223))))))
+(-13 (-1223) (-10 -8 (-15 -2853 ($ |#1| |#1|)) (-15 -3387 ($ |#1| |#1|)) (-15 -2010 ($ $)) (-15 -2065 (|#1| $)) (-15 -2076 (|#1| $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1679 ($ $ $)) (-15 -1679 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2935 ($ |#1| $)) (-15 -2935 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1998 ($ $)) (-15 -1989 ($ $)) (-15 -2946 ($ |#1| $)) (-15 -2946 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1979 ((-3 $ "failed") $)) (-15 -1970 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1979 ((-3 $ "failed") $)) (-15 -1970 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1960 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -2956 ($ $ $)) (-15 -1776 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4272 ($ $ $)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) NIL)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) NIL)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-298 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1106) (-1106)) (T -298))
NIL
(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))
-((-1714 (((-314) (-1165) (-646 (-1165))) 17) (((-314) (-1165) (-1165)) 16) (((-314) (-646 (-1165))) 15) (((-314) (-1165)) 14)))
-(((-299) (-10 -7 (-15 -1714 ((-314) (-1165))) (-15 -1714 ((-314) (-646 (-1165)))) (-15 -1714 ((-314) (-1165) (-1165))) (-15 -1714 ((-314) (-1165) (-646 (-1165)))))) (T -299))
-((-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-1165))) (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299)))) (-1714 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-314)) (-5 *1 (-299)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299)))))
-(-10 -7 (-15 -1714 ((-314) (-1165))) (-15 -1714 ((-314) (-646 (-1165)))) (-15 -1714 ((-314) (-1165) (-1165))) (-15 -1714 ((-314) (-1165) (-646 (-1165)))))
-((-1718 (((-646 (-616 $)) $) 27)) (-1722 (($ $ (-296 $)) 78) (($ $ (-646 (-296 $))) 139) (($ $ (-646 (-616 $)) (-646 $)) NIL)) (-3595 (((-3 (-616 $) "failed") $) 127)) (-3594 (((-616 $) $) 126)) (-2991 (($ $) 17) (($ (-646 $)) 54)) (-1717 (((-646 (-113)) $) 35)) (-3466 (((-113) (-113)) 88)) (-3094 (((-112) $) 150)) (-4408 (($ (-1 $ $) (-616 $)) 86)) (-1720 (((-3 (-616 $) "failed") $) 94)) (-2402 (($ (-113) $) 59) (($ (-113) (-646 $)) 110)) (-3053 (((-112) $ (-113)) 132) (((-112) $ (-1183)) 131)) (-3021 (((-776) $) 44)) (-1716 (((-112) $ $) 57) (((-112) $ (-1183)) 49)) (-3095 (((-112) $) 148)) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL) (($ $ (-646 (-296 $))) 137) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) 81) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-1183) (-1 $ (-646 $))) 67) (($ $ (-1183) (-1 $ $)) 72) (($ $ (-646 (-113)) (-646 (-1 $ $))) 80) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) 82) (($ $ (-113) (-1 $ (-646 $))) 68) (($ $ (-113) (-1 $ $)) 74)) (-4249 (($ (-113) $) 60) (($ (-113) $ $) 61) (($ (-113) $ $ $) 62) (($ (-113) $ $ $ $) 63) (($ (-113) (-646 $)) 123)) (-1721 (($ $) 51) (($ $ $) 135)) (-3008 (($ $) 15) (($ (-646 $)) 53)) (-2421 (((-112) (-113)) 21)))
-(((-300 |#1|) (-10 -8 (-15 -3094 ((-112) |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| |#1|)))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| |#1|)))) (-15 -1716 ((-112) |#1| (-1183))) (-15 -1716 ((-112) |#1| |#1|)) (-15 -4408 (|#1| (-1 |#1| |#1|) (-616 |#1|))) (-15 -2402 (|#1| (-113) (-646 |#1|))) (-15 -2402 (|#1| (-113) |#1|)) (-15 -3053 ((-112) |#1| (-1183))) (-15 -3053 ((-112) |#1| (-113))) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1717 ((-646 (-113)) |#1|)) (-15 -1718 ((-646 (-616 |#1|)) |#1|)) (-15 -1720 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -3021 ((-776) |#1|)) (-15 -1721 (|#1| |#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -2991 (|#1| (-646 |#1|))) (-15 -2991 (|#1| |#1|)) (-15 -3008 (|#1| (-646 |#1|))) (-15 -3008 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -1722 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -1722 (|#1| |#1| (-296 |#1|))) (-15 -4249 (|#1| (-113) (-646 |#1|))) (-15 -4249 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-616 |#1|) |#1|)) (-15 -3595 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -3594 ((-616 |#1|) |#1|))) (-301)) (T -300))
-((-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))))
-(-10 -8 (-15 -3094 ((-112) |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| |#1|)))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| |#1|)))) (-15 -1716 ((-112) |#1| (-1183))) (-15 -1716 ((-112) |#1| |#1|)) (-15 -4408 (|#1| (-1 |#1| |#1|) (-616 |#1|))) (-15 -2402 (|#1| (-113) (-646 |#1|))) (-15 -2402 (|#1| (-113) |#1|)) (-15 -3053 ((-112) |#1| (-1183))) (-15 -3053 ((-112) |#1| (-113))) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1717 ((-646 (-113)) |#1|)) (-15 -1718 ((-646 (-616 |#1|)) |#1|)) (-15 -1720 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -3021 ((-776) |#1|)) (-15 -1721 (|#1| |#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -2991 (|#1| (-646 |#1|))) (-15 -2991 (|#1| |#1|)) (-15 -3008 (|#1| (-646 |#1|))) (-15 -3008 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -1722 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -1722 (|#1| |#1| (-296 |#1|))) (-15 -4249 (|#1| (-113) (-646 |#1|))) (-15 -4249 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-616 |#1|) |#1|)) (-15 -3595 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -3594 ((-616 |#1|) |#1|)))
-((-2986 (((-112) $ $) 7)) (-1718 (((-646 (-616 $)) $) 39)) (-1722 (($ $ (-296 $)) 51) (($ $ (-646 (-296 $))) 50) (($ $ (-646 (-616 $)) (-646 $)) 49)) (-3595 (((-3 (-616 $) "failed") $) 64)) (-3594 (((-616 $) $) 65)) (-2991 (($ $) 46) (($ (-646 $)) 45)) (-1717 (((-646 (-113)) $) 38)) (-3466 (((-113) (-113)) 37)) (-3094 (((-112) $) 17 (|has| $ (-1044 (-551))))) (-1715 (((-1177 $) (-616 $)) 20 (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) 31)) (-1720 (((-3 (-616 $) "failed") $) 41)) (-3681 (((-1165) $) 10)) (-1719 (((-646 (-616 $)) $) 40)) (-2402 (($ (-113) $) 33) (($ (-113) (-646 $)) 32)) (-3053 (((-112) $ (-113)) 35) (((-112) $ (-1183)) 34)) (-3021 (((-776) $) 42)) (-3682 (((-1126) $) 11)) (-1716 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-3095 (((-112) $) 18 (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) 62) (($ $ (-646 (-616 $)) (-646 $)) 61) (($ $ (-646 (-296 $))) 60) (($ $ (-296 $)) 59) (($ $ $ $) 58) (($ $ (-646 $) (-646 $)) 57) (($ $ (-646 (-1183)) (-646 (-1 $ $))) 28) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) 27) (($ $ (-1183) (-1 $ (-646 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-646 (-113)) (-646 (-1 $ $))) 24) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) 23) (($ $ (-113) (-1 $ (-646 $))) 22) (($ $ (-113) (-1 $ $)) 21)) (-4249 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-646 $)) 52)) (-1721 (($ $) 44) (($ $ $) 43)) (-3623 (($ $) 19 (|has| $ (-1055)))) (-4396 (((-868) $) 12) (($ (-616 $)) 63)) (-3008 (($ $) 48) (($ (-646 $)) 47)) (-2421 (((-112) (-113)) 36)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-301) (-140)) (T -301))
-((-4249 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-4249 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-4249 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-4249 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 *1)) (-4 *1 (-301)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-296 *1)) (-4 *1 (-301)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-296 *1))) (-4 *1 (-301)))) (-1722 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-616 *1))) (-5 *3 (-646 *1)) (-4 *1 (-301)))) (-3008 (*1 *1 *1) (-4 *1 (-301))) (-3008 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-301)))) (-2991 (*1 *1 *1) (-4 *1 (-301))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-301)))) (-1721 (*1 *1 *1) (-4 *1 (-301))) (-1721 (*1 *1 *1 *1) (-4 *1 (-301))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-776)))) (-1720 (*1 *2 *1) (|partial| -12 (-5 *2 (-616 *1)) (-4 *1 (-301)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-646 (-616 *1))) (-4 *1 (-301)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-646 (-616 *1))) (-4 *1 (-301)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-646 (-113))))) (-3466 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-2421 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3053 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3053 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-2402 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 *1)) (-4 *1 (-301)))) (-4408 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-616 *1)) (-4 *1 (-301)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1716 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-1 *1 *1))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-646 *1))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 (-1 *1 *1))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-646 *1))) (-4 *1 (-301)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-616 *1)) (-4 *1 (-1055)) (-4 *1 (-301)) (-5 *2 (-1177 *1)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-301)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1044 (-551))) (-4 *1 (-301)) (-5 *2 (-112)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1044 (-551))) (-4 *1 (-301)) (-5 *2 (-112)))))
-(-13 (-1107) (-1044 (-616 $)) (-519 (-616 $) $) (-312 $) (-10 -8 (-15 -4249 ($ (-113) $)) (-15 -4249 ($ (-113) $ $)) (-15 -4249 ($ (-113) $ $ $)) (-15 -4249 ($ (-113) $ $ $ $)) (-15 -4249 ($ (-113) (-646 $))) (-15 -1722 ($ $ (-296 $))) (-15 -1722 ($ $ (-646 (-296 $)))) (-15 -1722 ($ $ (-646 (-616 $)) (-646 $))) (-15 -3008 ($ $)) (-15 -3008 ($ (-646 $))) (-15 -2991 ($ $)) (-15 -2991 ($ (-646 $))) (-15 -1721 ($ $)) (-15 -1721 ($ $ $)) (-15 -3021 ((-776) $)) (-15 -1720 ((-3 (-616 $) "failed") $)) (-15 -1719 ((-646 (-616 $)) $)) (-15 -1718 ((-646 (-616 $)) $)) (-15 -1717 ((-646 (-113)) $)) (-15 -3466 ((-113) (-113))) (-15 -2421 ((-112) (-113))) (-15 -3053 ((-112) $ (-113))) (-15 -3053 ((-112) $ (-1183))) (-15 -2402 ($ (-113) $)) (-15 -2402 ($ (-113) (-646 $))) (-15 -4408 ($ (-1 $ $) (-616 $))) (-15 -1716 ((-112) $ $)) (-15 -1716 ((-112) $ (-1183))) (-15 -4217 ($ $ (-646 (-1183)) (-646 (-1 $ $)))) (-15 -4217 ($ $ (-646 (-1183)) (-646 (-1 $ (-646 $))))) (-15 -4217 ($ $ (-1183) (-1 $ (-646 $)))) (-15 -4217 ($ $ (-1183) (-1 $ $))) (-15 -4217 ($ $ (-646 (-113)) (-646 (-1 $ $)))) (-15 -4217 ($ $ (-646 (-113)) (-646 (-1 $ (-646 $))))) (-15 -4217 ($ $ (-113) (-1 $ (-646 $)))) (-15 -4217 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1055)) (PROGN (-15 -1715 ((-1177 $) (-616 $))) (-15 -3623 ($ $))) |%noBranch|) (IF (|has| $ (-1044 (-551))) (PROGN (-15 -3095 ((-112) $)) (-15 -3094 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-621 #1=(-616 $)) . T) ((-618 (-868)) . T) ((-312 $) . T) ((-519 (-616 $) $) . T) ((-519 $ $) . T) ((-1044 #1#) . T) ((-1107) . T))
-((-4408 ((|#2| (-1 |#2| |#1|) (-1165) (-616 |#1|)) 18)))
-(((-302 |#1| |#2|) (-10 -7 (-15 -4408 (|#2| (-1 |#2| |#1|) (-1165) (-616 |#1|)))) (-301) (-1222)) (T -302))
-((-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-616 *6)) (-4 *6 (-301)) (-4 *2 (-1222)) (-5 *1 (-302 *6 *2)))))
-(-10 -7 (-15 -4408 (|#2| (-1 |#2| |#1|) (-1165) (-616 |#1|))))
-((-4408 ((|#2| (-1 |#2| |#1|) (-616 |#1|)) 17)))
-(((-303 |#1| |#2|) (-10 -7 (-15 -4408 (|#2| (-1 |#2| |#1|) (-616 |#1|)))) (-301) (-301)) (T -303))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-616 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-303 *5 *2)))))
-(-10 -7 (-15 -4408 (|#2| (-1 |#2| |#1|) (-616 |#1|))))
-((-1725 (((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226)))) 118)) (-1726 (((-1160 (-226)) (-1272 (-317 (-226))) (-646 (-1183)) (-1095 (-847 (-226)))) 135) (((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226)))) 72)) (-1747 (((-646 (-1165)) (-1160 (-226))) NIL)) (-1724 (((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226)))) 69)) (-1727 (((-646 (-226)) (-952 (-412 (-551))) (-1183) (-1095 (-847 (-226)))) 59)) (-1746 (((-646 (-1165)) (-646 (-226))) NIL)) (-1748 (((-226) (-1095 (-847 (-226)))) 29)) (-1749 (((-226) (-1095 (-847 (-226)))) 30)) (-1723 (((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-1744 (((-1165) (-226)) NIL)))
-(((-304) (-10 -7 (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -1723 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1724 ((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226))))) (-15 -1725 ((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-1272 (-317 (-226))) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1727 ((-646 (-226)) (-952 (-412 (-551))) (-1183) (-1095 (-847 (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))))) (T -304))
-((-1747 (*1 *2 *3) (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-304)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-304)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-304)))) (-1727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *4 (-1183)) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-646 (-226))) (-5 *1 (-304)))) (-1726 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *4 (-646 (-1183))) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304)))) (-1726 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-226))) (-5 *4 (-646 (-1183))) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-226))) (-5 *4 (-646 (-1183))) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304)))) (-1724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-226))) (-5 *4 (-1183)) (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-646 (-226))) (-5 *1 (-304)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-304)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-304)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-304)))))
-(-10 -7 (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -1723 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1724 ((-646 (-226)) (-317 (-226)) (-1183) (-1095 (-847 (-226))))) (-15 -1725 ((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-317 (-226)) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1726 ((-1160 (-226)) (-1272 (-317 (-226))) (-646 (-1183)) (-1095 (-847 (-226))))) (-15 -1727 ((-646 (-226)) (-952 (-412 (-551))) (-1183) (-1095 (-847 (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))))
-((-2165 (((-112) (-226)) 12)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -2165 ((-112) (-226)))) (-226) (-226)) (T -305))
-((-2165 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2165 ((-112) (-226))))
-((-1743 (((-1272 (-317 (-382))) (-1272 (-317 (-226)))) 112)) (-1731 (((-1095 (-847 (-226))) (-1095 (-847 (-382)))) 45)) (-1747 (((-646 (-1165)) (-1160 (-226))) 94)) (-1754 (((-317 (-382)) (-952 (-226))) 55)) (-1755 (((-226) (-952 (-226))) 51)) (-1750 (((-1165) (-382)) 197)) (-1730 (((-847 (-226)) (-847 (-382))) 39)) (-1736 (((-2 (|:| |additions| (-551)) (|:| |multiplications| (-551)) (|:| |exponentiations| (-551)) (|:| |functionCalls| (-551))) (-1272 (-317 (-226)))) 165)) (-1751 (((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041)))) 209) (((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) 207)) (-1758 (((-694 (-226)) (-646 (-226)) (-776)) 21)) (-1741 (((-1272 (-704)) (-646 (-226))) 101)) (-1746 (((-646 (-1165)) (-646 (-226))) 81)) (-3078 (((-3 (-317 (-226)) "failed") (-317 (-226))) 130)) (-2165 (((-112) (-226) (-1095 (-847 (-226)))) 119)) (-1753 (((-1041) (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))) 226)) (-1748 (((-226) (-1095 (-847 (-226)))) 114)) (-1749 (((-226) (-1095 (-847 (-226)))) 115)) (-1757 (((-226) (-412 (-551))) 33)) (-1745 (((-1165) (-382)) 79)) (-1728 (((-226) (-382)) 24)) (-1735 (((-382) (-1272 (-317 (-226)))) 179)) (-1729 (((-317 (-226)) (-317 (-382))) 30)) (-1733 (((-412 (-551)) (-317 (-226))) 58)) (-1737 (((-317 (-412 (-551))) (-317 (-226))) 75)) (-1742 (((-317 (-382)) (-317 (-226))) 105)) (-1734 (((-226) (-317 (-226))) 59)) (-1739 (((-646 (-226)) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) 70)) (-1738 (((-1095 (-847 (-226))) (-1095 (-847 (-226)))) 67)) (-1744 (((-1165) (-226)) 78)) (-1740 (((-704) (-226)) 97)) (-1732 (((-412 (-551)) (-226)) 60)) (-1756 (((-317 (-382)) (-226)) 54)) (-4420 (((-646 (-1095 (-847 (-226)))) (-646 (-1095 (-847 (-382))))) 48)) (-4251 (((-1041) (-646 (-1041))) 193) (((-1041) (-1041) (-1041)) 187)) (-1752 (((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
-(((-306) (-10 -7 (-15 -1728 ((-226) (-382))) (-15 -1729 ((-317 (-226)) (-317 (-382)))) (-15 -1730 ((-847 (-226)) (-847 (-382)))) (-15 -1731 ((-1095 (-847 (-226))) (-1095 (-847 (-382))))) (-15 -4420 ((-646 (-1095 (-847 (-226)))) (-646 (-1095 (-847 (-382)))))) (-15 -1732 ((-412 (-551)) (-226))) (-15 -1733 ((-412 (-551)) (-317 (-226)))) (-15 -1734 ((-226) (-317 (-226)))) (-15 -3078 ((-3 (-317 (-226)) "failed") (-317 (-226)))) (-15 -1735 ((-382) (-1272 (-317 (-226))))) (-15 -1736 ((-2 (|:| |additions| (-551)) (|:| |multiplications| (-551)) (|:| |exponentiations| (-551)) (|:| |functionCalls| (-551))) (-1272 (-317 (-226))))) (-15 -1737 ((-317 (-412 (-551))) (-317 (-226)))) (-15 -1738 ((-1095 (-847 (-226))) (-1095 (-847 (-226))))) (-15 -1739 ((-646 (-226)) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))) (-15 -1740 ((-704) (-226))) (-15 -1741 ((-1272 (-704)) (-646 (-226)))) (-15 -1742 ((-317 (-382)) (-317 (-226)))) (-15 -1743 ((-1272 (-317 (-382))) (-1272 (-317 (-226))))) (-15 -2165 ((-112) (-226) (-1095 (-847 (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1745 ((-1165) (-382))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))) (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -4251 ((-1041) (-1041) (-1041))) (-15 -4251 ((-1041) (-646 (-1041)))) (-15 -1750 ((-1165) (-382))) (-15 -1751 ((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))))) (-15 -1751 ((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))))) (-15 -1752 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1753 ((-1041) (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))) (-15 -1754 ((-317 (-382)) (-952 (-226)))) (-15 -1755 ((-226) (-952 (-226)))) (-15 -1756 ((-317 (-382)) (-226))) (-15 -1757 ((-226) (-412 (-551)))) (-15 -1758 ((-694 (-226)) (-646 (-226)) (-776))))) (T -306))
-((-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-306)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-412 (-551))) (-5 *2 (-226)) (-5 *1 (-306)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-317 (-382))) (-5 *1 (-306)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-952 (-226))) (-5 *2 (-226)) (-5 *1 (-306)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-952 (-226))) (-5 *2 (-317 (-382))) (-5 *1 (-306)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))) (-5 *2 (-1041)) (-5 *1 (-306)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1041)) (-5 *1 (-306)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041)))) (-5 *2 (-1041)) (-5 *1 (-306)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *2 (-1041)) (-5 *1 (-306)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1165)) (-5 *1 (-306)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-646 (-1041))) (-5 *2 (-1041)) (-5 *1 (-306)))) (-4251 (*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-306)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-306)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-306)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-306)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-306)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1165)) (-5 *1 (-306)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-306)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-847 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-306)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *2 (-1272 (-317 (-382)))) (-5 *1 (-306)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-317 (-382))) (-5 *1 (-306)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1272 (-704))) (-5 *1 (-306)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-306)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *2 (-646 (-226))) (-5 *1 (-306)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1095 (-847 (-226)))) (-5 *1 (-306)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-317 (-412 (-551)))) (-5 *1 (-306)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *2 (-2 (|:| |additions| (-551)) (|:| |multiplications| (-551)) (|:| |exponentiations| (-551)) (|:| |functionCalls| (-551)))) (-5 *1 (-306)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *2 (-382)) (-5 *1 (-306)))) (-3078 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-226))) (-5 *1 (-306)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-226)) (-5 *1 (-306)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-412 (-551))) (-5 *1 (-306)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-551))) (-5 *1 (-306)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-646 (-1095 (-847 (-382))))) (-5 *2 (-646 (-1095 (-847 (-226))))) (-5 *1 (-306)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-382)))) (-5 *2 (-1095 (-847 (-226)))) (-5 *1 (-306)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-847 (-382))) (-5 *2 (-847 (-226))) (-5 *1 (-306)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-317 (-382))) (-5 *2 (-317 (-226))) (-5 *1 (-306)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-226)) (-5 *1 (-306)))))
-(-10 -7 (-15 -1728 ((-226) (-382))) (-15 -1729 ((-317 (-226)) (-317 (-382)))) (-15 -1730 ((-847 (-226)) (-847 (-382)))) (-15 -1731 ((-1095 (-847 (-226))) (-1095 (-847 (-382))))) (-15 -4420 ((-646 (-1095 (-847 (-226)))) (-646 (-1095 (-847 (-382)))))) (-15 -1732 ((-412 (-551)) (-226))) (-15 -1733 ((-412 (-551)) (-317 (-226)))) (-15 -1734 ((-226) (-317 (-226)))) (-15 -3078 ((-3 (-317 (-226)) "failed") (-317 (-226)))) (-15 -1735 ((-382) (-1272 (-317 (-226))))) (-15 -1736 ((-2 (|:| |additions| (-551)) (|:| |multiplications| (-551)) (|:| |exponentiations| (-551)) (|:| |functionCalls| (-551))) (-1272 (-317 (-226))))) (-15 -1737 ((-317 (-412 (-551))) (-317 (-226)))) (-15 -1738 ((-1095 (-847 (-226))) (-1095 (-847 (-226))))) (-15 -1739 ((-646 (-226)) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))) (-15 -1740 ((-704) (-226))) (-15 -1741 ((-1272 (-704)) (-646 (-226)))) (-15 -1742 ((-317 (-382)) (-317 (-226)))) (-15 -1743 ((-1272 (-317 (-382))) (-1272 (-317 (-226))))) (-15 -2165 ((-112) (-226) (-1095 (-847 (-226))))) (-15 -1744 ((-1165) (-226))) (-15 -1745 ((-1165) (-382))) (-15 -1746 ((-646 (-1165)) (-646 (-226)))) (-15 -1747 ((-646 (-1165)) (-1160 (-226)))) (-15 -1748 ((-226) (-1095 (-847 (-226))))) (-15 -1749 ((-226) (-1095 (-847 (-226))))) (-15 -4251 ((-1041) (-1041) (-1041))) (-15 -4251 ((-1041) (-646 (-1041)))) (-15 -1750 ((-1165) (-382))) (-15 -1751 ((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))))) (-15 -1751 ((-1041) (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))))) (-15 -1752 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1753 ((-1041) (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))) (-15 -1754 ((-317 (-382)) (-952 (-226)))) (-15 -1755 ((-226) (-952 (-226)))) (-15 -1756 ((-317 (-382)) (-226))) (-15 -1757 ((-226) (-412 (-551)))) (-15 -1758 ((-694 (-226)) (-646 (-226)) (-776))))
-((-1759 (((-646 |#1|) (-646 |#1|)) 10)))
-(((-307 |#1|) (-10 -7 (-15 -1759 ((-646 |#1|) (-646 |#1|)))) (-853)) (T -307))
-((-1759 (*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-853)) (-5 *1 (-307 *3)))))
-(-10 -7 (-15 -1759 ((-646 |#1|) (-646 |#1|))))
-((-4408 (((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)) 17)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -4408 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) (-1055) (-1055)) (T -308))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-694 *6)) (-5 *1 (-308 *5 *6)))))
-(-10 -7 (-15 -4408 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|))))
-((-1763 (((-112) $ $) 14)) (-2982 (($ $ $) 18)) (-2981 (($ $ $) 17)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 50)) (-1760 (((-3 (-646 $) "failed") (-646 $) $) 65)) (-3582 (($ $ $) 25) (($ (-646 $)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3907 (((-3 $ "failed") $ $) 21)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 53)))
-(((-309 |#1|) (-10 -8 (-15 -1760 ((-3 (-646 |#1|) "failed") (-646 |#1|) |#1|)) (-15 -1761 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1761 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -1763 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-646 |#1|) "failed") (-646 |#1|) |#1|)) (-15 -3162 ((-2 (|:| -4404 (-646 |#1|)) (|:| -2590 |#1|)) (-646 |#1|))) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|))) (-310)) (T -309))
-NIL
-(-10 -8 (-15 -1760 ((-3 (-646 |#1|) "failed") (-646 |#1|) |#1|)) (-15 -1761 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1761 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -1763 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-646 |#1|) "failed") (-646 |#1|) |#1|)) (-15 -3162 ((-2 (|:| -4404 (-646 |#1|)) (|:| -2590 |#1|)) (-646 |#1|))) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-2591 (((-112) $) 35)) (-1760 (((-3 (-646 $) "failed") (-646 $) $) 58)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-3534 (((-315) (-1165) (-649 (-1165))) 17) (((-315) (-1165) (-1165)) 16) (((-315) (-649 (-1165))) 15) (((-315) (-1165)) 14)))
+(((-299) (-10 -7 (-15 -3534 ((-315) (-1165))) (-15 -3534 ((-315) (-649 (-1165)))) (-15 -3534 ((-315) (-1165) (-1165))) (-15 -3534 ((-315) (-1165) (-649 (-1165)))))) (T -299))
+((-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1165))) (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3534 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-315)) (-5 *1 (-299)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))))
+(-10 -7 (-15 -3534 ((-315) (-1165))) (-15 -3534 ((-315) (-649 (-1165)))) (-15 -3534 ((-315) (-1165) (-1165))) (-15 -3534 ((-315) (-1165) (-649 (-1165)))))
+((-1324 ((|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|)) 18)))
+(((-300 |#1| |#2|) (-10 -7 (-15 -1324 (|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|)))) (-305) (-1223)) (T -300))
+((-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-617 *6)) (-4 *6 (-305)) (-4 *2 (-1223)) (-5 *1 (-300 *6 *2)))))
+(-10 -7 (-15 -1324 (|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|))))
+((-1324 ((|#2| (-1 |#2| |#1|) (-617 |#1|)) 17)))
+(((-301 |#1| |#2|) (-10 -7 (-15 -1324 (|#2| (-1 |#2| |#1|) (-617 |#1|)))) (-305) (-305)) (T -301))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305)) (-4 *2 (-305)) (-5 *1 (-301 *5 *2)))))
+(-10 -7 (-15 -1324 (|#2| (-1 |#2| |#1|) (-617 |#1|))))
+((-4307 (((-112) (-226)) 12)))
+(((-302 |#1| |#2|) (-10 -7 (-15 -4307 ((-112) (-226)))) (-226) (-226)) (T -302))
+((-4307 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -4307 ((-112) (-226))))
+((-2092 (((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226)))) 118)) (-2103 (((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226)))) 135) (((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226)))) 72)) (-2298 (((-649 (-1165)) (-1163 (-226))) NIL)) (-2083 (((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226)))) 69)) (-2112 (((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226)))) 59)) (-2289 (((-649 (-1165)) (-649 (-226))) NIL)) (-2306 (((-226) (-1100 (-848 (-226)))) 29)) (-2315 (((-226) (-1100 (-848 (-226)))) 30)) (-2073 (((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-2273 (((-1165) (-226)) NIL)))
+(((-303) (-10 -7 (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -2073 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2083 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -2092 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2112 ((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))))) (T -303))
+((-2298 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-303)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-2103 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-2103 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-2092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-2083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-303)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))))
+(-10 -7 (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -2073 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2083 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -2092 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2103 ((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -2112 ((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))))
+((-3550 (((-649 (-617 $)) $) 27)) (-4272 (($ $ (-297 $)) 78) (($ $ (-649 (-297 $))) 139) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4359 (((-3 (-617 $) "failed") $) 127)) (-3043 (((-617 $) $) 126)) (-2629 (($ $) 17) (($ (-649 $)) 54)) (-2042 (((-649 (-114)) $) 35)) (-3642 (((-114) (-114)) 88)) (-2355 (((-112) $) 150)) (-1324 (($ (-1 $ $) (-617 $)) 86)) (-2052 (((-3 (-617 $) "failed") $) 94)) (-1331 (($ (-114) $) 59) (($ (-114) (-649 $)) 110)) (-2016 (((-112) $ (-114)) 132) (((-112) $ (-1183)) 131)) (-1399 (((-776) $) 44)) (-2031 (((-112) $ $) 57) (((-112) $ (-1183)) 49)) (-4336 (((-112) $) 148)) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) 137) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 81) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) 67) (($ $ (-1183) (-1 $ $)) 72) (($ $ (-649 (-114)) (-649 (-1 $ $))) 80) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 82) (($ $ (-114) (-1 $ (-649 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1852 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-649 $)) 123)) (-2062 (($ $) 51) (($ $ $) 135)) (-4176 (($ $) 15) (($ (-649 $)) 53)) (-3858 (((-112) (-114)) 21)))
+(((-304 |#1|) (-10 -8 (-15 -2355 ((-112) |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -2031 ((-112) |#1| (-1183))) (-15 -2031 ((-112) |#1| |#1|)) (-15 -1324 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1331 (|#1| (-114) (-649 |#1|))) (-15 -1331 (|#1| (-114) |#1|)) (-15 -2016 ((-112) |#1| (-1183))) (-15 -2016 ((-112) |#1| (-114))) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -2042 ((-649 (-114)) |#1|)) (-15 -3550 ((-649 (-617 |#1|)) |#1|)) (-15 -2052 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1399 ((-776) |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2629 (|#1| (-649 |#1|))) (-15 -2629 (|#1| |#1|)) (-15 -4176 (|#1| (-649 |#1|))) (-15 -4176 (|#1| |#1|)) (-15 -4272 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4272 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4272 (|#1| |#1| (-297 |#1|))) (-15 -1852 (|#1| (-114) (-649 |#1|))) (-15 -1852 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4359 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3043 ((-617 |#1|) |#1|))) (-305)) (T -304))
+((-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305)))))
+(-10 -8 (-15 -2355 ((-112) |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -2031 ((-112) |#1| (-1183))) (-15 -2031 ((-112) |#1| |#1|)) (-15 -1324 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1331 (|#1| (-114) (-649 |#1|))) (-15 -1331 (|#1| (-114) |#1|)) (-15 -2016 ((-112) |#1| (-1183))) (-15 -2016 ((-112) |#1| (-114))) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -2042 ((-649 (-114)) |#1|)) (-15 -3550 ((-649 (-617 |#1|)) |#1|)) (-15 -2052 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1399 ((-776) |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2629 (|#1| (-649 |#1|))) (-15 -2629 (|#1| |#1|)) (-15 -4176 (|#1| (-649 |#1|))) (-15 -4176 (|#1| |#1|)) (-15 -4272 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4272 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4272 (|#1| |#1| (-297 |#1|))) (-15 -1852 (|#1| (-114) (-649 |#1|))) (-15 -1852 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4359 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3043 ((-617 |#1|) |#1|)))
+((-2383 (((-112) $ $) 7)) (-3550 (((-649 (-617 $)) $) 39)) (-4272 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-4359 (((-3 (-617 $) "failed") $) 64)) (-3043 (((-617 $) $) 65)) (-2629 (($ $) 46) (($ (-649 $)) 45)) (-2042 (((-649 (-114)) $) 38)) (-3642 (((-114) (-114)) 37)) (-2355 (((-112) $) 17 (|has| $ (-1044 (-569))))) (-2021 (((-1179 $) (-617 $)) 20 (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) 31)) (-2052 (((-3 (-617 $) "failed") $) 41)) (-2050 (((-1165) $) 10)) (-3629 (((-649 (-617 $)) $) 40)) (-1331 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-2016 (((-112) $ (-114)) 35) (((-112) $ (-1183)) 34)) (-1399 (((-776) $) 42)) (-3461 (((-1126) $) 11)) (-2031 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-4336 (((-112) $) 18 (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1183) (-1 $ (-649 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1852 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2062 (($ $) 44) (($ $ $) 43)) (-2760 (($ $) 19 (|has| $ (-1055)))) (-2388 (((-867) $) 12) (($ (-617 $)) 63)) (-4176 (($ $) 48) (($ (-649 $)) 47)) (-3858 (((-112) (-114)) 36)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-305) (-140)) (T -305))
+((-1852 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1852 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1852 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1852 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1852 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305)))) (-4272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4176 (*1 *1 *1) (-4 *1 (-305))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2629 (*1 *1 *1) (-4 *1 (-305))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2062 (*1 *1 *1) (-4 *1 (-305))) (-2062 (*1 *1 *1 *1) (-4 *1 (-305))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776)))) (-2052 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))) (-3642 (*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-3858 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2016 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2016 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-1331 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1331 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305)))) (-2031 (*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-1055)) (-4 *1 (-305)) (-5 *2 (-1179 *1)))) (-2760 (*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-305)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))))
+(-13 (-1106) (-1044 (-617 $)) (-519 (-617 $) $) (-312 $) (-10 -8 (-15 -1852 ($ (-114) $)) (-15 -1852 ($ (-114) $ $)) (-15 -1852 ($ (-114) $ $ $)) (-15 -1852 ($ (-114) $ $ $ $)) (-15 -1852 ($ (-114) (-649 $))) (-15 -4272 ($ $ (-297 $))) (-15 -4272 ($ $ (-649 (-297 $)))) (-15 -4272 ($ $ (-649 (-617 $)) (-649 $))) (-15 -4176 ($ $)) (-15 -4176 ($ (-649 $))) (-15 -2629 ($ $)) (-15 -2629 ($ (-649 $))) (-15 -2062 ($ $)) (-15 -2062 ($ $ $)) (-15 -1399 ((-776) $)) (-15 -2052 ((-3 (-617 $) "failed") $)) (-15 -3629 ((-649 (-617 $)) $)) (-15 -3550 ((-649 (-617 $)) $)) (-15 -2042 ((-649 (-114)) $)) (-15 -3642 ((-114) (-114))) (-15 -3858 ((-112) (-114))) (-15 -2016 ((-112) $ (-114))) (-15 -2016 ((-112) $ (-1183))) (-15 -1331 ($ (-114) $)) (-15 -1331 ($ (-114) (-649 $))) (-15 -1324 ($ (-1 $ $) (-617 $))) (-15 -2031 ((-112) $ $)) (-15 -2031 ((-112) $ (-1183))) (-15 -1679 ($ $ (-649 (-1183)) (-649 (-1 $ $)))) (-15 -1679 ($ $ (-649 (-1183)) (-649 (-1 $ (-649 $))))) (-15 -1679 ($ $ (-1183) (-1 $ (-649 $)))) (-15 -1679 ($ $ (-1183) (-1 $ $))) (-15 -1679 ($ $ (-649 (-114)) (-649 (-1 $ $)))) (-15 -1679 ($ $ (-649 (-114)) (-649 (-1 $ (-649 $))))) (-15 -1679 ($ $ (-114) (-1 $ (-649 $)))) (-15 -1679 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1055)) (PROGN (-15 -2021 ((-1179 $) (-617 $))) (-15 -2760 ($ $))) |%noBranch|) (IF (|has| $ (-1044 (-569))) (PROGN (-15 -4336 ((-112) $)) (-15 -2355 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-621 #0=(-617 $)) . T) ((-618 (-867)) . T) ((-312 $) . T) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-1044 #0#) . T) ((-1106) . T))
+((-4379 (((-649 |#1|) (-649 |#1|)) 10)))
+(((-306 |#1|) (-10 -7 (-15 -4379 ((-649 |#1|) (-649 |#1|)))) (-853)) (T -306))
+((-4379 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
+(-10 -7 (-15 -4379 ((-649 |#1|) (-649 |#1|))))
+((-1324 (((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)) 17)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -1324 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) (-1055) (-1055)) (T -307))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6)))))
+(-10 -7 (-15 -1324 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|))))
+((-2264 (((-1273 (-319 (-383))) (-1273 (-319 (-226)))) 112)) (-2152 (((-1100 (-848 (-226))) (-1100 (-848 (-383)))) 45)) (-2298 (((-649 (-1165)) (-1163 (-226))) 94)) (-4329 (((-319 (-383)) (-958 (-226))) 55)) (-4339 (((-226) (-958 (-226))) 51)) (-2324 (((-1165) (-383)) 197)) (-2141 (((-848 (-226)) (-848 (-383))) 39)) (-2199 (((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226)))) 165)) (-4302 (((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) 209) (((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) 207)) (-4368 (((-694 (-226)) (-649 (-226)) (-776)) 21)) (-2248 (((-1273 (-704)) (-649 (-226))) 101)) (-2289 (((-649 (-1165)) (-649 (-226))) 81)) (-1338 (((-3 (-319 (-226)) "failed") (-319 (-226))) 130)) (-4307 (((-112) (-226) (-1100 (-848 (-226)))) 119)) (-4321 (((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) 226)) (-2306 (((-226) (-1100 (-848 (-226)))) 114)) (-2315 (((-226) (-1100 (-848 (-226)))) 115)) (-4358 (((-226) (-412 (-569))) 33)) (-2281 (((-1165) (-383)) 79)) (-2122 (((-226) (-383)) 24)) (-2190 (((-383) (-1273 (-319 (-226)))) 179)) (-2131 (((-319 (-226)) (-319 (-383))) 30)) (-2170 (((-412 (-569)) (-319 (-226))) 58)) (-2208 (((-319 (-412 (-569))) (-319 (-226))) 75)) (-2256 (((-319 (-383)) (-319 (-226))) 105)) (-2181 (((-226) (-319 (-226))) 59)) (-2228 (((-649 (-226)) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) 70)) (-2219 (((-1100 (-848 (-226))) (-1100 (-848 (-226)))) 67)) (-2273 (((-1165) (-226)) 78)) (-2239 (((-704) (-226)) 97)) (-2161 (((-412 (-569)) (-226)) 60)) (-4349 (((-319 (-383)) (-226)) 54)) (-1384 (((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383))))) 48)) (-3632 (((-1041) (-649 (-1041))) 193) (((-1041) (-1041) (-1041)) 187)) (-4312 (((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
+(((-308) (-10 -7 (-15 -2122 ((-226) (-383))) (-15 -2131 ((-319 (-226)) (-319 (-383)))) (-15 -2141 ((-848 (-226)) (-848 (-383)))) (-15 -2152 ((-1100 (-848 (-226))) (-1100 (-848 (-383))))) (-15 -1384 ((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383)))))) (-15 -2161 ((-412 (-569)) (-226))) (-15 -2170 ((-412 (-569)) (-319 (-226)))) (-15 -2181 ((-226) (-319 (-226)))) (-15 -1338 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2190 ((-383) (-1273 (-319 (-226))))) (-15 -2199 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226))))) (-15 -2208 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2219 ((-1100 (-848 (-226))) (-1100 (-848 (-226))))) (-15 -2228 ((-649 (-226)) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))) (-15 -2239 ((-704) (-226))) (-15 -2248 ((-1273 (-704)) (-649 (-226)))) (-15 -2256 ((-319 (-383)) (-319 (-226)))) (-15 -2264 ((-1273 (-319 (-383))) (-1273 (-319 (-226))))) (-15 -4307 ((-112) (-226) (-1100 (-848 (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2281 ((-1165) (-383))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))) (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -3632 ((-1041) (-1041) (-1041))) (-15 -3632 ((-1041) (-649 (-1041)))) (-15 -2324 ((-1165) (-383))) (-15 -4302 ((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))))) (-15 -4302 ((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))) (-15 -4312 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4321 ((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -4329 ((-319 (-383)) (-958 (-226)))) (-15 -4339 ((-226) (-958 (-226)))) (-15 -4349 ((-319 (-383)) (-226))) (-15 -4358 ((-226) (-412 (-569)))) (-15 -4368 ((-694 (-226)) (-649 (-226)) (-776))))) (T -308))
+((-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-308)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-4302 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-4302 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-649 (-1041))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-3632 (*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-308)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-308)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-1273 (-319 (-383)))) (-5 *1 (-308)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1273 (-704))) (-5 *1 (-308)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *2 (-649 (-226))) (-5 *1 (-308)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569)))) (-5 *1 (-308)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569)))) (-5 *1 (-308)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))) (-1338 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-2181 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-649 (-1100 (-848 (-383))))) (-5 *2 (-649 (-1100 (-848 (-226))))) (-5 *1 (-308)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-383)))) (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
+(-10 -7 (-15 -2122 ((-226) (-383))) (-15 -2131 ((-319 (-226)) (-319 (-383)))) (-15 -2141 ((-848 (-226)) (-848 (-383)))) (-15 -2152 ((-1100 (-848 (-226))) (-1100 (-848 (-383))))) (-15 -1384 ((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383)))))) (-15 -2161 ((-412 (-569)) (-226))) (-15 -2170 ((-412 (-569)) (-319 (-226)))) (-15 -2181 ((-226) (-319 (-226)))) (-15 -1338 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2190 ((-383) (-1273 (-319 (-226))))) (-15 -2199 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226))))) (-15 -2208 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2219 ((-1100 (-848 (-226))) (-1100 (-848 (-226))))) (-15 -2228 ((-649 (-226)) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))) (-15 -2239 ((-704) (-226))) (-15 -2248 ((-1273 (-704)) (-649 (-226)))) (-15 -2256 ((-319 (-383)) (-319 (-226)))) (-15 -2264 ((-1273 (-319 (-383))) (-1273 (-319 (-226))))) (-15 -4307 ((-112) (-226) (-1100 (-848 (-226))))) (-15 -2273 ((-1165) (-226))) (-15 -2281 ((-1165) (-383))) (-15 -2289 ((-649 (-1165)) (-649 (-226)))) (-15 -2298 ((-649 (-1165)) (-1163 (-226)))) (-15 -2306 ((-226) (-1100 (-848 (-226))))) (-15 -2315 ((-226) (-1100 (-848 (-226))))) (-15 -3632 ((-1041) (-1041) (-1041))) (-15 -3632 ((-1041) (-649 (-1041)))) (-15 -2324 ((-1165) (-383))) (-15 -4302 ((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))))) (-15 -4302 ((-1041) (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))) (-15 -4312 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4321 ((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -4329 ((-319 (-383)) (-958 (-226)))) (-15 -4339 ((-226) (-958 (-226)))) (-15 -4349 ((-319 (-383)) (-226))) (-15 -4358 ((-226) (-412 (-569)))) (-15 -4368 ((-694 (-226)) (-649 (-226)) (-776))))
+((-4420 (((-112) $ $) 14)) (-2339 (($ $ $) 18)) (-2348 (($ $ $) 17)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 50)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 65)) (-1830 (($ $ $) 25) (($ (-649 $)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2374 (((-3 $ "failed") $ $) 21)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 53)))
+(((-309 |#1|) (-10 -8 (-15 -4391 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -4398 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4398 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -4420 ((-112) |#1| |#1|)) (-15 -3753 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3765 ((-2 (|:| -1406 (-649 |#1|)) (|:| -2290 |#1|)) (-649 |#1|))) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|))) (-310)) (T -309))
+NIL
+(-10 -8 (-15 -4391 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -4398 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4398 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -4420 ((-112) |#1| |#1|)) (-15 -3753 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3765 ((-2 (|:| -1406 (-649 |#1|)) (|:| -2290 |#1|)) (-649 |#1|))) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-2861 (((-112) $) 35)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-310) (-140)) (T -310))
-((-1763 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))) (-3300 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-310)))) (-2981 (*1 *1 *1 *1) (-4 *1 (-310))) (-2982 (*1 *1 *1 *1) (-4 *1 (-310))) (-1761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1))) (-4 *1 (-310)))) (-1761 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-310)))) (-1760 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-646 *1)) (-4 *1 (-310)))))
-(-13 (-927) (-10 -8 (-15 -1763 ((-112) $ $)) (-15 -1762 ((-776) $)) (-15 -3300 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2981 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -1761 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $)) (-15 -1761 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1760 ((-3 (-646 $) "failed") (-646 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-4217 (($ $ (-646 |#2|) (-646 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-296 |#2|)) 11) (($ $ (-646 (-296 |#2|))) NIL)))
-(((-311 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|)))) (-312 |#2|) (-1107)) (T -311))
-NIL
-(-10 -8 (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|))))
-((-4217 (($ $ (-646 |#1|) (-646 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-296 |#1|)) 11) (($ $ (-646 (-296 |#1|))) 10)))
-(((-312 |#1|) (-140) (-1107)) (T -312))
-((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-296 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1107)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-296 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1107)))))
-(-13 (-519 |t#1| |t#1|) (-10 -8 (-15 -4217 ($ $ (-296 |t#1|))) (-15 -4217 ($ $ (-646 (-296 |t#1|))))))
+((-4420 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))) (-2636 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-310)))) (-2348 (*1 *1 *1 *1) (-4 *1 (-310))) (-2339 (*1 *1 *1 *1) (-4 *1 (-310))) (-4398 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1))) (-4 *1 (-310)))) (-4398 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-310)))) (-4391 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
+(-13 (-926) (-10 -8 (-15 -4420 ((-112) $ $)) (-15 -4409 ((-776) $)) (-15 -2636 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2348 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -4398 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $)) (-15 -4398 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4391 ((-3 (-649 $) "failed") (-649 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-1679 (($ $ (-649 |#2|) (-649 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-297 |#2|)) 11) (($ $ (-649 (-297 |#2|))) NIL)))
+(((-311 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|)))) (-312 |#2|) (-1106)) (T -311))
+NIL
+(-10 -8 (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|))))
+((-1679 (($ $ (-649 |#1|) (-649 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-297 |#1|)) 11) (($ $ (-649 (-297 |#1|))) 10)))
+(((-312 |#1|) (-140) (-1106)) (T -312))
+((-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1106)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1106)))))
+(-13 (-519 |t#1| |t#1|) (-10 -8 (-15 -1679 ($ $ (-297 |t#1|))) (-15 -1679 ($ $ (-649 (-297 |t#1|))))))
(((-519 |#1| |#1|) . T))
-((-4217 ((|#1| (-1 |#1| (-551)) (-1185 (-412 (-551)))) 25)))
-(((-313 |#1|) (-10 -7 (-15 -4217 (|#1| (-1 |#1| (-551)) (-1185 (-412 (-551)))))) (-38 (-412 (-551)))) (T -313))
-((-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-551))) (-5 *4 (-1185 (-412 (-551)))) (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-551)))))))
-(-10 -7 (-15 -4217 (|#1| (-1 |#1| (-551)) (-1185 (-412 (-551))))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 7)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)))
-(((-314) (-1107)) (T -314))
-NIL
-(-1107)
-((-2986 (((-112) $ $) NIL)) (-3947 (((-551) $) 12)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 9)) (-4396 (((-868) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-315) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3947 ((-551) $))))) (T -315))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-315)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-315)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3947 ((-551) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 60)) (-3551 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-1259 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-551)))) (((-3 (-1253 |#2| |#3| |#4|) #2#) $) 26)) (-3594 (((-1259 |#1| |#2| |#3| |#4|) $) NIL) (((-1183) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-551)))) (((-551) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-551)))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-1259 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1272 (-1259 |#1| |#2| |#3| |#4|)))) (-694 $) (-1272 $)) NIL) (((-694 (-1259 |#1| |#2| |#3| |#4|)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-1259 |#1| |#2| |#3| |#4|) $) 22)) (-3886 (((-3 $ "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1157)))) (-3625 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-3278 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-4408 (($ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) $) NIL)) (-4233 (((-3 (-847 |#2|) "failed") $) 80)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-3552 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-1259 |#1| |#2| |#3| |#4|)) (-646 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-296 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-646 (-296 (-1259 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-646 (-1183)) (-646 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1183) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-289 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-1259 |#1| |#2| |#3| |#4|) $) 19)) (-4420 (((-896 (-551)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-540)))) (((-382) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1026))) (((-226) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-1259 |#1| |#2| |#3| |#4|)) 30) (($ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (($ (-1253 |#2| |#3| |#4|)) 37)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-916))) (|has| (-1259 |#1| |#2| |#3| |#4|) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-4399 (($ $ $) 35) (($ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) 32)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-1259 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL)))
-(((-316 |#1| |#2| |#3| |#4|) (-13 (-997 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -4233 ((-3 (-847 |#2|) "failed") $)) (-15 -4396 ($ (-1253 |#2| |#3| |#4|))))) (-13 (-1044 (-551)) (-644 (-551)) (-457)) (-13 (-27) (-1208) (-426 |#1|)) (-1183) |#2|) (T -316))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4) (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457))) (-5 *1 (-316 *3 *4 *5 *6)))) (-4233 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457))) (-5 *2 (-847 *4)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
-(-13 (-997 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -4233 ((-3 (-847 |#2|) "failed") $)) (-15 -4396 ($ (-1253 |#2| |#3| |#4|)))))
-((-2986 (((-112) $ $) NIL)) (-1725 (((-646 $) $ (-1183)) NIL (|has| |#1| (-562))) (((-646 $) $) NIL (|has| |#1| (-562))) (((-646 $) (-1177 $) (-1183)) NIL (|has| |#1| (-562))) (((-646 $) (-1177 $)) NIL (|has| |#1| (-562))) (((-646 $) (-952 $)) NIL (|has| |#1| (-562)))) (-1306 (($ $ (-1183)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1177 $) (-1183)) NIL (|has| |#1| (-562))) (($ (-1177 $)) NIL (|has| |#1| (-562))) (($ (-952 $)) NIL (|has| |#1| (-562)))) (-3626 (((-112) $) 27 (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))) (-3503 (((-646 (-1183)) $) 368)) (-3505 (((-412 (-1177 $)) $ (-616 $)) NIL (|has| |#1| (-562)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-1718 (((-646 (-616 $)) $) NIL)) (-3933 (($ $) 171 (|has| |#1| (-562)))) (-4089 (($ $) 147 (|has| |#1| (-562)))) (-1462 (($ $ (-1098 $)) 232 (|has| |#1| (-562))) (($ $ (-1183)) 228 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) NIL (-3978 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))) (-1722 (($ $ (-296 $)) NIL) (($ $ (-646 (-296 $))) 386) (($ $ (-646 (-616 $)) (-646 $)) 430)) (-3128 (((-410 (-1177 $)) (-1177 $)) 308 (-12 (|has| |#1| (-457)) (|has| |#1| (-562))))) (-4224 (($ $) NIL (|has| |#1| (-562)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-562)))) (-3456 (($ $) NIL (|has| |#1| (-562)))) (-1763 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3931 (($ $) 167 (|has| |#1| (-562)))) (-4088 (($ $) 143 (|has| |#1| (-562)))) (-1764 (($ $ (-551)) 73 (|has| |#1| (-562)))) (-3935 (($ $) 175 (|has| |#1| (-562)))) (-4087 (($ $) 151 (|has| |#1| (-562)))) (-4174 (($) NIL (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-1307 (((-646 $) $ (-1183)) NIL (|has| |#1| (-562))) (((-646 $) $) NIL (|has| |#1| (-562))) (((-646 $) (-1177 $) (-1183)) NIL (|has| |#1| (-562))) (((-646 $) (-1177 $)) NIL (|has| |#1| (-562))) (((-646 $) (-952 $)) NIL (|has| |#1| (-562)))) (-3621 (($ $ (-1183)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1177 $) (-1183)) 134 (|has| |#1| (-562))) (($ (-1177 $)) NIL (|has| |#1| (-562))) (($ (-952 $)) NIL (|has| |#1| (-562)))) (-3595 (((-3 (-616 $) #1="failed") $) 18) (((-3 (-1183) #1#) $) NIL) (((-3 |#1| #1#) $) 441) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))))) (((-3 (-551) #1#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-952 |#1|)) #1#) $) NIL (|has| |#1| (-562))) (((-3 (-952 |#1|) #1#) $) NIL (|has| |#1| (-1055))) (((-3 (-412 (-551)) #1#) $) 46 (-3978 (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-3594 (((-616 $) $) 12) (((-1183) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-952 |#1|)) $) NIL (|has| |#1| (-562))) (((-952 |#1|) $) NIL (|has| |#1| (-1055))) (((-412 (-551)) $) 319 (-3978 (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-2982 (($ $ $) NIL (|has| |#1| (-562)))) (-2445 (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 125 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 115 (|has| |#1| (-1055))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))) (-4292 (($ $) 96 (|has| |#1| (-562)))) (-3908 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-2981 (($ $ $) NIL (|has| |#1| (-562)))) (-4394 (($ $ (-1098 $)) 236 (|has| |#1| (-562))) (($ $ (-1183)) 234 (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-562)))) (-4173 (((-112) $) NIL (|has| |#1| (-562)))) (-3828 (($ $ $) 202 (|has| |#1| (-562)))) (-4077 (($) 137 (|has| |#1| (-562)))) (-1459 (($ $ $) 222 (|has| |#1| (-562)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 392 (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 399 (|has| |#1| (-892 (-382))))) (-2991 (($ $) NIL) (($ (-646 $)) NIL)) (-1717 (((-646 (-113)) $) NIL)) (-3466 (((-113) (-113)) 276)) (-2591 (((-112) $) 25 (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-3094 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-3415 (($ $) 72 (|has| |#1| (-1055)))) (-3417 (((-1131 |#1| (-616 $)) $) 91 (|has| |#1| (-1055)))) (-1765 (((-112) $) 62 (|has| |#1| (-562)))) (-3430 (($ $ (-551)) NIL (|has| |#1| (-562)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| |#1| (-562)))) (-1715 (((-1177 $) (-616 $)) 277 (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) 426)) (-1720 (((-3 (-616 $) "failed") $) NIL)) (-4392 (($ $) 141 (|has| |#1| (-562)))) (-2424 (($ $) 247 (|has| |#1| (-562)))) (-2079 (($ (-646 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-3681 (((-1165) $) NIL)) (-1719 (((-646 (-616 $)) $) 49)) (-2402 (($ (-113) $) NIL) (($ (-113) (-646 $)) 431)) (-3244 (((-3 (-646 $) #3="failed") $) NIL (|has| |#1| (-1118)))) (-3246 (((-3 (-2 (|:| |val| $) (|:| -2582 (-551))) #3#) $) NIL (|has| |#1| (-1055)))) (-3243 (((-3 (-646 $) #3#) $) 436 (|has| |#1| (-25)))) (-1979 (((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 $))) #3#) $) 440 (|has| |#1| (-25)))) (-3245 (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $) NIL (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $ (-113)) NIL (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) #3#) $ (-1183)) NIL (|has| |#1| (-1055)))) (-3053 (((-112) $ (-113)) NIL) (((-112) $ (-1183)) 51)) (-2824 (($ $) NIL (-3978 (|has| |#1| (-478)) (|has| |#1| (-562))))) (-3253 (($ $ (-1183)) 251 (|has| |#1| (-562))) (($ $ (-1098 $)) 253 (|has| |#1| (-562)))) (-3021 (((-776) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) 43)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 301 (|has| |#1| (-562)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-1716 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-1463 (($ $ (-1183)) 226 (|has| |#1| (-562))) (($ $) 224 (|has| |#1| (-562)))) (-1457 (($ $) 218 (|has| |#1| (-562)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 306 (-12 (|has| |#1| (-457)) (|has| |#1| (-562))))) (-4182 (((-410 $) $) NIL (|has| |#1| (-562)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-562)))) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-562)))) (-4393 (($ $) 139 (|has| |#1| (-562)))) (-3095 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) 425) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-1183) (-1 $ (-646 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-646 (-113)) (-646 (-1 $ $))) 379) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-113) (-1 $ (-646 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1183)) NIL (|has| |#1| (-619 (-540)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-619 (-540)))) (($ $) NIL (|has| |#1| (-619 (-540)))) (($ $ (-113) $ (-1183)) 366 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-113)) (-646 $) (-1183)) 365 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ $))) NIL (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ (-646 $)))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-646 $))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) NIL (|has| |#1| (-1055)))) (-1762 (((-776) $) NIL (|has| |#1| (-562)))) (-2422 (($ $) 239 (|has| |#1| (-562)))) (-4249 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-646 $)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-1721 (($ $) NIL) (($ $ $) NIL)) (-2423 (($ $) 249 (|has| |#1| (-562)))) (-3827 (($ $) 200 (|has| |#1| (-562)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-3414 (($ $) 74 (|has| |#1| (-562)))) (-3416 (((-1131 |#1| (-616 $)) $) 93 (|has| |#1| (-562)))) (-3623 (($ $) 317 (|has| $ (-1055)))) (-3936 (($ $) 177 (|has| |#1| (-562)))) (-4086 (($ $) 153 (|has| |#1| (-562)))) (-3934 (($ $) 173 (|has| |#1| (-562)))) (-4085 (($ $) 149 (|has| |#1| (-562)))) (-3932 (($ $) 169 (|has| |#1| (-562)))) (-4084 (($ $) 145 (|has| |#1| (-562)))) (-4420 (((-896 (-551)) $) NIL (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| |#1| (-619 (-896 (-382))))) (($ (-410 $)) NIL (|has| |#1| (-562))) (((-540) $) 363 (|has| |#1| (-619 (-540))))) (-3428 (($ $ $) NIL (|has| |#1| (-478)))) (-2774 (($ $ $) NIL (|has| |#1| (-478)))) (-4396 (((-868) $) 424) (($ (-616 $)) 415) (($ (-1183)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-562))) (($ (-48)) 312 (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))))) (($ (-1131 |#1| (-616 $))) 95 (|has| |#1| (-1055))) (($ (-412 |#1|)) NIL (|has| |#1| (-562))) (($ (-952 (-412 |#1|))) NIL (|has| |#1| (-562))) (($ (-412 (-952 (-412 |#1|)))) NIL (|has| |#1| (-562))) (($ (-412 (-952 |#1|))) NIL (|has| |#1| (-562))) (($ (-952 |#1|)) NIL (|has| |#1| (-1055))) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-562)) (|has| |#1| (-1044 (-412 (-551)))))) (($ (-551)) 34 (-3978 (|has| |#1| (-1044 (-551))) (|has| |#1| (-1055))))) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL (|has| |#1| (-1055)) CONST)) (-3008 (($ $) NIL) (($ (-646 $)) NIL)) (-3523 (($ $ $) 220 (|has| |#1| (-562)))) (-3831 (($ $ $) 206 (|has| |#1| (-562)))) (-3833 (($ $ $) 210 (|has| |#1| (-562)))) (-3830 (($ $ $) 204 (|has| |#1| (-562)))) (-3832 (($ $ $) 208 (|has| |#1| (-562)))) (-2421 (((-112) (-113)) 10)) (-3680 (((-112) $ $) 86)) (-3939 (($ $) 183 (|has| |#1| (-562)))) (-3927 (($ $) 159 (|has| |#1| (-562)))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) 179 (|has| |#1| (-562)))) (-3925 (($ $) 155 (|has| |#1| (-562)))) (-3941 (($ $) 187 (|has| |#1| (-562)))) (-3929 (($ $) 163 (|has| |#1| (-562)))) (-1980 (($ (-1183) $) NIL) (($ (-1183) $ $) NIL) (($ (-1183) $ $ $) NIL) (($ (-1183) $ $ $ $) NIL) (($ (-1183) (-646 $)) NIL)) (-3835 (($ $) 214 (|has| |#1| (-562)))) (-3834 (($ $) 212 (|has| |#1| (-562)))) (-3942 (($ $) 189 (|has| |#1| (-562)))) (-3930 (($ $) 165 (|has| |#1| (-562)))) (-3940 (($ $) 185 (|has| |#1| (-562)))) (-3928 (($ $) 161 (|has| |#1| (-562)))) (-3938 (($ $) 181 (|has| |#1| (-562)))) (-3926 (($ $) 157 (|has| |#1| (-562)))) (-3825 (($ $) 192 (|has| |#1| (-562)))) (-3528 (($) 21 (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))) CONST)) (-2426 (($ $) 243 (|has| |#1| (-562)))) (-3085 (($) 23 (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-3829 (($ $) 194 (|has| |#1| (-562))) (($ $ $) 196 (|has| |#1| (-562)))) (-2427 (($ $) 241 (|has| |#1| (-562)))) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-2425 (($ $) 245 (|has| |#1| (-562)))) (-3826 (($ $ $) 198 (|has| |#1| (-562)))) (-3473 (((-112) $ $) 88)) (-4399 (($ (-1131 |#1| (-616 $)) (-1131 |#1| (-616 $))) 106 (|has| |#1| (-562))) (($ $ $) 42 (-3978 (|has| |#1| (-478)) (|has| |#1| (-562))))) (-4287 (($ $ $) 40 (-3978 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))) (($ $) 29 (-3978 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))) (-4289 (($ $ $) 38 (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))) (** (($ $ $) 64 (|has| |#1| (-562))) (($ $ (-412 (-551))) 314 (|has| |#1| (-562))) (($ $ (-551)) 80 (-3978 (|has| |#1| (-478)) (|has| |#1| (-562)))) (($ $ (-776)) 75 (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ $ (-925)) 84 (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (* (($ (-412 (-551)) $) NIL (|has| |#1| (-562))) (($ $ (-412 (-551))) NIL (|has| |#1| (-562))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-3978 (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ (-551) $) 32 (-3978 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))) (($ (-776) $) NIL (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))))) (($ (-925) $) NIL (-3978 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))))))
-(((-317 |#1|) (-13 (-426 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-635)) (-6 (-1145)) (-15 -4292 ($ $)) (-15 -1765 ((-112) $)) (-15 -1764 ($ $ (-551))) (IF (|has| |#1| (-457)) (PROGN (-15 -3127 ((-410 (-1177 $)) (-1177 $))) (-15 -3128 ((-410 (-1177 $)) (-1177 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-551))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|))) (-1107)) (T -317))
-((-4292 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-562)) (-4 *2 (-1107)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-562)) (-4 *3 (-1107)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-317 *3)) (-4 *3 (-562)) (-4 *3 (-1107)))) (-3127 (*1 *2 *3) (-12 (-5 *2 (-410 (-1177 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-457)) (-4 *4 (-562)) (-4 *4 (-1107)))) (-3128 (*1 *2 *3) (-12 (-5 *2 (-410 (-1177 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-457)) (-4 *4 (-562)) (-4 *4 (-1107)))))
-(-13 (-426 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-635)) (-6 (-1145)) (-15 -4292 ($ $)) (-15 -1765 ((-112) $)) (-15 -1764 ($ $ (-551))) (IF (|has| |#1| (-457)) (PROGN (-15 -3127 ((-410 (-1177 $)) (-1177 $))) (-15 -3128 ((-410 (-1177 $)) (-1177 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-551))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|)))
-((-4408 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13)))
-(((-318 |#1| |#2|) (-10 -7 (-15 -4408 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1107) (-1107)) (T -318))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-317 *6)) (-5 *1 (-318 *5 *6)))))
-(-10 -7 (-15 -4408 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|))))
-((-4179 (((-51) |#2| (-296 |#2|) (-776)) 40) (((-51) |#2| (-296 |#2|)) 32) (((-51) |#2| (-776)) 35) (((-51) |#2|) 33) (((-51) (-1183)) 26)) (-4268 (((-51) |#2| (-296 |#2|) (-412 (-551))) 59) (((-51) |#2| (-296 |#2|)) 56) (((-51) |#2| (-412 (-551))) 58) (((-51) |#2|) 57) (((-51) (-1183)) 55)) (-4231 (((-51) |#2| (-296 |#2|) (-412 (-551))) 54) (((-51) |#2| (-296 |#2|)) 51) (((-51) |#2| (-412 (-551))) 53) (((-51) |#2|) 52) (((-51) (-1183)) 50)) (-4228 (((-51) |#2| (-296 |#2|) (-551)) 47) (((-51) |#2| (-296 |#2|)) 44) (((-51) |#2| (-551)) 46) (((-51) |#2|) 45) (((-51) (-1183)) 43)))
-(((-319 |#1| |#2|) (-10 -7 (-15 -4179 ((-51) (-1183))) (-15 -4179 ((-51) |#2|)) (-15 -4179 ((-51) |#2| (-776))) (-15 -4179 ((-51) |#2| (-296 |#2|))) (-15 -4179 ((-51) |#2| (-296 |#2|) (-776))) (-15 -4228 ((-51) (-1183))) (-15 -4228 ((-51) |#2|)) (-15 -4228 ((-51) |#2| (-551))) (-15 -4228 ((-51) |#2| (-296 |#2|))) (-15 -4228 ((-51) |#2| (-296 |#2|) (-551))) (-15 -4231 ((-51) (-1183))) (-15 -4231 ((-51) |#2|)) (-15 -4231 ((-51) |#2| (-412 (-551)))) (-15 -4231 ((-51) |#2| (-296 |#2|))) (-15 -4231 ((-51) |#2| (-296 |#2|) (-412 (-551)))) (-15 -4268 ((-51) (-1183))) (-15 -4268 ((-51) |#2|)) (-15 -4268 ((-51) |#2| (-412 (-551)))) (-15 -4268 ((-51) |#2| (-296 |#2|))) (-15 -4268 ((-51) |#2| (-296 |#2|) (-412 (-551))))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -319))
-((-4268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-296 *3)) (-5 *5 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-551))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-4268 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4))))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-296 *3)) (-5 *5 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-551))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4))))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-551)) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-4228 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4))))) (-4179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-296 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-4179 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4))))))
-(-10 -7 (-15 -4179 ((-51) (-1183))) (-15 -4179 ((-51) |#2|)) (-15 -4179 ((-51) |#2| (-776))) (-15 -4179 ((-51) |#2| (-296 |#2|))) (-15 -4179 ((-51) |#2| (-296 |#2|) (-776))) (-15 -4228 ((-51) (-1183))) (-15 -4228 ((-51) |#2|)) (-15 -4228 ((-51) |#2| (-551))) (-15 -4228 ((-51) |#2| (-296 |#2|))) (-15 -4228 ((-51) |#2| (-296 |#2|) (-551))) (-15 -4231 ((-51) (-1183))) (-15 -4231 ((-51) |#2|)) (-15 -4231 ((-51) |#2| (-412 (-551)))) (-15 -4231 ((-51) |#2| (-296 |#2|))) (-15 -4231 ((-51) |#2| (-296 |#2|) (-412 (-551)))) (-15 -4268 ((-51) (-1183))) (-15 -4268 ((-51) |#2|)) (-15 -4268 ((-51) |#2| (-412 (-551)))) (-15 -4268 ((-51) |#2| (-296 |#2|))) (-15 -4268 ((-51) |#2| (-296 |#2|) (-412 (-551)))))
-((-1766 (((-51) |#2| (-113) (-296 |#2|) (-646 |#2|)) 89) (((-51) |#2| (-113) (-296 |#2|) (-296 |#2|)) 85) (((-51) |#2| (-113) (-296 |#2|) |#2|) 87) (((-51) (-296 |#2|) (-113) (-296 |#2|) |#2|) 88) (((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|))) 81) (((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 |#2|)) 83) (((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 |#2|)) 84) (((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|))) 82) (((-51) (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|)) 90) (((-51) (-296 |#2|) (-113) (-296 |#2|) (-296 |#2|)) 86)))
-(((-320 |#1| |#2|) (-10 -7 (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) (-296 |#2|))) (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|)))) (-15 -1766 ((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|)))) (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) |#2|)) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) |#2|)) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) (-296 |#2|))) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) (-646 |#2|)))) (-13 (-562) (-619 (-540))) (-426 |#1|)) (T -320))
-((-1766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-5 *6 (-646 *3)) (-4 *3 (-426 *7)) (-4 *7 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *7 *3)))) (-1766 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *3)))) (-1766 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *3)))) (-1766 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-296 *5)) (-5 *4 (-113)) (-4 *5 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *5)))) (-1766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 (-113))) (-5 *6 (-646 (-296 *8))) (-4 *8 (-426 *7)) (-5 *5 (-296 *8)) (-4 *7 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *7 *8)))) (-1766 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-646 *7)) (-5 *4 (-646 (-113))) (-5 *5 (-296 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *7)))) (-1766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-646 (-296 *8))) (-5 *4 (-646 (-113))) (-5 *5 (-296 *8)) (-5 *6 (-646 *8)) (-4 *8 (-426 *7)) (-4 *7 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *7 *8)))) (-1766 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-646 (-296 *7))) (-5 *4 (-646 (-113))) (-5 *5 (-296 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *7)))) (-1766 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-296 *7)) (-5 *4 (-113)) (-5 *5 (-646 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *7)))) (-1766 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-296 *6)) (-5 *4 (-113)) (-4 *6 (-426 *5)) (-4 *5 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *5 *6)))))
-(-10 -7 (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) (-296 |#2|))) (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|)))) (-15 -1766 ((-51) (-646 (-296 |#2|)) (-646 (-113)) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 |#2|))) (-15 -1766 ((-51) (-646 |#2|) (-646 (-113)) (-296 |#2|) (-646 (-296 |#2|)))) (-15 -1766 ((-51) (-296 |#2|) (-113) (-296 |#2|) |#2|)) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) |#2|)) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) (-296 |#2|))) (-15 -1766 ((-51) |#2| (-113) (-296 |#2|) (-646 |#2|))))
-((-1768 (((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551) (-1165)) 67) (((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551)) 68) (((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551) (-1165)) 64) (((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551)) 65)) (-1767 (((-1 (-226) (-226)) (-226)) 66)))
-(((-321) (-10 -7 (-15 -1767 ((-1 (-226) (-226)) (-226))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551) (-1165))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551) (-1165))))) (T -321))
-((-1768 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226))) (-5 *6 (-226)) (-5 *7 (-551)) (-5 *8 (-1165)) (-5 *2 (-1218 (-933))) (-5 *1 (-321)))) (-1768 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226))) (-5 *6 (-226)) (-5 *7 (-551)) (-5 *2 (-1218 (-933))) (-5 *1 (-321)))) (-1768 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226))) (-5 *6 (-551)) (-5 *7 (-1165)) (-5 *2 (-1218 (-933))) (-5 *1 (-321)))) (-1768 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226))) (-5 *6 (-551)) (-5 *2 (-1218 (-933))) (-5 *1 (-321)))) (-1767 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
-(-10 -7 (-15 -1767 ((-1 (-226) (-226)) (-226))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-1 (-226) (-226)) (-551) (-1165))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551))) (-15 -1768 ((-1218 (-933)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-226) (-551) (-1165))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 26)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) NIL) (($ $ (-412 (-551)) (-412 (-551))) NIL)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) 20)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) 36)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) NIL) (((-412 (-551)) $ (-412 (-551))) 16)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) NIL) (($ $ (-412 (-551))) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-412 (-551))) NIL) (($ $ (-1088) (-412 (-551))) NIL) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))))))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-1769 (((-412 (-551)) $) 17)) (-3512 (($ (-1253 |#1| |#2| |#3|)) 11)) (-2582 (((-1253 |#1| |#2| |#3|) $) 12)) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) NIL) (($ $ $) NIL (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-4398 (((-412 (-551)) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 10)) (-4396 (((-868) $) 42) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) 34)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) NIL)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 28)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 37)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-322 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-797) (-10 -8 (-15 -3512 ($ (-1253 |#1| |#2| |#3|))) (-15 -2582 ((-1253 |#1| |#2| |#3|) $)) (-15 -1769 ((-412 (-551)) $)))) (-367) (-1183) |#1|) (T -322))
-((-3512 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))))
-(-13 (-1255 |#1|) (-797) (-10 -8 (-15 -3512 ($ (-1253 |#1| |#2| |#3|))) (-15 -2582 ((-1253 |#1| |#2| |#3|) $)) (-15 -1769 ((-412 (-551)) $))))
-((-3430 (((-2 (|:| -2582 (-776)) (|:| -4404 |#1|) (|:| |radicand| (-646 |#1|))) (-410 |#1|) (-776)) 35)) (-4392 (((-646 (-2 (|:| -4404 (-776)) (|:| |logand| |#1|))) (-410 |#1|)) 40)))
-(((-323 |#1|) (-10 -7 (-15 -3430 ((-2 (|:| -2582 (-776)) (|:| -4404 |#1|) (|:| |radicand| (-646 |#1|))) (-410 |#1|) (-776))) (-15 -4392 ((-646 (-2 (|:| -4404 (-776)) (|:| |logand| |#1|))) (-410 |#1|)))) (-562)) (T -323))
-((-4392 (*1 *2 *3) (-12 (-5 *3 (-410 *4)) (-4 *4 (-562)) (-5 *2 (-646 (-2 (|:| -4404 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *5)) (-4 *5 (-562)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *5) (|:| |radicand| (-646 *5)))) (-5 *1 (-323 *5)) (-5 *4 (-776)))))
-(-10 -7 (-15 -3430 ((-2 (|:| -2582 (-776)) (|:| -4404 |#1|) (|:| |radicand| (-646 |#1|))) (-410 |#1|) (-776))) (-15 -4392 ((-646 (-2 (|:| -4404 (-776)) (|:| |logand| |#1|))) (-410 |#1|))))
-((-3503 (((-646 |#2|) (-1177 |#4|)) 44)) (-1774 ((|#3| (-551)) 47)) (-1772 (((-1177 |#4|) (-1177 |#3|)) 30)) (-1773 (((-1177 |#4|) (-1177 |#4|) (-551)) 66)) (-1771 (((-1177 |#3|) (-1177 |#4|)) 21)) (-4398 (((-646 (-776)) (-1177 |#4|) (-646 |#2|)) 41)) (-1770 (((-1177 |#3|) (-1177 |#4|) (-646 |#2|) (-646 |#3|)) 35)))
-(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1770 ((-1177 |#3|) (-1177 |#4|) (-646 |#2|) (-646 |#3|))) (-15 -4398 ((-646 (-776)) (-1177 |#4|) (-646 |#2|))) (-15 -3503 ((-646 |#2|) (-1177 |#4|))) (-15 -1771 ((-1177 |#3|) (-1177 |#4|))) (-15 -1772 ((-1177 |#4|) (-1177 |#3|))) (-15 -1773 ((-1177 |#4|) (-1177 |#4|) (-551))) (-15 -1774 (|#3| (-551)))) (-798) (-855) (-1055) (-956 |#3| |#1| |#2|)) (T -324))
-((-1774 (*1 *2 *3) (-12 (-5 *3 (-551)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055)) (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5)))) (-1773 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *7)) (-5 *3 (-551)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *1 (-324 *4 *5 *6 *7)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1177 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1177 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1177 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-1177 *6)) (-5 *1 (-324 *4 *5 *6 *7)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-1177 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-646 *5)) (-5 *1 (-324 *4 *5 *6 *7)))) (-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *8)) (-5 *4 (-646 *6)) (-4 *6 (-855)) (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055)) (-5 *2 (-646 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-5 *5 (-646 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1177 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1770 ((-1177 |#3|) (-1177 |#4|) (-646 |#2|) (-646 |#3|))) (-15 -4398 ((-646 (-776)) (-1177 |#4|) (-646 |#2|))) (-15 -3503 ((-646 |#2|) (-1177 |#4|))) (-15 -1771 ((-1177 |#3|) (-1177 |#4|))) (-15 -1772 ((-1177 |#4|) (-1177 |#3|))) (-15 -1773 ((-1177 |#4|) (-1177 |#4|) (-551))) (-15 -1774 (|#3| (-551))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 19)) (-4223 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-551)))) $) 21)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776) $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-2462 ((|#1| $ (-551)) NIL)) (-1777 (((-551) $ (-551)) NIL)) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2454 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 (-551) (-551)) $) 11)) (-3681 (((-1165) $) NIL)) (-1775 (($ $ $) NIL (|has| (-551) (-797)))) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ |#1|) NIL)) (-4127 (((-551) |#1| $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) 29 (|has| |#1| (-855)))) (-4287 (($ $) 12) (($ $ $) 28)) (-4289 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ (-551)) NIL) (($ (-551) |#1|) 27)))
-(((-325 |#1|) (-13 (-21) (-722 (-551)) (-326 |#1| (-551)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) (-1107)) (T -325))
-NIL
-(-13 (-21) (-722 (-551)) (-326 |#1| (-551)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4223 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))) $) 28)) (-1410 (((-3 $ "failed") $ $) 20)) (-3558 (((-776) $) 29)) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| "failed") $) 33)) (-3594 ((|#1| $) 34)) (-2462 ((|#1| $ (-551)) 26)) (-1777 ((|#2| $ (-551)) 27)) (-2454 (($ (-1 |#1| |#1|) $) 23)) (-1776 (($ (-1 |#2| |#2|) $) 24)) (-3681 (((-1165) $) 10)) (-1775 (($ $ $) 22 (|has| |#2| (-797)))) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ |#1|) 32)) (-4127 ((|#2| |#1| $) 25)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ |#2| |#1|) 30)))
-(((-326 |#1| |#2|) (-140) (-1107) (-131)) (T -326))
-((-4289 (*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-131)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)) (-5 *2 (-776)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)) (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4)))))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1107)) (-4 *2 (-131)))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1107)))) (-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-131)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)))) (-2454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)))) (-1775 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-131)) (-4 *3 (-797)))))
-(-13 (-131) (-1044 |t#1|) (-10 -8 (-15 -4289 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3558 ((-776) $)) (-15 -4223 ((-646 (-2 (|:| |gen| |t#1|) (|:| -4393 |t#2|))) $)) (-15 -1777 (|t#2| $ (-551))) (-15 -2462 (|t#1| $ (-551))) (-15 -4127 (|t#2| |t#1| $)) (-15 -1776 ($ (-1 |t#2| |t#2|) $)) (-15 -2454 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-797)) (-15 -1775 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-1044 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4223 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-776)))) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776) $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-2462 ((|#1| $ (-551)) NIL)) (-1777 (((-776) $ (-551)) NIL)) (-2454 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 (-776) (-776)) $) NIL)) (-3681 (((-1165) $) NIL)) (-1775 (($ $ $) NIL (|has| (-776) (-797)))) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ |#1|) NIL)) (-4127 (((-776) |#1| $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4289 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-776) |#1|) NIL)))
-(((-327 |#1|) (-326 |#1| (-776)) (-1107)) (T -327))
+((-1679 ((|#1| (-1 |#1| (-569)) (-1185 (-412 (-569)))) 25)))
+(((-313 |#1|) (-10 -7 (-15 -1679 (|#1| (-1 |#1| (-569)) (-1185 (-412 (-569)))))) (-38 (-412 (-569)))) (T -313))
+((-1679 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1185 (-412 (-569)))) (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569)))))))
+(-10 -7 (-15 -1679 (|#1| (-1 |#1| (-569)) (-1185 (-412 (-569))))))
+((-2383 (((-112) $ $) NIL)) (-2412 (((-569) $) 12)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 9)) (-2388 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-314) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -2412 ((-569) $))))) (T -314))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-314)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -2412 ((-569) $))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 7)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)))
+(((-315) (-1106)) (T -315))
+NIL
+(-1106)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 60)) (-3300 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-1259 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-1258 |#2| |#3| |#4|) "failed") $) 26)) (-3043 (((-1259 |#1| |#2| |#3| |#4|) $) NIL) (((-1183) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-569) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-1258 |#2| |#3| |#4|) $) NIL)) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-1259 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1273 (-1259 |#1| |#2| |#3| |#4|)))) (-694 $) (-1273 $)) NIL) (((-694 (-1259 |#1| |#2| |#3| |#4|)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-1259 |#1| |#2| |#3| |#4|) $) 22)) (-3177 (((-3 $ "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1158)))) (-2778 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2406 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-1324 (($ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) $) NIL)) (-4401 (((-3 (-848 |#2|) "failed") $) 80)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-3312 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-1259 |#1| |#2| |#3| |#4|)) (-649 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-297 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-297 (-1259 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-1183)) (-649 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1183) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-289 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-1259 |#1| |#2| |#3| |#4|) $) 19)) (-1384 (((-898 (-569)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-541)))) (((-383) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1028))) (((-226) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-1259 |#1| |#2| |#3| |#4|)) 30) (($ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (($ (-1258 |#2| |#3| |#4|)) 37)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-915))) (|has| (-1259 |#1| |#2| |#3| |#4|) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2956 (($ $ $) 35) (($ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) 32)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-1259 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL)))
+(((-316 |#1| |#2| |#3| |#4|) (-13 (-998 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1258 |#2| |#3| |#4|)) (-10 -8 (-15 -4401 ((-3 (-848 |#2|) "failed") $)) (-15 -2388 ($ (-1258 |#2| |#3| |#4|))))) (-13 (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -316))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4) (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *1 (-316 *3 *4 *5 *6)))) (-4401 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
+(-13 (-998 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1258 |#2| |#3| |#4|)) (-10 -8 (-15 -4401 ((-3 (-848 |#2|) "failed") $)) (-15 -2388 ($ (-1258 |#2| |#3| |#4|)))))
+((-1324 (((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)) 13)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -1324 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)))) (-1106) (-1106)) (T -317))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -1324 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|))))
+((-1729 (((-52) |#2| (-297 |#2|) (-776)) 40) (((-52) |#2| (-297 |#2|)) 32) (((-52) |#2| (-776)) 35) (((-52) |#2|) 33) (((-52) (-1183)) 26)) (-2056 (((-52) |#2| (-297 |#2|) (-412 (-569))) 59) (((-52) |#2| (-297 |#2|)) 56) (((-52) |#2| (-412 (-569))) 58) (((-52) |#2|) 57) (((-52) (-1183)) 55)) (-1754 (((-52) |#2| (-297 |#2|) (-412 (-569))) 54) (((-52) |#2| (-297 |#2|)) 51) (((-52) |#2| (-412 (-569))) 53) (((-52) |#2|) 52) (((-52) (-1183)) 50)) (-1741 (((-52) |#2| (-297 |#2|) (-569)) 47) (((-52) |#2| (-297 |#2|)) 44) (((-52) |#2| (-569)) 46) (((-52) |#2|) 45) (((-52) (-1183)) 43)))
+(((-318 |#1| |#2|) (-10 -7 (-15 -1729 ((-52) (-1183))) (-15 -1729 ((-52) |#2|)) (-15 -1729 ((-52) |#2| (-776))) (-15 -1729 ((-52) |#2| (-297 |#2|))) (-15 -1729 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1741 ((-52) (-1183))) (-15 -1741 ((-52) |#2|)) (-15 -1741 ((-52) |#2| (-569))) (-15 -1741 ((-52) |#2| (-297 |#2|))) (-15 -1741 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1754 ((-52) (-1183))) (-15 -1754 ((-52) |#2|)) (-15 -1754 ((-52) |#2| (-412 (-569)))) (-15 -1754 ((-52) |#2| (-297 |#2|))) (-15 -1754 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -2056 ((-52) (-1183))) (-15 -2056 ((-52) |#2|)) (-15 -2056 ((-52) |#2| (-412 (-569)))) (-15 -2056 ((-52) |#2| (-297 |#2|))) (-15 -2056 ((-52) |#2| (-297 |#2|) (-412 (-569))))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -318))
+((-2056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1754 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-569)) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1741 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1729 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))))
+(-10 -7 (-15 -1729 ((-52) (-1183))) (-15 -1729 ((-52) |#2|)) (-15 -1729 ((-52) |#2| (-776))) (-15 -1729 ((-52) |#2| (-297 |#2|))) (-15 -1729 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1741 ((-52) (-1183))) (-15 -1741 ((-52) |#2|)) (-15 -1741 ((-52) |#2| (-569))) (-15 -1741 ((-52) |#2| (-297 |#2|))) (-15 -1741 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1754 ((-52) (-1183))) (-15 -1754 ((-52) |#2|)) (-15 -1754 ((-52) |#2| (-412 (-569)))) (-15 -1754 ((-52) |#2| (-297 |#2|))) (-15 -1754 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -2056 ((-52) (-1183))) (-15 -2056 ((-52) |#2|)) (-15 -2056 ((-52) |#2| (-412 (-569)))) (-15 -2056 ((-52) |#2| (-297 |#2|))) (-15 -2056 ((-52) |#2| (-297 |#2|) (-412 (-569)))))
+((-2383 (((-112) $ $) NIL)) (-2092 (((-649 $) $ (-1183)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-1540 (($ $ (-1183)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (($ (-1179 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-2789 (((-112) $) 27 (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-3865 (((-649 (-1183)) $) 368)) (-3663 (((-412 (-1179 $)) $ (-617 $)) NIL (|has| |#1| (-561)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3550 (((-649 (-617 $)) $) NIL)) (-2691 (($ $) 171 (|has| |#1| (-561)))) (-2556 (($ $) 147 (|has| |#1| (-561)))) (-1374 (($ $ (-1098 $)) 232 (|has| |#1| (-561))) (($ $ (-1183)) 228 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) NIL (-2718 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-4272 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) 386) (($ $ (-649 (-617 $)) (-649 $)) 430)) (-1537 (((-423 (-1179 $)) (-1179 $)) 308 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-4332 (($ $) NIL (|has| |#1| (-561)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3714 (($ $) NIL (|has| |#1| (-561)))) (-4420 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2669 (($ $) 167 (|has| |#1| (-561)))) (-2534 (($ $) 143 (|has| |#1| (-561)))) (-1312 (($ $ (-569)) 73 (|has| |#1| (-561)))) (-2712 (($ $) 175 (|has| |#1| (-561)))) (-2576 (($ $) 151 (|has| |#1| (-561)))) (-3863 (($) NIL (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-1550 (((-649 $) $ (-1183)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-2740 (($ $ (-1183)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1179 $) (-1183)) 134 (|has| |#1| (-561))) (($ (-1179 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4359 (((-3 (-617 $) "failed") $) 18) (((-3 (-1183) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-958 |#1|)) "failed") $) NIL (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) NIL (|has| |#1| (-1055))) (((-3 (-412 (-569)) "failed") $) 46 (-2718 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3043 (((-617 $) $) 12) (((-1183) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-958 |#1|)) $) NIL (|has| |#1| (-561))) (((-958 |#1|) $) NIL (|has| |#1| (-1055))) (((-412 (-569)) $) 319 (-2718 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2339 (($ $ $) NIL (|has| |#1| (-561)))) (-4091 (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 125 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 115 (|has| |#1| (-1055))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (-3485 (($ $) 96 (|has| |#1| (-561)))) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-2348 (($ $ $) NIL (|has| |#1| (-561)))) (-2061 (($ $ (-1098 $)) 236 (|has| |#1| (-561))) (($ $ (-1183)) 234 (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-561)))) (-3848 (((-112) $) NIL (|has| |#1| (-561)))) (-4033 (($ $ $) 202 (|has| |#1| (-561)))) (-4408 (($) 137 (|has| |#1| (-561)))) (-1335 (($ $ $) 222 (|has| |#1| (-561)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 392 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 399 (|has| |#1| (-892 (-383))))) (-2629 (($ $) NIL) (($ (-649 $)) NIL)) (-2042 (((-649 (-114)) $) NIL)) (-3642 (((-114) (-114)) 276)) (-2861 (((-112) $) 25 (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-2355 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1450 (($ $) 72 (|has| |#1| (-1055)))) (-4378 (((-1131 |#1| (-617 $)) $) 91 (|has| |#1| (-1055)))) (-1321 (((-112) $) 62 (|has| |#1| (-561)))) (-1589 (($ $ (-569)) NIL (|has| |#1| (-561)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-2021 (((-1179 $) (-617 $)) 277 (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) 426)) (-2052 (((-3 (-617 $) "failed") $) NIL)) (-2616 (($ $) 141 (|has| |#1| (-561)))) (-4128 (($ $) 247 (|has| |#1| (-561)))) (-1798 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-2050 (((-1165) $) NIL)) (-3629 (((-649 (-617 $)) $) 49)) (-1331 (($ (-114) $) NIL) (($ (-114) (-649 $)) 431)) (-3338 (((-3 (-649 $) "failed") $) NIL (|has| |#1| (-1118)))) (-3360 (((-3 (-2 (|:| |val| $) (|:| -2777 (-569))) "failed") $) NIL (|has| |#1| (-1055)))) (-3327 (((-3 (-649 $) "failed") $) 436 (|has| |#1| (-25)))) (-2827 (((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3349 (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $) NIL (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-114)) NIL (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-1183)) NIL (|has| |#1| (-1055)))) (-2016 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) 51)) (-1776 (($ $) NIL (-2718 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3434 (($ $ (-1183)) 251 (|has| |#1| (-561))) (($ $ (-1098 $)) 253 (|has| |#1| (-561)))) (-1399 (((-776) $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) 43)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 301 (|has| |#1| (-561)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-2031 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-1386 (($ $ (-1183)) 226 (|has| |#1| (-561))) (($ $) 224 (|has| |#1| (-561)))) (-1315 (($ $) 218 (|has| |#1| (-561)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 306 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-3699 (((-423 $) $) NIL (|has| |#1| (-561)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-561)))) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-4367 (($ $) 139 (|has| |#1| (-561)))) (-4336 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 425) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) 379) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1183)) NIL (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-619 (-541)))) (($ $) NIL (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 366 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1183)) 365 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) NIL (|has| |#1| (-1055)))) (-4409 (((-776) $) NIL (|has| |#1| (-561)))) (-2491 (($ $) 239 (|has| |#1| (-561)))) (-1852 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-2062 (($ $) NIL) (($ $ $) NIL)) (-2523 (($ $) 249 (|has| |#1| (-561)))) (-4022 (($ $) 200 (|has| |#1| (-561)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-1440 (($ $) 74 (|has| |#1| (-561)))) (-4390 (((-1131 |#1| (-617 $)) $) 93 (|has| |#1| (-561)))) (-2760 (($ $) 317 (|has| $ (-1055)))) (-2725 (($ $) 177 (|has| |#1| (-561)))) (-2588 (($ $) 153 (|has| |#1| (-561)))) (-2701 (($ $) 173 (|has| |#1| (-561)))) (-2566 (($ $) 149 (|has| |#1| (-561)))) (-2680 (($ $) 169 (|has| |#1| (-561)))) (-2545 (($ $) 145 (|has| |#1| (-561)))) (-1384 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) NIL (|has| |#1| (-561))) (((-541) $) 363 (|has| |#1| (-619 (-541))))) (-1565 (($ $ $) NIL (|has| |#1| (-478)))) (-4356 (($ $ $) NIL (|has| |#1| (-478)))) (-2388 (((-867) $) 424) (($ (-617 $)) 415) (($ (-1183)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-561))) (($ (-48)) 312 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (($ (-1131 |#1| (-617 $))) 95 (|has| |#1| (-1055))) (($ (-412 |#1|)) NIL (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) NIL (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) NIL (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) NIL (|has| |#1| (-561))) (($ (-958 |#1|)) NIL (|has| |#1| (-1055))) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-561)) (|has| |#1| (-1044 (-412 (-569)))))) (($ (-569)) 34 (-2718 (|has| |#1| (-1044 (-569))) (|has| |#1| (-1055))))) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL (|has| |#1| (-1055)) CONST)) (-4176 (($ $) NIL) (($ (-649 $)) NIL)) (-3038 (($ $ $) 220 (|has| |#1| (-561)))) (-4067 (($ $ $) 206 (|has| |#1| (-561)))) (-4089 (($ $ $) 210 (|has| |#1| (-561)))) (-4055 (($ $ $) 204 (|has| |#1| (-561)))) (-4079 (($ $ $) 208 (|has| |#1| (-561)))) (-3858 (((-112) (-114)) 10)) (-2040 (((-112) $ $) 86)) (-4119 (($ $) 183 (|has| |#1| (-561)))) (-2627 (($ $) 159 (|has| |#1| (-561)))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) 179 (|has| |#1| (-561)))) (-2601 (($ $) 155 (|has| |#1| (-561)))) (-4144 (($ $) 187 (|has| |#1| (-561)))) (-2648 (($ $) 163 (|has| |#1| (-561)))) (-4175 (($ (-1183) $) NIL) (($ (-1183) $ $) NIL) (($ (-1183) $ $ $) NIL) (($ (-1183) $ $ $ $) NIL) (($ (-1183) (-649 $)) NIL)) (-4115 (($ $) 214 (|has| |#1| (-561)))) (-4101 (($ $) 212 (|has| |#1| (-561)))) (-1470 (($ $) 189 (|has| |#1| (-561)))) (-2658 (($ $) 165 (|has| |#1| (-561)))) (-4131 (($ $) 185 (|has| |#1| (-561)))) (-2638 (($ $) 161 (|has| |#1| (-561)))) (-4106 (($ $) 181 (|has| |#1| (-561)))) (-2615 (($ $) 157 (|has| |#1| (-561)))) (-3999 (($ $) 192 (|has| |#1| (-561)))) (-1786 (($) 21 (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) CONST)) (-3882 (($ $) 243 (|has| |#1| (-561)))) (-1796 (($) 23 (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-4044 (($ $) 194 (|has| |#1| (-561))) (($ $ $) 196 (|has| |#1| (-561)))) (-3896 (($ $) 241 (|has| |#1| (-561)))) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-3872 (($ $) 245 (|has| |#1| (-561)))) (-4010 (($ $ $) 198 (|has| |#1| (-561)))) (-2853 (((-112) $ $) 88)) (-2956 (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 106 (|has| |#1| (-561))) (($ $ $) 42 (-2718 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-2946 (($ $ $) 40 (-2718 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ $) 29 (-2718 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-2935 (($ $ $) 38 (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (** (($ $ $) 64 (|has| |#1| (-561))) (($ $ (-412 (-569))) 314 (|has| |#1| (-561))) (($ $ (-569)) 80 (-2718 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 75 (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ $ (-927)) 84 (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (* (($ (-412 (-569)) $) NIL (|has| |#1| (-561))) (($ $ (-412 (-569))) NIL (|has| |#1| (-561))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-2718 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ (-569) $) 32 (-2718 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ (-776) $) NIL (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ (-927) $) NIL (-2718 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))))
+(((-319 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-634)) (-6 (-1145)) (-15 -3485 ($ $)) (-15 -1321 ((-112) $)) (-15 -1312 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -1525 ((-423 (-1179 $)) (-1179 $))) (-15 -1537 ((-423 (-1179 $)) (-1179 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-569))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|))) (-1106)) (T -319))
+((-3485 (*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1106)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106)))) (-1537 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106)))))
+(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-634)) (-6 (-1145)) (-15 -3485 ($ $)) (-15 -1321 ((-112) $)) (-15 -1312 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -1525 ((-423 (-1179 $)) (-1179 $))) (-15 -1537 ((-423 (-1179 $)) (-1179 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-569))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|)))
+((-1332 (((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)) 89) (((-52) |#2| (-114) (-297 |#2|) (-297 |#2|)) 85) (((-52) |#2| (-114) (-297 |#2|) |#2|) 87) (((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|) 88) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 81) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 83) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 84) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 82) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 90) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|)) 86)))
+(((-320 |#1| |#2|) (-10 -7 (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1332 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-561) (-619 (-541))) (-435 |#1|)) (T -320))
+((-1332 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *3)))) (-1332 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-1332 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-1332 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *5)))) (-1332 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8))) (-4 *8 (-435 *7)) (-5 *5 (-297 *8)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-1332 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1332 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8)) (-5 *6 (-649 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-1332 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1332 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1332 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *5 *6)))))
+(-10 -7 (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1332 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1332 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1332 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -1332 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|))))
+((-1358 (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165)) 67) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569)) 68) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165)) 64) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569)) 65)) (-1347 (((-1 (-226) (-226)) (-226)) 66)))
+(((-321) (-10 -7 (-15 -1347 ((-1 (-226) (-226)) (-226))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165))))) (T -321))
+((-1358 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1165)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-1358 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-1358 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *7 (-1165)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-1358 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-1347 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
+(-10 -7 (-15 -1347 ((-1 (-226) (-226)) (-226))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569))) (-15 -1358 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 26)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 20)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) 36)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) 16)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-412 (-569))) NIL) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1370 (((-412 (-569)) $) 17)) (-4268 (($ (-1258 |#1| |#2| |#3|)) 11)) (-2777 (((-1258 |#1| |#2| |#3|) $) 12)) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2091 (((-412 (-569)) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 10)) (-2388 (((-867) $) 42) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) 34)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) NIL)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 28)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 37)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-322 |#1| |#2| |#3|) (-13 (-1254 |#1|) (-797) (-10 -8 (-15 -4268 ($ (-1258 |#1| |#2| |#3|))) (-15 -2777 ((-1258 |#1| |#2| |#3|) $)) (-15 -1370 ((-412 (-569)) $)))) (-367) (-1183) |#1|) (T -322))
+((-4268 (*1 *1 *2) (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1258 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))))
+(-13 (-1254 |#1|) (-797) (-10 -8 (-15 -4268 ($ (-1258 |#1| |#2| |#3|))) (-15 -2777 ((-1258 |#1| |#2| |#3|) $)) (-15 -1370 ((-412 (-569)) $))))
+((-1589 (((-2 (|:| -2777 (-776)) (|:| -1406 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776)) 35)) (-2616 (((-649 (-2 (|:| -1406 (-776)) (|:| |logand| |#1|))) (-423 |#1|)) 40)))
+(((-323 |#1|) (-10 -7 (-15 -1589 ((-2 (|:| -2777 (-776)) (|:| -1406 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2616 ((-649 (-2 (|:| -1406 (-776)) (|:| |logand| |#1|))) (-423 |#1|)))) (-561)) (T -323))
+((-2616 (*1 *2 *3) (-12 (-5 *3 (-423 *4)) (-4 *4 (-561)) (-5 *2 (-649 (-2 (|:| -1406 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-423 *5)) (-4 *5 (-561)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *5) (|:| |radicand| (-649 *5)))) (-5 *1 (-323 *5)) (-5 *4 (-776)))))
+(-10 -7 (-15 -1589 ((-2 (|:| -2777 (-776)) (|:| -1406 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2616 ((-649 (-2 (|:| -1406 (-776)) (|:| |logand| |#1|))) (-423 |#1|))))
+((-3865 (((-649 |#2|) (-1179 |#4|)) 44)) (-1428 ((|#3| (-569)) 47)) (-1407 (((-1179 |#4|) (-1179 |#3|)) 30)) (-1418 (((-1179 |#4|) (-1179 |#4|) (-569)) 66)) (-1394 (((-1179 |#3|) (-1179 |#4|)) 21)) (-2091 (((-649 (-776)) (-1179 |#4|) (-649 |#2|)) 41)) (-1381 (((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|)) 35)))
+(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1381 ((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -2091 ((-649 (-776)) (-1179 |#4|) (-649 |#2|))) (-15 -3865 ((-649 |#2|) (-1179 |#4|))) (-15 -1394 ((-1179 |#3|) (-1179 |#4|))) (-15 -1407 ((-1179 |#4|) (-1179 |#3|))) (-15 -1418 ((-1179 |#4|) (-1179 |#4|) (-569))) (-15 -1428 (|#3| (-569)))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|)) (T -324))
+((-1428 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055)) (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))) (-1418 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *1 (-324 *4 *5 *6 *7)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1179 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1179 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-324 *4 *5 *6 *7)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-649 *5)) (-5 *1 (-324 *4 *5 *6 *7)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855)) (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055)) (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) (-1381 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1179 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1381 ((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -2091 ((-649 (-776)) (-1179 |#4|) (-649 |#2|))) (-15 -3865 ((-649 |#2|) (-1179 |#4|))) (-15 -1394 ((-1179 |#3|) (-1179 |#4|))) (-15 -1407 ((-1179 |#4|) (-1179 |#3|))) (-15 -1418 ((-1179 |#4|) (-1179 |#4|) (-569))) (-15 -1428 (|#3| (-569))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 19)) (-4324 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-569)))) $) 21)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776) $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-4199 ((|#1| $ (-569)) NIL)) (-1460 (((-569) $ (-569)) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1448 (($ (-1 (-569) (-569)) $) 11)) (-2050 (((-1165) $) NIL)) (-1438 (($ $ $) NIL (|has| (-569) (-797)))) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ |#1|) NIL)) (-1503 (((-569) |#1| $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) 29 (|has| |#1| (-855)))) (-2946 (($ $) 12) (($ $ $) 28)) (-2935 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL) (($ (-569) |#1|) 27)))
+(((-325 |#1|) (-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) (-1106)) (T -325))
+NIL
+(-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-4324 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))) $) 28)) (-3798 (((-3 $ "failed") $ $) 20)) (-3363 (((-776) $) 29)) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 33)) (-3043 ((|#1| $) 34)) (-4199 ((|#1| $ (-569)) 26)) (-1460 ((|#2| $ (-569)) 27)) (-4117 (($ (-1 |#1| |#1|) $) 23)) (-1448 (($ (-1 |#2| |#2|) $) 24)) (-2050 (((-1165) $) 10)) (-1438 (($ $ $) 22 (|has| |#2| (-797)))) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ |#1|) 32)) (-1503 ((|#2| |#1| $) 25)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ |#2| |#1|) 30)))
+(((-326 |#1| |#2|) (-140) (-1106) (-131)) (T -326))
+((-2935 (*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)) (-5 *2 (-776)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4)))))) (-1460 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1106)) (-4 *2 (-131)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1106)))) (-1503 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131)))) (-1448 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131)) (-4 *3 (-797)))))
+(-13 (-131) (-1044 |t#1|) (-10 -8 (-15 -2935 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3363 ((-776) $)) (-15 -4324 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4367 |t#2|))) $)) (-15 -1460 (|t#2| $ (-569))) (-15 -4199 (|t#1| $ (-569))) (-15 -1503 (|t#2| |t#1| $)) (-15 -1448 ($ (-1 |t#2| |t#2|) $)) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-797)) (-15 -1438 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-1044 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4324 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-776)))) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776) $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-4199 ((|#1| $ (-569)) NIL)) (-1460 (((-776) $ (-569)) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1448 (($ (-1 (-776) (-776)) $) NIL)) (-2050 (((-1165) $) NIL)) (-1438 (($ $ $) NIL (|has| (-776) (-797)))) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ |#1|) NIL)) (-1503 (((-776) |#1| $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2935 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-776) |#1|) NIL)))
+(((-327 |#1|) (-326 |#1| (-776)) (-1106)) (T -327))
NIL
(-326 |#1| (-776))
-((-3944 (($ $) 72)) (-1779 (($ $ |#2| |#3| $) 14)) (-1780 (($ (-1 |#3| |#3|) $) 51)) (-1982 (((-112) $) 42)) (-1981 ((|#2| $) 44)) (-3907 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3238 ((|#2| $) 68)) (-4267 (((-646 |#2|) $) 56)) (-1778 (($ $ $ (-776)) 37)) (-4399 (($ $ |#2|) 60)))
-(((-328 |#1| |#2| |#3|) (-10 -8 (-15 -3944 (|#1| |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1778 (|#1| |#1| |#1| (-776))) (-15 -1779 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1780 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4267 ((-646 |#2|) |#1|)) (-15 -1981 (|#2| |#1|)) (-15 -1982 ((-112) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4399 (|#1| |#1| |#2|))) (-329 |#2| |#3|) (-1055) (-797)) (T -328))
+((-3556 (($ $) 72)) (-1482 (($ $ |#2| |#3| $) 14)) (-1491 (($ (-1 |#3| |#3|) $) 51)) (-1787 (((-112) $) 42)) (-1794 ((|#2| $) 44)) (-2374 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3281 ((|#2| $) 68)) (-3346 (((-649 |#2|) $) 56)) (-1471 (($ $ $ (-776)) 37)) (-2956 (($ $ |#2|) 60)))
+(((-328 |#1| |#2| |#3|) (-10 -8 (-15 -3556 (|#1| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1471 (|#1| |#1| |#1| (-776))) (-15 -1482 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3346 ((-649 |#2|) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1787 ((-112) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2956 (|#1| |#1| |#2|))) (-329 |#2| |#3|) (-1055) (-797)) (T -328))
NIL
-(-10 -8 (-15 -3944 (|#1| |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1778 (|#1| |#1| |#1| (-776))) (-15 -1779 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1780 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4267 ((-646 |#2|) |#1|)) (-15 -1981 (|#2| |#1|)) (-15 -1982 ((-112) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4399 (|#1| |#1| |#2|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 100 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 98 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 95)) (-3594 (((-551) $) 99 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 97 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 96)) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-3944 (($ $) 84 (|has| |#1| (-457)))) (-1779 (($ $ |#1| |#2| $) 88)) (-2591 (((-112) $) 35)) (-2599 (((-776) $) 91)) (-4387 (((-112) $) 74)) (-3312 (($ |#1| |#2|) 73)) (-3241 ((|#2| $) 90)) (-1780 (($ (-1 |#2| |#2|) $) 89)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 94)) (-1981 ((|#1| $) 93)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-562)))) (-4398 ((|#2| $) 76)) (-3238 ((|#1| $) 85 (|has| |#1| (-457)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59) (($ (-412 (-551))) 69 (-3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))))) (-4267 (((-646 |#1|) $) 92)) (-4127 ((|#1| $ |#2|) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-1778 (($ $ $ (-776)) 87 (|has| |#1| (-173)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
+(-10 -8 (-15 -3556 (|#1| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1471 (|#1| |#1| |#1| (-776))) (-15 -1482 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3346 ((-649 |#2|) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1787 ((-112) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2956 (|#1| |#1| |#2|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 98 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 95)) (-3043 (((-569) $) 99 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 97 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 96)) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-3556 (($ $) 84 (|has| |#1| (-457)))) (-1482 (($ $ |#1| |#2| $) 88)) (-2861 (((-112) $) 35)) (-2933 (((-776) $) 91)) (-2019 (((-112) $) 74)) (-3838 (($ |#1| |#2|) 73)) (-3304 ((|#2| $) 90)) (-1491 (($ (-1 |#2| |#2|) $) 89)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 94)) (-1794 ((|#1| $) 93)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-561)))) (-2091 ((|#2| $) 76)) (-3281 ((|#1| $) 85 (|has| |#1| (-457)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59) (($ (-412 (-569))) 69 (-2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-3346 (((-649 |#1|) $) 92)) (-1503 ((|#1| $ |#2|) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-1471 (($ $ $ (-776)) 87 (|has| |#1| (-173)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
(((-329 |#1| |#2|) (-140) (-1055) (-797)) (T -329))
-((-1982 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-646 *3)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-776)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1780 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-1779 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-1778 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *3 (-173)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-562)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-457)))))
-(-13 (-47 |t#1| |t#2|) (-417 |t#1|) (-10 -8 (-15 -1982 ((-112) $)) (-15 -1981 (|t#1| $)) (-15 -4267 ((-646 |t#1|) $)) (-15 -2599 ((-776) $)) (-15 -3241 (|t#2| $)) (-15 -1780 ($ (-1 |t#2| |t#2|) $)) (-15 -1779 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -1778 ($ $ $ (-776))) |%noBranch|) (IF (|has| |t#1| (-562)) (-15 -3907 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3238 (|t#1| $)) (-15 -3944 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-293) |has| |#1| (-562)) ((-417 |#1|) . T) ((-562) |has| |#1| (-562)) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-2174 (((-112) (-112)) NIL)) (-4237 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) NIL)) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-2544 (($ $) NIL (|has| |#1| (-1107)))) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) NIL (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) NIL)) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2175 (($ $ (-551)) NIL)) (-2176 (((-776) $) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3277 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4057 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2177 (($ (-646 |#1|)) NIL)) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-1689 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-4240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-330 |#1|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2177 ($ (-646 |#1|))) (-15 -2176 ((-776) $)) (-15 -2175 ($ $ (-551))) (-15 -2174 ((-112) (-112))))) (-1222)) (T -330))
-((-2177 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-330 *3)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1222)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-330 *3)) (-4 *3 (-1222)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1222)))))
-(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2177 ($ (-646 |#1|))) (-15 -2176 ((-776) $)) (-15 -2175 ($ $ (-551))) (-15 -2174 ((-112) (-112)))))
-((-4382 (((-112) $) 50)) (-4379 (((-776)) 26)) (-3772 ((|#2| $) 54) (($ $ (-925)) 124)) (-3558 (((-776)) 125)) (-1977 (($ (-1272 |#2|)) 23)) (-2199 (((-112) $) 138)) (-3554 ((|#2| $) 56) (($ $ (-925)) 121)) (-2202 (((-1177 |#2|) $) NIL) (((-1177 $) $ (-925)) 112)) (-1782 (((-1177 |#2|) $) 98)) (-1781 (((-1177 |#2|) $) 94) (((-3 (-1177 |#2|) "failed") $ $) 91)) (-1783 (($ $ (-1177 |#2|)) 62)) (-4380 (((-837 (-925))) 33) (((-925)) 51)) (-4361 (((-134)) 30)) (-4398 (((-837 (-925)) $) 35) (((-925) $) 141)) (-1784 (($) 131)) (-3662 (((-1272 |#2|) $) NIL) (((-694 |#2|) (-1272 $)) 45)) (-3123 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4383 (((-112) $) 48)))
-(((-331 |#1| |#2|) (-10 -8 (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-776))) (-15 -3123 (|#1| |#1|)) (-15 -1781 ((-3 (-1177 |#2|) "failed") |#1| |#1|)) (-15 -1781 ((-1177 |#2|) |#1|)) (-15 -1782 ((-1177 |#2|) |#1|)) (-15 -1783 (|#1| |#1| (-1177 |#2|))) (-15 -2199 ((-112) |#1|)) (-15 -1784 (|#1|)) (-15 -3772 (|#1| |#1| (-925))) (-15 -3554 (|#1| |#1| (-925))) (-15 -2202 ((-1177 |#1|) |#1| (-925))) (-15 -3772 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -4398 ((-925) |#1|)) (-15 -4380 ((-925))) (-15 -2202 ((-1177 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -4379 ((-776))) (-15 -4380 ((-837 (-925)))) (-15 -4398 ((-837 (-925)) |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -4361 ((-134)))) (-332 |#2|) (-367)) (T -331))
-((-4361 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-4380 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-837 (-925))) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-4379 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-4380 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-925)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))))
-(-10 -8 (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-776))) (-15 -3123 (|#1| |#1|)) (-15 -1781 ((-3 (-1177 |#2|) "failed") |#1| |#1|)) (-15 -1781 ((-1177 |#2|) |#1|)) (-15 -1782 ((-1177 |#2|) |#1|)) (-15 -1783 (|#1| |#1| (-1177 |#2|))) (-15 -2199 ((-112) |#1|)) (-15 -1784 (|#1|)) (-15 -3772 (|#1| |#1| (-925))) (-15 -3554 (|#1| |#1| (-925))) (-15 -2202 ((-1177 |#1|) |#1| (-925))) (-15 -3772 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -4398 ((-925) |#1|)) (-15 -4380 ((-925))) (-15 -2202 ((-1177 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -4379 ((-776))) (-15 -4380 ((-837 (-925)))) (-15 -4398 ((-837 (-925)) |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -4361 ((-134))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-4382 (((-112) $) 104)) (-4379 (((-776)) 100)) (-3772 ((|#1| $) 150) (($ $ (-925)) 147 (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) 132 (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-1763 (((-112) $ $) 65)) (-3558 (((-776)) 122 (|has| |#1| (-372)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| "failed") $) 111)) (-3594 ((|#1| $) 112)) (-1977 (($ (-1272 |#1|)) 156)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-372)))) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-3413 (($) 119 (|has| |#1| (-372)))) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-3254 (($) 134 (|has| |#1| (-372)))) (-1858 (((-112) $) 135 (|has| |#1| (-372)))) (-1951 (($ $ (-776)) 97 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) 79)) (-4221 (((-925) $) 137 (|has| |#1| (-372))) (((-837 (-925)) $) 94 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) 35)) (-2201 (($) 145 (|has| |#1| (-372)))) (-2199 (((-112) $) 144 (|has| |#1| (-372)))) (-3554 ((|#1| $) 151) (($ $ (-925)) 148 (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) 123 (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2202 (((-1177 |#1|) $) 155) (((-1177 $) $ (-925)) 149 (|has| |#1| (-372)))) (-2198 (((-925) $) 120 (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) 141 (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) 140 (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) 139 (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) 142 (|has| |#1| (-372)))) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3887 (($) 124 (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) 121 (|has| |#1| (-372)))) (-4381 (((-112) $) 103)) (-3682 (((-1126) $) 11)) (-2590 (($) 143 (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 131 (|has| |#1| (-372)))) (-4182 (((-410 $) $) 82)) (-4380 (((-837 (-925))) 101) (((-925)) 153)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-1952 (((-776) $) 136 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 95 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) 109)) (-4260 (($ $) 128 (|has| |#1| (-372))) (($ $ (-776)) 126 (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) 102) (((-925) $) 152)) (-3623 (((-1177 |#1|)) 154)) (-1852 (($) 133 (|has| |#1| (-372)))) (-1784 (($) 146 (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) 158) (((-694 |#1|) (-1272 $)) 157)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 130 (|has| |#1| (-372)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ |#1|) 110)) (-3123 (($ $) 129 (|has| |#1| (-372))) (((-3 $ "failed") $) 93 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 160) (((-1272 $) (-925)) 159)) (-2250 (((-112) $ $) 45)) (-4383 (((-112) $) 105)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-4378 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-3090 (($ $) 127 (|has| |#1| (-372))) (($ $ (-776)) 125 (|has| |#1| (-372)))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73) (($ $ |#1|) 108)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+((-1787 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-649 *3)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-776)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-1482 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-1471 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *3 (-173)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-561)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-457)))))
+(-13 (-47 |t#1| |t#2|) (-416 |t#1|) (-10 -8 (-15 -1787 ((-112) $)) (-15 -1794 (|t#1| $)) (-15 -3346 ((-649 |t#1|) $)) (-15 -2933 ((-776) $)) (-15 -3304 (|t#2| $)) (-15 -1491 ($ (-1 |t#2| |t#2|) $)) (-15 -1482 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -1471 ($ $ $ (-776))) |%noBranch|) (IF (|has| |t#1| (-561)) (-15 -2374 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3281 (|t#1| $)) (-15 -3556 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-416 |#1|) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3068 (((-112) (-112)) NIL)) (-3861 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) NIL)) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3686 (($ $) NIL (|has| |#1| (-1106)))) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-3077 (($ $ (-569)) NIL)) (-3087 (((-776) $) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3644 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-2086 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3098 (($ (-649 |#1|)) NIL)) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-1827 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-3149 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-330 |#1|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -3098 ($ (-649 |#1|))) (-15 -3087 ((-776) $)) (-15 -3077 ($ $ (-569))) (-15 -3068 ((-112) (-112))))) (-1223)) (T -330))
+((-3098 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-330 *3)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))))
+(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -3098 ($ (-649 |#1|))) (-15 -3087 ((-776) $)) (-15 -3077 ($ $ (-569))) (-15 -3068 ((-112) (-112)))))
+((-1978 (((-112) $) 50)) (-3085 (((-776)) 26)) (-3057 ((|#2| $) 54) (($ $ (-927)) 124)) (-3363 (((-776)) 125)) (-2806 (($ (-1273 |#2|)) 23)) (-3359 (((-112) $) 138)) (-3334 ((|#2| $) 56) (($ $ (-927)) 121)) (-3397 (((-1179 |#2|) $) NIL) (((-1179 $) $ (-927)) 112)) (-1509 (((-1179 |#2|) $) 98)) (-1500 (((-1179 |#2|) $) 94) (((-3 (-1179 |#2|) "failed") $ $) 91)) (-1518 (($ $ (-1179 |#2|)) 62)) (-3096 (((-838 (-927))) 33) (((-927)) 51)) (-2905 (((-134)) 30)) (-2091 (((-838 (-927)) $) 35) (((-927) $) 141)) (-1529 (($) 131)) (-1949 (((-1273 |#2|) $) NIL) (((-694 |#2|) (-1273 $)) 45)) (-1488 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1988 (((-112) $) 48)))
+(((-331 |#1| |#2|) (-10 -8 (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -3363 ((-776))) (-15 -1488 (|#1| |#1|)) (-15 -1500 ((-3 (-1179 |#2|) "failed") |#1| |#1|)) (-15 -1500 ((-1179 |#2|) |#1|)) (-15 -1509 ((-1179 |#2|) |#1|)) (-15 -1518 (|#1| |#1| (-1179 |#2|))) (-15 -3359 ((-112) |#1|)) (-15 -1529 (|#1|)) (-15 -3057 (|#1| |#1| (-927))) (-15 -3334 (|#1| |#1| (-927))) (-15 -3397 ((-1179 |#1|) |#1| (-927))) (-15 -3057 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -2091 ((-927) |#1|)) (-15 -3096 ((-927))) (-15 -3397 ((-1179 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3085 ((-776))) (-15 -3096 ((-838 (-927)))) (-15 -2091 ((-838 (-927)) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2905 ((-134)))) (-332 |#2|) (-367)) (T -331))
+((-2905 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3096 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3085 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3096 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3363 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))))
+(-10 -8 (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -3363 ((-776))) (-15 -1488 (|#1| |#1|)) (-15 -1500 ((-3 (-1179 |#2|) "failed") |#1| |#1|)) (-15 -1500 ((-1179 |#2|) |#1|)) (-15 -1509 ((-1179 |#2|) |#1|)) (-15 -1518 (|#1| |#1| (-1179 |#2|))) (-15 -3359 ((-112) |#1|)) (-15 -1529 (|#1|)) (-15 -3057 (|#1| |#1| (-927))) (-15 -3334 (|#1| |#1| (-927))) (-15 -3397 ((-1179 |#1|) |#1| (-927))) (-15 -3057 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -2091 ((-927) |#1|)) (-15 -3096 ((-927))) (-15 -3397 ((-1179 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3085 ((-776))) (-15 -3096 ((-838 (-927)))) (-15 -2091 ((-838 (-927)) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2905 ((-134))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-1978 (((-112) $) 104)) (-3085 (((-776)) 100)) (-3057 ((|#1| $) 150) (($ $ (-927)) 147 (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-4420 (((-112) $ $) 65)) (-3363 (((-776)) 122 (|has| |#1| (-372)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 111)) (-3043 ((|#1| $) 112)) (-2806 (($ (-1273 |#1|)) 156)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-372)))) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-3295 (($) 119 (|has| |#1| (-372)))) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3445 (($) 134 (|has| |#1| (-372)))) (-4127 (((-112) $) 135 (|has| |#1| (-372)))) (-2525 (($ $ (-776)) 97 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) 79)) (-4315 (((-927) $) 137 (|has| |#1| (-372))) (((-838 (-927)) $) 94 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) 35)) (-3384 (($) 145 (|has| |#1| (-372)))) (-3359 (((-112) $) 144 (|has| |#1| (-372)))) (-3334 ((|#1| $) 151) (($ $ (-927)) 148 (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) 123 (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3397 (((-1179 |#1|) $) 155) (((-1179 $) $ (-927)) 149 (|has| |#1| (-372)))) (-3348 (((-927) $) 120 (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) 141 (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) 140 (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) 139 (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) 142 (|has| |#1| (-372)))) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-2267 (($) 124 (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) 121 (|has| |#1| (-372)))) (-1969 (((-112) $) 103)) (-3461 (((-1126) $) 11)) (-2290 (($) 143 (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 131 (|has| |#1| (-372)))) (-3699 (((-423 $) $) 82)) (-3096 (((-838 (-927))) 101) (((-927)) 153)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2536 (((-776) $) 136 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 95 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) 109)) (-3430 (($ $) 128 (|has| |#1| (-372))) (($ $ (-776)) 126 (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) 102) (((-927) $) 152)) (-2760 (((-1179 |#1|)) 154)) (-4056 (($) 133 (|has| |#1| (-372)))) (-1529 (($) 146 (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) 158) (((-694 |#1|) (-1273 $)) 157)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 130 (|has| |#1| (-372)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-1488 (($ $) 129 (|has| |#1| (-372))) (((-3 $ "failed") $) 93 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 160) (((-1273 $) (-927)) 159)) (-2574 (((-112) $ $) 45)) (-1988 (((-112) $) 105)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-3075 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2749 (($ $) 127 (|has| |#1| (-372))) (($ $ (-776)) 125 (|has| |#1| (-372)))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73) (($ $ |#1|) 108)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
(((-332 |#1|) (-140) (-367)) (T -332))
-((-2200 (*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1272 *1)) (-4 *1 (-332 *3)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-925)) (-4 *4 (-367)) (-5 *2 (-1272 *1)) (-4 *1 (-332 *4)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1272 *3)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1177 *3)))) (-3623 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1177 *3)))) (-4380 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-925)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-925)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-2202 (*1 *2 *1 *3) (-12 (-5 *3 (-925)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1177 *1)) (-4 *1 (-332 *4)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-1784 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2201 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2590 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1177 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1177 *3)))) (-1781 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1177 *3)))))
-(-13 (-1291 |t#1|) (-1044 |t#1|) (-10 -8 (-15 -2200 ((-1272 $))) (-15 -2200 ((-1272 $) (-925))) (-15 -3662 ((-1272 |t#1|) $)) (-15 -3662 ((-694 |t#1|) (-1272 $))) (-15 -1977 ($ (-1272 |t#1|))) (-15 -2202 ((-1177 |t#1|) $)) (-15 -3623 ((-1177 |t#1|))) (-15 -4380 ((-925))) (-15 -4398 ((-925) $)) (-15 -3554 (|t#1| $)) (-15 -3772 (|t#1| $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-354)) (-15 -2202 ((-1177 $) $ (-925))) (-15 -3554 ($ $ (-925))) (-15 -3772 ($ $ (-925))) (-15 -1784 ($)) (-15 -2201 ($)) (-15 -2199 ((-112) $)) (-15 -2590 ($)) (-15 -1783 ($ $ (-1177 |t#1|))) (-15 -1782 ((-1177 |t#1|) $)) (-15 -1781 ((-1177 |t#1|) $)) (-15 -1781 ((-3 (-1177 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3978 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-234) |has| |#1| (-372)) ((-244) . T) ((-293) . T) ((-310) . T) ((-1291 |#1|) . T) ((-367) . T) ((-407) -3978 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-372) |has| |#1| (-372)) ((-354) |has| |#1| (-372)) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1044 |#1|) . T) ((-1057 #1#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| |#1| (-372)) ((-1227) . T) ((-1280 |#1|) . T))
-((-2986 (((-112) $ $) NIL)) (-1802 (($ (-1182) $) 100)) (-1793 (($) 89)) (-1785 (((-1126) (-1126)) 9)) (-1792 (($) 90)) (-1796 (($) 104) (($ (-317 (-704))) 112) (($ (-317 (-706))) 108) (($ (-317 (-699))) 116) (($ (-317 (-382))) 123) (($ (-317 (-551))) 119) (($ (-317 (-169 (-382)))) 127)) (-1801 (($ (-1182) $) 101)) (-1791 (($ (-646 (-868))) 91)) (-1787 (((-1278) $) 87)) (-1789 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1800 (($ (-1126)) 58)) (-1786 (((-1109) $) 30)) (-1803 (($ (-1098 (-952 (-551))) $) 97) (($ (-1098 (-952 (-551))) (-952 (-551)) $) 98)) (-1799 (($ (-1126)) 99)) (-1795 (($ (-1182) $) 129) (($ (-1182) $ $) 130)) (-1790 (($ (-1183) (-646 (-1183))) 88)) (-1798 (($ (-1165)) 94) (($ (-646 (-1165))) 92)) (-4396 (((-868) $) 132)) (-1788 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-646 (-952 (-551)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3845 (-112)) (|:| -3844 (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |blockBranch| (-646 $)) (|:| |commentBranch| (-646 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -1613 (-1098 (-952 (-551)))) (|:| |span| (-952 (-551))) (|:| -3671 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3671 $))) (|:| |commonBranch| (-2 (|:| -3991 (-1183)) (|:| |contents| (-646 (-1183))))) (|:| |printBranch| (-646 (-868)))) $) 50)) (-1797 (($ (-1165)) 202)) (-1794 (($ (-646 $)) 128)) (-3680 (((-112) $ $) NIL)) (-3004 (($ (-1183) (-1165)) 135) (($ (-1183) (-317 (-706))) 175) (($ (-1183) (-317 (-704))) 176) (($ (-1183) (-317 (-699))) 177) (($ (-1183) (-694 (-706))) 138) (($ (-1183) (-694 (-704))) 141) (($ (-1183) (-694 (-699))) 144) (($ (-1183) (-1272 (-706))) 147) (($ (-1183) (-1272 (-704))) 150) (($ (-1183) (-1272 (-699))) 153) (($ (-1183) (-694 (-317 (-706)))) 156) (($ (-1183) (-694 (-317 (-704)))) 159) (($ (-1183) (-694 (-317 (-699)))) 162) (($ (-1183) (-1272 (-317 (-706)))) 165) (($ (-1183) (-1272 (-317 (-704)))) 168) (($ (-1183) (-1272 (-317 (-699)))) 171) (($ (-1183) (-646 (-952 (-551))) (-317 (-706))) 172) (($ (-1183) (-646 (-952 (-551))) (-317 (-704))) 173) (($ (-1183) (-646 (-952 (-551))) (-317 (-699))) 174) (($ (-1183) (-317 (-551))) 199) (($ (-1183) (-317 (-382))) 200) (($ (-1183) (-317 (-169 (-382)))) 201) (($ (-1183) (-694 (-317 (-551)))) 180) (($ (-1183) (-694 (-317 (-382)))) 183) (($ (-1183) (-694 (-317 (-169 (-382))))) 186) (($ (-1183) (-1272 (-317 (-551)))) 189) (($ (-1183) (-1272 (-317 (-382)))) 192) (($ (-1183) (-1272 (-317 (-169 (-382))))) 195) (($ (-1183) (-646 (-952 (-551))) (-317 (-551))) 196) (($ (-1183) (-646 (-952 (-551))) (-317 (-382))) 197) (($ (-1183) (-646 (-952 (-551))) (-317 (-169 (-382)))) 198)) (-3473 (((-112) $ $) NIL)))
-(((-333) (-13 (-1107) (-10 -8 (-15 -1803 ($ (-1098 (-952 (-551))) $)) (-15 -1803 ($ (-1098 (-952 (-551))) (-952 (-551)) $)) (-15 -1802 ($ (-1182) $)) (-15 -1801 ($ (-1182) $)) (-15 -1800 ($ (-1126))) (-15 -1799 ($ (-1126))) (-15 -1798 ($ (-1165))) (-15 -1798 ($ (-646 (-1165)))) (-15 -1797 ($ (-1165))) (-15 -1796 ($)) (-15 -1796 ($ (-317 (-704)))) (-15 -1796 ($ (-317 (-706)))) (-15 -1796 ($ (-317 (-699)))) (-15 -1796 ($ (-317 (-382)))) (-15 -1796 ($ (-317 (-551)))) (-15 -1796 ($ (-317 (-169 (-382))))) (-15 -1795 ($ (-1182) $)) (-15 -1795 ($ (-1182) $ $)) (-15 -3004 ($ (-1183) (-1165))) (-15 -3004 ($ (-1183) (-317 (-706)))) (-15 -3004 ($ (-1183) (-317 (-704)))) (-15 -3004 ($ (-1183) (-317 (-699)))) (-15 -3004 ($ (-1183) (-694 (-706)))) (-15 -3004 ($ (-1183) (-694 (-704)))) (-15 -3004 ($ (-1183) (-694 (-699)))) (-15 -3004 ($ (-1183) (-1272 (-706)))) (-15 -3004 ($ (-1183) (-1272 (-704)))) (-15 -3004 ($ (-1183) (-1272 (-699)))) (-15 -3004 ($ (-1183) (-694 (-317 (-706))))) (-15 -3004 ($ (-1183) (-694 (-317 (-704))))) (-15 -3004 ($ (-1183) (-694 (-317 (-699))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-706))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-704))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-699))))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-706)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-704)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-699)))) (-15 -3004 ($ (-1183) (-317 (-551)))) (-15 -3004 ($ (-1183) (-317 (-382)))) (-15 -3004 ($ (-1183) (-317 (-169 (-382))))) (-15 -3004 ($ (-1183) (-694 (-317 (-551))))) (-15 -3004 ($ (-1183) (-694 (-317 (-382))))) (-15 -3004 ($ (-1183) (-694 (-317 (-169 (-382)))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-551))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-382))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-169 (-382)))))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-551)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-382)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-169 (-382))))) (-15 -1794 ($ (-646 $))) (-15 -1793 ($)) (-15 -1792 ($)) (-15 -1791 ($ (-646 (-868)))) (-15 -1790 ($ (-1183) (-646 (-1183)))) (-15 -1789 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1788 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-646 (-952 (-551)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3845 (-112)) (|:| -3844 (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |blockBranch| (-646 $)) (|:| |commentBranch| (-646 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -1613 (-1098 (-952 (-551)))) (|:| |span| (-952 (-551))) (|:| -3671 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3671 $))) (|:| |commonBranch| (-2 (|:| -3991 (-1183)) (|:| |contents| (-646 (-1183))))) (|:| |printBranch| (-646 (-868)))) $)) (-15 -1787 ((-1278) $)) (-15 -1786 ((-1109) $)) (-15 -1785 ((-1126) (-1126)))))) (T -333))
-((-1803 (*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-952 (-551)))) (-5 *1 (-333)))) (-1803 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1098 (-952 (-551)))) (-5 *3 (-952 (-551))) (-5 *1 (-333)))) (-1802 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1801 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-1799 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-1798 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-1798 (*1 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-333)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-1796 (*1 *1) (-5 *1 (-333))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-704))) (-5 *1 (-333)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-706))) (-5 *1 (-333)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-333)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-5 *1 (-333)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-5 *1 (-333)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-382)))) (-5 *1 (-333)))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-706))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-704))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-699))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-706))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-704))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-699))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-706)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-704)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-699)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-706)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-704)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-699)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-706))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-704))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-699))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-551))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-382))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-169 (-382)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-551)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-382)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-169 (-382))))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-551)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-382)))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-169 (-382))))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-551))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-382))) (-5 *1 (-333)))) (-3004 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-169 (-382)))) (-5 *1 (-333)))) (-1794 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-5 *1 (-333)))) (-1793 (*1 *1) (-5 *1 (-333))) (-1792 (*1 *1) (-5 *1 (-333))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-333)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-333)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-646 (-952 (-551)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333)) (|:| |elseClause| (-333)))) (|:| |returnBranch| (-2 (|:| -3845 (-112)) (|:| -3844 (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |blockBranch| (-646 (-333))) (|:| |commentBranch| (-646 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -1613 (-1098 (-952 (-551)))) (|:| |span| (-952 (-551))) (|:| -3671 (-333)))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3671 (-333)))) (|:| |commonBranch| (-2 (|:| -3991 (-1183)) (|:| |contents| (-646 (-1183))))) (|:| |printBranch| (-646 (-868))))) (-5 *1 (-333)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-333)))) (-1785 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(-13 (-1107) (-10 -8 (-15 -1803 ($ (-1098 (-952 (-551))) $)) (-15 -1803 ($ (-1098 (-952 (-551))) (-952 (-551)) $)) (-15 -1802 ($ (-1182) $)) (-15 -1801 ($ (-1182) $)) (-15 -1800 ($ (-1126))) (-15 -1799 ($ (-1126))) (-15 -1798 ($ (-1165))) (-15 -1798 ($ (-646 (-1165)))) (-15 -1797 ($ (-1165))) (-15 -1796 ($)) (-15 -1796 ($ (-317 (-704)))) (-15 -1796 ($ (-317 (-706)))) (-15 -1796 ($ (-317 (-699)))) (-15 -1796 ($ (-317 (-382)))) (-15 -1796 ($ (-317 (-551)))) (-15 -1796 ($ (-317 (-169 (-382))))) (-15 -1795 ($ (-1182) $)) (-15 -1795 ($ (-1182) $ $)) (-15 -3004 ($ (-1183) (-1165))) (-15 -3004 ($ (-1183) (-317 (-706)))) (-15 -3004 ($ (-1183) (-317 (-704)))) (-15 -3004 ($ (-1183) (-317 (-699)))) (-15 -3004 ($ (-1183) (-694 (-706)))) (-15 -3004 ($ (-1183) (-694 (-704)))) (-15 -3004 ($ (-1183) (-694 (-699)))) (-15 -3004 ($ (-1183) (-1272 (-706)))) (-15 -3004 ($ (-1183) (-1272 (-704)))) (-15 -3004 ($ (-1183) (-1272 (-699)))) (-15 -3004 ($ (-1183) (-694 (-317 (-706))))) (-15 -3004 ($ (-1183) (-694 (-317 (-704))))) (-15 -3004 ($ (-1183) (-694 (-317 (-699))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-706))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-704))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-699))))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-706)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-704)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-699)))) (-15 -3004 ($ (-1183) (-317 (-551)))) (-15 -3004 ($ (-1183) (-317 (-382)))) (-15 -3004 ($ (-1183) (-317 (-169 (-382))))) (-15 -3004 ($ (-1183) (-694 (-317 (-551))))) (-15 -3004 ($ (-1183) (-694 (-317 (-382))))) (-15 -3004 ($ (-1183) (-694 (-317 (-169 (-382)))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-551))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-382))))) (-15 -3004 ($ (-1183) (-1272 (-317 (-169 (-382)))))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-551)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-382)))) (-15 -3004 ($ (-1183) (-646 (-952 (-551))) (-317 (-169 (-382))))) (-15 -1794 ($ (-646 $))) (-15 -1793 ($)) (-15 -1792 ($)) (-15 -1791 ($ (-646 (-868)))) (-15 -1790 ($ (-1183) (-646 (-1183)))) (-15 -1789 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1788 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-646 (-952 (-551)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3845 (-112)) (|:| -3844 (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868)))))) (|:| |blockBranch| (-646 $)) (|:| |commentBranch| (-646 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -1613 (-1098 (-952 (-551)))) (|:| |span| (-952 (-551))) (|:| -3671 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3671 $))) (|:| |commonBranch| (-2 (|:| -3991 (-1183)) (|:| |contents| (-646 (-1183))))) (|:| |printBranch| (-646 (-868)))) $)) (-15 -1787 ((-1278) $)) (-15 -1786 ((-1109) $)) (-15 -1785 ((-1126) (-1126)))))
-((-2986 (((-112) $ $) NIL)) (-1804 (((-112) $) 13)) (-4088 (($ |#1|) 10)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4084 (($ |#1|) 12)) (-4396 (((-868) $) 19)) (-3680 (((-112) $ $) NIL)) (-2403 ((|#1| $) 14)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 21)))
-(((-334 |#1|) (-13 (-855) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -4084 ($ |#1|)) (-15 -1804 ((-112) $)) (-15 -2403 (|#1| $)))) (-855)) (T -334))
-((-4088 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-4084 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))) (-2403 (*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))))
-(-13 (-855) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -4084 ($ |#1|)) (-15 -1804 ((-112) $)) (-15 -2403 (|#1| $))))
-((-1805 (((-333) (-1183) (-952 (-551))) 23)) (-1806 (((-333) (-1183) (-952 (-551))) 27)) (-2497 (((-333) (-1183) (-1098 (-952 (-551))) (-1098 (-952 (-551)))) 26) (((-333) (-1183) (-952 (-551)) (-952 (-551))) 24)) (-1807 (((-333) (-1183) (-952 (-551))) 31)))
-(((-335) (-10 -7 (-15 -1805 ((-333) (-1183) (-952 (-551)))) (-15 -2497 ((-333) (-1183) (-952 (-551)) (-952 (-551)))) (-15 -2497 ((-333) (-1183) (-1098 (-952 (-551))) (-1098 (-952 (-551))))) (-15 -1806 ((-333) (-1183) (-952 (-551)))) (-15 -1807 ((-333) (-1183) (-952 (-551)))))) (T -335))
-((-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-952 (-551)))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))))
-(-10 -7 (-15 -1805 ((-333) (-1183) (-952 (-551)))) (-15 -2497 ((-333) (-1183) (-952 (-551)) (-952 (-551)))) (-15 -2497 ((-333) (-1183) (-1098 (-952 (-551))) (-1098 (-952 (-551))))) (-15 -1806 ((-333) (-1183) (-952 (-551)))) (-15 -1807 ((-333) (-1183) (-952 (-551)))))
-((-2986 (((-112) $ $) NIL)) (-1808 (((-511) $) 20)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1809 (((-964 (-776)) $) 18)) (-1811 (((-251) $) 7)) (-4396 (((-868) $) 26)) (-2398 (((-964 (-185 (-139))) $) 16)) (-3680 (((-112) $ $) NIL)) (-1810 (((-646 (-878 (-1188) (-776))) $) 12)) (-3473 (((-112) $ $) 22)))
-(((-336) (-13 (-1107) (-10 -8 (-15 -1811 ((-251) $)) (-15 -1810 ((-646 (-878 (-1188) (-776))) $)) (-15 -1809 ((-964 (-776)) $)) (-15 -2398 ((-964 (-185 (-139))) $)) (-15 -1808 ((-511) $))))) (T -336))
-((-1811 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-646 (-878 (-1188) (-776)))) (-5 *1 (-336)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-964 (-185 (-139)))) (-5 *1 (-336)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
-(-13 (-1107) (-10 -8 (-15 -1811 ((-251) $)) (-15 -1810 ((-646 (-878 (-1188) (-776))) $)) (-15 -1809 ((-964 (-776)) $)) (-15 -2398 ((-964 (-185 (-139))) $)) (-15 -1808 ((-511) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4292 (($ $) 33)) (-1814 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-1812 (((-1272 |#4|) $) 134)) (-2158 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 31)) (-3682 (((-1126) $) NIL)) (-2590 (((-3 |#4| "failed") $) 36)) (-1813 (((-1272 |#4|) $) 126)) (-1815 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-551)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3877 (((-2 (|:| -2505 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4396 (((-868) $) 17)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 14 T CONST)) (-3473 (((-112) $ $) 20)) (-4287 (($ $) 27) (($ $ $) NIL)) (-4289 (($ $ $) 25)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 23)))
-(((-337 |#1| |#2| |#3| |#4|) (-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1813 ((-1272 |#4|) $)) (-15 -1812 ((-1272 |#4|) $)))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -337))
-((-1813 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-1272 *6)) (-5 *1 (-337 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))) (-1812 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-1272 *6)) (-5 *1 (-337 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
-(-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1813 ((-1272 |#4|) $)) (-15 -1812 ((-1272 |#4|) $))))
-((-4408 (((-337 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-337 |#1| |#2| |#3| |#4|)) 33)))
-(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4408 ((-337 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-337 |#1| |#2| |#3| |#4|)))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-367) (-1248 |#5|) (-1248 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -338))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-337 *5 *6 *7 *8)) (-4 *5 (-367)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *9 (-367)) (-4 *10 (-1248 *9)) (-4 *11 (-1248 (-412 *10))) (-5 *2 (-337 *9 *10 *11 *12)) (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-346 *9 *10 *11)))))
-(-10 -7 (-15 -4408 ((-337 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-337 |#1| |#2| |#3| |#4|))))
-((-1814 (((-112) $) 14)))
-(((-339 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1814 ((-112) |#1|))) (-340 |#2| |#3| |#4| |#5|) (-367) (-1248 |#2|) (-1248 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -339))
-NIL
-(-10 -8 (-15 -1814 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4292 (($ $) 29)) (-1814 (((-112) $) 28)) (-3681 (((-1165) $) 10)) (-2158 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 35)) (-3682 (((-1126) $) 11)) (-2590 (((-3 |#4| "failed") $) 27)) (-1815 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-551)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3877 (((-2 (|:| -2505 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24)))
-(((-340 |#1| |#2| |#3| |#4|) (-140) (-367) (-1248 |t#1|) (-1248 (-412 |t#2|)) (-346 |t#1| |t#2| |t#3|)) (T -340))
-((-2158 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-418 *4 (-412 *4) *5 *6)))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) (-4 *1 (-340 *3 *4 *5 *6)))) (-1815 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) (-1815 (*1 *1 *2 *2) (-12 (-4 *2 (-367)) (-4 *3 (-1248 *2)) (-4 *4 (-1248 (-412 *3))) (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) (-1815 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-551)) (-4 *2 (-367)) (-4 *4 (-1248 *2)) (-4 *5 (-1248 (-412 *4))) (-4 *1 (-340 *2 *4 *5 *6)) (-4 *6 (-346 *2 *4 *5)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-2 (|:| -2505 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) (-4292 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1248 *2)) (-4 *4 (-1248 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))) (-2590 (*1 *2 *1) (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *2 (-346 *3 *4 *5)))) (-1815 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-367)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3))) (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2158 ((-418 |t#2| (-412 |t#2|) |t#3| |t#4|) $)) (-15 -1815 ($ (-418 |t#2| (-412 |t#2|) |t#3| |t#4|))) (-15 -1815 ($ |t#4|)) (-15 -1815 ($ |t#1| |t#1|)) (-15 -1815 ($ |t#1| |t#1| (-551))) (-15 -3877 ((-2 (|:| -2505 (-418 |t#2| (-412 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4292 ($ $)) (-15 -1814 ((-112) $)) (-15 -2590 ((-3 |t#4| "failed") $)) (-15 -1815 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-1107) . T))
-((-4217 (($ $ (-1183) |#2|) NIL) (($ $ (-646 (-1183)) (-646 |#2|)) 20) (($ $ (-646 (-296 |#2|))) 15) (($ $ (-296 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-646 |#2|) (-646 |#2|)) NIL)) (-4249 (($ $ |#2|) 11)))
-(((-341 |#1| |#2|) (-10 -8 (-15 -4249 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 |#2|))) (-15 -4217 (|#1| |#1| (-1183) |#2|))) (-342 |#2|) (-1107)) (T -341))
-NIL
-(-10 -8 (-15 -4249 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 |#2|))) (-15 -4217 (|#1| |#1| (-1183) |#2|)))
-((-4408 (($ (-1 |#1| |#1|) $) 6)) (-4217 (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 16 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-646 (-296 |#1|))) 15 (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) 14 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-312 |#1|))) (($ $ (-646 |#1|) (-646 |#1|)) 12 (|has| |#1| (-312 |#1|)))) (-4249 (($ $ |#1|) 11 (|has| |#1| (-289 |#1| |#1|)))))
-(((-342 |#1|) (-140) (-1107)) (T -342))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1107)))))
-(-13 (-10 -8 (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-289 |t#1| |t#1|)) (-6 (-289 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-519 (-1183) |t#1|)) (-6 (-519 (-1183) |t#1|)) |%noBranch|)))
+((-3371 (*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *3)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *4)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1273 *3)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3)))) (-2760 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3)))) (-3096 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1179 *1)) (-4 *1 (-332 *4)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-1529 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-3384 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2290 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))) (-1500 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))))
+(-13 (-1292 |t#1|) (-1044 |t#1|) (-10 -8 (-15 -3371 ((-1273 $))) (-15 -3371 ((-1273 $) (-927))) (-15 -1949 ((-1273 |t#1|) $)) (-15 -1949 ((-694 |t#1|) (-1273 $))) (-15 -2806 ($ (-1273 |t#1|))) (-15 -3397 ((-1179 |t#1|) $)) (-15 -2760 ((-1179 |t#1|))) (-15 -3096 ((-927))) (-15 -2091 ((-927) $)) (-15 -3334 (|t#1| $)) (-15 -3057 (|t#1| $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-353)) (-15 -3397 ((-1179 $) $ (-927))) (-15 -3334 ($ $ (-927))) (-15 -3057 ($ $ (-927))) (-15 -1529 ($)) (-15 -3384 ($)) (-15 -3359 ((-112) $)) (-15 -2290 ($)) (-15 -1518 ($ $ (-1179 |t#1|))) (-15 -1509 ((-1179 |t#1|) $)) (-15 -1500 ((-1179 |t#1|) $)) (-15 -1500 ((-3 (-1179 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2718 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) |has| |#1| (-372)) ((-244) . T) ((-293) . T) ((-310) . T) ((-1292 |#1|) . T) ((-367) . T) ((-407) -2718 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-372) |has| |#1| (-372)) ((-353) |has| |#1| (-372)) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-372)) ((-1227) . T) ((-1280 |#1|) . T))
+((-2383 (((-112) $ $) NIL)) (-1632 (($ (-1182) $) 100)) (-4110 (($) 89)) (-1541 (((-1126) (-1126)) 9)) (-1717 (($) 90)) (-1600 (($) 104) (($ (-319 (-704))) 112) (($ (-319 (-706))) 108) (($ (-319 (-699))) 116) (($ (-319 (-383))) 123) (($ (-319 (-569))) 119) (($ (-319 (-170 (-383)))) 127)) (-1621 (($ (-1182) $) 101)) (-1574 (($ (-649 (-867))) 91)) (-1563 (((-1278) $) 87)) (-2847 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1611 (($ (-1126)) 58)) (-1552 (((-1110) $) 30)) (-1642 (($ (-1098 (-958 (-569))) $) 97) (($ (-1098 (-958 (-569))) (-958 (-569)) $) 98)) (-3244 (($ (-1126)) 99)) (-1311 (($ (-1182) $) 129) (($ (-1182) $ $) 130)) (-3277 (($ (-1183) (-649 (-1183))) 88)) (-3671 (($ (-1165)) 94) (($ (-649 (-1165))) 92)) (-2388 (((-867) $) 132)) (-3102 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4196 (-112)) (|:| -2150 (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -3396 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3473 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3473 $))) (|:| |commonBranch| (-2 (|:| -3458 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $) 50)) (-2229 (($ (-1165)) 202)) (-1587 (($ (-649 $)) 128)) (-2040 (((-112) $ $) NIL)) (-2758 (($ (-1183) (-1165)) 135) (($ (-1183) (-319 (-706))) 175) (($ (-1183) (-319 (-704))) 176) (($ (-1183) (-319 (-699))) 177) (($ (-1183) (-694 (-706))) 138) (($ (-1183) (-694 (-704))) 141) (($ (-1183) (-694 (-699))) 144) (($ (-1183) (-1273 (-706))) 147) (($ (-1183) (-1273 (-704))) 150) (($ (-1183) (-1273 (-699))) 153) (($ (-1183) (-694 (-319 (-706)))) 156) (($ (-1183) (-694 (-319 (-704)))) 159) (($ (-1183) (-694 (-319 (-699)))) 162) (($ (-1183) (-1273 (-319 (-706)))) 165) (($ (-1183) (-1273 (-319 (-704)))) 168) (($ (-1183) (-1273 (-319 (-699)))) 171) (($ (-1183) (-649 (-958 (-569))) (-319 (-706))) 172) (($ (-1183) (-649 (-958 (-569))) (-319 (-704))) 173) (($ (-1183) (-649 (-958 (-569))) (-319 (-699))) 174) (($ (-1183) (-319 (-569))) 199) (($ (-1183) (-319 (-383))) 200) (($ (-1183) (-319 (-170 (-383)))) 201) (($ (-1183) (-694 (-319 (-569)))) 180) (($ (-1183) (-694 (-319 (-383)))) 183) (($ (-1183) (-694 (-319 (-170 (-383))))) 186) (($ (-1183) (-1273 (-319 (-569)))) 189) (($ (-1183) (-1273 (-319 (-383)))) 192) (($ (-1183) (-1273 (-319 (-170 (-383))))) 195) (($ (-1183) (-649 (-958 (-569))) (-319 (-569))) 196) (($ (-1183) (-649 (-958 (-569))) (-319 (-383))) 197) (($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383)))) 198)) (-2853 (((-112) $ $) NIL)))
+(((-333) (-13 (-1106) (-10 -8 (-15 -1642 ($ (-1098 (-958 (-569))) $)) (-15 -1642 ($ (-1098 (-958 (-569))) (-958 (-569)) $)) (-15 -1632 ($ (-1182) $)) (-15 -1621 ($ (-1182) $)) (-15 -1611 ($ (-1126))) (-15 -3244 ($ (-1126))) (-15 -3671 ($ (-1165))) (-15 -3671 ($ (-649 (-1165)))) (-15 -2229 ($ (-1165))) (-15 -1600 ($)) (-15 -1600 ($ (-319 (-704)))) (-15 -1600 ($ (-319 (-706)))) (-15 -1600 ($ (-319 (-699)))) (-15 -1600 ($ (-319 (-383)))) (-15 -1600 ($ (-319 (-569)))) (-15 -1600 ($ (-319 (-170 (-383))))) (-15 -1311 ($ (-1182) $)) (-15 -1311 ($ (-1182) $ $)) (-15 -2758 ($ (-1183) (-1165))) (-15 -2758 ($ (-1183) (-319 (-706)))) (-15 -2758 ($ (-1183) (-319 (-704)))) (-15 -2758 ($ (-1183) (-319 (-699)))) (-15 -2758 ($ (-1183) (-694 (-706)))) (-15 -2758 ($ (-1183) (-694 (-704)))) (-15 -2758 ($ (-1183) (-694 (-699)))) (-15 -2758 ($ (-1183) (-1273 (-706)))) (-15 -2758 ($ (-1183) (-1273 (-704)))) (-15 -2758 ($ (-1183) (-1273 (-699)))) (-15 -2758 ($ (-1183) (-694 (-319 (-706))))) (-15 -2758 ($ (-1183) (-694 (-319 (-704))))) (-15 -2758 ($ (-1183) (-694 (-319 (-699))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-706))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-704))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-699))))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-706)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-704)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-699)))) (-15 -2758 ($ (-1183) (-319 (-569)))) (-15 -2758 ($ (-1183) (-319 (-383)))) (-15 -2758 ($ (-1183) (-319 (-170 (-383))))) (-15 -2758 ($ (-1183) (-694 (-319 (-569))))) (-15 -2758 ($ (-1183) (-694 (-319 (-383))))) (-15 -2758 ($ (-1183) (-694 (-319 (-170 (-383)))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-569))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-383))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-170 (-383)))))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-569)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-383)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -1587 ($ (-649 $))) (-15 -4110 ($)) (-15 -1717 ($)) (-15 -1574 ($ (-649 (-867)))) (-15 -3277 ($ (-1183) (-649 (-1183)))) (-15 -2847 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3102 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4196 (-112)) (|:| -2150 (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -3396 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3473 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3473 $))) (|:| |commonBranch| (-2 (|:| -3458 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -1563 ((-1278) $)) (-15 -1552 ((-1110) $)) (-15 -1541 ((-1126) (-1126)))))) (T -333))
+((-1642 (*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *1 (-333)))) (-1642 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *3 (-958 (-569))) (-5 *1 (-333)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-333)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-1600 (*1 *1) (-5 *1 (-333))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-1311 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1311 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-706))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-704))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-699))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-706))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-704))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-699))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-706)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-704)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-699)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-706))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-704))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-699))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-569))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-383))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-569)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-383)))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-569))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-383))) (-5 *1 (-333)))) (-2758 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-1587 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))) (-4110 (*1 *1) (-5 *1 (-333))) (-1717 (*1 *1) (-5 *1 (-333))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))) (-3277 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-333)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333)) (|:| |elseClause| (-333)))) (|:| |returnBranch| (-2 (|:| -4196 (-112)) (|:| -2150 (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |blockBranch| (-649 (-333))) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -3396 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3473 (-333)))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3473 (-333)))) (|:| |commonBranch| (-2 (|:| -3458 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867))))) (-5 *1 (-333)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-333)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
+(-13 (-1106) (-10 -8 (-15 -1642 ($ (-1098 (-958 (-569))) $)) (-15 -1642 ($ (-1098 (-958 (-569))) (-958 (-569)) $)) (-15 -1632 ($ (-1182) $)) (-15 -1621 ($ (-1182) $)) (-15 -1611 ($ (-1126))) (-15 -3244 ($ (-1126))) (-15 -3671 ($ (-1165))) (-15 -3671 ($ (-649 (-1165)))) (-15 -2229 ($ (-1165))) (-15 -1600 ($)) (-15 -1600 ($ (-319 (-704)))) (-15 -1600 ($ (-319 (-706)))) (-15 -1600 ($ (-319 (-699)))) (-15 -1600 ($ (-319 (-383)))) (-15 -1600 ($ (-319 (-569)))) (-15 -1600 ($ (-319 (-170 (-383))))) (-15 -1311 ($ (-1182) $)) (-15 -1311 ($ (-1182) $ $)) (-15 -2758 ($ (-1183) (-1165))) (-15 -2758 ($ (-1183) (-319 (-706)))) (-15 -2758 ($ (-1183) (-319 (-704)))) (-15 -2758 ($ (-1183) (-319 (-699)))) (-15 -2758 ($ (-1183) (-694 (-706)))) (-15 -2758 ($ (-1183) (-694 (-704)))) (-15 -2758 ($ (-1183) (-694 (-699)))) (-15 -2758 ($ (-1183) (-1273 (-706)))) (-15 -2758 ($ (-1183) (-1273 (-704)))) (-15 -2758 ($ (-1183) (-1273 (-699)))) (-15 -2758 ($ (-1183) (-694 (-319 (-706))))) (-15 -2758 ($ (-1183) (-694 (-319 (-704))))) (-15 -2758 ($ (-1183) (-694 (-319 (-699))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-706))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-704))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-699))))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-706)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-704)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-699)))) (-15 -2758 ($ (-1183) (-319 (-569)))) (-15 -2758 ($ (-1183) (-319 (-383)))) (-15 -2758 ($ (-1183) (-319 (-170 (-383))))) (-15 -2758 ($ (-1183) (-694 (-319 (-569))))) (-15 -2758 ($ (-1183) (-694 (-319 (-383))))) (-15 -2758 ($ (-1183) (-694 (-319 (-170 (-383)))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-569))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-383))))) (-15 -2758 ($ (-1183) (-1273 (-319 (-170 (-383)))))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-569)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-383)))) (-15 -2758 ($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -1587 ($ (-649 $))) (-15 -4110 ($)) (-15 -1717 ($)) (-15 -1574 ($ (-649 (-867)))) (-15 -3277 ($ (-1183) (-649 (-1183)))) (-15 -2847 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3102 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4196 (-112)) (|:| -2150 (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -3396 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3473 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3473 $))) (|:| |commonBranch| (-2 (|:| -3458 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -1563 ((-1278) $)) (-15 -1552 ((-1110) $)) (-15 -1541 ((-1126) (-1126)))))
+((-2383 (((-112) $ $) NIL)) (-1653 (((-112) $) 13)) (-2534 (($ |#1|) 10)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2545 (($ |#1|) 12)) (-2388 (((-867) $) 19)) (-2040 (((-112) $ $) NIL)) (-1817 ((|#1| $) 14)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 21)))
+(((-334 |#1|) (-13 (-855) (-10 -8 (-15 -2534 ($ |#1|)) (-15 -2545 ($ |#1|)) (-15 -1653 ((-112) $)) (-15 -1817 (|#1| $)))) (-855)) (T -334))
+((-2534 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2545 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))) (-1817 (*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))))
+(-13 (-855) (-10 -8 (-15 -2534 ($ |#1|)) (-15 -2545 ($ |#1|)) (-15 -1653 ((-112) $)) (-15 -1817 (|#1| $))))
+((-1663 (((-333) (-1183) (-958 (-569))) 23)) (-1674 (((-333) (-1183) (-958 (-569))) 27)) (-3191 (((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569)))) 26) (((-333) (-1183) (-958 (-569)) (-958 (-569))) 24)) (-1688 (((-333) (-1183) (-958 (-569))) 31)))
+(((-335) (-10 -7 (-15 -1663 ((-333) (-1183) (-958 (-569)))) (-15 -3191 ((-333) (-1183) (-958 (-569)) (-958 (-569)))) (-15 -3191 ((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569))))) (-15 -1674 ((-333) (-1183) (-958 (-569)))) (-15 -1688 ((-333) (-1183) (-958 (-569)))))) (T -335))
+((-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-958 (-569)))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))))
+(-10 -7 (-15 -1663 ((-333) (-1183) (-958 (-569)))) (-15 -3191 ((-333) (-1183) (-958 (-569)) (-958 (-569)))) (-15 -3191 ((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569))))) (-15 -1674 ((-333) (-1183) (-958 (-569)))) (-15 -1688 ((-333) (-1183) (-958 (-569)))))
+((-2383 (((-112) $ $) NIL)) (-1698 (((-511) $) 20)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1712 (((-964 (-776)) $) 18)) (-1737 (((-251) $) 7)) (-2388 (((-867) $) 26)) (-1894 (((-964 (-184 (-139))) $) 16)) (-2040 (((-112) $ $) NIL)) (-1725 (((-649 (-878 (-1188) (-776))) $) 12)) (-2853 (((-112) $ $) 22)))
+(((-336) (-13 (-1106) (-10 -8 (-15 -1737 ((-251) $)) (-15 -1725 ((-649 (-878 (-1188) (-776))) $)) (-15 -1712 ((-964 (-776)) $)) (-15 -1894 ((-964 (-184 (-139))) $)) (-15 -1698 ((-511) $))))) (T -336))
+((-1737 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1188) (-776)))) (-5 *1 (-336)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
+(-13 (-1106) (-10 -8 (-15 -1737 ((-251) $)) (-15 -1725 ((-649 (-878 (-1188) (-776))) $)) (-15 -1712 ((-964 (-776)) $)) (-15 -1894 ((-964 (-184 (-139))) $)) (-15 -1698 ((-511) $))))
+((-1324 (((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)) 33)))
+(((-337 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1324 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-367) (-1249 |#5|) (-1249 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -337))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *9 (-367)) (-4 *10 (-1249 *9)) (-4 *11 (-1249 (-412 *10))) (-5 *2 (-340 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-346 *9 *10 *11)))))
+(-10 -7 (-15 -1324 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|))))
+((-1772 (((-112) $) 14)))
+(((-338 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1772 ((-112) |#1|))) (-339 |#2| |#3| |#4| |#5|) (-367) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -338))
+NIL
+(-10 -8 (-15 -1772 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3485 (($ $) 29)) (-1772 (((-112) $) 28)) (-2050 (((-1165) $) 10)) (-4225 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 35)) (-3461 (((-1126) $) 11)) (-2290 (((-3 |#4| "failed") $) 27)) (-1783 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-569)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3101 (((-2 (|:| -4238 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
+(((-339 |#1| |#2| |#3| |#4|) (-140) (-367) (-1249 |t#1|) (-1249 (-412 |t#2|)) (-346 |t#1| |t#2| |t#3|)) (T -339))
+((-4225 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-418 *4 (-412 *4) *5 *6)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) (-4 *1 (-339 *3 *4 *5 *6)))) (-1783 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) (-1783 (*1 *1 *2 *2) (-12 (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))) (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) (-1783 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1249 *2)) (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6)) (-4 *6 (-346 *2 *4 *5)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-2 (|:| -4238 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))) (-2290 (*1 *2 *1) (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *2 (-346 *3 *4 *5)))) (-1783 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-367)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4225 ((-418 |t#2| (-412 |t#2|) |t#3| |t#4|) $)) (-15 -1783 ($ (-418 |t#2| (-412 |t#2|) |t#3| |t#4|))) (-15 -1783 ($ |t#4|)) (-15 -1783 ($ |t#1| |t#1|)) (-15 -1783 ($ |t#1| |t#1| (-569))) (-15 -3101 ((-2 (|:| -4238 (-418 |t#2| (-412 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3485 ($ $)) (-15 -1772 ((-112) $)) (-15 -2290 ((-3 |t#4| "failed") $)) (-15 -1783 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3485 (($ $) 33)) (-1772 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-1749 (((-1273 |#4|) $) 134)) (-4225 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 31)) (-3461 (((-1126) $) NIL)) (-2290 (((-3 |#4| "failed") $) 36)) (-1761 (((-1273 |#4|) $) 126)) (-1783 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-569)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3101 (((-2 (|:| -4238 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2388 (((-867) $) 17)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 14 T CONST)) (-2853 (((-112) $ $) 20)) (-2946 (($ $) 27) (($ $ $) NIL)) (-2935 (($ $ $) 25)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 23)))
+(((-340 |#1| |#2| |#3| |#4|) (-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1761 ((-1273 |#4|) $)) (-15 -1749 ((-1273 |#4|) $)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -340))
+((-1761 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))) (-1749 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
+(-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1761 ((-1273 |#4|) $)) (-15 -1749 ((-1273 |#4|) $))))
+((-1679 (($ $ (-1183) |#2|) NIL) (($ $ (-649 (-1183)) (-649 |#2|)) 20) (($ $ (-649 (-297 |#2|))) 15) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-1852 (($ $ |#2|) 11)))
+(((-341 |#1| |#2|) (-10 -8 (-15 -1852 (|#1| |#1| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 |#2|))) (-15 -1679 (|#1| |#1| (-1183) |#2|))) (-342 |#2|) (-1106)) (T -341))
+NIL
+(-10 -8 (-15 -1852 (|#1| |#1| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 |#2|))) (-15 -1679 (|#1| |#1| (-1183) |#2|)))
+((-1324 (($ (-1 |#1| |#1|) $) 6)) (-1679 (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 16 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-297 |#1|))) 15 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 14 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-312 |#1|))) (($ $ (-649 |#1|) (-649 |#1|)) 12 (|has| |#1| (-312 |#1|)))) (-1852 (($ $ |#1|) 11 (|has| |#1| (-289 |#1| |#1|)))))
+(((-342 |#1|) (-140) (-1106)) (T -342))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1106)))))
+(-13 (-10 -8 (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-289 |t#1| |t#1|)) (-6 (-289 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-519 (-1183) |t#1|)) (-6 (-519 (-1183) |t#1|)) |%noBranch|)))
(((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1183)) $) NIL)) (-1816 (((-112)) 96) (((-112) (-112)) 97)) (-1718 (((-646 (-616 $)) $) NIL)) (-3933 (($ $) NIL)) (-4089 (($ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1722 (($ $ (-296 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL)) (-3456 (($ $) NIL)) (-3931 (($ $) NIL)) (-4088 (($ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-616 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-317 |#3|)) 76) (((-3 $ "failed") (-1183)) 103) (((-3 $ "failed") (-317 (-551))) 64 (|has| |#3| (-1044 (-551)))) (((-3 $ "failed") (-412 (-952 (-551)))) 70 (|has| |#3| (-1044 (-551)))) (((-3 $ "failed") (-952 (-551))) 65 (|has| |#3| (-1044 (-551)))) (((-3 $ "failed") (-317 (-382))) 94 (|has| |#3| (-1044 (-382)))) (((-3 $ "failed") (-412 (-952 (-382)))) 88 (|has| |#3| (-1044 (-382)))) (((-3 $ "failed") (-952 (-382))) 83 (|has| |#3| (-1044 (-382))))) (-3594 (((-616 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 77) (($ (-1183)) 104) (($ (-317 (-551))) 66 (|has| |#3| (-1044 (-551)))) (($ (-412 (-952 (-551)))) 71 (|has| |#3| (-1044 (-551)))) (($ (-952 (-551))) 67 (|has| |#3| (-1044 (-551)))) (($ (-317 (-382))) 95 (|has| |#3| (-1044 (-382)))) (($ (-412 (-952 (-382)))) 89 (|has| |#3| (-1044 (-382)))) (($ (-952 (-382))) 85 (|has| |#3| (-1044 (-382))))) (-3908 (((-3 $ "failed") $) NIL)) (-4077 (($) 101)) (-2991 (($ $) NIL) (($ (-646 $)) NIL)) (-1717 (((-646 (-113)) $) NIL)) (-3466 (((-113) (-113)) NIL)) (-2591 (((-112) $) NIL)) (-3094 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-1715 (((-1177 $) (-616 $)) NIL (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) NIL)) (-1720 (((-3 (-616 $) "failed") $) NIL)) (-1920 (($ $) 99)) (-4392 (($ $) NIL)) (-3681 (((-1165) $) NIL)) (-1719 (((-646 (-616 $)) $) NIL)) (-2402 (($ (-113) $) 98) (($ (-113) (-646 $)) NIL)) (-3053 (((-112) $ (-113)) NIL) (((-112) $ (-1183)) NIL)) (-3021 (((-776) $) NIL)) (-3682 (((-1126) $) NIL)) (-1716 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-4393 (($ $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-1183) (-1 $ (-646 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-646 (-113)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-113) (-1 $ (-646 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4249 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-646 $)) NIL)) (-1721 (($ $) NIL) (($ $ $) NIL)) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL)) (-3623 (($ $) NIL (|has| $ (-1055)))) (-3932 (($ $) NIL)) (-4084 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-616 $)) NIL) (($ |#3|) NIL) (($ (-551)) NIL) (((-317 |#3|) $) 102)) (-3548 (((-776)) NIL T CONST)) (-3008 (($ $) NIL) (($ (-646 $)) NIL)) (-2421 (((-112) (-113)) NIL)) (-3680 (((-112) $ $) NIL)) (-3927 (($ $) NIL)) (-3925 (($ $) NIL)) (-3926 (($ $) NIL)) (-3825 (($ $) NIL)) (-3528 (($) 100 T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL)))
-(((-343 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3594 ($ (-317 |#3|))) (-15 -3595 ((-3 $ "failed") (-317 |#3|))) (-15 -3594 ($ (-1183))) (-15 -3595 ((-3 $ "failed") (-1183))) (-15 -4396 ((-317 |#3|) $)) (IF (|has| |#3| (-1044 (-551))) (PROGN (-15 -3594 ($ (-317 (-551)))) (-15 -3595 ((-3 $ "failed") (-317 (-551)))) (-15 -3594 ($ (-412 (-952 (-551))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-551))))) (-15 -3594 ($ (-952 (-551)))) (-15 -3595 ((-3 $ "failed") (-952 (-551))))) |%noBranch|) (IF (|has| |#3| (-1044 (-382))) (PROGN (-15 -3594 ($ (-317 (-382)))) (-15 -3595 ((-3 $ "failed") (-317 (-382)))) (-15 -3594 ($ (-412 (-952 (-382))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-382))))) (-15 -3594 ($ (-952 (-382)))) (-15 -3595 ((-3 $ "failed") (-952 (-382))))) |%noBranch|) (-15 -3825 ($ $)) (-15 -3456 ($ $)) (-15 -4393 ($ $)) (-15 -4392 ($ $)) (-15 -1920 ($ $)) (-15 -4088 ($ $)) (-15 -4084 ($ $)) (-15 -4089 ($ $)) (-15 -3925 ($ $)) (-15 -3926 ($ $)) (-15 -3927 ($ $)) (-15 -3931 ($ $)) (-15 -3932 ($ $)) (-15 -3933 ($ $)) (-15 -4077 ($)) (-15 -3503 ((-646 (-1183)) $)) (-15 -1816 ((-112))) (-15 -1816 ((-112) (-112))))) (-646 (-1183)) (-646 (-1183)) (-392)) (T -343))
-((-3594 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 *2)) (-14 *4 (-646 *2)) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 *2)) (-14 *4 (-646 *2)) (-4 *5 (-392)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-551)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-551)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-952 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-382)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-382)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-952 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-3825 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3456 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4392 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-1920 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4088 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4084 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4089 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3925 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3927 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3931 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-4077 (*1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183))) (-4 *4 (-392)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-392)))) (-1816 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392)))))
-(-13 (-301) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3594 ($ (-317 |#3|))) (-15 -3595 ((-3 $ "failed") (-317 |#3|))) (-15 -3594 ($ (-1183))) (-15 -3595 ((-3 $ "failed") (-1183))) (-15 -4396 ((-317 |#3|) $)) (IF (|has| |#3| (-1044 (-551))) (PROGN (-15 -3594 ($ (-317 (-551)))) (-15 -3595 ((-3 $ "failed") (-317 (-551)))) (-15 -3594 ($ (-412 (-952 (-551))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-551))))) (-15 -3594 ($ (-952 (-551)))) (-15 -3595 ((-3 $ "failed") (-952 (-551))))) |%noBranch|) (IF (|has| |#3| (-1044 (-382))) (PROGN (-15 -3594 ($ (-317 (-382)))) (-15 -3595 ((-3 $ "failed") (-317 (-382)))) (-15 -3594 ($ (-412 (-952 (-382))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-382))))) (-15 -3594 ($ (-952 (-382)))) (-15 -3595 ((-3 $ "failed") (-952 (-382))))) |%noBranch|) (-15 -3825 ($ $)) (-15 -3456 ($ $)) (-15 -4393 ($ $)) (-15 -4392 ($ $)) (-15 -1920 ($ $)) (-15 -4088 ($ $)) (-15 -4084 ($ $)) (-15 -4089 ($ $)) (-15 -3925 ($ $)) (-15 -3926 ($ $)) (-15 -3927 ($ $)) (-15 -3931 ($ $)) (-15 -3932 ($ $)) (-15 -3933 ($ $)) (-15 -4077 ($)) (-15 -3503 ((-646 (-1183)) $)) (-15 -1816 ((-112))) (-15 -1816 ((-112) (-112)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-912 |#1|) (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| (-912 |#1|) (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-912 |#1|) "failed") $) NIL)) (-3594 (((-912 |#1|) $) NIL)) (-1977 (($ (-1272 (-912 |#1|))) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-912 |#1|) (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| (-912 |#1|) (-372)))) (-1858 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372)))) (($ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| (-912 |#1|) (-372))) (((-837 (-925)) $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| (-912 |#1|) (-372)))) (-2199 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-3554 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 (-912 |#1|)) $) NIL) (((-1177 $) $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-2198 (((-925) $) NIL (|has| (-912 |#1|) (-372)))) (-1782 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372)))) (-1781 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-1177 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-372)))) (-1783 (($ $ (-1177 (-912 |#1|))) NIL (|has| (-912 |#1|) (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-912 |#1|) (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL (|has| (-912 |#1|) (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-912 |#1|) (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 (-912 |#1|))) NIL)) (-1852 (($) NIL (|has| (-912 |#1|) (-372)))) (-1784 (($) NIL (|has| (-912 |#1|) (-372)))) (-3662 (((-1272 (-912 |#1|)) $) NIL) (((-694 (-912 |#1|)) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-912 |#1|) (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-912 |#1|)) NIL)) (-3123 (($ $) NIL (|has| (-912 |#1|) (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3090 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
-(((-344 |#1| |#2|) (-332 (-912 |#1|)) (-925) (-925)) (T -344))
-NIL
-(-332 (-912 |#1|))
-((-1825 (((-2 (|:| |num| (-1272 |#3|)) (|:| |den| |#3|)) $) 39)) (-1977 (($ (-1272 (-412 |#3|)) (-1272 $)) NIL) (($ (-1272 (-412 |#3|))) NIL) (($ (-1272 |#3|) |#3|) 177)) (-1830 (((-1272 $) (-1272 $)) 160)) (-1817 (((-646 (-646 |#2|))) 129)) (-1842 (((-112) |#2| |#2|) 76)) (-3944 (($ $) 151)) (-3819 (((-776)) 176)) (-1831 (((-1272 $) (-1272 $)) 222)) (-1818 (((-646 (-952 |#2|)) (-1183)) 118)) (-1834 (((-112) $) 173)) (-1833 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1820 (((-3 |#3| "failed")) 52)) (-1844 (((-776)) 188)) (-4249 ((|#2| $ |#2| |#2|) 143)) (-1821 (((-3 |#3| "failed")) 71)) (-4260 (($ $ (-1 (-412 |#3|) (-412 |#3|)) (-776)) NIL) (($ $ (-1 (-412 |#3|) (-412 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-1832 (((-1272 $) (-1272 $)) 166)) (-1819 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1843 (((-112)) 34)))
-(((-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -1817 ((-646 (-646 |#2|)))) (-15 -1818 ((-646 (-952 |#2|)) (-1183))) (-15 -1819 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1820 ((-3 |#3| "failed"))) (-15 -1821 ((-3 |#3| "failed"))) (-15 -4249 (|#2| |#1| |#2| |#2|)) (-15 -3944 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1833 ((-112) |#1| |#3|)) (-15 -1833 ((-112) |#1| |#2|)) (-15 -1977 (|#1| (-1272 |#3|) |#3|)) (-15 -1825 ((-2 (|:| |num| (-1272 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1830 ((-1272 |#1|) (-1272 |#1|))) (-15 -1831 ((-1272 |#1|) (-1272 |#1|))) (-15 -1832 ((-1272 |#1|) (-1272 |#1|))) (-15 -1833 ((-112) |#1|)) (-15 -1834 ((-112) |#1|)) (-15 -1842 ((-112) |#2| |#2|)) (-15 -1843 ((-112))) (-15 -1844 ((-776))) (-15 -3819 ((-776))) (-15 -4260 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -4260 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -1977 (|#1| (-1272 (-412 |#3|)))) (-15 -1977 (|#1| (-1272 (-412 |#3|)) (-1272 |#1|)))) (-346 |#2| |#3| |#4|) (-1227) (-1248 |#2|) (-1248 (-412 |#3|))) (T -345))
-((-3819 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1844 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1843 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1842 (*1 *2 *3 *3) (-12 (-4 *3 (-1227)) (-4 *5 (-1248 *3)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) (-1821 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-1820 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-5 *2 (-646 (-952 *5))) (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) (-1817 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-646 (-646 *4))) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))))
-(-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -1817 ((-646 (-646 |#2|)))) (-15 -1818 ((-646 (-952 |#2|)) (-1183))) (-15 -1819 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1820 ((-3 |#3| "failed"))) (-15 -1821 ((-3 |#3| "failed"))) (-15 -4249 (|#2| |#1| |#2| |#2|)) (-15 -3944 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1833 ((-112) |#1| |#3|)) (-15 -1833 ((-112) |#1| |#2|)) (-15 -1977 (|#1| (-1272 |#3|) |#3|)) (-15 -1825 ((-2 (|:| |num| (-1272 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1830 ((-1272 |#1|) (-1272 |#1|))) (-15 -1831 ((-1272 |#1|) (-1272 |#1|))) (-15 -1832 ((-1272 |#1|) (-1272 |#1|))) (-15 -1833 ((-112) |#1|)) (-15 -1834 ((-112) |#1|)) (-15 -1842 ((-112) |#2| |#2|)) (-15 -1843 ((-112))) (-15 -1844 ((-776))) (-15 -3819 ((-776))) (-15 -4260 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -4260 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -1977 (|#1| (-1272 (-412 |#3|)))) (-15 -1977 (|#1| (-1272 (-412 |#3|)) (-1272 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1825 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) 204)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (|has| (-412 |#2|) (-367)))) (-2251 (($ $) 103 (|has| (-412 |#2|) (-367)))) (-2249 (((-112) $) 105 (|has| (-412 |#2|) (-367)))) (-1967 (((-694 (-412 |#2|)) (-1272 $)) 53) (((-694 (-412 |#2|))) 68)) (-3772 (((-412 |#2|) $) 59)) (-1853 (((-1195 (-925) (-776)) (-551)) 155 (|has| (-412 |#2|) (-354)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 122 (|has| (-412 |#2|) (-367)))) (-4419 (((-410 $) $) 123 (|has| (-412 |#2|) (-367)))) (-1763 (((-112) $ $) 113 (|has| (-412 |#2|) (-367)))) (-3558 (((-776)) 96 (|has| (-412 |#2|) (-372)))) (-1839 (((-112)) 221)) (-1838 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 178 (|has| (-412 |#2|) (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 176 (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-3 (-412 |#2|) #1#) $) 173)) (-3594 (((-551) $) 177 (|has| (-412 |#2|) (-1044 (-551)))) (((-412 (-551)) $) 175 (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-412 |#2|) $) 174)) (-1977 (($ (-1272 (-412 |#2|)) (-1272 $)) 55) (($ (-1272 (-412 |#2|))) 71) (($ (-1272 |#2|) |#2|) 203)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-412 |#2|) (-354)))) (-2982 (($ $ $) 117 (|has| (-412 |#2|) (-367)))) (-1966 (((-694 (-412 |#2|)) $ (-1272 $)) 60) (((-694 (-412 |#2|)) $) 66)) (-2445 (((-694 (-551)) (-694 $)) 172 (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 171 (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-412 |#2|))) (|:| |vec| (-1272 (-412 |#2|)))) (-694 $) (-1272 $)) 170) (((-694 (-412 |#2|)) (-694 $)) 169)) (-1830 (((-1272 $) (-1272 $)) 209)) (-4292 (($ |#3|) 166) (((-3 $ "failed") (-412 |#3|)) 163 (|has| (-412 |#2|) (-367)))) (-3908 (((-3 $ "failed") $) 37)) (-1817 (((-646 (-646 |#1|))) 190 (|has| |#1| (-372)))) (-1842 (((-112) |#1| |#1|) 225)) (-3531 (((-925)) 61)) (-3413 (($) 99 (|has| (-412 |#2|) (-372)))) (-1837 (((-112)) 218)) (-1836 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2981 (($ $ $) 116 (|has| (-412 |#2|) (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 111 (|has| (-412 |#2|) (-367)))) (-3944 (($ $) 196)) (-3254 (($) 157 (|has| (-412 |#2|) (-354)))) (-1858 (((-112) $) 158 (|has| (-412 |#2|) (-354)))) (-1951 (($ $ (-776)) 149 (|has| (-412 |#2|) (-354))) (($ $) 148 (|has| (-412 |#2|) (-354)))) (-4173 (((-112) $) 124 (|has| (-412 |#2|) (-367)))) (-4221 (((-925) $) 160 (|has| (-412 |#2|) (-354))) (((-837 (-925)) $) 146 (|has| (-412 |#2|) (-354)))) (-2591 (((-112) $) 35)) (-3819 (((-776)) 228)) (-1831 (((-1272 $) (-1272 $)) 210)) (-3554 (((-412 |#2|) $) 58)) (-1818 (((-646 (-952 |#1|)) (-1183)) 191 (|has| |#1| (-367)))) (-3886 (((-3 $ "failed") $) 150 (|has| (-412 |#2|) (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 120 (|has| (-412 |#2|) (-367)))) (-2202 ((|#3| $) 51 (|has| (-412 |#2|) (-367)))) (-2198 (((-925) $) 98 (|has| (-412 |#2|) (-372)))) (-3499 ((|#3| $) 164)) (-2079 (($ (-646 $)) 109 (|has| (-412 |#2|) (-367))) (($ $ $) 108 (|has| (-412 |#2|) (-367)))) (-3681 (((-1165) $) 10)) (-1826 (((-694 (-412 |#2|))) 205)) (-1828 (((-694 (-412 |#2|))) 207)) (-2824 (($ $) 125 (|has| (-412 |#2|) (-367)))) (-1823 (($ (-1272 |#2|) |#2|) 201)) (-1827 (((-694 (-412 |#2|))) 206)) (-1829 (((-694 (-412 |#2|))) 208)) (-1822 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1824 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) 202)) (-1835 (((-1272 $)) 214)) (-4368 (((-1272 $)) 215)) (-1834 (((-112) $) 213)) (-1833 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3887 (($) 151 (|has| (-412 |#2|) (-354)) CONST)) (-2581 (($ (-925)) 97 (|has| (-412 |#2|) (-372)))) (-1820 (((-3 |#2| "failed")) 193)) (-3682 (((-1126) $) 11)) (-1844 (((-776)) 227)) (-2590 (($) 168)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 110 (|has| (-412 |#2|) (-367)))) (-3582 (($ (-646 $)) 107 (|has| (-412 |#2|) (-367))) (($ $ $) 106 (|has| (-412 |#2|) (-367)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 154 (|has| (-412 |#2|) (-354)))) (-4182 (((-410 $) $) 121 (|has| (-412 |#2|) (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 118 (|has| (-412 |#2|) (-367)))) (-3907 (((-3 $ "failed") $ $) 101 (|has| (-412 |#2|) (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 112 (|has| (-412 |#2|) (-367)))) (-1762 (((-776) $) 114 (|has| (-412 |#2|) (-367)))) (-4249 ((|#1| $ |#1| |#1|) 195)) (-1821 (((-3 |#2| "failed")) 194)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 115 (|has| (-412 |#2|) (-367)))) (-4207 (((-412 |#2|) (-1272 $)) 54) (((-412 |#2|)) 67)) (-1952 (((-776) $) 159 (|has| (-412 |#2|) (-354))) (((-3 (-776) "failed") $ $) 147 (|has| (-412 |#2|) (-354)))) (-4260 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 131 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 130 (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-646 (-1183)) (-646 (-776))) 138 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 139 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-646 (-1183))) 140 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 141 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 143 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-3274 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) 145 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-3274 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-2589 (((-694 (-412 |#2|)) (-1272 $) (-1 (-412 |#2|) (-412 |#2|))) 162 (|has| (-412 |#2|) (-367)))) (-3623 ((|#3|) 167)) (-1852 (($) 156 (|has| (-412 |#2|) (-354)))) (-3662 (((-1272 (-412 |#2|)) $ (-1272 $)) 57) (((-694 (-412 |#2|)) (-1272 $) (-1272 $)) 56) (((-1272 (-412 |#2|)) $) 73) (((-694 (-412 |#2|)) (-1272 $)) 72)) (-4420 (((-1272 (-412 |#2|)) $) 70) (($ (-1272 (-412 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 153 (|has| (-412 |#2|) (-354)))) (-1832 (((-1272 $) (-1272 $)) 211)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 |#2|)) 44) (($ (-412 (-551))) 95 (-3978 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1044 (-412 (-551)))))) (($ $) 100 (|has| (-412 |#2|) (-367)))) (-3123 (($ $) 152 (|has| (-412 |#2|) (-354))) (((-3 $ "failed") $) 50 (|has| (-412 |#2|) (-145)))) (-2788 ((|#3| $) 52)) (-3548 (((-776)) 32 T CONST)) (-1841 (((-112)) 224)) (-1840 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 74)) (-2250 (((-112) $ $) 104 (|has| (-412 |#2|) (-367)))) (-1819 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1843 (((-112)) 226)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 133 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 132 (|has| (-412 |#2|) (-367))) (($ $ (-646 (-1183)) (-646 (-776))) 134 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 135 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-646 (-1183))) 136 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 137 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-3274 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 142 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-3274 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) 144 (-3978 (-3274 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-3274 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 129 (|has| (-412 |#2|) (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 126 (|has| (-412 |#2|) (-367)))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 |#2|)) 46) (($ (-412 |#2|) $) 45) (($ (-412 (-551)) $) 128 (|has| (-412 |#2|) (-367))) (($ $ (-412 (-551))) 127 (|has| (-412 |#2|) (-367)))))
-(((-346 |#1| |#2| |#3|) (-140) (-1227) (-1248 |t#1|) (-1248 (-412 |t#2|))) (T -346))
-((-3819 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-776)))) (-1844 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-776)))) (-1843 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1842 (*1 *2 *3 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1841 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1840 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1840 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112)))) (-1839 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1838 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1838 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112)))) (-1837 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1836 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1836 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112)))) (-4368 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)))) (-1835 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))) (-1829 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1828 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1827 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1826 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1272 *4)) (|:| |den| *4))))) (-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1248 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1248 (-412 *3))))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1272 *4)) (|:| |den| *4))))) (-1823 (*1 *1 *2 *3) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1248 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1248 (-412 *3))))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))) (-1833 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))) (-1833 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1248 *2)) (-4 *4 (-1248 (-412 *3))))) (-4249 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1248 *2)) (-4 *4 (-1248 (-412 *3))))) (-1821 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1248 (-412 *2))) (-4 *2 (-1248 *3)))) (-1820 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1248 (-412 *2))) (-4 *2 (-1248 *3)))) (-1819 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-1227)) (-4 *6 (-1248 (-412 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-346 *4 *5 *6)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-4 *4 (-367)) (-5 *2 (-646 (-952 *4))))) (-1817 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-646 (-646 *3))))))
-(-13 (-729 (-412 |t#2|) |t#3|) (-10 -8 (-15 -3819 ((-776))) (-15 -1844 ((-776))) (-15 -1843 ((-112))) (-15 -1842 ((-112) |t#1| |t#1|)) (-15 -1841 ((-112))) (-15 -1840 ((-112) |t#1|)) (-15 -1840 ((-112) |t#2|)) (-15 -1839 ((-112))) (-15 -1838 ((-112) |t#1|)) (-15 -1838 ((-112) |t#2|)) (-15 -1837 ((-112))) (-15 -1836 ((-112) |t#1|)) (-15 -1836 ((-112) |t#2|)) (-15 -4368 ((-1272 $))) (-15 -1835 ((-1272 $))) (-15 -1834 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -1832 ((-1272 $) (-1272 $))) (-15 -1831 ((-1272 $) (-1272 $))) (-15 -1830 ((-1272 $) (-1272 $))) (-15 -1829 ((-694 (-412 |t#2|)))) (-15 -1828 ((-694 (-412 |t#2|)))) (-15 -1827 ((-694 (-412 |t#2|)))) (-15 -1826 ((-694 (-412 |t#2|)))) (-15 -1825 ((-2 (|:| |num| (-1272 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1977 ($ (-1272 |t#2|) |t#2|)) (-15 -1824 ((-2 (|:| |num| (-1272 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1823 ($ (-1272 |t#2|) |t#2|)) (-15 -1822 ((-2 (|:| |num| (-694 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1833 ((-112) $ |t#1|)) (-15 -1833 ((-112) $ |t#2|)) (-15 -4260 ($ $ (-1 |t#2| |t#2|))) (-15 -3944 ($ $)) (-15 -4249 (|t#1| $ |t#1| |t#1|)) (-15 -1821 ((-3 |t#2| "failed"))) (-15 -1820 ((-3 |t#2| "failed"))) (-15 -1819 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-367)) (-15 -1818 ((-646 (-952 |t#1|)) (-1183))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1817 ((-646 (-646 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-38 #2=(-412 |#2|)) . T) ((-38 $) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-102) . T) ((-111 #1# #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-145))) ((-147) |has| (-412 |#2|) (-147)) ((-621 #1#) -3978 (|has| (-412 |#2|) (-1044 (-412 (-551)))) (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-621 #2#) . T) ((-621 (-551)) . T) ((-621 $) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-618 (-868)) . T) ((-173) . T) ((-619 |#3|) . T) ((-232 #2#) |has| (-412 |#2|) (-367)) ((-234) -3978 (|has| (-412 |#2|) (-354)) (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367)))) ((-244) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-293) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-310) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-367) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-407) |has| (-412 |#2|) (-354)) ((-372) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-372))) ((-354) |has| (-412 |#2|) (-354)) ((-374 #2# |#3|) . T) ((-415 #2# |#3|) . T) ((-381 #2#) . T) ((-417 #2#) . T) ((-457) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-562) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-651 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-651 #2#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-653 #2#) . T) ((-653 $) . T) ((-645 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-645 #2#) . T) ((-645 $) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-644 #2#) . T) ((-644 (-551)) |has| (-412 |#2|) (-644 (-551))) ((-722 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-722 #2#) . T) ((-722 $) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-729 #2# |#3|) . T) ((-731) . T) ((-906 (-1183)) -12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) ((-927) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-1044 (-412 (-551))) |has| (-412 |#2|) (-1044 (-412 (-551)))) ((-1044 #2#) . T) ((-1044 (-551)) |has| (-412 |#2|) (-1044 (-551))) ((-1057 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-1057 #2#) . T) ((-1057 $) . T) ((-1062 #1#) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))) ((-1062 #2#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| (-412 |#2|) (-354)) ((-1227) -3978 (|has| (-412 |#2|) (-354)) (|has| (-412 |#2|) (-367))))
-((-4408 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4408 (|#8| (-1 |#5| |#1|) |#4|))) (-1227) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-1227) (-1248 |#5|) (-1248 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -347))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *9 (-1248 *8)) (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1248 (-412 *9))))))
-(-10 -7 (-15 -4408 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-912 |#1|) (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| (-912 |#1|) (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-912 |#1|) "failed") $) NIL)) (-3594 (((-912 |#1|) $) NIL)) (-1977 (($ (-1272 (-912 |#1|))) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-912 |#1|) (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| (-912 |#1|) (-372)))) (-1858 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372)))) (($ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| (-912 |#1|) (-372))) (((-837 (-925)) $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| (-912 |#1|) (-372)))) (-2199 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-3554 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 (-912 |#1|)) $) NIL) (((-1177 $) $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-2198 (((-925) $) NIL (|has| (-912 |#1|) (-372)))) (-1782 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372)))) (-1781 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-1177 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-372)))) (-1783 (($ $ (-1177 (-912 |#1|))) NIL (|has| (-912 |#1|) (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-912 |#1|) (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-1845 (((-964 (-1126))) NIL)) (-2590 (($) NIL (|has| (-912 |#1|) (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-912 |#1|) (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 (-912 |#1|))) NIL)) (-1852 (($) NIL (|has| (-912 |#1|) (-372)))) (-1784 (($) NIL (|has| (-912 |#1|) (-372)))) (-3662 (((-1272 (-912 |#1|)) $) NIL) (((-694 (-912 |#1|)) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-912 |#1|) (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-912 |#1|)) NIL)) (-3123 (($ $) NIL (|has| (-912 |#1|) (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3090 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
-(((-348 |#1| |#2|) (-13 (-332 (-912 |#1|)) (-10 -7 (-15 -1845 ((-964 (-1126)))))) (-925) (-925)) (T -348))
-((-1845 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))))
-(-13 (-332 (-912 |#1|)) (-10 -7 (-15 -1845 ((-964 (-1126))))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 58)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) 56 (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) 142)) (-3594 ((|#1| $) 113)) (-1977 (($ (-1272 |#1|)) 130)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) 124 (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) 160 (|has| |#1| (-372)))) (-1858 (((-112) $) 66 (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) 60 (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) 62)) (-2201 (($) 162 (|has| |#1| (-372)))) (-2199 (((-112) $) NIL (|has| |#1| (-372)))) (-3554 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) 117) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) 171 (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) NIL (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) NIL (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 178)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) 96 (|has| |#1| (-372)))) (-4381 (((-112) $) 147)) (-3682 (((-1126) $) NIL)) (-1845 (((-964 (-1126))) 57)) (-2590 (($) 158 (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 119 (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) 90) (((-925)) 91)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) 161 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 154 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 |#1|)) 122)) (-1852 (($) 159 (|has| |#1| (-372)))) (-1784 (($) 167 (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) 77) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) 174) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 100)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) 155 T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 144) (((-1272 $) (-925)) 98)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) 67 T CONST)) (-3085 (($) 103 T CONST)) (-4378 (($ $) 107 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) 65)) (-4399 (($ $ $) 176) (($ $ |#1|) 177)) (-4287 (($ $) 157) (($ $ $) NIL)) (-4289 (($ $ $) 86)) (** (($ $ (-925)) 180) (($ $ (-776)) 181) (($ $ (-551)) 179)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 102) (($ $ $) 101) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-349 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-964 (-1126)))))) (-354) (-1177 |#1|)) (T -349))
-((-1845 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354)) (-14 *4 (-1177 *3)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-964 (-1126))))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-1977 (($ (-1272 |#1|)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| |#1| (-372)))) (-1858 (((-112) $) NIL (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| |#1| (-372)))) (-2199 (((-112) $) NIL (|has| |#1| (-372)))) (-3554 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) NIL) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) NIL (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) NIL (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-1845 (((-964 (-1126))) NIL)) (-2590 (($) NIL (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 |#1|)) NIL)) (-1852 (($) NIL (|has| |#1| (-372)))) (-1784 (($) NIL (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) NIL) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) NIL)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-350 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-964 (-1126)))))) (-354) (-925)) (T -350))
-((-1845 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-964 (-1126))))))
-((-1855 (((-776) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) 61)) (-1846 (((-964 (-1126)) (-1177 |#1|)) 111)) (-1847 (((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) (-1177 |#1|)) 102)) (-1848 (((-694 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) 113)) (-1849 (((-3 (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) "failed") (-925)) 13)) (-1850 (((-3 (-1177 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) (-925)) 18)))
-(((-351 |#1|) (-10 -7 (-15 -1846 ((-964 (-1126)) (-1177 |#1|))) (-15 -1847 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) (-1177 |#1|))) (-15 -1848 ((-694 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1855 ((-776) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1849 ((-3 (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) "failed") (-925))) (-15 -1850 ((-3 (-1177 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) (-925)))) (-354)) (T -351))
-((-1850 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-3 (-1177 *4) (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-1849 (*1 *2 *3) (|partial| -12 (-5 *3 (-925)) (-5 *2 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))) (-4 *4 (-354)) (-5 *2 (-776)) (-5 *1 (-351 *4)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))) (-4 *4 (-354)) (-5 *2 (-694 *4)) (-5 *1 (-351 *4)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))) (-5 *1 (-351 *4)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-964 (-1126))) (-5 *1 (-351 *4)))))
-(-10 -7 (-15 -1846 ((-964 (-1126)) (-1177 |#1|))) (-15 -1847 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) (-1177 |#1|))) (-15 -1848 ((-694 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1855 ((-776) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1849 ((-3 (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) "failed") (-925))) (-15 -1850 ((-3 (-1177 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) (-925))))
-((-4396 ((|#1| |#3|) 106) ((|#3| |#1|) 89)))
-(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -4396 (|#3| |#1|)) (-15 -4396 (|#1| |#3|))) (-332 |#2|) (-354) (-332 |#2|)) (T -352))
-((-4396 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-332 *4)) (-5 *1 (-352 *2 *4 *3)) (-4 *3 (-332 *4)))) (-4396 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-332 *4)) (-5 *1 (-352 *3 *4 *2)) (-4 *3 (-332 *4)))))
-(-10 -7 (-15 -4396 (|#3| |#1|)) (-15 -4396 (|#1| |#3|)))
-((-1858 (((-112) $) 60)) (-4221 (((-837 (-925)) $) 23) (((-925) $) 66)) (-3886 (((-3 $ "failed") $) 18)) (-3887 (($) 9)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 116)) (-1952 (((-3 (-776) "failed") $ $) 94) (((-776) $) 81)) (-4260 (($ $ (-776)) NIL) (($ $) 8)) (-1852 (($) 53)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 38)) (-3123 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-353 |#1|) (-10 -8 (-15 -4221 ((-925) |#1|)) (-15 -1952 ((-776) |#1|)) (-15 -1858 ((-112) |#1|)) (-15 -1852 (|#1|)) (-15 -3124 ((-3 (-1272 |#1|) "failed") (-694 |#1|))) (-15 -3123 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -1952 ((-3 (-776) "failed") |#1| |#1|)) (-15 -4221 ((-837 (-925)) |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)))) (-354)) (T -353))
-NIL
-(-10 -8 (-15 -4221 ((-925) |#1|)) (-15 -1952 ((-776) |#1|)) (-15 -1858 ((-112) |#1|)) (-15 -1852 (|#1|)) (-15 -3124 ((-3 (-1272 |#1|) "failed") (-694 |#1|))) (-15 -3123 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -1952 ((-3 (-776) "failed") |#1| |#1|)) (-15 -4221 ((-837 (-925)) |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1853 (((-1195 (-925) (-776)) (-551)) 101)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-1763 (((-112) $ $) 65)) (-3558 (((-776)) 111)) (-4174 (($) 18 T CONST)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-3413 (($) 114)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-3254 (($) 99)) (-1858 (((-112) $) 98)) (-1951 (($ $) 87) (($ $ (-776)) 86)) (-4173 (((-112) $) 79)) (-4221 (((-837 (-925)) $) 89) (((-925) $) 96)) (-2591 (((-112) $) 35)) (-3886 (((-3 $ "failed") $) 110)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2198 (((-925) $) 113)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3887 (($) 109 T CONST)) (-2581 (($ (-925)) 112)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 102)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-1952 (((-3 (-776) "failed") $ $) 88) (((-776) $) 97)) (-4260 (($ $ (-776)) 107) (($ $) 105)) (-1852 (($) 100)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 103)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74)) (-3123 (((-3 $ "failed") $) 90) (($ $) 104)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-776)) 108) (($ $) 106)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
-(((-354) (-140)) (T -354))
-((-3123 (*1 *1 *1) (-4 *1 (-354))) (-3124 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-354)) (-5 *2 (-1272 *1)))) (-1854 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))))) (-1853 (*1 *2 *3) (-12 (-4 *1 (-354)) (-5 *3 (-551)) (-5 *2 (-1195 (-925) (-776))))) (-1852 (*1 *1) (-4 *1 (-354))) (-3254 (*1 *1) (-4 *1 (-354))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-776)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-925)))) (-1851 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-407) (-372) (-1157) (-234) (-10 -8 (-15 -3123 ($ $)) (-15 -3124 ((-3 (-1272 $) "failed") (-694 $))) (-15 -1854 ((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551)))))) (-15 -1853 ((-1195 (-925) (-776)) (-551))) (-15 -1852 ($)) (-15 -3254 ($)) (-15 -1858 ((-112) $)) (-15 -1952 ((-776) $)) (-15 -4221 ((-925) $)) (-15 -1851 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) . T) ((-372) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) . T) ((-1227) . T))
-((-4369 (((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|) 55)) (-4368 (((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 53)))
-(((-355 |#1| |#2| |#3|) (-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))) (-1248 |#1|) (-415 |#1| |#2|)) (T -355))
-((-4369 (*1 *2 *3) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-4368 (*1 *2) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-912 |#1|) (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1855 (((-776)) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| (-912 |#1|) (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-912 |#1|) "failed") $) NIL)) (-3594 (((-912 |#1|) $) NIL)) (-1977 (($ (-1272 (-912 |#1|))) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-912 |#1|) (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| (-912 |#1|) (-372)))) (-1858 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372)))) (($ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| (-912 |#1|) (-372))) (((-837 (-925)) $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| (-912 |#1|) (-372)))) (-2199 (((-112) $) NIL (|has| (-912 |#1|) (-372)))) (-3554 (((-912 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 (-912 |#1|)) $) NIL) (((-1177 $) $ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-2198 (((-925) $) NIL (|has| (-912 |#1|) (-372)))) (-1782 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372)))) (-1781 (((-1177 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-1177 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-372)))) (-1783 (($ $ (-1177 (-912 |#1|))) NIL (|has| (-912 |#1|) (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-912 |#1|) (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| (-912 |#1|) (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-1857 (((-1272 (-646 (-2 (|:| -3844 (-912 |#1|)) (|:| -2581 (-1126)))))) NIL)) (-1856 (((-694 (-912 |#1|))) NIL)) (-2590 (($) NIL (|has| (-912 |#1|) (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-912 |#1|) (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| (-912 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 (-912 |#1|))) NIL)) (-1852 (($) NIL (|has| (-912 |#1|) (-372)))) (-1784 (($) NIL (|has| (-912 |#1|) (-372)))) (-3662 (((-1272 (-912 |#1|)) $) NIL) (((-694 (-912 |#1|)) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-912 |#1|) (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-912 |#1|)) NIL)) (-3123 (($ $) NIL (|has| (-912 |#1|) (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3090 (($ $) NIL (|has| (-912 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-912 |#1|) (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
-(((-356 |#1| |#2|) (-13 (-332 (-912 |#1|)) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 (-912 |#1|)) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 (-912 |#1|)))) (-15 -1855 ((-776))))) (-925) (-925)) (T -356))
-((-1857 (*1 *2) (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 (-912 *3)) (|:| -2581 (-1126)))))) (-5 *1 (-356 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))) (-1856 (*1 *2) (-12 (-5 *2 (-694 (-912 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))) (-1855 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))))
-(-13 (-332 (-912 |#1|)) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 (-912 |#1|)) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 (-912 |#1|)))) (-15 -1855 ((-776)))))
-((-2986 (((-112) $ $) 73)) (-3626 (((-112) $) 88)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) 106) (($ $ (-925)) 104 (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) 171 (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1855 (((-776)) 103)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) 188 (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) 128)) (-3594 ((|#1| $) 105)) (-1977 (($ (-1272 |#1|)) 71)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) 183 (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) 172 (|has| |#1| (-372)))) (-1858 (((-112) $) NIL (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) 114 (|has| |#1| (-372)))) (-2199 (((-112) $) 201 (|has| |#1| (-372)))) (-3554 ((|#1| $) 108) (($ $ (-925)) 107 (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) 215) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) 149 (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) 87 (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) 84 (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) 96 (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) 83 (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 219)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) 151 (|has| |#1| (-372)))) (-4381 (((-112) $) 124)) (-3682 (((-1126) $) NIL)) (-1857 (((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) 97)) (-1856 (((-694 |#1|)) 101)) (-2590 (($) 110 (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 174 (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) 175)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) 75)) (-3623 (((-1177 |#1|)) 176)) (-1852 (($) 148 (|has| |#1| (-372)))) (-1784 (($) NIL (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) 122) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) 141) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 70)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) 181 T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 198) (((-1272 $) (-925)) 117)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) 187 T CONST)) (-3085 (($) 162 T CONST)) (-4378 (($ $) 123 (|has| |#1| (-372))) (($ $ (-776)) 115 (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) 209)) (-4399 (($ $ $) 120) (($ $ |#1|) 121)) (-4287 (($ $) 203) (($ $ $) 207)) (-4289 (($ $ $) 205)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 154)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 212) (($ $ $) 165) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119)))
-(((-357 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 |#1|))) (-15 -1855 ((-776))))) (-354) (-3 (-1177 |#1|) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (T -357))
-((-1857 (*1 *2) (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1177 *3) *2)))) (-1856 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1177 *3) (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126))))))))) (-1855 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1177 *3) (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126))))))))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 |#1|))) (-15 -1855 ((-776)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1855 (((-776)) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-1977 (($ (-1272 |#1|)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| |#1| (-372)))) (-1858 (((-112) $) NIL (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| |#1| (-372)))) (-2199 (((-112) $) NIL (|has| |#1| (-372)))) (-3554 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) NIL) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) NIL (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) NIL (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-1857 (((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126)))))) NIL)) (-1856 (((-694 |#1|)) NIL)) (-2590 (($) NIL (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 |#1|)) NIL)) (-1852 (($) NIL (|has| |#1| (-372)))) (-1784 (($) NIL (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) NIL) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) NIL)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-358 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 |#1|))) (-15 -1855 ((-776))))) (-354) (-925)) (T -358))
-((-1857 (*1 *2) (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126)))))) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))) (-1856 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))) (-1855 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1857 ((-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))))) (-15 -1856 ((-694 |#1|))) (-15 -1855 ((-776)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) 132 (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) 158 (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) 106)) (-3594 ((|#1| $) 103)) (-1977 (($ (-1272 |#1|)) 98)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) 95 (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) 51 (|has| |#1| (-372)))) (-1858 (((-112) $) NIL (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) 133 (|has| |#1| (-372)))) (-2199 (((-112) $) 87 (|has| |#1| (-372)))) (-3554 ((|#1| $) 47) (($ $ (-925)) 52 (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) 78) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) 110 (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) NIL (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) NIL (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) 108 (|has| |#1| (-372)))) (-4381 (((-112) $) 160)) (-3682 (((-1126) $) NIL)) (-2590 (($) 44 (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 127 (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) 157)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) 70)) (-3623 (((-1177 |#1|)) 101)) (-1852 (($) 138 (|has| |#1| (-372)))) (-1784 (($) NIL (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) 66) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) 156) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 100)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) 162 T CONST)) (-3680 (((-112) $ $) 164)) (-2200 (((-1272 $)) 122) (((-1272 $) (-925)) 60)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) 124 T CONST)) (-3085 (($) 40 T CONST)) (-4378 (($ $) 81 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) 120)) (-4399 (($ $ $) 112) (($ $ |#1|) 113)) (-4287 (($ $) 93) (($ $ $) 118)) (-4289 (($ $ $) 116)) (** (($ $ (-925)) NIL) (($ $ (-776)) 55) (($ $ (-551)) 141)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 91) (($ $ $) 68) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89)))
-(((-359 |#1| |#2|) (-332 |#1|) (-354) (-1177 |#1|)) (T -359))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1183)) $) NIL)) (-3623 (((-112)) 96) (((-112) (-112)) 97)) (-3550 (((-649 (-617 $)) $) NIL)) (-2691 (($ $) NIL)) (-2556 (($ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4272 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-3714 (($ $) NIL)) (-2669 (($ $) NIL)) (-2534 (($ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-617 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-319 |#3|)) 76) (((-3 $ "failed") (-1183)) 103) (((-3 $ "failed") (-319 (-569))) 64 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-412 (-958 (-569)))) 70 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-958 (-569))) 65 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-319 (-383))) 94 (|has| |#3| (-1044 (-383)))) (((-3 $ "failed") (-412 (-958 (-383)))) 88 (|has| |#3| (-1044 (-383)))) (((-3 $ "failed") (-958 (-383))) 83 (|has| |#3| (-1044 (-383))))) (-3043 (((-617 $) $) NIL) ((|#3| $) NIL) (($ (-319 |#3|)) 77) (($ (-1183)) 104) (($ (-319 (-569))) 66 (|has| |#3| (-1044 (-569)))) (($ (-412 (-958 (-569)))) 71 (|has| |#3| (-1044 (-569)))) (($ (-958 (-569))) 67 (|has| |#3| (-1044 (-569)))) (($ (-319 (-383))) 95 (|has| |#3| (-1044 (-383)))) (($ (-412 (-958 (-383)))) 89 (|has| |#3| (-1044 (-383)))) (($ (-958 (-383))) 85 (|has| |#3| (-1044 (-383))))) (-3351 (((-3 $ "failed") $) NIL)) (-4408 (($) 101)) (-2629 (($ $) NIL) (($ (-649 $)) NIL)) (-2042 (((-649 (-114)) $) NIL)) (-3642 (((-114) (-114)) NIL)) (-2861 (((-112) $) NIL)) (-2355 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-2021 (((-1179 $) (-617 $)) NIL (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) NIL)) (-2052 (((-3 (-617 $) "failed") $) NIL)) (-1345 (($ $) 99)) (-2616 (($ $) NIL)) (-2050 (((-1165) $) NIL)) (-3629 (((-649 (-617 $)) $) NIL)) (-1331 (($ (-114) $) 98) (($ (-114) (-649 $)) NIL)) (-2016 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1399 (((-776) $) NIL)) (-3461 (((-1126) $) NIL)) (-2031 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-4367 (($ $) NIL)) (-4336 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1852 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2062 (($ $) NIL) (($ $ $) NIL)) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL)) (-2760 (($ $) NIL (|has| $ (-1055)))) (-2680 (($ $) NIL)) (-2545 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-617 $)) NIL) (($ |#3|) NIL) (($ (-569)) NIL) (((-319 |#3|) $) 102)) (-3263 (((-776)) NIL T CONST)) (-4176 (($ $) NIL) (($ (-649 $)) NIL)) (-3858 (((-112) (-114)) NIL)) (-2040 (((-112) $ $) NIL)) (-2627 (($ $) NIL)) (-2601 (($ $) NIL)) (-2615 (($ $) NIL)) (-3999 (($ $) NIL)) (-1786 (($) 100 T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-343 |#1| |#2| |#3|) (-13 (-305) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3043 ($ (-319 |#3|))) (-15 -4359 ((-3 $ "failed") (-319 |#3|))) (-15 -3043 ($ (-1183))) (-15 -4359 ((-3 $ "failed") (-1183))) (-15 -2388 ((-319 |#3|) $)) (IF (|has| |#3| (-1044 (-569))) (PROGN (-15 -3043 ($ (-319 (-569)))) (-15 -4359 ((-3 $ "failed") (-319 (-569)))) (-15 -3043 ($ (-412 (-958 (-569))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3043 ($ (-958 (-569)))) (-15 -4359 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1044 (-383))) (PROGN (-15 -3043 ($ (-319 (-383)))) (-15 -4359 ((-3 $ "failed") (-319 (-383)))) (-15 -3043 ($ (-412 (-958 (-383))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3043 ($ (-958 (-383)))) (-15 -4359 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -3999 ($ $)) (-15 -3714 ($ $)) (-15 -4367 ($ $)) (-15 -2616 ($ $)) (-15 -1345 ($ $)) (-15 -2534 ($ $)) (-15 -2545 ($ $)) (-15 -2556 ($ $)) (-15 -2601 ($ $)) (-15 -2615 ($ $)) (-15 -2627 ($ $)) (-15 -2669 ($ $)) (-15 -2680 ($ $)) (-15 -2691 ($ $)) (-15 -4408 ($)) (-15 -3865 ((-649 (-1183)) $)) (-15 -3623 ((-112))) (-15 -3623 ((-112) (-112))))) (-649 (-1183)) (-649 (-1183)) (-392)) (T -343))
+((-3043 (*1 *1 *2) (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3999 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-3714 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-4367 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-1345 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2534 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2545 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2556 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2615 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2669 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2680 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2691 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-4408 (*1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-392)))) (-3623 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))))
+(-13 (-305) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3043 ($ (-319 |#3|))) (-15 -4359 ((-3 $ "failed") (-319 |#3|))) (-15 -3043 ($ (-1183))) (-15 -4359 ((-3 $ "failed") (-1183))) (-15 -2388 ((-319 |#3|) $)) (IF (|has| |#3| (-1044 (-569))) (PROGN (-15 -3043 ($ (-319 (-569)))) (-15 -4359 ((-3 $ "failed") (-319 (-569)))) (-15 -3043 ($ (-412 (-958 (-569))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3043 ($ (-958 (-569)))) (-15 -4359 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1044 (-383))) (PROGN (-15 -3043 ($ (-319 (-383)))) (-15 -4359 ((-3 $ "failed") (-319 (-383)))) (-15 -3043 ($ (-412 (-958 (-383))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3043 ($ (-958 (-383)))) (-15 -4359 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -3999 ($ $)) (-15 -3714 ($ $)) (-15 -4367 ($ $)) (-15 -2616 ($ $)) (-15 -1345 ($ $)) (-15 -2534 ($ $)) (-15 -2545 ($ $)) (-15 -2556 ($ $)) (-15 -2601 ($ $)) (-15 -2615 ($ $)) (-15 -2627 ($ $)) (-15 -2669 ($ $)) (-15 -2680 ($ $)) (-15 -2691 ($ $)) (-15 -4408 ($)) (-15 -3865 ((-649 (-1183)) $)) (-15 -3623 ((-112))) (-15 -3623 ((-112) (-112)))))
+((-1324 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1324 (|#8| (-1 |#5| |#1|) |#4|))) (-1227) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-1227) (-1249 |#5|) (-1249 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -344))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *9 (-1249 *8)) (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1249 (-412 *9))))))
+(-10 -7 (-15 -1324 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3733 (((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) $) 39)) (-2806 (($ (-1273 (-412 |#3|)) (-1273 $)) NIL) (($ (-1273 (-412 |#3|))) NIL) (($ (-1273 |#3|) |#3|) 177)) (-3794 (((-1273 $) (-1273 $)) 160)) (-3635 (((-649 (-649 |#2|))) 129)) (-3941 (((-112) |#2| |#2|) 76)) (-3556 (($ $) 151)) (-3951 (((-776)) 176)) (-3807 (((-1273 $) (-1273 $)) 222)) (-3647 (((-649 (-958 |#2|)) (-1183)) 118)) (-3843 (((-112) $) 173)) (-3830 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3668 (((-3 |#3| "failed")) 52)) (-3964 (((-776)) 188)) (-1852 ((|#2| $ |#2| |#2|) 143)) (-3683 (((-3 |#3| "failed")) 71)) (-3430 (($ $ (-1 (-412 |#3|) (-412 |#3|)) (-776)) NIL) (($ $ (-1 (-412 |#3|) (-412 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3819 (((-1273 $) (-1273 $)) 166)) (-3656 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3952 (((-112)) 34)))
+(((-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3635 ((-649 (-649 |#2|)))) (-15 -3647 ((-649 (-958 |#2|)) (-1183))) (-15 -3656 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3668 ((-3 |#3| "failed"))) (-15 -3683 ((-3 |#3| "failed"))) (-15 -1852 (|#2| |#1| |#2| |#2|)) (-15 -3556 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3830 ((-112) |#1| |#3|)) (-15 -3830 ((-112) |#1| |#2|)) (-15 -2806 (|#1| (-1273 |#3|) |#3|)) (-15 -3733 ((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3794 ((-1273 |#1|) (-1273 |#1|))) (-15 -3807 ((-1273 |#1|) (-1273 |#1|))) (-15 -3819 ((-1273 |#1|) (-1273 |#1|))) (-15 -3830 ((-112) |#1|)) (-15 -3843 ((-112) |#1|)) (-15 -3941 ((-112) |#2| |#2|)) (-15 -3952 ((-112))) (-15 -3964 ((-776))) (-15 -3951 ((-776))) (-15 -3430 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3430 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2806 (|#1| (-1273 (-412 |#3|)))) (-15 -2806 (|#1| (-1273 (-412 |#3|)) (-1273 |#1|)))) (-346 |#2| |#3| |#4|) (-1227) (-1249 |#2|) (-1249 (-412 |#3|))) (T -345))
+((-3951 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3964 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3952 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3941 (*1 *2 *3 *3) (-12 (-4 *3 (-1227)) (-4 *5 (-1249 *3)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) (-3683 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-3668 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-649 (-958 *5))) (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) (-3635 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))))
+(-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3635 ((-649 (-649 |#2|)))) (-15 -3647 ((-649 (-958 |#2|)) (-1183))) (-15 -3656 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3668 ((-3 |#3| "failed"))) (-15 -3683 ((-3 |#3| "failed"))) (-15 -1852 (|#2| |#1| |#2| |#2|)) (-15 -3556 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3830 ((-112) |#1| |#3|)) (-15 -3830 ((-112) |#1| |#2|)) (-15 -2806 (|#1| (-1273 |#3|) |#3|)) (-15 -3733 ((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3794 ((-1273 |#1|) (-1273 |#1|))) (-15 -3807 ((-1273 |#1|) (-1273 |#1|))) (-15 -3819 ((-1273 |#1|) (-1273 |#1|))) (-15 -3830 ((-112) |#1|)) (-15 -3843 ((-112) |#1|)) (-15 -3941 ((-112) |#2| |#2|)) (-15 -3952 ((-112))) (-15 -3964 ((-776))) (-15 -3951 ((-776))) (-15 -3430 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3430 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2806 (|#1| (-1273 (-412 |#3|)))) (-15 -2806 (|#1| (-1273 (-412 |#3|)) (-1273 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3733 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 204)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (|has| (-412 |#2|) (-367)))) (-2586 (($ $) 103 (|has| (-412 |#2|) (-367)))) (-2564 (((-112) $) 105 (|has| (-412 |#2|) (-367)))) (-2702 (((-694 (-412 |#2|)) (-1273 $)) 53) (((-694 (-412 |#2|))) 68)) (-3057 (((-412 |#2|) $) 59)) (-4068 (((-1196 (-927) (-776)) (-569)) 155 (|has| (-412 |#2|) (-353)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 122 (|has| (-412 |#2|) (-367)))) (-2207 (((-423 $) $) 123 (|has| (-412 |#2|) (-367)))) (-4420 (((-112) $ $) 113 (|has| (-412 |#2|) (-367)))) (-3363 (((-776)) 96 (|has| (-412 |#2|) (-372)))) (-3906 (((-112)) 221)) (-3894 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 178 (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) 173)) (-3043 (((-569) $) 177 (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) 174)) (-2806 (($ (-1273 (-412 |#2|)) (-1273 $)) 55) (($ (-1273 (-412 |#2|))) 71) (($ (-1273 |#2|) |#2|) 203)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-412 |#2|) (-353)))) (-2339 (($ $ $) 117 (|has| (-412 |#2|) (-367)))) (-2692 (((-694 (-412 |#2|)) $ (-1273 $)) 60) (((-694 (-412 |#2|)) $) 66)) (-4091 (((-694 (-569)) (-694 $)) 172 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) 170) (((-694 (-412 |#2|)) (-694 $)) 169)) (-3794 (((-1273 $) (-1273 $)) 209)) (-3485 (($ |#3|) 166) (((-3 $ "failed") (-412 |#3|)) 163 (|has| (-412 |#2|) (-367)))) (-3351 (((-3 $ "failed") $) 37)) (-3635 (((-649 (-649 |#1|))) 190 (|has| |#1| (-372)))) (-3941 (((-112) |#1| |#1|) 225)) (-3904 (((-927)) 61)) (-3295 (($) 99 (|has| (-412 |#2|) (-372)))) (-3881 (((-112)) 218)) (-3870 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2348 (($ $ $) 116 (|has| (-412 |#2|) (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 111 (|has| (-412 |#2|) (-367)))) (-3556 (($ $) 196)) (-3445 (($) 157 (|has| (-412 |#2|) (-353)))) (-4127 (((-112) $) 158 (|has| (-412 |#2|) (-353)))) (-2525 (($ $ (-776)) 149 (|has| (-412 |#2|) (-353))) (($ $) 148 (|has| (-412 |#2|) (-353)))) (-3848 (((-112) $) 124 (|has| (-412 |#2|) (-367)))) (-4315 (((-927) $) 160 (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) 146 (|has| (-412 |#2|) (-353)))) (-2861 (((-112) $) 35)) (-3951 (((-776)) 228)) (-3807 (((-1273 $) (-1273 $)) 210)) (-3334 (((-412 |#2|) $) 58)) (-3647 (((-649 (-958 |#1|)) (-1183)) 191 (|has| |#1| (-367)))) (-3177 (((-3 $ "failed") $) 150 (|has| (-412 |#2|) (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| (-412 |#2|) (-367)))) (-3397 ((|#3| $) 51 (|has| (-412 |#2|) (-367)))) (-3348 (((-927) $) 98 (|has| (-412 |#2|) (-372)))) (-3472 ((|#3| $) 164)) (-1798 (($ (-649 $)) 109 (|has| (-412 |#2|) (-367))) (($ $ $) 108 (|has| (-412 |#2|) (-367)))) (-2050 (((-1165) $) 10)) (-3743 (((-694 (-412 |#2|))) 205)) (-3768 (((-694 (-412 |#2|))) 207)) (-1776 (($ $) 125 (|has| (-412 |#2|) (-367)))) (-3705 (($ (-1273 |#2|) |#2|) 201)) (-3756 (((-694 (-412 |#2|))) 206)) (-3782 (((-694 (-412 |#2|))) 208)) (-3694 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-3720 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 202)) (-3857 (((-1273 $)) 214)) (-2976 (((-1273 $)) 215)) (-3843 (((-112) $) 213)) (-3830 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2267 (($) 151 (|has| (-412 |#2|) (-353)) CONST)) (-2114 (($ (-927)) 97 (|has| (-412 |#2|) (-372)))) (-3668 (((-3 |#2| "failed")) 193)) (-3461 (((-1126) $) 11)) (-3964 (((-776)) 227)) (-2290 (($) 168)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 110 (|has| (-412 |#2|) (-367)))) (-1830 (($ (-649 $)) 107 (|has| (-412 |#2|) (-367))) (($ $ $) 106 (|has| (-412 |#2|) (-367)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 154 (|has| (-412 |#2|) (-353)))) (-3699 (((-423 $) $) 121 (|has| (-412 |#2|) (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 118 (|has| (-412 |#2|) (-367)))) (-2374 (((-3 $ "failed") $ $) 101 (|has| (-412 |#2|) (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| (-412 |#2|) (-367)))) (-4409 (((-776) $) 114 (|has| (-412 |#2|) (-367)))) (-1852 ((|#1| $ |#1| |#1|) 195)) (-3683 (((-3 |#2| "failed")) 194)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 115 (|has| (-412 |#2|) (-367)))) (-4180 (((-412 |#2|) (-1273 $)) 54) (((-412 |#2|)) 67)) (-2536 (((-776) $) 159 (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) 147 (|has| (-412 |#2|) (-353)))) (-3430 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 131 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 130 (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-649 (-1183)) (-649 (-776))) 138 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 139 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1183))) 140 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 141 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 143 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1739 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 145 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1739 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2851 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) 162 (|has| (-412 |#2|) (-367)))) (-2760 ((|#3|) 167)) (-4056 (($) 156 (|has| (-412 |#2|) (-353)))) (-1949 (((-1273 (-412 |#2|)) $ (-1273 $)) 57) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) 56) (((-1273 (-412 |#2|)) $) 73) (((-694 (-412 |#2|)) (-1273 $)) 72)) (-1384 (((-1273 (-412 |#2|)) $) 70) (($ (-1273 (-412 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 153 (|has| (-412 |#2|) (-353)))) (-3819 (((-1273 $) (-1273 $)) 211)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 |#2|)) 44) (($ (-412 (-569))) 95 (-2718 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1044 (-412 (-569)))))) (($ $) 100 (|has| (-412 |#2|) (-367)))) (-1488 (($ $) 152 (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) 50 (|has| (-412 |#2|) (-145)))) (-3176 ((|#3| $) 52)) (-3263 (((-776)) 32 T CONST)) (-3930 (((-112)) 224)) (-3918 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 74)) (-2574 (((-112) $ $) 104 (|has| (-412 |#2|) (-367)))) (-3656 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-3952 (((-112)) 226)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 133 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 132 (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) 134 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 135 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1183))) 136 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 137 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1739 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 142 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1739 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 144 (-2718 (-1739 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1739 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 129 (|has| (-412 |#2|) (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 |#2|)) 46) (($ (-412 |#2|) $) 45) (($ (-412 (-569)) $) 128 (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) 127 (|has| (-412 |#2|) (-367)))))
+(((-346 |#1| |#2| |#3|) (-140) (-1227) (-1249 |t#1|) (-1249 (-412 |t#2|))) (T -346))
+((-3951 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))) (-3964 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))) (-3952 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3941 (*1 *2 *3 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3930 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3918 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3918 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-3906 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3894 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3894 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-3881 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3870 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3870 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-2976 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))) (-3857 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-3782 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-3768 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-3756 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-3743 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))) (-2806 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))) (-3705 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))) (-3830 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3830 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))))) (-1852 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))))) (-3683 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))) (-3668 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1227)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-346 *4 *5 *6)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *4 (-367)) (-5 *2 (-649 (-958 *4))))) (-3635 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
+(-13 (-729 (-412 |t#2|) |t#3|) (-10 -8 (-15 -3951 ((-776))) (-15 -3964 ((-776))) (-15 -3952 ((-112))) (-15 -3941 ((-112) |t#1| |t#1|)) (-15 -3930 ((-112))) (-15 -3918 ((-112) |t#1|)) (-15 -3918 ((-112) |t#2|)) (-15 -3906 ((-112))) (-15 -3894 ((-112) |t#1|)) (-15 -3894 ((-112) |t#2|)) (-15 -3881 ((-112))) (-15 -3870 ((-112) |t#1|)) (-15 -3870 ((-112) |t#2|)) (-15 -2976 ((-1273 $))) (-15 -3857 ((-1273 $))) (-15 -3843 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -3819 ((-1273 $) (-1273 $))) (-15 -3807 ((-1273 $) (-1273 $))) (-15 -3794 ((-1273 $) (-1273 $))) (-15 -3782 ((-694 (-412 |t#2|)))) (-15 -3768 ((-694 (-412 |t#2|)))) (-15 -3756 ((-694 (-412 |t#2|)))) (-15 -3743 ((-694 (-412 |t#2|)))) (-15 -3733 ((-2 (|:| |num| (-1273 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2806 ($ (-1273 |t#2|) |t#2|)) (-15 -3720 ((-2 (|:| |num| (-1273 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3705 ($ (-1273 |t#2|) |t#2|)) (-15 -3694 ((-2 (|:| |num| (-694 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3830 ((-112) $ |t#1|)) (-15 -3830 ((-112) $ |t#2|)) (-15 -3430 ($ $ (-1 |t#2| |t#2|))) (-15 -3556 ($ $)) (-15 -1852 (|t#1| $ |t#1| |t#1|)) (-15 -3683 ((-3 |t#2| "failed"))) (-15 -3668 ((-3 |t#2| "failed"))) (-15 -3656 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-367)) (-15 -3647 ((-649 (-958 |t#1|)) (-1183))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3635 ((-649 (-649 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-38 #1=(-412 |#2|)) . T) ((-38 $) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-102) . T) ((-111 #0# #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-145))) ((-147) |has| (-412 |#2|) (-147)) ((-621 #0#) -2718 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-621 #1#) . T) ((-621 (-569)) . T) ((-621 $) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#3|) . T) ((-232 #1#) |has| (-412 |#2|) (-367)) ((-234) -2718 (|has| (-412 |#2|) (-353)) (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367)))) ((-244) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-293) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-310) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-367) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-407) |has| (-412 |#2|) (-353)) ((-372) -2718 (|has| (-412 |#2|) (-372)) (|has| (-412 |#2|) (-353))) ((-353) |has| (-412 |#2|) (-353)) ((-374 #1# |#3|) . T) ((-414 #1# |#3|) . T) ((-381 #1#) . T) ((-416 #1#) . T) ((-457) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-561) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #1#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-645 #1#) . T) ((-645 $) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-644 #1#) . T) ((-644 (-569)) |has| (-412 |#2|) (-644 (-569))) ((-722 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-722 #1#) . T) ((-722 $) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-729 #1# |#3|) . T) ((-731) . T) ((-906 (-1183)) -12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) ((-926) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1044 (-412 (-569))) |has| (-412 |#2|) (-1044 (-412 (-569)))) ((-1044 #1#) . T) ((-1044 (-569)) |has| (-412 |#2|) (-1044 (-569))) ((-1057 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #0#) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| (-412 |#2|) (-353)) ((-1227) -2718 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-916 |#1|) "failed") $) NIL)) (-3043 (((-916 |#1|) $) NIL)) (-2806 (($ (-1273 (-916 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-916 |#1|) (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| (-916 |#1|) (-372)))) (-4127 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| (-916 |#1|) (-372)))) (-3359 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3334 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3348 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-1509 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-1500 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-1518 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-3976 (((-964 (-1126))) NIL)) (-2290 (($) NIL (|has| (-916 |#1|) (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 (-916 |#1|))) NIL)) (-4056 (($) NIL (|has| (-916 |#1|) (-372)))) (-1529 (($) NIL (|has| (-916 |#1|) (-372)))) (-1949 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-1488 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2749 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+(((-347 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3976 ((-964 (-1126)))))) (-927) (-927)) (T -347))
+((-3976 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
+(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3976 ((-964 (-1126))))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 58)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) 56 (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 142)) (-3043 ((|#1| $) 113)) (-2806 (($ (-1273 |#1|)) 130)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) 124 (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) 160 (|has| |#1| (-372)))) (-4127 (((-112) $) 66 (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) 60 (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) 62)) (-3384 (($) 162 (|has| |#1| (-372)))) (-3359 (((-112) $) NIL (|has| |#1| (-372)))) (-3334 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) 117) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) 171 (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 178)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) 96 (|has| |#1| (-372)))) (-1969 (((-112) $) 147)) (-3461 (((-1126) $) NIL)) (-3976 (((-964 (-1126))) 57)) (-2290 (($) 158 (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 119 (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) 90) (((-927)) 91)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) 161 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 154 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 |#1|)) 122)) (-4056 (($) 159 (|has| |#1| (-372)))) (-1529 (($) 167 (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) 77) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) 174) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) 155 T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 144) (((-1273 $) (-927)) 98)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) 67 T CONST)) (-1796 (($) 103 T CONST)) (-3075 (($ $) 107 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) 65)) (-2956 (($ $ $) 176) (($ $ |#1|) 177)) (-2946 (($ $) 157) (($ $ $) NIL)) (-2935 (($ $ $) 86)) (** (($ $ (-927)) 180) (($ $ (-776)) 181) (($ $ (-569)) 179)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 102) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-348 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3976 ((-964 (-1126)))))) (-353) (-1179 |#1|)) (T -348))
+((-3976 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) (-14 *4 (-1179 *3)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -3976 ((-964 (-1126))))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-2806 (($ (-1273 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| |#1| (-372)))) (-4127 (((-112) $) NIL (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| |#1| (-372)))) (-3359 (((-112) $) NIL (|has| |#1| (-372)))) (-3334 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-3976 (((-964 (-1126))) NIL)) (-2290 (($) NIL (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 |#1|)) NIL)) (-4056 (($) NIL (|has| |#1| (-372)))) (-1529 (($) NIL (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-349 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3976 ((-964 (-1126)))))) (-353) (-927)) (T -349))
+((-3976 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -3976 ((-964 (-1126))))))
+((-4090 (((-776) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) 61)) (-3989 (((-964 (-1126)) (-1179 |#1|)) 111)) (-4000 (((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) (-1179 |#1|)) 102)) (-4011 (((-694 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) 113)) (-4023 (((-3 (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) "failed") (-927)) 13)) (-4034 (((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) (-927)) 18)))
+(((-350 |#1|) (-10 -7 (-15 -3989 ((-964 (-1126)) (-1179 |#1|))) (-15 -4000 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) (-1179 |#1|))) (-15 -4011 ((-694 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4090 ((-776) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4023 ((-3 (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) "failed") (-927))) (-15 -4034 ((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) (-927)))) (-353)) (T -350))
+((-4034 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-3 (-1179 *4) (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-4023 (*1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-5 *2 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))) (-5 *1 (-350 *4)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1126))) (-5 *1 (-350 *4)))))
+(-10 -7 (-15 -3989 ((-964 (-1126)) (-1179 |#1|))) (-15 -4000 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) (-1179 |#1|))) (-15 -4011 ((-694 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4090 ((-776) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4023 ((-3 (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) "failed") (-927))) (-15 -4034 ((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) (-927))))
+((-2388 ((|#1| |#3|) 106) ((|#3| |#1|) 89)))
+(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -2388 (|#3| |#1|)) (-15 -2388 (|#1| |#3|))) (-332 |#2|) (-353) (-332 |#2|)) (T -351))
+((-2388 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3)) (-4 *3 (-332 *4)))) (-2388 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2)) (-4 *3 (-332 *4)))))
+(-10 -7 (-15 -2388 (|#3| |#1|)) (-15 -2388 (|#1| |#3|)))
+((-4127 (((-112) $) 60)) (-4315 (((-838 (-927)) $) 23) (((-927) $) 66)) (-3177 (((-3 $ "failed") $) 18)) (-2267 (($) 9)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 116)) (-2536 (((-3 (-776) "failed") $ $) 94) (((-776) $) 81)) (-3430 (($ $ (-776)) NIL) (($ $) 8)) (-4056 (($) 53)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 38)) (-1488 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-352 |#1|) (-10 -8 (-15 -4315 ((-927) |#1|)) (-15 -2536 ((-776) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -4056 (|#1|)) (-15 -1497 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -1488 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -2536 ((-3 (-776) "failed") |#1| |#1|)) (-15 -4315 ((-838 (-927)) |#1|)) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)))) (-353)) (T -352))
+NIL
+(-10 -8 (-15 -4315 ((-927) |#1|)) (-15 -2536 ((-776) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -4056 (|#1|)) (-15 -1497 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -1488 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -2536 ((-3 (-776) "failed") |#1| |#1|)) (-15 -4315 ((-838 (-927)) |#1|)) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-4068 (((-1196 (-927) (-776)) (-569)) 101)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-4420 (((-112) $ $) 65)) (-3363 (((-776)) 111)) (-3863 (($) 18 T CONST)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-3295 (($) 114)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3445 (($) 99)) (-4127 (((-112) $) 98)) (-2525 (($ $) 87) (($ $ (-776)) 86)) (-3848 (((-112) $) 79)) (-4315 (((-838 (-927)) $) 89) (((-927) $) 96)) (-2861 (((-112) $) 35)) (-3177 (((-3 $ "failed") $) 110)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3348 (((-927) $) 113)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-2267 (($) 109 T CONST)) (-2114 (($ (-927)) 112)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 102)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2536 (((-3 (-776) "failed") $ $) 88) (((-776) $) 97)) (-3430 (($ $ (-776)) 107) (($ $) 105)) (-4056 (($) 100)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 103)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-1488 (((-3 $ "failed") $) 90) (($ $) 104)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-776)) 108) (($ $) 106)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+(((-353) (-140)) (T -353))
+((-1488 (*1 *1 *1) (-4 *1 (-353))) (-1497 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1273 *1)))) (-4080 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))))) (-4068 (*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1196 (-927) (-776))))) (-4056 (*1 *1) (-4 *1 (-353))) (-3445 (*1 *1) (-4 *1 (-353))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927)))) (-4045 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-407) (-372) (-1158) (-234) (-10 -8 (-15 -1488 ($ $)) (-15 -1497 ((-3 (-1273 $) "failed") (-694 $))) (-15 -4080 ((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569)))))) (-15 -4068 ((-1196 (-927) (-776)) (-569))) (-15 -4056 ($)) (-15 -3445 ($)) (-15 -4127 ((-112) $)) (-15 -2536 ((-776) $)) (-15 -4315 ((-927) $)) (-15 -4045 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) . T) ((-372) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) . T) ((-1227) . T))
+((-2987 (((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|) 55)) (-2976 (((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 53)))
+(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))) (-1249 |#1|) (-414 |#1| |#2|)) (T -354))
+((-2987 (*1 *2 *3) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2976 (*1 *2) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4090 (((-776)) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-916 |#1|) "failed") $) NIL)) (-3043 (((-916 |#1|) $) NIL)) (-2806 (($ (-1273 (-916 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-916 |#1|) (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| (-916 |#1|) (-372)))) (-4127 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| (-916 |#1|) (-372)))) (-3359 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3334 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3348 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-1509 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-1500 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-1518 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-4116 (((-1273 (-649 (-2 (|:| -2150 (-916 |#1|)) (|:| -2114 (-1126)))))) NIL)) (-4102 (((-694 (-916 |#1|))) NIL)) (-2290 (($) NIL (|has| (-916 |#1|) (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 (-916 |#1|))) NIL)) (-4056 (($) NIL (|has| (-916 |#1|) (-372)))) (-1529 (($) NIL (|has| (-916 |#1|) (-372)))) (-1949 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-1488 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2749 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+(((-355 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 (-916 |#1|)) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 (-916 |#1|)))) (-15 -4090 ((-776))))) (-927) (-927)) (T -355))
+((-4116 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2150 (-916 *3)) (|:| -2114 (-1126)))))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-4102 (*1 *2) (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-4090 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
+(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 (-916 |#1|)) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 (-916 |#1|)))) (-15 -4090 ((-776)))))
+((-2383 (((-112) $ $) 73)) (-2789 (((-112) $) 88)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) 106) (($ $ (-927)) 104 (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) 171 (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4090 (((-776)) 103)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) 188 (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 128)) (-3043 ((|#1| $) 105)) (-2806 (($ (-1273 |#1|)) 71)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) 183 (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) 172 (|has| |#1| (-372)))) (-4127 (((-112) $) NIL (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) 114 (|has| |#1| (-372)))) (-3359 (((-112) $) 201 (|has| |#1| (-372)))) (-3334 ((|#1| $) 108) (($ $ (-927)) 107 (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) 215) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) 149 (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) 87 (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) 84 (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) 96 (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) 83 (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 219)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) 151 (|has| |#1| (-372)))) (-1969 (((-112) $) 124)) (-3461 (((-1126) $) NIL)) (-4116 (((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) 97)) (-4102 (((-694 |#1|)) 101)) (-2290 (($) 110 (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 174 (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) 175)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) 75)) (-2760 (((-1179 |#1|)) 176)) (-4056 (($) 148 (|has| |#1| (-372)))) (-1529 (($) NIL (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) 122) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) 141) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 70)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) 181 T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 198) (((-1273 $) (-927)) 117)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) 187 T CONST)) (-1796 (($) 162 T CONST)) (-3075 (($ $) 123 (|has| |#1| (-372))) (($ $ (-776)) 115 (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) 209)) (-2956 (($ $ $) 120) (($ $ |#1|) 121)) (-2946 (($ $) 203) (($ $ $) 207)) (-2935 (($ $ $) 205)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 154)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 212) (($ $ $) 165) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119)))
+(((-356 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 |#1|))) (-15 -4090 ((-776))))) (-353) (-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (T -356))
+((-4116 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) *2)))) (-4102 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126))))))))) (-4090 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126))))))))))
+(-13 (-332 |#1|) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 |#1|))) (-15 -4090 ((-776)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4090 (((-776)) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-2806 (($ (-1273 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| |#1| (-372)))) (-4127 (((-112) $) NIL (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| |#1| (-372)))) (-3359 (((-112) $) NIL (|has| |#1| (-372)))) (-3334 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-4116 (((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126)))))) NIL)) (-4102 (((-694 |#1|)) NIL)) (-2290 (($) NIL (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 |#1|)) NIL)) (-4056 (($) NIL (|has| |#1| (-372)))) (-1529 (($) NIL (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-357 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 |#1|))) (-15 -4090 ((-776))))) (-353) (-927)) (T -357))
+((-4116 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-4102 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-4090 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -4116 ((-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))))) (-15 -4102 ((-694 |#1|))) (-15 -4090 ((-776)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-916 |#1|) "failed") $) NIL)) (-3043 (((-916 |#1|) $) NIL)) (-2806 (($ (-1273 (-916 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-916 |#1|) (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| (-916 |#1|) (-372)))) (-4127 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| (-916 |#1|) (-372)))) (-3359 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3334 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3348 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-1509 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-1500 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-1518 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL (|has| (-916 |#1|) (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 (-916 |#1|))) NIL)) (-4056 (($) NIL (|has| (-916 |#1|) (-372)))) (-1529 (($) NIL (|has| (-916 |#1|) (-372)))) (-1949 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-1488 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2749 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+(((-358 |#1| |#2|) (-332 (-916 |#1|)) (-927) (-927)) (T -358))
+NIL
+(-332 (-916 |#1|))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) 158 (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 106)) (-3043 ((|#1| $) 103)) (-2806 (($ (-1273 |#1|)) 98)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) 95 (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) 51 (|has| |#1| (-372)))) (-4127 (((-112) $) NIL (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) 133 (|has| |#1| (-372)))) (-3359 (((-112) $) 87 (|has| |#1| (-372)))) (-3334 ((|#1| $) 47) (($ $ (-927)) 52 (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) 78) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) 110 (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) 108 (|has| |#1| (-372)))) (-1969 (((-112) $) 160)) (-3461 (((-1126) $) NIL)) (-2290 (($) 44 (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 127 (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) 157)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) 70)) (-2760 (((-1179 |#1|)) 101)) (-4056 (($) 138 (|has| |#1| (-372)))) (-1529 (($) NIL (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) 66) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) 156) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) 162 T CONST)) (-2040 (((-112) $ $) 164)) (-3371 (((-1273 $)) 122) (((-1273 $) (-927)) 60)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) 124 T CONST)) (-1796 (($) 40 T CONST)) (-3075 (($ $) 81 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) 120)) (-2956 (($ $ $) 112) (($ $ |#1|) 113)) (-2946 (($ $) 93) (($ $ $) 118)) (-2935 (($ $ $) 116)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55) (($ $ (-569)) 141)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 91) (($ $ $) 68) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89)))
+(((-359 |#1| |#2|) (-332 |#1|) (-353) (-1179 |#1|)) (T -359))
NIL
(-332 |#1|)
-((-1873 (((-964 (-1177 |#1|)) (-1177 |#1|)) 51)) (-3413 (((-1177 |#1|) (-925) (-925)) 158) (((-1177 |#1|) (-925)) 154)) (-1858 (((-112) (-1177 |#1|)) 110)) (-1860 (((-925) (-925)) 88)) (-1861 (((-925) (-925)) 95)) (-1859 (((-925) (-925)) 86)) (-2199 (((-112) (-1177 |#1|)) 114)) (-1868 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 139)) (-1871 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 144)) (-1870 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 143)) (-1869 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 142)) (-1867 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 134)) (-1872 (((-1177 |#1|) (-1177 |#1|)) 74)) (-1863 (((-1177 |#1|) (-925)) 149)) (-1866 (((-1177 |#1|) (-925)) 152)) (-1865 (((-1177 |#1|) (-925)) 151)) (-1864 (((-1177 |#1|) (-925)) 150)) (-1862 (((-1177 |#1|) (-925)) 147)))
-(((-360 |#1|) (-10 -7 (-15 -1858 ((-112) (-1177 |#1|))) (-15 -2199 ((-112) (-1177 |#1|))) (-15 -1859 ((-925) (-925))) (-15 -1860 ((-925) (-925))) (-15 -1861 ((-925) (-925))) (-15 -1862 ((-1177 |#1|) (-925))) (-15 -1863 ((-1177 |#1|) (-925))) (-15 -1864 ((-1177 |#1|) (-925))) (-15 -1865 ((-1177 |#1|) (-925))) (-15 -1866 ((-1177 |#1|) (-925))) (-15 -1867 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1868 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1869 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1870 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1871 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -3413 ((-1177 |#1|) (-925))) (-15 -3413 ((-1177 |#1|) (-925) (-925))) (-15 -1872 ((-1177 |#1|) (-1177 |#1|))) (-15 -1873 ((-964 (-1177 |#1|)) (-1177 |#1|)))) (-354)) (T -360))
-((-1873 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-964 (-1177 *4))) (-5 *1 (-360 *4)) (-5 *3 (-1177 *4)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1871 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-1870 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-1869 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-1868 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-1867 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-360 *4)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-360 *4)))))
-(-10 -7 (-15 -1858 ((-112) (-1177 |#1|))) (-15 -2199 ((-112) (-1177 |#1|))) (-15 -1859 ((-925) (-925))) (-15 -1860 ((-925) (-925))) (-15 -1861 ((-925) (-925))) (-15 -1862 ((-1177 |#1|) (-925))) (-15 -1863 ((-1177 |#1|) (-925))) (-15 -1864 ((-1177 |#1|) (-925))) (-15 -1865 ((-1177 |#1|) (-925))) (-15 -1866 ((-1177 |#1|) (-925))) (-15 -1867 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1868 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1869 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1870 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1871 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -3413 ((-1177 |#1|) (-925))) (-15 -3413 ((-1177 |#1|) (-925) (-925))) (-15 -1872 ((-1177 |#1|) (-1177 |#1|))) (-15 -1873 ((-964 (-1177 |#1|)) (-1177 |#1|))))
-((-1874 ((|#1| (-1177 |#2|)) 61)))
-(((-361 |#1| |#2|) (-10 -7 (-15 -1874 (|#1| (-1177 |#2|)))) (-13 (-407) (-10 -7 (-15 -4396 (|#1| |#2|)) (-15 -2198 ((-925) |#1|)) (-15 -2200 ((-1272 |#1|) (-925))) (-15 -4378 (|#1| |#1|)))) (-354)) (T -361))
-((-1874 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-4 *2 (-13 (-407) (-10 -7 (-15 -4396 (*2 *4)) (-15 -2198 ((-925) *2)) (-15 -2200 ((-1272 *2) (-925))) (-15 -4378 (*2 *2))))) (-5 *1 (-361 *2 *4)))))
-(-10 -7 (-15 -1874 (|#1| (-1177 |#2|))))
-((-3125 (((-3 (-646 |#3|) "failed") (-646 |#3|) |#3|) 38)))
-(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -3125 ((-3 (-646 |#3|) "failed") (-646 |#3|) |#3|))) (-354) (-1248 |#1|) (-1248 |#2|)) (T -362))
-((-3125 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-354)) (-5 *1 (-362 *4 *5 *3)))))
-(-10 -7 (-15 -3125 ((-3 (-646 |#3|) "failed") (-646 |#3|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| |#1| (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-1977 (($ (-1272 |#1|)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| |#1| (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| |#1| (-372)))) (-1858 (((-112) $) NIL (|has| |#1| (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| |#1| (-372))) (((-837 (-925)) $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| |#1| (-372)))) (-2199 (((-112) $) NIL (|has| |#1| (-372)))) (-3554 ((|#1| $) NIL) (($ $ (-925)) NIL (|has| |#1| (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 |#1|) $) NIL) (((-1177 $) $ (-925)) NIL (|has| |#1| (-372)))) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-1782 (((-1177 |#1|) $) NIL (|has| |#1| (-372)))) (-1781 (((-1177 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1177 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1783 (($ $ (-1177 |#1|)) NIL (|has| |#1| (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| |#1| (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL (|has| |#1| (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| |#1| (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 |#1|)) NIL)) (-1852 (($) NIL (|has| |#1| (-372)))) (-1784 (($) NIL (|has| |#1| (-372)))) (-3662 (((-1272 |#1|) $) NIL) (((-694 |#1|) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) NIL)) (-3123 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-363 |#1| |#2|) (-332 |#1|) (-354) (-925)) (T -363))
+((-2983 ((|#1| (-1179 |#2|)) 61)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -2983 (|#1| (-1179 |#2|)))) (-13 (-407) (-10 -7 (-15 -2388 (|#1| |#2|)) (-15 -3348 ((-927) |#1|)) (-15 -3371 ((-1273 |#1|) (-927))) (-15 -3075 (|#1| |#1|)))) (-353)) (T -360))
+((-2983 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-4 *2 (-13 (-407) (-10 -7 (-15 -2388 (*2 *4)) (-15 -3348 ((-927) *2)) (-15 -3371 ((-1273 *2) (-927))) (-15 -3075 (*2 *2))))) (-5 *1 (-360 *2 *4)))))
+(-10 -7 (-15 -2983 (|#1| (-1179 |#2|))))
+((-2971 (((-964 (-1179 |#1|)) (-1179 |#1|)) 51)) (-3295 (((-1179 |#1|) (-927) (-927)) 158) (((-1179 |#1|) (-927)) 154)) (-4127 (((-112) (-1179 |#1|)) 110)) (-4152 (((-927) (-927)) 88)) (-4162 (((-927) (-927)) 95)) (-4141 (((-927) (-927)) 86)) (-3359 (((-112) (-1179 |#1|)) 114)) (-4242 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 139)) (-4280 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 144)) (-4265 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 143)) (-4253 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 142)) (-4229 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 134)) (-2961 (((-1179 |#1|) (-1179 |#1|)) 74)) (-4186 (((-1179 |#1|) (-927)) 149)) (-4219 (((-1179 |#1|) (-927)) 152)) (-4208 (((-1179 |#1|) (-927)) 151)) (-4197 (((-1179 |#1|) (-927)) 150)) (-4174 (((-1179 |#1|) (-927)) 147)))
+(((-361 |#1|) (-10 -7 (-15 -4127 ((-112) (-1179 |#1|))) (-15 -3359 ((-112) (-1179 |#1|))) (-15 -4141 ((-927) (-927))) (-15 -4152 ((-927) (-927))) (-15 -4162 ((-927) (-927))) (-15 -4174 ((-1179 |#1|) (-927))) (-15 -4186 ((-1179 |#1|) (-927))) (-15 -4197 ((-1179 |#1|) (-927))) (-15 -4208 ((-1179 |#1|) (-927))) (-15 -4219 ((-1179 |#1|) (-927))) (-15 -4229 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4242 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4253 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4265 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4280 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3295 ((-1179 |#1|) (-927))) (-15 -3295 ((-1179 |#1|) (-927) (-927))) (-15 -2961 ((-1179 |#1|) (-1179 |#1|))) (-15 -2971 ((-964 (-1179 |#1|)) (-1179 |#1|)))) (-353)) (T -361))
+((-2971 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1179 *4))) (-5 *1 (-361 *4)) (-5 *3 (-1179 *4)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3295 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4280 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-4265 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-4253 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-4242 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-4229 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))))
+(-10 -7 (-15 -4127 ((-112) (-1179 |#1|))) (-15 -3359 ((-112) (-1179 |#1|))) (-15 -4141 ((-927) (-927))) (-15 -4152 ((-927) (-927))) (-15 -4162 ((-927) (-927))) (-15 -4174 ((-1179 |#1|) (-927))) (-15 -4186 ((-1179 |#1|) (-927))) (-15 -4197 ((-1179 |#1|) (-927))) (-15 -4208 ((-1179 |#1|) (-927))) (-15 -4219 ((-1179 |#1|) (-927))) (-15 -4229 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4242 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4253 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4265 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -4280 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3295 ((-1179 |#1|) (-927))) (-15 -3295 ((-1179 |#1|) (-927) (-927))) (-15 -2961 ((-1179 |#1|) (-1179 |#1|))) (-15 -2971 ((-964 (-1179 |#1|)) (-1179 |#1|))))
+((-1506 (((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|) 38)))
+(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -1506 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|))) (-353) (-1249 |#1|) (-1249 |#2|)) (T -362))
+((-1506 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3)))))
+(-10 -7 (-15 -1506 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-2806 (($ (-1273 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| |#1| (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| |#1| (-372)))) (-4127 (((-112) $) NIL (|has| |#1| (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| |#1| (-372)))) (-3359 (((-112) $) NIL (|has| |#1| (-372)))) (-3334 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-1509 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-1500 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-1518 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| |#1| (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL (|has| |#1| (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| |#1| (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 |#1|)) NIL)) (-4056 (($) NIL (|has| |#1| (-372)))) (-1529 (($) NIL (|has| |#1| (-372)))) (-1949 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-1488 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2749 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-363 |#1| |#2|) (-332 |#1|) (-353) (-927)) (T -363))
NIL
(-332 |#1|)
-((-2416 (((-112) (-646 (-952 |#1|))) 41)) (-2418 (((-646 (-952 |#1|)) (-646 (-952 |#1|))) 53)) (-2417 (((-3 (-646 (-952 |#1|)) "failed") (-646 (-952 |#1|))) 48)))
-(((-364 |#1| |#2|) (-10 -7 (-15 -2416 ((-112) (-646 (-952 |#1|)))) (-15 -2417 ((-3 (-646 (-952 |#1|)) "failed") (-646 (-952 |#1|)))) (-15 -2418 ((-646 (-952 |#1|)) (-646 (-952 |#1|))))) (-457) (-646 (-1183))) (T -364))
-((-2418 (*1 *2 *2) (-12 (-5 *2 (-646 (-952 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-646 (-1183))))) (-2417 (*1 *2 *2) (|partial| -12 (-5 *2 (-646 (-952 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-646 (-1183))))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-457)) (-5 *2 (-112)) (-5 *1 (-364 *4 *5)) (-14 *5 (-646 (-1183))))))
-(-10 -7 (-15 -2416 ((-112) (-646 (-952 |#1|)))) (-15 -2417 ((-3 (-646 (-952 |#1|)) "failed") (-646 (-952 |#1|)))) (-15 -2418 ((-646 (-952 |#1|)) (-646 (-952 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776) $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) 17)) (-2462 ((|#1| $ (-551)) NIL)) (-2463 (((-551) $ (-551)) NIL)) (-2454 (($ (-1 |#1| |#1|) $) 34)) (-2455 (($ (-1 (-551) (-551)) $) 26)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 28)) (-3682 (((-1126) $) NIL)) (-1964 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-551)))) $) 30)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) 40) (($ |#1|) NIL)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 11 T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL) (($ |#1| (-551)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-365 |#1|) (-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-551))) (-15 -3558 ((-776) $)) (-15 -2463 ((-551) $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -2455 ($ (-1 (-551) (-551)) $)) (-15 -2454 ($ (-1 |#1| |#1|) $)) (-15 -1964 ((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-551)))) $)))) (-1107)) (T -365))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1107)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1107)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-365 *2)) (-4 *2 (-1107)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1107)))) (-2463 (*1 *2 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-365 *3)) (-4 *3 (-1107)))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-365 *2)) (-4 *2 (-1107)))) (-2455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-551) (-551))) (-5 *1 (-365 *3)) (-4 *3 (-1107)))) (-2454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-365 *3)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 (-551))))) (-5 *1 (-365 *3)) (-4 *3 (-1107)))))
-(-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-551))) (-15 -3558 ((-776) $)) (-15 -2463 ((-551) $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -2455 ($ (-1 (-551) (-551)) $)) (-15 -2454 ($ (-1 |#1| |#1|) $)) (-15 -1964 ((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-551)))) $))))
-((-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 13)) (-2251 (($ $) 14)) (-4419 (((-410 $) $) 34)) (-4173 (((-112) $) 30)) (-2824 (($ $) 19)) (-3582 (($ $ $) 25) (($ (-646 $)) NIL)) (-4182 (((-410 $) $) 35)) (-3907 (((-3 $ "failed") $ $) 24)) (-1762 (((-776) $) 28)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 39)) (-2250 (((-112) $ $) 16)) (-4399 (($ $ $) 37)))
-(((-366 |#1|) (-10 -8 (-15 -4399 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -1762 ((-776) |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|)) (-15 -2250 ((-112) |#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|))) (-367)) (T -366))
-NIL
-(-10 -8 (-15 -4399 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -1762 ((-776) |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|)) (-15 -2250 ((-112) |#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-2591 (((-112) $) 35)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
+((-3796 (((-112) (-649 (-958 |#1|))) 41)) (-3821 (((-649 (-958 |#1|)) (-649 (-958 |#1|))) 53)) (-3809 (((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|))) 48)))
+(((-364 |#1| |#2|) (-10 -7 (-15 -3796 ((-112) (-649 (-958 |#1|)))) (-15 -3809 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -3821 ((-649 (-958 |#1|)) (-649 (-958 |#1|))))) (-457) (-649 (-1183))) (T -364))
+((-3821 (*1 *2 *2) (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183))))) (-3809 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183))))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112)) (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1183))))))
+(-10 -7 (-15 -3796 ((-112) (-649 (-958 |#1|)))) (-15 -3809 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -3821 ((-649 (-958 |#1|)) (-649 (-958 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776) $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) 17)) (-4199 ((|#1| $ (-569)) NIL)) (-4209 (((-569) $ (-569)) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 34)) (-4129 (($ (-1 (-569) (-569)) $) 26)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 28)) (-3461 (((-1126) $) NIL)) (-2671 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-569)))) $) 30)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) 40) (($ |#1|) NIL)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 11 T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ |#1| (-569)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-365 |#1|) (-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3363 ((-776) $)) (-15 -4209 ((-569) $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -4129 ($ (-1 (-569) (-569)) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -2671 ((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-569)))) $)))) (-1106)) (T -365))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-4209 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (-4129 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-365 *3)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 (-569))))) (-5 *1 (-365 *3)) (-4 *3 (-1106)))))
+(-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3363 ((-776) $)) (-15 -4209 ((-569) $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -4129 ($ (-1 (-569) (-569)) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -2671 ((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-569)))) $))))
+((-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 13)) (-2586 (($ $) 14)) (-2207 (((-423 $) $) 34)) (-3848 (((-112) $) 30)) (-1776 (($ $) 19)) (-1830 (($ $ $) 25) (($ (-649 $)) NIL)) (-3699 (((-423 $) $) 35)) (-2374 (((-3 $ "failed") $ $) 24)) (-4409 (((-776) $) 28)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 39)) (-2574 (((-112) $ $) 16)) (-2956 (($ $ $) 37)))
+(((-366 |#1|) (-10 -8 (-15 -2956 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3848 ((-112) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -4409 ((-776) |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|)) (-15 -2574 ((-112) |#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|))) (-367)) (T -366))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3848 ((-112) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -4409 ((-776) |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|)) (-15 -2574 ((-112) |#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-2861 (((-112) $) 35)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-367) (-140)) (T -367))
-((-4399 (*1 *1 *1 *1) (-4 *1 (-367))))
-(-13 (-310) (-1227) (-244) (-10 -8 (-15 -4399 ($ $ $)) (-6 -4441) (-6 -4435)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-2986 (((-112) $ $) NIL)) (-1875 ((|#1| $ |#1|) 31)) (-1879 (($ $ (-1165)) 23)) (-4069 (((-3 |#1| "failed") $) 30)) (-1876 ((|#1| $) 28)) (-1880 (($ (-393)) 22) (($ (-393) (-1165)) 21)) (-3991 (((-393) $) 25)) (-3681 (((-1165) $) NIL)) (-1877 (((-1165) $) 26)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 20)) (-1878 (($ $) 24)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 19)))
-(((-368 |#1|) (-13 (-369 (-393) |#1|) (-10 -8 (-15 -4069 ((-3 |#1| "failed") $)))) (-1107)) (T -368))
-((-4069 (*1 *2 *1) (|partial| -12 (-5 *1 (-368 *2)) (-4 *2 (-1107)))))
-(-13 (-369 (-393) |#1|) (-10 -8 (-15 -4069 ((-3 |#1| "failed") $))))
-((-2986 (((-112) $ $) 7)) (-1875 ((|#2| $ |#2|) 14)) (-1879 (($ $ (-1165)) 19)) (-1876 ((|#2| $) 15)) (-1880 (($ |#1|) 21) (($ |#1| (-1165)) 20)) (-3991 ((|#1| $) 17)) (-3681 (((-1165) $) 10)) (-1877 (((-1165) $) 16)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-1878 (($ $) 18)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-369 |#1| |#2|) (-140) (-1107) (-1107)) (T -369))
-((-1880 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-1880 (*1 *1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1107)) (-4 *4 (-1107)))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-1878 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1107)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-1165)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))) (-1875 (*1 *2 *1 *2) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -1880 ($ |t#1|)) (-15 -1880 ($ |t#1| (-1165))) (-15 -1879 ($ $ (-1165))) (-15 -1878 ($ $)) (-15 -3991 (|t#1| $)) (-15 -1877 ((-1165) $)) (-15 -1876 (|t#2| $)) (-15 -1875 (|t#2| $ |t#2|))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-3661 (((-1272 (-694 |#2|)) (-1272 $)) 70)) (-1973 (((-694 |#2|) (-1272 $)) 141)) (-1905 ((|#2| $) 39)) (-1971 (((-694 |#2|) $ (-1272 $)) 144)) (-2585 (((-3 $ "failed") $) 91)) (-1903 ((|#2| $) 42)) (-1883 (((-1177 |#2|) $) 99)) (-1975 ((|#2| (-1272 $)) 124)) (-1901 (((-1177 |#2|) $) 34)) (-1895 (((-112)) 118)) (-1977 (($ (-1272 |#2|) (-1272 $)) 134)) (-3908 (((-3 $ "failed") $) 95)) (-1888 (((-112)) 112)) (-1886 (((-112)) 107)) (-1890 (((-112)) 61)) (-1974 (((-694 |#2|) (-1272 $)) 139)) (-1906 ((|#2| $) 38)) (-1972 (((-694 |#2|) $ (-1272 $)) 143)) (-2586 (((-3 $ "failed") $) 89)) (-1904 ((|#2| $) 41)) (-1884 (((-1177 |#2|) $) 98)) (-1976 ((|#2| (-1272 $)) 122)) (-1902 (((-1177 |#2|) $) 32)) (-1896 (((-112)) 117)) (-1887 (((-112)) 109)) (-1889 (((-112)) 59)) (-1891 (((-112)) 104)) (-1894 (((-112)) 119)) (-3662 (((-1272 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) (-1272 $) (-1272 $)) 130)) (-1900 (((-112)) 115)) (-1885 (((-646 (-1272 |#2|))) 103)) (-1898 (((-112)) 116)) (-1899 (((-112)) 113)) (-1897 (((-112)) 54)) (-1893 (((-112)) 120)))
-(((-370 |#1| |#2|) (-10 -8 (-15 -1883 ((-1177 |#2|) |#1|)) (-15 -1884 ((-1177 |#2|) |#1|)) (-15 -1885 ((-646 (-1272 |#2|)))) (-15 -2585 ((-3 |#1| "failed") |#1|)) (-15 -2586 ((-3 |#1| "failed") |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-112))) (-15 -1893 ((-112))) (-15 -1894 ((-112))) (-15 -1895 ((-112))) (-15 -1896 ((-112))) (-15 -1897 ((-112))) (-15 -1898 ((-112))) (-15 -1899 ((-112))) (-15 -1900 ((-112))) (-15 -1901 ((-1177 |#2|) |#1|)) (-15 -1902 ((-1177 |#2|) |#1|)) (-15 -1973 ((-694 |#2|) (-1272 |#1|))) (-15 -1974 ((-694 |#2|) (-1272 |#1|))) (-15 -1975 (|#2| (-1272 |#1|))) (-15 -1976 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1903 (|#2| |#1|)) (-15 -1904 (|#2| |#1|)) (-15 -1905 (|#2| |#1|)) (-15 -1906 (|#2| |#1|)) (-15 -1971 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -1972 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -3661 ((-1272 (-694 |#2|)) (-1272 |#1|)))) (-371 |#2|) (-173)) (T -370))
-((-1900 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1896 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1895 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1894 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1893 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1891 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1890 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1885 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-646 (-1272 *4))) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))))
-(-10 -8 (-15 -1883 ((-1177 |#2|) |#1|)) (-15 -1884 ((-1177 |#2|) |#1|)) (-15 -1885 ((-646 (-1272 |#2|)))) (-15 -2585 ((-3 |#1| "failed") |#1|)) (-15 -2586 ((-3 |#1| "failed") |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-112))) (-15 -1893 ((-112))) (-15 -1894 ((-112))) (-15 -1895 ((-112))) (-15 -1896 ((-112))) (-15 -1897 ((-112))) (-15 -1898 ((-112))) (-15 -1899 ((-112))) (-15 -1900 ((-112))) (-15 -1901 ((-1177 |#2|) |#1|)) (-15 -1902 ((-1177 |#2|) |#1|)) (-15 -1973 ((-694 |#2|) (-1272 |#1|))) (-15 -1974 ((-694 |#2|) (-1272 |#1|))) (-15 -1975 (|#2| (-1272 |#1|))) (-15 -1976 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1903 (|#2| |#1|)) (-15 -1904 (|#2| |#1|)) (-15 -1905 (|#2| |#1|)) (-15 -1906 (|#2| |#1|)) (-15 -1971 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -1972 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -3661 ((-1272 (-694 |#2|)) (-1272 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1957 (((-3 $ "failed")) 42 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) 20)) (-3661 (((-1272 (-694 |#1|)) (-1272 $)) 83)) (-1907 (((-1272 $)) 86)) (-4174 (($) 18 T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed")) 45 (|has| |#1| (-562)))) (-1881 (((-3 $ "failed")) 43 (|has| |#1| (-562)))) (-1973 (((-694 |#1|) (-1272 $)) 70)) (-1905 ((|#1| $) 79)) (-1971 (((-694 |#1|) $ (-1272 $)) 81)) (-2585 (((-3 $ "failed") $) 50 (|has| |#1| (-562)))) (-2588 (($ $ (-925)) 31)) (-1903 ((|#1| $) 77)) (-1883 (((-1177 |#1|) $) 47 (|has| |#1| (-562)))) (-1975 ((|#1| (-1272 $)) 72)) (-1901 (((-1177 |#1|) $) 68)) (-1895 (((-112)) 62)) (-1977 (($ (-1272 |#1|) (-1272 $)) 74)) (-3908 (((-3 $ "failed") $) 52 (|has| |#1| (-562)))) (-3531 (((-925)) 85)) (-1892 (((-112)) 59)) (-2612 (($ $ (-925)) 38)) (-1888 (((-112)) 55)) (-1886 (((-112)) 53)) (-1890 (((-112)) 57)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed")) 46 (|has| |#1| (-562)))) (-1882 (((-3 $ "failed")) 44 (|has| |#1| (-562)))) (-1974 (((-694 |#1|) (-1272 $)) 71)) (-1906 ((|#1| $) 80)) (-1972 (((-694 |#1|) $ (-1272 $)) 82)) (-2586 (((-3 $ "failed") $) 51 (|has| |#1| (-562)))) (-2587 (($ $ (-925)) 32)) (-1904 ((|#1| $) 78)) (-1884 (((-1177 |#1|) $) 48 (|has| |#1| (-562)))) (-1976 ((|#1| (-1272 $)) 73)) (-1902 (((-1177 |#1|) $) 69)) (-1896 (((-112)) 63)) (-3681 (((-1165) $) 10)) (-1887 (((-112)) 54)) (-1889 (((-112)) 56)) (-1891 (((-112)) 58)) (-3682 (((-1126) $) 11)) (-1894 (((-112)) 61)) (-3662 (((-1272 |#1|) $ (-1272 $)) 76) (((-694 |#1|) (-1272 $) (-1272 $)) 75)) (-2080 (((-646 (-952 |#1|)) (-1272 $)) 84)) (-2774 (($ $ $) 28)) (-1900 (((-112)) 67)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-1885 (((-646 (-1272 |#1|))) 49 (|has| |#1| (-562)))) (-2775 (($ $ $ $) 29)) (-1898 (((-112)) 65)) (-2773 (($ $ $) 27)) (-1899 (((-112)) 66)) (-1897 (((-112)) 64)) (-1893 (((-112)) 60)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 33)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2956 (*1 *1 *1 *1) (-4 *1 (-367))))
+(-13 (-310) (-1227) (-244) (-10 -8 (-15 -2956 ($ $ $)) (-6 -4441) (-6 -4435)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-2383 (((-112) $ $) 7)) (-2991 ((|#2| $ |#2|) 14)) (-3035 (($ $ (-1165)) 19)) (-3001 ((|#2| $) 15)) (-1675 (($ |#1|) 21) (($ |#1| (-1165)) 20)) (-3458 ((|#1| $) 17)) (-2050 (((-1165) $) 10)) (-3014 (((-1165) $) 16)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-3026 (($ $) 18)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-368 |#1| |#2|) (-140) (-1106) (-1106)) (T -368))
+((-1675 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-1675 (*1 *1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1106)) (-4 *4 (-1106)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-1165)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-2991 (*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -1675 ($ |t#1|)) (-15 -1675 ($ |t#1| (-1165))) (-15 -3035 ($ $ (-1165))) (-15 -3026 ($ $)) (-15 -3458 (|t#1| $)) (-15 -3014 ((-1165) $)) (-15 -3001 (|t#2| $)) (-15 -2991 (|t#2| $ |t#2|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2991 ((|#1| $ |#1|) 31)) (-3035 (($ $ (-1165)) 23)) (-2173 (((-3 |#1| "failed") $) 30)) (-3001 ((|#1| $) 28)) (-1675 (($ (-393)) 22) (($ (-393) (-1165)) 21)) (-3458 (((-393) $) 25)) (-2050 (((-1165) $) NIL)) (-3014 (((-1165) $) 26)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 20)) (-3026 (($ $) 24)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 19)))
+(((-369 |#1|) (-13 (-368 (-393) |#1|) (-10 -8 (-15 -2173 ((-3 |#1| "failed") $)))) (-1106)) (T -369))
+((-2173 (*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1106)))))
+(-13 (-368 (-393) |#1|) (-10 -8 (-15 -2173 ((-3 |#1| "failed") $))))
+((-1941 (((-1273 (-694 |#2|)) (-1273 $)) 70)) (-2766 (((-694 |#2|) (-1273 $)) 141)) (-3331 ((|#2| $) 39)) (-2747 (((-694 |#2|) $ (-1273 $)) 144)) (-2808 (((-3 $ "failed") $) 91)) (-3307 ((|#2| $) 42)) (-3070 (((-1179 |#2|) $) 99)) (-2786 ((|#2| (-1273 $)) 124)) (-3285 (((-1179 |#2|) $) 34)) (-3202 (((-112)) 118)) (-2806 (($ (-1273 |#2|) (-1273 $)) 134)) (-3351 (((-3 $ "failed") $) 95)) (-3123 (((-112)) 112)) (-3103 (((-112)) 107)) (-3145 (((-112)) 61)) (-2775 (((-694 |#2|) (-1273 $)) 139)) (-3342 ((|#2| $) 38)) (-2757 (((-694 |#2|) $ (-1273 $)) 143)) (-2817 (((-3 $ "failed") $) 89)) (-3320 ((|#2| $) 41)) (-3081 (((-1179 |#2|) $) 98)) (-2797 ((|#2| (-1273 $)) 122)) (-3297 (((-1179 |#2|) $) 32)) (-3216 (((-112)) 117)) (-3112 (((-112)) 109)) (-3133 (((-112)) 59)) (-3157 (((-112)) 104)) (-3189 (((-112)) 119)) (-1949 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) 130)) (-3270 (((-112)) 115)) (-3092 (((-649 (-1273 |#2|))) 103)) (-3245 (((-112)) 116)) (-3259 (((-112)) 113)) (-3230 (((-112)) 54)) (-3178 (((-112)) 120)))
+(((-370 |#1| |#2|) (-10 -8 (-15 -3070 ((-1179 |#2|) |#1|)) (-15 -3081 ((-1179 |#2|) |#1|)) (-15 -3092 ((-649 (-1273 |#2|)))) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2817 ((-3 |#1| "failed") |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -3103 ((-112))) (-15 -3112 ((-112))) (-15 -3123 ((-112))) (-15 -3133 ((-112))) (-15 -3145 ((-112))) (-15 -3157 ((-112))) (-15 -3178 ((-112))) (-15 -3189 ((-112))) (-15 -3202 ((-112))) (-15 -3216 ((-112))) (-15 -3230 ((-112))) (-15 -3245 ((-112))) (-15 -3259 ((-112))) (-15 -3270 ((-112))) (-15 -3285 ((-1179 |#2|) |#1|)) (-15 -3297 ((-1179 |#2|) |#1|)) (-15 -2766 ((-694 |#2|) (-1273 |#1|))) (-15 -2775 ((-694 |#2|) (-1273 |#1|))) (-15 -2786 (|#2| (-1273 |#1|))) (-15 -2797 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -3307 (|#2| |#1|)) (-15 -3320 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -2747 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2757 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -1941 ((-1273 (-694 |#2|)) (-1273 |#1|)))) (-371 |#2|) (-173)) (T -370))
+((-3270 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3259 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3245 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3230 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3216 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3202 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3189 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3178 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3157 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3145 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3133 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3123 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3112 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3103 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3092 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1273 *4))) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))))
+(-10 -8 (-15 -3070 ((-1179 |#2|) |#1|)) (-15 -3081 ((-1179 |#2|) |#1|)) (-15 -3092 ((-649 (-1273 |#2|)))) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2817 ((-3 |#1| "failed") |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -3103 ((-112))) (-15 -3112 ((-112))) (-15 -3123 ((-112))) (-15 -3133 ((-112))) (-15 -3145 ((-112))) (-15 -3157 ((-112))) (-15 -3178 ((-112))) (-15 -3189 ((-112))) (-15 -3202 ((-112))) (-15 -3216 ((-112))) (-15 -3230 ((-112))) (-15 -3245 ((-112))) (-15 -3259 ((-112))) (-15 -3270 ((-112))) (-15 -3285 ((-1179 |#2|) |#1|)) (-15 -3297 ((-1179 |#2|) |#1|)) (-15 -2766 ((-694 |#2|) (-1273 |#1|))) (-15 -2775 ((-694 |#2|) (-1273 |#1|))) (-15 -2786 (|#2| (-1273 |#1|))) (-15 -2797 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -3307 (|#2| |#1|)) (-15 -3320 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -2747 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2757 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -1941 ((-1273 (-694 |#2|)) (-1273 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2591 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) 20)) (-1941 (((-1273 (-694 |#1|)) (-1273 $)) 83)) (-3352 (((-1273 $)) 86)) (-3863 (($) 18 T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3047 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-2766 (((-694 |#1|) (-1273 $)) 70)) (-3331 ((|#1| $) 79)) (-2747 (((-694 |#1|) $ (-1273 $)) 81)) (-2808 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-2840 (($ $ (-927)) 31)) (-3307 ((|#1| $) 77)) (-3070 (((-1179 |#1|) $) 47 (|has| |#1| (-561)))) (-2786 ((|#1| (-1273 $)) 72)) (-3285 (((-1179 |#1|) $) 68)) (-3202 (((-112)) 62)) (-2806 (($ (-1273 |#1|) (-1273 $)) 74)) (-3351 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3904 (((-927)) 85)) (-3168 (((-112)) 59)) (-1931 (($ $ (-927)) 38)) (-3123 (((-112)) 55)) (-3103 (((-112)) 53)) (-3145 (((-112)) 57)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-3061 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2775 (((-694 |#1|) (-1273 $)) 71)) (-3342 ((|#1| $) 80)) (-2757 (((-694 |#1|) $ (-1273 $)) 82)) (-2817 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-2829 (($ $ (-927)) 32)) (-3320 ((|#1| $) 78)) (-3081 (((-1179 |#1|) $) 48 (|has| |#1| (-561)))) (-2797 ((|#1| (-1273 $)) 73)) (-3297 (((-1179 |#1|) $) 69)) (-3216 (((-112)) 63)) (-2050 (((-1165) $) 10)) (-3112 (((-112)) 54)) (-3133 (((-112)) 56)) (-3157 (((-112)) 58)) (-3461 (((-1126) $) 11)) (-3189 (((-112)) 61)) (-1949 (((-1273 |#1|) $ (-1273 $)) 76) (((-694 |#1|) (-1273 $) (-1273 $)) 75)) (-1524 (((-649 (-958 |#1|)) (-1273 $)) 84)) (-4356 (($ $ $) 28)) (-3270 (((-112)) 67)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3092 (((-649 (-1273 |#1|))) 49 (|has| |#1| (-561)))) (-4365 (($ $ $ $) 29)) (-3245 (((-112)) 65)) (-4347 (($ $ $) 27)) (-3259 (((-112)) 66)) (-3230 (((-112)) 64)) (-3178 (((-112)) 60)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-371 |#1|) (-140) (-173)) (T -371))
-((-1907 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1272 *1)) (-4 *1 (-371 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-925)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-646 (-952 *4))))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1272 (-694 *4))))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3662 (*1 *2 *1 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1272 *4)))) (-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1272 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1177 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1177 *3)))) (-1900 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1899 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1898 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1897 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1896 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1895 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1894 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1893 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1892 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1891 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1890 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1888 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1887 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1886 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3908 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562)))) (-2586 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562)))) (-2585 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562)))) (-1885 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562)) (-5 *2 (-646 (-1272 *3))))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562)) (-5 *2 (-1177 *3)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562)) (-5 *2 (-1177 *3)))) (-2095 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2200 (-646 *1)))) (-4 *1 (-371 *3)))) (-2094 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2200 (-646 *1)))) (-4 *1 (-371 *3)))) (-1882 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173)))) (-1881 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173)))) (-1957 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173)))))
-(-13 (-749 |t#1|) (-10 -8 (-15 -1907 ((-1272 $))) (-15 -3531 ((-925))) (-15 -2080 ((-646 (-952 |t#1|)) (-1272 $))) (-15 -3661 ((-1272 (-694 |t#1|)) (-1272 $))) (-15 -1972 ((-694 |t#1|) $ (-1272 $))) (-15 -1971 ((-694 |t#1|) $ (-1272 $))) (-15 -1906 (|t#1| $)) (-15 -1905 (|t#1| $)) (-15 -1904 (|t#1| $)) (-15 -1903 (|t#1| $)) (-15 -3662 ((-1272 |t#1|) $ (-1272 $))) (-15 -3662 ((-694 |t#1|) (-1272 $) (-1272 $))) (-15 -1977 ($ (-1272 |t#1|) (-1272 $))) (-15 -1976 (|t#1| (-1272 $))) (-15 -1975 (|t#1| (-1272 $))) (-15 -1974 ((-694 |t#1|) (-1272 $))) (-15 -1973 ((-694 |t#1|) (-1272 $))) (-15 -1902 ((-1177 |t#1|) $)) (-15 -1901 ((-1177 |t#1|) $)) (-15 -1900 ((-112))) (-15 -1899 ((-112))) (-15 -1898 ((-112))) (-15 -1897 ((-112))) (-15 -1896 ((-112))) (-15 -1895 ((-112))) (-15 -1894 ((-112))) (-15 -1893 ((-112))) (-15 -1892 ((-112))) (-15 -1891 ((-112))) (-15 -1890 ((-112))) (-15 -1889 ((-112))) (-15 -1888 ((-112))) (-15 -1887 ((-112))) (-15 -1886 ((-112))) (IF (|has| |t#1| (-562)) (PROGN (-15 -3908 ((-3 $ "failed") $)) (-15 -2586 ((-3 $ "failed") $)) (-15 -2585 ((-3 $ "failed") $)) (-15 -1885 ((-646 (-1272 |t#1|)))) (-15 -1884 ((-1177 |t#1|) $)) (-15 -1883 ((-1177 |t#1|) $)) (-15 -2095 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -2094 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -1882 ((-3 $ "failed"))) (-15 -1881 ((-3 $ "failed"))) (-15 -1957 ((-3 $ "failed"))) (-6 -4440)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3558 (((-776)) 17)) (-3413 (($) 14)) (-2198 (((-925) $) 15)) (-3681 (((-1165) $) 10)) (-2581 (($ (-925)) 16)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-3352 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-371 *3)))) (-3904 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1949 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1273 *4)))) (-1949 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2806 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))) (-3270 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3259 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3245 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3230 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3216 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3202 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3189 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3178 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3168 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3157 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3145 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3133 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3123 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3112 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3103 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3351 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2817 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2808 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3092 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-649 (-1273 *3))))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1179 *3)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1179 *3)))) (-1693 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3371 (-649 *1)))) (-4 *1 (-371 *3)))) (-1683 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3371 (-649 *1)))) (-4 *1 (-371 *3)))) (-3061 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-3047 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-2591 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
+(-13 (-749 |t#1|) (-10 -8 (-15 -3352 ((-1273 $))) (-15 -3904 ((-927))) (-15 -1524 ((-649 (-958 |t#1|)) (-1273 $))) (-15 -1941 ((-1273 (-694 |t#1|)) (-1273 $))) (-15 -2757 ((-694 |t#1|) $ (-1273 $))) (-15 -2747 ((-694 |t#1|) $ (-1273 $))) (-15 -3342 (|t#1| $)) (-15 -3331 (|t#1| $)) (-15 -3320 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -1949 ((-1273 |t#1|) $ (-1273 $))) (-15 -1949 ((-694 |t#1|) (-1273 $) (-1273 $))) (-15 -2806 ($ (-1273 |t#1|) (-1273 $))) (-15 -2797 (|t#1| (-1273 $))) (-15 -2786 (|t#1| (-1273 $))) (-15 -2775 ((-694 |t#1|) (-1273 $))) (-15 -2766 ((-694 |t#1|) (-1273 $))) (-15 -3297 ((-1179 |t#1|) $)) (-15 -3285 ((-1179 |t#1|) $)) (-15 -3270 ((-112))) (-15 -3259 ((-112))) (-15 -3245 ((-112))) (-15 -3230 ((-112))) (-15 -3216 ((-112))) (-15 -3202 ((-112))) (-15 -3189 ((-112))) (-15 -3178 ((-112))) (-15 -3168 ((-112))) (-15 -3157 ((-112))) (-15 -3145 ((-112))) (-15 -3133 ((-112))) (-15 -3123 ((-112))) (-15 -3112 ((-112))) (-15 -3103 ((-112))) (IF (|has| |t#1| (-561)) (PROGN (-15 -3351 ((-3 $ "failed") $)) (-15 -2817 ((-3 $ "failed") $)) (-15 -2808 ((-3 $ "failed") $)) (-15 -3092 ((-649 (-1273 |t#1|)))) (-15 -3081 ((-1179 |t#1|) $)) (-15 -3070 ((-1179 |t#1|) $)) (-15 -1693 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -1683 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -3061 ((-3 $ "failed"))) (-15 -3047 ((-3 $ "failed"))) (-15 -2591 ((-3 $ "failed"))) (-6 -4440)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-3363 (((-776)) 17)) (-3295 (($) 14)) (-3348 (((-927) $) 15)) (-2050 (((-1165) $) 10)) (-2114 (($ (-927)) 16)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-372) (-140)) (T -372))
-((-3558 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-372)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-925)))) (-3413 (*1 *1) (-4 *1 (-372))))
-(-13 (-1107) (-10 -8 (-15 -3558 ((-776))) (-15 -2581 ($ (-925))) (-15 -2198 ((-925) $)) (-15 -3413 ($))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-1967 (((-694 |#2|) (-1272 $)) 47)) (-1977 (($ (-1272 |#2|) (-1272 $)) 41)) (-1966 (((-694 |#2|) $ (-1272 $)) 49)) (-4207 ((|#2| (-1272 $)) 13)) (-3662 (((-1272 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) (-1272 $) (-1272 $)) 27)))
-(((-373 |#1| |#2| |#3|) (-10 -8 (-15 -1967 ((-694 |#2|) (-1272 |#1|))) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1966 ((-694 |#2|) |#1| (-1272 |#1|)))) (-374 |#2| |#3|) (-173) (-1248 |#2|)) (T -373))
-NIL
-(-10 -8 (-15 -1967 ((-694 |#2|) (-1272 |#1|))) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1966 ((-694 |#2|) |#1| (-1272 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1967 (((-694 |#1|) (-1272 $)) 53)) (-3772 ((|#1| $) 59)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-1977 (($ (-1272 |#1|) (-1272 $)) 55)) (-1966 (((-694 |#1|) $ (-1272 $)) 60)) (-3908 (((-3 $ "failed") $) 37)) (-3531 (((-925)) 61)) (-2591 (((-112) $) 35)) (-3554 ((|#1| $) 58)) (-2202 ((|#2| $) 51 (|has| |#1| (-367)))) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4207 ((|#1| (-1272 $)) 54)) (-3662 (((-1272 |#1|) $ (-1272 $)) 57) (((-694 |#1|) (-1272 $) (-1272 $)) 56)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44)) (-3123 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2788 ((|#2| $) 52)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-374 |#1| |#2|) (-140) (-173) (-1248 |t#1|)) (T -374))
-((-3531 (*1 *2) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-925)))) (-1966 (*1 *2 *1 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173)))) (-3662 (*1 *2 *1 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *4)))) (-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4)))) (-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1272 *1)) (-4 *4 (-173)) (-4 *1 (-374 *4 *5)) (-4 *5 (-1248 *4)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1248 *2)) (-4 *2 (-173)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1248 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3531 ((-925))) (-15 -1966 ((-694 |t#1|) $ (-1272 $))) (-15 -3772 (|t#1| $)) (-15 -3554 (|t#1| $)) (-15 -3662 ((-1272 |t#1|) $ (-1272 $))) (-15 -3662 ((-694 |t#1|) (-1272 $) (-1272 $))) (-15 -1977 ($ (-1272 |t#1|) (-1272 $))) (-15 -4207 (|t#1| (-1272 $))) (-15 -1967 ((-694 |t#1|) (-1272 $))) (-15 -2788 (|t#2| $)) (IF (|has| |t#1| (-367)) (-15 -2202 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-1910 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1908 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3328 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2461 (($ $) 25)) (-3861 (((-551) (-1 (-112) |#2|) $) NIL) (((-551) |#2| $) 11) (((-551) |#2| $ (-551)) NIL)) (-3959 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-375 |#1| |#2|) (-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3328 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-376 |#2|) (-1222)) (T -375))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3328 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-3861 (((-551) (-1 (-112) |#1|) $) 98) (((-551) |#1| $) 97 (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) 96 (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 71)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 84 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) 86 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 83 (|has| |#1| (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-376 |#1|) (-140) (-1222)) (T -376))
-((-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-376 *3)) (-4 *3 (-1222)))) (-2461 (*1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-376 *3)) (-4 *3 (-1222)))) (-1910 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-376 *4)) (-4 *4 (-1222)) (-5 *2 (-112)))) (-3861 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-376 *4)) (-4 *4 (-1222)) (-5 *2 (-551)))) (-3861 (*1 *2 *3 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-551)))) (-3861 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-855)) (-5 *2 (-112)))) (-1909 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-551)) (|has| *1 (-6 -4444)) (-4 *1 (-376 *3)) (-4 *3 (-1222)))) (-2460 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-376 *2)) (-4 *2 (-1222)))) (-1908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-376 *3)) (-4 *3 (-1222)))) (-1908 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855)))))
-(-13 (-656 |t#1|) (-10 -8 (-6 -4443) (-15 -3959 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2461 ($ $)) (-15 -3328 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1910 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3861 ((-551) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1107)) (PROGN (-15 -3861 ((-551) |t#1| $)) (-15 -3861 ((-551) |t#1| $ (-551)))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-6 (-855)) (-15 -3959 ($ $ $)) (-15 -3328 ($ $)) (-15 -1910 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -1909 ($ $ $ (-551))) (-15 -2460 ($ $)) (-15 -1908 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-15 -1908 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1107) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-1222) . T))
-((-4291 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4292 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4408 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-377 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4291 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1222) (-376 |#1|) (-1222) (-376 |#3|)) (T -377))
-((-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-4 *2 (-376 *5)) (-5 *1 (-377 *6 *4 *5 *2)) (-4 *4 (-376 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-377 *5 *4 *2 *6)) (-4 *4 (-376 *5)) (-4 *6 (-376 *2)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *2 (-376 *6)) (-5 *1 (-377 *5 *4 *6 *2)) (-4 *4 (-376 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4291 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4384 (((-646 |#1|) $) 37)) (-4397 (($ $ (-776)) 38)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4389 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 41)) (-4386 (($ $) 39)) (-4390 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 42)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4217 (($ $ |#1| $) 36) (($ $ (-646 |#1|) (-646 $)) 35)) (-4398 (((-776) $) 43)) (-3971 (($ $ $) 34)) (-4396 (((-868) $) 12) (($ |#1|) 46) (((-1288 |#1| |#2|) $) 45) (((-1297 |#1| |#2|) $) 44)) (-4404 ((|#2| (-1297 |#1| |#2|) $) 47)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-1911 (($ (-677 |#1|)) 40)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#2|) 33 (|has| |#2| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+((-3363 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927)))) (-3295 (*1 *1) (-4 *1 (-372))))
+(-13 (-1106) (-10 -8 (-15 -3363 ((-776))) (-15 -2114 ($ (-927))) (-15 -3348 ((-927) $)) (-15 -3295 ($))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2702 (((-694 |#2|) (-1273 $)) 47)) (-2806 (($ (-1273 |#2|) (-1273 $)) 41)) (-2692 (((-694 |#2|) $ (-1273 $)) 49)) (-4180 ((|#2| (-1273 $)) 13)) (-1949 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) 27)))
+(((-373 |#1| |#2| |#3|) (-10 -8 (-15 -2702 ((-694 |#2|) (-1273 |#1|))) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2692 ((-694 |#2|) |#1| (-1273 |#1|)))) (-374 |#2| |#3|) (-173) (-1249 |#2|)) (T -373))
+NIL
+(-10 -8 (-15 -2702 ((-694 |#2|) (-1273 |#1|))) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2692 ((-694 |#2|) |#1| (-1273 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2702 (((-694 |#1|) (-1273 $)) 53)) (-3057 ((|#1| $) 59)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2806 (($ (-1273 |#1|) (-1273 $)) 55)) (-2692 (((-694 |#1|) $ (-1273 $)) 60)) (-3351 (((-3 $ "failed") $) 37)) (-3904 (((-927)) 61)) (-2861 (((-112) $) 35)) (-3334 ((|#1| $) 58)) (-3397 ((|#2| $) 51 (|has| |#1| (-367)))) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4180 ((|#1| (-1273 $)) 54)) (-1949 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-1488 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3176 ((|#2| $) 52)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-374 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -374))
+((-3904 (*1 *2) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-927)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-1949 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *4)))) (-1949 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-2806 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173)) (-4 *1 (-374 *4 *5)) (-4 *5 (-1249 *4)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1249 *2)) (-4 *2 (-173)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1249 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3904 ((-927))) (-15 -2692 ((-694 |t#1|) $ (-1273 $))) (-15 -3057 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -1949 ((-1273 |t#1|) $ (-1273 $))) (-15 -1949 ((-694 |t#1|) (-1273 $) (-1273 $))) (-15 -2806 ($ (-1273 |t#1|) (-1273 $))) (-15 -4180 (|t#1| (-1273 $))) (-15 -2702 ((-694 |t#1|) (-1273 $))) (-15 -3176 (|t#2| $)) (IF (|has| |t#1| (-367)) (-15 -3397 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3535 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3485 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1324 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3485 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3535 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1223) (-377 |#1|) (-1223) (-377 |#3|)) (T -375))
+((-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3485 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3535 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3389 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3364 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3246 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2214 (($ $) 25)) (-3975 (((-569) (-1 (-112) |#2|) $) NIL) (((-569) |#2| $) 11) (((-569) |#2| $ (-569)) NIL)) (-3719 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-376 |#1| |#2|) (-10 -8 (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3389 ((-112) |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2214 (|#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-377 |#2|) (-1223)) (T -376))
+NIL
+(-10 -8 (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3389 ((-112) |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2214 (|#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-3975 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 71)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-377 |#1|) (-140) (-1223)) (T -377))
+((-3719 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-2214 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-3389 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223)) (-5 *2 (-569)))) (-3975 (*1 *2 *3 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-569)))) (-3975 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)))) (-3719 (*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-855)) (-5 *2 (-112)))) (-3376 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4444)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-4188 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-377 *2)) (-4 *2 (-1223)))) (-3364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-3364 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))))
+(-13 (-656 |t#1|) (-10 -8 (-6 -4443) (-15 -3719 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2214 ($ $)) (-15 -3246 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3389 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3975 ((-569) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3975 ((-569) |t#1| $)) (-15 -3975 ((-569) |t#1| $ (-569)))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-6 (-855)) (-15 -3719 ($ $ $)) (-15 -3246 ($ $)) (-15 -3389 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3376 ($ $ $ (-569))) (-15 -4188 ($ $)) (-15 -3364 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-15 -3364 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2996 (((-649 |#1|) $) 37)) (-2082 (($ $ (-776)) 38)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2030 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 41)) (-2008 (($ $) 39)) (-2041 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 42)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1679 (($ $ |#1| $) 36) (($ $ (-649 |#1|) (-649 $)) 35)) (-2091 (((-776) $) 43)) (-3709 (($ $ $) 34)) (-2388 (((-867) $) 12) (($ |#1|) 46) (((-1288 |#1| |#2|) $) 45) (((-1297 |#1| |#2|) $) 44)) (-1406 ((|#2| (-1297 |#1| |#2|) $) 47)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-3402 (($ (-677 |#1|)) 40)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#2|) 33 (|has| |#2| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
(((-378 |#1| |#2|) (-140) (-855) (-173)) (T -378))
-((-4404 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) (-4 *2 (-173)))) (-4396 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4396 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1288 *3 *4)))) (-4396 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1297 *3 *4)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776)))) (-4390 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4389 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4397 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-646 *3)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855)) (-4 *5 (-173)))))
-(-13 (-640 |t#2|) (-10 -8 (-15 -4404 (|t#2| (-1297 |t#1| |t#2|) $)) (-15 -4396 ($ |t#1|)) (-15 -4396 ((-1288 |t#1| |t#2|) $)) (-15 -4396 ((-1297 |t#1| |t#2|) $)) (-15 -4398 ((-776) $)) (-15 -4390 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -4389 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -1911 ($ (-677 |t#1|))) (-15 -4386 ($ $)) (-15 -4397 ($ $ (-776))) (-15 -4384 ((-646 |t#1|) $)) (-15 -4217 ($ $ |t#1| $)) (-15 -4217 ($ $ (-646 |t#1|) (-646 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#2|) . T) ((-653 |#2|) . T) ((-640 |#2|) . T) ((-645 |#2|) . T) ((-722 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1107) . T))
-((-1914 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1912 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1913 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-379 |#1| |#2|) (-10 -7 (-15 -1912 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1913 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1914 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1222) (-13 (-376 |#1|) (-10 -7 (-6 -4444)))) (T -379))
-((-1914 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))) (-1913 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))) (-1912 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))))
-(-10 -7 (-15 -1912 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1913 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1914 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2445 (((-694 |#2|) (-694 $)) NIL) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 22) (((-694 (-551)) (-694 $)) 14)))
-(((-380 |#1| |#2|) (-10 -8 (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 |#2|) (-694 |#1|)))) (-381 |#2|) (-1055)) (T -380))
-NIL
-(-10 -8 (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 |#2|) (-694 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2445 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 39) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 47 (|has| |#1| (-644 (-551)))) (((-694 (-551)) (-694 $)) 46 (|has| |#1| (-644 (-551))))) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-1406 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) (-4 *2 (-173)))) (-2388 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1288 *3 *4)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1297 *3 *4)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776)))) (-2041 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2030 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))) (-2008 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-649 *3)))) (-1679 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855)) (-4 *5 (-173)))))
+(-13 (-639 |t#2|) (-10 -8 (-15 -1406 (|t#2| (-1297 |t#1| |t#2|) $)) (-15 -2388 ($ |t#1|)) (-15 -2388 ((-1288 |t#1| |t#2|) $)) (-15 -2388 ((-1297 |t#1| |t#2|) $)) (-15 -2091 ((-776) $)) (-15 -2041 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -2030 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -3402 ($ (-677 |t#1|))) (-15 -2008 ($ $)) (-15 -2082 ($ $ (-776))) (-15 -2996 ((-649 |t#1|) $)) (-15 -1679 ($ $ |t#1| $)) (-15 -1679 ($ $ (-649 |t#1|) (-649 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-653 |#2|) . T) ((-639 |#2|) . T) ((-645 |#2|) . T) ((-722 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1106) . T))
+((-3438 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-3413 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3425 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-379 |#1| |#2|) (-10 -7 (-15 -3413 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3425 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3438 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1223) (-13 (-377 |#1|) (-10 -7 (-6 -4444)))) (T -379))
+((-3438 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))) (-3425 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))) (-3413 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))))
+(-10 -7 (-15 -3413 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3425 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3438 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-4091 (((-694 |#2|) (-694 $)) NIL) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 22) (((-694 (-569)) (-694 $)) 14)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 |#2|) (-694 |#1|)))) (-381 |#2|) (-1055)) (T -380))
+NIL
+(-10 -8 (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 |#2|) (-694 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4091 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 39) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 47 (|has| |#1| (-644 (-569)))) (((-694 (-569)) (-694 $)) 46 (|has| |#1| (-644 (-569))))) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-381 |#1|) (-140) (-1055)) (T -381))
NIL
-(-13 (-644 |t#1|) (-10 -7 (IF (|has| |t#1| (-644 (-551))) (-6 (-644 (-551))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 35)) (-3551 (((-551) $) 62)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4220 (($ $) 142)) (-3933 (($ $) 105)) (-4089 (($ $) 93)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) 47)) (-1763 (((-112) $ $) NIL)) (-3931 (($ $) 103)) (-4088 (($ $) 87)) (-4073 (((-551) $) 80)) (-2780 (($ $ (-551)) 75)) (-3935 (($ $) NIL)) (-4087 (($ $) NIL)) (-4174 (($) NIL T CONST)) (-3549 (($ $) 144)) (-3595 (((-3 (-551) #1="failed") $) 239) (((-3 (-412 (-551)) #1#) $) 235)) (-3594 (((-551) $) 237) (((-412 (-551)) $) 233)) (-2982 (($ $ $) NIL)) (-1923 (((-551) $ $) 131)) (-3908 (((-3 $ "failed") $) 147)) (-1922 (((-412 (-551)) $ (-776)) 240) (((-412 (-551)) $ (-776) (-776)) 232)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2555 (((-925)) 127) (((-925) (-925)) 128 (|has| $ (-6 -4434)))) (-3624 (((-112) $) 136)) (-4077 (($) 41)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL)) (-1915 (((-1278) (-776)) 199)) (-1916 (((-1278)) 204) (((-1278) (-776)) 205)) (-1918 (((-1278)) 206) (((-1278) (-776)) 207)) (-1917 (((-1278)) 202) (((-1278) (-776)) 203)) (-4221 (((-551) $) 68)) (-2591 (((-112) $) 40)) (-3430 (($ $ (-551)) NIL)) (-2782 (($ $) 51)) (-3554 (($ $) NIL)) (-3625 (((-112) $) 37)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL) (($) NIL (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-3278 (($ $ $) NIL) (($) NIL (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-2556 (((-551) $) 17)) (-1921 (($) 113) (($ $) 119)) (-1920 (($) 118) (($ $) 120)) (-4392 (($ $) 108)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 149)) (-1954 (((-925) (-551)) 46 (|has| $ (-6 -4434)))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) 60)) (-3552 (($ $) 141)) (-3693 (($ (-551) (-551)) 137) (($ (-551) (-551) (-925)) 138)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-2582 (((-551) $) 19)) (-1919 (($) 121)) (-4393 (($ $) 102)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3033 (((-925)) 129) (((-925) (-925)) 130 (|has| $ (-6 -4434)))) (-4260 (($ $ (-776)) NIL) (($ $) 148)) (-1953 (((-925) (-551)) 50 (|has| $ (-6 -4434)))) (-3936 (($ $) NIL)) (-4086 (($ $) NIL)) (-3934 (($ $) NIL)) (-4085 (($ $) NIL)) (-3932 (($ $) 104)) (-4084 (($ $) 92)) (-4420 (((-382) $) 224) (((-226) $) 226) (((-896 (-382)) $) NIL) (((-1165) $) 210) (((-540) $) 222) (($ (-226)) 231)) (-4396 (((-868) $) 214) (($ (-551)) 236) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-551)) 236) (($ (-412 (-551))) NIL) (((-226) $) 227)) (-3548 (((-776)) NIL T CONST)) (-3553 (($ $) 143)) (-1955 (((-925)) 61) (((-925) (-925)) 82 (|has| $ (-6 -4434)))) (-3680 (((-112) $ $) NIL)) (-3115 (((-925)) 132)) (-3939 (($ $) 111)) (-3927 (($ $) 49) (($ $ $) 59)) (-2250 (((-112) $ $) NIL)) (-3937 (($ $) 109)) (-3925 (($ $) 39)) (-3941 (($ $) NIL)) (-3929 (($ $) NIL)) (-3942 (($ $) NIL)) (-3930 (($ $) NIL)) (-3940 (($ $) NIL)) (-3928 (($ $) NIL)) (-3938 (($ $) 110)) (-3926 (($ $) 52)) (-3825 (($ $) 58)) (-3528 (($) 36 T CONST)) (-3085 (($) 43 T CONST)) (-2918 (((-1165) $) 27) (((-1165) $ (-112)) 29) (((-1278) (-828) $) 30) (((-1278) (-828) $ (-112)) 31)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-2984 (((-112) $ $) 211)) (-2985 (((-112) $ $) 45)) (-3473 (((-112) $ $) 56)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 57)) (-4399 (($ $ $) 48) (($ $ (-551)) 42)) (-4287 (($ $) 38) (($ $ $) 53)) (-4289 (($ $ $) 74)) (** (($ $ (-925)) 85) (($ $ (-776)) NIL) (($ $ (-551)) 114) (($ $ (-412 (-551))) 160) (($ $ $) 151)) (* (($ (-925) $) 81) (($ (-776) $) NIL) (($ (-551) $) 86) (($ $ $) 73) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-382) (-13 (-409) (-234) (-619 (-1165)) (-826) (-618 (-226)) (-1208) (-619 (-540)) (-623 (-226)) (-10 -8 (-15 -4399 ($ $ (-551))) (-15 ** ($ $ $)) (-15 -2782 ($ $)) (-15 -1923 ((-551) $ $)) (-15 -2780 ($ $ (-551))) (-15 -1922 ((-412 (-551)) $ (-776))) (-15 -1922 ((-412 (-551)) $ (-776) (-776))) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -3927 ($ $ $)) (-15 -1921 ($ $)) (-15 -1920 ($ $)) (-15 -1918 ((-1278))) (-15 -1918 ((-1278) (-776))) (-15 -1917 ((-1278))) (-15 -1917 ((-1278) (-776))) (-15 -1916 ((-1278))) (-15 -1916 ((-1278) (-776))) (-15 -1915 ((-1278) (-776))) (-6 -4434) (-6 -4426)))) (T -382))
-((** (*1 *1 *1 *1) (-5 *1 (-382))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-382)))) (-2782 (*1 *1 *1) (-5 *1 (-382))) (-1923 (*1 *2 *1 *1) (-12 (-5 *2 (-551)) (-5 *1 (-382)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-382)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-382)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-382)))) (-1921 (*1 *1) (-5 *1 (-382))) (-1920 (*1 *1) (-5 *1 (-382))) (-1919 (*1 *1) (-5 *1 (-382))) (-3927 (*1 *1 *1 *1) (-5 *1 (-382))) (-1921 (*1 *1 *1) (-5 *1 (-382))) (-1920 (*1 *1 *1) (-5 *1 (-382))) (-1918 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382)))) (-1917 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382)))) (-1916 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382)))))
-(-13 (-409) (-234) (-619 (-1165)) (-826) (-618 (-226)) (-1208) (-619 (-540)) (-623 (-226)) (-10 -8 (-15 -4399 ($ $ (-551))) (-15 ** ($ $ $)) (-15 -2782 ($ $)) (-15 -1923 ((-551) $ $)) (-15 -2780 ($ $ (-551))) (-15 -1922 ((-412 (-551)) $ (-776))) (-15 -1922 ((-412 (-551)) $ (-776) (-776))) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -3927 ($ $ $)) (-15 -1921 ($ $)) (-15 -1920 ($ $)) (-15 -1918 ((-1278))) (-15 -1918 ((-1278) (-776))) (-15 -1917 ((-1278))) (-15 -1917 ((-1278) (-776))) (-15 -1916 ((-1278))) (-15 -1916 ((-1278) (-776))) (-15 -1915 ((-1278) (-776))) (-6 -4434) (-6 -4426)))
-((-1924 (((-646 (-296 (-952 (-169 |#1|)))) (-296 (-412 (-952 (-169 (-551))))) |#1|) 51) (((-646 (-296 (-952 (-169 |#1|)))) (-412 (-952 (-169 (-551)))) |#1|) 50) (((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-296 (-412 (-952 (-169 (-551)))))) |#1|) 47) (((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-412 (-952 (-169 (-551))))) |#1|) 41)) (-1925 (((-646 (-646 (-169 |#1|))) (-646 (-412 (-952 (-169 (-551))))) (-646 (-1183)) |#1|) 30) (((-646 (-169 |#1|)) (-412 (-952 (-169 (-551)))) |#1|) 18)))
-(((-383 |#1|) (-10 -7 (-15 -1924 ((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-412 (-952 (-169 (-551))))) |#1|)) (-15 -1924 ((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-296 (-412 (-952 (-169 (-551)))))) |#1|)) (-15 -1924 ((-646 (-296 (-952 (-169 |#1|)))) (-412 (-952 (-169 (-551)))) |#1|)) (-15 -1924 ((-646 (-296 (-952 (-169 |#1|)))) (-296 (-412 (-952 (-169 (-551))))) |#1|)) (-15 -1925 ((-646 (-169 |#1|)) (-412 (-952 (-169 (-551)))) |#1|)) (-15 -1925 ((-646 (-646 (-169 |#1|))) (-646 (-412 (-952 (-169 (-551))))) (-646 (-1183)) |#1|))) (-13 (-367) (-853))) (T -383))
-((-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-412 (-952 (-169 (-551)))))) (-5 *4 (-646 (-1183))) (-5 *2 (-646 (-646 (-169 *5)))) (-5 *1 (-383 *5)) (-4 *5 (-13 (-367) (-853))))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 (-169 (-551))))) (-5 *2 (-646 (-169 *4))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-412 (-952 (-169 (-551)))))) (-5 *2 (-646 (-296 (-952 (-169 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 (-169 (-551))))) (-5 *2 (-646 (-296 (-952 (-169 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-296 (-412 (-952 (-169 (-551))))))) (-5 *2 (-646 (-646 (-296 (-952 (-169 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 (-169 (-551)))))) (-5 *2 (-646 (-646 (-296 (-952 (-169 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -1924 ((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-412 (-952 (-169 (-551))))) |#1|)) (-15 -1924 ((-646 (-646 (-296 (-952 (-169 |#1|))))) (-646 (-296 (-412 (-952 (-169 (-551)))))) |#1|)) (-15 -1924 ((-646 (-296 (-952 (-169 |#1|)))) (-412 (-952 (-169 (-551)))) |#1|)) (-15 -1924 ((-646 (-296 (-952 (-169 |#1|)))) (-296 (-412 (-952 (-169 (-551))))) |#1|)) (-15 -1925 ((-646 (-169 |#1|)) (-412 (-952 (-169 (-551)))) |#1|)) (-15 -1925 ((-646 (-646 (-169 |#1|))) (-646 (-412 (-952 (-169 (-551))))) (-646 (-1183)) |#1|)))
-((-4022 (((-646 (-296 (-952 |#1|))) (-296 (-412 (-952 (-551)))) |#1|) 46) (((-646 (-296 (-952 |#1|))) (-412 (-952 (-551))) |#1|) 45) (((-646 (-646 (-296 (-952 |#1|)))) (-646 (-296 (-412 (-952 (-551))))) |#1|) 42) (((-646 (-646 (-296 (-952 |#1|)))) (-646 (-412 (-952 (-551)))) |#1|) 36)) (-1926 (((-646 |#1|) (-412 (-952 (-551))) |#1|) 20) (((-646 (-646 |#1|)) (-646 (-412 (-952 (-551)))) (-646 (-1183)) |#1|) 30)))
-(((-384 |#1|) (-10 -7 (-15 -4022 ((-646 (-646 (-296 (-952 |#1|)))) (-646 (-412 (-952 (-551)))) |#1|)) (-15 -4022 ((-646 (-646 (-296 (-952 |#1|)))) (-646 (-296 (-412 (-952 (-551))))) |#1|)) (-15 -4022 ((-646 (-296 (-952 |#1|))) (-412 (-952 (-551))) |#1|)) (-15 -4022 ((-646 (-296 (-952 |#1|))) (-296 (-412 (-952 (-551)))) |#1|)) (-15 -1926 ((-646 (-646 |#1|)) (-646 (-412 (-952 (-551)))) (-646 (-1183)) |#1|)) (-15 -1926 ((-646 |#1|) (-412 (-952 (-551))) |#1|))) (-13 (-853) (-367))) (T -384))
-((-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 (-551)))) (-5 *2 (-646 *4)) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-1926 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-412 (-952 (-551))))) (-5 *4 (-646 (-1183))) (-5 *2 (-646 (-646 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-412 (-952 (-551))))) (-5 *2 (-646 (-296 (-952 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 (-551)))) (-5 *2 (-646 (-296 (-952 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-296 (-412 (-952 (-551)))))) (-5 *2 (-646 (-646 (-296 (-952 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 (-551))))) (-5 *2 (-646 (-646 (-296 (-952 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))))
-(-10 -7 (-15 -4022 ((-646 (-646 (-296 (-952 |#1|)))) (-646 (-412 (-952 (-551)))) |#1|)) (-15 -4022 ((-646 (-646 (-296 (-952 |#1|)))) (-646 (-296 (-412 (-952 (-551))))) |#1|)) (-15 -4022 ((-646 (-296 (-952 |#1|))) (-412 (-952 (-551))) |#1|)) (-15 -4022 ((-646 (-296 (-952 |#1|))) (-296 (-412 (-952 (-551)))) |#1|)) (-15 -1926 ((-646 (-646 |#1|)) (-646 (-412 (-952 (-551)))) (-646 (-1183)) |#1|)) (-15 -1926 ((-646 |#1|) (-412 (-952 (-551))) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3312 (($ |#1| |#2|) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2173 ((|#2| $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 33)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 12 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) (-1055) (-855)) (T -385))
+(-13 (-644 |t#1|) (-10 -7 (IF (|has| |t#1| (-644 (-569))) (-6 (-644 (-569))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3544 (((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|) 51) (((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|) 50) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|) 47) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|) 41)) (-3557 (((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|) 30) (((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|) 18)))
+(((-382 |#1|) (-10 -7 (-15 -3544 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -3544 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -3544 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -3544 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -3557 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -3557 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|))) (-13 (-367) (-853))) (T -382))
+((-3557 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-170 *5)))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569))))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3544 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -3544 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -3544 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -3544 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -3557 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -3557 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 35)) (-3300 (((-569) $) 62)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-4305 (($ $) 142)) (-2691 (($ $) 105)) (-2556 (($ $) 93)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) 47)) (-4420 (((-112) $ $) NIL)) (-2669 (($ $) 103)) (-2534 (($ $) 87)) (-2211 (((-569) $) 80)) (-2979 (($ $ (-569)) 75)) (-2712 (($ $) NIL)) (-2576 (($ $) NIL)) (-3863 (($) NIL T CONST)) (-3274 (($ $) 144)) (-4359 (((-3 (-569) "failed") $) 239) (((-3 (-412 (-569)) "failed") $) 235)) (-3043 (((-569) $) 237) (((-412 (-569)) $) 233)) (-2339 (($ $ $) NIL)) (-3529 (((-569) $ $) 131)) (-3351 (((-3 $ "failed") $) 147)) (-3519 (((-412 (-569)) $ (-776)) 240) (((-412 (-569)) $ (-776) (-776)) 232)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3390 (((-927)) 127) (((-927) (-927)) 128 (|has| $ (-6 -4434)))) (-2769 (((-112) $) 136)) (-4408 (($) 41)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-3448 (((-1278) (-776)) 199)) (-3463 (((-1278)) 204) (((-1278) (-776)) 205)) (-3488 (((-1278)) 206) (((-1278) (-776)) 207)) (-3476 (((-1278)) 202) (((-1278) (-776)) 203)) (-4315 (((-569) $) 68)) (-2861 (((-112) $) 40)) (-1589 (($ $ (-569)) NIL)) (-3110 (($ $) 51)) (-3334 (($ $) NIL)) (-2778 (((-112) $) 37)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL) (($) NIL (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2406 (($ $ $) NIL) (($) NIL (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2931 (((-569) $) 17)) (-3509 (($) 113) (($ $) 119)) (-1345 (($) 118) (($ $) 120)) (-2616 (($ $) 108)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 149)) (-2558 (((-927) (-569)) 46 (|has| $ (-6 -4434)))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) 60)) (-3312 (($ $) 141)) (-2493 (($ (-569) (-569)) 137) (($ (-569) (-569) (-927)) 138)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2777 (((-569) $) 19)) (-3499 (($) 121)) (-4367 (($ $) 102)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1871 (((-927)) 129) (((-927) (-927)) 130 (|has| $ (-6 -4434)))) (-3430 (($ $ (-776)) NIL) (($ $) 148)) (-2547 (((-927) (-569)) 50 (|has| $ (-6 -4434)))) (-2725 (($ $) NIL)) (-2588 (($ $) NIL)) (-2701 (($ $) NIL)) (-2566 (($ $) NIL)) (-2680 (($ $) 104)) (-2545 (($ $) 92)) (-1384 (((-383) $) 224) (((-226) $) 226) (((-898 (-383)) $) NIL) (((-1165) $) 210) (((-541) $) 222) (($ (-226)) 231)) (-2388 (((-867) $) 214) (($ (-569)) 236) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 236) (($ (-412 (-569))) NIL) (((-226) $) 227)) (-3263 (((-776)) NIL T CONST)) (-3323 (($ $) 143)) (-2568 (((-927)) 61) (((-927) (-927)) 82 (|has| $ (-6 -4434)))) (-2040 (((-112) $ $) NIL)) (-4344 (((-927)) 132)) (-4119 (($ $) 111)) (-2627 (($ $) 49) (($ $ $) 59)) (-2574 (((-112) $ $) NIL)) (-4094 (($ $) 109)) (-2601 (($ $) 39)) (-4144 (($ $) NIL)) (-2648 (($ $) NIL)) (-1470 (($ $) NIL)) (-2658 (($ $) NIL)) (-4131 (($ $) NIL)) (-2638 (($ $) NIL)) (-4106 (($ $) 110)) (-2615 (($ $) 52)) (-3999 (($ $) 58)) (-1786 (($) 36 T CONST)) (-1796 (($) 43 T CONST)) (-3218 (((-1165) $) 27) (((-1165) $ (-112)) 29) (((-1278) (-827) $) 30) (((-1278) (-827) $ (-112)) 31)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2904 (((-112) $ $) 211)) (-2882 (((-112) $ $) 45)) (-2853 (((-112) $ $) 56)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 57)) (-2956 (($ $ $) 48) (($ $ (-569)) 42)) (-2946 (($ $) 38) (($ $ $) 53)) (-2935 (($ $ $) 74)) (** (($ $ (-927)) 85) (($ $ (-776)) NIL) (($ $ (-569)) 114) (($ $ (-412 (-569))) 160) (($ $ $) 151)) (* (($ (-927) $) 81) (($ (-776) $) NIL) (($ (-569) $) 86) (($ $ $) 73) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-383) (-13 (-409) (-234) (-619 (-1165)) (-833) (-618 (-226)) (-1208) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -2956 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3110 ($ $)) (-15 -3529 ((-569) $ $)) (-15 -2979 ($ $ (-569))) (-15 -3519 ((-412 (-569)) $ (-776))) (-15 -3519 ((-412 (-569)) $ (-776) (-776))) (-15 -3509 ($)) (-15 -1345 ($)) (-15 -3499 ($)) (-15 -2627 ($ $ $)) (-15 -3509 ($ $)) (-15 -1345 ($ $)) (-15 -3488 ((-1278))) (-15 -3488 ((-1278) (-776))) (-15 -3476 ((-1278))) (-15 -3476 ((-1278) (-776))) (-15 -3463 ((-1278))) (-15 -3463 ((-1278) (-776))) (-15 -3448 ((-1278) (-776))) (-6 -4434) (-6 -4426)))) (T -383))
+((** (*1 *1 *1 *1) (-5 *1 (-383))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3110 (*1 *1 *1) (-5 *1 (-383))) (-3529 (*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-3519 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-3509 (*1 *1) (-5 *1 (-383))) (-1345 (*1 *1) (-5 *1 (-383))) (-3499 (*1 *1) (-5 *1 (-383))) (-2627 (*1 *1 *1 *1) (-5 *1 (-383))) (-3509 (*1 *1 *1) (-5 *1 (-383))) (-1345 (*1 *1 *1) (-5 *1 (-383))) (-3488 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-3476 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-3463 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))))
+(-13 (-409) (-234) (-619 (-1165)) (-833) (-618 (-226)) (-1208) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -2956 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3110 ($ $)) (-15 -3529 ((-569) $ $)) (-15 -2979 ($ $ (-569))) (-15 -3519 ((-412 (-569)) $ (-776))) (-15 -3519 ((-412 (-569)) $ (-776) (-776))) (-15 -3509 ($)) (-15 -1345 ($)) (-15 -3499 ($)) (-15 -2627 ($ $ $)) (-15 -3509 ($ $)) (-15 -1345 ($ $)) (-15 -3488 ((-1278))) (-15 -3488 ((-1278) (-776))) (-15 -3476 ((-1278))) (-15 -3476 ((-1278) (-776))) (-15 -3463 ((-1278))) (-15 -3463 ((-1278) (-776))) (-15 -3448 ((-1278) (-776))) (-6 -4434) (-6 -4426)))
+((-2888 (((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|) 46) (((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|) 45) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|) 42) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|) 36)) (-3569 (((-649 |#1|) (-412 (-958 (-569))) |#1|) 20) (((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|) 30)))
+(((-384 |#1|) (-10 -7 (-15 -2888 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -2888 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -2888 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -2888 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -3569 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|)) (-15 -3569 ((-649 |#1|) (-412 (-958 (-569))) |#1|))) (-13 (-853) (-367))) (T -384))
+((-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3569 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-569))))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))))
+(-10 -7 (-15 -2888 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -2888 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -2888 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -2888 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -3569 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|)) (-15 -3569 ((-649 |#1|) (-412 (-958 (-569))) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) 30)) (-3043 ((|#2| $) 32)) (-1842 (($ $) NIL)) (-2933 (((-776) $) 11)) (-3316 (((-649 $) $) 23)) (-2019 (((-112) $) NIL)) (-3236 (($ |#2| |#1|) 21)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3578 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1808 ((|#2| $) 18)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 51) (($ |#2|) 31)) (-3346 (((-649 |#1|) $) 20)) (-1503 ((|#1| $ |#2|) 55)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 33 T CONST)) (-2295 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-385 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1055) (-855)) (T -385))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)))))
+(-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#2| "failed") $) 49)) (-3043 ((|#2| $) 50)) (-1842 (($ $) 35)) (-2933 (((-776) $) 39)) (-3316 (((-649 $) $) 40)) (-2019 (((-112) $) 43)) (-3236 (($ |#2| |#1|) 44)) (-1324 (($ (-1 |#1| |#1|) $) 45)) (-3578 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1808 ((|#2| $) 38)) (-1820 ((|#1| $) 37)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ |#2|) 48)) (-3346 (((-649 |#1|) $) 41)) (-1503 ((|#1| $ |#2|) 46)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2295 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-386 |#1| |#2|) (-140) (-1055) (-1106)) (T -386))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106)))) (-1503 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)))) (-3236 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-112)))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *3)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-386 *3 *4)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-776)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106)))))
+(-13 (-111 |t#1| |t#1|) (-1044 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1503 (|t#1| $ |t#2|)) (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (-15 -3236 ($ |t#2| |t#1|)) (-15 -2019 ((-112) $)) (-15 -2295 ((-649 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3346 ((-649 |t#1|) $)) (-15 -3316 ((-649 $) $)) (-15 -2933 ((-776) $)) (-15 -1808 (|t#2| $)) (-15 -1820 (|t#1| $)) (-15 -3578 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1842 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-722 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-1044 |#2|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8) (($ (-694 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 11)))
+(((-387) (-140)) (T -387))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-4 *1 (-387)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-694 (-704)))) (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-333))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
+((-4359 (((-3 $ "failed") (-694 (-319 (-383)))) 21) (((-3 $ "failed") (-694 (-319 (-569)))) 19) (((-3 $ "failed") (-694 (-958 (-383)))) 17) (((-3 $ "failed") (-694 (-958 (-569)))) 15) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 11)) (-3043 (($ (-694 (-319 (-383)))) 22) (($ (-694 (-319 (-569)))) 20) (($ (-694 (-958 (-383)))) 18) (($ (-694 (-958 (-569)))) 16) (($ (-694 (-412 (-958 (-383))))) 14) (($ (-694 (-412 (-958 (-569))))) 12)) (-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 23)))
+(((-388) (-140)) (T -388))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-333))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))) (-15 -3043 ($ (-694 (-319 (-383))))) (-15 -4359 ((-3 $ "failed") (-694 (-319 (-383))))) (-15 -3043 ($ (-694 (-319 (-569))))) (-15 -4359 ((-3 $ "failed") (-694 (-319 (-569))))) (-15 -3043 ($ (-694 (-958 (-383))))) (-15 -4359 ((-3 $ "failed") (-694 (-958 (-383))))) (-15 -3043 ($ (-694 (-958 (-569))))) (-15 -4359 ((-3 $ "failed") (-694 (-958 (-569))))) (-15 -3043 ($ (-694 (-412 (-958 (-383)))))) (-15 -4359 ((-3 $ "failed") (-694 (-412 (-958 (-383)))))) (-15 -3043 ($ (-694 (-412 (-958 (-569)))))) (-15 -4359 ((-3 $ "failed") (-694 (-412 (-958 (-569))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3838 (($ |#1| |#2|) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3055 ((|#2| $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 33)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 12 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-389 |#1| |#2|) (-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) (-1055) (-855)) (T -389))
NIL
(-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| "failed") $) 30)) (-3594 ((|#2| $) 32)) (-4409 (($ $) NIL)) (-2599 (((-776) $) 11)) (-3242 (((-646 $) $) 23)) (-4387 (((-112) $) NIL)) (-4388 (($ |#2| |#1|) 21)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-1927 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3313 ((|#2| $) 18)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 51) (($ |#2|) 31)) (-4267 (((-646 |#1|) $) 20)) (-4127 ((|#1| $ |#2|) 55)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 33 T CONST)) (-3084 (((-646 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-386 |#1| |#2|) (-13 (-388 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1055) (-855)) (T -386))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)))))
-(-13 (-388 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8) (($ (-694 (-704))) 14) (($ (-646 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 11)))
-(((-387) (-140)) (T -387))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-387)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-4 *1 (-387)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-694 (-704)))) (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-333))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))))))
-(((-618 (-868)) . T) ((-401) . T) ((-1222) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#2| "failed") $) 49)) (-3594 ((|#2| $) 50)) (-4409 (($ $) 35)) (-2599 (((-776) $) 39)) (-3242 (((-646 $) $) 40)) (-4387 (((-112) $) 43)) (-4388 (($ |#2| |#1|) 44)) (-4408 (($ (-1 |#1| |#1|) $) 45)) (-1927 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-3313 ((|#2| $) 38)) (-3612 ((|#1| $) 37)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ |#2|) 48)) (-4267 (((-646 |#1|) $) 41)) (-4127 ((|#1| $ |#2|) 46)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3084 (((-646 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-388 |#1| |#2|) (-140) (-1055) (-1107)) (T -388))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-388 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1107)))) (-4127 (*1 *2 *1 *3) (-12 (-4 *1 (-388 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1055)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)))) (-4388 (*1 *1 *2 *3) (-12 (-4 *1 (-388 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1107)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-112)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-646 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-646 *3)))) (-3242 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-388 *3 *4)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-776)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1107)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-388 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1055)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4409 (*1 *1 *1) (-12 (-4 *1 (-388 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1107)))))
-(-13 (-111 |t#1| |t#1|) (-1044 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4127 (|t#1| $ |t#2|)) (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (-15 -4388 ($ |t#2| |t#1|)) (-15 -4387 ((-112) $)) (-15 -3084 ((-646 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4267 ((-646 |t#1|) $)) (-15 -3242 ((-646 $) $)) (-15 -2599 ((-776) $)) (-15 -3313 (|t#2| $)) (-15 -3612 (|t#1| $)) (-15 -1927 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4409 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-722 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 |#2|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-1044 |#2|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-3595 (((-3 $ "failed") (-694 (-317 (-382)))) 21) (((-3 $ "failed") (-694 (-317 (-551)))) 19) (((-3 $ "failed") (-694 (-952 (-382)))) 17) (((-3 $ "failed") (-694 (-952 (-551)))) 15) (((-3 $ "failed") (-694 (-412 (-952 (-382))))) 13) (((-3 $ "failed") (-694 (-412 (-952 (-551))))) 11)) (-3594 (($ (-694 (-317 (-382)))) 22) (($ (-694 (-317 (-551)))) 20) (($ (-694 (-952 (-382)))) 18) (($ (-694 (-952 (-551)))) 16) (($ (-694 (-412 (-952 (-382))))) 14) (($ (-694 (-412 (-952 (-551))))) 12)) (-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8) (($ (-646 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 23)))
-(((-389) (-140)) (T -389))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-389)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-389)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-317 (-382)))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-317 (-382)))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-317 (-551)))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-317 (-551)))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-952 (-382)))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-952 (-382)))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-952 (-551)))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-952 (-551)))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-952 (-382))))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-952 (-382))))) (-4 *1 (-389)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-952 (-551))))) (-4 *1 (-389)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-952 (-551))))) (-4 *1 (-389)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-333))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))) (-15 -3594 ($ (-694 (-317 (-382))))) (-15 -3595 ((-3 $ "failed") (-694 (-317 (-382))))) (-15 -3594 ($ (-694 (-317 (-551))))) (-15 -3595 ((-3 $ "failed") (-694 (-317 (-551))))) (-15 -3594 ($ (-694 (-952 (-382))))) (-15 -3595 ((-3 $ "failed") (-694 (-952 (-382))))) (-15 -3594 ($ (-694 (-952 (-551))))) (-15 -3595 ((-3 $ "failed") (-694 (-952 (-551))))) (-15 -3594 ($ (-694 (-412 (-952 (-382)))))) (-15 -3595 ((-3 $ "failed") (-694 (-412 (-952 (-382)))))) (-15 -3594 ($ (-694 (-412 (-952 (-551)))))) (-15 -3595 ((-3 $ "failed") (-694 (-412 (-952 (-551))))))))
-(((-618 (-868)) . T) ((-401) . T) ((-1222) . T))
-((-2986 (((-112) $ $) 7)) (-3558 (((-776) $) 34)) (-4174 (($) 19 T CONST)) (-4389 (((-3 $ "failed") $ $) 37)) (-3595 (((-3 |#1| "failed") $) 45)) (-3594 ((|#1| $) 46)) (-3908 (((-3 $ "failed") $) 16)) (-1928 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2591 (((-112) $) 18)) (-2462 ((|#1| $ (-551)) 31)) (-2463 (((-776) $ (-551)) 32)) (-2952 (($ $ $) 28 (|has| |#1| (-855)))) (-3278 (($ $ $) 27 (|has| |#1| (-855)))) (-2454 (($ (-1 |#1| |#1|) $) 29)) (-2455 (($ (-1 (-776) (-776)) $) 30)) (-4390 (((-3 $ "failed") $ $) 38)) (-3681 (((-1165) $) 10)) (-1929 (($ $ $) 39)) (-1930 (($ $ $) 40)) (-3682 (((-1126) $) 11)) (-1964 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-776)))) $) 33)) (-3300 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4396 (((-868) $) 12) (($ |#1|) 44)) (-3680 (((-112) $ $) 9)) (-3085 (($) 20 T CONST)) (-2984 (((-112) $ $) 25 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 24 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 26 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 23 (|has| |#1| (-855)))) (** (($ $ (-925)) 14) (($ $ (-776)) 17) (($ |#1| (-776)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-390 |#1|) (-140) (-1107)) (T -390))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-1930 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-1929 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-4390 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-4389 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-3300 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1107)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-1928 (*1 *2 *1 *1) (-12 (-4 *3 (-1107)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1107)) (-5 *2 (-776)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1107)) (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 (-776))))))) (-2463 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-390 *4)) (-4 *4 (-1107)) (-5 *2 (-776)))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-390 *2)) (-4 *2 (-1107)))) (-2455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1107)))) (-2454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1107)))))
-(-13 (-731) (-1044 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-776))) (-15 -1930 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -4390 ((-3 $ "failed") $ $)) (-15 -4389 ((-3 $ "failed") $ $)) (-15 -3300 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1928 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3558 ((-776) $)) (-15 -1964 ((-646 (-2 (|:| |gen| |t#1|) (|:| -4393 (-776)))) $)) (-15 -2463 ((-776) $ (-551))) (-15 -2462 (|t#1| $ (-551))) (-15 -2455 ($ (-1 (-776) (-776)) $)) (-15 -2454 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|)))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 |#1|) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776) $) 74)) (-4174 (($) NIL T CONST)) (-4389 (((-3 $ #1="failed") $ $) 77)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-1928 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2591 (((-112) $) 17)) (-2462 ((|#1| $ (-551)) NIL)) (-2463 (((-776) $ (-551)) NIL)) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2454 (($ (-1 |#1| |#1|) $) 40)) (-2455 (($ (-1 (-776) (-776)) $) 37)) (-4390 (((-3 $ #1#) $ $) 60)) (-3681 (((-1165) $) NIL)) (-1929 (($ $ $) 28)) (-1930 (($ $ $) 26)) (-3682 (((-1126) $) NIL)) (-1964 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-776)))) $) 34)) (-3300 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70)) (-4396 (((-868) $) 24) (($ |#1|) NIL)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 11 T CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) 84 (|has| |#1| (-855)))) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-391 |#1|) (-390 |#1|) (-1107)) (T -391))
+((-2383 (((-112) $ $) 7)) (-3363 (((-776) $) 34)) (-3863 (($) 19 T CONST)) (-2030 (((-3 $ "failed") $ $) 37)) (-4359 (((-3 |#1| "failed") $) 45)) (-3043 ((|#1| $) 46)) (-3351 (((-3 $ "failed") $) 16)) (-3588 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2861 (((-112) $) 18)) (-4199 ((|#1| $ (-569)) 31)) (-4209 (((-776) $ (-569)) 32)) (-2095 (($ $ $) 28 (|has| |#1| (-855)))) (-2406 (($ $ $) 27 (|has| |#1| (-855)))) (-4117 (($ (-1 |#1| |#1|) $) 29)) (-4129 (($ (-1 (-776) (-776)) $) 30)) (-2041 (((-3 $ "failed") $ $) 38)) (-2050 (((-1165) $) 10)) (-3598 (($ $ $) 39)) (-2370 (($ $ $) 40)) (-3461 (((-1126) $) 11)) (-2671 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-776)))) $) 33)) (-2636 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2388 (((-867) $) 12) (($ |#1|) 44)) (-2040 (((-112) $ $) 9)) (-1796 (($) 20 T CONST)) (-2904 (((-112) $ $) 25 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 24 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 26 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 23 (|has| |#1| (-855)))) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ |#1| (-776)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-390 |#1|) (-140) (-1106)) (T -390))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-3598 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-2041 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-2030 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-2636 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1106)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3588 (*1 *2 *1 *1) (-12 (-4 *3 (-1106)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 (-776))))))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1106)) (-5 *2 (-776)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-4129 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1106)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1106)))))
+(-13 (-731) (-1044 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-776))) (-15 -2370 ($ $ $)) (-15 -3598 ($ $ $)) (-15 -2041 ((-3 $ "failed") $ $)) (-15 -2030 ((-3 $ "failed") $ $)) (-15 -2636 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3588 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3363 ((-776) $)) (-15 -2671 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4367 (-776)))) $)) (-15 -4209 ((-776) $ (-569))) (-15 -4199 (|t#1| $ (-569))) (-15 -4129 ($ (-1 (-776) (-776)) $)) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|)))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 |#1|) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776) $) 74)) (-3863 (($) NIL T CONST)) (-2030 (((-3 $ "failed") $ $) 77)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3588 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2861 (((-112) $) 17)) (-4199 ((|#1| $ (-569)) NIL)) (-4209 (((-776) $ (-569)) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-4117 (($ (-1 |#1| |#1|) $) 40)) (-4129 (($ (-1 (-776) (-776)) $) 37)) (-2041 (((-3 $ "failed") $ $) 60)) (-2050 (((-1165) $) NIL)) (-3598 (($ $ $) 28)) (-2370 (($ $ $) 26)) (-3461 (((-1126) $) NIL)) (-2671 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-776)))) $) 34)) (-2636 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2388 (((-867) $) 24) (($ |#1|) NIL)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 11 T CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) 84 (|has| |#1| (-855)))) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-391 |#1|) (-390 |#1|) (-1106)) (T -391))
NIL
(-390 |#1|)
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) "failed") $) 53)) (-3594 (((-551) $) 54)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-2952 (($ $ $) 60)) (-3278 (($ $ $) 59)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ $) 48)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-551)) 52)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 57)) (-2985 (((-112) $ $) 56)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 58)) (-3106 (((-112) $ $) 55)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 53)) (-3043 (((-569) $) 54)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2095 (($ $ $) 60)) (-2406 (($ $ $) 59)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ $) 48)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 52)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 57)) (-2882 (((-112) $ $) 56)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 58)) (-2872 (((-112) $ $) 55)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-392) (-140)) (T -392))
NIL
-(-13 (-562) (-855) (-1044 (-551)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1044 (-551)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-1931 (((-112) $) 25)) (-1932 (((-112) $) 22)) (-4064 (($ (-1165) (-1165) (-1165)) 26)) (-3991 (((-1165) $) 16)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1936 (($ (-1165) (-1165) (-1165)) 14)) (-1934 (((-1165) $) 17)) (-1933 (((-112) $) 18)) (-1935 (((-1165) $) 15)) (-4396 (((-868) $) 12) (($ (-1165)) 13) (((-1165) $) 9)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 7)))
+(-13 (-561) (-855) (-1044 (-569)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2380 (((-112) $) 25)) (-2390 (((-112) $) 22)) (-4275 (($ (-1165) (-1165) (-1165)) 26)) (-3458 (((-1165) $) 16)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1980 (($ (-1165) (-1165) (-1165)) 14)) (-2410 (((-1165) $) 17)) (-2398 (((-112) $) 18)) (-3676 (((-1165) $) 15)) (-2388 (((-867) $) 12) (($ (-1165)) 13) (((-1165) $) 9)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 7)))
(((-393) (-394)) (T -393))
NIL
(-394)
-((-2986 (((-112) $ $) 7)) (-1931 (((-112) $) 17)) (-1932 (((-112) $) 18)) (-4064 (($ (-1165) (-1165) (-1165)) 16)) (-3991 (((-1165) $) 21)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-1936 (($ (-1165) (-1165) (-1165)) 23)) (-1934 (((-1165) $) 20)) (-1933 (((-112) $) 19)) (-1935 (((-1165) $) 22)) (-4396 (((-868) $) 12) (($ (-1165)) 25) (((-1165) $) 24)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-2383 (((-112) $ $) 7)) (-2380 (((-112) $) 17)) (-2390 (((-112) $) 18)) (-4275 (($ (-1165) (-1165) (-1165)) 16)) (-3458 (((-1165) $) 21)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1980 (($ (-1165) (-1165) (-1165)) 23)) (-2410 (((-1165) $) 20)) (-2398 (((-112) $) 19)) (-3676 (((-1165) $) 22)) (-2388 (((-867) $) 12) (($ (-1165)) 25) (((-1165) $) 24)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-394) (-140)) (T -394))
-((-1936 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4064 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
-(-13 (-1107) (-495 (-1165)) (-10 -8 (-15 -1936 ($ (-1165) (-1165) (-1165))) (-15 -1935 ((-1165) $)) (-15 -3991 ((-1165) $)) (-15 -1934 ((-1165) $)) (-15 -1933 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -1931 ((-112) $)) (-15 -4064 ($ (-1165) (-1165) (-1165)))))
-(((-102) . T) ((-621 #1=(-1165)) . T) ((-618 (-868)) . T) ((-618 #1#) . T) ((-495 #1#) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1937 (((-868) $) 63)) (-4174 (($) NIL T CONST)) (-2588 (($ $ (-925)) NIL)) (-2612 (($ $ (-925)) NIL)) (-2587 (($ $ (-925)) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($ (-776)) 38)) (-4361 (((-776)) 18)) (-1938 (((-868) $) 65)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2775 (($ $ $ $) NIL)) (-2773 (($ $ $) NIL)) (-3528 (($) 24 T CONST)) (-3473 (((-112) $ $) 41)) (-4287 (($ $) 48) (($ $ $) 50)) (-4289 (($ $ $) 51)) (** (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-395 |#1| |#2| |#3|) (-13 (-749 |#3|) (-10 -8 (-15 -4361 ((-776))) (-15 -1938 ((-868) $)) (-15 -1937 ((-868) $)) (-15 -2590 ($ (-776))))) (-776) (-776) (-173)) (T -395))
-((-4361 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))))
-(-13 (-749 |#3|) (-10 -8 (-15 -4361 ((-776))) (-15 -1938 ((-868) $)) (-15 -1937 ((-868) $)) (-15 -2590 ($ (-776)))))
-((-1943 (((-1165)) 12)) (-1940 (((-1153 (-1165))) 30)) (-1942 (((-1278) (-1165)) 27) (((-1278) (-393)) 26)) (-1941 (((-1278)) 28)) (-1939 (((-1153 (-1165))) 29)))
-(((-396) (-10 -7 (-15 -1939 ((-1153 (-1165)))) (-15 -1940 ((-1153 (-1165)))) (-15 -1941 ((-1278))) (-15 -1942 ((-1278) (-393))) (-15 -1942 ((-1278) (-1165))) (-15 -1943 ((-1165))))) (T -396))
-((-1943 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-1941 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))) (-1940 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))) (-1939 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
-(-10 -7 (-15 -1939 ((-1153 (-1165)))) (-15 -1940 ((-1153 (-1165)))) (-15 -1941 ((-1278))) (-15 -1942 ((-1278) (-393))) (-15 -1942 ((-1278) (-1165))) (-15 -1943 ((-1165))))
-((-4221 (((-776) (-337 |#1| |#2| |#3| |#4|)) 19)))
-(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4221 ((-776) (-337 |#1| |#2| |#3| |#4|)))) (-13 (-372) (-367)) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -397))
-((-4221 (*1 *2 *3) (-12 (-5 *3 (-337 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4221 ((-776) (-337 |#1| |#2| |#3| |#4|))))
-((-2986 (((-112) $ $) NIL)) (-4060 (((-646 (-1165)) $ (-646 (-1165))) 42)) (-1944 (((-646 (-1165)) $ (-646 (-1165))) 43)) (-4062 (((-646 (-1165)) $ (-646 (-1165))) 44)) (-4063 (((-646 (-1165)) $) 39)) (-4064 (($) 30)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1945 (((-646 (-1165)) $) 40)) (-4066 (((-646 (-1165)) $) 41)) (-4067 (((-1278) $ (-551)) 37) (((-1278) $) 38)) (-4420 (($ (-868) (-551)) 35)) (-4396 (((-868) $) 49) (($ (-868)) 32)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-398) (-13 (-1107) (-621 (-868)) (-10 -8 (-15 -4420 ($ (-868) (-551))) (-15 -4067 ((-1278) $ (-551))) (-15 -4067 ((-1278) $)) (-15 -4066 ((-646 (-1165)) $)) (-15 -1945 ((-646 (-1165)) $)) (-15 -4064 ($)) (-15 -4063 ((-646 (-1165)) $)) (-15 -4062 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -1944 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4060 ((-646 (-1165)) $ (-646 (-1165))))))) (T -398))
-((-4420 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-398)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-398)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-398)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))) (-4064 (*1 *1) (-5 *1 (-398))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))) (-4062 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))) (-1944 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))) (-4060 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))))
-(-13 (-1107) (-621 (-868)) (-10 -8 (-15 -4420 ($ (-868) (-551))) (-15 -4067 ((-1278) $ (-551))) (-15 -4067 ((-1278) $)) (-15 -4066 ((-646 (-1165)) $)) (-15 -1945 ((-646 (-1165)) $)) (-15 -4064 ($)) (-15 -4063 ((-646 (-1165)) $)) (-15 -4062 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -1944 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4060 ((-646 (-1165)) $ (-646 (-1165))))))
-((-4396 (((-398) |#1|) 11)))
-(((-399 |#1|) (-10 -7 (-15 -4396 ((-398) |#1|))) (-1107)) (T -399))
-((-4396 (*1 *2 *3) (-12 (-5 *2 (-398)) (-5 *1 (-399 *3)) (-4 *3 (-1107)))))
-(-10 -7 (-15 -4396 ((-398) |#1|)))
-((-1947 (((-646 (-1165)) (-646 (-1165))) 9)) (-3822 (((-1278) (-393)) 26)) (-1946 (((-1109) (-1183) (-646 (-1183)) (-1186) (-646 (-1183))) 59) (((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183)) (-1183)) 34) (((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183))) 33)))
-(((-400) (-10 -7 (-15 -1946 ((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183)))) (-15 -1946 ((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183)) (-1183))) (-15 -1946 ((-1109) (-1183) (-646 (-1183)) (-1186) (-646 (-1183)))) (-15 -3822 ((-1278) (-393))) (-15 -1947 ((-646 (-1165)) (-646 (-1165)))))) (T -400))
-((-1947 (*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-400)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-400)))) (-1946 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-646 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183)) (-5 *2 (-1109)) (-5 *1 (-400)))) (-1946 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-646 (-646 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-646 (-3 (|:| |array| (-646 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1109)) (-5 *1 (-400)))) (-1946 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-646 (-646 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-646 (-3 (|:| |array| (-646 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1109)) (-5 *1 (-400)))))
-(-10 -7 (-15 -1946 ((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183)))) (-15 -1946 ((-1109) (-1183) (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183)))) (-646 (-646 (-3 (|:| |array| (-646 (-1183))) (|:| |scalar| (-1183))))) (-646 (-1183)) (-1183))) (-15 -1946 ((-1109) (-1183) (-646 (-1183)) (-1186) (-646 (-1183)))) (-15 -3822 ((-1278) (-393))) (-15 -1947 ((-646 (-1165)) (-646 (-1165)))))
-((-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8)))
+((-1980 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4275 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
+(-13 (-1106) (-495 (-1165)) (-10 -8 (-15 -1980 ($ (-1165) (-1165) (-1165))) (-15 -3676 ((-1165) $)) (-15 -3458 ((-1165) $)) (-15 -2410 ((-1165) $)) (-15 -2398 ((-112) $)) (-15 -2390 ((-112) $)) (-15 -2380 ((-112) $)) (-15 -4275 ($ (-1165) (-1165) (-1165)))))
+(((-102) . T) ((-621 #0=(-1165)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2419 (((-867) $) 63)) (-3863 (($) NIL T CONST)) (-2840 (($ $ (-927)) NIL)) (-1931 (($ $ (-927)) NIL)) (-2829 (($ $ (-927)) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($ (-776)) 38)) (-2905 (((-776)) 18)) (-2428 (((-867) $) 65)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-4365 (($ $ $ $) NIL)) (-4347 (($ $ $) NIL)) (-1786 (($) 24 T CONST)) (-2853 (((-112) $ $) 41)) (-2946 (($ $) 48) (($ $ $) 50)) (-2935 (($ $ $) 51)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-395 |#1| |#2| |#3|) (-13 (-749 |#3|) (-10 -8 (-15 -2905 ((-776))) (-15 -2428 ((-867) $)) (-15 -2419 ((-867) $)) (-15 -2290 ($ (-776))))) (-776) (-776) (-173)) (T -395))
+((-2905 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))))
+(-13 (-749 |#3|) (-10 -8 (-15 -2905 ((-776))) (-15 -2428 ((-867) $)) (-15 -2419 ((-867) $)) (-15 -2290 ($ (-776)))))
+((-2455 (((-1165)) 12)) (-2446 (((-1153 (-1165))) 30)) (-3247 (((-1278) (-1165)) 27) (((-1278) (-393)) 26)) (-3260 (((-1278)) 28)) (-2436 (((-1153 (-1165))) 29)))
+(((-396) (-10 -7 (-15 -2436 ((-1153 (-1165)))) (-15 -2446 ((-1153 (-1165)))) (-15 -3260 ((-1278))) (-15 -3247 ((-1278) (-393))) (-15 -3247 ((-1278) (-1165))) (-15 -2455 ((-1165))))) (T -396))
+((-2455 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-3260 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))) (-2446 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))) (-2436 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
+(-10 -7 (-15 -2436 ((-1153 (-1165)))) (-15 -2446 ((-1153 (-1165)))) (-15 -3260 ((-1278))) (-15 -3247 ((-1278) (-393))) (-15 -3247 ((-1278) (-1165))) (-15 -2455 ((-1165))))
+((-4315 (((-776) (-340 |#1| |#2| |#3| |#4|)) 19)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4315 ((-776) (-340 |#1| |#2| |#3| |#4|)))) (-13 (-372) (-367)) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -397))
+((-4315 (*1 *2 *3) (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4315 ((-776) (-340 |#1| |#2| |#3| |#4|))))
+((-2388 (((-399) |#1|) 11)))
+(((-398 |#1|) (-10 -7 (-15 -2388 ((-399) |#1|))) (-1106)) (T -398))
+((-2388 (*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1106)))))
+(-10 -7 (-15 -2388 ((-399) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2116 (((-649 (-1165)) $ (-649 (-1165))) 42)) (-2463 (((-649 (-1165)) $ (-649 (-1165))) 43)) (-2135 (((-649 (-1165)) $ (-649 (-1165))) 44)) (-2145 (((-649 (-1165)) $) 39)) (-4275 (($) 30)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2471 (((-649 (-1165)) $) 40)) (-2155 (((-649 (-1165)) $) 41)) (-4138 (((-1278) $ (-569)) 37) (((-1278) $) 38)) (-1384 (($ (-867) (-569)) 35)) (-2388 (((-867) $) 49) (($ (-867)) 32)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-399) (-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1384 ($ (-867) (-569))) (-15 -4138 ((-1278) $ (-569))) (-15 -4138 ((-1278) $)) (-15 -2155 ((-649 (-1165)) $)) (-15 -2471 ((-649 (-1165)) $)) (-15 -4275 ($)) (-15 -2145 ((-649 (-1165)) $)) (-15 -2135 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2463 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2116 ((-649 (-1165)) $ (-649 (-1165))))))) (T -399))
+((-1384 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399)))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-399)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-399)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-4275 (*1 *1) (-5 *1 (-399))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-2135 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-2463 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-2116 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
+(-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1384 ($ (-867) (-569))) (-15 -4138 ((-1278) $ (-569))) (-15 -4138 ((-1278) $)) (-15 -2155 ((-649 (-1165)) $)) (-15 -2471 ((-649 (-1165)) $)) (-15 -4275 ($)) (-15 -2145 ((-649 (-1165)) $)) (-15 -2135 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2463 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2116 ((-649 (-1165)) $ (-649 (-1165))))))
+((-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8)))
+(((-400) (-140)) (T -400))
+((-3275 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1278)))))
+(-13 (-1223) (-618 (-867)) (-10 -8 (-15 -3275 ((-1278) $))))
+(((-618 (-867)) . T) ((-1223) . T))
+((-4359 (((-3 $ "failed") (-319 (-383))) 21) (((-3 $ "failed") (-319 (-569))) 19) (((-3 $ "failed") (-958 (-383))) 17) (((-3 $ "failed") (-958 (-569))) 15) (((-3 $ "failed") (-412 (-958 (-383)))) 13) (((-3 $ "failed") (-412 (-958 (-569)))) 11)) (-3043 (($ (-319 (-383))) 22) (($ (-319 (-569))) 20) (($ (-958 (-383))) 18) (($ (-958 (-569))) 16) (($ (-412 (-958 (-383)))) 14) (($ (-412 (-958 (-569)))) 12)) (-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 23)))
(((-401) (-140)) (T -401))
-((-3822 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1278)))))
-(-13 (-1222) (-618 (-868)) (-10 -8 (-15 -3822 ((-1278) $))))
-(((-618 (-868)) . T) ((-1222) . T))
-((-3595 (((-3 $ "failed") (-317 (-382))) 21) (((-3 $ "failed") (-317 (-551))) 19) (((-3 $ "failed") (-952 (-382))) 17) (((-3 $ "failed") (-952 (-551))) 15) (((-3 $ "failed") (-412 (-952 (-382)))) 13) (((-3 $ "failed") (-412 (-952 (-551)))) 11)) (-3594 (($ (-317 (-382))) 22) (($ (-317 (-551))) 20) (($ (-952 (-382))) 18) (($ (-952 (-551))) 16) (($ (-412 (-952 (-382)))) 14) (($ (-412 (-952 (-551)))) 12)) (-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8) (($ (-646 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 23)))
-(((-402) (-140)) (T -402))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-402)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-402)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-382))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-551))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-952 (-382))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-382))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-952 (-551))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-551))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-382)))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-382)))) (-4 *1 (-402)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-551)))) (-4 *1 (-402)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-551)))) (-4 *1 (-402)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-333))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))) (-15 -3594 ($ (-317 (-382)))) (-15 -3595 ((-3 $ "failed") (-317 (-382)))) (-15 -3594 ($ (-317 (-551)))) (-15 -3595 ((-3 $ "failed") (-317 (-551)))) (-15 -3594 ($ (-952 (-382)))) (-15 -3595 ((-3 $ "failed") (-952 (-382)))) (-15 -3594 ($ (-952 (-551)))) (-15 -3595 ((-3 $ "failed") (-952 (-551)))) (-15 -3594 ($ (-412 (-952 (-382))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-382))))) (-15 -3594 ($ (-412 (-952 (-551))))) (-15 -3595 ((-3 $ "failed") (-412 (-952 (-551)))))))
-(((-618 (-868)) . T) ((-401) . T) ((-1222) . T))
-((-3822 (((-1278) $) 35)) (-4396 (((-868) $) 97) (($ (-333)) 99) (($ (-646 (-333))) 98) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 96) (($ (-317 (-706))) 52) (($ (-317 (-704))) 72) (($ (-317 (-699))) 85) (($ (-296 (-317 (-706)))) 67) (($ (-296 (-317 (-704)))) 80) (($ (-296 (-317 (-699)))) 93) (($ (-317 (-551))) 104) (($ (-317 (-382))) 117) (($ (-317 (-169 (-382)))) 130) (($ (-296 (-317 (-551)))) 112) (($ (-296 (-317 (-382)))) 125) (($ (-296 (-317 (-169 (-382))))) 138)))
-(((-403 |#1| |#2| |#3| |#4|) (-13 (-401) (-10 -8 (-15 -4396 ($ (-333))) (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))) (-15 -4396 ($ (-317 (-706)))) (-15 -4396 ($ (-317 (-704)))) (-15 -4396 ($ (-317 (-699)))) (-15 -4396 ($ (-296 (-317 (-706))))) (-15 -4396 ($ (-296 (-317 (-704))))) (-15 -4396 ($ (-296 (-317 (-699))))) (-15 -4396 ($ (-317 (-551)))) (-15 -4396 ($ (-317 (-382)))) (-15 -4396 ($ (-317 (-169 (-382))))) (-15 -4396 ($ (-296 (-317 (-551))))) (-15 -4396 ($ (-296 (-317 (-382))))) (-15 -4396 ($ (-296 (-317 (-169 (-382)))))))) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 "void")) (-646 (-1183)) (-1187)) (T -403))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void"))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-382)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-551)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-382)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-296 (-317 (-169 (-382))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183))) (-14 *6 (-1187)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-333))) (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))) (-15 -4396 ($ (-317 (-706)))) (-15 -4396 ($ (-317 (-704)))) (-15 -4396 ($ (-317 (-699)))) (-15 -4396 ($ (-296 (-317 (-706))))) (-15 -4396 ($ (-296 (-317 (-704))))) (-15 -4396 ($ (-296 (-317 (-699))))) (-15 -4396 ($ (-317 (-551)))) (-15 -4396 ($ (-317 (-382)))) (-15 -4396 ($ (-317 (-169 (-382))))) (-15 -4396 ($ (-296 (-317 (-551))))) (-15 -4396 ($ (-296 (-317 (-382))))) (-15 -4396 ($ (-296 (-317 (-169 (-382))))))))
-((-2986 (((-112) $ $) NIL)) (-1949 ((|#2| $) 38)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1950 (($ (-412 |#2|)) 95)) (-1948 (((-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|))) $) 39)) (-4260 (($ $) 34) (($ $ (-776)) 36)) (-4420 (((-412 |#2|) $) 51)) (-3971 (($ (-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|)))) 33)) (-4396 (((-868) $) 132)) (-3680 (((-112) $ $) NIL)) (-3090 (($ $) 35) (($ $ (-776)) 37)) (-3473 (((-112) $ $) NIL)) (-4289 (($ |#2| $) 41)))
-(((-404 |#1| |#2|) (-13 (-1107) (-619 (-412 |#2|)) (-10 -8 (-15 -4289 ($ |#2| $)) (-15 -1950 ($ (-412 |#2|))) (-15 -1949 (|#2| $)) (-15 -1948 ((-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|))) $)) (-15 -3971 ($ (-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|))))) (-15 -4260 ($ $)) (-15 -3090 ($ $)) (-15 -4260 ($ $ (-776))) (-15 -3090 ($ $ (-776))))) (-13 (-367) (-147)) (-1248 |#1|)) (T -404))
-((-4289 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1248 *3)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-1949 (*1 *2 *1) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))) (-1948 (*1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *2 (-646 (-2 (|:| -2582 (-776)) (|:| -4222 *4) (|:| |num| *4)))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1248 *3)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -2582 (-776)) (|:| -4222 *4) (|:| |num| *4)))) (-4 *4 (-1248 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-4260 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1248 *2)))) (-3090 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1248 *2)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1248 *3)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1248 *3)))))
-(-13 (-1107) (-619 (-412 |#2|)) (-10 -8 (-15 -4289 ($ |#2| $)) (-15 -1950 ($ (-412 |#2|))) (-15 -1949 (|#2| $)) (-15 -1948 ((-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|))) $)) (-15 -3971 ($ (-646 (-2 (|:| -2582 (-776)) (|:| -4222 |#2|) (|:| |num| |#2|))))) (-15 -4260 ($ $)) (-15 -3090 ($ $)) (-15 -4260 ($ $ (-776))) (-15 -3090 ($ $ (-776)))))
-((-2986 (((-112) $ $) 9 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 16 (|has| |#1| (-892 (-382)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 15 (|has| |#1| (-892 (-551))))) (-3681 (((-1165) $) 13 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))) (-3682 (((-1126) $) 12 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))) (-4396 (((-868) $) 11 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))) (-3680 (((-112) $ $) 14 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))) (-3473 (((-112) $ $) 10 (-3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))))))
-(((-405 |#1|) (-140) (-1222)) (T -405))
-NIL
-(-13 (-1222) (-10 -7 (IF (|has| |t#1| (-892 (-551))) (-6 (-892 (-551))) |%noBranch|) (IF (|has| |t#1| (-892 (-382))) (-6 (-892 (-382))) |%noBranch|)))
-(((-102) -3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))) ((-618 (-868)) -3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))) ((-892 (-382)) |has| |#1| (-892 (-382))) ((-892 (-551)) |has| |#1| (-892 (-551))) ((-1107) -3978 (|has| |#1| (-892 (-551))) (|has| |#1| (-892 (-382)))) ((-1222) . T))
-((-1951 (($ $) 10) (($ $ (-776)) 12)))
-(((-406 |#1|) (-10 -8 (-15 -1951 (|#1| |#1| (-776))) (-15 -1951 (|#1| |#1|))) (-407)) (T -406))
-NIL
-(-10 -8 (-15 -1951 (|#1| |#1| (-776))) (-15 -1951 (|#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-1951 (($ $) 87) (($ $ (-776)) 86)) (-4173 (((-112) $) 79)) (-4221 (((-837 (-925)) $) 89)) (-2591 (((-112) $) 35)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-1952 (((-3 (-776) "failed") $ $) 88)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74)) (-3123 (((-3 $ "failed") $) 90)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-333))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))) (-15 -3043 ($ (-319 (-383)))) (-15 -4359 ((-3 $ "failed") (-319 (-383)))) (-15 -3043 ($ (-319 (-569)))) (-15 -4359 ((-3 $ "failed") (-319 (-569)))) (-15 -3043 ($ (-958 (-383)))) (-15 -4359 ((-3 $ "failed") (-958 (-383)))) (-15 -3043 ($ (-958 (-569)))) (-15 -4359 ((-3 $ "failed") (-958 (-569)))) (-15 -3043 ($ (-412 (-958 (-383))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3043 ($ (-412 (-958 (-569))))) (-15 -4359 ((-3 $ "failed") (-412 (-958 (-569)))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
+((-2483 (((-649 (-1165)) (-649 (-1165))) 9)) (-3275 (((-1278) (-393)) 26)) (-2475 (((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183))) 59) (((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183)) 34) (((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183))) 33)))
+(((-402) (-10 -7 (-15 -2475 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)))) (-15 -2475 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183))) (-15 -2475 ((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183)))) (-15 -3275 ((-1278) (-393))) (-15 -2483 ((-649 (-1165)) (-649 (-1165)))))) (T -402))
+((-2483 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-402)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-402)))) (-2475 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))) (-2475 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))) (-2475 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))))
+(-10 -7 (-15 -2475 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)))) (-15 -2475 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183))) (-15 -2475 ((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183)))) (-15 -3275 ((-1278) (-393))) (-15 -2483 ((-649 (-1165)) (-649 (-1165)))))
+((-3275 (((-1278) $) 35)) (-2388 (((-867) $) 97) (($ (-333)) 99) (($ (-649 (-333))) 98) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 96) (($ (-319 (-706))) 52) (($ (-319 (-704))) 72) (($ (-319 (-699))) 85) (($ (-297 (-319 (-706)))) 67) (($ (-297 (-319 (-704)))) 80) (($ (-297 (-319 (-699)))) 93) (($ (-319 (-569))) 104) (($ (-319 (-383))) 117) (($ (-319 (-170 (-383)))) 130) (($ (-297 (-319 (-569)))) 112) (($ (-297 (-319 (-383)))) 125) (($ (-297 (-319 (-170 (-383))))) 138)))
+(((-403 |#1| |#2| |#3| |#4|) (-13 (-400) (-10 -8 (-15 -2388 ($ (-333))) (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))) (-15 -2388 ($ (-319 (-706)))) (-15 -2388 ($ (-319 (-704)))) (-15 -2388 ($ (-319 (-699)))) (-15 -2388 ($ (-297 (-319 (-706))))) (-15 -2388 ($ (-297 (-319 (-704))))) (-15 -2388 ($ (-297 (-319 (-699))))) (-15 -2388 ($ (-319 (-569)))) (-15 -2388 ($ (-319 (-383)))) (-15 -2388 ($ (-319 (-170 (-383))))) (-15 -2388 ($ (-297 (-319 (-569))))) (-15 -2388 ($ (-297 (-319 (-383))))) (-15 -2388 ($ (-297 (-319 (-170 (-383)))))))) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-1183)) (-1187)) (T -403))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-333))) (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))) (-15 -2388 ($ (-319 (-706)))) (-15 -2388 ($ (-319 (-704)))) (-15 -2388 ($ (-319 (-699)))) (-15 -2388 ($ (-297 (-319 (-706))))) (-15 -2388 ($ (-297 (-319 (-704))))) (-15 -2388 ($ (-297 (-319 (-699))))) (-15 -2388 ($ (-319 (-569)))) (-15 -2388 ($ (-319 (-383)))) (-15 -2388 ($ (-319 (-170 (-383))))) (-15 -2388 ($ (-297 (-319 (-569))))) (-15 -2388 ($ (-297 (-319 (-383))))) (-15 -2388 ($ (-297 (-319 (-170 (-383))))))))
+((-2383 (((-112) $ $) NIL)) (-2503 ((|#2| $) 38)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2514 (($ (-412 |#2|)) 95)) (-2494 (((-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|))) $) 39)) (-3430 (($ $) 34) (($ $ (-776)) 36)) (-1384 (((-412 |#2|) $) 51)) (-3709 (($ (-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|)))) 33)) (-2388 (((-867) $) 132)) (-2040 (((-112) $ $) NIL)) (-2749 (($ $) 35) (($ $ (-776)) 37)) (-2853 (((-112) $ $) NIL)) (-2935 (($ |#2| $) 41)))
+(((-404 |#1| |#2|) (-13 (-1106) (-619 (-412 |#2|)) (-10 -8 (-15 -2935 ($ |#2| $)) (-15 -2514 ($ (-412 |#2|))) (-15 -2503 (|#2| $)) (-15 -2494 ((-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|))) $)) (-15 -3709 ($ (-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|))))) (-15 -3430 ($ $)) (-15 -2749 ($ $)) (-15 -3430 ($ $ (-776))) (-15 -2749 ($ $ (-776))))) (-13 (-367) (-147)) (-1249 |#1|)) (T -404))
+((-2935 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1249 *3)))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-2503 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))) (-2494 (*1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *2 (-649 (-2 (|:| -2777 (-776)) (|:| -2132 *4) (|:| |num| *4)))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2777 (-776)) (|:| -2132 *4) (|:| |num| *4)))) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-3430 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1249 *2)))) (-2749 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1249 *2)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))))
+(-13 (-1106) (-619 (-412 |#2|)) (-10 -8 (-15 -2935 ($ |#2| $)) (-15 -2514 ($ (-412 |#2|))) (-15 -2503 (|#2| $)) (-15 -2494 ((-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|))) $)) (-15 -3709 ($ (-649 (-2 (|:| -2777 (-776)) (|:| -2132 |#2|) (|:| |num| |#2|))))) (-15 -3430 ($ $)) (-15 -2749 ($ $)) (-15 -3430 ($ $ (-776))) (-15 -2749 ($ $ (-776)))))
+((-2383 (((-112) $ $) 9 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 16 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 15 (|has| |#1| (-892 (-569))))) (-2050 (((-1165) $) 13 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3461 (((-1126) $) 12 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2388 (((-867) $) 11 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2040 (((-112) $ $) 14 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2853 (((-112) $ $) 10 (-2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))))
+(((-405 |#1|) (-140) (-1223)) (T -405))
+NIL
+(-13 (-1223) (-10 -7 (IF (|has| |t#1| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|)))
+(((-102) -2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-618 (-867)) -2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-1106) -2718 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-1223) . T))
+((-2525 (($ $) 10) (($ $ (-776)) 12)))
+(((-406 |#1|) (-10 -8 (-15 -2525 (|#1| |#1| (-776))) (-15 -2525 (|#1| |#1|))) (-407)) (T -406))
+NIL
+(-10 -8 (-15 -2525 (|#1| |#1| (-776))) (-15 -2525 (|#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-2525 (($ $) 87) (($ $ (-776)) 86)) (-3848 (((-112) $) 79)) (-4315 (((-838 (-927)) $) 89)) (-2861 (((-112) $) 35)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2536 (((-3 (-776) "failed") $ $) 88)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-1488 (((-3 $ "failed") $) 90)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-407) (-140)) (T -407))
-((-4221 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-837 (-925))))) (-1952 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))) (-1951 (*1 *1 *1) (-4 *1 (-407))) (-1951 (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776)))))
-(-13 (-367) (-145) (-10 -8 (-15 -4221 ((-837 (-925)) $)) (-15 -1952 ((-3 (-776) "failed") $ $)) (-15 -1951 ($ $)) (-15 -1951 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-3693 (($ (-551) (-551)) 11) (($ (-551) (-551) (-925)) NIL)) (-3033 (((-925)) 19) (((-925) (-925)) NIL)))
-(((-408 |#1|) (-10 -8 (-15 -3033 ((-925) (-925))) (-15 -3033 ((-925))) (-15 -3693 (|#1| (-551) (-551) (-925))) (-15 -3693 (|#1| (-551) (-551)))) (-409)) (T -408))
-((-3033 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-408 *3)) (-4 *3 (-409)))))
-(-10 -8 (-15 -3033 ((-925) (-925))) (-15 -3033 ((-925))) (-15 -3693 (|#1| (-551) (-551) (-925))) (-15 -3693 (|#1| (-551) (-551))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3551 (((-551) $) 97)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-4220 (($ $) 95)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-3456 (($ $) 105)) (-1763 (((-112) $ $) 65)) (-4073 (((-551) $) 122)) (-4174 (($) 18 T CONST)) (-3549 (($ $) 94)) (-3595 (((-3 (-551) #1="failed") $) 110) (((-3 (-412 (-551)) #1#) $) 107)) (-3594 (((-551) $) 111) (((-412 (-551)) $) 108)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-2555 (((-925)) 138) (((-925) (-925)) 135 (|has| $ (-6 -4434)))) (-3624 (((-112) $) 120)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 101)) (-4221 (((-551) $) 144)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 104)) (-3554 (($ $) 100)) (-3625 (((-112) $) 121)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 58)) (-2952 (($ $ $) 119) (($) 132 (-12 (-3764 (|has| $ (-6 -4434))) (-3764 (|has| $ (-6 -4426)))))) (-3278 (($ $ $) 118) (($) 131 (-12 (-3764 (|has| $ (-6 -4434))) (-3764 (|has| $ (-6 -4426)))))) (-2556 (((-551) $) 141)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-1954 (((-925) (-551)) 134 (|has| $ (-6 -4434)))) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3550 (($ $) 96)) (-3552 (($ $) 98)) (-3693 (($ (-551) (-551)) 146) (($ (-551) (-551) (-925)) 145)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-2582 (((-551) $) 142)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-3033 (((-925)) 139) (((-925) (-925)) 136 (|has| $ (-6 -4434)))) (-1953 (((-925) (-551)) 133 (|has| $ (-6 -4434)))) (-4420 (((-382) $) 113) (((-226) $) 112) (((-896 (-382)) $) 102)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ (-551)) 109) (($ (-412 (-551))) 106)) (-3548 (((-776)) 32 T CONST)) (-3553 (($ $) 99)) (-1955 (((-925)) 140) (((-925) (-925)) 137 (|has| $ (-6 -4434)))) (-3680 (((-112) $ $) 9)) (-3115 (((-925)) 143)) (-2250 (((-112) $ $) 45)) (-3825 (($ $) 123)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 116)) (-2985 (((-112) $ $) 115)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 117)) (-3106 (((-112) $ $) 114)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77) (($ $ (-412 (-551))) 103)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
+((-4315 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927))))) (-2536 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))) (-2525 (*1 *1 *1) (-4 *1 (-407))) (-2525 (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776)))))
+(-13 (-367) (-145) (-10 -8 (-15 -4315 ((-838 (-927)) $)) (-15 -2536 ((-3 (-776) "failed") $ $)) (-15 -2525 ($ $)) (-15 -2525 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-2493 (($ (-569) (-569)) 11) (($ (-569) (-569) (-927)) NIL)) (-1871 (((-927)) 19) (((-927) (-927)) NIL)))
+(((-408 |#1|) (-10 -8 (-15 -1871 ((-927) (-927))) (-15 -1871 ((-927))) (-15 -2493 (|#1| (-569) (-569) (-927))) (-15 -2493 (|#1| (-569) (-569)))) (-409)) (T -408))
+((-1871 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))))
+(-10 -8 (-15 -1871 ((-927) (-927))) (-15 -1871 ((-927))) (-15 -2493 (|#1| (-569) (-569) (-927))) (-15 -2493 (|#1| (-569) (-569))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3300 (((-569) $) 97)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-4305 (($ $) 95)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-3714 (($ $) 105)) (-4420 (((-112) $ $) 65)) (-2211 (((-569) $) 122)) (-3863 (($) 18 T CONST)) (-3274 (($ $) 94)) (-4359 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3043 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-3390 (((-927)) 138) (((-927) (-927)) 135 (|has| $ (-6 -4434)))) (-2769 (((-112) $) 120)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-4315 (((-569) $) 144)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 104)) (-3334 (($ $) 100)) (-2778 (((-112) $) 121)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2095 (($ $ $) 119) (($) 132 (-12 (-1728 (|has| $ (-6 -4434))) (-1728 (|has| $ (-6 -4426)))))) (-2406 (($ $ $) 118) (($) 131 (-12 (-1728 (|has| $ (-6 -4434))) (-1728 (|has| $ (-6 -4426)))))) (-2931 (((-569) $) 141)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-2558 (((-927) (-569)) 134 (|has| $ (-6 -4434)))) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3288 (($ $) 96)) (-3312 (($ $) 98)) (-2493 (($ (-569) (-569)) 146) (($ (-569) (-569) (-927)) 145)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2777 (((-569) $) 142)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-1871 (((-927)) 139) (((-927) (-927)) 136 (|has| $ (-6 -4434)))) (-2547 (((-927) (-569)) 133 (|has| $ (-6 -4434)))) (-1384 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-3263 (((-776)) 32 T CONST)) (-3323 (($ $) 99)) (-2568 (((-927)) 140) (((-927) (-927)) 137 (|has| $ (-6 -4434)))) (-2040 (((-112) $ $) 9)) (-4344 (((-927)) 143)) (-2574 (((-112) $ $) 45)) (-3999 (($ $) 123)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 116)) (-2882 (((-112) $ $) 115)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 117)) (-2872 (((-112) $ $) 114)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-409) (-140)) (T -409))
-((-3693 (*1 *1 *2 *2) (-12 (-5 *2 (-551)) (-4 *1 (-409)))) (-3693 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-925)) (-4 *1 (-409)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551)))) (-3115 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551)))) (-1955 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))) (-3033 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))) (-2555 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-551)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-925)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-551)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-925)))) (-2952 (*1 *1) (-12 (-4 *1 (-409)) (-3764 (|has| *1 (-6 -4434))) (-3764 (|has| *1 (-6 -4426))))) (-3278 (*1 *1) (-12 (-4 *1 (-409)) (-3764 (|has| *1 (-6 -4434))) (-3764 (|has| *1 (-6 -4426))))))
-(-13 (-1066) (-10 -8 (-6 -4219) (-15 -3693 ($ (-551) (-551))) (-15 -3693 ($ (-551) (-551) (-925))) (-15 -4221 ((-551) $)) (-15 -3115 ((-925))) (-15 -2582 ((-551) $)) (-15 -2556 ((-551) $)) (-15 -1955 ((-925))) (-15 -3033 ((-925))) (-15 -2555 ((-925))) (IF (|has| $ (-6 -4434)) (PROGN (-15 -1955 ((-925) (-925))) (-15 -3033 ((-925) (-925))) (-15 -2555 ((-925) (-925))) (-15 -1954 ((-925) (-551))) (-15 -1953 ((-925) (-551)))) |%noBranch|) (IF (|has| $ (-6 -4426)) |%noBranch| (IF (|has| $ (-6 -4434)) |%noBranch| (PROGN (-15 -2952 ($)) (-15 -3278 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-382)) . T) ((-619 (-896 (-382))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-853) . T) ((-855) . T) ((-892 (-382)) . T) ((-927) . T) ((-1008) . T) ((-1026) . T) ((-1066) . T) ((-1044 (-412 (-551))) . T) ((-1044 (-551)) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 60)) (-1956 (($ $) 78)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 191)) (-2251 (($ $) NIL)) (-2249 (((-112) $) 48)) (-1957 ((|#1| $) 16)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-1227)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-1227)))) (-1959 (($ |#1| (-551)) 42)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 148)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 74)) (-3908 (((-3 $ "failed") $) 164)) (-3443 (((-3 (-412 (-551)) "failed") $) 84 (|has| |#1| (-550)))) (-3442 (((-112) $) 80 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 91 (|has| |#1| (-550)))) (-1960 (($ |#1| (-551)) 44)) (-4173 (((-112) $) 213 (|has| |#1| (-1227)))) (-2591 (((-112) $) 62)) (-2022 (((-776) $) 51)) (-1961 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-551)) 175)) (-2462 ((|#1| $ (-551)) 174)) (-1962 (((-551) $ (-551)) 173)) (-1965 (($ |#1| (-551)) 41)) (-4408 (($ (-1 |#1| |#1|) $) 183)) (-2019 (($ |#1| (-646 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-551))))) 79)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-1963 (($ |#1| (-551)) 43)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) 192 (|has| |#1| (-457)))) (-1958 (($ |#1| (-551) (-3 #2# #3# #4# #5#)) 40)) (-1964 (((-646 (-2 (|:| -4182 |#1|) (|:| -2582 (-551)))) $) 73)) (-2141 (((-646 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-551)))) $) 12)) (-4182 (((-410 $) $) NIL (|has| |#1| (-1227)))) (-3907 (((-3 $ "failed") $ $) 176)) (-2582 (((-551) $) 167)) (-4413 ((|#1| $) 75)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) 100 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 106 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) $) NIL (|has| |#1| (-519 (-1183) $))) (($ $ (-646 (-1183)) (-646 $)) 107 (|has| |#1| (-519 (-1183) $))) (($ $ (-646 (-296 $))) 103 (|has| |#1| (-312 $))) (($ $ (-296 $)) NIL (|has| |#1| (-312 $))) (($ $ $ $) NIL (|has| |#1| (-312 $))) (($ $ (-646 $) (-646 $)) NIL (|has| |#1| (-312 $)))) (-4249 (($ $ |#1|) 92 (|has| |#1| (-289 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-289 $ $)))) (-4260 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-4420 (((-540) $) 39 (|has| |#1| (-619 (-540)))) (((-382) $) 113 (|has| |#1| (-1026))) (((-226) $) 119 (|has| |#1| (-1026)))) (-4396 (((-868) $) 146) (($ (-551)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551)))))) (-3548 (((-776)) 67 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 53 T CONST)) (-3085 (($) 52 T CONST)) (-3090 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) 159)) (-4287 (($ $) 161) (($ $ $) NIL)) (-4289 (($ $ $) 180)) (** (($ $ (-925)) NIL) (($ $ (-776)) 125)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-410 |#1|) (-13 (-562) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-417 |#1|) (-10 -8 (-15 -4413 (|#1| $)) (-15 -2582 ((-551) $)) (-15 -2019 ($ |#1| (-646 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-551)))))) (-15 -2141 ((-646 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-551)))) $)) (-15 -1965 ($ |#1| (-551))) (-15 -1964 ((-646 (-2 (|:| -4182 |#1|) (|:| -2582 (-551)))) $)) (-15 -1963 ($ |#1| (-551))) (-15 -1962 ((-551) $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -1961 ((-3 #1# #2# #3# #4#) $ (-551))) (-15 -2022 ((-776) $)) (-15 -1960 ($ |#1| (-551))) (-15 -1959 ($ |#1| (-551))) (-15 -1958 ($ |#1| (-551) (-3 #1# #2# #3# #4#))) (-15 -1957 (|#1| $)) (-15 -1956 ($ $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1026)) (-6 (-1026)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|))) (-562)) (T -410))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-410 *3)))) (-4413 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-410 *3)) (-4 *3 (-562)))) (-2019 (*1 *1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-551))))) (-4 *2 (-562)) (-5 *1 (-410 *2)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-551))))) (-5 *1 (-410 *3)) (-4 *3 (-562)))) (-1965 (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| -4182 *3) (|:| -2582 (-551))))) (-5 *1 (-410 *3)) (-4 *3 (-562)))) (-1963 (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1962 (*1 *2 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-410 *3)) (-4 *3 (-562)))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-410 *4)) (-4 *4 (-562)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-410 *3)) (-4 *3 (-562)))) (-1960 (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1959 (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1958 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-551)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1957 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-1956 (*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-550)) (-4 *3 (-562)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-410 *3)) (-4 *3 (-550)) (-4 *3 (-562)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-410 *3)) (-4 *3 (-550)) (-4 *3 (-562)))))
-(-13 (-562) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-417 |#1|) (-10 -8 (-15 -4413 (|#1| $)) (-15 -2582 ((-551) $)) (-15 -2019 ($ |#1| (-646 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-551)))))) (-15 -2141 ((-646 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-551)))) $)) (-15 -1965 ($ |#1| (-551))) (-15 -1964 ((-646 (-2 (|:| -4182 |#1|) (|:| -2582 (-551)))) $)) (-15 -1963 ($ |#1| (-551))) (-15 -1962 ((-551) $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -1961 ((-3 #1# #2# #3# #4#) $ (-551))) (-15 -2022 ((-776) $)) (-15 -1960 ($ |#1| (-551))) (-15 -1959 ($ |#1| (-551))) (-15 -1958 ($ |#1| (-551) (-3 #1# #2# #3# #4#))) (-15 -1957 (|#1| $)) (-15 -1956 ($ $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1026)) (-6 (-1026)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|)))
-((-4408 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 20)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -4408 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-562) (-562)) (T -411))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6)))))
-(-10 -7 (-15 -4408 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 13)) (-3551 ((|#1| $) 21 (|has| |#1| (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| |#1| (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) 17) (((-3 (-1183) #2#) $) NIL (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) 72 (|has| |#1| (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551))))) (-3594 ((|#1| $) 15) (((-1183) $) NIL (|has| |#1| (-1044 (-1183)))) (((-412 (-551)) $) 69 (|has| |#1| (-1044 (-551)))) (((-551) $) NIL (|has| |#1| (-1044 (-551))))) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) 51)) (-3413 (($) NIL (|has| |#1| (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| |#1| (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| |#1| (-892 (-382))))) (-2591 (((-112) $) 57)) (-3415 (($ $) NIL)) (-3417 ((|#1| $) 73)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-1157)))) (-3625 (((-112) $) NIL (|has| |#1| (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| |#1| (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 100)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| |#1| (-310)))) (-3552 ((|#1| $) 28 (|has| |#1| (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 148 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 141 (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1762 (((-776) $) NIL)) (-4249 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3414 (($ $) NIL)) (-3416 ((|#1| $) 75)) (-4420 (((-896 (-551)) $) NIL (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| |#1| (-619 (-896 (-382))))) (((-540) $) NIL (|has| |#1| (-619 (-540)))) (((-382) $) NIL (|has| |#1| (-1026))) (((-226) $) NIL (|has| |#1| (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 10) (($ (-1183)) NIL (|has| |#1| (-1044 (-1183))))) (-3123 (((-3 $ #1#) $) 102 (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 103 T CONST)) (-3553 ((|#1| $) 26 (|has| |#1| (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| |#1| (-825)))) (-3528 (($) 22 T CONST)) (-3085 (($) 8 T CONST)) (-2918 (((-1165) $) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-826)))) (((-1165) $ (-112)) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-826)))) (((-1278) (-828) $) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-826)))) (((-1278) (-828) $ (-112)) 47 (-12 (|has| |#1| (-550)) (|has| |#1| (-826))))) (-3090 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) 66)) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) 24 (|has| |#1| (-855)))) (-4399 (($ $ $) 136) (($ |#1| |#1|) 53)) (-4287 (($ $) 25) (($ $ $) 56)) (-4289 (($ $ $) 54)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 135)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 61) (($ $ $) 58) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-412 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4430)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4441)) (-6 -4430) |%noBranch|) |%noBranch|) |%noBranch|))) (-562)) (T -412))
-NIL
-(-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4430)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4441)) (-6 -4430) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-4408 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 13)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -4408 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-562) (-562)) (T -413))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-412 *6)) (-5 *1 (-413 *5 *6)))))
-(-10 -7 (-15 -4408 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|))))
-((-1967 (((-694 |#2|) (-1272 $)) NIL) (((-694 |#2|)) 18)) (-1977 (($ (-1272 |#2|) (-1272 $)) NIL) (($ (-1272 |#2|)) 24)) (-1966 (((-694 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) $) 40)) (-2202 ((|#3| $) 73)) (-4207 ((|#2| (-1272 $)) NIL) ((|#2|) 20)) (-3662 (((-1272 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) (-1272 $) (-1272 $)) NIL) (((-1272 |#2|) $) 22) (((-694 |#2|) (-1272 $)) 38)) (-4420 (((-1272 |#2|) $) 11) (($ (-1272 |#2|)) 13)) (-2788 ((|#3| $) 55)))
-(((-414 |#1| |#2| |#3|) (-10 -8 (-15 -1966 ((-694 |#2|) |#1|)) (-15 -4207 (|#2|)) (-15 -1967 ((-694 |#2|))) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -2202 (|#3| |#1|)) (-15 -2788 (|#3| |#1|)) (-15 -1967 ((-694 |#2|) (-1272 |#1|))) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1966 ((-694 |#2|) |#1| (-1272 |#1|)))) (-415 |#2| |#3|) (-173) (-1248 |#2|)) (T -414))
-((-1967 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5)))) (-4207 (*1 *2) (-12 (-4 *4 (-1248 *2)) (-4 *2 (-173)) (-5 *1 (-414 *3 *2 *4)) (-4 *3 (-415 *2 *4)))))
-(-10 -8 (-15 -1966 ((-694 |#2|) |#1|)) (-15 -4207 (|#2|)) (-15 -1967 ((-694 |#2|))) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -2202 (|#3| |#1|)) (-15 -2788 (|#3| |#1|)) (-15 -1967 ((-694 |#2|) (-1272 |#1|))) (-15 -4207 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1966 ((-694 |#2|) |#1| (-1272 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1967 (((-694 |#1|) (-1272 $)) 53) (((-694 |#1|)) 68)) (-3772 ((|#1| $) 59)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-1977 (($ (-1272 |#1|) (-1272 $)) 55) (($ (-1272 |#1|)) 71)) (-1966 (((-694 |#1|) $ (-1272 $)) 60) (((-694 |#1|) $) 66)) (-3908 (((-3 $ "failed") $) 37)) (-3531 (((-925)) 61)) (-2591 (((-112) $) 35)) (-3554 ((|#1| $) 58)) (-2202 ((|#2| $) 51 (|has| |#1| (-367)))) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4207 ((|#1| (-1272 $)) 54) ((|#1|) 67)) (-3662 (((-1272 |#1|) $ (-1272 $)) 57) (((-694 |#1|) (-1272 $) (-1272 $)) 56) (((-1272 |#1|) $) 73) (((-694 |#1|) (-1272 $)) 72)) (-4420 (((-1272 |#1|) $) 70) (($ (-1272 |#1|)) 69)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44)) (-3123 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2788 ((|#2| $) 52)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 74)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-415 |#1| |#2|) (-140) (-173) (-1248 |t#1|)) (T -415))
-((-2200 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-1272 *1)) (-4 *1 (-415 *3 *4)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-1272 *3)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1248 *3)))) (-4420 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-1272 *3)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1248 *3)))) (-1967 (*1 *2) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-694 *3)))) (-4207 (*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-694 *3)))))
-(-13 (-374 |t#1| |t#2|) (-10 -8 (-15 -2200 ((-1272 $))) (-15 -3662 ((-1272 |t#1|) $)) (-15 -3662 ((-694 |t#1|) (-1272 $))) (-15 -1977 ($ (-1272 |t#1|))) (-15 -4420 ((-1272 |t#1|) $)) (-15 -4420 ($ (-1272 |t#1|))) (-15 -1967 ((-694 |t#1|))) (-15 -4207 (|t#1|)) (-15 -1966 ((-694 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-374 |#1| |#2|) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-3595 (((-3 |#2| #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) 27) (((-3 (-551) #1#) $) 19)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) 24) (((-551) $) 14)) (-4396 (($ |#2|) NIL) (($ (-412 (-551))) 22) (($ (-551)) 11)))
-(((-416 |#1| |#2|) (-10 -8 (-15 -4396 (|#1| (-551))) (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|))) (-417 |#2|) (-1222)) (T -416))
-NIL
-(-10 -8 (-15 -4396 (|#1| (-551))) (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)))
-((-3595 (((-3 |#1| #1="failed") $) 9) (((-3 (-412 (-551)) #1#) $) 16 (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #1#) $) 13 (|has| |#1| (-1044 (-551))))) (-3594 ((|#1| $) 8) (((-412 (-551)) $) 17 (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) 14 (|has| |#1| (-1044 (-551))))) (-4396 (($ |#1|) 6) (($ (-412 (-551))) 15 (|has| |#1| (-1044 (-412 (-551))))) (($ (-551)) 12 (|has| |#1| (-1044 (-551))))))
-(((-417 |#1|) (-140) (-1222)) (T -417))
-NIL
-(-13 (-1044 |t#1|) (-10 -7 (IF (|has| |t#1| (-1044 (-551))) (-6 (-1044 (-551))) |%noBranch|) (IF (|has| |t#1| (-1044 (-412 (-551)))) (-6 (-1044 (-412 (-551)))) |%noBranch|)))
-(((-621 #1=(-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-621 #2=(-551)) |has| |#1| (-1044 (-551))) ((-621 |#1|) . T) ((-1044 #1#) |has| |#1| (-1044 (-412 (-551)))) ((-1044 #2#) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T))
-((-2986 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-1968 ((|#4| (-776) (-1272 |#4|)) 58)) (-2591 (((-112) $) NIL)) (-3417 (((-1272 |#4|) $) 15)) (-3554 ((|#2| $) 53)) (-1969 (($ $) 161)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 106)) (-2158 (($ (-1272 |#4|)) 105)) (-3682 (((-1126) $) NIL)) (-3416 ((|#1| $) 16)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) 151)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 |#4|) $) 144)) (-3085 (($) 11 T CONST)) (-3473 (((-112) $ $) 39)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 137)) (* (($ $ $) 133)))
-(((-418 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -2158 ($ (-1272 |#4|))) (-15 -2200 ((-1272 |#4|) $)) (-15 -3554 (|#2| $)) (-15 -3417 ((-1272 |#4|) $)) (-15 -3416 (|#1| $)) (-15 -1969 ($ $)) (-15 -1968 (|#4| (-776) (-1272 |#4|))))) (-310) (-997 |#1|) (-1248 |#2|) (-13 (-415 |#2| |#3|) (-1044 |#2|))) (T -418))
-((-2158 (*1 *1 *2) (-12 (-5 *2 (-1272 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4))) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-4 *3 (-310)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2200 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4))))) (-3554 (*1 *2 *1) (-12 (-4 *4 (-1248 *2)) (-4 *2 (-997 *3)) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *3 (-310)) (-4 *5 (-13 (-415 *2 *4) (-1044 *2))))) (-3417 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4))))) (-3416 (*1 *2 *1) (-12 (-4 *3 (-997 *2)) (-4 *4 (-1248 *3)) (-4 *2 (-310)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1044 *3))))) (-1969 (*1 *1 *1) (-12 (-4 *2 (-310)) (-4 *3 (-997 *2)) (-4 *4 (-1248 *3)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1044 *3))))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1272 *2)) (-4 *5 (-310)) (-4 *6 (-997 *5)) (-4 *2 (-13 (-415 *6 *7) (-1044 *6))) (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1248 *6)))))
-(-13 (-478) (-10 -8 (-15 -2158 ($ (-1272 |#4|))) (-15 -2200 ((-1272 |#4|) $)) (-15 -3554 (|#2| $)) (-15 -3417 ((-1272 |#4|) $)) (-15 -3416 (|#1| $)) (-15 -1969 ($ $)) (-15 -1968 (|#4| (-776) (-1272 |#4|)))))
-((-4408 (((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)) 35)))
-(((-419 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4408 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) (-310) (-997 |#1|) (-1248 |#2|) (-13 (-415 |#2| |#3|) (-1044 |#2|)) (-310) (-997 |#5|) (-1248 |#6|) (-13 (-415 |#6| |#7|) (-1044 |#6|))) (T -419))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) (-4 *6 (-997 *5)) (-4 *7 (-1248 *6)) (-4 *8 (-13 (-415 *6 *7) (-1044 *6))) (-4 *9 (-310)) (-4 *10 (-997 *9)) (-4 *11 (-1248 *10)) (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-419 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-415 *10 *11) (-1044 *10))))))
-(-10 -7 (-15 -4408 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|))))
-((-2986 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-3554 ((|#2| $) 71)) (-1970 (($ (-1272 |#4|)) 27) (($ (-418 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1044 |#2|)))) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 37)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 |#4|) $) 28)) (-3085 (($) 25 T CONST)) (-3473 (((-112) $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ $ $) 82)))
-(((-420 |#1| |#2| |#3| |#4| |#5|) (-13 (-731) (-10 -8 (-15 -2200 ((-1272 |#4|) $)) (-15 -3554 (|#2| $)) (-15 -1970 ($ (-1272 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -1970 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-310) (-997 |#1|) (-1248 |#2|) (-415 |#2| |#3|) (-1272 |#4|)) (T -420))
-((-2200 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-4 *6 (-415 *4 *5)) (-14 *7 *2))) (-3554 (*1 *2 *1) (-12 (-4 *4 (-1248 *2)) (-4 *2 (-997 *3)) (-5 *1 (-420 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-415 *2 *4)) (-14 *6 (-1272 *5)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-1272 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-4 *3 (-310)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-4 *6 (-415 *4 *5)) (-14 *7 (-1272 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)))))
-(-13 (-731) (-10 -8 (-15 -2200 ((-1272 |#4|) $)) (-15 -3554 (|#2| $)) (-15 -1970 ($ (-1272 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -1970 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-4408 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|))) (-423 |#2|) (-173) (-423 |#4|) (-173)) (T -421))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-423 *6)) (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5)))))
-(-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1957 (((-3 $ #1="failed")) 99)) (-3661 (((-1272 (-694 |#2|)) (-1272 $)) NIL) (((-1272 (-694 |#2|))) 104)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) 97)) (-1881 (((-3 $ #1#)) 96)) (-1973 (((-694 |#2|) (-1272 $)) NIL) (((-694 |#2|)) 115)) (-1971 (((-694 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) $) 123)) (-2088 (((-1177 (-952 |#2|))) 65)) (-1975 ((|#2| (-1272 $)) NIL) ((|#2|) 119)) (-1977 (($ (-1272 |#2|) (-1272 $)) NIL) (($ (-1272 |#2|)) 125)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) 95)) (-1882 (((-3 $ #1#)) 87)) (-1974 (((-694 |#2|) (-1272 $)) NIL) (((-694 |#2|)) 113)) (-1972 (((-694 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) $) 121)) (-2092 (((-1177 (-952 |#2|))) 64)) (-1976 ((|#2| (-1272 $)) NIL) ((|#2|) 117)) (-3662 (((-1272 |#2|) $ (-1272 $)) NIL) (((-694 |#2|) (-1272 $) (-1272 $)) NIL) (((-1272 |#2|) $) 124) (((-694 |#2|) (-1272 $)) 133)) (-4420 (((-1272 |#2|) $) 109) (($ (-1272 |#2|)) 111)) (-2080 (((-646 (-952 |#2|)) (-1272 $)) NIL) (((-646 (-952 |#2|))) 107)) (-2966 (($ (-694 |#2|) $) 103)))
-(((-422 |#1| |#2|) (-10 -8 (-15 -2966 (|#1| (-694 |#2|) |#1|)) (-15 -2088 ((-1177 (-952 |#2|)))) (-15 -2092 ((-1177 (-952 |#2|)))) (-15 -1971 ((-694 |#2|) |#1|)) (-15 -1972 ((-694 |#2|) |#1|)) (-15 -1973 ((-694 |#2|))) (-15 -1974 ((-694 |#2|))) (-15 -1975 (|#2|)) (-15 -1976 (|#2|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -2080 ((-646 (-952 |#2|)))) (-15 -3661 ((-1272 (-694 |#2|)))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -1957 ((-3 |#1| #1="failed"))) (-15 -1881 ((-3 |#1| #1#))) (-15 -1882 ((-3 |#1| #1#))) (-15 -2094 ((-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) #1#))) (-15 -2095 ((-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) #1#))) (-15 -1973 ((-694 |#2|) (-1272 |#1|))) (-15 -1974 ((-694 |#2|) (-1272 |#1|))) (-15 -1975 (|#2| (-1272 |#1|))) (-15 -1976 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1971 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -1972 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -3661 ((-1272 (-694 |#2|)) (-1272 |#1|))) (-15 -2080 ((-646 (-952 |#2|)) (-1272 |#1|)))) (-423 |#2|) (-173)) (T -422))
-((-3661 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1272 (-694 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2080 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-646 (-952 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-1976 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-1975 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-1974 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-1973 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2092 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1177 (-952 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2088 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1177 (-952 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))))
-(-10 -8 (-15 -2966 (|#1| (-694 |#2|) |#1|)) (-15 -2088 ((-1177 (-952 |#2|)))) (-15 -2092 ((-1177 (-952 |#2|)))) (-15 -1971 ((-694 |#2|) |#1|)) (-15 -1972 ((-694 |#2|) |#1|)) (-15 -1973 ((-694 |#2|))) (-15 -1974 ((-694 |#2|))) (-15 -1975 (|#2|)) (-15 -1976 (|#2|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -1977 (|#1| (-1272 |#2|))) (-15 -2080 ((-646 (-952 |#2|)))) (-15 -3661 ((-1272 (-694 |#2|)))) (-15 -3662 ((-694 |#2|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1|)) (-15 -1957 ((-3 |#1| #1="failed"))) (-15 -1881 ((-3 |#1| #1#))) (-15 -1882 ((-3 |#1| #1#))) (-15 -2094 ((-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) #1#))) (-15 -2095 ((-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) #1#))) (-15 -1973 ((-694 |#2|) (-1272 |#1|))) (-15 -1974 ((-694 |#2|) (-1272 |#1|))) (-15 -1975 (|#2| (-1272 |#1|))) (-15 -1976 (|#2| (-1272 |#1|))) (-15 -1977 (|#1| (-1272 |#2|) (-1272 |#1|))) (-15 -3662 ((-694 |#2|) (-1272 |#1|) (-1272 |#1|))) (-15 -3662 ((-1272 |#2|) |#1| (-1272 |#1|))) (-15 -1971 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -1972 ((-694 |#2|) |#1| (-1272 |#1|))) (-15 -3661 ((-1272 (-694 |#2|)) (-1272 |#1|))) (-15 -2080 ((-646 (-952 |#2|)) (-1272 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1957 (((-3 $ #1="failed")) 42 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) 20)) (-3661 (((-1272 (-694 |#1|)) (-1272 $)) 83) (((-1272 (-694 |#1|))) 105)) (-1907 (((-1272 $)) 86)) (-4174 (($) 18 T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) 45 (|has| |#1| (-562)))) (-1881 (((-3 $ #1#)) 43 (|has| |#1| (-562)))) (-1973 (((-694 |#1|) (-1272 $)) 70) (((-694 |#1|)) 97)) (-1905 ((|#1| $) 79)) (-1971 (((-694 |#1|) $ (-1272 $)) 81) (((-694 |#1|) $) 95)) (-2585 (((-3 $ #1#) $) 50 (|has| |#1| (-562)))) (-2088 (((-1177 (-952 |#1|))) 93 (|has| |#1| (-367)))) (-2588 (($ $ (-925)) 31)) (-1903 ((|#1| $) 77)) (-1883 (((-1177 |#1|) $) 47 (|has| |#1| (-562)))) (-1975 ((|#1| (-1272 $)) 72) ((|#1|) 99)) (-1901 (((-1177 |#1|) $) 68)) (-1895 (((-112)) 62)) (-1977 (($ (-1272 |#1|) (-1272 $)) 74) (($ (-1272 |#1|)) 103)) (-3908 (((-3 $ #1#) $) 52 (|has| |#1| (-562)))) (-3531 (((-925)) 85)) (-1892 (((-112)) 59)) (-2612 (($ $ (-925)) 38)) (-1888 (((-112)) 55)) (-1886 (((-112)) 53)) (-1890 (((-112)) 57)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) 46 (|has| |#1| (-562)))) (-1882 (((-3 $ #1#)) 44 (|has| |#1| (-562)))) (-1974 (((-694 |#1|) (-1272 $)) 71) (((-694 |#1|)) 98)) (-1906 ((|#1| $) 80)) (-1972 (((-694 |#1|) $ (-1272 $)) 82) (((-694 |#1|) $) 96)) (-2586 (((-3 $ #1#) $) 51 (|has| |#1| (-562)))) (-2092 (((-1177 (-952 |#1|))) 94 (|has| |#1| (-367)))) (-2587 (($ $ (-925)) 32)) (-1904 ((|#1| $) 78)) (-1884 (((-1177 |#1|) $) 48 (|has| |#1| (-562)))) (-1976 ((|#1| (-1272 $)) 73) ((|#1|) 100)) (-1902 (((-1177 |#1|) $) 69)) (-1896 (((-112)) 63)) (-3681 (((-1165) $) 10)) (-1887 (((-112)) 54)) (-1889 (((-112)) 56)) (-1891 (((-112)) 58)) (-3682 (((-1126) $) 11)) (-1894 (((-112)) 61)) (-4249 ((|#1| $ (-551)) 106)) (-3662 (((-1272 |#1|) $ (-1272 $)) 76) (((-694 |#1|) (-1272 $) (-1272 $)) 75) (((-1272 |#1|) $) 108) (((-694 |#1|) (-1272 $)) 107)) (-4420 (((-1272 |#1|) $) 102) (($ (-1272 |#1|)) 101)) (-2080 (((-646 (-952 |#1|)) (-1272 $)) 84) (((-646 (-952 |#1|))) 104)) (-2774 (($ $ $) 28)) (-1900 (((-112)) 67)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 109)) (-1885 (((-646 (-1272 |#1|))) 49 (|has| |#1| (-562)))) (-2775 (($ $ $ $) 29)) (-1898 (((-112)) 65)) (-2966 (($ (-694 |#1|) $) 92)) (-2773 (($ $ $) 27)) (-1899 (((-112)) 66)) (-1897 (((-112)) 64)) (-1893 (((-112)) 60)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 33)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-423 |#1|) (-140) (-173)) (T -423))
-((-2200 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1272 *1)) (-4 *1 (-423 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 *3)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-423 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-423 *2)) (-4 *2 (-173)))) (-3661 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 (-694 *3))))) (-2080 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-646 (-952 *3))))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-423 *3)))) (-4420 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 *3)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-423 *3)))) (-1976 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-173)))) (-1975 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-173)))) (-1974 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1973 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2092 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1177 (-952 *3))))) (-2088 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1177 (-952 *3))))) (-2966 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-423 *3)) (-4 *3 (-173)))))
-(-13 (-371 |t#1|) (-10 -8 (-15 -2200 ((-1272 $))) (-15 -3662 ((-1272 |t#1|) $)) (-15 -3662 ((-694 |t#1|) (-1272 $))) (-15 -4249 (|t#1| $ (-551))) (-15 -3661 ((-1272 (-694 |t#1|)))) (-15 -2080 ((-646 (-952 |t#1|)))) (-15 -1977 ($ (-1272 |t#1|))) (-15 -4420 ((-1272 |t#1|) $)) (-15 -4420 ($ (-1272 |t#1|))) (-15 -1976 (|t#1|)) (-15 -1975 (|t#1|)) (-15 -1974 ((-694 |t#1|))) (-15 -1973 ((-694 |t#1|))) (-15 -1972 ((-694 |t#1|) $)) (-15 -1971 ((-694 |t#1|) $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -2092 ((-1177 (-952 |t#1|)))) (-15 -2088 ((-1177 (-952 |t#1|))))) |%noBranch|) (-15 -2966 ($ (-694 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-371 |#1|) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-3556 (((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|)) 28)) (-1978 (((-410 |#1|) (-410 |#1|) (-410 |#1|)) 17)))
-(((-424 |#1|) (-10 -7 (-15 -3556 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -1978 ((-410 |#1|) (-410 |#1|) (-410 |#1|)))) (-562)) (T -424))
-((-1978 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3)))) (-3556 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-562)) (-5 *2 (-410 *4)) (-5 *1 (-424 *4)))))
-(-10 -7 (-15 -3556 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -1978 ((-410 |#1|) (-410 |#1|) (-410 |#1|))))
-((-3503 (((-646 (-1183)) $) 81)) (-3505 (((-412 (-1177 $)) $ (-616 $)) 314)) (-1722 (($ $ (-296 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-646 (-616 $)) (-646 $)) 278)) (-3595 (((-3 (-616 $) #1="failed") $) NIL) (((-3 (-1183) #1#) $) 84) (((-3 (-551) #1#) $) NIL) (((-3 |#2| #1#) $) 274) (((-3 (-412 (-952 |#2|)) #1#) $) 364) (((-3 (-952 |#2|) #1#) $) 276) (((-3 (-412 (-551)) #1#) $) NIL)) (-3594 (((-616 $) $) NIL) (((-1183) $) 28) (((-551) $) NIL) ((|#2| $) 272) (((-412 (-952 |#2|)) $) 346) (((-952 |#2|) $) 273) (((-412 (-551)) $) NIL)) (-3466 (((-113) (-113)) 47)) (-3415 (($ $) 99)) (-1720 (((-3 (-616 $) "failed") $) 269)) (-1719 (((-646 (-616 $)) $) 270)) (-3244 (((-3 (-646 $) "failed") $) 288)) (-3246 (((-3 (-2 (|:| |val| $) (|:| -2582 (-551))) "failed") $) 295)) (-3243 (((-3 (-646 $) "failed") $) 286)) (-1979 (((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 $))) "failed") $) 305)) (-3245 (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $) 292) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-113)) 256) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-1183)) 258)) (-1982 (((-112) $) 17)) (-1981 ((|#2| $) 19)) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) 277) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) 109) (($ $ (-1183) (-1 $ (-646 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-646 (-113)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-113) (-1 $ (-646 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1183)) 62) (($ $ (-646 (-1183))) 281) (($ $) 282) (($ $ (-113) $ (-1183)) 65) (($ $ (-646 (-113)) (-646 $) (-1183)) 72) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ $))) 120) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ (-646 $)))) 283) (($ $ (-1183) (-776) (-1 $ (-646 $))) 105) (($ $ (-1183) (-776) (-1 $ $)) 104)) (-4249 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-646 $)) 119)) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) 279)) (-3414 (($ $) 325)) (-4420 (((-896 (-551)) $) 298) (((-896 (-382)) $) 302) (($ (-410 $)) 360) (((-540) $) NIL)) (-4396 (((-868) $) 280) (($ (-616 $)) 93) (($ (-1183)) 24) (($ |#2|) NIL) (($ (-1131 |#2| (-616 $))) NIL) (($ (-412 |#2|)) 330) (($ (-952 (-412 |#2|))) 369) (($ (-412 (-952 (-412 |#2|)))) 342) (($ (-412 (-952 |#2|))) 336) (($ $) NIL) (($ (-952 |#2|)) 218) (($ (-412 (-551))) 374) (($ (-551)) NIL)) (-3548 (((-776)) 88)) (-2421 (((-112) (-113)) 42)) (-1980 (($ (-1183) $) 31) (($ (-1183) $ $) 32) (($ (-1183) $ $ $) 33) (($ (-1183) $ $ $ $) 34) (($ (-1183) (-646 $)) 39)) (* (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL)))
-(((-425 |#1| |#2|) (-10 -8 (-15 * (|#1| (-925) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4396 (|#1| (-551))) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-412 (-551)) #1="failed") |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4396 (|#1| (-952 |#2|))) (-15 -3595 ((-3 (-952 |#2|) #1#) |#1|)) (-15 -3594 ((-952 |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4396 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4396 (|#1| (-412 (-952 |#2|)))) (-15 -3595 ((-3 (-412 (-952 |#2|)) #1#) |#1|)) (-15 -3594 ((-412 (-952 |#2|)) |#1|)) (-15 -3505 ((-412 (-1177 |#1|)) |#1| (-616 |#1|))) (-15 -4396 (|#1| (-412 (-952 (-412 |#2|))))) (-15 -4396 (|#1| (-952 (-412 |#2|)))) (-15 -4396 (|#1| (-412 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -4420 (|#1| (-410 |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-776) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-776)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-776)) (-646 (-1 |#1| |#1|)))) (-15 -3246 ((-3 (-2 (|:| |val| |#1|) (|:| -2582 (-551))) "failed") |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1| (-1183))) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1| (-113))) (-15 -3415 (|#1| |#1|)) (-15 -4396 (|#1| (-1131 |#2| (-616 |#1|)))) (-15 -1979 ((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 |#1|))) "failed") |#1|)) (-15 -3243 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1|)) (-15 -3244 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 |#1|) (-1183))) (-15 -4217 (|#1| |#1| (-113) |#1| (-1183))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1183)))) (-15 -4217 (|#1| |#1| (-1183))) (-15 -1980 (|#1| (-1183) (-646 |#1|))) (-15 -1980 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1|)) (-15 -3503 ((-646 (-1183)) |#1|)) (-15 -1981 (|#2| |#1|)) (-15 -1982 ((-112) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4396 (|#1| (-1183))) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| |#1|)))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| |#1|)))) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1719 ((-646 (-616 |#1|)) |#1|)) (-15 -1720 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -1722 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -1722 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -1722 (|#1| |#1| (-296 |#1|))) (-15 -4249 (|#1| (-113) (-646 |#1|))) (-15 -4249 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-616 |#1|) |#1|)) (-15 -4396 (|#1| (-616 |#1|))) (-15 -3595 ((-3 (-616 |#1|) #1#) |#1|)) (-15 -3594 ((-616 |#1|) |#1|)) (-15 -4396 ((-868) |#1|))) (-426 |#2|) (-1107)) (T -425))
-((-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-1107)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-425 *4 *5)) (-4 *4 (-426 *5)))) (-3548 (*1 *2) (-12 (-4 *4 (-1107)) (-5 *2 (-776)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))))
-(-10 -8 (-15 * (|#1| (-925) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4396 (|#1| (-551))) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-412 (-551)) #1="failed") |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4396 (|#1| (-952 |#2|))) (-15 -3595 ((-3 (-952 |#2|) #1#) |#1|)) (-15 -3594 ((-952 |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4396 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4396 (|#1| (-412 (-952 |#2|)))) (-15 -3595 ((-3 (-412 (-952 |#2|)) #1#) |#1|)) (-15 -3594 ((-412 (-952 |#2|)) |#1|)) (-15 -3505 ((-412 (-1177 |#1|)) |#1| (-616 |#1|))) (-15 -4396 (|#1| (-412 (-952 (-412 |#2|))))) (-15 -4396 (|#1| (-952 (-412 |#2|)))) (-15 -4396 (|#1| (-412 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -4420 (|#1| (-410 |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-776) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-776)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-776)) (-646 (-1 |#1| |#1|)))) (-15 -3246 ((-3 (-2 (|:| |val| |#1|) (|:| -2582 (-551))) "failed") |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1| (-1183))) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1| (-113))) (-15 -3415 (|#1| |#1|)) (-15 -4396 (|#1| (-1131 |#2| (-616 |#1|)))) (-15 -1979 ((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 |#1|))) "failed") |#1|)) (-15 -3243 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 |#1|)) (|:| -2582 (-551))) "failed") |#1|)) (-15 -3244 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 |#1|) (-1183))) (-15 -4217 (|#1| |#1| (-113) |#1| (-1183))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1183)))) (-15 -4217 (|#1| |#1| (-1183))) (-15 -1980 (|#1| (-1183) (-646 |#1|))) (-15 -1980 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1| |#1|)) (-15 -1980 (|#1| (-1183) |#1|)) (-15 -3503 ((-646 (-1183)) |#1|)) (-15 -1981 (|#2| |#1|)) (-15 -1982 ((-112) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4396 (|#1| (-1183))) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-113) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-113)) (-646 (-1 |#1| |#1|)))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -4217 (|#1| |#1| (-1183) (-1 |#1| (-646 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| (-646 |#1|))))) (-15 -4217 (|#1| |#1| (-646 (-1183)) (-646 (-1 |#1| |#1|)))) (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -1719 ((-646 (-616 |#1|)) |#1|)) (-15 -1720 ((-3 (-616 |#1|) "failed") |#1|)) (-15 -1722 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -1722 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -1722 (|#1| |#1| (-296 |#1|))) (-15 -4249 (|#1| (-113) (-646 |#1|))) (-15 -4249 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1| |#1|)) (-15 -4249 (|#1| (-113) |#1|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4217 (|#1| |#1| (-646 (-616 |#1|)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-616 |#1|) |#1|)) (-15 -4396 (|#1| (-616 |#1|))) (-15 -3595 ((-3 (-616 |#1|) #1#) |#1|)) (-15 -3594 ((-616 |#1|) |#1|)) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 116 (|has| |#1| (-25)))) (-3503 (((-646 (-1183)) $) 203)) (-3505 (((-412 (-1177 $)) $ (-616 $)) 171 (|has| |#1| (-562)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 143 (|has| |#1| (-562)))) (-2251 (($ $) 144 (|has| |#1| (-562)))) (-2249 (((-112) $) 146 (|has| |#1| (-562)))) (-1718 (((-646 (-616 $)) $) 39)) (-1410 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1722 (($ $ (-296 $)) 51) (($ $ (-646 (-296 $))) 50) (($ $ (-646 (-616 $)) (-646 $)) 49)) (-4224 (($ $) 163 (|has| |#1| (-562)))) (-4419 (((-410 $) $) 164 (|has| |#1| (-562)))) (-1763 (((-112) $ $) 154 (|has| |#1| (-562)))) (-4174 (($) 104 (-3978 (|has| |#1| (-1118)) (|has| |#1| (-25))) CONST)) (-3595 (((-3 (-616 $) #1="failed") $) 64) (((-3 (-1183) #1#) $) 216) (((-3 (-551) #1#) $) 210 (|has| |#1| (-1044 (-551)))) (((-3 |#1| #1#) $) 207) (((-3 (-412 (-952 |#1|)) #1#) $) 169 (|has| |#1| (-562))) (((-3 (-952 |#1|) #1#) $) 123 (|has| |#1| (-1055))) (((-3 (-412 (-551)) #1#) $) 98 (-3978 (-12 (|has| |#1| (-1044 (-551))) (|has| |#1| (-562))) (|has| |#1| (-1044 (-412 (-551))))))) (-3594 (((-616 $) $) 65) (((-1183) $) 217) (((-551) $) 209 (|has| |#1| (-1044 (-551)))) ((|#1| $) 208) (((-412 (-952 |#1|)) $) 170 (|has| |#1| (-562))) (((-952 |#1|) $) 124 (|has| |#1| (-1055))) (((-412 (-551)) $) 99 (-3978 (-12 (|has| |#1| (-1044 (-551))) (|has| |#1| (-562))) (|has| |#1| (-1044 (-412 (-551))))))) (-2982 (($ $ $) 158 (|has| |#1| (-562)))) (-2445 (((-694 (-551)) (-694 $)) 137 (-3274 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 136 (-3274 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 135 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 134 (|has| |#1| (-1055)))) (-3908 (((-3 $ "failed") $) 106 (|has| |#1| (-1118)))) (-2981 (($ $ $) 157 (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 152 (|has| |#1| (-562)))) (-4173 (((-112) $) 165 (|has| |#1| (-562)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 212 (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 211 (|has| |#1| (-892 (-382))))) (-2991 (($ $) 46) (($ (-646 $)) 45)) (-1717 (((-646 (-113)) $) 38)) (-3466 (((-113) (-113)) 37)) (-2591 (((-112) $) 105 (|has| |#1| (-1118)))) (-3094 (((-112) $) 17 (|has| $ (-1044 (-551))))) (-3415 (($ $) 186 (|has| |#1| (-1055)))) (-3417 (((-1131 |#1| (-616 $)) $) 187 (|has| |#1| (-1055)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 161 (|has| |#1| (-562)))) (-1715 (((-1177 $) (-616 $)) 20 (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) 31)) (-1720 (((-3 (-616 $) "failed") $) 41)) (-2079 (($ (-646 $)) 150 (|has| |#1| (-562))) (($ $ $) 149 (|has| |#1| (-562)))) (-3681 (((-1165) $) 10)) (-1719 (((-646 (-616 $)) $) 40)) (-2402 (($ (-113) $) 33) (($ (-113) (-646 $)) 32)) (-3244 (((-3 (-646 $) "failed") $) 192 (|has| |#1| (-1118)))) (-3246 (((-3 (-2 (|:| |val| $) (|:| -2582 (-551))) "failed") $) 183 (|has| |#1| (-1055)))) (-3243 (((-3 (-646 $) "failed") $) 190 (|has| |#1| (-25)))) (-1979 (((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3245 (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $) 191 (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-113)) 185 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-1183)) 184 (|has| |#1| (-1055)))) (-3053 (((-112) $ (-113)) 35) (((-112) $ (-1183)) 34)) (-2824 (($ $) 108 (-3978 (|has| |#1| (-478)) (|has| |#1| (-562))))) (-3021 (((-776) $) 42)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 205)) (-1981 ((|#1| $) 204)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 151 (|has| |#1| (-562)))) (-3582 (($ (-646 $)) 148 (|has| |#1| (-562))) (($ $ $) 147 (|has| |#1| (-562)))) (-1716 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-4182 (((-410 $) $) 162 (|has| |#1| (-562)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 160 (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 159 (|has| |#1| (-562)))) (-3907 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 153 (|has| |#1| (-562)))) (-3095 (((-112) $) 18 (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) 62) (($ $ (-646 (-616 $)) (-646 $)) 61) (($ $ (-646 (-296 $))) 60) (($ $ (-296 $)) 59) (($ $ $ $) 58) (($ $ (-646 $) (-646 $)) 57) (($ $ (-646 (-1183)) (-646 (-1 $ $))) 28) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) 27) (($ $ (-1183) (-1 $ (-646 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-646 (-113)) (-646 (-1 $ $))) 24) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) 23) (($ $ (-113) (-1 $ (-646 $))) 22) (($ $ (-113) (-1 $ $)) 21) (($ $ (-1183)) 197 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-1183))) 196 (|has| |#1| (-619 (-540)))) (($ $) 195 (|has| |#1| (-619 (-540)))) (($ $ (-113) $ (-1183)) 194 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-113)) (-646 $) (-1183)) 193 (|has| |#1| (-619 (-540)))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ $))) 182 (|has| |#1| (-1055))) (($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ (-646 $)))) 181 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-646 $))) 180 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) 179 (|has| |#1| (-1055)))) (-1762 (((-776) $) 155 (|has| |#1| (-562)))) (-4249 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-646 $)) 52)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 156 (|has| |#1| (-562)))) (-1721 (($ $) 44) (($ $ $) 43)) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 128 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 127 (|has| |#1| (-1055))) (($ $ (-646 (-1183))) 126 (|has| |#1| (-1055))) (($ $ (-1183)) 125 (|has| |#1| (-1055)))) (-3414 (($ $) 176 (|has| |#1| (-562)))) (-3416 (((-1131 |#1| (-616 $)) $) 177 (|has| |#1| (-562)))) (-3623 (($ $) 19 (|has| $ (-1055)))) (-4420 (((-896 (-551)) $) 214 (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) 213 (|has| |#1| (-619 (-896 (-382))))) (($ (-410 $)) 178 (|has| |#1| (-562))) (((-540) $) 100 (|has| |#1| (-619 (-540))))) (-3428 (($ $ $) 111 (|has| |#1| (-478)))) (-2774 (($ $ $) 112 (|has| |#1| (-478)))) (-4396 (((-868) $) 12) (($ (-616 $)) 63) (($ (-1183)) 215) (($ |#1|) 206) (($ (-1131 |#1| (-616 $))) 188 (|has| |#1| (-1055))) (($ (-412 |#1|)) 174 (|has| |#1| (-562))) (($ (-952 (-412 |#1|))) 173 (|has| |#1| (-562))) (($ (-412 (-952 (-412 |#1|)))) 172 (|has| |#1| (-562))) (($ (-412 (-952 |#1|))) 168 (|has| |#1| (-562))) (($ $) 141 (|has| |#1| (-562))) (($ (-952 |#1|)) 122 (|has| |#1| (-1055))) (($ (-412 (-551))) 97 (-3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-1044 (-551))) (|has| |#1| (-562))) (|has| |#1| (-1044 (-412 (-551)))))) (($ (-551)) 96 (-3978 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-551)))))) (-3123 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3548 (((-776)) 133 (|has| |#1| (-1055)) CONST)) (-3008 (($ $) 48) (($ (-646 $)) 47)) (-2421 (((-112) (-113)) 36)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 145 (|has| |#1| (-562)))) (-1980 (($ (-1183) $) 202) (($ (-1183) $ $) 201) (($ (-1183) $ $ $) 200) (($ (-1183) $ $ $ $) 199) (($ (-1183) (-646 $)) 198)) (-3528 (($) 115 (|has| |#1| (-25)) CONST)) (-3085 (($) 103 (|has| |#1| (-1118)) CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 132 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 131 (|has| |#1| (-1055))) (($ $ (-646 (-1183))) 130 (|has| |#1| (-1055))) (($ $ (-1183)) 129 (|has| |#1| (-1055)))) (-3473 (((-112) $ $) 6)) (-4399 (($ (-1131 |#1| (-616 $)) (-1131 |#1| (-616 $))) 175 (|has| |#1| (-562))) (($ $ $) 109 (-3978 (|has| |#1| (-478)) (|has| |#1| (-562))))) (-4287 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-4289 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-551)) 110 (-3978 (|has| |#1| (-478)) (|has| |#1| (-562)))) (($ $ (-776)) 107 (|has| |#1| (-1118))) (($ $ (-925)) 102 (|has| |#1| (-1118)))) (* (($ (-412 (-551)) $) 167 (|has| |#1| (-562))) (($ $ (-412 (-551))) 166 (|has| |#1| (-562))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-551) $) 119 (|has| |#1| (-21))) (($ (-776) $) 117 (|has| |#1| (-25))) (($ (-925) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1118)))))
-(((-426 |#1|) (-140) (-1107)) (T -426))
-((-1982 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-5 *2 (-646 (-1183))))) (-1980 (*1 *1 *2 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)))) (-1980 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)))) (-1980 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)))) (-1980 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)))) (-1980 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-646 *1)) (-4 *1 (-426 *4)) (-4 *4 (-1107)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-4 *3 (-619 (-540))))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-1183))) (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-4 *3 (-619 (-540))))) (-4217 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-619 (-540))))) (-4217 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1183)) (-4 *1 (-426 *4)) (-4 *4 (-1107)) (-4 *4 (-619 (-540))))) (-4217 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 *1)) (-5 *4 (-1183)) (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-619 (-540))))) (-3244 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-426 *3)))) (-3245 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1107)) (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *3)))) (-3243 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-426 *3)))) (-1979 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1107)) (-5 *2 (-2 (|:| -4404 (-551)) (|:| |var| (-616 *1)))) (-4 *1 (-426 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1131 *3 (-616 *1))) (-4 *3 (-1055)) (-4 *3 (-1107)) (-4 *1 (-426 *3)))) (-3417 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *3 (-1107)) (-5 *2 (-1131 *3 (-616 *1))) (-4 *1 (-426 *3)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-1055)))) (-3245 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1055)) (-4 *4 (-1107)) (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *4)))) (-3245 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1107)) (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *4)))) (-3246 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1107)) (-5 *2 (-2 (|:| |val| *1) (|:| -2582 (-551)))) (-4 *1 (-426 *3)))) (-4217 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-776))) (-5 *4 (-646 (-1 *1 *1))) (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055)))) (-4217 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-776))) (-5 *4 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055)))) (-4217 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-646 *1))) (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055)))) (-4217 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-426 *3)) (-4 *3 (-562)) (-4 *3 (-1107)))) (-3416 (*1 *2 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1107)) (-5 *2 (-1131 *3 (-616 *1))) (-4 *1 (-426 *3)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-562)))) (-4399 (*1 *1 *2 *2) (-12 (-5 *2 (-1131 *3 (-616 *1))) (-4 *3 (-562)) (-4 *3 (-1107)) (-4 *1 (-426 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-562)) (-4 *3 (-1107)) (-4 *1 (-426 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-952 (-412 *3))) (-4 *3 (-562)) (-4 *3 (-1107)) (-4 *1 (-426 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-412 *3)))) (-4 *3 (-562)) (-4 *3 (-1107)) (-4 *1 (-426 *3)))) (-3505 (*1 *2 *1 *3) (-12 (-5 *3 (-616 *1)) (-4 *1 (-426 *4)) (-4 *4 (-1107)) (-4 *4 (-562)) (-5 *2 (-412 (-1177 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-4 *3 (-1118)))))
-(-13 (-301) (-1044 (-1183)) (-890 |t#1|) (-405 |t#1|) (-417 |t#1|) (-10 -8 (-15 -1982 ((-112) $)) (-15 -1981 (|t#1| $)) (-15 -3503 ((-646 (-1183)) $)) (-15 -1980 ($ (-1183) $)) (-15 -1980 ($ (-1183) $ $)) (-15 -1980 ($ (-1183) $ $ $)) (-15 -1980 ($ (-1183) $ $ $ $)) (-15 -1980 ($ (-1183) (-646 $))) (IF (|has| |t#1| (-619 (-540))) (PROGN (-6 (-619 (-540))) (-15 -4217 ($ $ (-1183))) (-15 -4217 ($ $ (-646 (-1183)))) (-15 -4217 ($ $)) (-15 -4217 ($ $ (-113) $ (-1183))) (-15 -4217 ($ $ (-646 (-113)) (-646 $) (-1183)))) |%noBranch|) (IF (|has| |t#1| (-1118)) (PROGN (-6 (-731)) (-15 ** ($ $ (-776))) (-15 -3244 ((-3 (-646 $) "failed") $)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3243 ((-3 (-646 $) "failed") $)) (-15 -1979 ((-3 (-2 (|:| -4404 (-551)) (|:| |var| (-616 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-1044 (-952 |t#1|))) (-6 (-906 (-1183))) (-6 (-381 |t#1|)) (-15 -4396 ($ (-1131 |t#1| (-616 $)))) (-15 -3417 ((-1131 |t#1| (-616 $)) $)) (-15 -3415 ($ $)) (-15 -3245 ((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-113))) (-15 -3245 ((-3 (-2 (|:| |var| (-616 $)) (|:| -2582 (-551))) "failed") $ (-1183))) (-15 -3246 ((-3 (-2 (|:| |val| $) (|:| -2582 (-551))) "failed") $)) (-15 -4217 ($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ $)))) (-15 -4217 ($ $ (-646 (-1183)) (-646 (-776)) (-646 (-1 $ (-646 $))))) (-15 -4217 ($ $ (-1183) (-776) (-1 $ (-646 $)))) (-15 -4217 ($ $ (-1183) (-776) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-367)) (-6 (-1044 (-412 (-952 |t#1|)))) (-15 -4420 ($ (-410 $))) (-15 -3416 ((-1131 |t#1| (-616 $)) $)) (-15 -3414 ($ $)) (-15 -4399 ($ (-1131 |t#1| (-616 $)) (-1131 |t#1| (-616 $)))) (-15 -4396 ($ (-412 |t#1|))) (-15 -4396 ($ (-952 (-412 |t#1|)))) (-15 -4396 ($ (-412 (-952 (-412 |t#1|))))) (-15 -3505 ((-412 (-1177 $)) $ (-616 $))) (IF (|has| |t#1| (-1044 (-551))) (-6 (-1044 (-412 (-551)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-412 (-551))) |has| |#1| (-562)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-562)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-562)) ((-131) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-562))) ((-621 #2=(-412 (-952 |#1|))) |has| |#1| (-562)) ((-621 (-551)) -3978 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-551))) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-621 #3=(-616 $)) . T) ((-621 #4=(-952 |#1|)) |has| |#1| (-1055)) ((-621 #5=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) |has| |#1| (-562)) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-619 (-896 (-382))) |has| |#1| (-619 (-896 (-382)))) ((-619 (-896 (-551))) |has| |#1| (-619 (-896 (-551)))) ((-244) |has| |#1| (-562)) ((-293) |has| |#1| (-562)) ((-310) |has| |#1| (-562)) ((-312 $) . T) ((-301) . T) ((-367) |has| |#1| (-562)) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-417 |#1|) . T) ((-457) |has| |#1| (-562)) ((-478) |has| |#1| (-478)) ((-519 (-616 $) $) . T) ((-519 $ $) . T) ((-562) |has| |#1| (-562)) ((-651 #1#) |has| |#1| (-562)) ((-651 (-551)) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-653 #1#) |has| |#1| (-562)) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-645 #1#) |has| |#1| (-562)) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-644 (-551)) -12 (|has| |#1| (-644 (-551))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #1#) |has| |#1| (-562)) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) -3978 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-382)) |has| |#1| (-892 (-382))) ((-892 (-551)) |has| |#1| (-892 (-551))) ((-890 |#1|) . T) ((-927) |has| |#1| (-562)) ((-1044 (-412 (-551))) -3978 (|has| |#1| (-1044 (-412 (-551)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1044 (-551))))) ((-1044 #2#) |has| |#1| (-562)) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 #3#) . T) ((-1044 #4#) |has| |#1| (-1055)) ((-1044 #5#) . T) ((-1044 |#1|) . T) ((-1057 #1#) |has| |#1| (-562)) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) |has| |#1| (-562)) ((-1062 #1#) |has| |#1| (-562)) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) |has| |#1| (-562)) ((-1055) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1063) -3978 (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1118) -3978 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-562)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1107) . T) ((-1222) . T) ((-1227) |has| |#1| (-562)))
-((-4408 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-426 |#1|) (-1055) (-426 |#3|)) (T -427))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-426 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-426 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1986 ((|#2| |#2|) 183)) (-1983 (((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112)) 60)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1983 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -1986 (|#2| |#2|))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|)) (-1183) |#2|) (T -428))
-((-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-426 *3))) (-14 *4 (-1183)) (-14 *5 *2))) (-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-14 *6 (-1183)) (-14 *7 *3))))
-(-10 -7 (-15 -1983 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -1986 (|#2| |#2|)))
-((-1986 ((|#2| |#2|) 106)) (-1984 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 52)) (-1985 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 170)))
-(((-429 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1984 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -1985 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -1986 (|#2| |#2|))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|) (-10 -8 (-15 -4396 ($ |#3|)))) (-853) (-13 (-1251 |#2| |#3|) (-367) (-1208) (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $)))) (-989 |#4|) (-1183)) (T -429))
-((-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-4 *2 (-13 (-27) (-1208) (-426 *3) (-10 -8 (-15 -4396 ($ *4))))) (-4 *4 (-853)) (-4 *5 (-13 (-1251 *2 *4) (-367) (-1208) (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $))))) (-5 *1 (-429 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-4 *3 (-13 (-27) (-1208) (-426 *6) (-10 -8 (-15 -4396 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-429 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))) (-1984 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-4 *3 (-13 (-27) (-1208) (-426 *6) (-10 -8 (-15 -4396 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-429 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))))
-(-10 -7 (-15 -1984 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -1985 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -1986 (|#2| |#2|)))
-((-1987 (($) 52)) (-3672 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3674 (($ $ $) 45)) (-3673 (((-112) $ $) 34)) (-3558 (((-776)) 56)) (-3677 (($ (-646 |#2|)) 23) (($) NIL)) (-3413 (($) 67)) (-3679 (((-112) $ $) 15)) (-2952 ((|#2| $) 78)) (-3278 ((|#2| $) 76)) (-2198 (((-925) $) 71)) (-3676 (($ $ $) 41)) (-2581 (($ (-925)) 61)) (-3675 (($ $ |#2|) NIL) (($ $ $) 44)) (-2135 (((-776) (-1 (-112) |#2|) $) NIL) (((-776) |#2| $) 31)) (-3971 (($ (-646 |#2|)) 27)) (-1988 (($ $) 54)) (-4396 (((-868) $) 39)) (-1989 (((-776) $) 24)) (-3678 (($ (-646 |#2|)) 22) (($) NIL)) (-3473 (((-112) $ $) 19)))
-(((-430 |#1| |#2|) (-10 -8 (-15 -3558 ((-776))) (-15 -2581 (|#1| (-925))) (-15 -2198 ((-925) |#1|)) (-15 -3413 (|#1|)) (-15 -2952 (|#2| |#1|)) (-15 -3278 (|#2| |#1|)) (-15 -1987 (|#1|)) (-15 -1988 (|#1| |#1|)) (-15 -1989 ((-776) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3679 ((-112) |#1| |#1|)) (-15 -3678 (|#1|)) (-15 -3678 (|#1| (-646 |#2|))) (-15 -3677 (|#1|)) (-15 -3677 (|#1| (-646 |#2|))) (-15 -3676 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#2|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -3673 ((-112) |#1| |#1|)) (-15 -3672 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| |#2|)) (-15 -3672 (|#1| |#2| |#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|))) (-431 |#2|) (-1107)) (T -430))
-((-3558 (*1 *2) (-12 (-4 *4 (-1107)) (-5 *2 (-776)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))))
-(-10 -8 (-15 -3558 ((-776))) (-15 -2581 (|#1| (-925))) (-15 -2198 ((-925) |#1|)) (-15 -3413 (|#1|)) (-15 -2952 (|#2| |#1|)) (-15 -3278 (|#2| |#1|)) (-15 -1987 (|#1|)) (-15 -1988 (|#1| |#1|)) (-15 -1989 ((-776) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3679 ((-112) |#1| |#1|)) (-15 -3678 (|#1|)) (-15 -3678 (|#1| (-646 |#2|))) (-15 -3677 (|#1|)) (-15 -3677 (|#1| (-646 |#2|))) (-15 -3676 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#2|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -3673 ((-112) |#1| |#1|)) (-15 -3672 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| |#2|)) (-15 -3672 (|#1| |#2| |#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -2135 ((-776) |#2| |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)))
-((-2986 (((-112) $ $) 19)) (-1987 (($) 68 (|has| |#1| (-372)))) (-3672 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3674 (($ $ $) 79)) (-3673 (((-112) $ $) 80)) (-1312 (((-112) $ (-776)) 8)) (-3558 (((-776)) 62 (|has| |#1| (-372)))) (-3677 (($ (-646 |#1|)) 75) (($) 74)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-3413 (($) 65 (|has| |#1| (-372)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) 71)) (-4169 (((-112) $ (-776)) 9)) (-2952 ((|#1| $) 66 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3278 ((|#1| $) 67 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-2198 (((-925) $) 64 (|has| |#1| (-372)))) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22)) (-3676 (($ $ $) 76)) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-2581 (($ (-925)) 63 (|has| |#1| (-372)))) (-3682 (((-1126) $) 21)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-3675 (($ $ |#1|) 78) (($ $ $) 77)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-1988 (($ $) 69 (|has| |#1| (-372)))) (-4396 (((-868) $) 18)) (-1989 (((-776) $) 70)) (-3678 (($ (-646 |#1|)) 73) (($) 72)) (-3680 (((-112) $ $) 23)) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20)) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-431 |#1|) (-140) (-1107)) (T -431))
-((-1989 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1107)) (-5 *2 (-776)))) (-1988 (*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-372)))) (-1987 (*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-372)) (-4 *2 (-1107)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-855)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-855)))))
-(-13 (-230 |t#1|) (-1105 |t#1|) (-10 -8 (-6 -4443) (-15 -1989 ((-776) $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-15 -1988 ($ $)) (-15 -1987 ($))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -3278 (|t#1| $)) (-15 -2952 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-372) |has| |#1| (-372)) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1105 |#1|) . T) ((-1107) . T) ((-1222) . T))
-((-4291 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4292 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4408 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4291 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1107) (-431 |#1|) (-1107) (-431 |#3|)) (T -432))
-((-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1107)) (-4 *5 (-1107)) (-4 *2 (-431 *5)) (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-431 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1107)) (-4 *2 (-1107)) (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-431 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-431 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4291 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1990 (((-588 |#2|) |#2| (-1183)) 36)) (-2293 (((-588 |#2|) |#2| (-1183)) 21)) (-2341 ((|#2| |#2| (-1183)) 26)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -2293 ((-588 |#2|) |#2| (-1183))) (-15 -1990 ((-588 |#2|) |#2| (-1183))) (-15 -2341 (|#2| |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-29 |#1|))) (T -433))
-((-2341 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-433 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4))))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))))
-(-10 -7 (-15 -2293 ((-588 |#2|) |#2| (-1183))) (-15 -1990 ((-588 |#2|) |#2| (-1183))) (-15 -2341 (|#2| |#2| (-1183))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-1992 (($ |#2| |#1|) 37)) (-1991 (($ |#2| |#1|) 35)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-334 |#2|)) 25)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 10 T CONST)) (-3085 (($) 16 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 36)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-434 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4430)) (IF (|has| |#1| (-6 -4430)) (-6 -4430) |%noBranch|) |%noBranch|) (-15 -4396 ($ |#1|)) (-15 -4396 ($ (-334 |#2|))) (-15 -1992 ($ |#2| |#1|)) (-15 -1991 ($ |#2| |#1|)))) (-13 (-173) (-38 (-412 (-551)))) (-13 (-855) (-21))) (T -434))
-((-4396 (*1 *1 *2) (-12 (-5 *1 (-434 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-551))))) (-4 *3 (-13 (-855) (-21))))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-434 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-551))))))) (-1992 (*1 *1 *2 *3) (-12 (-5 *1 (-434 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-551))))) (-4 *2 (-13 (-855) (-21))))) (-1991 (*1 *1 *2 *3) (-12 (-5 *1 (-434 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-551))))) (-4 *2 (-13 (-855) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4430)) (IF (|has| |#1| (-6 -4430)) (-6 -4430) |%noBranch|) |%noBranch|) (-15 -4396 ($ |#1|)) (-15 -4396 ($ (-334 |#2|))) (-15 -1992 ($ |#2| |#1|)) (-15 -1991 ($ |#2| |#1|))))
-((-4262 (((-3 |#2| (-646 |#2|)) |#2| (-1183)) 115)))
-(((-435 |#1| |#2|) (-10 -7 (-15 -4262 ((-3 |#2| (-646 |#2|)) |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-966) (-29 |#1|))) (T -435))
-((-4262 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 *3 (-646 *3))) (-5 *1 (-435 *5 *3)) (-4 *3 (-13 (-1208) (-966) (-29 *5))))))
-(-10 -7 (-15 -4262 ((-3 |#2| (-646 |#2|)) |#2| (-1183))))
-((-3828 ((|#2| |#2| |#2|) 31)) (-3466 (((-113) (-113)) 43)) (-1994 ((|#2| |#2|) 63)) (-1993 ((|#2| |#2|) 66)) (-3827 ((|#2| |#2|) 30)) (-3831 ((|#2| |#2| |#2|) 33)) (-3833 ((|#2| |#2| |#2|) 35)) (-3830 ((|#2| |#2| |#2|) 32)) (-3832 ((|#2| |#2| |#2|) 34)) (-2421 (((-112) (-113)) 41)) (-3835 ((|#2| |#2|) 37)) (-3834 ((|#2| |#2|) 36)) (-3825 ((|#2| |#2|) 25)) (-3829 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3826 ((|#2| |#2| |#2|) 29)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -3825 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3829 (|#2| |#2| |#2|)) (-15 -3826 (|#2| |#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2| |#2|)) (-15 -3830 (|#2| |#2| |#2|)) (-15 -3831 (|#2| |#2| |#2|)) (-15 -3832 (|#2| |#2| |#2|)) (-15 -3833 (|#2| |#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1994 (|#2| |#2|))) (-562) (-426 |#1|)) (T -436))
-((-1994 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3833 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3832 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3831 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3830 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3828 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3826 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3829 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-436 *3 *4)) (-4 *4 (-426 *3)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5)) (-4 *5 (-426 *4)))))
-(-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -3825 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3829 (|#2| |#2| |#2|)) (-15 -3826 (|#2| |#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2| |#2|)) (-15 -3830 (|#2| |#2| |#2|)) (-15 -3831 (|#2| |#2| |#2|)) (-15 -3832 (|#2| |#2| |#2|)) (-15 -3833 (|#2| |#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1994 (|#2| |#2|)))
-((-3254 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1177 |#2|)) (|:| |pol2| (-1177 |#2|)) (|:| |prim| (-1177 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-646 (-1177 |#2|))) (|:| |prim| (-1177 |#2|))) (-646 |#2|)) 68)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -3254 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-646 (-1177 |#2|))) (|:| |prim| (-1177 |#2|))) (-646 |#2|))) (IF (|has| |#2| (-27)) (-15 -3254 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1177 |#2|)) (|:| |pol2| (-1177 |#2|)) (|:| |prim| (-1177 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-562) (-147)) (-426 |#1|)) (T -437))
-((-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-562) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1177 *3)) (|:| |pol2| (-1177 *3)) (|:| |prim| (-1177 *3)))) (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-426 *4)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-646 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-562) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-646 (-1177 *5))) (|:| |prim| (-1177 *5)))) (-5 *1 (-437 *4 *5)))))
-(-10 -7 (-15 -3254 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-646 (-1177 |#2|))) (|:| |prim| (-1177 |#2|))) (-646 |#2|))) (IF (|has| |#2| (-27)) (-15 -3254 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1177 |#2|)) (|:| |pol2| (-1177 |#2|)) (|:| |prim| (-1177 |#2|))) |#2| |#2|)) |%noBranch|))
-((-1996 (((-1278)) 18)) (-1995 (((-1177 (-412 (-551))) |#2| (-616 |#2|)) 40) (((-412 (-551)) |#2|) 24)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -1995 ((-412 (-551)) |#2|)) (-15 -1995 ((-1177 (-412 (-551))) |#2| (-616 |#2|))) (-15 -1996 ((-1278)))) (-13 (-562) (-1044 (-551))) (-426 |#1|)) (T -438))
-((-1996 (*1 *2) (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *2 (-1278)) (-5 *1 (-438 *3 *4)) (-4 *4 (-426 *3)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *4 (-616 *3)) (-4 *3 (-426 *5)) (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-438 *5 *3)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-412 (-551))) (-5 *1 (-438 *4 *3)) (-4 *3 (-426 *4)))))
-(-10 -7 (-15 -1995 ((-412 (-551)) |#2|)) (-15 -1995 ((-1177 (-412 (-551))) |#2| (-616 |#2|))) (-15 -1996 ((-1278))))
-((-4095 (((-112) $) 32)) (-1997 (((-112) $) 34)) (-3698 (((-112) $) 35)) (-1999 (((-112) $) 38)) (-2001 (((-112) $) 33)) (-2000 (((-112) $) 37)) (-4396 (((-868) $) 20) (($ (-1165)) 31) (($ (-1183)) 26) (((-1183) $) 24) (((-1109) $) 23)) (-1998 (((-112) $) 36)) (-3473 (((-112) $ $) 17)))
-(((-439) (-13 (-618 (-868)) (-10 -8 (-15 -4396 ($ (-1165))) (-15 -4396 ($ (-1183))) (-15 -4396 ((-1183) $)) (-15 -4396 ((-1109) $)) (-15 -4095 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -3698 ((-112) $)) (-15 -2000 ((-112) $)) (-15 -1999 ((-112) $)) (-15 -1998 ((-112) $)) (-15 -1997 ((-112) $)) (-15 -3473 ((-112) $ $))))) (T -439))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-439)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3473 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4396 ($ (-1165))) (-15 -4396 ($ (-1183))) (-15 -4396 ((-1183) $)) (-15 -4396 ((-1109) $)) (-15 -4095 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -3698 ((-112) $)) (-15 -2000 ((-112) $)) (-15 -1999 ((-112) $)) (-15 -1998 ((-112) $)) (-15 -1997 ((-112) $)) (-15 -3473 ((-112) $ $))))
-((-2003 (((-3 (-410 (-1177 (-412 (-551)))) "failed") |#3|) 72)) (-2002 (((-410 |#3|) |#3|) 34)) (-2005 (((-3 (-410 (-1177 (-48))) "failed") |#3|) 46 (|has| |#2| (-1044 (-48))))) (-2004 (((-3 (|:| |overq| (-1177 (-412 (-551)))) (|:| |overan| (-1177 (-48))) (|:| -3059 (-112))) |#3|) 37)))
-(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2002 ((-410 |#3|) |#3|)) (-15 -2003 ((-3 (-410 (-1177 (-412 (-551)))) "failed") |#3|)) (-15 -2004 ((-3 (|:| |overq| (-1177 (-412 (-551)))) (|:| |overan| (-1177 (-48))) (|:| -3059 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -2005 ((-3 (-410 (-1177 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-562) (-1044 (-551))) (-426 |#1|) (-1248 |#2|)) (T -440))
-((-2005 (*1 *2 *3) (|partial| -12 (-4 *5 (-1044 (-48))) (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4)) (-5 *2 (-410 (-1177 (-48)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4)) (-5 *2 (-3 (|:| |overq| (-1177 (-412 (-551)))) (|:| |overan| (-1177 (-48))) (|:| -3059 (-112)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))) (-2003 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4)) (-5 *2 (-410 (-1177 (-412 (-551))))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))) (-2002 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4)) (-5 *2 (-410 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))))
-(-10 -7 (-15 -2002 ((-410 |#3|) |#3|)) (-15 -2003 ((-3 (-410 (-1177 (-412 (-551)))) "failed") |#3|)) (-15 -2004 ((-3 (|:| |overq| (-1177 (-412 (-551)))) (|:| |overan| (-1177 (-48))) (|:| -3059 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -2005 ((-3 (-410 (-1177 (-48))) "failed") |#3|)) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-2014 (((-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) $) 11)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2012 (($) 35)) (-2009 (($) 41)) (-2010 (($) 37)) (-2007 (($) 39)) (-2011 (($) 36)) (-2008 (($) 38)) (-2006 (($) 40)) (-2013 (((-112) $) 8)) (-2770 (((-646 (-952 (-551))) $) 19)) (-3971 (($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-1183)) (-112)) 29) (($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-952 (-551))) (-112)) 30)) (-4396 (((-868) $) 24) (($ (-439)) 32)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-441) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-439))) (-15 -2014 ((-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) $)) (-15 -2770 ((-646 (-952 (-551))) $)) (-15 -2013 ((-112) $)) (-15 -3971 ($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-1183)) (-112))) (-15 -3971 ($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-952 (-551))) (-112))) (-15 -2012 ($)) (-15 -2011 ($)) (-15 -2010 ($)) (-15 -2009 ($)) (-15 -2008 ($)) (-15 -2007 ($)) (-15 -2006 ($))))) (T -441))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-441)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void"))) (-5 *1 (-441)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-646 (-952 (-551)))) (-5 *1 (-441)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-441)))) (-3971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *3 (-646 (-1183))) (-5 *4 (-112)) (-5 *1 (-441)))) (-3971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-112)) (-5 *1 (-441)))) (-2012 (*1 *1) (-5 *1 (-441))) (-2011 (*1 *1) (-5 *1 (-441))) (-2010 (*1 *1) (-5 *1 (-441))) (-2009 (*1 *1) (-5 *1 (-441))) (-2008 (*1 *1) (-5 *1 (-441))) (-2007 (*1 *1) (-5 *1 (-441))) (-2006 (*1 *1) (-5 *1 (-441))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-439))) (-15 -2014 ((-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) $)) (-15 -2770 ((-646 (-952 (-551))) $)) (-15 -2013 ((-112) $)) (-15 -3971 ($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-1183)) (-112))) (-15 -3971 ($ (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-646 (-952 (-551))) (-112))) (-15 -2012 ($)) (-15 -2011 ($)) (-15 -2010 ($)) (-15 -2009 ($)) (-15 -2008 ($)) (-15 -2007 ($)) (-15 -2006 ($))))
-((-2986 (((-112) $ $) NIL)) (-1875 (((-1165) $ (-1165)) NIL)) (-1879 (($ $ (-1165)) NIL)) (-1876 (((-1165) $) NIL)) (-2018 (((-393) (-393) (-393)) 17) (((-393) (-393)) 15)) (-1880 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3991 (((-393) $) NIL)) (-3681 (((-1165) $) NIL)) (-1877 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2017 (((-1278) (-1165)) 9)) (-2016 (((-1278) (-1165)) 10)) (-2015 (((-1278)) 11)) (-4396 (((-868) $) NIL)) (-1878 (($ $) 39)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-442) (-13 (-369 (-393) (-1165)) (-10 -7 (-15 -2018 ((-393) (-393) (-393))) (-15 -2018 ((-393) (-393))) (-15 -2017 ((-1278) (-1165))) (-15 -2016 ((-1278) (-1165))) (-15 -2015 ((-1278)))))) (T -442))
-((-2018 (*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-442)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-442)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-442)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-442)))) (-2015 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-442)))))
-(-13 (-369 (-393) (-1165)) (-10 -7 (-15 -2018 ((-393) (-393) (-393))) (-15 -2018 ((-393) (-393))) (-15 -2017 ((-1278) (-1165))) (-15 -2016 ((-1278) (-1165))) (-15 -2015 ((-1278)))))
-((-2986 (((-112) $ $) NIL)) (-3991 (((-1183) $) 8)) (-3681 (((-1165) $) 17)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 11)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 14)))
-(((-443 |#1|) (-13 (-1107) (-10 -8 (-15 -3991 ((-1183) $)))) (-1183)) (T -443))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-443 *3)) (-14 *3 *2))))
-(-13 (-1107) (-10 -8 (-15 -3991 ((-1183) $))))
-((-2986 (((-112) $ $) NIL)) (-3758 (((-1121) $) 7)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 13)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)))
-(((-444) (-13 (-1107) (-10 -8 (-15 -3758 ((-1121) $))))) (T -444))
-((-3758 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-444)))))
-(-13 (-1107) (-10 -8 (-15 -3758 ((-1121) $))))
-((-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8) (($ (-1272 (-704))) 14) (($ (-646 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 11)))
+((-2493 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409)))) (-2493 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-4344 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-2568 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-1871 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3390 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-2568 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-927)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-927)))) (-2095 (*1 *1) (-12 (-4 *1 (-409)) (-1728 (|has| *1 (-6 -4434))) (-1728 (|has| *1 (-6 -4426))))) (-2406 (*1 *1) (-12 (-4 *1 (-409)) (-1728 (|has| *1 (-6 -4434))) (-1728 (|has| *1 (-6 -4426))))))
+(-13 (-1066) (-10 -8 (-6 -3006) (-15 -2493 ($ (-569) (-569))) (-15 -2493 ($ (-569) (-569) (-927))) (-15 -4315 ((-569) $)) (-15 -4344 ((-927))) (-15 -2777 ((-569) $)) (-15 -2931 ((-569) $)) (-15 -2568 ((-927))) (-15 -1871 ((-927))) (-15 -3390 ((-927))) (IF (|has| $ (-6 -4434)) (PROGN (-15 -2568 ((-927) (-927))) (-15 -1871 ((-927) (-927))) (-15 -3390 ((-927) (-927))) (-15 -2558 ((-927) (-569))) (-15 -2547 ((-927) (-569)))) |%noBranch|) (IF (|has| $ (-6 -4426)) |%noBranch| (IF (|has| $ (-6 -4434)) |%noBranch| (PROGN (-15 -2095 ($)) (-15 -2406 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1008) . T) ((-1028) . T) ((-1066) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-1324 (((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)) 20)))
+(((-410 |#1| |#2|) (-10 -7 (-15 -1324 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)))) (-561) (-561)) (T -410))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6)))))
+(-10 -7 (-15 -1324 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|))))
+((-1324 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 13)))
+(((-411 |#1| |#2|) (-10 -7 (-15 -1324 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-561) (-561)) (T -411))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6)))))
+(-10 -7 (-15 -1324 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 13)) (-3300 ((|#1| $) 21 (|has| |#1| (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| |#1| (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 17) (((-3 (-1183) "failed") $) NIL (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 72 (|has| |#1| (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569))))) (-3043 ((|#1| $) 15) (((-1183) $) NIL (|has| |#1| (-1044 (-1183)))) (((-412 (-569)) $) 69 (|has| |#1| (-1044 (-569)))) (((-569) $) NIL (|has| |#1| (-1044 (-569))))) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) 51)) (-3295 (($) NIL (|has| |#1| (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| |#1| (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-2861 (((-112) $) 57)) (-1450 (($ $) NIL)) (-4378 ((|#1| $) 73)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-2778 (((-112) $) NIL (|has| |#1| (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| |#1| (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 100)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| |#1| (-310)))) (-3312 ((|#1| $) 28 (|has| |#1| (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 148 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 141 (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-4409 (((-776) $) NIL)) (-1852 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1440 (($ $) NIL)) (-4390 ((|#1| $) 75)) (-1384 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#1| (-619 (-541)))) (((-383) $) NIL (|has| |#1| (-1028))) (((-226) $) NIL (|has| |#1| (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 10) (($ (-1183)) NIL (|has| |#1| (-1044 (-1183))))) (-1488 (((-3 $ "failed") $) 102 (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 103 T CONST)) (-3323 ((|#1| $) 26 (|has| |#1| (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-825)))) (-1786 (($) 22 T CONST)) (-1796 (($) 8 T CONST)) (-3218 (((-1165) $) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1165) $ (-112)) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1278) (-827) $) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1278) (-827) $ (-112)) 47 (-12 (|has| |#1| (-550)) (|has| |#1| (-833))))) (-2749 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) 66)) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) 24 (|has| |#1| (-855)))) (-2956 (($ $ $) 136) (($ |#1| |#1|) 53)) (-2946 (($ $) 25) (($ $ $) 56)) (-2935 (($ $ $) 54)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 135)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 61) (($ $ $) 58) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-412 |#1|) (-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4430)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4441)) (-6 -4430) |%noBranch|) |%noBranch|) |%noBranch|))) (-561)) (T -412))
+NIL
+(-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4430)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4441)) (-6 -4430) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2702 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 18)) (-2806 (($ (-1273 |#2|) (-1273 $)) NIL) (($ (-1273 |#2|)) 24)) (-2692 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 40)) (-3397 ((|#3| $) 73)) (-4180 ((|#2| (-1273 $)) NIL) ((|#2|) 20)) (-1949 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 22) (((-694 |#2|) (-1273 $)) 38)) (-1384 (((-1273 |#2|) $) 11) (($ (-1273 |#2|)) 13)) (-3176 ((|#3| $) 55)))
+(((-413 |#1| |#2| |#3|) (-10 -8 (-15 -2692 ((-694 |#2|) |#1|)) (-15 -4180 (|#2|)) (-15 -2702 ((-694 |#2|))) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3397 (|#3| |#1|)) (-15 -3176 (|#3| |#1|)) (-15 -2702 ((-694 |#2|) (-1273 |#1|))) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2692 ((-694 |#2|) |#1| (-1273 |#1|)))) (-414 |#2| |#3|) (-173) (-1249 |#2|)) (T -413))
+((-2702 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) (-4180 (*1 *2) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) (-4 *3 (-414 *2 *4)))))
+(-10 -8 (-15 -2692 ((-694 |#2|) |#1|)) (-15 -4180 (|#2|)) (-15 -2702 ((-694 |#2|))) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -3397 (|#3| |#1|)) (-15 -3176 (|#3| |#1|)) (-15 -2702 ((-694 |#2|) (-1273 |#1|))) (-15 -4180 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2692 ((-694 |#2|) |#1| (-1273 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2702 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3057 ((|#1| $) 59)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2806 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-2692 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-3351 (((-3 $ "failed") $) 37)) (-3904 (((-927)) 61)) (-2861 (((-112) $) 35)) (-3334 ((|#1| $) 58)) (-3397 ((|#2| $) 51 (|has| |#1| (-367)))) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4180 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-1949 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1384 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-1488 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3176 ((|#2| $) 52)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 74)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-414 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -414))
+((-3371 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *1)) (-4 *1 (-414 *3 *4)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *3)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1249 *3)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *3)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1249 *3)))) (-2702 (*1 *2) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-694 *3)))) (-4180 (*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-694 *3)))))
+(-13 (-374 |t#1| |t#2|) (-10 -8 (-15 -3371 ((-1273 $))) (-15 -1949 ((-1273 |t#1|) $)) (-15 -1949 ((-694 |t#1|) (-1273 $))) (-15 -2806 ($ (-1273 |t#1|))) (-15 -1384 ((-1273 |t#1|) $)) (-15 -1384 ($ (-1273 |t#1|))) (-15 -2702 ((-694 |t#1|))) (-15 -4180 (|t#1|)) (-15 -2692 ((-694 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-374 |#1| |#2|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) 27) (((-3 (-569) "failed") $) 19)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) 24) (((-569) $) 14)) (-2388 (($ |#2|) NIL) (($ (-412 (-569))) 22) (($ (-569)) 11)))
+(((-415 |#1| |#2|) (-10 -8 (-15 -2388 (|#1| (-569))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|))) (-416 |#2|) (-1223)) (T -415))
+NIL
+(-10 -8 (-15 -2388 (|#1| (-569))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)))
+((-4359 (((-3 |#1| "failed") $) 9) (((-3 (-412 (-569)) "failed") $) 16 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 13 (|has| |#1| (-1044 (-569))))) (-3043 ((|#1| $) 8) (((-412 (-569)) $) 17 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 14 (|has| |#1| (-1044 (-569))))) (-2388 (($ |#1|) 6) (($ (-412 (-569))) 15 (|has| |#1| (-1044 (-412 (-569))))) (($ (-569)) 12 (|has| |#1| (-1044 (-569))))))
+(((-416 |#1|) (-140) (-1223)) (T -416))
+NIL
+(-13 (-1044 |t#1|) (-10 -7 (IF (|has| |t#1| (-1044 (-569))) (-6 (-1044 (-569))) |%noBranch|) (IF (|has| |t#1| (-1044 (-412 (-569)))) (-6 (-1044 (-412 (-569)))) |%noBranch|)))
+(((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 #1=(-569)) |has| |#1| (-1044 (-569))) ((-621 |#1|) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 #1#) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T))
+((-1324 (((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)) 35)))
+(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1324 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) (-310) (-998 |#1|) (-1249 |#2|) (-13 (-414 |#2| |#3|) (-1044 |#2|)) (-310) (-998 |#5|) (-1249 |#6|) (-13 (-414 |#6| |#7|) (-1044 |#6|))) (T -417))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) (-4 *6 (-998 *5)) (-4 *7 (-1249 *6)) (-4 *8 (-13 (-414 *6 *7) (-1044 *6))) (-4 *9 (-310)) (-4 *10 (-998 *9)) (-4 *11 (-1249 *10)) (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-414 *10 *11) (-1044 *10))))))
+(-10 -7 (-15 -1324 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|))))
+((-2383 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2713 ((|#4| (-776) (-1273 |#4|)) 58)) (-2861 (((-112) $) NIL)) (-4378 (((-1273 |#4|) $) 15)) (-3334 ((|#2| $) 53)) (-2726 (($ $) 161)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 106)) (-4225 (($ (-1273 |#4|)) 105)) (-3461 (((-1126) $) NIL)) (-4390 ((|#1| $) 16)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) 151)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 |#4|) $) 144)) (-1796 (($) 11 T CONST)) (-2853 (((-112) $ $) 39)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 137)) (* (($ $ $) 133)))
+(((-418 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -4225 ($ (-1273 |#4|))) (-15 -3371 ((-1273 |#4|) $)) (-15 -3334 (|#2| $)) (-15 -4378 ((-1273 |#4|) $)) (-15 -4390 (|#1| $)) (-15 -2726 ($ $)) (-15 -2713 (|#4| (-776) (-1273 |#4|))))) (-310) (-998 |#1|) (-1249 |#2|) (-13 (-414 |#2| |#3|) (-1044 |#2|))) (T -418))
+((-4225 (*1 *1 *2) (-12 (-5 *2 (-1273 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3371 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))))) (-3334 (*1 *2 *1) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1044 *2))))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))))) (-4390 (*1 *2 *1) (-12 (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-4 *2 (-310)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))) (-2726 (*1 *1 *1) (-12 (-4 *2 (-310)) (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1273 *2)) (-4 *5 (-310)) (-4 *6 (-998 *5)) (-4 *2 (-13 (-414 *6 *7) (-1044 *6))) (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1249 *6)))))
+(-13 (-478) (-10 -8 (-15 -4225 ($ (-1273 |#4|))) (-15 -3371 ((-1273 |#4|) $)) (-15 -3334 (|#2| $)) (-15 -4378 ((-1273 |#4|) $)) (-15 -4390 (|#1| $)) (-15 -2726 ($ $)) (-15 -2713 (|#4| (-776) (-1273 |#4|)))))
+((-2383 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-3334 ((|#2| $) 71)) (-2736 (($ (-1273 |#4|)) 27) (($ (-418 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1044 |#2|)))) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 37)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 |#4|) $) 28)) (-1796 (($) 25 T CONST)) (-2853 (((-112) $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ $ $) 82)))
+(((-419 |#1| |#2| |#3| |#4| |#5|) (-13 (-731) (-10 -8 (-15 -3371 ((-1273 |#4|) $)) (-15 -3334 (|#2| $)) (-15 -2736 ($ (-1273 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -2736 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-310) (-998 |#1|) (-1249 |#2|) (-414 |#2| |#3|) (-1273 |#4|)) (T -419))
+((-3371 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) (-3334 (*1 *2 *1) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1273 *5)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-1273 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *6 (-414 *4 *5)) (-14 *7 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)))))
+(-13 (-731) (-10 -8 (-15 -3371 ((-1273 |#4|) $)) (-15 -3334 (|#2| $)) (-15 -2736 ($ (-1273 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -2736 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1324 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|))) (-422 |#2|) (-173) (-422 |#4|) (-173)) (T -420))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5)))))
+(-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2591 (((-3 $ "failed")) 99)) (-1941 (((-1273 (-694 |#2|)) (-1273 $)) NIL) (((-1273 (-694 |#2|))) 104)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 97)) (-3047 (((-3 $ "failed")) 96)) (-2766 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 115)) (-2747 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 123)) (-1616 (((-1179 (-958 |#2|))) 65)) (-2786 ((|#2| (-1273 $)) NIL) ((|#2|) 119)) (-2806 (($ (-1273 |#2|) (-1273 $)) NIL) (($ (-1273 |#2|)) 125)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 95)) (-3061 (((-3 $ "failed")) 87)) (-2775 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 113)) (-2757 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 121)) (-1658 (((-1179 (-958 |#2|))) 64)) (-2797 ((|#2| (-1273 $)) NIL) ((|#2|) 117)) (-1949 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 124) (((-694 |#2|) (-1273 $)) 133)) (-1384 (((-1273 |#2|) $) 109) (($ (-1273 |#2|)) 111)) (-1524 (((-649 (-958 |#2|)) (-1273 $)) NIL) (((-649 (-958 |#2|))) 107)) (-3341 (($ (-694 |#2|) $) 103)))
+(((-421 |#1| |#2|) (-10 -8 (-15 -3341 (|#1| (-694 |#2|) |#1|)) (-15 -1616 ((-1179 (-958 |#2|)))) (-15 -1658 ((-1179 (-958 |#2|)))) (-15 -2747 ((-694 |#2|) |#1|)) (-15 -2757 ((-694 |#2|) |#1|)) (-15 -2766 ((-694 |#2|))) (-15 -2775 ((-694 |#2|))) (-15 -2786 (|#2|)) (-15 -2797 (|#2|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1524 ((-649 (-958 |#2|)))) (-15 -1941 ((-1273 (-694 |#2|)))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -2591 ((-3 |#1| "failed"))) (-15 -3047 ((-3 |#1| "failed"))) (-15 -3061 ((-3 |#1| "failed"))) (-15 -1683 ((-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed"))) (-15 -1693 ((-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed"))) (-15 -2766 ((-694 |#2|) (-1273 |#1|))) (-15 -2775 ((-694 |#2|) (-1273 |#1|))) (-15 -2786 (|#2| (-1273 |#1|))) (-15 -2797 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2747 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2757 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -1941 ((-1273 (-694 |#2|)) (-1273 |#1|))) (-15 -1524 ((-649 (-958 |#2|)) (-1273 |#1|)))) (-422 |#2|) (-173)) (T -421))
+((-1941 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1524 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2797 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-2786 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-2775 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1658 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1616 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))))
+(-10 -8 (-15 -3341 (|#1| (-694 |#2|) |#1|)) (-15 -1616 ((-1179 (-958 |#2|)))) (-15 -1658 ((-1179 (-958 |#2|)))) (-15 -2747 ((-694 |#2|) |#1|)) (-15 -2757 ((-694 |#2|) |#1|)) (-15 -2766 ((-694 |#2|))) (-15 -2775 ((-694 |#2|))) (-15 -2786 (|#2|)) (-15 -2797 (|#2|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -2806 (|#1| (-1273 |#2|))) (-15 -1524 ((-649 (-958 |#2|)))) (-15 -1941 ((-1273 (-694 |#2|)))) (-15 -1949 ((-694 |#2|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1|)) (-15 -2591 ((-3 |#1| "failed"))) (-15 -3047 ((-3 |#1| "failed"))) (-15 -3061 ((-3 |#1| "failed"))) (-15 -1683 ((-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed"))) (-15 -1693 ((-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed"))) (-15 -2766 ((-694 |#2|) (-1273 |#1|))) (-15 -2775 ((-694 |#2|) (-1273 |#1|))) (-15 -2786 (|#2| (-1273 |#1|))) (-15 -2797 (|#2| (-1273 |#1|))) (-15 -2806 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -1949 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -1949 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2747 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2757 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -1941 ((-1273 (-694 |#2|)) (-1273 |#1|))) (-15 -1524 ((-649 (-958 |#2|)) (-1273 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2591 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) 20)) (-1941 (((-1273 (-694 |#1|)) (-1273 $)) 83) (((-1273 (-694 |#1|))) 105)) (-3352 (((-1273 $)) 86)) (-3863 (($) 18 T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3047 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-2766 (((-694 |#1|) (-1273 $)) 70) (((-694 |#1|)) 97)) (-3331 ((|#1| $) 79)) (-2747 (((-694 |#1|) $ (-1273 $)) 81) (((-694 |#1|) $) 95)) (-2808 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-1616 (((-1179 (-958 |#1|))) 93 (|has| |#1| (-367)))) (-2840 (($ $ (-927)) 31)) (-3307 ((|#1| $) 77)) (-3070 (((-1179 |#1|) $) 47 (|has| |#1| (-561)))) (-2786 ((|#1| (-1273 $)) 72) ((|#1|) 99)) (-3285 (((-1179 |#1|) $) 68)) (-3202 (((-112)) 62)) (-2806 (($ (-1273 |#1|) (-1273 $)) 74) (($ (-1273 |#1|)) 103)) (-3351 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3904 (((-927)) 85)) (-3168 (((-112)) 59)) (-1931 (($ $ (-927)) 38)) (-3123 (((-112)) 55)) (-3103 (((-112)) 53)) (-3145 (((-112)) 57)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-3061 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2775 (((-694 |#1|) (-1273 $)) 71) (((-694 |#1|)) 98)) (-3342 ((|#1| $) 80)) (-2757 (((-694 |#1|) $ (-1273 $)) 82) (((-694 |#1|) $) 96)) (-2817 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-1658 (((-1179 (-958 |#1|))) 94 (|has| |#1| (-367)))) (-2829 (($ $ (-927)) 32)) (-3320 ((|#1| $) 78)) (-3081 (((-1179 |#1|) $) 48 (|has| |#1| (-561)))) (-2797 ((|#1| (-1273 $)) 73) ((|#1|) 100)) (-3297 (((-1179 |#1|) $) 69)) (-3216 (((-112)) 63)) (-2050 (((-1165) $) 10)) (-3112 (((-112)) 54)) (-3133 (((-112)) 56)) (-3157 (((-112)) 58)) (-3461 (((-1126) $) 11)) (-3189 (((-112)) 61)) (-1852 ((|#1| $ (-569)) 106)) (-1949 (((-1273 |#1|) $ (-1273 $)) 76) (((-694 |#1|) (-1273 $) (-1273 $)) 75) (((-1273 |#1|) $) 108) (((-694 |#1|) (-1273 $)) 107)) (-1384 (((-1273 |#1|) $) 102) (($ (-1273 |#1|)) 101)) (-1524 (((-649 (-958 |#1|)) (-1273 $)) 84) (((-649 (-958 |#1|))) 104)) (-4356 (($ $ $) 28)) (-3270 (((-112)) 67)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 109)) (-3092 (((-649 (-1273 |#1|))) 49 (|has| |#1| (-561)))) (-4365 (($ $ $ $) 29)) (-3245 (((-112)) 65)) (-3341 (($ (-694 |#1|) $) 92)) (-4347 (($ $ $) 27)) (-3259 (((-112)) 66)) (-3230 (((-112)) 64)) (-3178 (((-112)) 60)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-422 |#1|) (-140) (-173)) (T -422))
+((-3371 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-422 *3)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-1941 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 (-694 *3))))) (-1524 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3))))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-2797 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2786 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2775 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2766 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1658 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1179 (-958 *3))))) (-1616 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1179 (-958 *3))))) (-3341 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173)))))
+(-13 (-371 |t#1|) (-10 -8 (-15 -3371 ((-1273 $))) (-15 -1949 ((-1273 |t#1|) $)) (-15 -1949 ((-694 |t#1|) (-1273 $))) (-15 -1852 (|t#1| $ (-569))) (-15 -1941 ((-1273 (-694 |t#1|)))) (-15 -1524 ((-649 (-958 |t#1|)))) (-15 -2806 ($ (-1273 |t#1|))) (-15 -1384 ((-1273 |t#1|) $)) (-15 -1384 ($ (-1273 |t#1|))) (-15 -2797 (|t#1|)) (-15 -2786 (|t#1|)) (-15 -2775 ((-694 |t#1|))) (-15 -2766 ((-694 |t#1|))) (-15 -2757 ((-694 |t#1|) $)) (-15 -2747 ((-694 |t#1|) $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -1658 ((-1179 (-958 |t#1|)))) (-15 -1616 ((-1179 (-958 |t#1|))))) |%noBranch|) (-15 -3341 ($ (-694 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-371 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 60)) (-2579 (($ $) 78)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 191)) (-2586 (($ $) NIL)) (-2564 (((-112) $) 48)) (-2591 ((|#1| $) 16)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-1227)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-1227)))) (-2618 (($ |#1| (-569)) 42)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 148)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 74)) (-3351 (((-3 $ "failed") $) 164)) (-1740 (((-3 (-412 (-569)) "failed") $) 84 (|has| |#1| (-550)))) (-1727 (((-112) $) 80 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 91 (|has| |#1| (-550)))) (-2628 (($ |#1| (-569)) 44)) (-3848 (((-112) $) 213 (|has| |#1| (-1227)))) (-2861 (((-112) $) 62)) (-2107 (((-776) $) 51)) (-2639 (((-3 "nil" "sqfr" "irred" "prime") $ (-569)) 175)) (-4199 ((|#1| $ (-569)) 174)) (-2649 (((-569) $ (-569)) 173)) (-2682 (($ |#1| (-569)) 41)) (-1324 (($ (-1 |#1| |#1|) $) 183)) (-2078 (($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569))))) 79)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-2659 (($ |#1| (-569)) 43)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 192 (|has| |#1| (-457)))) (-2604 (($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2671 (((-649 (-2 (|:| -3699 |#1|) (|:| -2777 (-569)))) $) 73)) (-4030 (((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $) 12)) (-3699 (((-423 $) $) NIL (|has| |#1| (-1227)))) (-2374 (((-3 $ "failed") $ $) 176)) (-2777 (((-569) $) 167)) (-1356 ((|#1| $) 75)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 100 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 106 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) $) NIL (|has| |#1| (-519 (-1183) $))) (($ $ (-649 (-1183)) (-649 $)) 107 (|has| |#1| (-519 (-1183) $))) (($ $ (-649 (-297 $))) 103 (|has| |#1| (-312 $))) (($ $ (-297 $)) NIL (|has| |#1| (-312 $))) (($ $ $ $) NIL (|has| |#1| (-312 $))) (($ $ (-649 $) (-649 $)) NIL (|has| |#1| (-312 $)))) (-1852 (($ $ |#1|) 92 (|has| |#1| (-289 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-289 $ $)))) (-3430 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1384 (((-541) $) 39 (|has| |#1| (-619 (-541)))) (((-383) $) 113 (|has| |#1| (-1028))) (((-226) $) 119 (|has| |#1| (-1028)))) (-2388 (((-867) $) 146) (($ (-569)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569)))))) (-3263 (((-776)) 67 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 53 T CONST)) (-1796 (($) 52 T CONST)) (-2749 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) 159)) (-2946 (($ $) 161) (($ $ $) NIL)) (-2935 (($ $ $) 180)) (** (($ $ (-927)) NIL) (($ $ (-776)) 125)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-423 |#1|) (-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1356 (|#1| $)) (-15 -2777 ((-569) $)) (-15 -2078 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -4030 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -2682 ($ |#1| (-569))) (-15 -2671 ((-649 (-2 (|:| -3699 |#1|) (|:| -2777 (-569)))) $)) (-15 -2659 ($ |#1| (-569))) (-15 -2649 ((-569) $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -2639 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2107 ((-776) $)) (-15 -2628 ($ |#1| (-569))) (-15 -2618 ($ |#1| (-569))) (-15 -2604 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2591 (|#1| $)) (-15 -2579 ($ $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|))) (-561)) (T -423))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) (-1356 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-569))))) (-4 *2 (-561)) (-5 *1 (-423 *2)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -3699 *3) (|:| -2777 (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2649 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2639 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *4)) (-4 *4 (-561)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2628 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2618 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2604 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2591 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1740 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))))
+(-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1356 (|#1| $)) (-15 -2777 ((-569) $)) (-15 -2078 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -4030 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -2682 ($ |#1| (-569))) (-15 -2671 ((-649 (-2 (|:| -3699 |#1|) (|:| -2777 (-569)))) $)) (-15 -2659 ($ |#1| (-569))) (-15 -2649 ((-569) $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -2639 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2107 ((-776) $)) (-15 -2628 ($ |#1| (-569))) (-15 -2618 ($ |#1| (-569))) (-15 -2604 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2591 (|#1| $)) (-15 -2579 ($ $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|)))
+((-3355 (((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|)) 28)) (-2816 (((-423 |#1|) (-423 |#1|) (-423 |#1|)) 17)))
+(((-424 |#1|) (-10 -7 (-15 -3355 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -2816 ((-423 |#1|) (-423 |#1|) (-423 |#1|)))) (-561)) (T -424))
+((-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4)) (-5 *1 (-424 *4)))))
+(-10 -7 (-15 -3355 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -2816 ((-423 |#1|) (-423 |#1|) (-423 |#1|))))
+((-2868 ((|#2| |#2|) 183)) (-2836 (((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112)) 60)))
+(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2836 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -2868 (|#2| |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -425))
+((-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-435 *3))) (-14 *4 (-1183)) (-14 *5 *2))) (-2836 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-14 *6 (-1183)) (-14 *7 *3))))
+(-10 -7 (-15 -2836 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -2868 (|#2| |#2|)))
+((-1324 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-435 |#1|) (-1055) (-435 |#3|)) (T -426))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2868 ((|#2| |#2|) 106)) (-2848 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 52)) (-2859 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 170)))
+(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2848 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2859 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2868 (|#2| |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|) (-10 -8 (-15 -2388 ($ |#3|)))) (-853) (-13 (-1251 |#2| |#3|) (-367) (-1208) (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $)))) (-989 |#4|) (-1183)) (T -427))
+((-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *2 (-13 (-27) (-1208) (-435 *3) (-10 -8 (-15 -2388 ($ *4))))) (-4 *4 (-853)) (-4 *5 (-13 (-1251 *2 *4) (-367) (-1208) (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))) (-2859 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -2388 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))) (-2848 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -2388 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))))
+(-10 -7 (-15 -2848 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2859 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2868 (|#2| |#2|)))
+((-3535 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3485 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1324 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3485 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3535 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1106) (-430 |#1|) (-1106) (-430 |#3|)) (T -428))
+((-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1106)) (-4 *5 (-1106)) (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1106)) (-4 *2 (-1106)) (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3485 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3535 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2878 (($) 52)) (-3893 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-1996 (($ $ $) 45)) (-1987 (((-112) $ $) 34)) (-3363 (((-776)) 56)) (-4250 (($ (-649 |#2|)) 23) (($) NIL)) (-3295 (($) 67)) (-2029 (((-112) $ $) 15)) (-2095 ((|#2| $) 78)) (-2406 ((|#2| $) 76)) (-3348 (((-927) $) 71)) (-2018 (($ $ $) 41)) (-2114 (($ (-927)) 61)) (-2006 (($ $ |#2|) NIL) (($ $ $) 44)) (-3469 (((-776) (-1 (-112) |#2|) $) NIL) (((-776) |#2| $) 31)) (-3709 (($ (-649 |#2|)) 27)) (-2889 (($ $) 54)) (-2388 (((-867) $) 39)) (-2900 (((-776) $) 24)) (-3776 (($ (-649 |#2|)) 22) (($) NIL)) (-2853 (((-112) $ $) 19)))
+(((-429 |#1| |#2|) (-10 -8 (-15 -3363 ((-776))) (-15 -2114 (|#1| (-927))) (-15 -3348 ((-927) |#1|)) (-15 -3295 (|#1|)) (-15 -2095 (|#2| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2878 (|#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2900 ((-776) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2029 ((-112) |#1| |#1|)) (-15 -3776 (|#1|)) (-15 -3776 (|#1| (-649 |#2|))) (-15 -4250 (|#1|)) (-15 -4250 (|#1| (-649 |#2|))) (-15 -2018 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#2|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#2| |#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|))) (-430 |#2|) (-1106)) (T -429))
+((-3363 (*1 *2) (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
+(-10 -8 (-15 -3363 ((-776))) (-15 -2114 (|#1| (-927))) (-15 -3348 ((-927) |#1|)) (-15 -3295 (|#1|)) (-15 -2095 (|#2| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2878 (|#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2900 ((-776) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2029 ((-112) |#1| |#1|)) (-15 -3776 (|#1|)) (-15 -3776 (|#1| (-649 |#2|))) (-15 -4250 (|#1|)) (-15 -4250 (|#1| (-649 |#2|))) (-15 -2018 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#2|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#2| |#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -3469 ((-776) |#2| |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)))
+((-2383 (((-112) $ $) 19)) (-2878 (($) 68 (|has| |#1| (-372)))) (-3893 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-1996 (($ $ $) 79)) (-1987 (((-112) $ $) 80)) (-1610 (((-112) $ (-776)) 8)) (-3363 (((-776)) 62 (|has| |#1| (-372)))) (-4250 (($ (-649 |#1|)) 75) (($) 74)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-3295 (($) 65 (|has| |#1| (-372)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) 71)) (-3799 (((-112) $ (-776)) 9)) (-2095 ((|#1| $) 66 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-2406 ((|#1| $) 67 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-3348 (((-927) $) 64 (|has| |#1| (-372)))) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22)) (-2018 (($ $ $) 76)) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-2114 (($ (-927)) 63 (|has| |#1| (-372)))) (-3461 (((-1126) $) 21)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-2006 (($ $ |#1|) 78) (($ $ $) 77)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2889 (($ $) 69 (|has| |#1| (-372)))) (-2388 (((-867) $) 18)) (-2900 (((-776) $) 70)) (-3776 (($ (-649 |#1|)) 73) (($) 72)) (-2040 (((-112) $ $) 23)) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20)) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-430 |#1|) (-140) (-1106)) (T -430))
+((-2900 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-372)))) (-2878 (*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1106)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855)))))
+(-13 (-230 |t#1|) (-1104 |t#1|) (-10 -8 (-6 -4443) (-15 -2900 ((-776) $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-15 -2889 ($ $)) (-15 -2878 ($))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -2406 (|t#1| $)) (-15 -2095 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-372) |has| |#1| (-372)) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
+((-2911 (((-591 |#2|) |#2| (-1183)) 36)) (-1892 (((-591 |#2|) |#2| (-1183)) 21)) (-2325 ((|#2| |#2| (-1183)) 26)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -1892 ((-591 |#2|) |#2| (-1183))) (-15 -2911 ((-591 |#2|) |#2| (-1183))) (-15 -2325 (|#2| |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-29 |#1|))) (T -431))
+((-2325 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))) (-1892 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))))
+(-10 -7 (-15 -1892 ((-591 |#2|) |#2| (-1183))) (-15 -2911 ((-591 |#2|) |#2| (-1183))) (-15 -2325 (|#2| |#2| (-1183))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2930 (($ |#2| |#1|) 37)) (-2920 (($ |#2| |#1|) 35)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-334 |#2|)) 25)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 10 T CONST)) (-1796 (($) 16 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 36)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4430)) (IF (|has| |#1| (-6 -4430)) (-6 -4430) |%noBranch|) |%noBranch|) (-15 -2388 ($ |#1|)) (-15 -2388 ($ (-334 |#2|))) (-15 -2930 ($ |#2| |#1|)) (-15 -2920 ($ |#2| |#1|)))) (-13 (-173) (-38 (-412 (-569)))) (-13 (-855) (-21))) (T -432))
+((-2388 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569))))) (-4 *3 (-13 (-855) (-21))))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))))) (-2930 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))) (-2920 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4430)) (IF (|has| |#1| (-6 -4430)) (-6 -4430) |%noBranch|) |%noBranch|) (-15 -2388 ($ |#1|)) (-15 -2388 ($ (-334 |#2|))) (-15 -2930 ($ |#2| |#1|)) (-15 -2920 ($ |#2| |#1|))))
+((-3313 (((-3 |#2| (-649 |#2|)) |#2| (-1183)) 115)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 |#2| (-649 |#2|)) |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -433))
+((-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-965) (-29 *5))))))
+(-10 -7 (-15 -3313 ((-3 |#2| (-649 |#2|)) |#2| (-1183))))
+((-3865 (((-649 (-1183)) $) 81)) (-3663 (((-412 (-1179 $)) $ (-617 $)) 314)) (-4272 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) 278)) (-4359 (((-3 (-617 $) "failed") $) NIL) (((-3 (-1183) "failed") $) 84) (((-3 (-569) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-412 (-958 |#2|)) "failed") $) 364) (((-3 (-958 |#2|) "failed") $) 276) (((-3 (-412 (-569)) "failed") $) NIL)) (-3043 (((-617 $) $) NIL) (((-1183) $) 28) (((-569) $) NIL) ((|#2| $) 272) (((-412 (-958 |#2|)) $) 346) (((-958 |#2|) $) 273) (((-412 (-569)) $) NIL)) (-3642 (((-114) (-114)) 47)) (-1450 (($ $) 99)) (-2052 (((-3 (-617 $) "failed") $) 269)) (-3629 (((-649 (-617 $)) $) 270)) (-3338 (((-3 (-649 $) "failed") $) 288)) (-3360 (((-3 (-2 (|:| |val| $) (|:| -2777 (-569))) "failed") $) 295)) (-3327 (((-3 (-649 $) "failed") $) 286)) (-2827 (((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 $))) "failed") $) 305)) (-3349 (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $) 292) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-1183)) 258)) (-1787 (((-112) $) 17)) (-1794 ((|#2| $) 19)) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 277) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 109) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1183)) 62) (($ $ (-649 (-1183))) 281) (($ $) 282) (($ $ (-114) $ (-1183)) 65) (($ $ (-649 (-114)) (-649 $) (-1183)) 72) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 120) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 283) (($ $ (-1183) (-776) (-1 $ (-649 $))) 105) (($ $ (-1183) (-776) (-1 $ $)) 104)) (-1852 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) 119)) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) 279)) (-1440 (($ $) 325)) (-1384 (((-898 (-569)) $) 298) (((-898 (-383)) $) 302) (($ (-423 $)) 360) (((-541) $) NIL)) (-2388 (((-867) $) 280) (($ (-617 $)) 93) (($ (-1183)) 24) (($ |#2|) NIL) (($ (-1131 |#2| (-617 $))) NIL) (($ (-412 |#2|)) 330) (($ (-958 (-412 |#2|))) 369) (($ (-412 (-958 (-412 |#2|)))) 342) (($ (-412 (-958 |#2|))) 336) (($ $) NIL) (($ (-958 |#2|)) 218) (($ (-412 (-569))) 374) (($ (-569)) NIL)) (-3263 (((-776)) 88)) (-3858 (((-112) (-114)) 42)) (-4175 (($ (-1183) $) 31) (($ (-1183) $ $) 32) (($ (-1183) $ $ $) 33) (($ (-1183) $ $ $ $) 34) (($ (-1183) (-649 $)) 39)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2388 (|#1| (-569))) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -2388 (|#1| (-958 |#2|))) (-15 -4359 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3043 ((-958 |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2388 (|#1| (-412 (-958 |#2|)))) (-15 -4359 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3043 ((-412 (-958 |#2|)) |#1|)) (-15 -3663 ((-412 (-1179 |#1|)) |#1| (-617 |#1|))) (-15 -2388 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -2388 (|#1| (-958 (-412 |#2|)))) (-15 -2388 (|#1| (-412 |#2|))) (-15 -1440 (|#1| |#1|)) (-15 -1384 (|#1| (-423 |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -3360 ((-3 (-2 (|:| |val| |#1|) (|:| -2777 (-569))) "failed") |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1| (-1183))) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1| (-114))) (-15 -1450 (|#1| |#1|)) (-15 -2388 (|#1| (-1131 |#2| (-617 |#1|)))) (-15 -2827 ((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -3327 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1|)) (-15 -3338 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1183))) (-15 -1679 (|#1| |#1| (-114) |#1| (-1183))) (-15 -1679 (|#1| |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1183)))) (-15 -1679 (|#1| |#1| (-1183))) (-15 -4175 (|#1| (-1183) (-649 |#1|))) (-15 -4175 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1|)) (-15 -3865 ((-649 (-1183)) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1787 ((-112) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -2388 (|#1| (-1183))) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3629 ((-649 (-617 |#1|)) |#1|)) (-15 -2052 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4272 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4272 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4272 (|#1| |#1| (-297 |#1|))) (-15 -1852 (|#1| (-114) (-649 |#1|))) (-15 -1852 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -2388 (|#1| (-617 |#1|))) (-15 -4359 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3043 ((-617 |#1|) |#1|)) (-15 -2388 ((-867) |#1|))) (-435 |#2|) (-1106)) (T -434))
+((-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1106)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-3263 (*1 *2) (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
+(-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2388 (|#1| (-569))) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -2388 (|#1| (-958 |#2|))) (-15 -4359 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3043 ((-958 |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2388 (|#1| (-412 (-958 |#2|)))) (-15 -4359 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3043 ((-412 (-958 |#2|)) |#1|)) (-15 -3663 ((-412 (-1179 |#1|)) |#1| (-617 |#1|))) (-15 -2388 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -2388 (|#1| (-958 (-412 |#2|)))) (-15 -2388 (|#1| (-412 |#2|))) (-15 -1440 (|#1| |#1|)) (-15 -1384 (|#1| (-423 |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -3360 ((-3 (-2 (|:| |val| |#1|) (|:| -2777 (-569))) "failed") |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1| (-1183))) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1| (-114))) (-15 -1450 (|#1| |#1|)) (-15 -2388 (|#1| (-1131 |#2| (-617 |#1|)))) (-15 -2827 ((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -3327 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -2777 (-569))) "failed") |#1|)) (-15 -3338 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1183))) (-15 -1679 (|#1| |#1| (-114) |#1| (-1183))) (-15 -1679 (|#1| |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1183)))) (-15 -1679 (|#1| |#1| (-1183))) (-15 -4175 (|#1| (-1183) (-649 |#1|))) (-15 -4175 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1| |#1|)) (-15 -4175 (|#1| (-1183) |#1|)) (-15 -3865 ((-649 (-1183)) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1787 ((-112) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -2388 (|#1| (-1183))) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1679 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1679 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3629 ((-649 (-617 |#1|)) |#1|)) (-15 -2052 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4272 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4272 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4272 (|#1| |#1| (-297 |#1|))) (-15 -1852 (|#1| (-114) (-649 |#1|))) (-15 -1852 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1| |#1|)) (-15 -1852 (|#1| (-114) |#1|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1679 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -2388 (|#1| (-617 |#1|))) (-15 -4359 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3043 ((-617 |#1|) |#1|)) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 116 (|has| |#1| (-25)))) (-3865 (((-649 (-1183)) $) 203)) (-3663 (((-412 (-1179 $)) $ (-617 $)) 171 (|has| |#1| (-561)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 143 (|has| |#1| (-561)))) (-2586 (($ $) 144 (|has| |#1| (-561)))) (-2564 (((-112) $) 146 (|has| |#1| (-561)))) (-3550 (((-649 (-617 $)) $) 39)) (-3798 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-4272 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-4332 (($ $) 163 (|has| |#1| (-561)))) (-2207 (((-423 $) $) 164 (|has| |#1| (-561)))) (-4420 (((-112) $ $) 154 (|has| |#1| (-561)))) (-3863 (($) 104 (-2718 (|has| |#1| (-1118)) (|has| |#1| (-25))) CONST)) (-4359 (((-3 (-617 $) "failed") $) 64) (((-3 (-1183) "failed") $) 216) (((-3 (-569) "failed") $) 210 (|has| |#1| (-1044 (-569)))) (((-3 |#1| "failed") $) 207) (((-3 (-412 (-958 |#1|)) "failed") $) 169 (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) 123 (|has| |#1| (-1055))) (((-3 (-412 (-569)) "failed") $) 98 (-2718 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-3043 (((-617 $) $) 65) (((-1183) $) 217) (((-569) $) 209 (|has| |#1| (-1044 (-569)))) ((|#1| $) 208) (((-412 (-958 |#1|)) $) 170 (|has| |#1| (-561))) (((-958 |#1|) $) 124 (|has| |#1| (-1055))) (((-412 (-569)) $) 99 (-2718 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-2339 (($ $ $) 158 (|has| |#1| (-561)))) (-4091 (((-694 (-569)) (-694 $)) 137 (-1739 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 136 (-1739 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 135 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 134 (|has| |#1| (-1055)))) (-3351 (((-3 $ "failed") $) 106 (|has| |#1| (-1118)))) (-2348 (($ $ $) 157 (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 152 (|has| |#1| (-561)))) (-3848 (((-112) $) 165 (|has| |#1| (-561)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 212 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 211 (|has| |#1| (-892 (-383))))) (-2629 (($ $) 46) (($ (-649 $)) 45)) (-2042 (((-649 (-114)) $) 38)) (-3642 (((-114) (-114)) 37)) (-2861 (((-112) $) 105 (|has| |#1| (-1118)))) (-2355 (((-112) $) 17 (|has| $ (-1044 (-569))))) (-1450 (($ $) 186 (|has| |#1| (-1055)))) (-4378 (((-1131 |#1| (-617 $)) $) 187 (|has| |#1| (-1055)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 161 (|has| |#1| (-561)))) (-2021 (((-1179 $) (-617 $)) 20 (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) 31)) (-2052 (((-3 (-617 $) "failed") $) 41)) (-1798 (($ (-649 $)) 150 (|has| |#1| (-561))) (($ $ $) 149 (|has| |#1| (-561)))) (-2050 (((-1165) $) 10)) (-3629 (((-649 (-617 $)) $) 40)) (-1331 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-3338 (((-3 (-649 $) "failed") $) 192 (|has| |#1| (-1118)))) (-3360 (((-3 (-2 (|:| |val| $) (|:| -2777 (-569))) "failed") $) 183 (|has| |#1| (-1055)))) (-3327 (((-3 (-649 $) "failed") $) 190 (|has| |#1| (-25)))) (-2827 (((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3349 (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $) 191 (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-114)) 185 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-1183)) 184 (|has| |#1| (-1055)))) (-2016 (((-112) $ (-114)) 35) (((-112) $ (-1183)) 34)) (-1776 (($ $) 108 (-2718 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-1399 (((-776) $) 42)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 205)) (-1794 ((|#1| $) 204)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 151 (|has| |#1| (-561)))) (-1830 (($ (-649 $)) 148 (|has| |#1| (-561))) (($ $ $) 147 (|has| |#1| (-561)))) (-2031 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-3699 (((-423 $) $) 162 (|has| |#1| (-561)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 159 (|has| |#1| (-561)))) (-2374 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 153 (|has| |#1| (-561)))) (-4336 (((-112) $) 18 (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1183) (-1 $ (-649 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1183)) 197 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) 196 (|has| |#1| (-619 (-541)))) (($ $) 195 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 194 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1183)) 193 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 182 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 181 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) 180 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) 179 (|has| |#1| (-1055)))) (-4409 (((-776) $) 155 (|has| |#1| (-561)))) (-1852 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 156 (|has| |#1| (-561)))) (-2062 (($ $) 44) (($ $ $) 43)) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 128 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 127 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 126 (|has| |#1| (-1055))) (($ $ (-1183)) 125 (|has| |#1| (-1055)))) (-1440 (($ $) 176 (|has| |#1| (-561)))) (-4390 (((-1131 |#1| (-617 $)) $) 177 (|has| |#1| (-561)))) (-2760 (($ $) 19 (|has| $ (-1055)))) (-1384 (((-898 (-569)) $) 214 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 213 (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) 178 (|has| |#1| (-561))) (((-541) $) 100 (|has| |#1| (-619 (-541))))) (-1565 (($ $ $) 111 (|has| |#1| (-478)))) (-4356 (($ $ $) 112 (|has| |#1| (-478)))) (-2388 (((-867) $) 12) (($ (-617 $)) 63) (($ (-1183)) 215) (($ |#1|) 206) (($ (-1131 |#1| (-617 $))) 188 (|has| |#1| (-1055))) (($ (-412 |#1|)) 174 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 173 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 172 (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) 168 (|has| |#1| (-561))) (($ $) 141 (|has| |#1| (-561))) (($ (-958 |#1|)) 122 (|has| |#1| (-1055))) (($ (-412 (-569))) 97 (-2718 (|has| |#1| (-561)) (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569)))))) (($ (-569)) 96 (-2718 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-569)))))) (-1488 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3263 (((-776)) 133 (|has| |#1| (-1055)) CONST)) (-4176 (($ $) 48) (($ (-649 $)) 47)) (-3858 (((-112) (-114)) 36)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 145 (|has| |#1| (-561)))) (-4175 (($ (-1183) $) 202) (($ (-1183) $ $) 201) (($ (-1183) $ $ $) 200) (($ (-1183) $ $ $ $) 199) (($ (-1183) (-649 $)) 198)) (-1786 (($) 115 (|has| |#1| (-25)) CONST)) (-1796 (($) 103 (|has| |#1| (-1118)) CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 132 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 131 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 130 (|has| |#1| (-1055))) (($ $ (-1183)) 129 (|has| |#1| (-1055)))) (-2853 (((-112) $ $) 6)) (-2956 (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 175 (|has| |#1| (-561))) (($ $ $) 109 (-2718 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-2946 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-2935 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-569)) 110 (-2718 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 107 (|has| |#1| (-1118))) (($ $ (-927)) 102 (|has| |#1| (-1118)))) (* (($ (-412 (-569)) $) 167 (|has| |#1| (-561))) (($ $ (-412 (-569))) 166 (|has| |#1| (-561))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-569) $) 119 (|has| |#1| (-21))) (($ (-776) $) 117 (|has| |#1| (-25))) (($ (-927) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1118)))))
+(((-435 |#1|) (-140) (-1106)) (T -435))
+((-1787 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-1183))))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4175 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4175 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4175 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-619 (-541))))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-619 (-541))))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-619 (-541))))) (-1679 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1183)) (-4 *1 (-435 *4)) (-4 *4 (-1106)) (-4 *4 (-619 (-541))))) (-1679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1183)) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-619 (-541))))) (-3338 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-3349 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569)))) (-4 *1 (-435 *3)))) (-3327 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| -1406 (-569)) (|:| |var| (-617 *1)))) (-4 *1 (-435 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-1055)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-1450 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-1055)))) (-3349 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569)))) (-4 *1 (-435 *4)))) (-3349 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569)))) (-4 *1 (-435 *4)))) (-3360 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |val| *1) (|:| -2777 (-569)))) (-4 *1 (-435 *3)))) (-1679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-4390 (*1 *2 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-1440 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-561)))) (-2956 (*1 *1 *2 *2) (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-3663 (*1 *2 *1 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106)) (-4 *4 (-561)) (-5 *2 (-412 (-1179 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-1118)))))
+(-13 (-305) (-1044 (-1183)) (-890 |t#1|) (-405 |t#1|) (-416 |t#1|) (-10 -8 (-15 -1787 ((-112) $)) (-15 -1794 (|t#1| $)) (-15 -3865 ((-649 (-1183)) $)) (-15 -4175 ($ (-1183) $)) (-15 -4175 ($ (-1183) $ $)) (-15 -4175 ($ (-1183) $ $ $)) (-15 -4175 ($ (-1183) $ $ $ $)) (-15 -4175 ($ (-1183) (-649 $))) (IF (|has| |t#1| (-619 (-541))) (PROGN (-6 (-619 (-541))) (-15 -1679 ($ $ (-1183))) (-15 -1679 ($ $ (-649 (-1183)))) (-15 -1679 ($ $)) (-15 -1679 ($ $ (-114) $ (-1183))) (-15 -1679 ($ $ (-649 (-114)) (-649 $) (-1183)))) |%noBranch|) (IF (|has| |t#1| (-1118)) (PROGN (-6 (-731)) (-15 ** ($ $ (-776))) (-15 -3338 ((-3 (-649 $) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3327 ((-3 (-649 $) "failed") $)) (-15 -2827 ((-3 (-2 (|:| -1406 (-569)) (|:| |var| (-617 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-1044 (-958 |t#1|))) (-6 (-906 (-1183))) (-6 (-381 |t#1|)) (-15 -2388 ($ (-1131 |t#1| (-617 $)))) (-15 -4378 ((-1131 |t#1| (-617 $)) $)) (-15 -1450 ($ $)) (-15 -3349 ((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-114))) (-15 -3349 ((-3 (-2 (|:| |var| (-617 $)) (|:| -2777 (-569))) "failed") $ (-1183))) (-15 -3360 ((-3 (-2 (|:| |val| $) (|:| -2777 (-569))) "failed") $)) (-15 -1679 ($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $)))) (-15 -1679 ($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $))))) (-15 -1679 ($ $ (-1183) (-776) (-1 $ (-649 $)))) (-15 -1679 ($ $ (-1183) (-776) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-367)) (-6 (-1044 (-412 (-958 |t#1|)))) (-15 -1384 ($ (-423 $))) (-15 -4390 ((-1131 |t#1| (-617 $)) $)) (-15 -1440 ($ $)) (-15 -2956 ($ (-1131 |t#1| (-617 $)) (-1131 |t#1| (-617 $)))) (-15 -2388 ($ (-412 |t#1|))) (-15 -2388 ($ (-958 (-412 |t#1|)))) (-15 -2388 ($ (-412 (-958 (-412 |t#1|))))) (-15 -3663 ((-412 (-1179 $)) $ (-617 $))) (IF (|has| |t#1| (-1044 (-569))) (-6 (-1044 (-412 (-569)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-412 (-569))) |has| |#1| (-561)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-561)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-561)) ((-131) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-561))) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) -2718 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-569))) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1055)) ((-621 #4=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) |has| |#1| (-561)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) |has| |#1| (-561)) ((-293) |has| |#1| (-561)) ((-310) |has| |#1| (-561)) ((-312 $) . T) ((-305) . T) ((-367) |has| |#1| (-561)) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) |has| |#1| (-561)) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-561)) ((-651 (-569)) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-653 #0#) |has| |#1| (-561)) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-645 #0#) |has| |#1| (-561)) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #0#) |has| |#1| (-561)) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) -2718 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) |has| |#1| (-561)) ((-1044 (-412 (-569))) -2718 (|has| |#1| (-1044 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) ((-1044 #1#) |has| |#1| (-561)) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 #3#) |has| |#1| (-1055)) ((-1044 #4#) . T) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-561)) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) |has| |#1| (-561)) ((-1062 #0#) |has| |#1| (-561)) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) |has| |#1| (-561)) ((-1055) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1064) -2718 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1118) -2718 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) . T) ((-1223) . T) ((-1227) |has| |#1| (-561)))
+((-4033 ((|#2| |#2| |#2|) 31)) (-3642 (((-114) (-114)) 43)) (-1844 ((|#2| |#2|) 63)) (-2942 ((|#2| |#2|) 66)) (-4022 ((|#2| |#2|) 30)) (-4067 ((|#2| |#2| |#2|) 33)) (-4089 ((|#2| |#2| |#2|) 35)) (-4055 ((|#2| |#2| |#2|) 32)) (-4079 ((|#2| |#2| |#2|) 34)) (-3858 (((-112) (-114)) 41)) (-4115 ((|#2| |#2|) 37)) (-4101 ((|#2| |#2|) 36)) (-3999 ((|#2| |#2|) 25)) (-4044 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-4010 ((|#2| |#2| |#2|) 29)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3999 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4044 (|#2| |#2| |#2|)) (-15 -4010 (|#2| |#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4033 (|#2| |#2| |#2|)) (-15 -4055 (|#2| |#2| |#2|)) (-15 -4067 (|#2| |#2| |#2|)) (-15 -4079 (|#2| |#2| |#2|)) (-15 -4089 (|#2| |#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -1844 (|#2| |#2|))) (-561) (-435 |#1|)) (T -436))
+((-1844 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2942 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4115 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4089 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4079 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4067 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4055 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4033 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4010 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4044 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4)) (-4 *4 (-435 *3)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3999 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4044 (|#2| |#2| |#2|)) (-15 -4010 (|#2| |#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4033 (|#2| |#2| |#2|)) (-15 -4055 (|#2| |#2| |#2|)) (-15 -4067 (|#2| |#2| |#2|)) (-15 -4079 (|#2| |#2| |#2|)) (-15 -4089 (|#2| |#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)))
+((-3445 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|)) 68)))
+(((-437 |#1| |#2|) (-10 -7 (-15 -3445 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -3445 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-561) (-147)) (-435 |#1|)) (T -437))
+((-3445 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1179 *3)) (|:| |pol2| (-1179 *3)) (|:| |prim| (-1179 *3)))) (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1179 *5))) (|:| |prim| (-1179 *5)))) (-5 *1 (-437 *4 *5)))))
+(-10 -7 (-15 -3445 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -3445 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1863 (((-1278)) 18)) (-1854 (((-1179 (-412 (-569))) |#2| (-617 |#2|)) 40) (((-412 (-569)) |#2|) 24)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -1854 ((-412 (-569)) |#2|)) (-15 -1854 ((-1179 (-412 (-569))) |#2| (-617 |#2|))) (-15 -1863 ((-1278)))) (-13 (-561) (-1044 (-569))) (-435 |#1|)) (T -438))
+((-1863 (*1 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1278)) (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-438 *5 *3)))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4)))))
+(-10 -7 (-15 -1854 ((-412 (-569)) |#2|)) (-15 -1854 ((-1179 (-412 (-569))) |#2| (-617 |#2|))) (-15 -1863 ((-1278))))
+((-2318 (((-112) $) 32)) (-1870 (((-112) $) 34)) (-2129 (((-112) $) 35)) (-1887 (((-112) $) 38)) (-1903 (((-112) $) 33)) (-1896 (((-112) $) 37)) (-2388 (((-867) $) 20) (($ (-1165)) 31) (($ (-1183)) 26) (((-1183) $) 24) (((-1110) $) 23)) (-1878 (((-112) $) 36)) (-2853 (((-112) $ $) 17)))
+(((-439) (-13 (-618 (-867)) (-10 -8 (-15 -2388 ($ (-1165))) (-15 -2388 ($ (-1183))) (-15 -2388 ((-1183) $)) (-15 -2388 ((-1110) $)) (-15 -2318 ((-112) $)) (-15 -1903 ((-112) $)) (-15 -2129 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -1870 ((-112) $)) (-15 -2853 ((-112) $ $))))) (T -439))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-439)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2853 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2388 ($ (-1165))) (-15 -2388 ($ (-1183))) (-15 -2388 ((-1183) $)) (-15 -2388 ((-1110) $)) (-15 -2318 ((-112) $)) (-15 -1903 ((-112) $)) (-15 -2129 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -1870 ((-112) $)) (-15 -2853 ((-112) $ $))))
+((-1921 (((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|) 72)) (-1912 (((-423 |#3|) |#3|) 34)) (-1938 (((-3 (-423 (-1179 (-48))) "failed") |#3|) 46 (|has| |#2| (-1044 (-48))))) (-1929 (((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2457 (-112))) |#3|) 37)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -1912 ((-423 |#3|) |#3|)) (-15 -1921 ((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|)) (-15 -1929 ((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2457 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -1938 ((-3 (-423 (-1179 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-561) (-1044 (-569))) (-435 |#1|) (-1249 |#2|)) (T -440))
+((-1938 (*1 *2 *3) (|partial| -12 (-4 *5 (-1044 (-48))) (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1179 (-48)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2457 (-112)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-1921 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1179 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-1912 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
+(-10 -7 (-15 -1912 ((-423 |#3|) |#3|)) (-15 -1921 ((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|)) (-15 -1929 ((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2457 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -1938 ((-3 (-423 (-1179 (-48))) "failed") |#3|)) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2991 (((-1165) $ (-1165)) NIL)) (-3035 (($ $ (-1165)) NIL)) (-3001 (((-1165) $) NIL)) (-2067 (((-393) (-393) (-393)) 17) (((-393) (-393)) 15)) (-1675 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3458 (((-393) $) NIL)) (-2050 (((-1165) $) NIL)) (-3014 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2057 (((-1278) (-1165)) 9)) (-2047 (((-1278) (-1165)) 10)) (-2036 (((-1278)) 11)) (-2388 (((-867) $) NIL)) (-3026 (($ $) 39)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-441) (-13 (-368 (-393) (-1165)) (-10 -7 (-15 -2067 ((-393) (-393) (-393))) (-15 -2067 ((-393) (-393))) (-15 -2057 ((-1278) (-1165))) (-15 -2047 ((-1278) (-1165))) (-15 -2036 ((-1278)))))) (T -441))
+((-2067 (*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))) (-2036 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-441)))))
+(-13 (-368 (-393) (-1165)) (-10 -7 (-15 -2067 ((-393) (-393) (-393))) (-15 -2067 ((-393) (-393))) (-15 -2057 ((-1278) (-1165))) (-15 -2047 ((-1278) (-1165))) (-15 -2036 ((-1278)))))
+((-2383 (((-112) $ $) NIL)) (-2026 (((-3 (|:| |fst| (-439)) (|:| -2513 "void")) $) 11)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2003 (($) 35)) (-1974 (($) 41)) (-1984 (($) 37)) (-1955 (($) 39)) (-1993 (($) 36)) (-1965 (($) 38)) (-1946 (($) 40)) (-2015 (((-112) $) 8)) (-4327 (((-649 (-958 (-569))) $) 19)) (-3709 (($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-1183)) (-112)) 29) (($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-958 (-569))) (-112)) 30)) (-2388 (((-867) $) 24) (($ (-439)) 32)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-442) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-439))) (-15 -2026 ((-3 (|:| |fst| (-439)) (|:| -2513 "void")) $)) (-15 -4327 ((-649 (-958 (-569))) $)) (-15 -2015 ((-112) $)) (-15 -3709 ($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-1183)) (-112))) (-15 -3709 ($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-958 (-569))) (-112))) (-15 -2003 ($)) (-15 -1993 ($)) (-15 -1984 ($)) (-15 -1974 ($)) (-15 -1965 ($)) (-15 -1955 ($)) (-15 -1946 ($))))) (T -442))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *1 (-442)))) (-4327 (*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3709 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *3 (-649 (-1183))) (-5 *4 (-112)) (-5 *1 (-442)))) (-3709 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442)))) (-2003 (*1 *1) (-5 *1 (-442))) (-1993 (*1 *1) (-5 *1 (-442))) (-1984 (*1 *1) (-5 *1 (-442))) (-1974 (*1 *1) (-5 *1 (-442))) (-1965 (*1 *1) (-5 *1 (-442))) (-1955 (*1 *1) (-5 *1 (-442))) (-1946 (*1 *1) (-5 *1 (-442))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-439))) (-15 -2026 ((-3 (|:| |fst| (-439)) (|:| -2513 "void")) $)) (-15 -4327 ((-649 (-958 (-569))) $)) (-15 -2015 ((-112) $)) (-15 -3709 ($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-1183)) (-112))) (-15 -3709 ($ (-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-649 (-958 (-569))) (-112))) (-15 -2003 ($)) (-15 -1993 ($)) (-15 -1984 ($)) (-15 -1974 ($)) (-15 -1965 ($)) (-15 -1955 ($)) (-15 -1946 ($))))
+((-2383 (((-112) $ $) NIL)) (-3458 (((-1183) $) 8)) (-2050 (((-1165) $) 17)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 11)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 14)))
+(((-443 |#1|) (-13 (-1106) (-10 -8 (-15 -3458 ((-1183) $)))) (-1183)) (T -443))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-443 *3)) (-14 *3 *2))))
+(-13 (-1106) (-10 -8 (-15 -3458 ((-1183) $))))
+((-2383 (((-112) $ $) NIL)) (-4311 (((-1124) $) 7)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 13)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)))
+(((-444) (-13 (-1106) (-10 -8 (-15 -4311 ((-1124) $))))) (T -444))
+((-4311 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-444)))))
+(-13 (-1106) (-10 -8 (-15 -4311 ((-1124) $))))
+((-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8) (($ (-1273 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 11)))
(((-445) (-140)) (T -445))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-704))) (-4 *1 (-445)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-445)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-4 *1 (-445)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-1272 (-704)))) (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-333))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))))))
-(((-618 (-868)) . T) ((-401) . T) ((-1222) . T))
-((-3595 (((-3 $ "failed") (-1272 (-317 (-382)))) 21) (((-3 $ "failed") (-1272 (-317 (-551)))) 19) (((-3 $ "failed") (-1272 (-952 (-382)))) 17) (((-3 $ "failed") (-1272 (-952 (-551)))) 15) (((-3 $ "failed") (-1272 (-412 (-952 (-382))))) 13) (((-3 $ "failed") (-1272 (-412 (-952 (-551))))) 11)) (-3594 (($ (-1272 (-317 (-382)))) 22) (($ (-1272 (-317 (-551)))) 20) (($ (-1272 (-952 (-382)))) 18) (($ (-1272 (-952 (-551)))) 16) (($ (-1272 (-412 (-952 (-382))))) 14) (($ (-1272 (-412 (-952 (-551))))) 12)) (-3822 (((-1278) $) 7)) (-4396 (((-868) $) 8) (($ (-646 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) 23)))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-704))) (-4 *1 (-445)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-4 *1 (-445)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-1273 (-704)))) (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-333))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
+((-4359 (((-3 $ "failed") (-1273 (-319 (-383)))) 21) (((-3 $ "failed") (-1273 (-319 (-569)))) 19) (((-3 $ "failed") (-1273 (-958 (-383)))) 17) (((-3 $ "failed") (-1273 (-958 (-569)))) 15) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 11)) (-3043 (($ (-1273 (-319 (-383)))) 22) (($ (-1273 (-319 (-569)))) 20) (($ (-1273 (-958 (-383)))) 18) (($ (-1273 (-958 (-569)))) 16) (($ (-1273 (-412 (-958 (-383))))) 14) (($ (-1273 (-412 (-958 (-569))))) 12)) (-3275 (((-1278) $) 7)) (-2388 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) 23)))
(((-446) (-140)) (T -446))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-446)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333))))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-317 (-382)))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-317 (-382)))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-317 (-551)))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-317 (-551)))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-952 (-382)))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-952 (-382)))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-952 (-551)))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-952 (-551)))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-412 (-952 (-382))))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-412 (-952 (-382))))) (-4 *1 (-446)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1272 (-412 (-952 (-551))))) (-4 *1 (-446)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-412 (-952 (-551))))) (-4 *1 (-446)))))
-(-13 (-401) (-10 -8 (-15 -4396 ($ (-646 (-333)))) (-15 -4396 ($ (-333))) (-15 -4396 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))) (-15 -3594 ($ (-1272 (-317 (-382))))) (-15 -3595 ((-3 $ "failed") (-1272 (-317 (-382))))) (-15 -3594 ($ (-1272 (-317 (-551))))) (-15 -3595 ((-3 $ "failed") (-1272 (-317 (-551))))) (-15 -3594 ($ (-1272 (-952 (-382))))) (-15 -3595 ((-3 $ "failed") (-1272 (-952 (-382))))) (-15 -3594 ($ (-1272 (-952 (-551))))) (-15 -3595 ((-3 $ "failed") (-1272 (-952 (-551))))) (-15 -3594 ($ (-1272 (-412 (-952 (-382)))))) (-15 -3595 ((-3 $ "failed") (-1272 (-412 (-952 (-382)))))) (-15 -3594 ($ (-1272 (-412 (-952 (-551)))))) (-15 -3595 ((-3 $ "failed") (-1272 (-412 (-952 (-551))))))))
-(((-618 (-868)) . T) ((-401) . T) ((-1222) . T))
-((-2024 (((-112)) 18)) (-2025 (((-112) (-112)) 19)) (-2026 (((-112)) 14)) (-2027 (((-112) (-112)) 15)) (-2029 (((-112)) 16)) (-2030 (((-112) (-112)) 17)) (-2021 (((-925) (-925)) 22) (((-925)) 21)) (-2022 (((-776) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551))))) 52)) (-2020 (((-925) (-925)) 24) (((-925)) 23)) (-2023 (((-2 (|:| -2996 (-551)) (|:| -1964 (-646 |#1|))) |#1|) 97)) (-2019 (((-410 |#1|) (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551))))))) 178)) (-4184 (((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112)) 211)) (-4183 (((-410 |#1|) |#1| (-776) (-776)) 226) (((-410 |#1|) |#1| (-646 (-776)) (-776)) 223) (((-410 |#1|) |#1| (-646 (-776))) 225) (((-410 |#1|) |#1| (-776)) 224) (((-410 |#1|) |#1|) 222)) (-2041 (((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776) (-112)) 228) (((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776)) 229) (((-3 |#1| "failed") (-925) |#1| (-646 (-776))) 231) (((-3 |#1| "failed") (-925) |#1| (-776)) 230) (((-3 |#1| "failed") (-925) |#1|) 232)) (-4182 (((-410 |#1|) |#1| (-776) (-776)) 221) (((-410 |#1|) |#1| (-646 (-776)) (-776)) 217) (((-410 |#1|) |#1| (-646 (-776))) 219) (((-410 |#1|) |#1| (-776)) 218) (((-410 |#1|) |#1|) 216)) (-2028 (((-112) |#1|) 44)) (-2040 (((-741 (-776)) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551))))) 102)) (-2031 (((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112) (-1103 (-776)) (-776)) 215)))
-(((-447 |#1|) (-10 -7 (-15 -2019 ((-410 |#1|) (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))))) (-15 -2040 ((-741 (-776)) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))))) (-15 -2020 ((-925))) (-15 -2020 ((-925) (-925))) (-15 -2021 ((-925))) (-15 -2021 ((-925) (-925))) (-15 -2022 ((-776) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))))) (-15 -2023 ((-2 (|:| -2996 (-551)) (|:| -1964 (-646 |#1|))) |#1|)) (-15 -2024 ((-112))) (-15 -2025 ((-112) (-112))) (-15 -2026 ((-112))) (-15 -2027 ((-112) (-112))) (-15 -2028 ((-112) |#1|)) (-15 -2029 ((-112))) (-15 -2030 ((-112) (-112))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4182 ((-410 |#1|) |#1| (-776))) (-15 -4182 ((-410 |#1|) |#1| (-646 (-776)))) (-15 -4182 ((-410 |#1|) |#1| (-646 (-776)) (-776))) (-15 -4182 ((-410 |#1|) |#1| (-776) (-776))) (-15 -4183 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1| (-776))) (-15 -4183 ((-410 |#1|) |#1| (-646 (-776)))) (-15 -4183 ((-410 |#1|) |#1| (-646 (-776)) (-776))) (-15 -4183 ((-410 |#1|) |#1| (-776) (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1|)) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776) (-112))) (-15 -4184 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112))) (-15 -2031 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112) (-1103 (-776)) (-776)))) (-1248 (-551))) (T -447))
-((-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1103 (-776))) (-5 *6 (-776)) (-5 *2 (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551))))))) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551))))))) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2041 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551))))) (-2041 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551))))) (-2041 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551))))) (-2041 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-925)) (-5 *4 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551))))) (-2041 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-925)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551))))) (-4183 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4183 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4183 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-776))) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4183 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4183 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-776))) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2029 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2028 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2027 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2026 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2025 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2024 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2023 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2996 (-551)) (|:| -1964 (-646 *3)))) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -4182 *4) (|:| -4398 (-551))))) (-4 *4 (-1248 (-551))) (-5 *2 (-776)) (-5 *1 (-447 *4)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2021 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2020 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -4182 *4) (|:| -4398 (-551))))) (-4 *4 (-1248 (-551))) (-5 *2 (-741 (-776))) (-5 *1 (-447 *4)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| *4) (|:| -2576 (-551))))))) (-4 *4 (-1248 (-551))) (-5 *2 (-410 *4)) (-5 *1 (-447 *4)))))
-(-10 -7 (-15 -2019 ((-410 |#1|) (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))))) (-15 -2040 ((-741 (-776)) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))))) (-15 -2020 ((-925))) (-15 -2020 ((-925) (-925))) (-15 -2021 ((-925))) (-15 -2021 ((-925) (-925))) (-15 -2022 ((-776) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))))) (-15 -2023 ((-2 (|:| -2996 (-551)) (|:| -1964 (-646 |#1|))) |#1|)) (-15 -2024 ((-112))) (-15 -2025 ((-112) (-112))) (-15 -2026 ((-112))) (-15 -2027 ((-112) (-112))) (-15 -2028 ((-112) |#1|)) (-15 -2029 ((-112))) (-15 -2030 ((-112) (-112))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4182 ((-410 |#1|) |#1| (-776))) (-15 -4182 ((-410 |#1|) |#1| (-646 (-776)))) (-15 -4182 ((-410 |#1|) |#1| (-646 (-776)) (-776))) (-15 -4182 ((-410 |#1|) |#1| (-776) (-776))) (-15 -4183 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1| (-776))) (-15 -4183 ((-410 |#1|) |#1| (-646 (-776)))) (-15 -4183 ((-410 |#1|) |#1| (-646 (-776)) (-776))) (-15 -4183 ((-410 |#1|) |#1| (-776) (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1|)) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776))) (-15 -2041 ((-3 |#1| "failed") (-925) |#1| (-646 (-776)) (-776) (-112))) (-15 -4184 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112))) (-15 -2031 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112) (-1103 (-776)) (-776))))
-((-2035 (((-551) |#2|) 52) (((-551) |#2| (-776)) 51)) (-2034 (((-551) |#2|) 67)) (-2036 ((|#3| |#2|) 26)) (-3554 ((|#3| |#2| (-925)) 15)) (-4283 ((|#3| |#2|) 16)) (-2037 ((|#3| |#2|) 9)) (-3021 ((|#3| |#2|) 10)) (-2033 ((|#3| |#2| (-925)) 74) ((|#3| |#2|) 34)) (-2032 (((-551) |#2|) 69)))
-(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2032 ((-551) |#2|)) (-15 -2033 (|#3| |#2|)) (-15 -2033 (|#3| |#2| (-925))) (-15 -2034 ((-551) |#2|)) (-15 -2035 ((-551) |#2| (-776))) (-15 -2035 ((-551) |#2|)) (-15 -3554 (|#3| |#2| (-925))) (-15 -2036 (|#3| |#2|)) (-15 -2037 (|#3| |#2|)) (-15 -3021 (|#3| |#2|)) (-15 -4283 (|#3| |#2|))) (-1055) (-1248 |#1|) (-13 (-409) (-1044 |#1|) (-367) (-1208) (-287))) (T -448))
-((-4283 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))) (-3021 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))) (-2037 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))) (-2036 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1248 *5)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1248 *5)) (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))))) (-2034 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1248 *5)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(-10 -7 (-15 -2032 ((-551) |#2|)) (-15 -2033 (|#3| |#2|)) (-15 -2033 (|#3| |#2| (-925))) (-15 -2034 ((-551) |#2|)) (-15 -2035 ((-551) |#2| (-776))) (-15 -2035 ((-551) |#2|)) (-15 -3554 (|#3| |#2| (-925))) (-15 -2036 (|#3| |#2|)) (-15 -2037 (|#3| |#2|)) (-15 -3021 (|#3| |#2|)) (-15 -4283 (|#3| |#2|)))
-((-3796 ((|#2| (-1272 |#1|)) 45)) (-2039 ((|#2| |#2| |#1|) 61)) (-2038 ((|#2| |#2| |#1|) 53)) (-2461 ((|#2| |#2|) 49)) (-3611 (((-112) |#2|) 36)) (-2042 (((-646 |#2|) (-925) (-410 |#2|)) 24)) (-2041 ((|#2| (-925) (-410 |#2|)) 28)) (-2040 (((-741 (-776)) (-410 |#2|)) 33)))
-(((-449 |#1| |#2|) (-10 -7 (-15 -3611 ((-112) |#2|)) (-15 -3796 (|#2| (-1272 |#1|))) (-15 -2461 (|#2| |#2|)) (-15 -2038 (|#2| |#2| |#1|)) (-15 -2039 (|#2| |#2| |#1|)) (-15 -2040 ((-741 (-776)) (-410 |#2|))) (-15 -2041 (|#2| (-925) (-410 |#2|))) (-15 -2042 ((-646 |#2|) (-925) (-410 |#2|)))) (-1055) (-1248 |#1|)) (T -449))
-((-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-410 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-1055)) (-5 *2 (-646 *6)) (-5 *1 (-449 *5 *6)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-410 *2)) (-4 *2 (-1248 *5)) (-5 *1 (-449 *5 *2)) (-4 *5 (-1055)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-1055)) (-5 *2 (-741 (-776))) (-5 *1 (-449 *4 *5)))) (-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3)))) (-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3)))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-1055)) (-4 *2 (-1248 *4)) (-5 *1 (-449 *4 *2)))) (-3611 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -3611 ((-112) |#2|)) (-15 -3796 (|#2| (-1272 |#1|))) (-15 -2461 (|#2| |#2|)) (-15 -2038 (|#2| |#2| |#1|)) (-15 -2039 (|#2| |#2| |#1|)) (-15 -2040 ((-741 (-776)) (-410 |#2|))) (-15 -2041 (|#2| (-925) (-410 |#2|))) (-15 -2042 ((-646 |#2|) (-925) (-410 |#2|))))
-((-2045 (((-776)) 59)) (-2049 (((-776)) 29 (|has| |#1| (-409))) (((-776) (-776)) 28 (|has| |#1| (-409)))) (-2048 (((-551) |#1|) 25 (|has| |#1| (-409)))) (-2047 (((-551) |#1|) 27 (|has| |#1| (-409)))) (-2044 (((-776)) 58) (((-776) (-776)) 57)) (-2043 ((|#1| (-776) (-551)) 37)) (-2046 (((-1278)) 61)))
-(((-450 |#1|) (-10 -7 (-15 -2043 (|#1| (-776) (-551))) (-15 -2044 ((-776) (-776))) (-15 -2044 ((-776))) (-15 -2045 ((-776))) (-15 -2046 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -2047 ((-551) |#1|)) (-15 -2048 ((-551) |#1|)) (-15 -2049 ((-776) (-776))) (-15 -2049 ((-776)))) |%noBranch|)) (-1055)) (T -450))
-((-2049 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2048 (*1 *2 *3) (-12 (-5 *2 (-551)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2047 (*1 *2 *3) (-12 (-5 *2 (-551)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2046 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2045 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2044 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-551)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
-(-10 -7 (-15 -2043 (|#1| (-776) (-551))) (-15 -2044 ((-776) (-776))) (-15 -2044 ((-776))) (-15 -2045 ((-776))) (-15 -2046 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -2047 ((-551) |#1|)) (-15 -2048 ((-551) |#1|)) (-15 -2049 ((-776) (-776))) (-15 -2049 ((-776)))) |%noBranch|))
-((-2050 (((-646 (-551)) (-551)) 76)) (-4173 (((-112) (-169 (-551))) 82)) (-4182 (((-410 (-169 (-551))) (-169 (-551))) 75)))
-(((-451) (-10 -7 (-15 -4182 ((-410 (-169 (-551))) (-169 (-551)))) (-15 -2050 ((-646 (-551)) (-551))) (-15 -4173 ((-112) (-169 (-551)))))) (T -451))
-((-4173 (*1 *2 *3) (-12 (-5 *3 (-169 (-551))) (-5 *2 (-112)) (-5 *1 (-451)))) (-2050 (*1 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-451)) (-5 *3 (-551)))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 (-169 (-551)))) (-5 *1 (-451)) (-5 *3 (-169 (-551))))))
-(-10 -7 (-15 -4182 ((-410 (-169 (-551))) (-169 (-551)))) (-15 -2050 ((-646 (-551)) (-551))) (-15 -4173 ((-112) (-169 (-551)))))
-((-3365 ((|#4| |#4| (-646 |#4|)) 20 (|has| |#1| (-367)))) (-2418 (((-646 |#4|) (-646 |#4|) (-1165) (-1165)) 46) (((-646 |#4|) (-646 |#4|) (-1165)) 45) (((-646 |#4|) (-646 |#4|)) 34)))
-(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-646 |#4|) (-646 |#4|))) (-15 -2418 ((-646 |#4|) (-646 |#4|) (-1165))) (-15 -2418 ((-646 |#4|) (-646 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -3365 (|#4| |#4| (-646 |#4|))) |%noBranch|)) (-457) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -452))
-((-3365 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))) (-2418 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2418 (*1 *2 *2 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2418 ((-646 |#4|) (-646 |#4|))) (-15 -2418 ((-646 |#4|) (-646 |#4|) (-1165))) (-15 -2418 ((-646 |#4|) (-646 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -3365 (|#4| |#4| (-646 |#4|))) |%noBranch|))
-((-2051 ((|#4| |#4| (-646 |#4|)) 82)) (-2052 (((-646 |#4|) (-646 |#4|) (-1165) (-1165)) 22) (((-646 |#4|) (-646 |#4|) (-1165)) 21) (((-646 |#4|) (-646 |#4|)) 13)))
-(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2051 (|#4| |#4| (-646 |#4|))) (-15 -2052 ((-646 |#4|) (-646 |#4|))) (-15 -2052 ((-646 |#4|) (-646 |#4|) (-1165))) (-15 -2052 ((-646 |#4|) (-646 |#4|) (-1165) (-1165)))) (-310) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -453))
-((-2052 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2052 (*1 *2 *2 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2051 (|#4| |#4| (-646 |#4|))) (-15 -2052 ((-646 |#4|) (-646 |#4|))) (-15 -2052 ((-646 |#4|) (-646 |#4|) (-1165))) (-15 -2052 ((-646 |#4|) (-646 |#4|) (-1165) (-1165))))
-((-2054 (((-646 (-646 |#4|)) (-646 |#4|) (-112)) 89) (((-646 (-646 |#4|)) (-646 |#4|)) 88) (((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|) (-112)) 82) (((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|)) 83)) (-2053 (((-646 (-646 |#4|)) (-646 |#4|) (-112)) 55) (((-646 (-646 |#4|)) (-646 |#4|)) 77)))
-(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2053 ((-646 (-646 |#4|)) (-646 |#4|))) (-15 -2053 ((-646 (-646 |#4|)) (-646 |#4|) (-112))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|) (-112))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-112)))) (-13 (-310) (-147)) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -454))
-((-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-646 *8)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-2054 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-646 *8)))) (-2054 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-646 *8)))) (-2053 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(-10 -7 (-15 -2053 ((-646 (-646 |#4|)) (-646 |#4|))) (-15 -2053 ((-646 (-646 |#4|)) (-646 |#4|) (-112))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-646 |#4|) (-112))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|))) (-15 -2054 ((-646 (-646 |#4|)) (-646 |#4|) (-112))))
-((-2078 (((-776) |#4|) 12)) (-2066 (((-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|))) |#4| (-776) (-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|)))) 39)) (-2068 (((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2067 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2056 ((|#4| |#4| (-646 |#4|)) 54)) (-2064 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-646 |#4|)) 96)) (-2071 (((-1278) |#4|) 59)) (-2074 (((-1278) (-646 |#4|)) 69)) (-2072 (((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551)) 66)) (-2075 (((-1278) (-551)) 112)) (-2069 (((-646 |#4|) (-646 |#4|)) 104)) (-2077 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|)) |#4| (-776)) 31)) (-2070 (((-551) |#4|) 109)) (-2065 ((|#4| |#4|) 37)) (-2057 (((-646 |#4|) (-646 |#4|) (-551) (-551)) 74)) (-2073 (((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551) (-551)) 125)) (-2076 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2058 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2063 (((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2062 (((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2059 (((-112) |#2| |#2|) 75)) (-2061 (((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2060 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2055 ((|#4| |#4| (-646 |#4|)) 97)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 (|#4| |#4| (-646 |#4|))) (-15 -2056 (|#4| |#4| (-646 |#4|))) (-15 -2057 ((-646 |#4|) (-646 |#4|) (-551) (-551))) (-15 -2058 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2059 ((-112) |#2| |#2|)) (-15 -2060 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2061 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2062 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2063 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2064 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-646 |#4|))) (-15 -2065 (|#4| |#4|)) (-15 -2066 ((-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|))) |#4| (-776) (-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|))))) (-15 -2067 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2068 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2069 ((-646 |#4|) (-646 |#4|))) (-15 -2070 ((-551) |#4|)) (-15 -2071 ((-1278) |#4|)) (-15 -2072 ((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551))) (-15 -2073 ((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551) (-551))) (-15 -2074 ((-1278) (-646 |#4|))) (-15 -2075 ((-1278) (-551))) (-15 -2076 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2077 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|)) |#4| (-776))) (-15 -2078 ((-776) |#4|))) (-457) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -455))
-((-2078 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -2192 *4))) (-5 *5 (-776)) (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-455 *6 *7 *8 *4)))) (-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-551)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2073 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-455 *5 *6 *7 *4)))) (-2072 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-455 *5 *6 *7 *4)))) (-2071 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-551)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))) (-2068 (*1 *2 *2 *2) (-12 (-5 *2 (-646 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-798)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2)) (-4 *4 (-457)) (-4 *6 (-855)))) (-2066 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 *3)))) (-5 *4 (-776)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-455 *5 *6 *7 *3)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-455 *5 *6 *7 *3)))) (-2063 (*1 *2 *3 *2) (-12 (-5 *2 (-646 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-798)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-5 *1 (-455 *4 *3 *5 *6)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-646 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))) (-2061 (*1 *2 *3 *2) (-12 (-5 *2 (-646 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-798)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *3)))) (-2060 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-2059 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2057 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-551)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2056 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2055 (|#4| |#4| (-646 |#4|))) (-15 -2056 (|#4| |#4| (-646 |#4|))) (-15 -2057 ((-646 |#4|) (-646 |#4|) (-551) (-551))) (-15 -2058 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2059 ((-112) |#2| |#2|)) (-15 -2060 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2061 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2062 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2063 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2064 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-646 |#4|))) (-15 -2065 (|#4| |#4|)) (-15 -2066 ((-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|))) |#4| (-776) (-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|))))) (-15 -2067 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2068 ((-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-646 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2069 ((-646 |#4|) (-646 |#4|))) (-15 -2070 ((-551) |#4|)) (-15 -2071 ((-1278) |#4|)) (-15 -2072 ((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551))) (-15 -2073 ((-551) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-551) (-551) (-551) (-551))) (-15 -2074 ((-1278) (-646 |#4|))) (-15 -2075 ((-1278) (-551))) (-15 -2076 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2077 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -2192 |#4|)) |#4| (-776))) (-15 -2078 ((-776) |#4|)))
-((-2079 (($ $ $) 14) (($ (-646 $)) 21)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 46)) (-3582 (($ $ $) NIL) (($ (-646 $)) 22)))
-(((-456 |#1|) (-10 -8 (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2079 (|#1| (-646 |#1|))) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|))) (-457)) (T -456))
-NIL
-(-10 -8 (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2079 (|#1| (-646 |#1|))) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -3582 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3907 (((-3 $ "failed") $ $) 48)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333))))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446)))))
+(-13 (-400) (-10 -8 (-15 -2388 ($ (-649 (-333)))) (-15 -2388 ($ (-333))) (-15 -2388 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))) (-15 -3043 ($ (-1273 (-319 (-383))))) (-15 -4359 ((-3 $ "failed") (-1273 (-319 (-383))))) (-15 -3043 ($ (-1273 (-319 (-569))))) (-15 -4359 ((-3 $ "failed") (-1273 (-319 (-569))))) (-15 -3043 ($ (-1273 (-958 (-383))))) (-15 -4359 ((-3 $ "failed") (-1273 (-958 (-383))))) (-15 -3043 ($ (-1273 (-958 (-569))))) (-15 -4359 ((-3 $ "failed") (-1273 (-958 (-569))))) (-15 -3043 ($ (-1273 (-412 (-958 (-383)))))) (-15 -4359 ((-3 $ "failed") (-1273 (-412 (-958 (-383)))))) (-15 -3043 ($ (-1273 (-412 (-958 (-569)))))) (-15 -4359 ((-3 $ "failed") (-1273 (-412 (-958 (-569))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
+((-2126 (((-112)) 18)) (-2136 (((-112) (-112)) 19)) (-2146 (((-112)) 14)) (-2156 (((-112) (-112)) 15)) (-2175 (((-112)) 16)) (-2185 (((-112) (-112)) 17)) (-2097 (((-927) (-927)) 22) (((-927)) 21)) (-2107 (((-776) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569))))) 52)) (-2087 (((-927) (-927)) 24) (((-927)) 23)) (-2117 (((-2 (|:| -2683 (-569)) (|:| -2671 (-649 |#1|))) |#1|) 97)) (-2078 (((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569))))))) 178)) (-3935 (((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112)) 211)) (-3924 (((-423 |#1|) |#1| (-776) (-776)) 226) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 223) (((-423 |#1|) |#1| (-649 (-776))) 225) (((-423 |#1|) |#1| (-776)) 224) (((-423 |#1|) |#1|) 222)) (-2285 (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112)) 228) (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776)) 229) (((-3 |#1| "failed") (-927) |#1| (-649 (-776))) 231) (((-3 |#1| "failed") (-927) |#1| (-776)) 230) (((-3 |#1| "failed") (-927) |#1|) 232)) (-3699 (((-423 |#1|) |#1| (-776) (-776)) 221) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 217) (((-423 |#1|) |#1| (-649 (-776))) 219) (((-423 |#1|) |#1| (-776)) 218) (((-423 |#1|) |#1|) 216)) (-2165 (((-112) |#1|) 44)) (-2277 (((-742 (-776)) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569))))) 102)) (-2194 (((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112) (-1108 (-776)) (-776)) 215)))
+(((-447 |#1|) (-10 -7 (-15 -2078 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))))) (-15 -2277 ((-742 (-776)) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))))) (-15 -2087 ((-927))) (-15 -2087 ((-927) (-927))) (-15 -2097 ((-927))) (-15 -2097 ((-927) (-927))) (-15 -2107 ((-776) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))))) (-15 -2117 ((-2 (|:| -2683 (-569)) (|:| -2671 (-649 |#1|))) |#1|)) (-15 -2126 ((-112))) (-15 -2136 ((-112) (-112))) (-15 -2146 ((-112))) (-15 -2156 ((-112) (-112))) (-15 -2165 ((-112) |#1|)) (-15 -2175 ((-112))) (-15 -2185 ((-112) (-112))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3699 ((-423 |#1|) |#1| (-776))) (-15 -3699 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3699 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3699 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3924 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1| (-776))) (-15 -3924 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3924 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3924 ((-423 |#1|) |#1| (-776) (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1|)) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -3935 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112))) (-15 -2194 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112) (-1108 (-776)) (-776)))) (-1249 (-569))) (T -447))
+((-2194 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1108 (-776))) (-5 *6 (-776)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3935 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2285 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2285 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2285 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2285 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2285 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-3924 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2175 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2146 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2136 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2126 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2117 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2683 (-569)) (|:| -2671 (-649 *3)))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3699 *4) (|:| -2091 (-569))))) (-4 *4 (-1249 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2097 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2087 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3699 *4) (|:| -2091 (-569))))) (-4 *4 (-1249 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| *4) (|:| -2727 (-569))))))) (-4 *4 (-1249 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
+(-10 -7 (-15 -2078 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))))) (-15 -2277 ((-742 (-776)) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))))) (-15 -2087 ((-927))) (-15 -2087 ((-927) (-927))) (-15 -2097 ((-927))) (-15 -2097 ((-927) (-927))) (-15 -2107 ((-776) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))))) (-15 -2117 ((-2 (|:| -2683 (-569)) (|:| -2671 (-649 |#1|))) |#1|)) (-15 -2126 ((-112))) (-15 -2136 ((-112) (-112))) (-15 -2146 ((-112))) (-15 -2156 ((-112) (-112))) (-15 -2165 ((-112) |#1|)) (-15 -2175 ((-112))) (-15 -2185 ((-112) (-112))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3699 ((-423 |#1|) |#1| (-776))) (-15 -3699 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3699 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3699 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3924 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1| (-776))) (-15 -3924 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3924 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3924 ((-423 |#1|) |#1| (-776) (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1|)) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -2285 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -3935 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112))) (-15 -2194 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112) (-1108 (-776)) (-776))))
+((-2233 (((-569) |#2|) 52) (((-569) |#2| (-776)) 51)) (-2223 (((-569) |#2|) 67)) (-2244 ((|#3| |#2|) 26)) (-3334 ((|#3| |#2| (-927)) 15)) (-3747 ((|#3| |#2|) 16)) (-2252 ((|#3| |#2|) 9)) (-1399 ((|#3| |#2|) 10)) (-2213 ((|#3| |#2| (-927)) 74) ((|#3| |#2|) 34)) (-2203 (((-569) |#2|) 69)))
+(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2203 ((-569) |#2|)) (-15 -2213 (|#3| |#2|)) (-15 -2213 (|#3| |#2| (-927))) (-15 -2223 ((-569) |#2|)) (-15 -2233 ((-569) |#2| (-776))) (-15 -2233 ((-569) |#2|)) (-15 -3334 (|#3| |#2| (-927))) (-15 -2244 (|#3| |#2|)) (-15 -2252 (|#3| |#2|)) (-15 -1399 (|#3| |#2|)) (-15 -3747 (|#3| |#2|))) (-1055) (-1249 |#1|) (-13 (-409) (-1044 |#1|) (-367) (-1208) (-287))) (T -448))
+((-3747 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2244 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2233 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1249 *5)) (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))) (-2213 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2203 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
+(-10 -7 (-15 -2203 ((-569) |#2|)) (-15 -2213 (|#3| |#2|)) (-15 -2213 (|#3| |#2| (-927))) (-15 -2223 ((-569) |#2|)) (-15 -2233 ((-569) |#2| (-776))) (-15 -2233 ((-569) |#2|)) (-15 -3334 (|#3| |#2| (-927))) (-15 -2244 (|#3| |#2|)) (-15 -2252 (|#3| |#2|)) (-15 -1399 (|#3| |#2|)) (-15 -3747 (|#3| |#2|)))
+((-1857 ((|#2| (-1273 |#1|)) 45)) (-2269 ((|#2| |#2| |#1|) 61)) (-2260 ((|#2| |#2| |#1|) 53)) (-2214 ((|#2| |#2|) 49)) (-2652 (((-112) |#2|) 36)) (-2294 (((-649 |#2|) (-927) (-423 |#2|)) 24)) (-2285 ((|#2| (-927) (-423 |#2|)) 28)) (-2277 (((-742 (-776)) (-423 |#2|)) 33)))
+(((-449 |#1| |#2|) (-10 -7 (-15 -2652 ((-112) |#2|)) (-15 -1857 (|#2| (-1273 |#1|))) (-15 -2214 (|#2| |#2|)) (-15 -2260 (|#2| |#2| |#1|)) (-15 -2269 (|#2| |#2| |#1|)) (-15 -2277 ((-742 (-776)) (-423 |#2|))) (-15 -2285 (|#2| (-927) (-423 |#2|))) (-15 -2294 ((-649 |#2|) (-927) (-423 |#2|)))) (-1055) (-1249 |#1|)) (T -449))
+((-2294 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-1055)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-449 *5 *2)) (-4 *5 (-1055)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-423 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1055)) (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))) (-2269 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-2260 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-2214 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-1055)) (-4 *2 (-1249 *4)) (-5 *1 (-449 *4 *2)))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -2652 ((-112) |#2|)) (-15 -1857 (|#2| (-1273 |#1|))) (-15 -2214 (|#2| |#2|)) (-15 -2260 (|#2| |#2| |#1|)) (-15 -2269 (|#2| |#2| |#1|)) (-15 -2277 ((-742 (-776)) (-423 |#2|))) (-15 -2285 (|#2| (-927) (-423 |#2|))) (-15 -2294 ((-649 |#2|) (-927) (-423 |#2|))))
+((-2320 (((-776)) 59)) (-2354 (((-776)) 29 (|has| |#1| (-409))) (((-776) (-776)) 28 (|has| |#1| (-409)))) (-2345 (((-569) |#1|) 25 (|has| |#1| (-409)))) (-2336 (((-569) |#1|) 27 (|has| |#1| (-409)))) (-2310 (((-776)) 58) (((-776) (-776)) 57)) (-2302 ((|#1| (-776) (-569)) 37)) (-2328 (((-1278)) 61)))
+(((-450 |#1|) (-10 -7 (-15 -2302 (|#1| (-776) (-569))) (-15 -2310 ((-776) (-776))) (-15 -2310 ((-776))) (-15 -2320 ((-776))) (-15 -2328 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -2336 ((-569) |#1|)) (-15 -2345 ((-569) |#1|)) (-15 -2354 ((-776) (-776))) (-15 -2354 ((-776)))) |%noBranch|)) (-1055)) (T -450))
+((-2354 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2345 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-2328 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2320 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2310 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
+(-10 -7 (-15 -2302 (|#1| (-776) (-569))) (-15 -2310 ((-776) (-776))) (-15 -2310 ((-776))) (-15 -2320 ((-776))) (-15 -2328 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -2336 ((-569) |#1|)) (-15 -2345 ((-569) |#1|)) (-15 -2354 ((-776) (-776))) (-15 -2354 ((-776)))) |%noBranch|))
+((-4335 (((-649 (-569)) (-569)) 76)) (-3848 (((-112) (-170 (-569))) 82)) (-3699 (((-423 (-170 (-569))) (-170 (-569))) 75)))
+(((-451) (-10 -7 (-15 -3699 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -4335 ((-649 (-569)) (-569))) (-15 -3848 ((-112) (-170 (-569)))))) (T -451))
+((-3848 (*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451)))) (-4335 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451)) (-5 *3 (-170 (-569))))))
+(-10 -7 (-15 -3699 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -4335 ((-649 (-569)) (-569))) (-15 -3848 ((-112) (-170 (-569)))))
+((-4345 ((|#4| |#4| (-649 |#4|)) 82)) (-4354 (((-649 |#4|) (-649 |#4|) (-1165) (-1165)) 22) (((-649 |#4|) (-649 |#4|) (-1165)) 21) (((-649 |#4|) (-649 |#4|)) 13)))
+(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4345 (|#4| |#4| (-649 |#4|))) (-15 -4354 ((-649 |#4|) (-649 |#4|))) (-15 -4354 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -4354 ((-649 |#4|) (-649 |#4|) (-1165) (-1165)))) (-310) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -452))
+((-4354 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4354 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))) (-4345 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4345 (|#4| |#4| (-649 |#4|))) (-15 -4354 ((-649 |#4|) (-649 |#4|))) (-15 -4354 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -4354 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))))
+((-4373 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 89) (((-649 (-649 |#4|)) (-649 |#4|)) 88) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112)) 82) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|)) 83)) (-4362 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 55) (((-649 (-649 |#4|)) (-649 |#4|)) 77)))
+(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4362 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4362 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-112)))) (-13 (-310) (-147)) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -453))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4373 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-4373 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4373 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4362 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(-10 -7 (-15 -4362 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4362 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4373 ((-649 (-649 |#4|)) (-649 |#4|) (-112))))
+((-1514 (((-776) |#4|) 12)) (-1387 (((-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|)))) 39)) (-1414 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1401 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4396 ((|#4| |#4| (-649 |#4|)) 54)) (-1364 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|)) 96)) (-1444 (((-1278) |#4|) 59)) (-1478 (((-1278) (-649 |#4|)) 69)) (-1454 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569)) 66)) (-1487 (((-1278) (-569)) 112)) (-1424 (((-649 |#4|) (-649 |#4|)) 104)) (-1505 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|)) |#4| (-776)) 31)) (-1434 (((-569) |#4|) 109)) (-1375 ((|#4| |#4|) 37)) (-4403 (((-649 |#4|) (-649 |#4|) (-569) (-569)) 74)) (-1465 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569)) 125)) (-1496 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-4414 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1352 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1339 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1307 (((-112) |#2| |#2|) 75)) (-1327 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1316 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4384 ((|#4| |#4| (-649 |#4|)) 97)))
+(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4384 (|#4| |#4| (-649 |#4|))) (-15 -4396 (|#4| |#4| (-649 |#4|))) (-15 -4403 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -4414 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1307 ((-112) |#2| |#2|)) (-15 -1316 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1327 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1339 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1352 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1364 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -1375 (|#4| |#4|)) (-15 -1387 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|))))) (-15 -1401 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1414 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1424 ((-649 |#4|) (-649 |#4|))) (-15 -1434 ((-569) |#4|)) (-15 -1444 ((-1278) |#4|)) (-15 -1454 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -1465 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -1478 ((-1278) (-649 |#4|))) (-15 -1487 ((-1278) (-569))) (-15 -1496 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1505 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|)) |#4| (-776))) (-15 -1514 ((-776) |#4|))) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -454))
+((-1514 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -3280 *4))) (-5 *5 (-776)) (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-454 *6 *7 *8 *4)))) (-1496 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)))) (-1465 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-1454 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) (-4 *4 (-457)) (-4 *6 (-855)))) (-1387 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 *3)))) (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))) (-1375 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-454 *5 *6 *7 *3)))) (-1352 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *4 *3 *5 *6)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1327 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *3)))) (-1316 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-1307 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-4403 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *7)))) (-4396 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))) (-4384 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4384 (|#4| |#4| (-649 |#4|))) (-15 -4396 (|#4| |#4| (-649 |#4|))) (-15 -4403 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -4414 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1307 ((-112) |#2| |#2|)) (-15 -1316 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1327 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1339 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1352 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1364 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -1375 (|#4| |#4|)) (-15 -1387 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|))))) (-15 -1401 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1414 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1424 ((-649 |#4|) (-649 |#4|))) (-15 -1434 ((-569) |#4|)) (-15 -1444 ((-1278) |#4|)) (-15 -1454 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -1465 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -1478 ((-1278) (-649 |#4|))) (-15 -1487 ((-1278) (-569))) (-15 -1496 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1505 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3280 |#4|)) |#4| (-776))) (-15 -1514 ((-776) |#4|)))
+((-2115 ((|#4| |#4| (-649 |#4|)) 20 (|has| |#1| (-367)))) (-3821 (((-649 |#4|) (-649 |#4|) (-1165) (-1165)) 46) (((-649 |#4|) (-649 |#4|) (-1165)) 45) (((-649 |#4|) (-649 |#4|)) 34)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3821 ((-649 |#4|) (-649 |#4|))) (-15 -3821 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -3821 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -2115 (|#4| |#4| (-649 |#4|))) |%noBranch|)) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -455))
+((-2115 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))) (-3821 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3821 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3821 ((-649 |#4|) (-649 |#4|))) (-15 -3821 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -3821 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -2115 (|#4| |#4| (-649 |#4|))) |%noBranch|))
+((-1798 (($ $ $) 14) (($ (-649 $)) 21)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 46)) (-1830 (($ $ $) NIL) (($ (-649 $)) 22)))
+(((-456 |#1|) (-10 -8 (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1798 (|#1| (-649 |#1|))) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|))) (-457)) (T -456))
+NIL
+(-10 -8 (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1798 (|#1| (-649 |#1|))) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -1830 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-2374 (((-3 $ "failed") $ $) 48)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-457) (-140)) (T -457))
-((-3582 (*1 *1 *1 *1) (-4 *1 (-457))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-457)))) (-2079 (*1 *1 *1 *1) (-4 *1 (-457))) (-2079 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-457)))) (-3129 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-457)))))
-(-13 (-562) (-10 -8 (-15 -3582 ($ $ $)) (-15 -3582 ($ (-646 $))) (-15 -2079 ($ $ $)) (-15 -2079 ($ (-646 $))) (-15 -3129 ((-1177 $) (-1177 $) (-1177 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1957 (((-3 $ #1="failed")) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3661 (((-1272 (-694 (-412 (-952 |#1|)))) (-1272 $)) NIL) (((-1272 (-694 (-412 (-952 |#1|))))) NIL)) (-1907 (((-1272 $)) NIL)) (-4174 (($) NIL T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed")) NIL)) (-1881 (((-3 $ #1#)) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-1973 (((-694 (-412 (-952 |#1|))) (-1272 $)) NIL) (((-694 (-412 (-952 |#1|)))) NIL)) (-1905 (((-412 (-952 |#1|)) $) NIL)) (-1971 (((-694 (-412 (-952 |#1|))) $ (-1272 $)) NIL) (((-694 (-412 (-952 |#1|))) $) NIL)) (-2585 (((-3 $ #1#) $) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-2088 (((-1177 (-952 (-412 (-952 |#1|))))) NIL (|has| (-412 (-952 |#1|)) (-367))) (((-1177 (-412 (-952 |#1|)))) 92 (|has| |#1| (-562)))) (-2588 (($ $ (-925)) NIL)) (-1903 (((-412 (-952 |#1|)) $) NIL)) (-1883 (((-1177 (-412 (-952 |#1|))) $) 90 (|has| (-412 (-952 |#1|)) (-562)))) (-1975 (((-412 (-952 |#1|)) (-1272 $)) NIL) (((-412 (-952 |#1|))) NIL)) (-1901 (((-1177 (-412 (-952 |#1|))) $) NIL)) (-1895 (((-112)) NIL)) (-1977 (($ (-1272 (-412 (-952 |#1|))) (-1272 $)) 116) (($ (-1272 (-412 (-952 |#1|)))) NIL)) (-3908 (((-3 $ #1#) $) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-3531 (((-925)) NIL)) (-1892 (((-112)) NIL)) (-2612 (($ $ (-925)) NIL)) (-1888 (((-112)) NIL)) (-1886 (((-112)) NIL)) (-1890 (((-112)) NIL)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed")) NIL)) (-1882 (((-3 $ #1#)) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-1974 (((-694 (-412 (-952 |#1|))) (-1272 $)) NIL) (((-694 (-412 (-952 |#1|)))) NIL)) (-1906 (((-412 (-952 |#1|)) $) NIL)) (-1972 (((-694 (-412 (-952 |#1|))) $ (-1272 $)) NIL) (((-694 (-412 (-952 |#1|))) $) NIL)) (-2586 (((-3 $ #1#) $) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-2092 (((-1177 (-952 (-412 (-952 |#1|))))) NIL (|has| (-412 (-952 |#1|)) (-367))) (((-1177 (-412 (-952 |#1|)))) 91 (|has| |#1| (-562)))) (-2587 (($ $ (-925)) NIL)) (-1904 (((-412 (-952 |#1|)) $) NIL)) (-1884 (((-1177 (-412 (-952 |#1|))) $) 87 (|has| (-412 (-952 |#1|)) (-562)))) (-1976 (((-412 (-952 |#1|)) (-1272 $)) NIL) (((-412 (-952 |#1|))) NIL)) (-1902 (((-1177 (-412 (-952 |#1|))) $) NIL)) (-1896 (((-112)) NIL)) (-3681 (((-1165) $) NIL)) (-1887 (((-112)) NIL)) (-1889 (((-112)) NIL)) (-1891 (((-112)) NIL)) (-3682 (((-1126) $) NIL)) (-2082 (((-412 (-952 |#1|)) $ $) 78 (|has| |#1| (-562)))) (-2086 (((-412 (-952 |#1|)) $) 102 (|has| |#1| (-562)))) (-2085 (((-412 (-952 |#1|)) $) 106 (|has| |#1| (-562)))) (-2087 (((-1177 (-412 (-952 |#1|))) $) 96 (|has| |#1| (-562)))) (-2081 (((-412 (-952 |#1|))) 79 (|has| |#1| (-562)))) (-2084 (((-412 (-952 |#1|)) $ $) 71 (|has| |#1| (-562)))) (-2090 (((-412 (-952 |#1|)) $) 101 (|has| |#1| (-562)))) (-2089 (((-412 (-952 |#1|)) $) 105 (|has| |#1| (-562)))) (-2091 (((-1177 (-412 (-952 |#1|))) $) 95 (|has| |#1| (-562)))) (-2083 (((-412 (-952 |#1|))) 75 (|has| |#1| (-562)))) (-2093 (($) 112) (($ (-1183)) 120) (($ (-1272 (-1183))) 119) (($ (-1272 $)) 107) (($ (-1183) (-1272 $)) 118) (($ (-1272 (-1183)) (-1272 $)) 117)) (-1894 (((-112)) NIL)) (-4249 (((-412 (-952 |#1|)) $ (-551)) NIL)) (-3662 (((-1272 (-412 (-952 |#1|))) $ (-1272 $)) 109) (((-694 (-412 (-952 |#1|))) (-1272 $) (-1272 $)) NIL) (((-1272 (-412 (-952 |#1|))) $) 45) (((-694 (-412 (-952 |#1|))) (-1272 $)) NIL)) (-4420 (((-1272 (-412 (-952 |#1|))) $) NIL) (($ (-1272 (-412 (-952 |#1|)))) 42)) (-2080 (((-646 (-952 (-412 (-952 |#1|)))) (-1272 $)) NIL) (((-646 (-952 (-412 (-952 |#1|))))) NIL) (((-646 (-952 |#1|)) (-1272 $)) 110 (|has| |#1| (-562))) (((-646 (-952 |#1|))) 111 (|has| |#1| (-562)))) (-2774 (($ $ $) NIL)) (-1900 (((-112)) NIL)) (-4396 (((-868) $) NIL) (($ (-1272 (-412 (-952 |#1|)))) NIL)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 67)) (-1885 (((-646 (-1272 (-412 (-952 |#1|))))) NIL (|has| (-412 (-952 |#1|)) (-562)))) (-2775 (($ $ $ $) NIL)) (-1898 (((-112)) NIL)) (-2966 (($ (-694 (-412 (-952 |#1|))) $) NIL)) (-2773 (($ $ $) NIL)) (-1899 (((-112)) NIL)) (-1897 (((-112)) NIL)) (-1893 (((-112)) NIL)) (-3528 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) 108)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 63) (($ $ (-412 (-952 |#1|))) NIL) (($ (-412 (-952 |#1|)) $) NIL) (($ (-1148 |#2| (-412 (-952 |#1|))) $) NIL)))
-(((-458 |#1| |#2| |#3| |#4|) (-13 (-423 (-412 (-952 |#1|))) (-653 (-1148 |#2| (-412 (-952 |#1|)))) (-10 -8 (-15 -4396 ($ (-1272 (-412 (-952 |#1|))))) (-15 -2095 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -2094 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -2093 ($)) (-15 -2093 ($ (-1183))) (-15 -2093 ($ (-1272 (-1183)))) (-15 -2093 ($ (-1272 $))) (-15 -2093 ($ (-1183) (-1272 $))) (-15 -2093 ($ (-1272 (-1183)) (-1272 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -2092 ((-1177 (-412 (-952 |#1|))))) (-15 -2091 ((-1177 (-412 (-952 |#1|))) $)) (-15 -2090 ((-412 (-952 |#1|)) $)) (-15 -2089 ((-412 (-952 |#1|)) $)) (-15 -2088 ((-1177 (-412 (-952 |#1|))))) (-15 -2087 ((-1177 (-412 (-952 |#1|))) $)) (-15 -2086 ((-412 (-952 |#1|)) $)) (-15 -2085 ((-412 (-952 |#1|)) $)) (-15 -2084 ((-412 (-952 |#1|)) $ $)) (-15 -2083 ((-412 (-952 |#1|)))) (-15 -2082 ((-412 (-952 |#1|)) $ $)) (-15 -2081 ((-412 (-952 |#1|)))) (-15 -2080 ((-646 (-952 |#1|)) (-1272 $))) (-15 -2080 ((-646 (-952 |#1|))))) |%noBranch|))) (-173) (-925) (-646 (-1183)) (-1272 (-694 |#1|))) (T -458))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1272 (-412 (-952 *3)))) (-4 *3 (-173)) (-14 *6 (-1272 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))))) (-2095 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2200 (-646 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2094 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2200 (-646 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2093 (*1 *1) (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-925)) (-14 *4 (-646 (-1183))) (-14 *5 (-1272 (-694 *2))))) (-2093 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 *2)) (-14 *6 (-1272 (-694 *3))))) (-2093 (*1 *1 *2) (-12 (-5 *2 (-1272 (-1183))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2093 (*1 *1 *2) (-12 (-5 *2 (-1272 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2093 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-925)) (-14 *6 (-646 *2)) (-14 *7 (-1272 (-694 *4))))) (-2093 (*1 *1 *2 *3) (-12 (-5 *2 (-1272 (-1183))) (-5 *3 (-1272 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-925)) (-14 *6 (-646 (-1183))) (-14 *7 (-1272 (-694 *4))))) (-2092 (*1 *2) (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2088 (*1 *2) (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2083 (*1 *2) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2081 (*1 *2) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1272 (-458 *4 *5 *6 *7))) (-5 *2 (-646 (-952 *4))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-173)) (-14 *5 (-925)) (-14 *6 (-646 (-1183))) (-14 *7 (-1272 (-694 *4))))) (-2080 (*1 *2) (-12 (-5 *2 (-646 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))))
-(-13 (-423 (-412 (-952 |#1|))) (-653 (-1148 |#2| (-412 (-952 |#1|)))) (-10 -8 (-15 -4396 ($ (-1272 (-412 (-952 |#1|))))) (-15 -2095 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -2094 ((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) "failed"))) (-15 -2093 ($)) (-15 -2093 ($ (-1183))) (-15 -2093 ($ (-1272 (-1183)))) (-15 -2093 ($ (-1272 $))) (-15 -2093 ($ (-1183) (-1272 $))) (-15 -2093 ($ (-1272 (-1183)) (-1272 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -2092 ((-1177 (-412 (-952 |#1|))))) (-15 -2091 ((-1177 (-412 (-952 |#1|))) $)) (-15 -2090 ((-412 (-952 |#1|)) $)) (-15 -2089 ((-412 (-952 |#1|)) $)) (-15 -2088 ((-1177 (-412 (-952 |#1|))))) (-15 -2087 ((-1177 (-412 (-952 |#1|))) $)) (-15 -2086 ((-412 (-952 |#1|)) $)) (-15 -2085 ((-412 (-952 |#1|)) $)) (-15 -2084 ((-412 (-952 |#1|)) $ $)) (-15 -2083 ((-412 (-952 |#1|)))) (-15 -2082 ((-412 (-952 |#1|)) $ $)) (-15 -2081 ((-412 (-952 |#1|)))) (-15 -2080 ((-646 (-952 |#1|)) (-1272 $))) (-15 -2080 ((-646 (-952 |#1|))))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 18)) (-3503 (((-646 (-869 |#1|)) $) 90)) (-3505 (((-1177 $) $ (-869 |#1|)) 55) (((-1177 |#2|) $) 140)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2251 (($ $) NIL (|has| |#2| (-562)))) (-2249 (((-112) $) NIL (|has| |#2| (-562)))) (-3240 (((-776) $) 27) (((-776) $ (-646 (-869 |#1|))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL (|has| |#2| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) 53) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-869 |#1|) #2#) $) NIL)) (-3594 ((|#2| $) 51) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-869 |#1|) $) NIL)) (-4206 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-2125 (($ $ (-646 (-551))) 96)) (-4409 (($ $) 83)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#2| (-916)))) (-1779 (($ $ |#2| |#3| $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) 68)) (-3506 (($ (-1177 |#2|) (-869 |#1|)) 145) (($ (-1177 $) (-869 |#1|)) 61)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) 71)) (-3312 (($ |#2| |#3|) 38) (($ $ (-869 |#1|) (-776)) 40) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-869 |#1|)) NIL)) (-3241 ((|#3| $) NIL) (((-776) $ (-869 |#1|)) 59) (((-646 (-776)) $ (-646 (-869 |#1|))) 66)) (-1780 (($ (-1 |#3| |#3|) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-3504 (((-3 (-869 |#1|) #3="failed") $) 48)) (-3313 (($ $) NIL)) (-3612 ((|#2| $) 50)) (-2079 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2582 (-776))) #3#) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) 49)) (-1981 ((|#2| $) 138)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) 151 (|has| |#2| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-916)))) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-869 |#1|) |#2|) 103) (($ $ (-646 (-869 |#1|)) (-646 |#2|)) 109) (($ $ (-869 |#1|) $) 101) (($ $ (-646 (-869 |#1|)) (-646 $)) 127)) (-4207 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4260 (($ $ (-869 |#1|)) 62) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4398 ((|#3| $) 82) (((-776) $ (-869 |#1|)) 45) (((-646 (-776)) $ (-646 (-869 |#1|))) 65)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-869 |#1|) (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#2| $) 147 (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4396 (((-868) $) 175) (($ (-551)) NIL) (($ |#2|) 102) (($ (-869 |#1|)) 42) (($ (-412 (-551))) NIL (-3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#2| (-562)))) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ |#3|) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-562)))) (-3528 (($) 22 T CONST)) (-3085 (($) 31 T CONST)) (-3090 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) 79 (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 133)) (** (($ $ (-925)) NIL) (($ $ (-776)) 131)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 39) (($ $ (-412 (-551))) NIL (|has| |#2| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#2| (-38 (-412 (-551))))) (($ |#2| $) 78) (($ $ |#2|) NIL)))
-(((-459 |#1| |#2| |#3|) (-13 (-956 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551)))))) (-646 (-1183)) (-1055) (-239 (-4407 |#1|) (-776))) (T -459))
-((-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-14 *3 (-646 (-1183))) (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-239 (-4407 *3) (-776))))))
-(-13 (-956 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551))))))
-((-2099 (((-112) |#1| (-646 |#2|)) 93)) (-2097 (((-3 (-1272 (-646 |#2|)) "failed") (-776) |#1| (-646 |#2|)) 102)) (-2098 (((-3 (-646 |#2|) "failed") |#2| |#1| (-1272 (-646 |#2|))) 104)) (-2225 ((|#2| |#2| |#1|) 35)) (-2096 (((-776) |#2| (-646 |#2|)) 26)))
-(((-460 |#1| |#2|) (-10 -7 (-15 -2225 (|#2| |#2| |#1|)) (-15 -2096 ((-776) |#2| (-646 |#2|))) (-15 -2097 ((-3 (-1272 (-646 |#2|)) "failed") (-776) |#1| (-646 |#2|))) (-15 -2098 ((-3 (-646 |#2|) "failed") |#2| |#1| (-1272 (-646 |#2|)))) (-15 -2099 ((-112) |#1| (-646 |#2|)))) (-310) (-1248 |#1|)) (T -460))
-((-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *5)) (-4 *5 (-1248 *3)) (-4 *3 (-310)) (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))) (-2098 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1272 (-646 *3))) (-4 *4 (-310)) (-5 *2 (-646 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1248 *4)))) (-2097 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1248 *4)) (-5 *2 (-1272 (-646 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-646 *6)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-310)) (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))) (-2225 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -2225 (|#2| |#2| |#1|)) (-15 -2096 ((-776) |#2| (-646 |#2|))) (-15 -2097 ((-3 (-1272 (-646 |#2|)) "failed") (-776) |#1| (-646 |#2|))) (-15 -2098 ((-3 (-646 |#2|) "failed") |#2| |#1| (-1272 (-646 |#2|)))) (-15 -2099 ((-112) |#1| (-646 |#2|))))
-((-4182 (((-410 |#5|) |#5|) 24)))
-(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4182 ((-410 |#5|) |#5|))) (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))) (-798) (-562) (-562) (-956 |#4| |#2| |#1|)) (T -461))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183)))))) (-4 *5 (-798)) (-4 *7 (-562)) (-5 *2 (-410 *3)) (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-562)) (-4 *3 (-956 *7 *5 *4)))))
-(-10 -7 (-15 -4182 ((-410 |#5|) |#5|)))
-((-3121 ((|#3|) 38)) (-3129 (((-1177 |#4|) (-1177 |#4|) (-1177 |#4|)) 34)))
-(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3129 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3121 (|#3|))) (-798) (-855) (-916) (-956 |#3| |#1| |#2|)) (T -462))
-((-3121 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-916)) (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-956 *2 *3 *4)))) (-3129 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-916)) (-5 *1 (-462 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3129 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3121 (|#3|)))
-((-4182 (((-410 (-1177 |#1|)) (-1177 |#1|)) 43)))
-(((-463 |#1|) (-10 -7 (-15 -4182 ((-410 (-1177 |#1|)) (-1177 |#1|)))) (-310)) (T -463))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-410 (-1177 *4))) (-5 *1 (-463 *4)) (-5 *3 (-1177 *4)))))
-(-10 -7 (-15 -4182 ((-410 (-1177 |#1|)) (-1177 |#1|))))
-((-4179 (((-51) |#2| (-1183) (-296 |#2|) (-1239 (-776))) 44) (((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-776))) 43) (((-51) |#2| (-1183) (-296 |#2|)) 36) (((-51) (-1 |#2| (-551)) (-296 |#2|)) 29)) (-4268 (((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551))) 88) (((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551))) 87) (((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551))) 86) (((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551))) 85) (((-51) |#2| (-1183) (-296 |#2|)) 80) (((-51) (-1 |#2| (-551)) (-296 |#2|)) 79)) (-4231 (((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551))) 74) (((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551))) 72)) (-4228 (((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551))) 51) (((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551))) 50)))
-(((-464 |#1| |#2|) (-10 -7 (-15 -4179 ((-51) (-1 |#2| (-551)) (-296 |#2|))) (-15 -4179 ((-51) |#2| (-1183) (-296 |#2|))) (-15 -4179 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-776)))) (-15 -4179 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-776)))) (-15 -4228 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551)))) (-15 -4228 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551)))) (-15 -4231 ((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4231 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4268 ((-51) (-1 |#2| (-551)) (-296 |#2|))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|))) (-15 -4268 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551)))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551)))) (-15 -4268 ((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551))))) (-13 (-562) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -464))
-((-4268 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-412 (-551)))) (-5 *7 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *8))) (-4 *8 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *8 *3)))) (-4268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-551)))) (-5 *4 (-296 *8)) (-5 *5 (-1239 (-412 (-551)))) (-5 *6 (-412 (-551))) (-4 *8 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *7 *8)))) (-4268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *7 *3)))) (-4268 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-551))) (-4 *7 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *6 *7)))) (-4268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *6 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-551))) (-5 *4 (-296 *6)) (-4 *6 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *5 *6)))) (-4231 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-412 (-551)))) (-5 *7 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *8))) (-4 *8 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *8 *3)))) (-4231 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-551)))) (-5 *4 (-296 *8)) (-5 *5 (-1239 (-412 (-551)))) (-5 *6 (-412 (-551))) (-4 *8 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *7 *8)))) (-4228 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *7 *3)))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-551))) (-4 *7 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *6 *7)))) (-4179 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-776))) (-4 *3 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *7 *3)))) (-4179 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-776))) (-4 *7 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *6 *7)))) (-4179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *6 *3)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-551))) (-5 *4 (-296 *6)) (-4 *6 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51)) (-5 *1 (-464 *5 *6)))))
-(-10 -7 (-15 -4179 ((-51) (-1 |#2| (-551)) (-296 |#2|))) (-15 -4179 ((-51) |#2| (-1183) (-296 |#2|))) (-15 -4179 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-776)))) (-15 -4179 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-776)))) (-15 -4228 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551)))) (-15 -4228 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551)))) (-15 -4231 ((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4231 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4268 ((-51) (-1 |#2| (-551)) (-296 |#2|))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|))) (-15 -4268 ((-51) (-1 |#2| (-551)) (-296 |#2|) (-1239 (-551)))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-551)))) (-15 -4268 ((-51) (-1 |#2| (-412 (-551))) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))) (-15 -4268 ((-51) |#2| (-1183) (-296 |#2|) (-1239 (-412 (-551))) (-412 (-551)))))
-((-2225 ((|#2| |#2| |#1|) 15)) (-2101 (((-646 |#2|) |#2| (-646 |#2|) |#1| (-925)) 82)) (-2100 (((-2 (|:| |plist| (-646 |#2|)) (|:| |modulo| |#1|)) |#2| (-646 |#2|) |#1| (-925)) 72)))
-(((-465 |#1| |#2|) (-10 -7 (-15 -2100 ((-2 (|:| |plist| (-646 |#2|)) (|:| |modulo| |#1|)) |#2| (-646 |#2|) |#1| (-925))) (-15 -2101 ((-646 |#2|) |#2| (-646 |#2|) |#1| (-925))) (-15 -2225 (|#2| |#2| |#1|))) (-310) (-1248 |#1|)) (T -465))
-((-2225 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1248 *3)))) (-2101 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-646 *3)) (-5 *5 (-925)) (-4 *3 (-1248 *4)) (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))) (-2100 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-925)) (-4 *5 (-310)) (-4 *3 (-1248 *5)) (-5 *2 (-2 (|:| |plist| (-646 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3)) (-5 *4 (-646 *3)))))
-(-10 -7 (-15 -2100 ((-2 (|:| |plist| (-646 |#2|)) (|:| |modulo| |#1|)) |#2| (-646 |#2|) |#1| (-925))) (-15 -2101 ((-646 |#2|) |#2| (-646 |#2|) |#1| (-925))) (-15 -2225 (|#2| |#2| |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 28)) (-4157 (($ |#3|) 25)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) 32)) (-2102 (($ |#2| |#4| $) 33)) (-3312 (($ |#2| (-718 |#3| |#4| |#5|)) 24)) (-3313 (((-718 |#3| |#4| |#5|) $) 15)) (-2104 ((|#3| $) 19)) (-2105 ((|#4| $) 17)) (-3612 ((|#2| $) 29)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-2103 (($ |#2| |#3| |#4|) 26)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 36 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 34)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-466 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -3612 (|#2| $)) (-15 -3313 ((-718 |#3| |#4| |#5|) $)) (-15 -2105 (|#4| $)) (-15 -2104 (|#3| $)) (-15 -4409 ($ $)) (-15 -3312 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -4157 ($ |#3|)) (-15 -2103 ($ |#2| |#3| |#4|)) (-15 -2102 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-646 (-1183)) (-173) (-855) (-239 (-4407 |#1|) (-776)) (-1 (-112) (-2 (|:| -2581 |#3|) (|:| -2582 |#4|)) (-2 (|:| -2581 |#3|) (|:| -2582 |#4|))) (-956 |#2| |#4| (-869 |#1|))) (T -466))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-4407 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6)) (-2 (|:| -2581 *5) (|:| -2582 *6)))) (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) (-4 *2 (-956 *4 *6 (-869 *3))))) (-3612 (*1 *2 *1) (-12 (-14 *3 (-646 (-1183))) (-4 *5 (-239 (-4407 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *4) (|:| -2582 *5)) (-2 (|:| -2581 *4) (|:| -2582 *5)))) (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-956 *2 *5 (-869 *3))))) (-3313 (*1 *2 *1) (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-4407 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6)) (-2 (|:| -2581 *5) (|:| -2582 *6)))) (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855)) (-4 *8 (-956 *4 *6 (-869 *3))))) (-2105 (*1 *2 *1) (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *2)) (-2 (|:| -2581 *5) (|:| -2582 *2)))) (-4 *2 (-239 (-4407 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) (-4 *5 (-855)) (-4 *7 (-956 *4 *2 (-869 *3))))) (-2104 (*1 *2 *1) (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-4407 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *5)) (-2 (|:| -2581 *2) (|:| -2582 *5)))) (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *7 (-956 *4 *5 (-869 *3))))) (-4409 (*1 *1 *1) (-12 (-14 *2 (-646 (-1183))) (-4 *3 (-173)) (-4 *5 (-239 (-4407 *2) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *4) (|:| -2582 *5)) (-2 (|:| -2581 *4) (|:| -2582 *5)))) (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-956 *3 *5 (-869 *2))))) (-3312 (*1 *1 *2 *3) (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-4407 *4) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6)) (-2 (|:| -2581 *5) (|:| -2582 *6)))) (-14 *4 (-646 (-1183))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-956 *2 *6 (-869 *4))))) (-4157 (*1 *1 *2) (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-4407 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *5)) (-2 (|:| -2581 *2) (|:| -2582 *5)))) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) (-4 *7 (-956 *4 *5 (-869 *3))))) (-2103 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-646 (-1183))) (-4 *2 (-173)) (-4 *4 (-239 (-4407 *5) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *3) (|:| -2582 *4)) (-2 (|:| -2581 *3) (|:| -2582 *4)))) (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) (-4 *7 (-956 *2 *4 (-869 *5))))) (-2102 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-646 (-1183))) (-4 *2 (-173)) (-4 *3 (-239 (-4407 *4) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *3)) (-2 (|:| -2581 *5) (|:| -2582 *3)))) (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) (-4 *7 (-956 *2 *3 (-869 *4))))))
-(-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -3612 (|#2| $)) (-15 -3313 ((-718 |#3| |#4| |#5|) $)) (-15 -2105 (|#4| $)) (-15 -2104 (|#3| $)) (-15 -4409 ($ $)) (-15 -3312 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -4157 ($ |#3|)) (-15 -2103 ($ |#2| |#3| |#4|)) (-15 -2102 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2106 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2106 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-798) (-855) (-562) (-956 |#3| |#1| |#2|) (-13 (-1044 (-412 (-551))) (-367) (-10 -8 (-15 -4396 ($ |#4|)) (-15 -3417 (|#4| $)) (-15 -3416 (|#4| $))))) (T -467))
-((-2106 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-562)) (-4 *7 (-956 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1044 (-412 (-551))) (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(-10 -7 (-15 -2106 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3503 (((-646 |#3|) $) 41)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) NIL (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-3319 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 49)) (-3594 (($ (-646 |#4|)) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3848 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443)))) (-2134 (((-646 |#4|) $) 18 (|has| $ (-6 -4443)))) (-3618 ((|#3| $) 47)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#4|) $) 14 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2138 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 21)) (-3333 (((-646 |#3|) $) NIL)) (-3332 (((-112) |#3| $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3682 (((-1126) $) NIL)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 39)) (-4014 (($) 17)) (-2135 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) 16)) (-4420 (((-540) $) NIL (|has| |#4| (-619 (-540)))) (($ (-646 |#4|)) 51)) (-3971 (($ (-646 |#4|)) 13)) (-3329 (($ $ |#3|) NIL)) (-3331 (($ $ |#3|) NIL)) (-3330 (($ $ |#3|) NIL)) (-4396 (((-868) $) 38) (((-646 |#4|) $) 50)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 30)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-468 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4420 ($ (-646 |#4|))) (-6 -4443) (-6 -4444))) (-1055) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -468))
-((-4420 (*1 *1 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6)))))
-(-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4420 ($ (-646 |#4|))) (-6 -4443) (-6 -4444)))
-((-3528 (($) 11)) (-3085 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -3085 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3528 (|#1|))) (-470 |#2| |#3|) (-173) (-23)) (T -469))
-NIL
-(-10 -8 (-15 -3085 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3528 (|#1|)))
-((-2986 (((-112) $ $) 7)) (-3595 (((-3 |#1| "failed") $) 27)) (-3594 ((|#1| $) 28)) (-4394 (($ $ $) 24)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4398 ((|#2| $) 20)) (-4396 (((-868) $) 12) (($ |#1|) 26)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 25 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 16) (($ $ $) 14)) (-4289 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-1830 (*1 *1 *1 *1) (-4 *1 (-457))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-1798 (*1 *1 *1 *1) (-4 *1 (-457))) (-1798 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-1547 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-457)))))
+(-13 (-561) (-10 -8 (-15 -1830 ($ $ $)) (-15 -1830 ($ (-649 $))) (-15 -1798 ($ $ $)) (-15 -1798 ($ (-649 $))) (-15 -1547 ((-1179 $) (-1179 $) (-1179 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2591 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1941 (((-1273 (-694 (-412 (-958 |#1|)))) (-1273 $)) NIL) (((-1273 (-694 (-412 (-958 |#1|))))) NIL)) (-3352 (((-1273 $)) NIL)) (-3863 (($) NIL T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL)) (-3047 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2766 (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-3331 (((-412 (-958 |#1|)) $) NIL)) (-2747 (((-694 (-412 (-958 |#1|))) $ (-1273 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1616 (((-1179 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1179 (-412 (-958 |#1|)))) 92 (|has| |#1| (-561)))) (-2840 (($ $ (-927)) NIL)) (-3307 (((-412 (-958 |#1|)) $) NIL)) (-3070 (((-1179 (-412 (-958 |#1|))) $) 90 (|has| (-412 (-958 |#1|)) (-561)))) (-2786 (((-412 (-958 |#1|)) (-1273 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-3285 (((-1179 (-412 (-958 |#1|))) $) NIL)) (-3202 (((-112)) NIL)) (-2806 (($ (-1273 (-412 (-958 |#1|))) (-1273 $)) 116) (($ (-1273 (-412 (-958 |#1|)))) NIL)) (-3351 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3904 (((-927)) NIL)) (-3168 (((-112)) NIL)) (-1931 (($ $ (-927)) NIL)) (-3123 (((-112)) NIL)) (-3103 (((-112)) NIL)) (-3145 (((-112)) NIL)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL)) (-3061 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2775 (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-3342 (((-412 (-958 |#1|)) $) NIL)) (-2757 (((-694 (-412 (-958 |#1|))) $ (-1273 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-2817 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1658 (((-1179 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1179 (-412 (-958 |#1|)))) 91 (|has| |#1| (-561)))) (-2829 (($ $ (-927)) NIL)) (-3320 (((-412 (-958 |#1|)) $) NIL)) (-3081 (((-1179 (-412 (-958 |#1|))) $) 87 (|has| (-412 (-958 |#1|)) (-561)))) (-2797 (((-412 (-958 |#1|)) (-1273 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-3297 (((-1179 (-412 (-958 |#1|))) $) NIL)) (-3216 (((-112)) NIL)) (-2050 (((-1165) $) NIL)) (-3112 (((-112)) NIL)) (-3133 (((-112)) NIL)) (-3157 (((-112)) NIL)) (-3461 (((-1126) $) NIL)) (-1546 (((-412 (-958 |#1|)) $ $) 78 (|has| |#1| (-561)))) (-1593 (((-412 (-958 |#1|)) $) 102 (|has| |#1| (-561)))) (-1580 (((-412 (-958 |#1|)) $) 106 (|has| |#1| (-561)))) (-1605 (((-1179 (-412 (-958 |#1|))) $) 96 (|has| |#1| (-561)))) (-1536 (((-412 (-958 |#1|))) 79 (|has| |#1| (-561)))) (-1569 (((-412 (-958 |#1|)) $ $) 71 (|has| |#1| (-561)))) (-1637 (((-412 (-958 |#1|)) $) 101 (|has| |#1| (-561)))) (-1627 (((-412 (-958 |#1|)) $) 105 (|has| |#1| (-561)))) (-1647 (((-1179 (-412 (-958 |#1|))) $) 95 (|has| |#1| (-561)))) (-1558 (((-412 (-958 |#1|))) 75 (|has| |#1| (-561)))) (-1669 (($) 112) (($ (-1183)) 120) (($ (-1273 (-1183))) 119) (($ (-1273 $)) 107) (($ (-1183) (-1273 $)) 118) (($ (-1273 (-1183)) (-1273 $)) 117)) (-3189 (((-112)) NIL)) (-1852 (((-412 (-958 |#1|)) $ (-569)) NIL)) (-1949 (((-1273 (-412 (-958 |#1|))) $ (-1273 $)) 109) (((-694 (-412 (-958 |#1|))) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 (-958 |#1|))) $) 45) (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL)) (-1384 (((-1273 (-412 (-958 |#1|))) $) NIL) (($ (-1273 (-412 (-958 |#1|)))) 42)) (-1524 (((-649 (-958 (-412 (-958 |#1|)))) (-1273 $)) NIL) (((-649 (-958 (-412 (-958 |#1|))))) NIL) (((-649 (-958 |#1|)) (-1273 $)) 110 (|has| |#1| (-561))) (((-649 (-958 |#1|))) 111 (|has| |#1| (-561)))) (-4356 (($ $ $) NIL)) (-3270 (((-112)) NIL)) (-2388 (((-867) $) NIL) (($ (-1273 (-412 (-958 |#1|)))) NIL)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 67)) (-3092 (((-649 (-1273 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-4365 (($ $ $ $) NIL)) (-3245 (((-112)) NIL)) (-3341 (($ (-694 (-412 (-958 |#1|))) $) NIL)) (-4347 (($ $ $) NIL)) (-3259 (((-112)) NIL)) (-3230 (((-112)) NIL)) (-3178 (((-112)) NIL)) (-1786 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) 108)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 63) (($ $ (-412 (-958 |#1|))) NIL) (($ (-412 (-958 |#1|)) $) NIL) (($ (-1148 |#2| (-412 (-958 |#1|))) $) NIL)))
+(((-458 |#1| |#2| |#3| |#4|) (-13 (-422 (-412 (-958 |#1|))) (-653 (-1148 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -2388 ($ (-1273 (-412 (-958 |#1|))))) (-15 -1693 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -1683 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -1669 ($)) (-15 -1669 ($ (-1183))) (-15 -1669 ($ (-1273 (-1183)))) (-15 -1669 ($ (-1273 $))) (-15 -1669 ($ (-1183) (-1273 $))) (-15 -1669 ($ (-1273 (-1183)) (-1273 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1658 ((-1179 (-412 (-958 |#1|))))) (-15 -1647 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1637 ((-412 (-958 |#1|)) $)) (-15 -1627 ((-412 (-958 |#1|)) $)) (-15 -1616 ((-1179 (-412 (-958 |#1|))))) (-15 -1605 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1593 ((-412 (-958 |#1|)) $)) (-15 -1580 ((-412 (-958 |#1|)) $)) (-15 -1569 ((-412 (-958 |#1|)) $ $)) (-15 -1558 ((-412 (-958 |#1|)))) (-15 -1546 ((-412 (-958 |#1|)) $ $)) (-15 -1536 ((-412 (-958 |#1|)))) (-15 -1524 ((-649 (-958 |#1|)) (-1273 $))) (-15 -1524 ((-649 (-958 |#1|))))) |%noBranch|))) (-173) (-927) (-649 (-1183)) (-1273 (-694 |#1|))) (T -458))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 *3)))) (-4 *3 (-173)) (-14 *6 (-1273 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))))) (-1693 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -3371 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1683 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -3371 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1669 (*1 *1) (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927)) (-14 *4 (-649 (-1183))) (-14 *5 (-1273 (-694 *2))))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1273 (-694 *3))))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-1273 (-1183))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-1273 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1669 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 *2)) (-14 *7 (-1273 (-694 *4))))) (-1669 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 (-1183))) (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))) (-1658 (*1 *2) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1616 (*1 *2) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1569 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1558 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1546 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1536 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))) (-1524 (*1 *2) (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(-13 (-422 (-412 (-958 |#1|))) (-653 (-1148 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -2388 ($ (-1273 (-412 (-958 |#1|))))) (-15 -1693 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -1683 ((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed"))) (-15 -1669 ($)) (-15 -1669 ($ (-1183))) (-15 -1669 ($ (-1273 (-1183)))) (-15 -1669 ($ (-1273 $))) (-15 -1669 ($ (-1183) (-1273 $))) (-15 -1669 ($ (-1273 (-1183)) (-1273 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1658 ((-1179 (-412 (-958 |#1|))))) (-15 -1647 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1637 ((-412 (-958 |#1|)) $)) (-15 -1627 ((-412 (-958 |#1|)) $)) (-15 -1616 ((-1179 (-412 (-958 |#1|))))) (-15 -1605 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1593 ((-412 (-958 |#1|)) $)) (-15 -1580 ((-412 (-958 |#1|)) $)) (-15 -1569 ((-412 (-958 |#1|)) $ $)) (-15 -1558 ((-412 (-958 |#1|)))) (-15 -1546 ((-412 (-958 |#1|)) $ $)) (-15 -1536 ((-412 (-958 |#1|)))) (-15 -1524 ((-649 (-958 |#1|)) (-1273 $))) (-15 -1524 ((-649 (-958 |#1|))))) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 18)) (-3865 (((-649 (-869 |#1|)) $) 90)) (-3663 (((-1179 $) $ (-869 |#1|)) 55) (((-1179 |#2|) $) 140)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2586 (($ $) NIL (|has| |#2| (-561)))) (-2564 (((-112) $) NIL (|has| |#2| (-561)))) (-3292 (((-776) $) 27) (((-776) $ (-649 (-869 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL (|has| |#2| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) 53) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3043 ((|#2| $) 51) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4168 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3889 (($ $ (-649 (-569))) 96)) (-1842 (($ $) 83)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-915)))) (-1482 (($ $ |#2| |#3| $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) 68)) (-3851 (($ (-1179 |#2|) (-869 |#1|)) 145) (($ (-1179 $) (-869 |#1|)) 61)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) 71)) (-3838 (($ |#2| |#3|) 38) (($ $ (-869 |#1|) (-776)) 40) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-869 |#1|)) NIL)) (-3304 ((|#3| $) NIL) (((-776) $ (-869 |#1|)) 59) (((-649 (-776)) $ (-649 (-869 |#1|))) 66)) (-1491 (($ (-1 |#3| |#3|) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-4212 (((-3 (-869 |#1|) "failed") $) 48)) (-1808 (($ $) NIL)) (-1820 ((|#2| $) 50)) (-1798 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2777 (-776))) "failed") $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) 49)) (-1794 ((|#2| $) 138)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) 151 (|has| |#2| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) 103) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) 109) (($ $ (-869 |#1|) $) 101) (($ $ (-649 (-869 |#1|)) (-649 $)) 127)) (-4180 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3430 (($ $ (-869 |#1|)) 62) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2091 ((|#3| $) 82) (((-776) $ (-869 |#1|)) 45) (((-649 (-776)) $ (-649 (-869 |#1|))) 65)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#2| $) 147 (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-2388 (((-867) $) 175) (($ (-569)) NIL) (($ |#2|) 102) (($ (-869 |#1|)) 42) (($ (-412 (-569))) NIL (-2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ |#3|) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1786 (($) 22 T CONST)) (-1796 (($) 31 T CONST)) (-2749 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) 79 (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 133)) (** (($ $ (-927)) NIL) (($ $ (-776)) 131)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) 78) (($ $ |#2|) NIL)))
+(((-459 |#1| |#2| |#3|) (-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055) (-239 (-2394 |#1|) (-776))) (T -459))
+((-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1183))) (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-239 (-2394 *3) (-776))))))
+(-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569))))))
+((-1744 (((-112) |#1| (-649 |#2|)) 93)) (-1719 (((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|)) 102)) (-1732 (((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|))) 104)) (-3594 ((|#2| |#2| |#1|) 35)) (-1706 (((-776) |#2| (-649 |#2|)) 26)))
+(((-460 |#1| |#2|) (-10 -7 (-15 -3594 (|#2| |#2| |#1|)) (-15 -1706 ((-776) |#2| (-649 |#2|))) (-15 -1719 ((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -1732 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|)))) (-15 -1744 ((-112) |#1| (-649 |#2|)))) (-310) (-1249 |#1|)) (T -460))
+((-1744 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-1249 *3)) (-4 *3 (-310)) (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))) (-1732 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1273 (-649 *3))) (-4 *4 (-310)) (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1249 *4)))) (-1719 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1249 *4)) (-5 *2 (-1273 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-310)) (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))) (-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -3594 (|#2| |#2| |#1|)) (-15 -1706 ((-776) |#2| (-649 |#2|))) (-15 -1719 ((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -1732 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|)))) (-15 -1744 ((-112) |#1| (-649 |#2|))))
+((-3699 (((-423 |#5|) |#5|) 24)))
+(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3699 ((-423 |#5|) |#5|))) (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183))))) (-798) (-561) (-561) (-955 |#4| |#2| |#1|)) (T -461))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-955 *7 *5 *4)))))
+(-10 -7 (-15 -3699 ((-423 |#5|) |#5|)))
+((-1467 ((|#3|) 38)) (-1547 (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 34)))
+(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1547 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1467 (|#3|))) (-798) (-855) (-915) (-955 |#3| |#1| |#2|)) (T -462))
+((-1467 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4)))) (-1547 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1547 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1467 (|#3|)))
+((-3699 (((-423 (-1179 |#1|)) (-1179 |#1|)) 43)))
+(((-463 |#1|) (-10 -7 (-15 -3699 ((-423 (-1179 |#1|)) (-1179 |#1|)))) (-310)) (T -463))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1179 *4))) (-5 *1 (-463 *4)) (-5 *3 (-1179 *4)))))
+(-10 -7 (-15 -3699 ((-423 (-1179 |#1|)) (-1179 |#1|))))
+((-1729 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776))) 44) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776))) 43) (((-52) |#2| (-1183) (-297 |#2|)) 36) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 29)) (-2056 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 88) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 87) (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569))) 86) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569))) 85) (((-52) |#2| (-1183) (-297 |#2|)) 80) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 79)) (-1754 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 74) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 72)) (-1741 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569))) 51) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569))) 50)))
+(((-464 |#1| |#2|) (-10 -7 (-15 -1729 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1729 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -1729 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776)))) (-15 -1729 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776)))) (-15 -1741 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -1741 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -1754 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -1754 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -2056 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -2056 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -2056 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -464))
+((-2056 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8))) (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))) (-1754 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8))) (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-1754 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-1741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-776))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-776))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))))
+(-10 -7 (-15 -1729 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1729 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -1729 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776)))) (-15 -1729 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776)))) (-15 -1741 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -1741 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -1754 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -1754 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -2056 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -2056 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -2056 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -2056 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))))
+((-3594 ((|#2| |#2| |#1|) 15)) (-1766 (((-649 |#2|) |#2| (-649 |#2|) |#1| (-927)) 82)) (-1756 (((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927)) 72)))
+(((-465 |#1| |#2|) (-10 -7 (-15 -1756 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -1766 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -3594 (|#2| |#2| |#1|))) (-310) (-1249 |#1|)) (T -465))
+((-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1249 *3)))) (-1766 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1249 *4)) (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1249 *5)) (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
+(-10 -7 (-15 -1756 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -1766 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -3594 (|#2| |#2| |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 28)) (-1833 (($ |#3|) 25)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) 32)) (-1778 (($ |#2| |#4| $) 33)) (-3838 (($ |#2| (-718 |#3| |#4| |#5|)) 24)) (-1808 (((-718 |#3| |#4| |#5|) $) 15)) (-1800 ((|#3| $) 19)) (-1810 ((|#4| $) 17)) (-1820 ((|#2| $) 29)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1789 (($ |#2| |#3| |#4|) 26)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 36 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-466 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1820 (|#2| $)) (-15 -1808 ((-718 |#3| |#4| |#5|) $)) (-15 -1810 (|#4| $)) (-15 -1800 (|#3| $)) (-15 -1842 ($ $)) (-15 -3838 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -1833 ($ |#3|)) (-15 -1789 ($ |#2| |#3| |#4|)) (-15 -1778 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-649 (-1183)) (-173) (-855) (-239 (-2394 |#1|) (-776)) (-1 (-112) (-2 (|:| -2114 |#3|) (|:| -2777 |#4|)) (-2 (|:| -2114 |#3|) (|:| -2777 |#4|))) (-955 |#2| |#4| (-869 |#1|))) (T -466))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-2394 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6)) (-2 (|:| -2114 *5) (|:| -2777 *6)))) (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) (-4 *2 (-955 *4 *6 (-869 *3))))) (-1820 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *5 (-239 (-2394 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *4) (|:| -2777 *5)) (-2 (|:| -2114 *4) (|:| -2777 *5)))) (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *2 *5 (-869 *3))))) (-1808 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-2394 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6)) (-2 (|:| -2114 *5) (|:| -2777 *6)))) (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3))))) (-1810 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *2)) (-2 (|:| -2114 *5) (|:| -2777 *2)))) (-4 *2 (-239 (-2394 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))) (-1800 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-2394 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *5)) (-2 (|:| -2114 *2) (|:| -2777 *5)))) (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-1842 (*1 *1 *1) (-12 (-14 *2 (-649 (-1183))) (-4 *3 (-173)) (-4 *5 (-239 (-2394 *2) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *4) (|:| -2777 *5)) (-2 (|:| -2114 *4) (|:| -2777 *5)))) (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *3 *5 (-869 *2))))) (-3838 (*1 *1 *2 *3) (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-2394 *4) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6)) (-2 (|:| -2114 *5) (|:| -2777 *6)))) (-14 *4 (-649 (-1183))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4))))) (-1833 (*1 *1 *2) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-2394 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *5)) (-2 (|:| -2114 *2) (|:| -2777 *5)))) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-1789 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-649 (-1183))) (-4 *2 (-173)) (-4 *4 (-239 (-2394 *5) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *3) (|:| -2777 *4)) (-2 (|:| -2114 *3) (|:| -2777 *4)))) (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) (-4 *7 (-955 *2 *4 (-869 *5))))) (-1778 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-649 (-1183))) (-4 *2 (-173)) (-4 *3 (-239 (-2394 *4) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *3)) (-2 (|:| -2114 *5) (|:| -2777 *3)))) (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *2 *3 (-869 *4))))))
+(-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1820 (|#2| $)) (-15 -1808 ((-718 |#3| |#4| |#5|) $)) (-15 -1810 (|#4| $)) (-15 -1800 (|#3| $)) (-15 -1842 ($ $)) (-15 -3838 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -1833 ($ |#3|)) (-15 -1789 ($ |#2| |#3| |#4|)) (-15 -1778 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1822 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1822 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-1044 (-412 (-569))) (-367) (-10 -8 (-15 -2388 ($ |#4|)) (-15 -4378 (|#4| $)) (-15 -4390 (|#4| $))))) (T -467))
+((-1822 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1044 (-412 (-569))) (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))))
+(-10 -7 (-15 -1822 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-3865 (((-649 |#3|) $) 41)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) NIL (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-2783 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 49)) (-3043 (($ (-649 |#4|)) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1678 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443)))) (-2796 (((-649 |#4|) $) 18 (|has| $ (-6 -4443)))) (-2717 ((|#3| $) 47)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#4|) $) 14 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3065 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 21)) (-2917 (((-649 |#3|) $) NIL)) (-2908 (((-112) |#3| $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3461 (((-1126) $) NIL)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 39)) (-2825 (($) 17)) (-3469 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) 16)) (-1384 (((-541) $) NIL (|has| |#4| (-619 (-541)))) (($ (-649 |#4|)) 51)) (-3709 (($ (-649 |#4|)) 13)) (-2876 (($ $ |#3|) NIL)) (-2898 (($ $ |#3|) NIL)) (-2887 (($ $ |#3|) NIL)) (-2388 (((-867) $) 38) (((-649 |#4|) $) 50)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 30)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-468 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1384 ($ (-649 |#4|))) (-6 -4443) (-6 -4444))) (-1055) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -468))
+((-1384 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6)))))
+(-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1384 ($ (-649 |#4|))) (-6 -4443) (-6 -4444)))
+((-1786 (($) 11)) (-1796 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1796 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1786 (|#1|))) (-470 |#2| |#3|) (-173) (-23)) (T -469))
+NIL
+(-10 -8 (-15 -1796 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1786 (|#1|)))
+((-2383 (((-112) $ $) 7)) (-4359 (((-3 |#1| "failed") $) 27)) (-3043 ((|#1| $) 28)) (-2061 (($ $ $) 24)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2091 ((|#2| $) 20)) (-2388 (((-867) $) 12) (($ |#1|) 26)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 25 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 16) (($ $ $) 14)) (-2935 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-470 |#1| |#2|) (-140) (-173) (-23)) (T -470))
-((-3085 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4394 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
-(-13 (-475 |t#1| |t#2|) (-1044 |t#1|) (-10 -8 (-15 (-3085) ($) -4402) (-15 -4394 ($ $ $))))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-475 |#1| |#2|) . T) ((-1044 |#1|) . T) ((-1107) . T))
-((-2107 (((-1272 (-1272 (-551))) (-1272 (-1272 (-551))) (-925)) 28)) (-2108 (((-1272 (-1272 (-551))) (-925)) 23)))
-(((-471) (-10 -7 (-15 -2107 ((-1272 (-1272 (-551))) (-1272 (-1272 (-551))) (-925))) (-15 -2108 ((-1272 (-1272 (-551))) (-925))))) (T -471))
-((-2108 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1272 (-1272 (-551)))) (-5 *1 (-471)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 (-1272 (-551)))) (-5 *3 (-925)) (-5 *1 (-471)))))
-(-10 -7 (-15 -2107 ((-1272 (-1272 (-551))) (-1272 (-1272 (-551))) (-925))) (-15 -2108 ((-1272 (-1272 (-551))) (-925))))
-((-3191 (((-551) (-551)) 32) (((-551)) 24)) (-3195 (((-551) (-551)) 28) (((-551)) 20)) (-3193 (((-551) (-551)) 30) (((-551)) 22)) (-2110 (((-112) (-112)) 14) (((-112)) 12)) (-2109 (((-112) (-112)) 13) (((-112)) 11)) (-2111 (((-112) (-112)) 26) (((-112)) 17)))
-(((-472) (-10 -7 (-15 -2109 ((-112))) (-15 -2110 ((-112))) (-15 -2109 ((-112) (-112))) (-15 -2110 ((-112) (-112))) (-15 -2111 ((-112))) (-15 -3193 ((-551))) (-15 -3195 ((-551))) (-15 -3191 ((-551))) (-15 -2111 ((-112) (-112))) (-15 -3193 ((-551) (-551))) (-15 -3195 ((-551) (-551))) (-15 -3191 ((-551) (-551))))) (T -472))
-((-3191 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3191 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-3195 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-3193 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472)))) (-2111 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2110 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2109 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(-10 -7 (-15 -2109 ((-112))) (-15 -2110 ((-112))) (-15 -2109 ((-112) (-112))) (-15 -2110 ((-112) (-112))) (-15 -2111 ((-112))) (-15 -3193 ((-551))) (-15 -3195 ((-551))) (-15 -3191 ((-551))) (-15 -2111 ((-112) (-112))) (-15 -3193 ((-551) (-551))) (-15 -3195 ((-551) (-551))) (-15 -3191 ((-551) (-551))))
-((-2986 (((-112) $ $) NIL)) (-4301 (((-646 (-382)) $) 34) (((-646 (-382)) $ (-646 (-382))) 146)) (-2116 (((-646 (-1095 (-382))) $) 16) (((-646 (-1095 (-382))) $ (-646 (-1095 (-382)))) 142)) (-2113 (((-646 (-646 (-949 (-226)))) (-646 (-646 (-949 (-226)))) (-646 (-879))) 58)) (-2117 (((-646 (-646 (-949 (-226)))) $) 137)) (-4156 (((-1278) $ (-949 (-226)) (-879)) 163)) (-2118 (($ $) 136) (($ (-646 (-646 (-949 (-226))))) 149) (($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925))) 148) (($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925)) (-646 (-263))) 150)) (-3681 (((-1165) $) NIL)) (-4310 (((-551) $) 110)) (-3682 (((-1126) $) NIL)) (-2119 (($) 147)) (-2112 (((-646 (-226)) (-646 (-646 (-949 (-226))))) 89)) (-2115 (((-1278) $ (-646 (-949 (-226))) (-879) (-879) (-925)) 155) (((-1278) $ (-949 (-226))) 157) (((-1278) $ (-949 (-226)) (-879) (-879) (-925)) 156)) (-4396 (((-868) $) 169) (($ (-646 (-646 (-949 (-226))))) 164)) (-3680 (((-112) $ $) NIL)) (-2114 (((-1278) $ (-949 (-226))) 162)) (-3473 (((-112) $ $) NIL)))
-(((-473) (-13 (-1107) (-10 -8 (-15 -2119 ($)) (-15 -2118 ($ $)) (-15 -2118 ($ (-646 (-646 (-949 (-226)))))) (-15 -2118 ($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925)))) (-15 -2118 ($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925)) (-646 (-263)))) (-15 -2117 ((-646 (-646 (-949 (-226)))) $)) (-15 -4310 ((-551) $)) (-15 -2116 ((-646 (-1095 (-382))) $)) (-15 -2116 ((-646 (-1095 (-382))) $ (-646 (-1095 (-382))))) (-15 -4301 ((-646 (-382)) $)) (-15 -4301 ((-646 (-382)) $ (-646 (-382)))) (-15 -2115 ((-1278) $ (-646 (-949 (-226))) (-879) (-879) (-925))) (-15 -2115 ((-1278) $ (-949 (-226)))) (-15 -2115 ((-1278) $ (-949 (-226)) (-879) (-879) (-925))) (-15 -2114 ((-1278) $ (-949 (-226)))) (-15 -4156 ((-1278) $ (-949 (-226)) (-879))) (-15 -4396 ($ (-646 (-646 (-949 (-226)))))) (-15 -4396 ((-868) $)) (-15 -2113 ((-646 (-646 (-949 (-226)))) (-646 (-646 (-949 (-226)))) (-646 (-879)))) (-15 -2112 ((-646 (-226)) (-646 (-646 (-949 (-226))))))))) (T -473))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-473)))) (-2119 (*1 *1) (-5 *1 (-473))) (-2118 (*1 *1 *1) (-5 *1 (-473))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473)))) (-2118 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879))) (-5 *4 (-646 (-925))) (-5 *1 (-473)))) (-2118 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879))) (-5 *4 (-646 (-925))) (-5 *5 (-646 (-263))) (-5 *1 (-473)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-473)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-473)))) (-2116 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-473)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-473)))) (-4301 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-473)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-925)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-925)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-4156 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473)))) (-2113 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879))) (-5 *1 (-473)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-646 (-226))) (-5 *1 (-473)))))
-(-13 (-1107) (-10 -8 (-15 -2119 ($)) (-15 -2118 ($ $)) (-15 -2118 ($ (-646 (-646 (-949 (-226)))))) (-15 -2118 ($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925)))) (-15 -2118 ($ (-646 (-646 (-949 (-226)))) (-646 (-879)) (-646 (-879)) (-646 (-925)) (-646 (-263)))) (-15 -2117 ((-646 (-646 (-949 (-226)))) $)) (-15 -4310 ((-551) $)) (-15 -2116 ((-646 (-1095 (-382))) $)) (-15 -2116 ((-646 (-1095 (-382))) $ (-646 (-1095 (-382))))) (-15 -4301 ((-646 (-382)) $)) (-15 -4301 ((-646 (-382)) $ (-646 (-382)))) (-15 -2115 ((-1278) $ (-646 (-949 (-226))) (-879) (-879) (-925))) (-15 -2115 ((-1278) $ (-949 (-226)))) (-15 -2115 ((-1278) $ (-949 (-226)) (-879) (-879) (-925))) (-15 -2114 ((-1278) $ (-949 (-226)))) (-15 -4156 ((-1278) $ (-949 (-226)) (-879))) (-15 -4396 ($ (-646 (-646 (-949 (-226)))))) (-15 -4396 ((-868) $)) (-15 -2113 ((-646 (-646 (-949 (-226)))) (-646 (-646 (-949 (-226)))) (-646 (-879)))) (-15 -2112 ((-646 (-226)) (-646 (-646 (-949 (-226))))))))
-((-4287 (($ $) NIL) (($ $ $) 11)))
-(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|))) (-475 |#2| |#3|) (-173) (-23)) (T -474))
-NIL
-(-10 -8 (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4398 ((|#2| $) 20)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 16) (($ $ $) 14)) (-4289 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-1796 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2061 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
+(-13 (-475 |t#1| |t#2|) (-1044 |t#1|) (-10 -8 (-15 (-1796) ($) -3600) (-15 -2061 ($ $ $))))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-475 |#1| |#2|) . T) ((-1044 |#1|) . T) ((-1106) . T))
+((-3664 (((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927)) 28)) (-3678 (((-1273 (-1273 (-569))) (-927)) 23)))
+(((-471) (-10 -7 (-15 -3664 ((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927))) (-15 -3678 ((-1273 (-1273 (-569))) (-927))))) (T -471))
+((-3678 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 (-569)))) (-5 *1 (-471)))) (-3664 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 (-1273 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
+(-10 -7 (-15 -3664 ((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927))) (-15 -3678 ((-1273 (-1273 (-569))) (-927))))
+((-4099 (((-569) (-569)) 32) (((-569)) 24)) (-4149 (((-569) (-569)) 28) (((-569)) 20)) (-4124 (((-569) (-569)) 30) (((-569)) 22)) (-3700 (((-112) (-112)) 14) (((-112)) 12)) (-3690 (((-112) (-112)) 13) (((-112)) 11)) (-3712 (((-112) (-112)) 26) (((-112)) 17)))
+(((-472) (-10 -7 (-15 -3690 ((-112))) (-15 -3700 ((-112))) (-15 -3690 ((-112) (-112))) (-15 -3700 ((-112) (-112))) (-15 -3712 ((-112))) (-15 -4124 ((-569))) (-15 -4149 ((-569))) (-15 -4099 ((-569))) (-15 -3712 ((-112) (-112))) (-15 -4124 ((-569) (-569))) (-15 -4149 ((-569) (-569))) (-15 -4099 ((-569) (-569))))) (T -472))
+((-4099 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4099 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4149 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4124 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3712 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3690 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3700 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3690 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(-10 -7 (-15 -3690 ((-112))) (-15 -3700 ((-112))) (-15 -3690 ((-112) (-112))) (-15 -3700 ((-112) (-112))) (-15 -3712 ((-112))) (-15 -4124 ((-569))) (-15 -4149 ((-569))) (-15 -4099 ((-569))) (-15 -3712 ((-112) (-112))) (-15 -4124 ((-569) (-569))) (-15 -4149 ((-569) (-569))) (-15 -4099 ((-569) (-569))))
+((-2383 (((-112) $ $) NIL)) (-3051 (((-649 (-383)) $) 34) (((-649 (-383)) $ (-649 (-383))) 146)) (-3774 (((-649 (-1100 (-383))) $) 16) (((-649 (-1100 (-383))) $ (-649 (-1100 (-383)))) 142)) (-3741 (((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879))) 58)) (-3790 (((-649 (-649 (-949 (-226)))) $) 137)) (-2025 (((-1278) $ (-949 (-226)) (-879)) 163)) (-3802 (($ $) 136) (($ (-649 (-649 (-949 (-226))))) 149) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927))) 148) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265))) 150)) (-2050 (((-1165) $) NIL)) (-1963 (((-569) $) 110)) (-3461 (((-1126) $) NIL)) (-3814 (($) 147)) (-3727 (((-649 (-226)) (-649 (-649 (-949 (-226))))) 89)) (-3764 (((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927)) 155) (((-1278) $ (-949 (-226))) 157) (((-1278) $ (-949 (-226)) (-879) (-879) (-927)) 156)) (-2388 (((-867) $) 169) (($ (-649 (-649 (-949 (-226))))) 164)) (-2040 (((-112) $ $) NIL)) (-3752 (((-1278) $ (-949 (-226))) 162)) (-2853 (((-112) $ $) NIL)))
+(((-473) (-13 (-1106) (-10 -8 (-15 -3814 ($)) (-15 -3802 ($ $)) (-15 -3802 ($ (-649 (-649 (-949 (-226)))))) (-15 -3802 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -3802 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -3790 ((-649 (-649 (-949 (-226)))) $)) (-15 -1963 ((-569) $)) (-15 -3774 ((-649 (-1100 (-383))) $)) (-15 -3774 ((-649 (-1100 (-383))) $ (-649 (-1100 (-383))))) (-15 -3051 ((-649 (-383)) $)) (-15 -3051 ((-649 (-383)) $ (-649 (-383)))) (-15 -3764 ((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -3764 ((-1278) $ (-949 (-226)))) (-15 -3764 ((-1278) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3752 ((-1278) $ (-949 (-226)))) (-15 -2025 ((-1278) $ (-949 (-226)) (-879))) (-15 -2388 ($ (-649 (-649 (-949 (-226)))))) (-15 -2388 ((-867) $)) (-15 -3741 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -3727 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))) (T -473))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473)))) (-3814 (*1 *1) (-5 *1 (-473))) (-3802 (*1 *1 *1) (-5 *1 (-473))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-3802 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *1 (-473)))) (-3802 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-3051 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-3764 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-3764 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2025 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-3741 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *1 (-473)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226))) (-5 *1 (-473)))))
+(-13 (-1106) (-10 -8 (-15 -3814 ($)) (-15 -3802 ($ $)) (-15 -3802 ($ (-649 (-649 (-949 (-226)))))) (-15 -3802 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -3802 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -3790 ((-649 (-649 (-949 (-226)))) $)) (-15 -1963 ((-569) $)) (-15 -3774 ((-649 (-1100 (-383))) $)) (-15 -3774 ((-649 (-1100 (-383))) $ (-649 (-1100 (-383))))) (-15 -3051 ((-649 (-383)) $)) (-15 -3051 ((-649 (-383)) $ (-649 (-383)))) (-15 -3764 ((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -3764 ((-1278) $ (-949 (-226)))) (-15 -3764 ((-1278) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3752 ((-1278) $ (-949 (-226)))) (-15 -2025 ((-1278) $ (-949 (-226)) (-879))) (-15 -2388 ($ (-649 (-649 (-949 (-226)))))) (-15 -2388 ((-867) $)) (-15 -3741 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -3727 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))
+((-2946 (($ $) NIL) (($ $ $) 11)))
+(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|))) (-475 |#2| |#3|) (-173) (-23)) (T -474))
+NIL
+(-10 -8 (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2091 ((|#2| $) 20)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 16) (($ $ $) 14)) (-2935 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-475 |#1| |#2|) (-140) (-173) (-23)) (T -475))
-((-4398 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-3528 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4289 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
-(-13 (-1107) (-10 -8 (-15 -4398 (|t#2| $)) (-15 (-3528) ($) -4402) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4287 ($ $)) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2121 (((-3 (-646 (-486 |#1| |#2|)) "failed") (-646 (-486 |#1| |#2|)) (-646 (-869 |#1|))) 134)) (-2120 (((-646 (-646 (-248 |#1| |#2|))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|))) 131)) (-2122 (((-2 (|:| |dpolys| (-646 (-248 |#1| |#2|))) (|:| |coords| (-646 (-551)))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|))) 86)))
-(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-646 (-646 (-248 |#1| |#2|))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|)))) (-15 -2121 ((-3 (-646 (-486 |#1| |#2|)) "failed") (-646 (-486 |#1| |#2|)) (-646 (-869 |#1|)))) (-15 -2122 ((-2 (|:| |dpolys| (-646 (-248 |#1| |#2|))) (|:| |coords| (-646 (-551)))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|))))) (-646 (-1183)) (-457) (-457)) (T -476))
-((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-869 *5))) (-14 *5 (-646 (-1183))) (-4 *6 (-457)) (-5 *2 (-2 (|:| |dpolys| (-646 (-248 *5 *6))) (|:| |coords| (-646 (-551))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-646 (-248 *5 *6))) (-4 *7 (-457)))) (-2121 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-486 *4 *5))) (-5 *3 (-646 (-869 *4))) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-457)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-869 *5))) (-14 *5 (-646 (-1183))) (-4 *6 (-457)) (-5 *2 (-646 (-646 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-646 (-248 *5 *6))) (-4 *7 (-457)))))
-(-10 -7 (-15 -2120 ((-646 (-646 (-248 |#1| |#2|))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|)))) (-15 -2121 ((-3 (-646 (-486 |#1| |#2|)) "failed") (-646 (-486 |#1| |#2|)) (-646 (-869 |#1|)))) (-15 -2122 ((-2 (|:| |dpolys| (-646 (-248 |#1| |#2|))) (|:| |coords| (-646 (-551)))) (-646 (-248 |#1| |#2|)) (-646 (-869 |#1|)))))
-((-3908 (((-3 $ "failed") $) 11)) (-3428 (($ $ $) 23)) (-2774 (($ $ $) 24)) (-4399 (($ $ $) 9)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 22)))
-(((-477 |#1|) (-10 -8 (-15 -2774 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -4399 (|#1| |#1| |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925)))) (-478)) (T -477))
-NIL
-(-10 -8 (-15 -2774 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -4399 (|#1| |#1| |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-4174 (($) 19 T CONST)) (-3908 (((-3 $ "failed") $) 16)) (-2591 (((-112) $) 18)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 25)) (-3682 (((-1126) $) 11)) (-3428 (($ $ $) 22)) (-2774 (($ $ $) 21)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3085 (($) 20 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 24)) (** (($ $ (-925)) 14) (($ $ (-776)) 17) (($ $ (-551)) 23)) (* (($ $ $) 15)))
+((-2091 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-1786 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
+(-13 (-1106) (-10 -8 (-15 -2091 (|t#2| $)) (-15 (-1786) ($) -3600) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2946 ($ $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3839 (((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|))) 134)) (-3826 (((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 131)) (-3850 (((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 86)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3826 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3839 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3850 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))))) (-649 (-1183)) (-457) (-457)) (T -476))
+((-3850 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-2 (|:| |dpolys| (-649 (-248 *5 *6))) (|:| |coords| (-649 (-569))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))) (-3839 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-457)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(-10 -7 (-15 -3826 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3839 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3850 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))))
+((-3351 (((-3 $ "failed") $) 11)) (-1565 (($ $ $) 23)) (-4356 (($ $ $) 24)) (-2956 (($ $ $) 9)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 22)))
+(((-477 |#1|) (-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2956 (|#1| |#1| |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-478)) (T -477))
+NIL
+(-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2956 (|#1| |#1| |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-3863 (($) 19 T CONST)) (-3351 (((-3 $ "failed") $) 16)) (-2861 (((-112) $) 18)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 25)) (-3461 (((-1126) $) 11)) (-1565 (($ $ $) 22)) (-4356 (($ $ $) 21)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1796 (($) 20 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
(((-478) (-140)) (T -478))
-((-2824 (*1 *1 *1) (-4 *1 (-478))) (-4399 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-551)))) (-3428 (*1 *1 *1 *1) (-4 *1 (-478))) (-2774 (*1 *1 *1 *1) (-4 *1 (-478))))
-(-13 (-731) (-10 -8 (-15 -2824 ($ $)) (-15 -4399 ($ $ $)) (-15 ** ($ $ (-551))) (-6 -4440) (-15 -3428 ($ $ $)) (-15 -2774 ($ $ $))))
-(((-102) . T) ((-618 (-868)) . T) ((-731) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 18)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) NIL) (($ $ (-412 (-551)) (-412 (-551))) NIL)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) NIL) (((-412 (-551)) $ (-412 (-551))) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) NIL) (($ $ (-412 (-551))) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-412 (-551))) NIL) (($ $ (-1088) (-412 (-551))) NIL) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) 25)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) 29 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 35 (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 30 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) NIL) (($ $ $) NIL (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 28 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $ (-1269 |#2|)) 16)) (-4398 (((-412 (-551)) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1269 |#2|)) NIL) (($ (-1253 |#1| |#2| |#3|)) 9) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 21)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) 27)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-479 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4396 ($ (-1253 |#1| |#2| |#3|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -479))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1255 |#1|) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4396 ($ (-1253 |#1| |#2| |#3|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) 18)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) 19)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) 16)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-480 |#1| |#2| |#3| |#4|) (-1199 |#1| |#2|) (-1107) (-1107) (-1199 |#1| |#2|) |#2|) (T -480))
+((-1776 (*1 *1 *1) (-4 *1 (-478))) (-2956 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569)))) (-1565 (*1 *1 *1 *1) (-4 *1 (-478))) (-4356 (*1 *1 *1 *1) (-4 *1 (-478))))
+(-13 (-731) (-10 -8 (-15 -1776 ($ $)) (-15 -2956 ($ $ $)) (-15 ** ($ $ (-569))) (-6 -4440) (-15 -1565 ($ $ $)) (-15 -4356 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 18)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-412 (-569))) NIL) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) 25)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) 29 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 35 (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 30 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 28 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 16)) (-2091 (((-412 (-569)) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1269 |#2|)) NIL) (($ (-1258 |#1| |#2| |#3|)) 9) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 21)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) 27)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-479 |#1| |#2| |#3|) (-13 (-1254 |#1|) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -2388 ($ (-1258 |#1| |#2| |#3|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -479))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1254 |#1|) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -2388 ($ (-1258 |#1| |#2| |#3|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) 18)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) 19)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 16)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) NIL)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-480 |#1| |#2| |#3| |#4|) (-1199 |#1| |#2|) (-1106) (-1106) (-1199 |#1| |#2|) |#2|) (T -480))
NIL
(-1199 |#1| |#2|)
-((-2986 (((-112) $ $) NIL)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) NIL)) (-4132 (((-646 $) (-646 |#4|)) NIL)) (-3503 (((-646 |#3|) $) NIL)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4138 ((|#4| |#4| $) NIL)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) 29 (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3319 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) NIL)) (-3594 (($ (-646 |#4|)) NIL)) (-4248 (((-3 $ #1#) $) 45)) (-4135 ((|#4| |#4| $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3848 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4133 ((|#4| |#4| $) NIL)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) NIL)) (-2134 (((-646 |#4|) $) 18 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3618 ((|#3| $) 38)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#4|) $) 19 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2138 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 23)) (-3333 (((-646 |#3|) $) NIL)) (-3332 (((-112) |#3| $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-4247 (((-3 |#4| #1#) $) 42)) (-4147 (((-646 |#4|) $) NIL)) (-4141 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-4149 (((-112) $ $) NIL)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4137 ((|#4| |#4| $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-3 |#4| #1#) $) 40)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4129 (((-3 $ #1#) $ |#4|) 58)) (-4218 (($ $ |#4|) NIL)) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 14)) (-4398 (((-776) $) NIL)) (-2135 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) 13)) (-4420 (((-540) $) NIL (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 22)) (-3329 (($ $ |#3|) 52)) (-3331 (($ $ |#3|) 54)) (-4134 (($ $) NIL)) (-3330 (($ $ |#3|) NIL)) (-4396 (((-868) $) 35) (((-646 |#4|) $) 46)) (-4128 (((-776) $) NIL (|has| |#3| (-372)))) (-3680 (((-112) $ $) NIL)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) NIL)) (-4383 (((-112) |#3| $) NIL)) (-3473 (((-112) $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-481 |#1| |#2| |#3| |#4|) (-1217 |#1| |#2| |#3| |#4|) (-562) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -481))
-NIL
-(-1217 |#1| |#2| |#3| |#4|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-4077 (($) 17)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4420 (((-382) $) 21) (((-226) $) 24) (((-412 (-1177 (-551))) $) 18) (((-540) $) 53)) (-4396 (((-868) $) 51) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (((-226) $) 23) (((-382) $) 20)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 37 T CONST)) (-3085 (($) 8 T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-482) (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))) (-1026) (-618 (-226)) (-618 (-382)) (-619 (-412 (-1177 (-551)))) (-619 (-540)) (-10 -8 (-15 -4077 ($))))) (T -482))
-((-4077 (*1 *1) (-5 *1 (-482))))
-(-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))) (-1026) (-618 (-226)) (-618 (-382)) (-619 (-412 (-1177 (-551)))) (-619 (-540)) (-10 -8 (-15 -4077 ($))))
-((-2986 (((-112) $ $) NIL)) (-3969 (((-1141) $) 11)) (-3970 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-483) (-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))) (T -483))
-((-3970 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))))
-(-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) 16)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) 20)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) 18)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) 13)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 19)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 11 (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) 15 (|has| $ (-6 -4443)))))
-(((-484 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1107) (-1107) (-1165)) (T -484))
+((-2383 (((-112) $ $) NIL)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1555 (((-649 $) (-649 |#4|)) NIL)) (-3865 (((-649 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1624 ((|#4| |#4| $) NIL)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) 29 (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2783 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3043 (($ (-649 |#4|)) NIL)) (-3414 (((-3 $ "failed") $) 45)) (-1590 ((|#4| |#4| $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1678 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1567 ((|#4| |#4| $) NIL)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) NIL)) (-2796 (((-649 |#4|) $) 18 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2717 ((|#3| $) 38)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#4|) $) 19 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3065 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 23)) (-2917 (((-649 |#3|) $) NIL)) (-2908 (((-112) |#3| $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-1702 (((-3 |#4| "failed") $) 42)) (-1730 (((-649 |#4|) $) NIL)) (-1656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-1755 (((-112) $ $) NIL)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1614 ((|#4| |#4| $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-3 |#4| "failed") $) 40)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1521 (((-3 $ "failed") $ |#4|) 58)) (-4295 (($ $ |#4|) NIL)) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 14)) (-2091 (((-776) $) NIL)) (-3469 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) 13)) (-1384 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 22)) (-2876 (($ $ |#3|) 52)) (-2898 (($ $ |#3|) 54)) (-1577 (($ $) NIL)) (-2887 (($ $ |#3|) NIL)) (-2388 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1512 (((-776) $) NIL (|has| |#3| (-372)))) (-2040 (((-112) $ $) NIL)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) NIL)) (-1988 (((-112) |#3| $) NIL)) (-2853 (((-112) $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-481 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -481))
+NIL
+(-1216 |#1| |#2| |#3| |#4|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-4408 (($) 17)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1384 (((-383) $) 21) (((-226) $) 24) (((-412 (-1179 (-569))) $) 18) (((-541) $) 53)) (-2388 (((-867) $) 51) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (((-226) $) 23) (((-383) $) 20)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 37 T CONST)) (-1796 (($) 8 T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-482) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))) (-1028) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1179 (-569)))) (-619 (-541)) (-10 -8 (-15 -4408 ($))))) (T -482))
+((-4408 (*1 *1) (-5 *1 (-482))))
+(-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))) (-1028) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1179 (-569)))) (-619 (-541)) (-10 -8 (-15 -4408 ($))))
+((-2383 (((-112) $ $) NIL)) (-2076 (((-1141) $) 11)) (-2065 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-483) (-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))) (T -483))
+((-2065 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))))
+(-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) 16)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) 20)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 18)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) 13)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 19)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 11 (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) 15 (|has| $ (-6 -4443)))))
+(((-484 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1106) (-1106) (-1165)) (T -484))
NIL
(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))
-((-2123 (((-551) (-551) (-551)) 19)) (-2124 (((-112) (-551) (-551) (-551) (-551)) 28)) (-3898 (((-1272 (-646 (-551))) (-776) (-776)) 44)))
-(((-485) (-10 -7 (-15 -2123 ((-551) (-551) (-551))) (-15 -2124 ((-112) (-551) (-551) (-551) (-551))) (-15 -3898 ((-1272 (-646 (-551))) (-776) (-776))))) (T -485))
-((-3898 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1272 (-646 (-551)))) (-5 *1 (-485)))) (-2124 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-112)) (-5 *1 (-485)))) (-2123 (*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-485)))))
-(-10 -7 (-15 -2123 ((-551) (-551) (-551))) (-15 -2124 ((-112) (-551) (-551) (-551) (-551))) (-15 -3898 ((-1272 (-646 (-551))) (-776) (-776))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-869 |#1|)) $) NIL)) (-3505 (((-1177 $) $ (-869 |#1|)) NIL) (((-1177 |#2|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2251 (($ $) NIL (|has| |#2| (-562)))) (-2249 (((-112) $) NIL (|has| |#2| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-869 |#1|))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL (|has| |#2| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-869 |#1|) #2#) $) NIL)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-869 |#1|) $) NIL)) (-4206 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-2125 (($ $ (-646 (-551))) NIL)) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#2| (-916)))) (-1779 (($ $ |#2| (-487 (-4407 |#1|) (-776)) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#2|) (-869 |#1|)) NIL) (($ (-1177 $) (-869 |#1|)) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#2| (-487 (-4407 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-869 |#1|)) NIL)) (-3241 (((-487 (-4407 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-1780 (($ (-1 (-487 (-4407 |#1|) (-776)) (-487 (-4407 |#1|) (-776))) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-3504 (((-3 (-869 |#1|) #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#2| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2582 (-776))) #3#) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#2| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-916)))) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-646 (-869 |#1|)) (-646 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-646 (-869 |#1|)) (-646 $)) NIL)) (-4207 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4260 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4398 (((-487 (-4407 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-869 |#1|) (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#2| (-562)))) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-487 (-4407 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#2| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#2| (-38 (-412 (-551))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-486 |#1| |#2|) (-13 (-956 |#2| (-487 (-4407 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551)))))) (-646 (-1183)) (-1055)) (T -486))
-((-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-486 *3 *4)) (-14 *3 (-646 (-1183))) (-4 *4 (-1055)))))
-(-13 (-956 |#2| (-487 (-4407 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -2125 ($ $ (-646 (-551))))))
-((-2986 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-3626 (((-112) $) NIL (|has| |#2| (-131)))) (-4157 (($ (-925)) NIL (|has| |#2| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) NIL (|has| |#2| (-798)))) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#2| (-372)))) (-4073 (((-551) $) NIL (|has| |#2| (-853)))) (-4237 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1107)))) (-3594 (((-551) $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) ((|#2| $) NIL (|has| |#2| (-1107)))) (-2445 (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3908 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3413 (($) NIL (|has| |#2| (-372)))) (-1694 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ (-551)) 15)) (-3624 (((-112) $) NIL (|has| |#2| (-853)))) (-2134 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (|has| |#2| (-731)))) (-3625 (((-112) $) NIL (|has| |#2| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3026 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2138 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#2| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#2| (-1107)))) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#2| (-372)))) (-3682 (((-1126) $) NIL (|has| |#2| (-1107)))) (-4250 ((|#2| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ (-551) |#2|) NIL) ((|#2| $ (-551)) NIL)) (-4286 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-1575 (($ (-1272 |#2|)) NIL)) (-4361 (((-134)) NIL (|has| |#2| (-367)))) (-4260 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2135 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#2|) $) NIL) (($ (-551)) NIL (-3978 (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (($ |#2|) NIL (|has| |#2| (-1107))) (((-868) $) NIL (|has| |#2| (-618 (-868))))) (-3548 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-3680 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-2137 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#2| (-853)))) (-3528 (($) NIL (|has| |#2| (-131)) CONST)) (-3085 (($) NIL (|has| |#2| (-731)) CONST)) (-3090 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3473 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-3105 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3106 (((-112) $ $) 21 (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-4289 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-925)) NIL (|has| |#2| (-731)))) (* (($ (-551) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-925) $) NIL (|has| |#2| (-25)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
+((-3866 (((-569) (-569) (-569)) 19)) (-3877 (((-112) (-569) (-569) (-569) (-569)) 28)) (-1320 (((-1273 (-649 (-569))) (-776) (-776)) 44)))
+(((-485) (-10 -7 (-15 -3866 ((-569) (-569) (-569))) (-15 -3877 ((-112) (-569) (-569) (-569) (-569))) (-15 -1320 ((-1273 (-649 (-569))) (-776) (-776))))) (T -485))
+((-1320 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1273 (-649 (-569)))) (-5 *1 (-485)))) (-3877 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))) (-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
+(-10 -7 (-15 -3866 ((-569) (-569) (-569))) (-15 -3877 ((-112) (-569) (-569) (-569) (-569))) (-15 -1320 ((-1273 (-649 (-569))) (-776) (-776))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-869 |#1|)) $) NIL)) (-3663 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2586 (($ $) NIL (|has| |#2| (-561)))) (-2564 (((-112) $) NIL (|has| |#2| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL (|has| |#2| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4168 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3889 (($ $ (-649 (-569))) NIL)) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-915)))) (-1482 (($ $ |#2| (-487 (-2394 |#1|) (-776)) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#2| (-487 (-2394 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-869 |#1|)) NIL)) (-3304 (((-487 (-2394 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1491 (($ (-1 (-487 (-2394 |#1|) (-776)) (-487 (-2394 |#1|) (-776))) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-4212 (((-3 (-869 |#1|) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#2| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2777 (-776))) "failed") $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#2| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4180 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3430 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2091 (((-487 (-2394 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-487 (-2394 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-486 |#1| |#2|) (-13 (-955 |#2| (-487 (-2394 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055)) (T -486))
+((-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4)) (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
+(-13 (-955 |#2| (-487 (-2394 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3889 ($ $ (-649 (-569))))))
+((-2383 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2789 (((-112) $) NIL (|has| |#2| (-131)))) (-1833 (($ (-927)) NIL (|has| |#2| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) NIL (|has| |#2| (-798)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#2| (-372)))) (-2211 (((-569) $) NIL (|has| |#2| (-853)))) (-3861 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1106)))) (-3043 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) NIL (|has| |#2| (-1106)))) (-4091 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3351 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3295 (($) NIL (|has| |#2| (-372)))) (-3074 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ (-569)) 15)) (-2769 (((-112) $) NIL (|has| |#2| (-853)))) (-2796 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (|has| |#2| (-731)))) (-2778 (((-112) $) NIL (|has| |#2| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2912 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#2| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#2| (-372)))) (-3461 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3401 ((|#2| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3523 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3751 (($ (-1273 |#2|)) NIL)) (-2905 (((-134)) NIL (|has| |#2| (-367)))) (-3430 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3469 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#2|) $) NIL) (($ (-569)) NIL (-2718 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) NIL (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3263 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-2040 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3996 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#2| (-853)))) (-1786 (($) NIL (|has| |#2| (-131)) CONST)) (-1796 (($) NIL (|has| |#2| (-731)) CONST)) (-2749 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2853 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2893 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2872 (((-112) $ $) 21 (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-2935 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
(((-487 |#1| |#2|) (-239 |#1| |#2|) (-776) (-798)) (T -487))
NIL
(-239 |#1| |#2|)
-((-2986 (((-112) $ $) NIL)) (-2126 (((-646 (-881)) $) 15)) (-3991 (((-511) $) 13)) (-3681 (((-1165) $) NIL)) (-2127 (($ (-511) (-646 (-881))) 11)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 22) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-488) (-13 (-1089) (-10 -8 (-15 -2127 ($ (-511) (-646 (-881)))) (-15 -3991 ((-511) $)) (-15 -2126 ((-646 (-881)) $))))) (T -488))
-((-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-881))) (-5 *1 (-488)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-646 (-881))) (-5 *1 (-488)))))
-(-13 (-1089) (-10 -8 (-15 -2127 ($ (-511) (-646 (-881)))) (-15 -3991 ((-511) $)) (-15 -2126 ((-646 (-881)) $))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3277 (($ $ $) 50)) (-3959 (($ $ $) 49)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3278 ((|#1| $) 40)) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) 41)) (-4057 (($ |#1| $) 18)) (-2128 (($ (-646 |#1|)) 19)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-1373 ((|#1| $) 34)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 11)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 47)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) 29 (|has| $ (-6 -4443)))))
-(((-489 |#1|) (-13 (-974 |#1|) (-10 -8 (-15 -2128 ($ (-646 |#1|))))) (-855)) (T -489))
-((-2128 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
-(-13 (-974 |#1|) (-10 -8 (-15 -2128 ($ (-646 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4292 (($ $) 71)) (-1814 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-2158 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 45)) (-3682 (((-1126) $) NIL)) (-2590 (((-3 |#4| "failed") $) 117)) (-1815 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-551)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3877 (((-2 (|:| -2505 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4396 (((-868) $) 110)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 32 T CONST)) (-3473 (((-112) $ $) 121)) (-4287 (($ $) 77) (($ $ $) NIL)) (-4289 (($ $ $) 72)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 78)))
-(((-490 |#1| |#2| |#3| |#4|) (-340 |#1| |#2| |#3| |#4|) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -490))
-NIL
-(-340 |#1| |#2| |#3| |#4|)
-((-2132 (((-551) (-646 (-551))) 55)) (-2129 ((|#1| (-646 |#1|)) 96)) (-2131 (((-646 |#1|) (-646 |#1|)) 97)) (-2130 (((-646 |#1|) (-646 |#1|)) 99)) (-3582 ((|#1| (-646 |#1|)) 98)) (-3238 (((-646 (-551)) (-646 |#1|)) 58)))
-(((-491 |#1|) (-10 -7 (-15 -3582 (|#1| (-646 |#1|))) (-15 -2129 (|#1| (-646 |#1|))) (-15 -2130 ((-646 |#1|) (-646 |#1|))) (-15 -2131 ((-646 |#1|) (-646 |#1|))) (-15 -3238 ((-646 (-551)) (-646 |#1|))) (-15 -2132 ((-551) (-646 (-551))))) (-1248 (-551))) (T -491))
-((-2132 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-551)) (-5 *1 (-491 *4)) (-4 *4 (-1248 *2)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-1248 (-551))) (-5 *2 (-646 (-551))) (-5 *1 (-491 *4)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1248 (-551))) (-5 *1 (-491 *3)))) (-2130 (*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1248 (-551))) (-5 *1 (-491 *3)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1248 (-551))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1248 (-551))))))
-(-10 -7 (-15 -3582 (|#1| (-646 |#1|))) (-15 -2129 (|#1| (-646 |#1|))) (-15 -2130 ((-646 |#1|) (-646 |#1|))) (-15 -2131 ((-646 |#1|) (-646 |#1|))) (-15 -3238 ((-646 (-551)) (-646 |#1|))) (-15 -2132 ((-551) (-646 (-551)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-551) $) NIL (|has| (-551) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-551) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-551) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-551) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-551) (-1044 (-551))))) (-3594 (((-551) $) NIL) (((-1183) $) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-551) (-1044 (-551)))) (((-551) $) NIL (|has| (-551) (-1044 (-551))))) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-551) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-551) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-551) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-551) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-551) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-551) (-1157)))) (-3625 (((-112) $) NIL (|has| (-551) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-551) (-855)))) (-4408 (($ (-1 (-551) (-551)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-551) (-1157)) CONST)) (-2133 (($ (-412 (-551))) 9)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-551) (-310))) (((-412 (-551)) $) NIL)) (-3552 (((-551) $) NIL (|has| (-551) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-551)) (-646 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-551) (-551)) NIL (|has| (-551) (-312 (-551)))) (($ $ (-296 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-296 (-551)))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-1183)) (-646 (-551))) NIL (|has| (-551) (-519 (-1183) (-551)))) (($ $ (-1183) (-551)) NIL (|has| (-551) (-519 (-1183) (-551))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-551)) NIL (|has| (-551) (-289 (-551) (-551))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-551) $) NIL)) (-4420 (((-896 (-551)) $) NIL (|has| (-551) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-551) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-551) (-619 (-540)))) (((-382) $) NIL (|has| (-551) (-1026))) (((-226) $) NIL (|has| (-551) (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-551) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) 8) (($ (-551)) NIL) (($ (-1183)) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL) (((-1010 16) $) 10)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-551) (-916))) (|has| (-551) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-551) $) NIL (|has| (-551) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| (-551) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-551) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-551) (-855)))) (-4399 (($ $ $) NIL) (($ (-551) (-551)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-551) $) NIL) (($ $ (-551)) NIL)))
-(((-492) (-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 16)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -2133 ($ (-412 (-551))))))) (T -492))
-((-3550 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-492)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-492)))))
-(-13 (-997 (-551)) (-618 (-412 (-551))) (-618 (-1010 16)) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -2133 ($ (-412 (-551))))))
-((-3026 (((-646 |#2|) $) 29)) (-3684 (((-112) |#2| $) 34)) (-2136 (((-112) (-1 (-112) |#2|) $) 24)) (-4217 (($ $ (-646 (-296 |#2|))) 13) (($ $ (-296 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-646 |#2|) (-646 |#2|)) NIL)) (-2135 (((-776) (-1 (-112) |#2|) $) 28) (((-776) |#2| $) 32)) (-4396 (((-868) $) 43)) (-2137 (((-112) (-1 (-112) |#2|) $) 23)) (-3473 (((-112) $ $) 37)) (-4407 (((-776) $) 18)))
-(((-493 |#1| |#2|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -3684 ((-112) |#2| |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -3026 ((-646 |#2|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|))) (-494 |#2|) (-1222)) (T -493))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#2| |#2|)) (-15 -4217 (|#1| |#1| (-296 |#2|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#2|)))) (-15 -3684 ((-112) |#2| |#1|)) (-15 -2135 ((-776) |#2| |#1|)) (-15 -3026 ((-646 |#2|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-494 |#1|) (-140) (-1222)) (T -494))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1222)))) (-2138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1222)))) (-2137 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1222)) (-5 *2 (-112)))) (-2136 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1222)) (-5 *2 (-112)))) (-2135 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1222)) (-5 *2 (-776)))) (-2134 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-5 *2 (-646 *3)))) (-3026 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-5 *2 (-646 *3)))) (-2135 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-776)))) (-3684 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-618 (-868))) (-6 (-618 (-868))) |%noBranch|) (IF (|has| |t#1| (-1107)) (-6 (-1107)) |%noBranch|) (IF (|has| |t#1| (-1107)) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4444)) (-15 -2138 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4443)) (PROGN (-15 -2137 ((-112) (-1 (-112) |t#1|) $)) (-15 -2136 ((-112) (-1 (-112) |t#1|) $)) (-15 -2135 ((-776) (-1 (-112) |t#1|) $)) (-15 -2134 ((-646 |t#1|) $)) (-15 -3026 ((-646 |t#1|) $)) (IF (|has| |t#1| (-1107)) (PROGN (-15 -2135 ((-776) |t#1| $)) (-15 -3684 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-4396 ((|#1| $) 6) (($ |#1|) 9)))
-(((-495 |#1|) (-140) (-1222)) (T -495))
+((-2383 (((-112) $ $) NIL)) (-3729 (((-649 (-881)) $) 15)) (-3458 (((-511) $) 13)) (-2050 (((-1165) $) NIL)) (-3901 (($ (-511) (-649 (-881))) 11)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 22) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-488) (-13 (-1089) (-10 -8 (-15 -3901 ($ (-511) (-649 (-881)))) (-15 -3458 ((-511) $)) (-15 -3729 ((-649 (-881)) $))))) (T -488))
+((-3901 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
+(-13 (-1089) (-10 -8 (-15 -3901 ($ (-511) (-649 (-881)))) (-15 -3458 ((-511) $)) (-15 -3729 ((-649 (-881)) $))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-3644 (($ $ $) 50)) (-3719 (($ $ $) 49)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-2406 ((|#1| $) 40)) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) 41)) (-2086 (($ |#1| $) 18)) (-3913 (($ (-649 |#1|)) 19)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3493 ((|#1| $) 34)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 11)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 47)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) 29 (|has| $ (-6 -4443)))))
+(((-489 |#1|) (-13 (-974 |#1|) (-10 -8 (-15 -3913 ($ (-649 |#1|))))) (-855)) (T -489))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
+(-13 (-974 |#1|) (-10 -8 (-15 -3913 ($ (-649 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3485 (($ $) 71)) (-1772 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-4225 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 45)) (-3461 (((-1126) $) NIL)) (-2290 (((-3 |#4| "failed") $) 117)) (-1783 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-569)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3101 (((-2 (|:| -4238 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2388 (((-867) $) 110)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 32 T CONST)) (-2853 (((-112) $ $) 121)) (-2946 (($ $) 77) (($ $ $) NIL)) (-2935 (($ $ $) 72)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 78)))
+(((-490 |#1| |#2| |#3| |#4|) (-339 |#1| |#2| |#3| |#4|) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -490))
+NIL
+(-339 |#1| |#2| |#3| |#4|)
+((-3959 (((-569) (-649 (-569))) 55)) (-3926 ((|#1| (-649 |#1|)) 96)) (-3948 (((-649 |#1|) (-649 |#1|)) 97)) (-3937 (((-649 |#1|) (-649 |#1|)) 99)) (-1830 ((|#1| (-649 |#1|)) 98)) (-3281 (((-649 (-569)) (-649 |#1|)) 58)))
+(((-491 |#1|) (-10 -7 (-15 -1830 (|#1| (-649 |#1|))) (-15 -3926 (|#1| (-649 |#1|))) (-15 -3937 ((-649 |#1|) (-649 |#1|))) (-15 -3948 ((-649 |#1|) (-649 |#1|))) (-15 -3281 ((-649 (-569)) (-649 |#1|))) (-15 -3959 ((-569) (-649 (-569))))) (-1249 (-569))) (T -491))
+((-3959 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4)) (-4 *4 (-1249 *2)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1249 (-569))) (-5 *2 (-649 (-569))) (-5 *1 (-491 *4)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))))
+(-10 -7 (-15 -1830 (|#1| (-649 |#1|))) (-15 -3926 (|#1| (-649 |#1|))) (-15 -3937 ((-649 |#1|) (-649 |#1|))) (-15 -3948 ((-649 |#1|) (-649 |#1|))) (-15 -3281 ((-649 (-569)) (-649 |#1|))) (-15 -3959 ((-569) (-649 (-569)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-569) $) NIL (|has| (-569) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-569) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3043 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-569) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-569) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-569) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-2778 (((-112) $) NIL (|has| (-569) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-569) (-855)))) (-1324 (($ (-1 (-569) (-569)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-569) (-1158)) CONST)) (-3971 (($ (-412 (-569))) 9)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3312 (((-569) $) NIL (|has| (-569) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-569) $) NIL)) (-1384 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 16) $) 10)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-569) $) NIL (|has| (-569) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| (-569) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-492) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 16)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -3971 ($ (-412 (-569))))))) (T -492))
+((-3288 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
+(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 16)) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -3971 ($ (-412 (-569))))))
+((-2912 (((-649 |#2|) $) 29)) (-2060 (((-112) |#2| $) 34)) (-3983 (((-112) (-1 (-112) |#2|) $) 24)) (-1679 (($ $ (-649 (-297 |#2|))) 13) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-3469 (((-776) (-1 (-112) |#2|) $) 28) (((-776) |#2| $) 32)) (-2388 (((-867) $) 43)) (-3996 (((-112) (-1 (-112) |#2|) $) 23)) (-2853 (((-112) $ $) 37)) (-2394 (((-776) $) 18)))
+(((-493 |#1| |#2|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2060 ((-112) |#2| |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -2912 ((-649 |#2|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|))) (-494 |#2|) (-1223)) (T -493))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#2| |#2|)) (-15 -1679 (|#1| |#1| (-297 |#2|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2060 ((-112) |#2| |#1|)) (-15 -3469 ((-776) |#2| |#1|)) (-15 -2912 ((-649 |#2|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-494 |#1|) (-140) (-1223)) (T -494))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1223)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223)))) (-3996 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-3983 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-3469 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-776)))) (-2796 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-2912 (*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-3469 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-2060 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |t#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4444)) (-15 -3065 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4443)) (PROGN (-15 -3996 ((-112) (-1 (-112) |t#1|) $)) (-15 -3983 ((-112) (-1 (-112) |t#1|) $)) (-15 -3469 ((-776) (-1 (-112) |t#1|) $)) (-15 -2796 ((-649 |t#1|) $)) (-15 -2912 ((-649 |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3469 ((-776) |t#1| $)) (-15 -2060 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2388 ((|#1| $) 6) (($ |#1|) 9)))
+(((-495 |#1|) (-140) (-1223)) (T -495))
NIL
(-13 (-618 |t#1|) (-621 |t#1|))
(((-621 |#1|) . T) ((-618 |#1|) . T))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2139 (($ (-1165)) 8)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 15) (((-1165) $) 12)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 11)))
-(((-496) (-13 (-1107) (-618 (-1165)) (-10 -8 (-15 -2139 ($ (-1165)))))) (T -496))
-((-2139 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
-(-13 (-1107) (-618 (-1165)) (-10 -8 (-15 -2139 ($ (-1165)))))
-((-3933 (($ $) 15)) (-3931 (($ $) 24)) (-3935 (($ $) 12)) (-3936 (($ $) 10)) (-3934 (($ $) 17)) (-3932 (($ $) 22)))
-(((-497 |#1|) (-10 -8 (-15 -3932 (|#1| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|))) (-498)) (T -497))
-NIL
-(-10 -8 (-15 -3932 (|#1| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)))
-((-3933 (($ $) 11)) (-3931 (($ $) 10)) (-3935 (($ $) 9)) (-3936 (($ $) 8)) (-3934 (($ $) 7)) (-3932 (($ $) 6)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-4007 (($ (-1165)) 8)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 15) (((-1165) $) 12)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 11)))
+(((-496) (-13 (-1106) (-618 (-1165)) (-10 -8 (-15 -4007 ($ (-1165)))))) (T -496))
+((-4007 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
+(-13 (-1106) (-618 (-1165)) (-10 -8 (-15 -4007 ($ (-1165)))))
+((-2691 (($ $) 15)) (-2669 (($ $) 24)) (-2712 (($ $) 12)) (-2725 (($ $) 10)) (-2701 (($ $) 17)) (-2680 (($ $) 22)))
+(((-497 |#1|) (-10 -8 (-15 -2680 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|))) (-498)) (T -497))
+NIL
+(-10 -8 (-15 -2680 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|)))
+((-2691 (($ $) 11)) (-2669 (($ $) 10)) (-2712 (($ $) 9)) (-2725 (($ $) 8)) (-2701 (($ $) 7)) (-2680 (($ $) 6)))
(((-498) (-140)) (T -498))
-((-3933 (*1 *1 *1) (-4 *1 (-498))) (-3931 (*1 *1 *1) (-4 *1 (-498))) (-3935 (*1 *1 *1) (-4 *1 (-498))) (-3936 (*1 *1 *1) (-4 *1 (-498))) (-3934 (*1 *1 *1) (-4 *1 (-498))) (-3932 (*1 *1 *1) (-4 *1 (-498))))
-(-13 (-10 -8 (-15 -3932 ($ $)) (-15 -3934 ($ $)) (-15 -3936 ($ $)) (-15 -3935 ($ $)) (-15 -3931 ($ $)) (-15 -3933 ($ $))))
-((-4182 (((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)) 54)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)))) (-367) (-1248 |#1|) (-13 (-367) (-147) (-729 |#1| |#2|)) (-1248 |#3|)) (T -499))
-((-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-410 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1248 *7)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|))))
-((-2986 (((-112) $ $) NIL)) (-1725 (((-646 $) (-1177 $) (-1183)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-952 $)) NIL)) (-1306 (($ (-1177 $) (-1183)) NIL) (($ (-1177 $)) NIL) (($ (-952 $)) NIL)) (-3626 (((-112) $) 39)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-2140 (((-112) $ $) 73)) (-1718 (((-646 (-616 $)) $) 50)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1722 (($ $ (-296 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-1307 (((-646 $) (-1177 $) (-1183)) NIL) (((-646 $) (-1177 $)) NIL) (((-646 $) (-952 $)) NIL)) (-3621 (($ (-1177 $) (-1183)) NIL) (($ (-1177 $)) NIL) (($ (-952 $)) NIL)) (-3595 (((-3 (-616 $) #1="failed") $) NIL) (((-3 (-551) #1#) $) NIL) (((-3 (-412 (-551)) #1#) $) NIL)) (-3594 (((-616 $) $) NIL) (((-551) $) NIL) (((-412 (-551)) $) 55)) (-2982 (($ $ $) NIL)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-412 (-551)))) (|:| |vec| (-1272 (-412 (-551))))) (-694 $) (-1272 $)) NIL) (((-694 (-412 (-551))) (-694 $)) NIL)) (-4292 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2991 (($ $) NIL) (($ (-646 $)) NIL)) (-1717 (((-646 (-113)) $) NIL)) (-3466 (((-113) (-113)) NIL)) (-2591 (((-112) $) 42)) (-3094 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-3417 (((-1131 (-551) (-616 $)) $) 37)) (-3430 (($ $ (-551)) NIL)) (-3554 (((-1177 $) (-1177 $) (-616 $)) 87) (((-1177 $) (-1177 $) (-646 (-616 $))) 62) (($ $ (-616 $)) 76) (($ $ (-646 (-616 $))) 77)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-1715 (((-1177 $) (-616 $)) 74 (|has| $ (-1055)))) (-4408 (($ (-1 $ $) (-616 $)) NIL)) (-1720 (((-3 (-616 $) "failed") $) NIL)) (-2079 (($ (-646 $)) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-1719 (((-646 (-616 $)) $) NIL)) (-2402 (($ (-113) $) NIL) (($ (-113) (-646 $)) NIL)) (-3053 (((-112) $ (-113)) NIL) (((-112) $ (-1183)) NIL)) (-2824 (($ $) NIL)) (-3021 (((-776) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ (-646 $)) NIL) (($ $ $) NIL)) (-1716 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1044 (-551))))) (-4217 (($ $ (-616 $) $) NIL) (($ $ (-646 (-616 $)) (-646 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-1183)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-1183) (-1 $ (-646 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-646 (-113)) (-646 (-1 $ $))) NIL) (($ $ (-646 (-113)) (-646 (-1 $ (-646 $)))) NIL) (($ $ (-113) (-1 $ (-646 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1762 (((-776) $) NIL)) (-4249 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-646 $)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1721 (($ $) NIL) (($ $ $) NIL)) (-4260 (($ $ (-776)) NIL) (($ $) 36)) (-3416 (((-1131 (-551) (-616 $)) $) 20)) (-3623 (($ $) NIL (|has| $ (-1055)))) (-4420 (((-382) $) 101) (((-226) $) 109) (((-169 (-382)) $) 117)) (-4396 (((-868) $) NIL) (($ (-616 $)) NIL) (($ (-412 (-551))) NIL) (($ $) NIL) (($ (-551)) NIL) (($ (-1131 (-551) (-616 $))) 21)) (-3548 (((-776)) NIL T CONST)) (-3008 (($ $) NIL) (($ (-646 $)) NIL)) (-2421 (((-112) (-113)) 93)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 10 T CONST)) (-3085 (($) 22 T CONST)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3473 (((-112) $ $) 24)) (-4399 (($ $ $) 44)) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-412 (-551))) NIL) (($ $ (-551)) 48) (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL) (($ $ $) 27) (($ (-551) $) NIL) (($ (-776) $) NIL) (($ (-925) $) NIL)))
-(((-500) (-13 (-301) (-27) (-1044 (-551)) (-1044 (-412 (-551))) (-644 (-551)) (-1026) (-644 (-412 (-551))) (-147) (-619 (-169 (-382))) (-234) (-10 -8 (-15 -4396 ($ (-1131 (-551) (-616 $)))) (-15 -3417 ((-1131 (-551) (-616 $)) $)) (-15 -3416 ((-1131 (-551) (-616 $)) $)) (-15 -4292 ($ $)) (-15 -2140 ((-112) $ $)) (-15 -3554 ((-1177 $) (-1177 $) (-616 $))) (-15 -3554 ((-1177 $) (-1177 $) (-646 (-616 $)))) (-15 -3554 ($ $ (-616 $))) (-15 -3554 ($ $ (-646 (-616 $))))))) (T -500))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500)))) (-4292 (*1 *1 *1) (-5 *1 (-500))) (-2140 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))) (-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-500))) (-5 *3 (-616 (-500))) (-5 *1 (-500)))) (-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-500))) (-5 *3 (-646 (-616 (-500)))) (-5 *1 (-500)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-616 (-500))) (-5 *1 (-500)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-616 (-500)))) (-5 *1 (-500)))))
-(-13 (-301) (-27) (-1044 (-551)) (-1044 (-412 (-551))) (-644 (-551)) (-1026) (-644 (-412 (-551))) (-147) (-619 (-169 (-382))) (-234) (-10 -8 (-15 -4396 ($ (-1131 (-551) (-616 $)))) (-15 -3417 ((-1131 (-551) (-616 $)) $)) (-15 -3416 ((-1131 (-551) (-616 $)) $)) (-15 -4292 ($ $)) (-15 -2140 ((-112) $ $)) (-15 -3554 ((-1177 $) (-1177 $) (-616 $))) (-15 -3554 ((-1177 $) (-1177 $) (-646 (-616 $)))) (-15 -3554 ($ $ (-616 $))) (-15 -3554 ($ $ (-646 (-616 $))))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) 47 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 42 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 41)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 21)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 17 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) 44 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) 15 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 19)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) 46) (($ $ (-1239 (-551))) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 24)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) 11 (|has| $ (-6 -4443)))))
-(((-501 |#1| |#2|) (-19 |#1|) (-1222) (-551)) (T -501))
+((-2691 (*1 *1 *1) (-4 *1 (-498))) (-2669 (*1 *1 *1) (-4 *1 (-498))) (-2712 (*1 *1 *1) (-4 *1 (-498))) (-2725 (*1 *1 *1) (-4 *1 (-498))) (-2701 (*1 *1 *1) (-4 *1 (-498))) (-2680 (*1 *1 *1) (-4 *1 (-498))))
+(-13 (-10 -8 (-15 -2680 ($ $)) (-15 -2701 ($ $)) (-15 -2725 ($ $)) (-15 -2712 ($ $)) (-15 -2669 ($ $)) (-15 -2691 ($ $))))
+((-3699 (((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)) 54)))
+(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)))) (-367) (-1249 |#1|) (-13 (-367) (-147) (-729 |#1| |#2|)) (-1249 |#3|)) (T -499))
+((-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1249 *7)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2092 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-1540 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-2789 (((-112) $) 39)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-4018 (((-112) $ $) 73)) (-3550 (((-649 (-617 $)) $) 50)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4272 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-1550 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2740 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-4359 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3043 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) 55)) (-2339 (($ $ $) NIL)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-412 (-569)))) (|:| |vec| (-1273 (-412 (-569))))) (-694 $) (-1273 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3485 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2629 (($ $) NIL) (($ (-649 $)) NIL)) (-2042 (((-649 (-114)) $) NIL)) (-3642 (((-114) (-114)) NIL)) (-2861 (((-112) $) 42)) (-2355 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-4378 (((-1131 (-569) (-617 $)) $) 37)) (-1589 (($ $ (-569)) NIL)) (-3334 (((-1179 $) (-1179 $) (-617 $)) 87) (((-1179 $) (-1179 $) (-649 (-617 $))) 62) (($ $ (-617 $)) 76) (($ $ (-649 (-617 $))) 77)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2021 (((-1179 $) (-617 $)) 74 (|has| $ (-1055)))) (-1324 (($ (-1 $ $) (-617 $)) NIL)) (-2052 (((-3 (-617 $) "failed") $) NIL)) (-1798 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3629 (((-649 (-617 $)) $) NIL)) (-1331 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-2016 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1776 (($ $) NIL)) (-1399 (((-776) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2031 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1679 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4409 (((-776) $) NIL)) (-1852 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2062 (($ $) NIL) (($ $ $) NIL)) (-3430 (($ $ (-776)) NIL) (($ $) 36)) (-4390 (((-1131 (-569) (-617 $)) $) 20)) (-2760 (($ $) NIL (|has| $ (-1055)))) (-1384 (((-383) $) 101) (((-226) $) 109) (((-170 (-383)) $) 117)) (-2388 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1131 (-569) (-617 $))) 21)) (-3263 (((-776)) NIL T CONST)) (-4176 (($ $) NIL) (($ (-649 $)) NIL)) (-3858 (((-112) (-114)) 93)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 10 T CONST)) (-1796 (($) 22 T CONST)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2853 (((-112) $ $) 24)) (-2956 (($ $ $) 44)) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) 48) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) 27) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-500) (-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -2388 ($ (-1131 (-569) (-617 $)))) (-15 -4378 ((-1131 (-569) (-617 $)) $)) (-15 -4390 ((-1131 (-569) (-617 $)) $)) (-15 -3485 ($ $)) (-15 -4018 ((-112) $ $)) (-15 -3334 ((-1179 $) (-1179 $) (-617 $))) (-15 -3334 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -3334 ($ $ (-617 $))) (-15 -3334 ($ $ (-649 (-617 $))))))) (T -500))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-3485 (*1 *1 *1) (-5 *1 (-500))) (-4018 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))) (-3334 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500)))) (-3334 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-649 (-617 (-500)))) (-5 *1 (-500)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500)))))
+(-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -2388 ($ (-1131 (-569) (-617 $)))) (-15 -4378 ((-1131 (-569) (-617 $)) $)) (-15 -4390 ((-1131 (-569) (-617 $)) $)) (-15 -3485 ($ $)) (-15 -4018 ((-112) $ $)) (-15 -3334 ((-1179 $) (-1179 $) (-617 $))) (-15 -3334 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -3334 ($ $ (-617 $))) (-15 -3334 ($ $ (-649 (-617 $))))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) 47 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 41)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 21)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 17 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) 44 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) 15 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 19)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 46) (($ $ (-1240 (-569))) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 24)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) 11 (|has| $ (-6 -4443)))))
+(((-501 |#1| |#2|) (-19 |#1|) (-1223) (-569)) (T -501))
NIL
(-19 |#1|)
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) NIL)) (-1348 (($ $ (-551) (-501 |#1| |#3|)) NIL)) (-1347 (($ $ (-551) (-501 |#1| |#2|)) NIL)) (-4174 (($) NIL T CONST)) (-3534 (((-501 |#1| |#3|) $ (-551)) NIL)) (-1694 ((|#1| $ (-551) (-551) |#1|) NIL)) (-3535 ((|#1| $ (-551) (-551)) NIL)) (-2134 (((-646 |#1|) $) NIL)) (-3537 (((-776) $) NIL)) (-4064 (($ (-776) (-776) |#1|) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) (-551)) NIL) ((|#1| $ (-551) (-551) |#1|) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3533 (((-501 |#1| |#2|) $ (-551)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-502 |#1| |#2| |#3|) (-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) (-1222) (-551) (-551)) (T -502))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2009 (($ $ (-569) (-501 |#1| |#3|)) NIL)) (-1933 (($ $ (-569) (-501 |#1| |#2|)) NIL)) (-3863 (($) NIL T CONST)) (-3136 (((-501 |#1| |#3|) $ (-569)) NIL)) (-3074 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3007 ((|#1| $ (-569) (-569)) NIL)) (-2796 (((-649 |#1|) $) NIL)) (-2511 (((-776) $) NIL)) (-4275 (($ (-776) (-776) |#1|) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3126 (((-501 |#1| |#2|) $ (-569)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-502 |#1| |#2| |#3|) (-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) (-1223) (-569) (-569)) (T -502))
NIL
(-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|))
-((-2142 (((-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776)) 33)) (-2141 (((-646 (-1177 |#1|)) |#1| (-776) (-776) (-776)) 43)) (-2270 (((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-646 |#3|) (-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)) 110)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2141 ((-646 (-1177 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2142 ((-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2270 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-646 |#3|) (-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) (-354) (-1248 |#1|) (-1248 |#2|)) (T -503))
-((-2270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 (-2 (|:| -2200 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))) (-5 *5 (-776)) (-4 *8 (-1248 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-354)) (-5 *2 (-2 (|:| -2200 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7)))) (-5 *1 (-503 *6 *7 *8)))) (-2142 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-4 *5 (-354)) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-2 (|:| -2200 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))) (-5 *1 (-503 *5 *6 *7)) (-5 *3 (-2 (|:| -2200 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6)))) (-4 *7 (-1248 *6)))) (-2141 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-776)) (-4 *3 (-354)) (-4 *5 (-1248 *3)) (-5 *2 (-646 (-1177 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1248 *5)))))
-(-10 -7 (-15 -2141 ((-646 (-1177 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2142 ((-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2270 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-646 |#3|) (-646 (-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776))))
-((-2148 (((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 74)) (-2143 ((|#1| (-694 |#1|) |#1| (-776)) 27)) (-2145 (((-776) (-776) (-776)) 36)) (-2147 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 54)) (-2146 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 62) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 59)) (-2144 ((|#1| (-694 |#1|) (-694 |#1|) |#1| (-551)) 31)) (-3771 ((|#1| (-694 |#1|)) 18)))
-(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -3771 (|#1| (-694 |#1|))) (-15 -2143 (|#1| (-694 |#1|) |#1| (-776))) (-15 -2144 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-551))) (-15 -2145 ((-776) (-776) (-776))) (-15 -2146 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2146 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2147 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2148 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))) (-1248 |#1|) (-415 |#1| |#2|)) (T -504))
-((-2148 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2147 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2146 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2146 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2145 (*1 *2 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2144 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-551)) (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *5 (-1248 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-2143 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *5 (-1248 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-694 *2)) (-4 *4 (-1248 *2)) (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-415 *2 *4)))))
-(-10 -7 (-15 -3771 (|#1| (-694 |#1|))) (-15 -2143 (|#1| (-694 |#1|) |#1| (-776))) (-15 -2144 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-551))) (-15 -2145 ((-776) (-776) (-776))) (-15 -2146 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2146 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2147 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2148 ((-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2200 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))))
-((-2986 (((-112) $ $) NIL)) (-2476 (($ $) NIL)) (-3763 (($ $ $) 40)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1908 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-3328 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-112) $ (-1239 (-551)) (-112)) NIL (|has| $ (-6 -4444))) (((-112) $ (-551) (-112)) 42 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-3848 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-4292 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-1694 (((-112) $ (-551) (-112)) NIL (|has| $ (-6 -4444)))) (-3535 (((-112) $ (-551)) NIL)) (-3861 (((-551) (-112) $ (-551)) NIL (|has| (-112) (-1107))) (((-551) (-112) $) NIL (|has| (-112) (-1107))) (((-551) (-1 (-112) (-112)) $) NIL)) (-2134 (((-646 (-112)) $) NIL (|has| $ (-6 -4443)))) (-3273 (($ $ $) 38)) (-3764 (($ $) NIL)) (-1398 (($ $ $) NIL)) (-4064 (($ (-776) (-112)) 27)) (-1399 (($ $ $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 8 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL)) (-3959 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3026 (((-646 (-112)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL)) (-2138 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ (-112) $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-112) $) NIL (|has| (-551) (-855)))) (-1444 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2391 (($ $ (-112)) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-112)) (-646 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-296 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107)))) (($ $ (-646 (-296 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107))))) (-2397 (((-646 (-112)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 28)) (-4249 (($ $ (-1239 (-551))) NIL) (((-112) $ (-551)) 22) (((-112) $ (-551) (-112)) NIL)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2135 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1107)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) 29)) (-4420 (((-540) $) NIL (|has| (-112) (-619 (-540))))) (-3971 (($ (-646 (-112))) NIL)) (-4251 (($ (-646 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4396 (((-868) $) 26)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3274 (($ $ $) 36)) (-2474 (($ $ $) NIL)) (-3760 (($ $ $) 45)) (-3762 (($ $) 43)) (-3761 (($ $ $) 44)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 30)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 31)) (-2475 (($ $ $) NIL)) (-4407 (((-776) $) 13 (|has| $ (-6 -4443)))))
-(((-505 |#1|) (-13 (-123) (-10 -8 (-15 -3762 ($ $)) (-15 -3760 ($ $ $)) (-15 -3761 ($ $ $)))) (-551)) (T -505))
-((-3762 (*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551)))) (-3760 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551)))) (-3761 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551)))))
-(-13 (-123) (-10 -8 (-15 -3762 ($ $)) (-15 -3760 ($ $ $)) (-15 -3761 ($ $ $))))
-((-2150 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1177 |#4|)) 35)) (-2149 (((-1177 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1177 |#4|)) 22)) (-2151 (((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1177 |#4|))) 49)) (-2152 (((-1177 (-1177 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
-(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2149 (|#2| (-1 |#1| |#4|) (-1177 |#4|))) (-15 -2149 ((-1177 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2150 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1177 |#4|))) (-15 -2151 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1177 |#4|)))) (-15 -2152 ((-1177 (-1177 |#4|)) (-1 |#4| |#1|) |#3|))) (-1055) (-1248 |#1|) (-1248 |#2|) (-1055)) (T -506))
-((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *6 (-1248 *5)) (-5 *2 (-1177 (-1177 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1248 *6)))) (-2151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1177 *8))) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-1248 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1248 *6)))) (-2150 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1177 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1248 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1248 *2)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *4 (-1248 *5)) (-5 *2 (-1177 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1248 *4)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1177 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1248 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1248 *2)))))
-(-10 -7 (-15 -2149 (|#2| (-1 |#1| |#4|) (-1177 |#4|))) (-15 -2149 ((-1177 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2150 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1177 |#4|))) (-15 -2151 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1177 |#4|)))) (-15 -2152 ((-1177 (-1177 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2153 (((-1278) $) 25)) (-4249 (((-1165) $ (-1183)) 30)) (-4067 (((-1278) $) 17)) (-4396 (((-868) $) 27) (($ (-1165)) 26)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 11)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 9)))
-(((-507) (-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $)) (-15 -4396 ($ (-1165)))))) (T -507))
-((-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507)))))
-(-13 (-855) (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $)) (-15 -2153 ((-1278) $)) (-15 -4396 ($ (-1165)))))
-((-4191 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4189 ((|#1| |#4|) 10)) (-4190 ((|#3| |#4|) 17)))
-(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4189 (|#1| |#4|)) (-15 -4190 (|#3| |#4|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-562) (-997 |#1|) (-376 |#1|) (-376 |#2|)) (T -508))
-((-4191 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-997 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-376 *4)) (-4 *3 (-376 *5)))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-997 *4)) (-4 *2 (-376 *4)) (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-376 *5)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-508 *2 *4 *5 *3)) (-4 *5 (-376 *2)) (-4 *3 (-376 *4)))))
-(-10 -7 (-15 -4189 (|#1| |#4|)) (-15 -4190 (|#3| |#4|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2986 (((-112) $ $) NIL)) (-2163 (((-112) $ (-646 |#3|)) 124) (((-112) $) 125)) (-3626 (((-112) $) 176)) (-2155 (($ $ |#4|) 115) (($ $ |#4| (-646 |#3|)) 119)) (-2154 (((-1172 (-646 (-952 |#1|)) (-646 (-296 (-952 |#1|)))) (-646 |#4|)) 169 (|has| |#3| (-619 (-1183))))) (-2162 (($ $ $) 105) (($ $ |#4|) 103)) (-2591 (((-112) $) 175)) (-2159 (($ $) 129)) (-3681 (((-1165) $) NIL)) (-3676 (($ $ $) 97) (($ (-646 $)) 99)) (-2164 (((-112) |#4| $) 127)) (-2165 (((-112) $ $) 82)) (-2158 (($ (-646 |#4|)) 104)) (-3682 (((-1126) $) NIL)) (-2157 (($ (-646 |#4|)) 173)) (-2156 (((-112) $) 174)) (-2418 (($ $) 85)) (-3116 (((-646 |#4|) $) 73)) (-2161 (((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-646 |#3|)) NIL)) (-2166 (((-112) |#4| $) 89)) (-4361 (((-551) $ (-646 |#3|)) 131) (((-551) $) 132)) (-4396 (((-868) $) 172) (($ (-646 |#4|)) 100)) (-3680 (((-112) $ $) NIL)) (-2160 (($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $))) NIL)) (-3473 (((-112) $ $) 84)) (-4289 (($ $ $) 107)) (** (($ $ (-776)) 113)) (* (($ $ $) 111)))
-(((-509 |#1| |#2| |#3| |#4|) (-13 (-1107) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -4289 ($ $ $)) (-15 -2591 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -2166 ((-112) |#4| $)) (-15 -2165 ((-112) $ $)) (-15 -2164 ((-112) |#4| $)) (-15 -2163 ((-112) $ (-646 |#3|))) (-15 -2163 ((-112) $)) (-15 -3676 ($ $ $)) (-15 -3676 ($ (-646 $))) (-15 -2162 ($ $ $)) (-15 -2162 ($ $ |#4|)) (-15 -2418 ($ $)) (-15 -2161 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-646 |#3|))) (-15 -2160 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -4361 ((-551) $ (-646 |#3|))) (-15 -4361 ((-551) $)) (-15 -2159 ($ $)) (-15 -2158 ($ (-646 |#4|))) (-15 -2157 ($ (-646 |#4|))) (-15 -2156 ((-112) $)) (-15 -3116 ((-646 |#4|) $)) (-15 -4396 ($ (-646 |#4|))) (-15 -2155 ($ $ |#4|)) (-15 -2155 ($ $ |#4| (-646 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -2154 ((-1172 (-646 (-952 |#1|)) (-646 (-296 (-952 |#1|)))) (-646 |#4|))) |%noBranch|))) (-367) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -509))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-4289 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3626 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2164 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2163 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-2163 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3676 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-646 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2162 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2162 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-2418 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2161 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) (|:| |genIdeal| (-509 *4 *5 *6 *7)))) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) (|:| |genIdeal| (-509 *3 *4 *5 *6)))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-4361 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-551)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-4361 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-551)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2159 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-2157 (*1 *1 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-2156 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3116 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *6)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-2155 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-2155 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-619 (-1183))) (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1172 (-646 (-952 *4)) (-646 (-296 (-952 *4))))) (-5 *1 (-509 *4 *5 *6 *7)))))
-(-13 (-1107) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -4289 ($ $ $)) (-15 -2591 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -2166 ((-112) |#4| $)) (-15 -2165 ((-112) $ $)) (-15 -2164 ((-112) |#4| $)) (-15 -2163 ((-112) $ (-646 |#3|))) (-15 -2163 ((-112) $)) (-15 -3676 ($ $ $)) (-15 -3676 ($ (-646 $))) (-15 -2162 ($ $ $)) (-15 -2162 ($ $ |#4|)) (-15 -2418 ($ $)) (-15 -2161 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-646 |#3|))) (-15 -2160 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -4361 ((-551) $ (-646 |#3|))) (-15 -4361 ((-551) $)) (-15 -2159 ($ $)) (-15 -2158 ($ (-646 |#4|))) (-15 -2157 ($ (-646 |#4|))) (-15 -2156 ((-112) $)) (-15 -3116 ((-646 |#4|) $)) (-15 -4396 ($ (-646 |#4|))) (-15 -2155 ($ $ |#4|)) (-15 -2155 ($ $ |#4| (-646 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -2154 ((-1172 (-646 (-952 |#1|)) (-646 (-296 (-952 |#1|)))) (-646 |#4|))) |%noBranch|)))
-((-2167 (((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) 176)) (-2168 (((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) 177)) (-2169 (((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) 129)) (-4173 (((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) NIL)) (-2170 (((-646 (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) 179)) (-2171 (((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-646 (-869 |#1|))) 195)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2167 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2168 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -4173 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2169 ((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2170 ((-646 (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2171 ((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-646 (-869 |#1|))))) (-646 (-1183)) (-776)) (T -510))
-((-2171 (*1 *2 *2 *3) (-12 (-5 *2 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))) (-5 *3 (-646 (-869 *4))) (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *1 (-510 *4 *5)))) (-2170 (*1 *2 *3) (-12 (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-646 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551)))))) (-5 *1 (-510 *4 *5)) (-5 *3 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-509 (-412 (-551)) (-240 *4 (-776)) (-869 *3) (-248 *3 (-412 (-551))))) (-14 *3 (-646 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))) (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))) (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))) (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))))
-(-10 -7 (-15 -2167 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2168 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -4173 ((-112) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2169 ((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2170 ((-646 (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551))))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))))) (-15 -2171 ((-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-509 (-412 (-551)) (-240 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-551)))) (-646 (-869 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2172 (($) 6)) (-4396 (((-868) $) 12) (((-1183) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 8)))
-(((-511) (-13 (-1107) (-618 (-1183)) (-10 -8 (-15 -2172 ($))))) (T -511))
-((-2172 (*1 *1) (-5 *1 (-511))))
-(-13 (-1107) (-618 (-1183)) (-10 -8 (-15 -2172 ($))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3312 (($ |#1| |#2|) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2173 ((|#2| $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 12 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) 11) (($ $ $) 35)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 21)))
+((-4041 (((-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776)) 33)) (-4030 (((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776)) 43)) (-2772 (((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)) 110)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -4030 ((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776))) (-15 -4041 ((-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2772 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) (-353) (-1249 |#1|) (-1249 |#2|)) (T -503))
+((-2772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-2 (|:| -3371 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))) (-5 *5 (-776)) (-4 *8 (-1249 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-353)) (-5 *2 (-2 (|:| -3371 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7)))) (-5 *1 (-503 *6 *7 *8)))) (-4041 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -3371 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))) (-5 *1 (-503 *5 *6 *7)) (-5 *3 (-2 (|:| -3371 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6)))) (-4 *7 (-1249 *6)))) (-4030 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1249 *3)) (-5 *2 (-649 (-1179 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1249 *5)))))
+(-10 -7 (-15 -4030 ((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776))) (-15 -4041 ((-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2772 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776))))
+((-4111 (((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 74)) (-4052 ((|#1| (-694 |#1|) |#1| (-776)) 27)) (-4076 (((-776) (-776) (-776)) 36)) (-4098 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 54)) (-4086 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 62) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 59)) (-4064 ((|#1| (-694 |#1|) (-694 |#1|) |#1| (-569)) 31)) (-1596 ((|#1| (-694 |#1|)) 18)))
+(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#1| (-694 |#1|))) (-15 -4052 (|#1| (-694 |#1|) |#1| (-776))) (-15 -4064 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -4076 ((-776) (-776) (-776))) (-15 -4086 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4086 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -4098 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4111 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))) (-1249 |#1|) (-414 |#1| |#2|)) (T -504))
+((-4111 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4086 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4086 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4076 (*1 *2 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4064 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-569)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-4052 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-694 *2)) (-4 *4 (-1249 *2)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $))))) (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4)))))
+(-10 -7 (-15 -1596 (|#1| (-694 |#1|))) (-15 -4052 (|#1| (-694 |#1|) |#1| (-776))) (-15 -4064 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -4076 ((-776) (-776) (-776))) (-15 -4086 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4086 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -4098 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4111 ((-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -3371 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))))
+((-2383 (((-112) $ $) NIL)) (-2400 (($ $) NIL)) (-1764 (($ $ $) 40)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3364 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-3246 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-112) $ (-1240 (-569)) (-112)) NIL (|has| $ (-6 -4444))) (((-112) $ (-569) (-112)) 42 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1678 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-3485 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-3074 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4444)))) (-3007 (((-112) $ (-569)) NIL)) (-3975 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1106))) (((-569) (-112) $) NIL (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2796 (((-649 (-112)) $) NIL (|has| $ (-6 -4443)))) (-1752 (($ $ $) 38)) (-1728 (($ $) NIL)) (-3670 (($ $ $) NIL)) (-4275 (($ (-776) (-112)) 27)) (-3685 (($ $ $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 8 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL)) (-3719 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2912 (((-649 (-112)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL)) (-3065 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-112) $) NIL (|has| (-569) (-855)))) (-4316 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1713 (($ $ (-112)) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106))))) (-1784 (((-649 (-112)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 28)) (-1852 (($ $ (-1240 (-569))) NIL) (((-112) $ (-569)) 22) (((-112) $ (-569) (-112)) NIL)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3469 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-112) (-1106)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) 29)) (-1384 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3709 (($ (-649 (-112))) NIL)) (-3632 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2388 (((-867) $) 26)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4443)))) (-1739 (($ $ $) 36)) (-4415 (($ $ $) NIL)) (-3395 (($ $ $) 45)) (-3407 (($ $) 43)) (-3382 (($ $ $) 44)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 30)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 31)) (-4404 (($ $ $) NIL)) (-2394 (((-776) $) 13 (|has| $ (-6 -4443)))))
+(((-505 |#1|) (-13 (-123) (-10 -8 (-15 -3407 ($ $)) (-15 -3395 ($ $ $)) (-15 -3382 ($ $ $)))) (-569)) (T -505))
+((-3407 (*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3395 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3382 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))))
+(-13 (-123) (-10 -8 (-15 -3407 ($ $)) (-15 -3395 ($ $ $)) (-15 -3382 ($ $ $))))
+((-4135 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|)) 35)) (-4123 (((-1179 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1179 |#4|)) 22)) (-4148 (((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|))) 49)) (-4158 (((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4123 (|#2| (-1 |#1| |#4|) (-1179 |#4|))) (-15 -4123 ((-1179 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|))) (-15 -4148 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|)))) (-15 -4158 ((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|))) (-1055) (-1249 |#1|) (-1249 |#2|) (-1055)) (T -506))
+((-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1249 *6)))) (-4148 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1179 *8))) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-1249 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1249 *6)))) (-4135 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *4 (-1249 *5)) (-5 *2 (-1179 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1249 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))))
+(-10 -7 (-15 -4123 (|#2| (-1 |#1| |#4|) (-1179 |#4|))) (-15 -4123 ((-1179 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|))) (-15 -4148 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|)))) (-15 -4158 ((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-4170 (((-1278) $) 25)) (-1852 (((-1165) $ (-1183)) 30)) (-4138 (((-1278) $) 17)) (-2388 (((-867) $) 27) (($ (-1165)) 26)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 11)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-507) (-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $)) (-15 -2388 ($ (-1165)))))) (T -507))
+((-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507)))))
+(-13 (-855) (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $)) (-15 -4170 ((-1278) $)) (-15 -2388 ($ (-1165)))))
+((-3994 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3969 ((|#1| |#4|) 10)) (-3981 ((|#3| |#4|) 17)))
+(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 (|#1| |#4|)) (-15 -3981 (|#3| |#4|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-561) (-998 |#1|) (-377 |#1|) (-377 |#2|)) (T -508))
+((-3994 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-4 *2 (-377 *4)) (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-377 *4)))))
+(-10 -7 (-15 -3969 (|#1| |#4|)) (-15 -3981 (|#3| |#4|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2383 (((-112) $ $) NIL)) (-4286 (((-112) $ (-649 |#3|)) 124) (((-112) $) 125)) (-2789 (((-112) $) 176)) (-4192 (($ $ |#4|) 115) (($ $ |#4| (-649 |#3|)) 119)) (-4182 (((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|)) 169 (|has| |#3| (-619 (-1183))))) (-4273 (($ $ $) 105) (($ $ |#4|) 103)) (-2861 (((-112) $) 175)) (-4237 (($ $) 129)) (-2050 (((-1165) $) NIL)) (-2018 (($ $ $) 97) (($ (-649 $)) 99)) (-4297 (((-112) |#4| $) 127)) (-4307 (((-112) $ $) 82)) (-4225 (($ (-649 |#4|)) 104)) (-3461 (((-1126) $) NIL)) (-4215 (($ (-649 |#4|)) 173)) (-4203 (((-112) $) 174)) (-3821 (($ $) 85)) (-1415 (((-649 |#4|) $) 73)) (-4260 (((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|)) NIL)) (-4317 (((-112) |#4| $) 89)) (-2905 (((-569) $ (-649 |#3|)) 131) (((-569) $) 132)) (-2388 (((-867) $) 172) (($ (-649 |#4|)) 100)) (-2040 (((-112) $ $) NIL)) (-4248 (($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $))) NIL)) (-2853 (((-112) $ $) 84)) (-2935 (($ $ $) 107)) (** (($ $ (-776)) 113)) (* (($ $ $) 111)))
+(((-509 |#1| |#2| |#3| |#4|) (-13 (-1106) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -2935 ($ $ $)) (-15 -2861 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -4317 ((-112) |#4| $)) (-15 -4307 ((-112) $ $)) (-15 -4297 ((-112) |#4| $)) (-15 -4286 ((-112) $ (-649 |#3|))) (-15 -4286 ((-112) $)) (-15 -2018 ($ $ $)) (-15 -2018 ($ (-649 $))) (-15 -4273 ($ $ $)) (-15 -4273 ($ $ |#4|)) (-15 -3821 ($ $)) (-15 -4260 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -4248 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2905 ((-569) $ (-649 |#3|))) (-15 -2905 ((-569) $)) (-15 -4237 ($ $)) (-15 -4225 ($ (-649 |#4|))) (-15 -4215 ($ (-649 |#4|))) (-15 -4203 ((-112) $)) (-15 -1415 ((-649 |#4|) $)) (-15 -2388 ($ (-649 |#4|))) (-15 -4192 ($ $ |#4|)) (-15 -4192 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -4182 ((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -509))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2861 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2789 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4317 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-4307 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4297 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-4286 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2018 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4273 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-3821 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4260 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) (|:| |genIdeal| (-509 *4 *5 *6 *7)))) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) (|:| |genIdeal| (-509 *3 *4 *5 *6)))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2905 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4237 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-4203 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-1415 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-4192 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-4192 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1183))) (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1172 (-649 (-958 *4)) (-649 (-297 (-958 *4))))) (-5 *1 (-509 *4 *5 *6 *7)))))
+(-13 (-1106) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -2935 ($ $ $)) (-15 -2861 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -4317 ((-112) |#4| $)) (-15 -4307 ((-112) $ $)) (-15 -4297 ((-112) |#4| $)) (-15 -4286 ((-112) $ (-649 |#3|))) (-15 -4286 ((-112) $)) (-15 -2018 ($ $ $)) (-15 -2018 ($ (-649 $))) (-15 -4273 ($ $ $)) (-15 -4273 ($ $ |#4|)) (-15 -3821 ($ $)) (-15 -4260 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -4248 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2905 ((-569) $ (-649 |#3|))) (-15 -2905 ((-569) $)) (-15 -4237 ($ $)) (-15 -4225 ($ (-649 |#4|))) (-15 -4215 ($ (-649 |#4|))) (-15 -4203 ((-112) $)) (-15 -1415 ((-649 |#4|) $)) (-15 -2388 ($ (-649 |#4|))) (-15 -4192 ($ $ |#4|)) (-15 -4192 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -4182 ((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|)))
+((-2998 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 176)) (-3010 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 177)) (-3381 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 129)) (-3848 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) NIL)) (-3023 (((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 179)) (-3031 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))) 195)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2998 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3010 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3848 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3381 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3023 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3031 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))))) (-649 (-1183)) (-776)) (T -510))
+((-3031 (*1 *2 *2 *3) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *1 (-510 *4 *5)))) (-3023 (*1 *2 *3) (-12 (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-649 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569)))))) (-5 *1 (-510 *4 *5)) (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))))
+(-10 -7 (-15 -2998 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3010 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3848 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3381 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3023 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3031 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3042 (($) 6)) (-2388 (((-867) $) 12) (((-1183) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 8)))
+(((-511) (-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -3042 ($))))) (T -511))
+((-3042 (*1 *1) (-5 *1 (-511))))
+(-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -3042 ($))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3838 (($ |#1| |#2|) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3055 ((|#2| $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 12 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) 11) (($ $ $) 35)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21)))
(((-512 |#1| |#2|) (-13 (-21) (-514 |#1| |#2|)) (-21) (-855)) (T -512))
NIL
(-13 (-21) (-514 |#1| |#2|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 13)) (-4174 (($) NIL T CONST)) (-4409 (($ $) 41)) (-3312 (($ |#1| |#2|) 38)) (-4408 (($ (-1 |#1| |#1|) $) 40)) (-2173 ((|#2| $) NIL)) (-3612 ((|#1| $) 42)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 10 T CONST)) (-3473 (((-112) $ $) NIL)) (-4289 (($ $ $) 26)) (* (($ (-925) $) NIL) (($ (-776) $) 36)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 13)) (-3863 (($) NIL T CONST)) (-1842 (($ $) 41)) (-3838 (($ |#1| |#2|) 38)) (-1324 (($ (-1 |#1| |#1|) $) 40)) (-3055 ((|#2| $) NIL)) (-1820 ((|#1| $) 42)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 10 T CONST)) (-2853 (((-112) $ $) NIL)) (-2935 (($ $ $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 36)))
(((-513 |#1| |#2|) (-13 (-23) (-514 |#1| |#2|)) (-23) (-855)) (T -513))
NIL
(-13 (-23) (-514 |#1| |#2|))
-((-2986 (((-112) $ $) 7)) (-4409 (($ $) 14)) (-3312 (($ |#1| |#2|) 17)) (-4408 (($ (-1 |#1| |#1|) $) 18)) (-2173 ((|#2| $) 15)) (-3612 ((|#1| $) 16)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-514 |#1| |#2|) (-140) (-1107) (-855)) (T -514))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-855)))) (-3312 (*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-855)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1107)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-855)))) (-4409 (*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-855)))))
-(-13 (-1107) (-10 -8 (-15 -4408 ($ (-1 |t#1| |t#1|) $)) (-15 -3312 ($ |t#1| |t#2|)) (-15 -3612 (|t#1| $)) (-15 -2173 (|t#2| $)) (-15 -4409 ($ $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-4409 (($ $) 32)) (-3312 (($ |#1| |#2|) 28)) (-4408 (($ (-1 |#1| |#1|) $) 30)) (-2173 ((|#2| $) 34)) (-3612 ((|#1| $) 33)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 27)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 20)))
-(((-515 |#1| |#2|) (-514 |#1| |#2|) (-1107) (-855)) (T -515))
-NIL
-(-514 |#1| |#2|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3312 (($ |#1| |#2|) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2173 ((|#2| $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 22)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL)))
-(((-516 |#1| |#2|) (-13 (-797) (-514 |#1| |#2|)) (-797) (-855)) (T -516))
+((-2383 (((-112) $ $) 7)) (-1842 (($ $) 14)) (-3838 (($ |#1| |#2|) 17)) (-1324 (($ (-1 |#1| |#1|) $) 18)) (-3055 ((|#2| $) 15)) (-1820 ((|#1| $) 16)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-514 |#1| |#2|) (-140) (-1106) (-855)) (T -514))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-855)))) (-3838 (*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1106)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-855)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855)))))
+(-13 (-1106) (-10 -8 (-15 -1324 ($ (-1 |t#1| |t#1|) $)) (-15 -3838 ($ |t#1| |t#2|)) (-15 -1820 (|t#1| $)) (-15 -3055 (|t#2| $)) (-15 -1842 ($ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3838 (($ |#1| |#2|) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3055 ((|#2| $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 22)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
+(((-515 |#1| |#2|) (-13 (-797) (-514 |#1| |#2|)) (-797) (-855)) (T -515))
NIL
(-13 (-797) (-514 |#1| |#2|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2823 (($ $ $) 23)) (-1410 (((-3 $ "failed") $ $) 19)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3312 (($ |#1| |#2|) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2173 ((|#2| $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL)))
-(((-517 |#1| |#2|) (-13 (-798) (-514 |#1| |#2|)) (-798) (-855)) (T -517))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3576 (($ $ $) 23)) (-3798 (((-3 $ "failed") $ $) 19)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3838 (($ |#1| |#2|) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3055 ((|#2| $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
+(((-516 |#1| |#2|) (-13 (-798) (-514 |#1| |#2|)) (-798) (-855)) (T -516))
NIL
(-13 (-798) (-514 |#1| |#2|))
-((-4217 (($ $ (-646 |#2|) (-646 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-518 |#1| |#2| |#3|) (-10 -8 (-15 -4217 (|#1| |#1| |#2| |#3|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#3|)))) (-519 |#2| |#3|) (-1107) (-1222)) (T -518))
+((-2383 (((-112) $ $) NIL)) (-1842 (($ $) 32)) (-3838 (($ |#1| |#2|) 28)) (-1324 (($ (-1 |#1| |#1|) $) 30)) (-3055 ((|#2| $) 34)) (-1820 ((|#1| $) 33)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 27)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 20)))
+(((-517 |#1| |#2|) (-514 |#1| |#2|) (-1106) (-855)) (T -517))
NIL
-(-10 -8 (-15 -4217 (|#1| |#1| |#2| |#3|)) (-15 -4217 (|#1| |#1| (-646 |#2|) (-646 |#3|))))
-((-4217 (($ $ (-646 |#1|) (-646 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-519 |#1| |#2|) (-140) (-1107) (-1222)) (T -519))
-((-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1222)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1222)))))
-(-13 (-10 -8 (-15 -4217 ($ $ |t#1| |t#2|)) (-15 -4217 ($ $ (-646 |t#1|) (-646 |t#2|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 17)) (-4223 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))) $) 19)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776) $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-2462 ((|#1| $ (-551)) 24)) (-1777 ((|#2| $ (-551)) 22)) (-2454 (($ (-1 |#1| |#1|) $) 48)) (-1776 (($ (-1 |#2| |#2|) $) 45)) (-3681 (((-1165) $) NIL)) (-1775 (($ $ $) 55 (|has| |#2| (-797)))) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 44) (($ |#1|) NIL)) (-4127 ((|#2| |#1| $) 51)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 11 T CONST)) (-3473 (((-112) $ $) 30)) (-4289 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-925) $) NIL) (($ (-776) $) 37) (($ |#2| |#1|) 32)))
-(((-520 |#1| |#2| |#3|) (-326 |#1| |#2|) (-1107) (-131) |#2|) (T -520))
+(-514 |#1| |#2|)
+((-1679 (($ $ (-649 |#2|) (-649 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-518 |#1| |#2| |#3|) (-10 -8 (-15 -1679 (|#1| |#1| |#2| |#3|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#3|)))) (-519 |#2| |#3|) (-1106) (-1223)) (T -518))
+NIL
+(-10 -8 (-15 -1679 (|#1| |#1| |#2| |#3|)) (-15 -1679 (|#1| |#1| (-649 |#2|) (-649 |#3|))))
+((-1679 (($ $ (-649 |#1|) (-649 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-519 |#1| |#2|) (-140) (-1106) (-1223)) (T -519))
+((-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1223)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1223)))))
+(-13 (-10 -8 (-15 -1679 ($ $ |t#1| |t#2|)) (-15 -1679 ($ $ (-649 |t#1|) (-649 |t#2|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 17)) (-4324 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))) $) 19)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776) $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-4199 ((|#1| $ (-569)) 24)) (-1460 ((|#2| $ (-569)) 22)) (-4117 (($ (-1 |#1| |#1|) $) 48)) (-1448 (($ (-1 |#2| |#2|) $) 45)) (-2050 (((-1165) $) NIL)) (-1438 (($ $ $) 55 (|has| |#2| (-797)))) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 44) (($ |#1|) NIL)) (-1503 ((|#2| |#1| $) 51)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 11 T CONST)) (-2853 (((-112) $ $) 30)) (-2935 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 37) (($ |#2| |#1|) 32)))
+(((-520 |#1| |#2| |#3|) (-326 |#1| |#2|) (-1106) (-131) |#2|) (T -520))
NIL
(-326 |#1| |#2|)
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-2174 (((-112) (-112)) 32)) (-4237 ((|#1| $ (-551) |#1|) 42 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) 80)) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-2544 (($ $) 84 (|has| |#1| (-1107)))) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) NIL (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) 67)) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2175 (($ $ (-551)) 19)) (-2176 (((-776) $) 13)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 31)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 29 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3277 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) 28 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4057 (($ $ $ (-551)) 76) (($ |#1| $ (-551)) 60)) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2177 (($ (-646 |#1|)) 43)) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) 24 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 63)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 21)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) 56) (($ $ (-1239 (-551))) NIL)) (-1689 (($ $ (-1239 (-551))) 74) (($ $ (-551)) 68)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) 64 (|has| $ (-6 -4444)))) (-3842 (($ $) 54)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-4240 (($ $ $) 65) (($ $ |#1|) 62)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) 22 (|has| $ (-6 -4443)))))
-(((-521 |#1| |#2|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2177 ($ (-646 |#1|))) (-15 -2176 ((-776) $)) (-15 -2175 ($ $ (-551))) (-15 -2174 ((-112) (-112))))) (-1222) (-551)) (T -521))
-((-2177 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-521 *3 *4)) (-14 *4 (-551)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 (-551)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 *2))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 (-551)))))
-(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2177 ($ (-646 |#1|))) (-15 -2176 ((-776) $)) (-15 -2175 ($ $ (-551))) (-15 -2174 ((-112) (-112)))))
-((-2986 (((-112) $ $) NIL)) (-2179 (((-1141) $) 11)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2178 (((-1141) $) 13)) (-4372 (((-1141) $) 9)) (-4396 (((-868) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-522) (-13 (-1089) (-10 -8 (-15 -4372 ((-1141) $)) (-15 -2179 ((-1141) $)) (-15 -2178 ((-1141) $))))) (T -522))
-((-4372 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(-13 (-1089) (-10 -8 (-15 -4372 ((-1141) $)) (-15 -2179 ((-1141) $)) (-15 -2178 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (((-586 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-586 |#1|) (-372)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-586 |#1|) (-372)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL (|has| (-586 |#1|) (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-586 |#1|) "failed") $) NIL)) (-3594 (((-586 |#1|) $) NIL)) (-1977 (($ (-1272 (-586 |#1|))) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-586 |#1|) (-372)))) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-586 |#1|) (-372)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL (|has| (-586 |#1|) (-372)))) (-1858 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-1951 (($ $ (-776)) NIL (-3978 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372)))) (($ $) NIL (-3978 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-4173 (((-112) $) NIL)) (-4221 (((-925) $) NIL (|has| (-586 |#1|) (-372))) (((-837 (-925)) $) NIL (-3978 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| (-586 |#1|) (-372)))) (-2199 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3554 (((-586 |#1|) $) NIL) (($ $ (-925)) NIL (|has| (-586 |#1|) (-372)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-586 |#1|) (-372)))) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 (-586 |#1|)) $) NIL) (((-1177 $) $ (-925)) NIL (|has| (-586 |#1|) (-372)))) (-2198 (((-925) $) NIL (|has| (-586 |#1|) (-372)))) (-1782 (((-1177 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372)))) (-1781 (((-1177 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-1177 (-586 |#1|)) "failed") $ $) NIL (|has| (-586 |#1|) (-372)))) (-1783 (($ $ (-1177 (-586 |#1|))) NIL (|has| (-586 |#1|) (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-586 |#1|) (-372)) CONST)) (-2581 (($ (-925)) NIL (|has| (-586 |#1|) (-372)))) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL (|has| (-586 |#1|) (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-586 |#1|) (-372)))) (-4182 (((-410 $) $) NIL)) (-4380 (((-837 (-925))) NIL) (((-925)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-776) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-3978 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-4361 (((-134)) NIL)) (-4260 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-4398 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-3623 (((-1177 (-586 |#1|))) NIL)) (-1852 (($) NIL (|has| (-586 |#1|) (-372)))) (-1784 (($) NIL (|has| (-586 |#1|) (-372)))) (-3662 (((-1272 (-586 |#1|)) $) NIL) (((-694 (-586 |#1|)) (-1272 $)) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-586 |#1|) (-372)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-586 |#1|)) NIL)) (-3123 (($ $) NIL (|has| (-586 |#1|) (-372))) (((-3 $ "failed") $) NIL (-3978 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL) (((-1272 $) (-925)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-3090 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL) (($ $ (-586 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-586 |#1|)) NIL) (($ (-586 |#1|) $) NIL)))
-(((-523 |#1| |#2|) (-332 (-586 |#1|)) (-925) (-925)) (T -523))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3068 (((-112) (-112)) 32)) (-3861 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) 80)) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3686 (($ $) 84 (|has| |#1| (-1106)))) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) 67)) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-3077 (($ $ (-569)) 19)) (-3087 (((-776) $) 13)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 31)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 29 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3644 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) 28 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-2086 (($ $ $ (-569)) 76) (($ |#1| $ (-569)) 60)) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3098 (($ (-649 |#1|)) 43)) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) 24 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 63)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 21)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 56) (($ $ (-1240 (-569))) NIL)) (-1827 (($ $ (-1240 (-569))) 74) (($ $ (-569)) 68)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) 64 (|has| $ (-6 -4444)))) (-3885 (($ $) 54)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-3149 (($ $ $) 65) (($ $ |#1|) 62)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) 22 (|has| $ (-6 -4443)))))
+(((-521 |#1| |#2|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -3098 ($ (-649 |#1|))) (-15 -3087 ((-776) $)) (-15 -3077 ($ $ (-569))) (-15 -3068 ((-112) (-112))))) (-1223) (-569)) (T -521))
+((-3098 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-521 *3 *4)) (-14 *4 (-569)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 (-569)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 *2))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 (-569)))))
+(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -3098 ($ (-649 |#1|))) (-15 -3087 ((-776) $)) (-15 -3077 ($ $ (-569))) (-15 -3068 ((-112) (-112)))))
+((-2383 (((-112) $ $) NIL)) (-3118 (((-1141) $) 11)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3108 (((-1141) $) 13)) (-2335 (((-1141) $) 9)) (-2388 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-522) (-13 (-1089) (-10 -8 (-15 -2335 ((-1141) $)) (-15 -3118 ((-1141) $)) (-15 -3108 ((-1141) $))))) (T -522))
+((-2335 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
+(-13 (-1089) (-10 -8 (-15 -2335 ((-1141) $)) (-15 -3118 ((-1141) $)) (-15 -3108 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-586 |#1|) (-372)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL (|has| (-586 |#1|) (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-586 |#1|) "failed") $) NIL)) (-3043 (((-586 |#1|) $) NIL)) (-2806 (($ (-1273 (-586 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-586 |#1|) (-372)))) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-586 |#1|) (-372)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL (|has| (-586 |#1|) (-372)))) (-4127 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-2525 (($ $ (-776)) NIL (-2718 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372)))) (($ $) NIL (-2718 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-3848 (((-112) $) NIL)) (-4315 (((-927) $) NIL (|has| (-586 |#1|) (-372))) (((-838 (-927)) $) NIL (-2718 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| (-586 |#1|) (-372)))) (-3359 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3334 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-586 |#1|) (-372)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 (-586 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3348 (((-927) $) NIL (|has| (-586 |#1|) (-372)))) (-1509 (((-1179 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372)))) (-1500 (((-1179 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-1179 (-586 |#1|)) "failed") $ $) NIL (|has| (-586 |#1|) (-372)))) (-1518 (($ $ (-1179 (-586 |#1|))) NIL (|has| (-586 |#1|) (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-586 |#1|) (-372)) CONST)) (-2114 (($ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL (|has| (-586 |#1|) (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-586 |#1|) (-372)))) (-3699 (((-423 $) $) NIL)) (-3096 (((-838 (-927))) NIL) (((-927)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-776) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2718 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2905 (((-134)) NIL)) (-3430 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2091 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2760 (((-1179 (-586 |#1|))) NIL)) (-4056 (($) NIL (|has| (-586 |#1|) (-372)))) (-1529 (($) NIL (|has| (-586 |#1|) (-372)))) (-1949 (((-1273 (-586 |#1|)) $) NIL) (((-694 (-586 |#1|)) (-1273 $)) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-586 |#1|) (-372)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-586 |#1|)) NIL)) (-1488 (($ $) NIL (|has| (-586 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2718 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2749 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL) (($ $ (-586 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-586 |#1|)) NIL) (($ (-586 |#1|) $) NIL)))
+(((-523 |#1| |#2|) (-332 (-586 |#1|)) (-927) (-927)) (T -523))
NIL
(-332 (-586 |#1|))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) 51)) (-1348 (($ $ (-551) |#4|) NIL)) (-1347 (($ $ (-551) |#5|) NIL)) (-4174 (($) NIL T CONST)) (-3534 ((|#4| $ (-551)) NIL)) (-1694 ((|#1| $ (-551) (-551) |#1|) 50)) (-3535 ((|#1| $ (-551) (-551)) 45)) (-2134 (((-646 |#1|) $) NIL)) (-3537 (((-776) $) 33)) (-4064 (($ (-776) (-776) |#1|) 30)) (-3536 (((-776) $) 38)) (-4169 (((-112) $ (-776)) NIL)) (-3541 (((-551) $) 31)) (-3539 (((-551) $) 32)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) 37)) (-3538 (((-551) $) 39)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) 55 (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 14)) (-4014 (($) 16)) (-4249 ((|#1| $ (-551) (-551)) 48) ((|#1| $ (-551) (-551) |#1|) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3533 ((|#5| $ (-551)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-524 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1222) (-551) (-551) (-376 |#1|) (-376 |#1|)) (T -524))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) 51)) (-2009 (($ $ (-569) |#4|) NIL)) (-1933 (($ $ (-569) |#5|) NIL)) (-3863 (($) NIL T CONST)) (-3136 ((|#4| $ (-569)) NIL)) (-3074 ((|#1| $ (-569) (-569) |#1|) 50)) (-3007 ((|#1| $ (-569) (-569)) 45)) (-2796 (((-649 |#1|) $) NIL)) (-2511 (((-776) $) 33)) (-4275 (($ (-776) (-776) |#1|) 30)) (-2522 (((-776) $) 38)) (-3799 (((-112) $ (-776)) NIL)) (-3181 (((-569) $) 31)) (-3160 (((-569) $) 32)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) 37)) (-3148 (((-569) $) 39)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) 55 (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 14)) (-2825 (($) 16)) (-1852 ((|#1| $ (-569) (-569)) 48) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3126 ((|#5| $ (-569)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-524 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1223) (-569) (-569) (-377 |#1|) (-377 |#1|)) (T -524))
NIL
(-57 |#1| |#4| |#5|)
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) NIL)) (-4244 ((|#1| $) NIL)) (-4246 (($ $) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 73 (|has| $ (-6 -4444)))) (-1910 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1908 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4444)))) (-3328 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4236 (($ $ $) 23 (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 21 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4444))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) NIL)) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4245 ((|#1| $) NIL)) (-4174 (($) NIL T CONST)) (-2460 (($ $) 28 (|has| $ (-6 -4444)))) (-2461 (($ $) 29)) (-4248 (($ $) 18) (($ $ (-776)) 35)) (-2544 (($ $) 66 (|has| |#1| (-1107)))) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) NIL (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) NIL)) (-3848 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3884 (((-112) $) NIL)) (-3861 (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107))) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) (-1 (-112) |#1|) $) NIL)) (-2134 (((-646 |#1|) $) 27 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 31 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3277 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3959 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3983 (($ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) 62 (|has| |#1| (-1107)))) (-4247 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4057 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) 13) (($ $ (-776)) NIL)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3885 (((-112) $) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 12)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 16)) (-4249 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1239 (-551))) NIL) ((|#1| $ (-551)) NIL) ((|#1| $ (-551) |#1|) NIL)) (-3448 (((-551) $ $) NIL)) (-1689 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-4083 (((-112) $) 39)) (-4241 (($ $) NIL)) (-4239 (($ $) NIL (|has| $ (-6 -4444)))) (-4242 (((-776) $) NIL)) (-4243 (($ $) 44)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) 40)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 26)) (-4240 (($ $ $) 65) (($ $ |#1|) NIL)) (-4251 (($ $ $) NIL) (($ |#1| $) 10) (($ (-646 $)) NIL) (($ $ |#1|) NIL)) (-4396 (((-868) $) 54 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) 58 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) 9 (|has| $ (-6 -4443)))))
-(((-525 |#1| |#2|) (-671 |#1|) (-1222) (-551)) (T -525))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) NIL)) (-2498 ((|#1| $) NIL)) (-1528 (($ $) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 73 (|has| $ (-6 -4444)))) (-3389 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3364 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4444)))) (-3246 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3116 (($ $ $) 23 (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 21 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4444))) (($ $ "rest" $) 24 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) NIL)) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2487 ((|#1| $) NIL)) (-3863 (($) NIL T CONST)) (-4188 (($ $) 28 (|has| $ (-6 -4444)))) (-2214 (($ $) 29)) (-3414 (($ $) 18) (($ $ (-776)) 35)) (-3686 (($ $) 66 (|has| |#1| (-1106)))) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3154 (((-112) $) NIL)) (-3975 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2796 (((-649 |#1|) $) 27 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 31 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3644 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3719 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3271 (($ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) 62 (|has| |#1| (-1106)))) (-1702 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-2086 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) 13) (($ $ (-776)) NIL)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3166 (((-112) $) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 12)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 16)) (-1852 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL)) (-1797 (((-569) $ $) NIL)) (-1827 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-2284 (((-112) $) 39)) (-3161 (($ $) NIL)) (-3137 (($ $) NIL (|has| $ (-6 -4444)))) (-3172 (((-776) $) NIL)) (-3182 (($ $) 44)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) 40)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 26)) (-3149 (($ $ $) 65) (($ $ |#1|) NIL)) (-3632 (($ $ $) NIL) (($ |#1| $) 10) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-2388 (((-867) $) 54 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) 58 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) 9 (|has| $ (-6 -4443)))))
+(((-525 |#1| |#2|) (-671 |#1|) (-1223) (-569)) (T -525))
NIL
(-671 |#1|)
-((-3532 ((|#4| |#4|) 37)) (-3531 (((-776) |#4|) 45)) (-3530 (((-776) |#4|) 46)) (-3529 (((-646 |#3|) |#4|) 56 (|has| |#3| (-6 -4444)))) (-4039 (((-3 |#4| "failed") |#4|) 70)) (-2180 ((|#4| |#4|) 62)) (-3770 ((|#1| |#4|) 61)))
-(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 (|#4| |#4|)) (-15 -3531 ((-776) |#4|)) (-15 -3530 ((-776) |#4|)) (IF (|has| |#3| (-6 -4444)) (-15 -3529 ((-646 |#3|) |#4|)) |%noBranch|) (-15 -3770 (|#1| |#4|)) (-15 -2180 (|#4| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#4|))) (-367) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|)) (T -526))
-((-4039 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-367)) (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5)))) (-3529 (*1 *2 *3) (-12 (|has| *6 (-6 -4444)) (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-646 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3531 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(-10 -7 (-15 -3532 (|#4| |#4|)) (-15 -3531 ((-776) |#4|)) (-15 -3530 ((-776) |#4|)) (IF (|has| |#3| (-6 -4444)) (-15 -3529 ((-646 |#3|) |#4|)) |%noBranch|) (-15 -3770 (|#1| |#4|)) (-15 -2180 (|#4| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#4|)))
-((-3532 ((|#8| |#4|) 20)) (-3529 (((-646 |#3|) |#4|) 29 (|has| |#7| (-6 -4444)))) (-4039 (((-3 |#8| "failed") |#4|) 23)))
-(((-527 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3532 (|#8| |#4|)) (-15 -4039 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4444)) (-15 -3529 ((-646 |#3|) |#4|)) |%noBranch|)) (-562) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|) (-997 |#1|) (-376 |#5|) (-376 |#5|) (-691 |#5| |#6| |#7|)) (T -527))
-((-3529 (*1 *2 *3) (-12 (|has| *9 (-6 -4444)) (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-4 *7 (-997 *4)) (-4 *8 (-376 *7)) (-4 *9 (-376 *7)) (-5 *2 (-646 *6)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-691 *4 *5 *6)) (-4 *10 (-691 *7 *8 *9)))) (-4039 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-4 *7 (-997 *4)) (-4 *2 (-691 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-691 *4 *5 *6)) (-4 *8 (-376 *7)) (-4 *9 (-376 *7)))) (-3532 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-4 *7 (-997 *4)) (-4 *2 (-691 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-691 *4 *5 *6)) (-4 *8 (-376 *7)) (-4 *9 (-376 *7)))))
-(-10 -7 (-15 -3532 (|#8| |#4|)) (-15 -4039 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4444)) (-15 -3529 ((-646 |#3|) |#4|)) |%noBranch|))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776) (-776)) NIL)) (-2519 (($ $ $) NIL)) (-3856 (($ (-607 |#1| |#3|)) NIL) (($ $) NIL)) (-3543 (((-112) $) NIL)) (-2518 (($ $ (-551) (-551)) 21)) (-2517 (($ $ (-551) (-551)) NIL)) (-2516 (($ $ (-551) (-551) (-551) (-551)) NIL)) (-2521 (($ $) NIL)) (-3545 (((-112) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-2515 (($ $ (-551) (-551) $) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551)) $) NIL)) (-1348 (($ $ (-551) (-607 |#1| |#3|)) NIL)) (-1347 (($ $ (-551) (-607 |#1| |#2|)) NIL)) (-3775 (($ (-776) |#1|) NIL)) (-4174 (($) NIL T CONST)) (-3532 (($ $) 30 (|has| |#1| (-310)))) (-3534 (((-607 |#1| |#3|) $ (-551)) NIL)) (-3531 (((-776) $) 33 (|has| |#1| (-562)))) (-1694 ((|#1| $ (-551) (-551) |#1|) NIL)) (-3535 ((|#1| $ (-551) (-551)) NIL)) (-2134 (((-646 |#1|) $) NIL)) (-3530 (((-776) $) 35 (|has| |#1| (-562)))) (-3529 (((-646 (-607 |#1| |#2|)) $) 38 (|has| |#1| (-562)))) (-3537 (((-776) $) NIL)) (-4064 (($ (-776) (-776) |#1|) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3769 ((|#1| $) 28 (|has| |#1| (-6 (-4445 #1="*"))))) (-3541 (((-551) $) 10)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) 13)) (-3538 (((-551) $) NIL)) (-3546 (($ (-646 (-646 |#1|))) NIL)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-646 (-646 |#1|)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4039 (((-3 $ #2="failed") $) 42 (|has| |#1| (-367)))) (-2520 (($ $ $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-3907 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-562)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) (-551)) NIL) ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551))) NIL)) (-3774 (($ (-646 |#1|)) NIL) (($ (-646 $)) NIL)) (-3544 (((-112) $) NIL)) (-3770 ((|#1| $) 26 (|has| |#1| (-6 (-4445 #1#))))) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3533 (((-607 |#1| |#2|) $ (-551)) NIL)) (-4396 (($ (-607 |#1| |#2|)) NIL) (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-551) $) NIL) (((-607 |#1| |#2|) $ (-607 |#1| |#2|)) NIL) (((-607 |#1| |#3|) (-607 |#1| |#3|) $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-528 |#1| |#2| |#3|) (-691 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) (-1055) (-551) (-551)) (T -528))
-NIL
-(-691 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2181 (((-646 (-1223)) $) 13)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL) (($ (-646 (-1223))) 11)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-529) (-13 (-1089) (-10 -8 (-15 -4396 ($ (-646 (-1223)))) (-15 -2181 ((-646 (-1223)) $))))) (T -529))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-529)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-529)))))
-(-13 (-1089) (-10 -8 (-15 -4396 ($ (-646 (-1223)))) (-15 -2181 ((-646 (-1223)) $))))
-((-2986 (((-112) $ $) NIL)) (-2182 (((-1141) $) 14)) (-3681 (((-1165) $) NIL)) (-3891 (((-511) $) 11)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 21) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-530) (-13 (-1089) (-10 -8 (-15 -3891 ((-511) $)) (-15 -2182 ((-1141) $))))) (T -530))
-((-3891 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
-(-13 (-1089) (-10 -8 (-15 -3891 ((-511) $)) (-15 -2182 ((-1141) $))))
-((-2188 (((-696 (-1231)) $) 15)) (-2184 (((-696 (-1229)) $) 38)) (-2186 (((-696 (-1228)) $) 29)) (-2189 (((-696 (-555)) $) 12)) (-2185 (((-696 (-553)) $) 42)) (-2187 (((-696 (-552)) $) 33)) (-2183 (((-776) $ (-129)) 54)))
-(((-531 |#1|) (-10 -8 (-15 -2183 ((-776) |#1| (-129))) (-15 -2184 ((-696 (-1229)) |#1|)) (-15 -2185 ((-696 (-553)) |#1|)) (-15 -2186 ((-696 (-1228)) |#1|)) (-15 -2187 ((-696 (-552)) |#1|)) (-15 -2188 ((-696 (-1231)) |#1|)) (-15 -2189 ((-696 (-555)) |#1|))) (-532)) (T -531))
-NIL
-(-10 -8 (-15 -2183 ((-776) |#1| (-129))) (-15 -2184 ((-696 (-1229)) |#1|)) (-15 -2185 ((-696 (-553)) |#1|)) (-15 -2186 ((-696 (-1228)) |#1|)) (-15 -2187 ((-696 (-552)) |#1|)) (-15 -2188 ((-696 (-1231)) |#1|)) (-15 -2189 ((-696 (-555)) |#1|)))
-((-2188 (((-696 (-1231)) $) 12)) (-2184 (((-696 (-1229)) $) 8)) (-2186 (((-696 (-1228)) $) 10)) (-2189 (((-696 (-555)) $) 13)) (-2185 (((-696 (-553)) $) 9)) (-2187 (((-696 (-552)) $) 11)) (-2183 (((-776) $ (-129)) 7)) (-2190 (((-696 (-128)) $) 14)) (-1878 (($ $) 6)))
+((-3115 ((|#4| |#4|) 37)) (-3904 (((-776) |#4|) 45)) (-3106 (((-776) |#4|) 46)) (-3095 (((-649 |#3|) |#4|) 56 (|has| |#3| (-6 -4444)))) (-3059 (((-3 |#4| "failed") |#4|) 70)) (-3129 ((|#4| |#4|) 62)) (-1583 ((|#1| |#4|) 61)))
+(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3115 (|#4| |#4|)) (-15 -3904 ((-776) |#4|)) (-15 -3106 ((-776) |#4|)) (IF (|has| |#3| (-6 -4444)) (-15 -3095 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -1583 (|#1| |#4|)) (-15 -3129 (|#4| |#4|)) (-15 -3059 ((-3 |#4| "failed") |#4|))) (-367) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -526))
+((-3059 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3129 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367)) (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-3095 (*1 *2 *3) (-12 (|has| *6 (-6 -4444)) (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -3115 (|#4| |#4|)) (-15 -3904 ((-776) |#4|)) (-15 -3106 ((-776) |#4|)) (IF (|has| |#3| (-6 -4444)) (-15 -3095 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -1583 (|#1| |#4|)) (-15 -3129 (|#4| |#4|)) (-15 -3059 ((-3 |#4| "failed") |#4|)))
+((-3115 ((|#8| |#4|) 20)) (-3095 (((-649 |#3|) |#4|) 29 (|has| |#7| (-6 -4444)))) (-3059 (((-3 |#8| "failed") |#4|) 23)))
+(((-527 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3115 (|#8| |#4|)) (-15 -3059 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4444)) (-15 -3095 ((-649 |#3|) |#4|)) |%noBranch|)) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-998 |#1|) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -527))
+((-3095 (*1 *2 *3) (-12 (|has| *9 (-6 -4444)) (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)) (-5 *2 (-649 *6)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6)) (-4 *10 (-692 *7 *8 *9)))) (-3059 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))))
+(-10 -7 (-15 -3115 (|#8| |#4|)) (-15 -3059 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4444)) (-15 -3095 ((-649 |#3|) |#4|)) |%noBranch|))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776) (-776)) NIL)) (-3404 (($ $ $) NIL)) (-4290 (($ (-607 |#1| |#3|)) NIL) (($ $) NIL)) (-3205 (((-112) $) NIL)) (-3392 (($ $ (-569) (-569)) 21)) (-3378 (($ $ (-569) (-569)) NIL)) (-3366 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-3427 (($ $) NIL)) (-3233 (((-112) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3354 (($ $ (-569) (-569) $) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2009 (($ $ (-569) (-607 |#1| |#3|)) NIL)) (-1933 (($ $ (-569) (-607 |#1| |#2|)) NIL)) (-1630 (($ (-776) |#1|) NIL)) (-3863 (($) NIL T CONST)) (-3115 (($ $) 30 (|has| |#1| (-310)))) (-3136 (((-607 |#1| |#3|) $ (-569)) NIL)) (-3904 (((-776) $) 33 (|has| |#1| (-561)))) (-3074 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3007 ((|#1| $ (-569) (-569)) NIL)) (-2796 (((-649 |#1|) $) NIL)) (-3106 (((-776) $) 35 (|has| |#1| (-561)))) (-3095 (((-649 (-607 |#1| |#2|)) $) 38 (|has| |#1| (-561)))) (-2511 (((-776) $) NIL)) (-4275 (($ (-776) (-776) |#1|) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1572 ((|#1| $) 28 (|has| |#1| (-6 (-4445 "*"))))) (-3181 (((-569) $) 10)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) 13)) (-3148 (((-569) $) NIL)) (-2375 (($ (-649 (-649 |#1|))) NIL)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1954 (((-649 (-649 |#1|)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3059 (((-3 $ "failed") $) 42 (|has| |#1| (-367)))) (-3415 (($ $ $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-1619 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3219 (((-112) $) NIL)) (-1583 ((|#1| $) 26 (|has| |#1| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3126 (((-607 |#1| |#2|) $ (-569)) NIL)) (-2388 (($ (-607 |#1| |#2|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-607 |#1| |#2|) $ (-607 |#1| |#2|)) NIL) (((-607 |#1| |#3|) (-607 |#1| |#3|) $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-528 |#1| |#2| |#3|) (-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) (-1055) (-569) (-569)) (T -528))
+NIL
+(-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3140 (((-649 (-1222)) $) 13)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL) (($ (-649 (-1222))) 11)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-529) (-13 (-1089) (-10 -8 (-15 -2388 ($ (-649 (-1222)))) (-15 -3140 ((-649 (-1222)) $))))) (T -529))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))))
+(-13 (-1089) (-10 -8 (-15 -2388 ($ (-649 (-1222)))) (-15 -3140 ((-649 (-1222)) $))))
+((-2383 (((-112) $ $) NIL)) (-3151 (((-1141) $) 14)) (-2050 (((-1165) $) NIL)) (-3214 (((-511) $) 11)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 21) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-530) (-13 (-1089) (-10 -8 (-15 -3214 ((-511) $)) (-15 -3151 ((-1141) $))))) (T -530))
+((-3214 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
+(-13 (-1089) (-10 -8 (-15 -3214 ((-511) $)) (-15 -3151 ((-1141) $))))
+((-3225 (((-696 (-1231)) $) 15)) (-3174 (((-696 (-1229)) $) 38)) (-3196 (((-696 (-1228)) $) 29)) (-3239 (((-696 (-554)) $) 12)) (-3185 (((-696 (-552)) $) 42)) (-3211 (((-696 (-551)) $) 33)) (-3163 (((-776) $ (-128)) 54)))
+(((-531 |#1|) (-10 -8 (-15 -3163 ((-776) |#1| (-128))) (-15 -3174 ((-696 (-1229)) |#1|)) (-15 -3185 ((-696 (-552)) |#1|)) (-15 -3196 ((-696 (-1228)) |#1|)) (-15 -3211 ((-696 (-551)) |#1|)) (-15 -3225 ((-696 (-1231)) |#1|)) (-15 -3239 ((-696 (-554)) |#1|))) (-532)) (T -531))
+NIL
+(-10 -8 (-15 -3163 ((-776) |#1| (-128))) (-15 -3174 ((-696 (-1229)) |#1|)) (-15 -3185 ((-696 (-552)) |#1|)) (-15 -3196 ((-696 (-1228)) |#1|)) (-15 -3211 ((-696 (-551)) |#1|)) (-15 -3225 ((-696 (-1231)) |#1|)) (-15 -3239 ((-696 (-554)) |#1|)))
+((-3225 (((-696 (-1231)) $) 12)) (-3174 (((-696 (-1229)) $) 8)) (-3196 (((-696 (-1228)) $) 10)) (-3239 (((-696 (-554)) $) 13)) (-3185 (((-696 (-552)) $) 9)) (-3211 (((-696 (-551)) $) 11)) (-3163 (((-776) $ (-128)) 7)) (-3254 (((-696 (-129)) $) 14)) (-3026 (($ $) 6)))
(((-532) (-140)) (T -532))
-((-2190 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-128))))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-555))))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-553))))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))) (-2183 (*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-129)) (-5 *2 (-776)))))
-(-13 (-174) (-10 -8 (-15 -2190 ((-696 (-128)) $)) (-15 -2189 ((-696 (-555)) $)) (-15 -2188 ((-696 (-1231)) $)) (-15 -2187 ((-696 (-552)) $)) (-15 -2186 ((-696 (-1228)) $)) (-15 -2185 ((-696 (-553)) $)) (-15 -2184 ((-696 (-1229)) $)) (-15 -2183 ((-776) $ (-129)))))
+((-3254 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))) (-3163 (*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(-13 (-174) (-10 -8 (-15 -3254 ((-696 (-129)) $)) (-15 -3239 ((-696 (-554)) $)) (-15 -3225 ((-696 (-1231)) $)) (-15 -3211 ((-696 (-551)) $)) (-15 -3196 ((-696 (-1228)) $)) (-15 -3185 ((-696 (-552)) $)) (-15 -3174 ((-696 (-1229)) $)) (-15 -3163 ((-776) $ (-128)))))
(((-174) . T))
-((-2193 (((-1177 |#1|) (-776)) 114)) (-3772 (((-1272 |#1|) (-1272 |#1|) (-925)) 107)) (-2191 (((-1278) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) |#1|) 122)) (-2195 (((-1272 |#1|) (-1272 |#1|) (-776)) 53)) (-3413 (((-1272 |#1|) (-925)) 109)) (-2197 (((-1272 |#1|) (-1272 |#1|) (-551)) 30)) (-2192 (((-1177 |#1|) (-1272 |#1|)) 115)) (-2201 (((-1272 |#1|) (-925)) 135)) (-2199 (((-112) (-1272 |#1|)) 119)) (-3554 (((-1272 |#1|) (-1272 |#1|) (-925)) 99)) (-2202 (((-1177 |#1|) (-1272 |#1|)) 129)) (-2198 (((-925) (-1272 |#1|)) 95)) (-2824 (((-1272 |#1|) (-1272 |#1|)) 38)) (-2581 (((-1272 |#1|) (-925) (-925)) 138)) (-2196 (((-1272 |#1|) (-1272 |#1|) (-1126) (-1126)) 29)) (-2194 (((-1272 |#1|) (-1272 |#1|) (-776) (-1126)) 54)) (-2200 (((-1272 (-1272 |#1|)) (-925)) 134)) (-4399 (((-1272 |#1|) (-1272 |#1|) (-1272 |#1|)) 120)) (** (((-1272 |#1|) (-1272 |#1|) (-551)) 67)) (* (((-1272 |#1|) (-1272 |#1|) (-1272 |#1|)) 31)))
-(((-533 |#1|) (-10 -7 (-15 -2191 ((-1278) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) |#1|)) (-15 -3413 ((-1272 |#1|) (-925))) (-15 -2581 ((-1272 |#1|) (-925) (-925))) (-15 -2192 ((-1177 |#1|) (-1272 |#1|))) (-15 -2193 ((-1177 |#1|) (-776))) (-15 -2194 ((-1272 |#1|) (-1272 |#1|) (-776) (-1126))) (-15 -2195 ((-1272 |#1|) (-1272 |#1|) (-776))) (-15 -2196 ((-1272 |#1|) (-1272 |#1|) (-1126) (-1126))) (-15 -2197 ((-1272 |#1|) (-1272 |#1|) (-551))) (-15 ** ((-1272 |#1|) (-1272 |#1|) (-551))) (-15 * ((-1272 |#1|) (-1272 |#1|) (-1272 |#1|))) (-15 -4399 ((-1272 |#1|) (-1272 |#1|) (-1272 |#1|))) (-15 -3554 ((-1272 |#1|) (-1272 |#1|) (-925))) (-15 -3772 ((-1272 |#1|) (-1272 |#1|) (-925))) (-15 -2824 ((-1272 |#1|) (-1272 |#1|))) (-15 -2198 ((-925) (-1272 |#1|))) (-15 -2199 ((-112) (-1272 |#1|))) (-15 -2200 ((-1272 (-1272 |#1|)) (-925))) (-15 -2201 ((-1272 |#1|) (-925))) (-15 -2202 ((-1177 |#1|) (-1272 |#1|)))) (-354)) (T -533))
-((-2202 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1272 (-1272 *4))) (-5 *1 (-533 *4)) (-4 *4 (-354)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-533 *4)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-925)) (-5 *1 (-533 *4)))) (-2824 (*1 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3)))) (-3772 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-925)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-925)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-4399 (*1 *2 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-551)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-551)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-2196 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1126)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-2195 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-533 *4)))) (-2194 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1272 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-354)) (-5 *1 (-533 *5)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)))) (-2581 (*1 *2 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))) (-4 *4 (-354)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
-(-10 -7 (-15 -2191 ((-1278) (-1272 (-646 (-2 (|:| -3844 |#1|) (|:| -2581 (-1126))))) |#1|)) (-15 -3413 ((-1272 |#1|) (-925))) (-15 -2581 ((-1272 |#1|) (-925) (-925))) (-15 -2192 ((-1177 |#1|) (-1272 |#1|))) (-15 -2193 ((-1177 |#1|) (-776))) (-15 -2194 ((-1272 |#1|) (-1272 |#1|) (-776) (-1126))) (-15 -2195 ((-1272 |#1|) (-1272 |#1|) (-776))) (-15 -2196 ((-1272 |#1|) (-1272 |#1|) (-1126) (-1126))) (-15 -2197 ((-1272 |#1|) (-1272 |#1|) (-551))) (-15 ** ((-1272 |#1|) (-1272 |#1|) (-551))) (-15 * ((-1272 |#1|) (-1272 |#1|) (-1272 |#1|))) (-15 -4399 ((-1272 |#1|) (-1272 |#1|) (-1272 |#1|))) (-15 -3554 ((-1272 |#1|) (-1272 |#1|) (-925))) (-15 -3772 ((-1272 |#1|) (-1272 |#1|) (-925))) (-15 -2824 ((-1272 |#1|) (-1272 |#1|))) (-15 -2198 ((-925) (-1272 |#1|))) (-15 -2199 ((-112) (-1272 |#1|))) (-15 -2200 ((-1272 (-1272 |#1|)) (-925))) (-15 -2201 ((-1272 |#1|) (-925))) (-15 -2202 ((-1177 |#1|) (-1272 |#1|))))
-((-2188 (((-696 (-1231)) $) NIL)) (-2184 (((-696 (-1229)) $) NIL)) (-2186 (((-696 (-1228)) $) NIL)) (-2189 (((-696 (-555)) $) NIL)) (-2185 (((-696 (-553)) $) NIL)) (-2187 (((-696 (-552)) $) NIL)) (-2183 (((-776) $ (-129)) NIL)) (-2190 (((-696 (-128)) $) 26)) (-2203 (((-1126) $ (-1126)) 31)) (-3861 (((-1126) $) 30)) (-2979 (((-112) $) 20)) (-2205 (($ (-393)) 14) (($ (-1165)) 16)) (-2204 (((-112) $) 27)) (-4396 (((-868) $) 34)) (-1878 (($ $) 28)))
-(((-534) (-13 (-532) (-618 (-868)) (-10 -8 (-15 -2205 ($ (-393))) (-15 -2205 ($ (-1165))) (-15 -2204 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -3861 ((-1126) $)) (-15 -2203 ((-1126) $ (-1126)))))) (T -534))
-((-2205 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))) (-2203 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
-(-13 (-532) (-618 (-868)) (-10 -8 (-15 -2205 ($ (-393))) (-15 -2205 ($ (-1165))) (-15 -2204 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -3861 ((-1126) $)) (-15 -2203 ((-1126) $ (-1126)))))
-((-2207 (((-1 |#1| |#1|) |#1|) 11)) (-2206 (((-1 |#1| |#1|)) 10)))
-(((-535 |#1|) (-10 -7 (-15 -2206 ((-1 |#1| |#1|))) (-15 -2207 ((-1 |#1| |#1|) |#1|))) (-13 (-731) (-25))) (T -535))
-((-2207 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))) (-2206 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
-(-10 -7 (-15 -2206 ((-1 |#1| |#1|))) (-15 -2207 ((-1 |#1| |#1|) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2823 (($ $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3312 (($ (-776) |#1|) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4408 (($ (-1 (-776) (-776)) $) NIL)) (-2173 ((|#1| $) NIL)) (-3612 (((-776) $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 27)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL)))
+((-3291 (((-1179 |#1|) (-776)) 114)) (-3057 (((-1273 |#1|) (-1273 |#1|) (-927)) 107)) (-3266 (((-1278) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) |#1|) 122)) (-3315 (((-1273 |#1|) (-1273 |#1|) (-776)) 53)) (-3295 (((-1273 |#1|) (-927)) 109)) (-3337 (((-1273 |#1|) (-1273 |#1|) (-569)) 30)) (-3280 (((-1179 |#1|) (-1273 |#1|)) 115)) (-3384 (((-1273 |#1|) (-927)) 135)) (-3359 (((-112) (-1273 |#1|)) 119)) (-3334 (((-1273 |#1|) (-1273 |#1|) (-927)) 99)) (-3397 (((-1179 |#1|) (-1273 |#1|)) 129)) (-3348 (((-927) (-1273 |#1|)) 95)) (-1776 (((-1273 |#1|) (-1273 |#1|)) 38)) (-2114 (((-1273 |#1|) (-927) (-927)) 138)) (-3326 (((-1273 |#1|) (-1273 |#1|) (-1126) (-1126)) 29)) (-3303 (((-1273 |#1|) (-1273 |#1|) (-776) (-1126)) 54)) (-3371 (((-1273 (-1273 |#1|)) (-927)) 134)) (-2956 (((-1273 |#1|) (-1273 |#1|) (-1273 |#1|)) 120)) (** (((-1273 |#1|) (-1273 |#1|) (-569)) 67)) (* (((-1273 |#1|) (-1273 |#1|) (-1273 |#1|)) 31)))
+(((-533 |#1|) (-10 -7 (-15 -3266 ((-1278) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) |#1|)) (-15 -3295 ((-1273 |#1|) (-927))) (-15 -2114 ((-1273 |#1|) (-927) (-927))) (-15 -3280 ((-1179 |#1|) (-1273 |#1|))) (-15 -3291 ((-1179 |#1|) (-776))) (-15 -3303 ((-1273 |#1|) (-1273 |#1|) (-776) (-1126))) (-15 -3315 ((-1273 |#1|) (-1273 |#1|) (-776))) (-15 -3326 ((-1273 |#1|) (-1273 |#1|) (-1126) (-1126))) (-15 -3337 ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 ** ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 * ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -2956 ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -3334 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -3057 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -1776 ((-1273 |#1|) (-1273 |#1|))) (-15 -3348 ((-927) (-1273 |#1|))) (-15 -3359 ((-112) (-1273 |#1|))) (-15 -3371 ((-1273 (-1273 |#1|)) (-927))) (-15 -3384 ((-1273 |#1|) (-927))) (-15 -3397 ((-1179 |#1|) (-1273 |#1|)))) (-353)) (T -533))
+((-3397 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 *4))) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-533 *4)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-927)) (-5 *1 (-533 *4)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (-3057 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3334 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2956 (*1 *2 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3337 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3326 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1126)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3315 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3303 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1273 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-353)) (-5 *1 (-533 *5)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)))) (-2114 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
+(-10 -7 (-15 -3266 ((-1278) (-1273 (-649 (-2 (|:| -2150 |#1|) (|:| -2114 (-1126))))) |#1|)) (-15 -3295 ((-1273 |#1|) (-927))) (-15 -2114 ((-1273 |#1|) (-927) (-927))) (-15 -3280 ((-1179 |#1|) (-1273 |#1|))) (-15 -3291 ((-1179 |#1|) (-776))) (-15 -3303 ((-1273 |#1|) (-1273 |#1|) (-776) (-1126))) (-15 -3315 ((-1273 |#1|) (-1273 |#1|) (-776))) (-15 -3326 ((-1273 |#1|) (-1273 |#1|) (-1126) (-1126))) (-15 -3337 ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 ** ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 * ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -2956 ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -3334 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -3057 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -1776 ((-1273 |#1|) (-1273 |#1|))) (-15 -3348 ((-927) (-1273 |#1|))) (-15 -3359 ((-112) (-1273 |#1|))) (-15 -3371 ((-1273 (-1273 |#1|)) (-927))) (-15 -3384 ((-1273 |#1|) (-927))) (-15 -3397 ((-1179 |#1|) (-1273 |#1|))))
+((-3225 (((-696 (-1231)) $) NIL)) (-3174 (((-696 (-1229)) $) NIL)) (-3196 (((-696 (-1228)) $) NIL)) (-3239 (((-696 (-554)) $) NIL)) (-3185 (((-696 (-552)) $) NIL)) (-3211 (((-696 (-551)) $) NIL)) (-3163 (((-776) $ (-128)) NIL)) (-3254 (((-696 (-129)) $) 26)) (-3409 (((-1126) $ (-1126)) 31)) (-3975 (((-1126) $) 30)) (-2559 (((-112) $) 20)) (-3433 (($ (-393)) 14) (($ (-1165)) 16)) (-3421 (((-112) $) 27)) (-2388 (((-867) $) 34)) (-3026 (($ $) 28)))
+(((-534) (-13 (-532) (-618 (-867)) (-10 -8 (-15 -3433 ($ (-393))) (-15 -3433 ($ (-1165))) (-15 -3421 ((-112) $)) (-15 -2559 ((-112) $)) (-15 -3975 ((-1126) $)) (-15 -3409 ((-1126) $ (-1126)))))) (T -534))
+((-3433 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))) (-3409 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
+(-13 (-532) (-618 (-867)) (-10 -8 (-15 -3433 ($ (-393))) (-15 -3433 ($ (-1165))) (-15 -3421 ((-112) $)) (-15 -2559 ((-112) $)) (-15 -3975 ((-1126) $)) (-15 -3409 ((-1126) $ (-1126)))))
+((-1340 (((-1 |#1| |#1|) |#1|) 11)) (-3444 (((-1 |#1| |#1|)) 10)))
+(((-535 |#1|) (-10 -7 (-15 -3444 ((-1 |#1| |#1|))) (-15 -1340 ((-1 |#1| |#1|) |#1|))) (-13 (-731) (-25))) (T -535))
+((-1340 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))) (-3444 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
+(-10 -7 (-15 -3444 ((-1 |#1| |#1|))) (-15 -1340 ((-1 |#1| |#1|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3576 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3838 (($ (-776) |#1|) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1324 (($ (-1 (-776) (-776)) $) NIL)) (-3055 ((|#1| $) NIL)) (-1820 (((-776) $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 27)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
(((-536 |#1|) (-13 (-798) (-514 (-776) |#1|)) (-855)) (T -536))
NIL
(-13 (-798) (-514 (-776) |#1|))
-((-2209 (((-646 |#2|) (-1177 |#1|) |#3|) 98)) (-2210 (((-646 (-2 (|:| |outval| |#2|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-410 (-1177 |#1|)) (-1177 |#1|))) 114)) (-2208 (((-1177 |#1|) (-694 |#1|)) 110)))
-(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2208 ((-1177 |#1|) (-694 |#1|))) (-15 -2209 ((-646 |#2|) (-1177 |#1|) |#3|)) (-15 -2210 ((-646 (-2 (|:| |outval| |#2|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-410 (-1177 |#1|)) (-1177 |#1|))))) (-367) (-367) (-13 (-367) (-853))) (T -537))
-((-2210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-410 (-1177 *6)) (-1177 *6))) (-4 *6 (-367)) (-5 *2 (-646 (-2 (|:| |outval| *7) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 *7)))))) (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))) (-2209 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-367)) (-5 *2 (-646 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1177 *4)) (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
-(-10 -7 (-15 -2208 ((-1177 |#1|) (-694 |#1|))) (-15 -2209 ((-646 |#2|) (-1177 |#1|) |#3|)) (-15 -2210 ((-646 (-2 (|:| |outval| |#2|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-410 (-1177 |#1|)) (-1177 |#1|)))))
-((-2976 (((-696 (-1231)) $ (-1231)) NIL)) (-2977 (((-696 (-555)) $ (-555)) NIL)) (-2975 (((-776) $ (-129)) 39)) (-2978 (((-696 (-128)) $ (-128)) 40)) (-2188 (((-696 (-1231)) $) NIL)) (-2184 (((-696 (-1229)) $) NIL)) (-2186 (((-696 (-1228)) $) NIL)) (-2189 (((-696 (-555)) $) NIL)) (-2185 (((-696 (-553)) $) NIL)) (-2187 (((-696 (-552)) $) NIL)) (-2183 (((-776) $ (-129)) 35)) (-2190 (((-696 (-128)) $) 37)) (-2778 (((-112) $) 27)) (-2779 (((-696 $) (-584) (-960)) 18) (((-696 $) (-496) (-960)) 24)) (-4396 (((-868) $) 48)) (-1878 (($ $) 42)))
-(((-538) (-13 (-772 (-584)) (-618 (-868)) (-10 -8 (-15 -2779 ((-696 $) (-496) (-960)))))) (T -538))
-((-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538)))))
-(-13 (-772 (-584)) (-618 (-868)) (-10 -8 (-15 -2779 ((-696 $) (-496) (-960)))))
-((-2948 (((-847 (-551))) 12)) (-2947 (((-847 (-551))) 14)) (-2932 (((-837 (-551))) 9)))
-(((-539) (-10 -7 (-15 -2932 ((-837 (-551)))) (-15 -2948 ((-847 (-551)))) (-15 -2947 ((-847 (-551)))))) (T -539))
-((-2947 (*1 *2) (-12 (-5 *2 (-847 (-551))) (-5 *1 (-539)))) (-2948 (*1 *2) (-12 (-5 *2 (-847 (-551))) (-5 *1 (-539)))) (-2932 (*1 *2) (-12 (-5 *2 (-837 (-551))) (-5 *1 (-539)))))
-(-10 -7 (-15 -2932 ((-837 (-551)))) (-15 -2948 ((-847 (-551)))) (-15 -2947 ((-847 (-551)))))
-((-2986 (((-112) $ $) NIL)) (-2214 (((-1165) $) 55)) (-3699 (((-112) $) 51)) (-3695 (((-1183) $) 52)) (-3700 (((-112) $) 49)) (-3984 (((-1165) $) 50)) (-2213 (($ (-1165)) 56)) (-3702 (((-112) $) NIL)) (-3704 (((-112) $) NIL)) (-3701 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-2216 (($ $ (-646 (-1183))) 21)) (-2219 (((-51) $) 23)) (-3698 (((-112) $) NIL)) (-3694 (((-551) $) NIL)) (-3682 (((-1126) $) NIL)) (-2564 (($ $ (-646 (-1183)) (-1183)) 73)) (-3697 (((-112) $) NIL)) (-3693 (((-226) $) NIL)) (-2215 (($ $) 44)) (-3692 (((-868) $) NIL)) (-3705 (((-112) $ $) NIL)) (-4249 (($ $ (-551)) NIL) (($ $ (-646 (-551))) NIL)) (-3696 (((-646 $) $) 30)) (-2212 (((-1183) (-646 $)) 57)) (-4420 (($ (-1165)) NIL) (($ (-1183)) 19) (($ (-551)) 8) (($ (-226)) 28) (($ (-868)) NIL) (($ (-646 $)) 65) (((-1109) $) 12) (($ (-1109)) 13)) (-2211 (((-1183) (-1183) (-646 $)) 60)) (-4396 (((-868) $) 54)) (-3690 (($ $) 59)) (-3691 (($ $) 58)) (-2217 (($ $ (-646 $)) 66)) (-3680 (((-112) $ $) NIL)) (-3703 (((-112) $) 29)) (-3528 (($) 9 T CONST)) (-3085 (($) 11 T CONST)) (-3473 (((-112) $ $) 74)) (-4399 (($ $ $) 82)) (-4289 (($ $ $) 75)) (** (($ $ (-776)) 81) (($ $ (-551)) 80)) (* (($ $ $) 76)) (-4407 (((-551) $) NIL)))
-(((-540) (-13 (-1110 (-1165) (-1183) (-551) (-226) (-868)) (-619 (-1109)) (-10 -8 (-15 -2219 ((-51) $)) (-15 -4420 ($ (-1109))) (-15 -2217 ($ $ (-646 $))) (-15 -2564 ($ $ (-646 (-1183)) (-1183))) (-15 -2216 ($ $ (-646 (-1183)))) (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 -4399 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-551))) (-15 0 ($) -4402) (-15 1 ($) -4402) (-15 -2215 ($ $)) (-15 -2214 ((-1165) $)) (-15 -2213 ($ (-1165))) (-15 -2212 ((-1183) (-646 $))) (-15 -2211 ((-1183) (-1183) (-646 $)))))) (T -540))
-((-2219 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-540)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-1109)) (-5 *1 (-540)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-540))) (-5 *1 (-540)))) (-2564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-1183)) (-5 *1 (-540)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-540)))) (-4289 (*1 *1 *1 *1) (-5 *1 (-540))) (* (*1 *1 *1 *1) (-5 *1 (-540))) (-4399 (*1 *1 *1 *1) (-5 *1 (-540))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-540)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-540)))) (-3528 (*1 *1) (-5 *1 (-540))) (-3085 (*1 *1) (-5 *1 (-540))) (-2215 (*1 *1 *1) (-5 *1 (-540))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-540)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-540)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-646 (-540))) (-5 *2 (-1183)) (-5 *1 (-540)))) (-2211 (*1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-540))) (-5 *1 (-540)))))
-(-13 (-1110 (-1165) (-1183) (-551) (-226) (-868)) (-619 (-1109)) (-10 -8 (-15 -2219 ((-51) $)) (-15 -4420 ($ (-1109))) (-15 -2217 ($ $ (-646 $))) (-15 -2564 ($ $ (-646 (-1183)) (-1183))) (-15 -2216 ($ $ (-646 (-1183)))) (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 -4399 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-551))) (-15 (-3528) ($) -4402) (-15 (-3085) ($) -4402) (-15 -2215 ($ $)) (-15 -2214 ((-1165) $)) (-15 -2213 ($ (-1165))) (-15 -2212 ((-1183) (-646 $))) (-15 -2211 ((-1183) (-1183) (-646 $)))))
-((-2218 (((-540) (-1183)) 15)) (-2219 ((|#1| (-540)) 20)))
-(((-541 |#1|) (-10 -7 (-15 -2218 ((-540) (-1183))) (-15 -2219 (|#1| (-540)))) (-1222)) (T -541))
-((-2219 (*1 *2 *3) (-12 (-5 *3 (-540)) (-5 *1 (-541 *2)) (-4 *2 (-1222)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-540)) (-5 *1 (-541 *4)) (-4 *4 (-1222)))))
-(-10 -7 (-15 -2218 ((-540) (-1183))) (-15 -2219 (|#1| (-540))))
-((-3894 ((|#2| |#2|) 17)) (-3892 ((|#2| |#2|) 13)) (-3895 ((|#2| |#2| (-551) (-551)) 20)) (-3893 ((|#2| |#2|) 15)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-551) (-551)))) (-13 (-562) (-147)) (-1265 |#1|)) (T -542))
-((-3895 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-551)) (-4 *4 (-13 (-562) (-147))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1265 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3)))))
-(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-551) (-551))))
-((-2222 (((-646 (-296 (-952 |#2|))) (-646 |#2|) (-646 (-1183))) 32)) (-2220 (((-646 |#2|) (-952 |#1|) |#3|) 54) (((-646 |#2|) (-1177 |#1|) |#3|) 53)) (-2221 (((-646 (-646 |#2|)) (-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)) |#3|) 106)))
-(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-646 |#2|) (-1177 |#1|) |#3|)) (-15 -2220 ((-646 |#2|) (-952 |#1|) |#3|)) (-15 -2221 ((-646 (-646 |#2|)) (-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)) |#3|)) (-15 -2222 ((-646 (-296 (-952 |#2|))) (-646 |#2|) (-646 (-1183))))) (-457) (-367) (-13 (-367) (-853))) (T -543))
-((-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-1183))) (-4 *6 (-367)) (-5 *2 (-646 (-296 (-952 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))) (-2221 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183))) (-4 *6 (-457)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) (-4 *5 (-13 (-367) (-853))))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-4 *5 (-457)) (-5 *2 (-646 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-457)) (-5 *2 (-646 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -2220 ((-646 |#2|) (-1177 |#1|) |#3|)) (-15 -2220 ((-646 |#2|) (-952 |#1|) |#3|)) (-15 -2221 ((-646 (-646 |#2|)) (-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)) |#3|)) (-15 -2222 ((-646 (-296 (-952 |#2|))) (-646 |#2|) (-646 (-1183)))))
-((-2225 ((|#2| |#2| |#1|) 17)) (-2223 ((|#2| (-646 |#2|)) 31)) (-2224 ((|#2| (-646 |#2|)) 52)))
-(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2223 (|#2| (-646 |#2|))) (-15 -2224 (|#2| (-646 |#2|))) (-15 -2225 (|#2| |#2| |#1|))) (-310) (-1248 |#1|) |#1| (-1 |#1| |#1| (-776))) (T -544))
-((-2225 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1248 *3)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
-(-10 -7 (-15 -2223 (|#2| (-646 |#2|))) (-15 -2224 (|#2| (-646 |#2|))) (-15 -2225 (|#2| |#2| |#1|)))
-((-4182 (((-410 (-1177 |#4|)) (-1177 |#4|) (-1 (-410 (-1177 |#3|)) (-1177 |#3|))) 89) (((-410 |#4|) |#4| (-1 (-410 (-1177 |#3|)) (-1177 |#3|))) 214)))
-(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4| (-1 (-410 (-1177 |#3|)) (-1177 |#3|)))) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|) (-1 (-410 (-1177 |#3|)) (-1177 |#3|))))) (-855) (-798) (-13 (-310) (-147)) (-956 |#3| |#2| |#1|)) (T -545))
-((-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1177 *7)) (-1177 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-956 *7 *6 *5)) (-5 *2 (-410 (-1177 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1177 *8)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1177 *7)) (-1177 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-410 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-956 *7 *6 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4| (-1 (-410 (-1177 |#3|)) (-1177 |#3|)))) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|) (-1 (-410 (-1177 |#3|)) (-1177 |#3|)))))
-((-3894 ((|#4| |#4|) 74)) (-3892 ((|#4| |#4|) 70)) (-3895 ((|#4| |#4| (-551) (-551)) 76)) (-3893 ((|#4| |#4|) 72)))
-(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -3893 (|#4| |#4|)) (-15 -3894 (|#4| |#4|)) (-15 -3895 (|#4| |#4| (-551) (-551)))) (-13 (-367) (-372) (-619 (-551))) (-1248 |#1|) (-729 |#1| |#2|) (-1265 |#3|)) (T -546))
-((-3895 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-551)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1248 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1265 *6)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5)))))
-(-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -3893 (|#4| |#4|)) (-15 -3894 (|#4| |#4|)) (-15 -3895 (|#4| |#4| (-551) (-551))))
-((-3894 ((|#2| |#2|) 27)) (-3892 ((|#2| |#2|) 23)) (-3895 ((|#2| |#2| (-551) (-551)) 29)) (-3893 ((|#2| |#2|) 25)))
-(((-547 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-551) (-551)))) (-13 (-367) (-372) (-619 (-551))) (-1265 |#1|)) (T -547))
-((-3895 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-551)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1265 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1265 *3)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1265 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1265 *3)))))
-(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-551) (-551))))
-((-2226 (((-3 (-551) #1="failed") |#2| |#1| (-1 (-3 (-551) #1#) |#1|)) 18) (((-3 (-551) #1#) |#2| |#1| (-551) (-1 (-3 (-551) #1#) |#1|)) 14) (((-3 (-551) #1#) |#2| (-551) (-1 (-3 (-551) #1#) |#1|)) 32)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -2226 ((-3 (-551) #1="failed") |#2| (-551) (-1 (-3 (-551) #1#) |#1|))) (-15 -2226 ((-3 (-551) #1#) |#2| |#1| (-551) (-1 (-3 (-551) #1#) |#1|))) (-15 -2226 ((-3 (-551) #1#) |#2| |#1| (-1 (-3 (-551) #1#) |#1|)))) (-1055) (-1248 |#1|)) (T -548))
-((-2226 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-551) #1="failed") *4)) (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1248 *4)))) (-2226 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-551) #1#) *4)) (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1248 *4)))) (-2226 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-551) #1#) *5)) (-4 *5 (-1055)) (-5 *2 (-551)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1248 *5)))))
-(-10 -7 (-15 -2226 ((-3 (-551) #1="failed") |#2| (-551) (-1 (-3 (-551) #1#) |#1|))) (-15 -2226 ((-3 (-551) #1#) |#2| |#1| (-551) (-1 (-3 (-551) #1#) |#1|))) (-15 -2226 ((-3 (-551) #1#) |#2| |#1| (-1 (-3 (-551) #1#) |#1|))))
-((-2235 (($ $ $) 84)) (-4419 (((-410 $) $) 52)) (-3595 (((-3 (-551) "failed") $) 64)) (-3594 (((-551) $) 42)) (-3443 (((-3 (-412 (-551)) "failed") $) 79)) (-3442 (((-112) $) 26)) (-3441 (((-412 (-551)) $) 77)) (-4173 (((-112) $) 55)) (-2228 (($ $ $ $) 92)) (-3624 (((-112) $) 17)) (-1459 (($ $ $) 62)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 74)) (-3886 (((-3 $ "failed") $) 69)) (-2232 (($ $) 24)) (-2227 (($ $ $) 90)) (-3887 (($) 65)) (-1457 (($ $) 58)) (-4182 (((-410 $) $) 50)) (-3095 (((-112) $) 15)) (-1762 (((-776) $) 32)) (-4260 (($ $ (-776)) NIL) (($ $) 11)) (-3842 (($ $) 18)) (-4420 (((-551) $) NIL) (((-540) $) 41) (((-896 (-551)) $) 45) (((-382) $) 35) (((-226) $) 38)) (-3548 (((-776)) 9)) (-2237 (((-112) $ $) 21)) (-3523 (($ $ $) 60)))
-(((-549 |#1|) (-10 -8 (-15 -2227 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1| |#1|)) (-15 -2232 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -2235 (|#1| |#1| |#1|)) (-15 -2237 ((-112) |#1| |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -1459 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -3595 ((-3 (-551) "failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -4420 ((-551) |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3624 ((-112) |#1|)) (-15 -1762 ((-776) |#1|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -3548 ((-776)))) (-550)) (T -549))
-((-3548 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550)))))
-(-10 -8 (-15 -2227 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1| |#1|)) (-15 -2232 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -2235 (|#1| |#1| |#1|)) (-15 -2237 ((-112) |#1| |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -1459 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -3595 ((-3 (-551) "failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -4420 ((-551) |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -3624 ((-112) |#1|)) (-15 -1762 ((-776) |#1|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -3548 ((-776))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-2235 (($ $ $) 90)) (-1410 (((-3 $ "failed") $ $) 20)) (-2230 (($ $ $ $) 79)) (-4224 (($ $) 57)) (-4419 (((-410 $) $) 58)) (-1763 (((-112) $ $) 130)) (-4073 (((-551) $) 119)) (-2780 (($ $ $) 93)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) "failed") $) 111)) (-3594 (((-551) $) 112)) (-2982 (($ $ $) 134)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 109) (((-694 (-551)) (-694 $)) 108)) (-3908 (((-3 $ "failed") $) 37)) (-3443 (((-3 (-412 (-551)) "failed") $) 87)) (-3442 (((-112) $) 89)) (-3441 (((-412 (-551)) $) 88)) (-3413 (($) 86) (($ $) 85)) (-2981 (($ $ $) 133)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 128)) (-4173 (((-112) $) 59)) (-2228 (($ $ $ $) 77)) (-2236 (($ $ $) 91)) (-3624 (((-112) $) 121)) (-1459 (($ $ $) 102)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 105)) (-2591 (((-112) $) 35)) (-3094 (((-112) $) 97)) (-3886 (((-3 $ "failed") $) 99)) (-3625 (((-112) $) 120)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 137)) (-2229 (($ $ $ $) 78)) (-2952 (($ $ $) 122)) (-3278 (($ $ $) 123)) (-2232 (($ $) 81)) (-4283 (($ $) 94)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2227 (($ $ $) 76)) (-3887 (($) 98 T CONST)) (-2234 (($ $) 83)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1457 (($ $) 103)) (-4182 (((-410 $) $) 56)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 135)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 129)) (-3095 (((-112) $) 96)) (-1762 (((-776) $) 131)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 132)) (-4260 (($ $ (-776)) 116) (($ $) 114)) (-2233 (($ $) 82)) (-3842 (($ $) 84)) (-4420 (((-551) $) 113) (((-540) $) 107) (((-896 (-551)) $) 106) (((-382) $) 101) (((-226) $) 100)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-551)) 110)) (-3548 (((-776)) 32 T CONST)) (-2237 (((-112) $ $) 92)) (-3523 (($ $ $) 104)) (-3680 (((-112) $ $) 9)) (-3115 (($) 95)) (-2250 (((-112) $ $) 45)) (-2231 (($ $ $ $) 80)) (-3825 (($ $) 118)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-776)) 117) (($ $) 115)) (-2984 (((-112) $ $) 125)) (-2985 (((-112) $ $) 126)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 124)) (-3106 (((-112) $ $) 127)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-3470 (((-649 |#2|) (-1179 |#1|) |#3|) 98)) (-3483 (((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|))) 114)) (-3455 (((-1179 |#1|) (-694 |#1|)) 110)))
+(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -3455 ((-1179 |#1|) (-694 |#1|))) (-15 -3470 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -3483 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|))))) (-367) (-367) (-13 (-367) (-853))) (T -537))
+((-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1179 *6)) (-1179 *6))) (-4 *6 (-367)) (-5 *2 (-649 (-2 (|:| |outval| *7) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *7)))))) (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1179 *4)) (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3455 ((-1179 |#1|) (-694 |#1|))) (-15 -3470 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -3483 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|)))))
+((-2527 (((-696 (-1231)) $ (-1231)) NIL)) (-2538 (((-696 (-554)) $ (-554)) NIL)) (-2515 (((-776) $ (-128)) 39)) (-2548 (((-696 (-129)) $ (-129)) 40)) (-3225 (((-696 (-1231)) $) NIL)) (-3174 (((-696 (-1229)) $) NIL)) (-3196 (((-696 (-1228)) $) NIL)) (-3239 (((-696 (-554)) $) NIL)) (-3185 (((-696 (-552)) $) NIL)) (-3211 (((-696 (-551)) $) NIL)) (-3163 (((-776) $ (-128)) 35)) (-3254 (((-696 (-129)) $) 37)) (-3079 (((-112) $) 27)) (-3090 (((-696 $) (-584) (-960)) 18) (((-696 $) (-496) (-960)) 24)) (-2388 (((-867) $) 48)) (-3026 (($ $) 42)))
+(((-538) (-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -3090 ((-696 $) (-496) (-960)))))) (T -538))
+((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538)))))
+(-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -3090 ((-696 $) (-496) (-960)))))
+((-1950 (((-848 (-569))) 12)) (-1959 (((-848 (-569))) 14)) (-4419 (((-838 (-569))) 9)))
+(((-539) (-10 -7 (-15 -4419 ((-838 (-569)))) (-15 -1950 ((-848 (-569)))) (-15 -1959 ((-848 (-569)))))) (T -539))
+((-1959 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1950 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-4419 (*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539)))))
+(-10 -7 (-15 -4419 ((-838 (-569)))) (-15 -1950 ((-848 (-569)))) (-15 -1959 ((-848 (-569)))))
+((-3525 (((-541) (-1183)) 15)) (-2910 ((|#1| (-541)) 20)))
+(((-540 |#1|) (-10 -7 (-15 -3525 ((-541) (-1183))) (-15 -2910 (|#1| (-541)))) (-1223)) (T -540))
+((-2910 (*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1223)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1223)))))
+(-10 -7 (-15 -3525 ((-541) (-1183))) (-15 -2910 (|#1| (-541))))
+((-2383 (((-112) $ $) NIL)) (-3505 (((-1165) $) 55)) (-2139 (((-112) $) 51)) (-1380 (((-1183) $) 52)) (-2149 (((-112) $) 49)) (-3279 (((-1165) $) 50)) (-3495 (($ (-1165)) 56)) (-2168 (((-112) $) NIL)) (-2188 (((-112) $) NIL)) (-2159 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-3088 (($ $ (-649 (-1183))) 21)) (-2910 (((-52) $) 23)) (-2129 (((-112) $) NIL)) (-1405 (((-569) $) NIL)) (-3461 (((-1126) $) NIL)) (-2785 (($ $ (-649 (-1183)) (-1183)) 73)) (-2120 (((-112) $) NIL)) (-2493 (((-226) $) NIL)) (-4364 (($ $) 44)) (-2555 (((-867) $) NIL)) (-4289 (((-112) $ $) NIL)) (-1852 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3789 (((-649 $) $) 30)) (-4019 (((-1183) (-649 $)) 57)) (-1384 (($ (-1165)) NIL) (($ (-1183)) 19) (($ (-569)) 8) (($ (-226)) 28) (($ (-867)) NIL) (($ (-649 $)) 65) (((-1110) $) 12) (($ (-1110)) 13)) (-2464 (((-1183) (-1183) (-649 $)) 60)) (-2388 (((-867) $) 54)) (-3296 (($ $) 59)) (-3284 (($ $) 58)) (-3515 (($ $ (-649 $)) 66)) (-2040 (((-112) $ $) NIL)) (-2178 (((-112) $) 29)) (-1786 (($) 9 T CONST)) (-1796 (($) 11 T CONST)) (-2853 (((-112) $ $) 74)) (-2956 (($ $ $) 82)) (-2935 (($ $ $) 75)) (** (($ $ (-776)) 81) (($ $ (-569)) 80)) (* (($ $ $) 76)) (-2394 (((-569) $) NIL)))
+(((-541) (-13 (-1109 (-1165) (-1183) (-569) (-226) (-867)) (-619 (-1110)) (-10 -8 (-15 -2910 ((-52) $)) (-15 -1384 ($ (-1110))) (-15 -3515 ($ $ (-649 $))) (-15 -2785 ($ $ (-649 (-1183)) (-1183))) (-15 -3088 ($ $ (-649 (-1183)))) (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 -2956 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 0 ($) -3600) (-15 1 ($) -3600) (-15 -4364 ($ $)) (-15 -3505 ((-1165) $)) (-15 -3495 ($ (-1165))) (-15 -4019 ((-1183) (-649 $))) (-15 -2464 ((-1183) (-1183) (-649 $)))))) (T -541))
+((-2910 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-541)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))) (-2785 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1183)) (-5 *1 (-541)))) (-3088 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-541)))) (-2935 (*1 *1 *1 *1) (-5 *1 (-541))) (* (*1 *1 *1 *1) (-5 *1 (-541))) (-2956 (*1 *1 *1 *1) (-5 *1 (-541))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541)))) (-1786 (*1 *1) (-5 *1 (-541))) (-1796 (*1 *1) (-5 *1 (-541))) (-4364 (*1 *1 *1) (-5 *1 (-541))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1183)) (-5 *1 (-541)))) (-2464 (*1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
+(-13 (-1109 (-1165) (-1183) (-569) (-226) (-867)) (-619 (-1110)) (-10 -8 (-15 -2910 ((-52) $)) (-15 -1384 ($ (-1110))) (-15 -3515 ($ $ (-649 $))) (-15 -2785 ($ $ (-649 (-1183)) (-1183))) (-15 -3088 ($ $ (-649 (-1183)))) (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 -2956 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 (-1786) ($) -3600) (-15 (-1796) ($) -3600) (-15 -4364 ($ $)) (-15 -3505 ((-1165) $)) (-15 -3495 ($ (-1165))) (-15 -4019 ((-1183) (-649 $))) (-15 -2464 ((-1183) (-1183) (-649 $)))))
+((-3257 ((|#2| |#2|) 17)) (-3228 ((|#2| |#2|) 13)) (-3269 ((|#2| |#2| (-569) (-569)) 20)) (-3242 ((|#2| |#2|) 15)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -3228 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3269 (|#2| |#2| (-569) (-569)))) (-13 (-561) (-147)) (-1264 |#1|)) (T -542))
+((-3269 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1264 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))) (-3242 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))))
+(-10 -7 (-15 -3228 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3269 (|#2| |#2| (-569) (-569))))
+((-3564 (((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183))) 32)) (-3537 (((-649 |#2|) (-958 |#1|) |#3|) 54) (((-649 |#2|) (-1179 |#1|) |#3|) 53)) (-3553 (((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|) 106)))
+(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -3537 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -3537 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3553 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|)) (-15 -3564 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183))))) (-457) (-367) (-13 (-367) (-853))) (T -543))
+((-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1183))) (-4 *6 (-367)) (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))) (-3553 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) (-4 *5 (-13 (-367) (-853))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3537 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -3537 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3553 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|)) (-15 -3564 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183)))))
+((-3594 ((|#2| |#2| |#1|) 17)) (-3574 ((|#2| (-649 |#2|)) 31)) (-3584 ((|#2| (-649 |#2|)) 52)))
+(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3574 (|#2| (-649 |#2|))) (-15 -3584 (|#2| (-649 |#2|))) (-15 -3594 (|#2| |#2| |#1|))) (-310) (-1249 |#1|) |#1| (-1 |#1| |#1| (-776))) (T -544))
+((-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1249 *3)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
+(-10 -7 (-15 -3574 (|#2| (-649 |#2|))) (-15 -3584 (|#2| (-649 |#2|))) (-15 -3594 (|#2| |#2| |#1|)))
+((-3699 (((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|))) 89) (((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|))) 214)))
+(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|))))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -545))
+((-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1179 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1179 *8)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-955 *7 *6 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))))
+((-3257 ((|#4| |#4|) 74)) (-3228 ((|#4| |#4|) 70)) (-3269 ((|#4| |#4| (-569) (-569)) 76)) (-3242 ((|#4| |#4|) 72)))
+(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3228 (|#4| |#4|)) (-15 -3242 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -3269 (|#4| |#4| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1249 |#1|) (-729 |#1| |#2|) (-1264 |#3|)) (T -546))
+((-3269 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1249 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1264 *6)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))) (-3242 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))))
+(-10 -7 (-15 -3228 (|#4| |#4|)) (-15 -3242 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -3269 (|#4| |#4| (-569) (-569))))
+((-3257 ((|#2| |#2|) 27)) (-3228 ((|#2| |#2|) 23)) (-3269 ((|#2| |#2| (-569) (-569)) 29)) (-3242 ((|#2| |#2|) 25)))
+(((-547 |#1| |#2|) (-10 -7 (-15 -3228 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3269 (|#2| |#2| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1264 |#1|)) (T -547))
+((-3269 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1264 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))) (-3242 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))))
+(-10 -7 (-15 -3228 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3269 (|#2| |#2| (-569) (-569))))
+((-3608 (((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)) 18) (((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|)) 14) (((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|)) 32)))
+(((-548 |#1| |#2|) (-10 -7 (-15 -3608 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3608 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3608 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)))) (-1055) (-1249 |#1|)) (T -548))
+((-3608 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))) (-3608 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))) (-3608 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1249 *5)))))
+(-10 -7 (-15 -3608 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3608 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3608 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|))))
+((-2424 (($ $ $) 84)) (-2207 (((-423 $) $) 52)) (-4359 (((-3 (-569) "failed") $) 64)) (-3043 (((-569) $) 42)) (-1740 (((-3 (-412 (-569)) "failed") $) 79)) (-1727 (((-112) $) 26)) (-1715 (((-412 (-569)) $) 77)) (-3848 (((-112) $) 55)) (-3630 (($ $ $ $) 92)) (-2769 (((-112) $) 17)) (-1335 (($ $ $) 62)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 74)) (-3177 (((-3 $ "failed") $) 69)) (-2537 (($ $) 24)) (-3619 (($ $ $) 90)) (-2267 (($) 65)) (-1315 (($ $) 58)) (-3699 (((-423 $) $) 50)) (-4336 (((-112) $) 15)) (-4409 (((-776) $) 32)) (-3430 (($ $ (-776)) NIL) (($ $) 11)) (-3885 (($ $) 18)) (-1384 (((-569) $) NIL) (((-541) $) 41) (((-898 (-569)) $) 45) (((-383) $) 35) (((-226) $) 38)) (-3263 (((-776)) 9)) (-2441 (((-112) $ $) 21)) (-3038 (($ $ $) 60)))
+(((-549 |#1|) (-10 -8 (-15 -3619 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1| |#1|)) (-15 -2537 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1315 (|#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -1384 ((-569) |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2769 ((-112) |#1|)) (-15 -4409 ((-776) |#1|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -3848 ((-112) |#1|)) (-15 -3263 ((-776)))) (-550)) (T -549))
+((-3263 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550)))))
+(-10 -8 (-15 -3619 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1| |#1|)) (-15 -2537 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1315 (|#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -1384 ((-569) |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -2769 ((-112) |#1|)) (-15 -4409 ((-776) |#1|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -3848 ((-112) |#1|)) (-15 -3263 ((-776))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-2424 (($ $ $) 90)) (-3798 (((-3 $ "failed") $ $) 20)) (-2405 (($ $ $ $) 79)) (-4332 (($ $) 57)) (-2207 (((-423 $) $) 58)) (-4420 (((-112) $ $) 130)) (-2211 (((-569) $) 119)) (-2979 (($ $ $) 93)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 111)) (-3043 (((-569) $) 112)) (-2339 (($ $ $) 134)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 109) (((-694 (-569)) (-694 $)) 108)) (-3351 (((-3 $ "failed") $) 37)) (-1740 (((-3 (-412 (-569)) "failed") $) 87)) (-1727 (((-112) $) 89)) (-1715 (((-412 (-569)) $) 88)) (-3295 (($) 86) (($ $) 85)) (-2348 (($ $ $) 133)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 128)) (-3848 (((-112) $) 59)) (-3630 (($ $ $ $) 77)) (-2432 (($ $ $) 91)) (-2769 (((-112) $) 121)) (-1335 (($ $ $) 102)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 105)) (-2861 (((-112) $) 35)) (-2355 (((-112) $) 97)) (-3177 (((-3 $ "failed") $) 99)) (-2778 (((-112) $) 120)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 137)) (-3643 (($ $ $ $) 78)) (-2095 (($ $ $) 122)) (-2406 (($ $ $) 123)) (-2537 (($ $) 81)) (-3747 (($ $) 94)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3619 (($ $ $) 76)) (-2267 (($) 98 T CONST)) (-1566 (($ $) 83)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-1315 (($ $) 103)) (-3699 (((-423 $) $) 56)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 135)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 129)) (-4336 (((-112) $) 96)) (-4409 (((-776) $) 131)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 132)) (-3430 (($ $ (-776)) 116) (($ $) 114)) (-3003 (($ $) 82)) (-3885 (($ $) 84)) (-1384 (((-569) $) 113) (((-541) $) 107) (((-898 (-569)) $) 106) (((-383) $) 101) (((-226) $) 100)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 110)) (-3263 (((-776)) 32 T CONST)) (-2441 (((-112) $ $) 92)) (-3038 (($ $ $) 104)) (-2040 (((-112) $ $) 9)) (-4344 (($) 95)) (-2574 (((-112) $ $) 45)) (-2416 (($ $ $ $) 80)) (-3999 (($ $) 118)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-776)) 117) (($ $) 115)) (-2904 (((-112) $ $) 125)) (-2882 (((-112) $ $) 126)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 124)) (-2872 (((-112) $ $) 127)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-550) (-140)) (T -550))
-((-3094 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-3115 (*1 *1) (-4 *1 (-550))) (-4283 (*1 *1 *1) (-4 *1 (-550))) (-2780 (*1 *1 *1 *1) (-4 *1 (-550))) (-2237 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-2236 (*1 *1 *1 *1) (-4 *1 (-550))) (-2235 (*1 *1 *1 *1) (-4 *1 (-550))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-551))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-551))))) (-3413 (*1 *1) (-4 *1 (-550))) (-3413 (*1 *1 *1) (-4 *1 (-550))) (-3842 (*1 *1 *1) (-4 *1 (-550))) (-2234 (*1 *1 *1) (-4 *1 (-550))) (-2233 (*1 *1 *1) (-4 *1 (-550))) (-2232 (*1 *1 *1) (-4 *1 (-550))) (-2231 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2230 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2229 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2228 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2227 (*1 *1 *1 *1) (-4 *1 (-550))))
-(-13 (-1227) (-310) (-825) (-234) (-619 (-551)) (-1044 (-551)) (-644 (-551)) (-619 (-540)) (-619 (-896 (-551))) (-892 (-551)) (-143) (-1026) (-147) (-1157) (-10 -8 (-15 -3094 ((-112) $)) (-15 -3095 ((-112) $)) (-6 -4442) (-15 -3115 ($)) (-15 -4283 ($ $)) (-15 -2780 ($ $ $)) (-15 -2237 ((-112) $ $)) (-15 -2236 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $)) (-15 -3413 ($)) (-15 -3413 ($ $)) (-15 -3842 ($ $)) (-15 -2234 ($ $)) (-15 -2233 ($ $)) (-15 -2232 ($ $)) (-15 -2231 ($ $ $ $)) (-15 -2230 ($ $ $ $)) (-15 -2229 ($ $ $ $)) (-15 -2228 ($ $ $ $)) (-15 -2227 ($ $ $)) (-6 -4441)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-143) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-382)) . T) ((-619 (-540)) . T) ((-619 (-551)) . T) ((-619 (-896 (-551))) . T) ((-234) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-644 (-551)) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-825) . T) ((-853) . T) ((-855) . T) ((-892 (-551)) . T) ((-927) . T) ((-1026) . T) ((-1044 (-551)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) . T) ((-1227) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 30)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 97)) (-2251 (($ $) 98)) (-2249 (((-112) $) NIL)) (-2235 (($ $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2230 (($ $ $ $) 52)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL)) (-2780 (($ $ $) 92)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) "failed") $) NIL)) (-3594 (((-551) $) NIL)) (-2982 (($ $ $) 54)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 77) (((-694 (-551)) (-694 $)) 73)) (-3908 (((-3 $ "failed") $) 94)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL)) (-3442 (((-112) $) NIL)) (-3441 (((-412 (-551)) $) NIL)) (-3413 (($) 79) (($ $) 80)) (-2981 (($ $ $) 91)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2228 (($ $ $ $) NIL)) (-2236 (($ $ $) 70)) (-3624 (((-112) $) NIL)) (-1459 (($ $ $) NIL)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL)) (-2591 (((-112) $) 34)) (-3094 (((-112) $) 86)) (-3886 (((-3 $ "failed") $) NIL)) (-3625 (((-112) $) 43)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2229 (($ $ $ $) 55)) (-2952 (($ $ $) 88)) (-3278 (($ $ $) 87)) (-2232 (($ $) NIL)) (-4283 (($ $) 49)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) 69)) (-2227 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-2234 (($ $) 38)) (-3682 (((-1126) $) 42)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 129)) (-3582 (($ $ $) 95) (($ (-646 $)) NIL)) (-1457 (($ $) NIL)) (-4182 (((-410 $) $) 115)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) 113)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 90)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-2233 (($ $) 40)) (-3842 (($ $) 36)) (-4420 (((-551) $) 48) (((-540) $) 64) (((-896 (-551)) $) NIL) (((-382) $) 58) (((-226) $) 61) (((-1165) $) 66)) (-4396 (((-868) $) 46) (($ (-551)) 47) (($ $) NIL) (($ (-551)) 47)) (-3548 (((-776)) NIL T CONST)) (-2237 (((-112) $ $) NIL)) (-3523 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3115 (($) 35)) (-2250 (((-112) $ $) NIL)) (-2231 (($ $ $ $) 51)) (-3825 (($ $) 78)) (-3528 (($) 6 T CONST)) (-3085 (($) 31 T CONST)) (-2918 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-828) $) 28) (((-1278) (-828) $ (-112)) 29)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-2984 (((-112) $ $) 50)) (-2985 (((-112) $ $) 81)) (-3473 (((-112) $ $) 33)) (-3105 (((-112) $ $) 83)) (-3106 (((-112) $ $) 10)) (-4287 (($ $) 16) (($ $ $) 39)) (-4289 (($ $ $) 37)) (** (($ $ (-925)) NIL) (($ $ (-776)) 85)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 84) (($ $ $) 53)))
-(((-551) (-13 (-550) (-619 (-1165)) (-826) (-10 -7 (-6 -4430) (-6 -4435) (-6 -4431) (-6 -4425)))) (T -551))
-NIL
-(-13 (-550) (-619 (-1165)) (-826) (-10 -7 (-6 -4430) (-6 -4435) (-6 -4431) (-6 -4425)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-552) (-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))) (T -552))
-((-4174 (*1 *1) (-5 *1 (-552))))
-(-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))
+((-2355 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4344 (*1 *1) (-4 *1 (-550))) (-3747 (*1 *1 *1) (-4 *1 (-550))) (-2979 (*1 *1 *1 *1) (-4 *1 (-550))) (-2441 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-2432 (*1 *1 *1 *1) (-4 *1 (-550))) (-2424 (*1 *1 *1 *1) (-4 *1 (-550))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-1740 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3295 (*1 *1) (-4 *1 (-550))) (-3295 (*1 *1 *1) (-4 *1 (-550))) (-3885 (*1 *1 *1) (-4 *1 (-550))) (-1566 (*1 *1 *1) (-4 *1 (-550))) (-3003 (*1 *1 *1) (-4 *1 (-550))) (-2537 (*1 *1 *1) (-4 *1 (-550))) (-2416 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2405 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3643 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3630 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3619 (*1 *1 *1 *1) (-4 *1 (-550))))
+(-13 (-1227) (-310) (-825) (-234) (-619 (-569)) (-1044 (-569)) (-644 (-569)) (-619 (-541)) (-619 (-898 (-569))) (-892 (-569)) (-143) (-1028) (-147) (-1158) (-10 -8 (-15 -2355 ((-112) $)) (-15 -4336 ((-112) $)) (-6 -4442) (-15 -4344 ($)) (-15 -3747 ($ $)) (-15 -2979 ($ $ $)) (-15 -2441 ((-112) $ $)) (-15 -2432 ($ $ $)) (-15 -2424 ($ $ $)) (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $)) (-15 -3295 ($)) (-15 -3295 ($ $)) (-15 -3885 ($ $)) (-15 -1566 ($ $)) (-15 -3003 ($ $)) (-15 -2537 ($ $)) (-15 -2416 ($ $ $ $)) (-15 -2405 ($ $ $ $)) (-15 -3643 ($ $ $ $)) (-15 -3630 ($ $ $ $)) (-15 -3619 ($ $ $)) (-6 -4441)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-143) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-541)) . T) ((-619 (-569)) . T) ((-619 (-898 (-569))) . T) ((-234) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-644 (-569)) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-825) . T) ((-853) . T) ((-855) . T) ((-892 (-569)) . T) ((-926) . T) ((-1028) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) . T) ((-1227) . T))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-551) (-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))) (T -551))
+((-3863 (*1 *1) (-5 *1 (-551))))
+(-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-553) (-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))) (T -553))
-((-4174 (*1 *1) (-5 *1 (-553))))
-(-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-552) (-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))) (T -552))
+((-3863 (*1 *1) (-5 *1 (-552))))
+(-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-554) (-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))) (T -554))
-((-4174 (*1 *1) (-5 *1 (-554))))
-(-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-553) (-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))) (T -553))
+((-3863 (*1 *1) (-5 *1 (-553))))
+(-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-555) (-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))) (T -555))
-((-4174 (*1 *1) (-5 *1 (-555))))
-(-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-554) (-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))) (T -554))
+((-3863 (*1 *1) (-5 *1 (-554))))
+(-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) NIL)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-556 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1107) (-1107) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))) (T -556))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) NIL)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) NIL)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-555 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1106) (-1106) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))) (T -555))
NIL
(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))
-((-2238 (((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-1 (-1177 |#2|) (-1177 |#2|))) 50)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -2238 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-1 (-1177 |#2|) (-1177 |#2|))))) (-562) (-13 (-27) (-426 |#1|))) (T -557))
-((-2238 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-616 *3)) (-5 *5 (-1 (-1177 *3) (-1177 *3))) (-4 *3 (-13 (-27) (-426 *6))) (-4 *6 (-562)) (-5 *2 (-588 *3)) (-5 *1 (-557 *6 *3)))))
-(-10 -7 (-15 -2238 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-1 (-1177 |#2|) (-1177 |#2|)))))
-((-2240 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2241 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2239 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222)))
-(((-558 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2239 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2240 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2241 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-562) (-1044 (-551))) (-13 (-27) (-426 |#1|)) (-1248 |#2|) (-1248 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -558))
-((-2241 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-27) (-426 *4))) (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *7 (-1248 (-412 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2)) (-4 *2 (-346 *5 *6 *7)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-562) (-1044 (-551)))) (-4 *8 (-1248 (-412 *7))) (-5 *2 (-588 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-562) (-1044 (-551)))) (-4 *8 (-1248 (-412 *7))) (-5 *2 (-588 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
-(-10 -7 (-15 -2239 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2240 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2241 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2244 (((-112) (-551) (-551)) 12)) (-2242 (((-551) (-551)) 7)) (-2243 (((-551) (-551) (-551)) 10)))
-(((-559) (-10 -7 (-15 -2242 ((-551) (-551))) (-15 -2243 ((-551) (-551) (-551))) (-15 -2244 ((-112) (-551) (-551))))) (T -559))
-((-2244 (*1 *2 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-112)) (-5 *1 (-559)))) (-2243 (*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-559)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-559)))))
-(-10 -7 (-15 -2242 ((-551) (-551))) (-15 -2243 ((-551) (-551) (-551))) (-15 -2244 ((-112) (-551) (-551))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3022 ((|#1| $) 67)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-3933 (($ $) 97)) (-4089 (($ $) 80)) (-2823 ((|#1| $) 68)) (-1410 (((-3 $ "failed") $ $) 20)) (-3456 (($ $) 79)) (-3931 (($ $) 96)) (-4088 (($ $) 81)) (-3935 (($ $) 95)) (-4087 (($ $) 82)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) "failed") $) 75)) (-3594 (((-551) $) 76)) (-3908 (((-3 $ "failed") $) 37)) (-2247 (($ |#1| |#1|) 72)) (-3624 (((-112) $) 66)) (-4077 (($) 107)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 78)) (-3625 (((-112) $) 65)) (-2952 (($ $ $) 113)) (-3278 (($ $ $) 112)) (-4392 (($ $) 104)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2248 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-412 (-551))) 70)) (-2246 ((|#1| $) 69)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3907 (((-3 $ "failed") $ $) 48)) (-4393 (($ $) 105)) (-3936 (($ $) 94)) (-4086 (($ $) 83)) (-3934 (($ $) 93)) (-4085 (($ $) 84)) (-3932 (($ $) 92)) (-4084 (($ $) 85)) (-2245 (((-112) $ |#1|) 64)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-551)) 74)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 103)) (-3927 (($ $) 91)) (-2250 (((-112) $ $) 45)) (-3937 (($ $) 102)) (-3925 (($ $) 90)) (-3941 (($ $) 101)) (-3929 (($ $) 89)) (-3942 (($ $) 100)) (-3930 (($ $) 88)) (-3940 (($ $) 99)) (-3928 (($ $) 87)) (-3938 (($ $) 98)) (-3926 (($ $) 86)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 110)) (-2985 (((-112) $ $) 109)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 111)) (-3106 (((-112) $ $) 108)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ $) 106) (($ $ (-412 (-551))) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-560 |#1|) (-140) (-13 (-409) (-1208))) (T -560))
-((-2248 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2247 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2248 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-2245 (*1 *2 *1 *3) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
-(-13 (-457) (-855) (-1208) (-1008) (-1044 (-551)) (-10 -8 (-6 -4219) (-15 -2248 ($ |t#1| |t#1|)) (-15 -2247 ($ |t#1| |t#1|)) (-15 -2248 ($ |t#1|)) (-15 -2248 ($ (-412 (-551)))) (-15 -2246 (|t#1| $)) (-15 -2823 (|t#1| $)) (-15 -3022 (|t#1| $)) (-15 -3624 ((-112) $)) (-15 -3625 ((-112) $)) (-15 -2245 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-287) . T) ((-293) . T) ((-457) . T) ((-498) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1008) . T) ((-1044 (-551)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) . T) ((-1211) . T))
-((-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 9)) (-2251 (($ $) 11)) (-2249 (((-112) $) 20)) (-3908 (((-3 $ "failed") $) 16)) (-2250 (((-112) $ $) 22)))
-(((-561 |#1|) (-10 -8 (-15 -2249 ((-112) |#1|)) (-15 -2250 ((-112) |#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|))) (-562)) (T -561))
-NIL
-(-10 -8 (-15 -2249 ((-112) |#1|)) (-15 -2250 ((-112) |#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2252 ((-2 (|:| -1957 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ $) 48)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-562) (-140)) (T -562))
-((-3907 (*1 *1 *1 *1) (|partial| -4 *1 (-562))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1957 *1) (|:| -4430 *1) (|:| |associate| *1))) (-4 *1 (-562)))) (-2251 (*1 *1 *1) (-4 *1 (-562))) (-2250 (*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(-13 (-173) (-38 $) (-293) (-10 -8 (-15 -3907 ((-3 $ "failed") $ $)) (-15 -2252 ((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $)) (-15 -2251 ($ $)) (-15 -2250 ((-112) $ $)) (-15 -2249 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2254 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-646 |#2|)) 38)) (-2256 (((-588 |#2|) |#2| (-1183)) 63)) (-2255 (((-3 |#2| "failed") |#2| (-1183)) 156)) (-2257 (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1183) (-616 |#2|) (-646 (-616 |#2|))) 159)) (-2253 (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1183) |#2|) 41)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -2253 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1183) |#2|)) (-15 -2254 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-646 |#2|))) (-15 -2255 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2256 ((-588 |#2|) |#2| (-1183))) (-15 -2257 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1183) (-616 |#2|) (-646 (-616 |#2|))))) (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -563))
-((-2257 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-646 (-616 *3))) (-5 *5 (-616 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *7))) (-4 *7 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-563 *7 *3)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-2255 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3)))) (-2253 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(-10 -7 (-15 -2253 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1183) |#2|)) (-15 -2254 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-646 |#2|))) (-15 -2255 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2256 ((-588 |#2|) |#2| (-1183))) (-15 -2257 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1183) (-616 |#2|) (-646 (-616 |#2|)))))
-((-4419 (((-410 |#1|) |#1|) 19)) (-4182 (((-410 |#1|) |#1|) 34)) (-2259 (((-3 |#1| "failed") |#1|) 51)) (-2258 (((-410 |#1|) |#1|) 64)))
-(((-564 |#1|) (-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -2258 ((-410 |#1|) |#1|)) (-15 -2259 ((-3 |#1| "failed") |#1|))) (-550)) (T -564))
-((-2259 (*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-550)))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550)))) (-4419 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550)))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -2258 ((-410 |#1|) |#1|)) (-15 -2259 ((-3 |#1| "failed") |#1|)))
-((-2260 (($) 9)) (-2263 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2834 (((-646 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-4057 (($ (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28)) (-2262 (($ (-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26)) (-2264 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-2397 (((-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36)) (-2261 (((-1278)) 11)))
-(((-565) (-10 -8 (-15 -2260 ($)) (-15 -2261 ((-1278))) (-15 -2834 ((-646 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2262 ($ (-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4057 ($ (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2263 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2397 ((-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2264 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -565))
-((-2264 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-565)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-565)))) (-2263 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-565)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-565)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-565)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-565)))) (-2261 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-565)))) (-2260 (*1 *1) (-5 *1 (-565))))
-(-10 -8 (-15 -2260 ($)) (-15 -2261 ((-1278))) (-15 -2834 ((-646 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2262 ($ (-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1613 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4057 ($ (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2263 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2397 ((-646 (-2 (|:| -4310 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2264 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1160 (-226))) (|:| |notEvaluated| #6#))) (|:| -1613 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-3505 (((-1177 (-412 (-1177 |#2|))) |#2| (-616 |#2|) (-616 |#2|) (-1177 |#2|)) 35)) (-2267 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) |#2| (-1177 |#2|)) 115)) (-2265 (((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|))) 85) (((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|)) 55)) (-2266 (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-616 |#2|) (-616 |#2|) |#2| (-616 |#2|) |#2| (-412 (-1177 |#2|))) 92) (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-616 |#2|) (-616 |#2|) |#2| |#2| (-1177 |#2|)) 114)) (-2268 (((-3 |#2| #3="failed") |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) (-616 |#2|) |#2| (-412 (-1177 |#2|))) 110) (((-3 |#2| #3#) |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) |#2| (-1177 |#2|)) 116)) (-2269 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|))) 135 (|has| |#3| (-663 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|)) 134 (|has| |#3| (-663 |#2|)))) (-3506 ((|#2| (-1177 (-412 (-1177 |#2|))) (-616 |#2|) |#2|) 53)) (-3499 (((-1177 (-412 (-1177 |#2|))) (-1177 |#2|) (-616 |#2|)) 34)))
-(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -2265 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|))) (-15 -2265 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2266 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-616 |#2|) (-616 |#2|) |#2| |#2| (-1177 |#2|))) (-15 -2266 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-616 |#2|) (-616 |#2|) |#2| (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) |#2| (-1177 |#2|))) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2268 ((-3 |#2| #3="failed") |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) |#2| (-1177 |#2|))) (-15 -2268 ((-3 |#2| #3#) |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -3505 ((-1177 (-412 (-1177 |#2|))) |#2| (-616 |#2|) (-616 |#2|) (-1177 |#2|))) (-15 -3506 (|#2| (-1177 (-412 (-1177 |#2|))) (-616 |#2|) |#2|)) (-15 -3499 ((-1177 (-412 (-1177 |#2|))) (-1177 |#2|) (-616 |#2|))) (IF (|has| |#3| (-663 |#2|)) (PROGN (-15 -2269 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|))) (-15 -2269 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|))))) |%noBranch|)) (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))) (-13 (-426 |#1|) (-27) (-1208)) (-1107)) (T -566))
-((-2269 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-616 *4)) (-5 *6 (-412 (-1177 *4))) (-4 *4 (-13 (-426 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107)))) (-2269 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-616 *4)) (-5 *6 (-1177 *4)) (-4 *4 (-13 (-426 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2200 (-646 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-616 *6)) (-4 *6 (-13 (-426 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-1177 (-412 (-1177 *6)))) (-5 *1 (-566 *5 *6 *7)) (-5 *3 (-1177 *6)) (-4 *7 (-1107)))) (-3506 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1177 (-412 (-1177 *2)))) (-5 *4 (-616 *2)) (-4 *2 (-13 (-426 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1107)))) (-3505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-1177 (-412 (-1177 *3)))) (-5 *1 (-566 *6 *3 *7)) (-5 *5 (-1177 *3)) (-4 *7 (-1107)))) (-2268 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-616 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1183))) (-5 *5 (-412 (-1177 *2))) (-4 *2 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1107)))) (-2268 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-616 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1183))) (-5 *5 (-1177 *2)) (-4 *2 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1107)))) (-2267 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3)) (-5 *6 (-412 (-1177 *3))) (-4 *3 (-13 (-426 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1107)))) (-2267 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3)) (-5 *6 (-1177 *3)) (-4 *3 (-13 (-426 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1107)))) (-2266 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-412 (-1177 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107)))) (-2266 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-1177 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107)))) (-2265 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-616 *3)) (-5 *5 (-412 (-1177 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107)))) (-2265 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-616 *3)) (-5 *5 (-1177 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107)))))
-(-10 -7 (-15 -2265 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|))) (-15 -2265 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2266 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-616 |#2|) (-616 |#2|) |#2| |#2| (-1177 |#2|))) (-15 -2266 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-616 |#2|) (-616 |#2|) |#2| (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) |#2| (-1177 |#2|))) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -2268 ((-3 |#2| #3="failed") |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) |#2| (-1177 |#2|))) (-15 -2268 ((-3 |#2| #3#) |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1183)) (-616 |#2|) |#2| (-412 (-1177 |#2|)))) (-15 -3505 ((-1177 (-412 (-1177 |#2|))) |#2| (-616 |#2|) (-616 |#2|) (-1177 |#2|))) (-15 -3506 (|#2| (-1177 (-412 (-1177 |#2|))) (-616 |#2|) |#2|)) (-15 -3499 ((-1177 (-412 (-1177 |#2|))) (-1177 |#2|) (-616 |#2|))) (IF (|has| |#3| (-663 |#2|)) (PROGN (-15 -2269 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) |#2| (-1177 |#2|))) (-15 -2269 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-616 |#2|) |#2| (-412 (-1177 |#2|))))) |%noBranch|))
-((-2279 (((-551) (-551) (-776)) 90)) (-2278 (((-551) (-551)) 88)) (-2277 (((-551) (-551)) 86)) (-2276 (((-551) (-551)) 92)) (-3226 (((-551) (-551) (-551)) 70)) (-2275 (((-551) (-551) (-551)) 67)) (-2274 (((-412 (-551)) (-551)) 30)) (-2273 (((-551) (-551)) 36)) (-2272 (((-551) (-551)) 79)) (-3223 (((-551) (-551)) 51)) (-2271 (((-646 (-551)) (-551)) 85)) (-2270 (((-551) (-551) (-551) (-551) (-551)) 63)) (-3219 (((-412 (-551)) (-551)) 60)))
-(((-567) (-10 -7 (-15 -3219 ((-412 (-551)) (-551))) (-15 -2270 ((-551) (-551) (-551) (-551) (-551))) (-15 -2271 ((-646 (-551)) (-551))) (-15 -3223 ((-551) (-551))) (-15 -2272 ((-551) (-551))) (-15 -2273 ((-551) (-551))) (-15 -2274 ((-412 (-551)) (-551))) (-15 -2275 ((-551) (-551) (-551))) (-15 -3226 ((-551) (-551) (-551))) (-15 -2276 ((-551) (-551))) (-15 -2277 ((-551) (-551))) (-15 -2278 ((-551) (-551))) (-15 -2279 ((-551) (-551) (-776))))) (T -567))
-((-2279 (*1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-776)) (-5 *1 (-567)))) (-2278 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-3226 (*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2275 (*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2274 (*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-567)) (-5 *3 (-551)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-2271 (*1 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-567)) (-5 *3 (-551)))) (-2270 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-567)) (-5 *3 (-551)))))
-(-10 -7 (-15 -3219 ((-412 (-551)) (-551))) (-15 -2270 ((-551) (-551) (-551) (-551) (-551))) (-15 -2271 ((-646 (-551)) (-551))) (-15 -3223 ((-551) (-551))) (-15 -2272 ((-551) (-551))) (-15 -2273 ((-551) (-551))) (-15 -2274 ((-412 (-551)) (-551))) (-15 -2275 ((-551) (-551) (-551))) (-15 -3226 ((-551) (-551) (-551))) (-15 -2276 ((-551) (-551))) (-15 -2277 ((-551) (-551))) (-15 -2278 ((-551) (-551))) (-15 -2279 ((-551) (-551) (-776))))
-((-2280 (((-2 (|:| |answer| |#4|) (|:| -2327 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-568 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2280 ((-2 (|:| |answer| |#4|) (|:| -2327 |#4|)) |#4| (-1 |#2| |#2|)))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -568))
-((-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-4 *7 (-1248 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2327 *3))) (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7)))))
-(-10 -7 (-15 -2280 ((-2 (|:| |answer| |#4|) (|:| -2327 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2280 (((-2 (|:| |answer| (-412 |#2|)) (|:| -2327 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 18)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -2280 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2327 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1248 |#1|)) (T -569))
-((-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| (-412 *6)) (|:| -2327 (-412 *6)) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-569 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -2280 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2327 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))))
-((-3089 (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774) (-1069)) 119) (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774)) 121)) (-4262 (((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1183)) 197) (((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1165)) 196) (((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382) (-1069)) 201) (((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382)) 202) (((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382)) 203) (((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382))))) 204) (((-1041) (-317 (-382)) (-1095 (-847 (-382)))) 192) (((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382)) 191) (((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382)) 187) (((-1041) (-774)) 179) (((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382) (-1069)) 186)))
-(((-570) (-10 -7 (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382) (-1069))) (-15 -4262 ((-1041) (-774))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382) (-1069))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -4262 ((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1165))) (-15 -4262 ((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1183))))) (T -570))
-((-4262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-382))) (-5 *4 (-1098 (-847 (-382)))) (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-382))) (-5 *4 (-1098 (-847 (-382)))) (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382))))) (-5 *5 (-382)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382))))) (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382))))) (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382))))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-4262 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))))
-(-10 -7 (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382) (-1069))) (-15 -4262 ((-1041) (-774))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-1095 (-847 (-382))))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382))) (-15 -4262 ((-1041) (-317 (-382)) (-646 (-1095 (-847 (-382)))) (-382) (-382) (-1069))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -4262 ((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1165))) (-15 -4262 ((-3 (-1041) "failed") (-317 (-382)) (-1098 (-847 (-382))) (-1183))))
-((-2283 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|)) 198)) (-2281 (((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|)) 99)) (-2282 (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-616 |#2|) (-616 |#2|) |#2|) 194)) (-2284 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1183))) 203)) (-2285 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-1183)) 212 (|has| |#3| (-663 |#2|)))))
-(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -2281 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|))) (-15 -2282 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-616 |#2|) (-616 |#2|) |#2|)) (-15 -2283 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|))) (-15 -2284 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1183)))) (IF (|has| |#3| (-663 |#2|)) (-15 -2285 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-1183))) |%noBranch|)) (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))) (-13 (-426 |#1|) (-27) (-1208)) (-1107)) (T -571))
-((-2285 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-616 *4)) (-5 *6 (-1183)) (-4 *4 (-13 (-426 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107)))) (-2284 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-616 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1183))) (-4 *2 (-13 (-426 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1107)))) (-2283 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1107)))) (-2282 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1107)))) (-2281 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1107)))))
-(-10 -7 (-15 -2281 ((-588 |#2|) |#2| (-616 |#2|) (-616 |#2|))) (-15 -2282 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-616 |#2|) (-616 |#2|) |#2|)) (-15 -2283 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-616 |#2|) (-616 |#2|) (-646 |#2|))) (-15 -2284 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-616 |#2|) (-616 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1183)))) (IF (|has| |#3| (-663 |#2|)) (-15 -2285 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2200 (-646 |#2|))) |#3| |#2| (-616 |#2|) (-616 |#2|) (-1183))) |%noBranch|))
-((-2286 (((-2 (|:| -2507 |#2|) (|:| |nconst| |#2|)) |#2| (-1183)) 64)) (-2288 (((-3 |#2| "failed") |#2| (-1183) (-847 |#2|) (-847 |#2|)) 175 (-12 (|has| |#2| (-1145)) (|has| |#1| (-619 (-896 (-551)))) (|has| |#1| (-892 (-551))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 154 (-12 (|has| |#2| (-635)) (|has| |#1| (-619 (-896 (-551)))) (|has| |#1| (-892 (-551)))))) (-2287 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 156 (-12 (|has| |#2| (-635)) (|has| |#1| (-619 (-896 (-551)))) (|has| |#1| (-892 (-551)))))))
-(((-572 |#1| |#2|) (-10 -7 (-15 -2286 ((-2 (|:| -2507 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-896 (-551)))) (IF (|has| |#1| (-892 (-551))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2287 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -2288 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -2288 ((-3 |#2| "failed") |#2| (-1183) (-847 |#2|) (-847 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1044 (-551)) (-457) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -572))
-((-2288 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-847 *2)) (-4 *2 (-1145)) (-4 *2 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-619 (-896 (-551)))) (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551)))) (-5 *1 (-572 *5 *2)))) (-2288 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-896 (-551)))) (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-2287 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-896 (-551)))) (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-2286 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551)))) (-5 *2 (-2 (|:| -2507 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(-10 -7 (-15 -2286 ((-2 (|:| -2507 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-896 (-551)))) (IF (|has| |#1| (-892 (-551))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2287 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -2288 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -2288 ((-3 |#2| "failed") |#2| (-1183) (-847 |#2|) (-847 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2291 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-646 (-412 |#2|))) 41)) (-4262 (((-588 (-412 |#2|)) (-412 |#2|)) 28)) (-2289 (((-3 (-412 |#2|) "failed") (-412 |#2|)) 17)) (-2290 (((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|)) 48)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -4262 ((-588 (-412 |#2|)) (-412 |#2|))) (-15 -2289 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2290 ((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -2291 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-646 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-551))) (-1248 |#1|)) (T -573))
-((-2291 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-646 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *5 *6)))) (-2290 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| -2328 (-412 *5)) (|:| |coeff| (-412 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) (-2289 (*1 *2 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-13 (-367) (-147) (-1044 (-551)))) (-5 *1 (-573 *3 *4)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4)) (-5 *2 (-588 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
-(-10 -7 (-15 -4262 ((-588 (-412 |#2|)) (-412 |#2|))) (-15 -2289 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2290 ((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -2291 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-646 (-412 |#2|)))))
-((-2292 (((-3 (-551) "failed") |#1|) 14)) (-3698 (((-112) |#1|) 13)) (-3694 (((-551) |#1|) 9)))
-(((-574 |#1|) (-10 -7 (-15 -3694 ((-551) |#1|)) (-15 -3698 ((-112) |#1|)) (-15 -2292 ((-3 (-551) "failed") |#1|))) (-1044 (-551))) (T -574))
-((-2292 (*1 *2 *3) (|partial| -12 (-5 *2 (-551)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))) (-3698 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-551))))) (-3694 (*1 *2 *3) (-12 (-5 *2 (-551)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
-(-10 -7 (-15 -3694 ((-551) |#1|)) (-15 -3698 ((-112) |#1|)) (-15 -2292 ((-3 (-551) "failed") |#1|)))
-((-2295 (((-3 (-2 (|:| |mainpart| (-412 (-952 |#1|))) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 (-952 |#1|))) (|:| |logand| (-412 (-952 |#1|))))))) "failed") (-412 (-952 |#1|)) (-1183) (-646 (-412 (-952 |#1|)))) 48)) (-2293 (((-588 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-1183)) 28)) (-2294 (((-3 (-412 (-952 |#1|)) "failed") (-412 (-952 |#1|)) (-1183)) 23)) (-2296 (((-3 (-2 (|:| -2328 (-412 (-952 |#1|))) (|:| |coeff| (-412 (-952 |#1|)))) "failed") (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|))) 35)))
-(((-575 |#1|) (-10 -7 (-15 -2293 ((-588 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -2294 ((-3 (-412 (-952 |#1|)) "failed") (-412 (-952 |#1|)) (-1183))) (-15 -2295 ((-3 (-2 (|:| |mainpart| (-412 (-952 |#1|))) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 (-952 |#1|))) (|:| |logand| (-412 (-952 |#1|))))))) "failed") (-412 (-952 |#1|)) (-1183) (-646 (-412 (-952 |#1|))))) (-15 -2296 ((-3 (-2 (|:| -2328 (-412 (-952 |#1|))) (|:| |coeff| (-412 (-952 |#1|)))) "failed") (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|))))) (-13 (-562) (-1044 (-551)) (-147))) (T -575))
-((-2296 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-147))) (-5 *2 (-2 (|:| -2328 (-412 (-952 *5))) (|:| |coeff| (-412 (-952 *5))))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-952 *5))))) (-2295 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 (-412 (-952 *6)))) (-5 *3 (-412 (-952 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6)))) (-2294 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-412 (-952 *4))) (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-147))) (-5 *1 (-575 *4)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-147))) (-5 *2 (-588 (-412 (-952 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-952 *5))))))
-(-10 -7 (-15 -2293 ((-588 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -2294 ((-3 (-412 (-952 |#1|)) "failed") (-412 (-952 |#1|)) (-1183))) (-15 -2295 ((-3 (-2 (|:| |mainpart| (-412 (-952 |#1|))) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 (-952 |#1|))) (|:| |logand| (-412 (-952 |#1|))))))) "failed") (-412 (-952 |#1|)) (-1183) (-646 (-412 (-952 |#1|))))) (-15 -2296 ((-3 (-2 (|:| -2328 (-412 (-952 |#1|))) (|:| |coeff| (-412 (-952 |#1|)))) "failed") (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)))))
-((-2986 (((-112) $ $) 75)) (-3626 (((-112) $) 48)) (-3022 ((|#1| $) 39)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) 79)) (-3933 (($ $) 139)) (-4089 (($ $) 118)) (-2823 ((|#1| $) 37)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $) NIL)) (-3931 (($ $) 141)) (-4088 (($ $) 114)) (-3935 (($ $) 143)) (-4087 (($ $) 122)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) "failed") $) 93)) (-3594 (((-551) $) 95)) (-3908 (((-3 $ "failed") $) 78)) (-2247 (($ |#1| |#1|) 35)) (-3624 (((-112) $) 44)) (-4077 (($) 104)) (-2591 (((-112) $) 55)) (-3430 (($ $ (-551)) NIL)) (-3625 (((-112) $) 45)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4392 (($ $) 106)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2248 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-412 (-551))) 92)) (-2246 ((|#1| $) 36)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) 81) (($ (-646 $)) NIL)) (-3907 (((-3 $ "failed") $ $) 80)) (-4393 (($ $) 108)) (-3936 (($ $) 147)) (-4086 (($ $) 120)) (-3934 (($ $) 149)) (-4085 (($ $) 124)) (-3932 (($ $) 145)) (-4084 (($ $) 116)) (-2245 (((-112) $ |#1|) 42)) (-4396 (((-868) $) 100) (($ (-551)) 83) (($ $) NIL) (($ (-551)) 83)) (-3548 (((-776)) 102 T CONST)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 161)) (-3927 (($ $) 130)) (-2250 (((-112) $ $) NIL)) (-3937 (($ $) 159)) (-3925 (($ $) 126)) (-3941 (($ $) 157)) (-3929 (($ $) 137)) (-3942 (($ $) 155)) (-3930 (($ $) 135)) (-3940 (($ $) 153)) (-3928 (($ $) 132)) (-3938 (($ $) 151)) (-3926 (($ $) 128)) (-3528 (($) 30 T CONST)) (-3085 (($) 10 T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 49)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 47)) (-4287 (($ $) 53) (($ $ $) 54)) (-4289 (($ $ $) 52)) (** (($ $ (-925)) 71) (($ $ (-776)) NIL) (($ $ $) 110) (($ $ (-412 (-551))) 163)) (* (($ (-925) $) 66) (($ (-776) $) NIL) (($ (-551) $) 65) (($ $ $) 61)))
-(((-576 |#1|) (-560 |#1|) (-13 (-409) (-1208))) (T -576))
-NIL
-(-560 |#1|)
-((-3125 (((-3 (-646 (-1177 (-551))) "failed") (-646 (-1177 (-551))) (-1177 (-551))) 27)))
-(((-577) (-10 -7 (-15 -3125 ((-3 (-646 (-1177 (-551))) "failed") (-646 (-1177 (-551))) (-1177 (-551)))))) (T -577))
-((-3125 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 (-551)))) (-5 *3 (-1177 (-551))) (-5 *1 (-577)))))
-(-10 -7 (-15 -3125 ((-3 (-646 (-1177 (-551))) "failed") (-646 (-1177 (-551))) (-1177 (-551)))))
-((-2297 (((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-1183)) 19)) (-2300 (((-646 (-616 |#2|)) (-646 |#2|) (-1183)) 23)) (-3672 (((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-646 (-616 |#2|))) 11)) (-2301 ((|#2| |#2| (-1183)) 59 (|has| |#1| (-562)))) (-2302 ((|#2| |#2| (-1183)) 87 (-12 (|has| |#2| (-287)) (|has| |#1| (-457))))) (-2299 (((-616 |#2|) (-616 |#2|) (-646 (-616 |#2|)) (-1183)) 25)) (-2298 (((-616 |#2|) (-646 (-616 |#2|))) 24)) (-2303 (((-588 |#2|) |#2| (-1183) (-1 (-588 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) 115 (-12 (|has| |#2| (-287)) (|has| |#2| (-635)) (|has| |#2| (-1044 (-1183))) (|has| |#1| (-619 (-896 (-551)))) (|has| |#1| (-457)) (|has| |#1| (-892 (-551)))))))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2297 ((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-1183))) (-15 -2298 ((-616 |#2|) (-646 (-616 |#2|)))) (-15 -2299 ((-616 |#2|) (-616 |#2|) (-646 (-616 |#2|)) (-1183))) (-15 -3672 ((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-646 (-616 |#2|)))) (-15 -2300 ((-646 (-616 |#2|)) (-646 |#2|) (-1183))) (IF (|has| |#1| (-562)) (-15 -2301 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2302 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-896 (-551)))) (IF (|has| |#1| (-892 (-551))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2303 ((-588 |#2|) |#2| (-1183) (-1 (-588 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1107) (-426 |#1|)) (T -578))
-((-2303 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1183))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1183))) (-4 *3 (-287)) (-4 *3 (-635)) (-4 *3 (-1044 *4)) (-4 *3 (-426 *7)) (-5 *4 (-1183)) (-4 *7 (-619 (-896 (-551)))) (-4 *7 (-457)) (-4 *7 (-892 (-551))) (-4 *7 (-1107)) (-5 *2 (-588 *3)) (-5 *1 (-578 *7 *3)))) (-2302 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1107)) (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-426 *4)))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-4 *4 (-1107)) (-5 *1 (-578 *4 *2)) (-4 *2 (-426 *4)))) (-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-1183)) (-4 *6 (-426 *5)) (-4 *5 (-1107)) (-5 *2 (-646 (-616 *6))) (-5 *1 (-578 *5 *6)))) (-3672 (*1 *2 *2 *2) (-12 (-5 *2 (-646 (-616 *4))) (-4 *4 (-426 *3)) (-4 *3 (-1107)) (-5 *1 (-578 *3 *4)))) (-2299 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-646 (-616 *6))) (-5 *4 (-1183)) (-5 *2 (-616 *6)) (-4 *6 (-426 *5)) (-4 *5 (-1107)) (-5 *1 (-578 *5 *6)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-646 (-616 *5))) (-4 *4 (-1107)) (-5 *2 (-616 *5)) (-5 *1 (-578 *4 *5)) (-4 *5 (-426 *4)))) (-2297 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-616 *5))) (-5 *3 (-1183)) (-4 *5 (-426 *4)) (-4 *4 (-1107)) (-5 *1 (-578 *4 *5)))))
-(-10 -7 (-15 -2297 ((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-1183))) (-15 -2298 ((-616 |#2|) (-646 (-616 |#2|)))) (-15 -2299 ((-616 |#2|) (-616 |#2|) (-646 (-616 |#2|)) (-1183))) (-15 -3672 ((-646 (-616 |#2|)) (-646 (-616 |#2|)) (-646 (-616 |#2|)))) (-15 -2300 ((-646 (-616 |#2|)) (-646 |#2|) (-1183))) (IF (|has| |#1| (-562)) (-15 -2301 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2302 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-896 (-551)))) (IF (|has| |#1| (-892 (-551))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2303 ((-588 |#2|) |#2| (-1183) (-1 (-588 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2306 (((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-646 |#1|) "failed") (-551) |#1| |#1|)) 201)) (-2309 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-646 (-412 |#2|))) 176)) (-2312 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-646 (-412 |#2|))) 173)) (-2313 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 164)) (-2304 (((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 187)) (-2311 (((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|)) 204)) (-2307 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-412 |#2|)) 207)) (-2315 (((-2 (|:| |ir| (-588 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 88)) (-2316 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2310 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-646 (-412 |#2|))) 180)) (-2314 (((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|)) 168)) (-2305 (((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|)) 191)) (-2308 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-412 |#2|)) 212)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -2304 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2305 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-646 |#1|) "failed") (-551) |#1| |#1|))) (-15 -2307 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-412 |#2|))) (-15 -2308 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-412 |#2|))) (-15 -2309 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-646 (-412 |#2|)))) (-15 -2310 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-646 (-412 |#2|)))) (-15 -2311 ((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -2312 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-646 (-412 |#2|)))) (-15 -2313 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2314 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|))) (-15 -2315 ((-2 (|:| |ir| (-588 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-367) (-1248 |#1|)) (T -579))
-((-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |ir| (-588 (-412 *6))) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-628 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3559 *4) (|:| |sol?| (-112))) (-551) *4)) (-4 *4 (-367)) (-4 *5 (-1248 *4)) (-5 *1 (-579 *4 *5)))) (-2313 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1248 *4)))) (-2312 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-646 (-412 *7))) (-4 *7 (-1248 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *7)))) (-2311 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -2328 (-412 *6)) (|:| |coeff| (-412 *6)))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2310 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3559 *7) (|:| |sol?| (-112))) (-551) *7)) (-5 *6 (-646 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1248 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-2309 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2328 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-646 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1248 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-2308 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3559 *6) (|:| |sol?| (-112))) (-551) *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2328 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2307 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2328 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2328 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-646 *6) "failed") (-551) *6 *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2305 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3559 *6) (|:| |sol?| (-112))) (-551) *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2328 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(-10 -7 (-15 -2304 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2305 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-588 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-646 |#1|) "failed") (-551) |#1| |#1|))) (-15 -2307 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-412 |#2|))) (-15 -2308 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-412 |#2|))) (-15 -2309 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-646 (-412 |#2|)))) (-15 -2310 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|) (-646 (-412 |#2|)))) (-15 -2311 ((-3 (-2 (|:| -2328 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -2312 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-646 (-412 |#2|)))) (-15 -2313 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2314 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3559 |#1|) (|:| |sol?| (-112))) (-551) |#1|))) (-15 -2315 ((-2 (|:| |ir| (-588 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2317 (((-3 |#2| "failed") |#2| (-1183) (-1183)) 10)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -2317 ((-3 |#2| "failed") |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-966) (-1145) (-29 |#1|))) (T -580))
-((-2317 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1208) (-966) (-1145) (-29 *4))))))
-(-10 -7 (-15 -2317 ((-3 |#2| "failed") |#2| (-1183) (-1183))))
-((-2976 (((-696 (-1231)) $ (-1231)) 26)) (-2977 (((-696 (-555)) $ (-555)) 25)) (-2975 (((-776) $ (-129)) 27)) (-2978 (((-696 (-128)) $ (-128)) 24)) (-2188 (((-696 (-1231)) $) 12)) (-2184 (((-696 (-1229)) $) 8)) (-2186 (((-696 (-1228)) $) 10)) (-2189 (((-696 (-555)) $) 13)) (-2185 (((-696 (-553)) $) 9)) (-2187 (((-696 (-552)) $) 11)) (-2183 (((-776) $ (-129)) 7)) (-2190 (((-696 (-128)) $) 14)) (-1878 (($ $) 6)))
+((-2452 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|))) 50)))
+(((-556 |#1| |#2|) (-10 -7 (-15 -2452 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|))))) (-561) (-13 (-27) (-435 |#1|))) (T -556))
+((-2452 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1179 *3) (-1179 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3)) (-5 *1 (-556 *6 *3)))))
+(-10 -7 (-15 -2452 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|)))))
+((-2472 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2480 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2461 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 222)))
+(((-557 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2461 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2472 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2480 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-561) (-1044 (-569))) (-13 (-27) (-435 |#1|)) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -557))
+((-2480 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *7 (-1249 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) (-4 *2 (-346 *5 *6 *7)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+(-10 -7 (-15 -2461 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2472 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2480 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2509 (((-112) (-569) (-569)) 12)) (-2489 (((-569) (-569)) 7)) (-2500 (((-569) (-569) (-569)) 10)))
+(((-558) (-10 -7 (-15 -2489 ((-569) (-569))) (-15 -2500 ((-569) (-569) (-569))) (-15 -2509 ((-112) (-569) (-569))))) (T -558))
+((-2509 (*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))) (-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))) (-2489 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(-10 -7 (-15 -2489 ((-569) (-569))) (-15 -2500 ((-569) (-569) (-569))) (-15 -2509 ((-112) (-569) (-569))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3374 ((|#1| $) 67)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-2691 (($ $) 97)) (-2556 (($ $) 80)) (-3576 ((|#1| $) 68)) (-3798 (((-3 $ "failed") $ $) 20)) (-3714 (($ $) 79)) (-2669 (($ $) 96)) (-2534 (($ $) 81)) (-2712 (($ $) 95)) (-2576 (($ $) 82)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 75)) (-3043 (((-569) $) 76)) (-3351 (((-3 $ "failed") $) 37)) (-2543 (($ |#1| |#1|) 72)) (-2769 (((-112) $) 66)) (-4408 (($) 107)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 78)) (-2778 (((-112) $) 65)) (-2095 (($ $ $) 113)) (-2406 (($ $ $) 112)) (-2616 (($ $) 104)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-2553 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-412 (-569))) 70)) (-2532 ((|#1| $) 69)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-2374 (((-3 $ "failed") $ $) 48)) (-4367 (($ $) 105)) (-2725 (($ $) 94)) (-2588 (($ $) 83)) (-2701 (($ $) 93)) (-2566 (($ $) 84)) (-2680 (($ $) 92)) (-2545 (($ $) 85)) (-2520 (((-112) $ |#1|) 64)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 74)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 103)) (-2627 (($ $) 91)) (-2574 (((-112) $ $) 45)) (-4094 (($ $) 102)) (-2601 (($ $) 90)) (-4144 (($ $) 101)) (-2648 (($ $) 89)) (-1470 (($ $) 100)) (-2658 (($ $) 88)) (-4131 (($ $) 99)) (-2638 (($ $) 87)) (-4106 (($ $) 98)) (-2615 (($ $) 86)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 110)) (-2882 (((-112) $ $) 109)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 111)) (-2872 (((-112) $ $) 108)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106) (($ $ (-412 (-569))) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-559 |#1|) (-140) (-13 (-409) (-1208))) (T -559))
+((-2553 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2543 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2553 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-2520 (*1 *2 *1 *3) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
+(-13 (-457) (-855) (-1208) (-1008) (-1044 (-569)) (-10 -8 (-6 -3006) (-15 -2553 ($ |t#1| |t#1|)) (-15 -2543 ($ |t#1| |t#1|)) (-15 -2553 ($ |t#1|)) (-15 -2553 ($ (-412 (-569)))) (-15 -2532 (|t#1| $)) (-15 -3576 (|t#1| $)) (-15 -3374 (|t#1| $)) (-15 -2769 ((-112) $)) (-15 -2778 ((-112) $)) (-15 -2520 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-287) . T) ((-293) . T) ((-457) . T) ((-498) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1008) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) . T) ((-1211) . T))
+((-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 9)) (-2586 (($ $) 11)) (-2564 (((-112) $) 20)) (-3351 (((-3 $ "failed") $) 16)) (-2574 (((-112) $ $) 22)))
+(((-560 |#1|) (-10 -8 (-15 -2564 ((-112) |#1|)) (-15 -2574 ((-112) |#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|))) (-561)) (T -560))
+NIL
+(-10 -8 (-15 -2564 ((-112) |#1|)) (-15 -2574 ((-112) |#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2598 ((-2 (|:| -2591 |#1|) (|:| -4430 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ $) 48)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-561) (-140)) (T -561))
+((-2374 (*1 *1 *1 *1) (|partial| -4 *1 (-561))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2591 *1) (|:| -4430 *1) (|:| |associate| *1))) (-4 *1 (-561)))) (-2586 (*1 *1 *1) (-4 *1 (-561))) (-2574 (*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
+(-13 (-173) (-38 $) (-293) (-10 -8 (-15 -2374 ((-3 $ "failed") $ $)) (-15 -2598 ((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $)) (-15 -2586 ($ $)) (-15 -2574 ((-112) $ $)) (-15 -2564 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2624 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|)) 38)) (-2645 (((-591 |#2|) |#2| (-1183)) 63)) (-2634 (((-3 |#2| "failed") |#2| (-1183)) 156)) (-2655 (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|))) 159)) (-2611 (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|) 41)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -2611 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|)) (-15 -2624 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|))) (-15 -2634 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2645 ((-591 |#2|) |#2| (-1183))) (-15 -2655 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|))))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -562))
+((-2655 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-649 (-617 *3))) (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2634 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3)))) (-2611 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(-10 -7 (-15 -2611 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|)) (-15 -2624 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|))) (-15 -2634 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2645 ((-591 |#2|) |#2| (-1183))) (-15 -2655 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|)))))
+((-2207 (((-423 |#1|) |#1|) 19)) (-3699 (((-423 |#1|) |#1|) 34)) (-2677 (((-3 |#1| "failed") |#1|) 51)) (-2666 (((-423 |#1|) |#1|) 64)))
+(((-563 |#1|) (-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -2666 ((-423 |#1|) |#1|)) (-15 -2677 ((-3 |#1| "failed") |#1|))) (-550)) (T -563))
+((-2677 (*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))) (-2666 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-2207 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -2666 ((-423 |#1|) |#1|)) (-15 -2677 ((-3 |#1| "failed") |#1|)))
+((-2688 (($) 9)) (-1579 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2715 (((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-2086 (($ (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2709 (($ (-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2179 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-1784 (((-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2698 (((-1278)) 11)))
+(((-564) (-10 -8 (-15 -2688 ($)) (-15 -2698 ((-1278))) (-15 -2715 ((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2709 ($ (-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2086 ($ (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1579 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1784 ((-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -564))
+((-2179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-1579 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-564)))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-564)))) (-2698 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-564)))) (-2688 (*1 *1) (-5 *1 (-564))))
+(-10 -8 (-15 -2688 ($)) (-15 -2698 ((-1278))) (-15 -2715 ((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2709 ($ (-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2086 ($ (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1579 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1784 ((-649 (-2 (|:| -1963 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-3663 (((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|)) 35)) (-2744 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|)) 115)) (-2721 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 85) (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|)) 55)) (-2733 (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|))) 92) (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|)) 114)) (-2754 (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|)) 116)) (-2763 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 135 (|has| |#3| (-661 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|)) 134 (|has| |#3| (-661 |#2|)))) (-3851 ((|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|) 53)) (-3472 (((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|)) 34)))
+(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -2721 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -2721 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2733 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|))) (-15 -2733 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2744 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|))) (-15 -2744 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2754 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|))) (-15 -2754 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3663 ((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|))) (-15 -3851 (|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|)) (-15 -3472 ((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -2763 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -2763 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1208)) (-1106)) (T -565))
+((-2763 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1179 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-2763 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1179 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1179 (-412 (-1179 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1179 *6)) (-4 *7 (-1106)))) (-3851 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1179 (-412 (-1179 *2)))) (-5 *4 (-617 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1106)))) (-3663 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1179 (-412 (-1179 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1179 *3)) (-4 *7 (-1106)))) (-2754 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-412 (-1179 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))) (-2754 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-1179 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))) (-2744 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))) (-2744 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1179 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))) (-2733 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-2733 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-2721 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-2721 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
+(-10 -7 (-15 -2721 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -2721 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2733 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|))) (-15 -2733 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2744 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|))) (-15 -2744 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -2754 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|))) (-15 -2754 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3663 ((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|))) (-15 -3851 (|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|)) (-15 -3472 ((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -2763 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -2763 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))))) |%noBranch|))
+((-2865 (((-569) (-569) (-776)) 90)) (-2856 (((-569) (-569)) 88)) (-2844 (((-569) (-569)) 86)) (-2833 (((-569) (-569)) 92)) (-3130 (((-569) (-569) (-569)) 70)) (-2823 (((-569) (-569) (-569)) 67)) (-2812 (((-412 (-569)) (-569)) 30)) (-2803 (((-569) (-569)) 36)) (-2793 (((-569) (-569)) 79)) (-3099 (((-569) (-569)) 51)) (-2782 (((-649 (-569)) (-569)) 85)) (-2772 (((-569) (-569) (-569) (-569) (-569)) 63)) (-3056 (((-412 (-569)) (-569)) 60)))
+(((-566) (-10 -7 (-15 -3056 ((-412 (-569)) (-569))) (-15 -2772 ((-569) (-569) (-569) (-569) (-569))) (-15 -2782 ((-649 (-569)) (-569))) (-15 -3099 ((-569) (-569))) (-15 -2793 ((-569) (-569))) (-15 -2803 ((-569) (-569))) (-15 -2812 ((-412 (-569)) (-569))) (-15 -2823 ((-569) (-569) (-569))) (-15 -3130 ((-569) (-569) (-569))) (-15 -2833 ((-569) (-569))) (-15 -2844 ((-569) (-569))) (-15 -2856 ((-569) (-569))) (-15 -2865 ((-569) (-569) (-776))))) (T -566))
+((-2865 (*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2823 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-2772 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(-10 -7 (-15 -3056 ((-412 (-569)) (-569))) (-15 -2772 ((-569) (-569) (-569) (-569) (-569))) (-15 -2782 ((-649 (-569)) (-569))) (-15 -3099 ((-569) (-569))) (-15 -2793 ((-569) (-569))) (-15 -2803 ((-569) (-569))) (-15 -2812 ((-412 (-569)) (-569))) (-15 -2823 ((-569) (-569) (-569))) (-15 -3130 ((-569) (-569) (-569))) (-15 -2833 ((-569) (-569))) (-15 -2844 ((-569) (-569))) (-15 -2856 ((-569) (-569))) (-15 -2865 ((-569) (-569) (-776))))
+((-2875 (((-2 (|:| |answer| |#4|) (|:| -2200 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-567 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2875 ((-2 (|:| |answer| |#4|) (|:| -2200 |#4|)) |#4| (-1 |#2| |#2|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -567))
+((-2875 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2200 *3))) (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7)))))
+(-10 -7 (-15 -2875 ((-2 (|:| |answer| |#4|) (|:| -2200 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2875 (((-2 (|:| |answer| (-412 |#2|)) (|:| -2200 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 18)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -2875 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2200 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -568))
+((-2875 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| (-412 *6)) (|:| -2200 (-412 *6)) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -2875 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2200 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 30)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 97)) (-2586 (($ $) 98)) (-2564 (((-112) $) NIL)) (-2424 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2405 (($ $ $ $) 52)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL)) (-2979 (($ $ $) 92)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL)) (-3043 (((-569) $) NIL)) (-2339 (($ $ $) 54)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 77) (((-694 (-569)) (-694 $)) 73)) (-3351 (((-3 $ "failed") $) 94)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL)) (-1727 (((-112) $) NIL)) (-1715 (((-412 (-569)) $) NIL)) (-3295 (($) 79) (($ $) 80)) (-2348 (($ $ $) 91)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3630 (($ $ $ $) NIL)) (-2432 (($ $ $) 70)) (-2769 (((-112) $) NIL)) (-1335 (($ $ $) NIL)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2861 (((-112) $) 34)) (-2355 (((-112) $) 86)) (-3177 (((-3 $ "failed") $) NIL)) (-2778 (((-112) $) 43)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3643 (($ $ $ $) 55)) (-2095 (($ $ $) 88)) (-2406 (($ $ $) 87)) (-2537 (($ $) NIL)) (-3747 (($ $) 49)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) 69)) (-3619 (($ $ $) NIL)) (-2267 (($) NIL T CONST)) (-1566 (($ $) 38)) (-3461 (((-1126) $) 42)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 129)) (-1830 (($ $ $) 95) (($ (-649 $)) NIL)) (-1315 (($ $) NIL)) (-3699 (((-423 $) $) 115)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) 113)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 90)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-3003 (($ $) 40)) (-3885 (($ $) 36)) (-1384 (((-569) $) 48) (((-541) $) 64) (((-898 (-569)) $) NIL) (((-383) $) 58) (((-226) $) 61) (((-1165) $) 66)) (-2388 (((-867) $) 46) (($ (-569)) 47) (($ $) NIL) (($ (-569)) 47)) (-3263 (((-776)) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-3038 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-4344 (($) 35)) (-2574 (((-112) $ $) NIL)) (-2416 (($ $ $ $) 51)) (-3999 (($ $) 78)) (-1786 (($) 6 T CONST)) (-1796 (($) 31 T CONST)) (-3218 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-827) $) 28) (((-1278) (-827) $ (-112)) 29)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2904 (((-112) $ $) 50)) (-2882 (((-112) $ $) 81)) (-2853 (((-112) $ $) 33)) (-2893 (((-112) $ $) 83)) (-2872 (((-112) $ $) 10)) (-2946 (($ $) 16) (($ $ $) 39)) (-2935 (($ $ $) 37)) (** (($ $ (-927)) NIL) (($ $ (-776)) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 84) (($ $ $) 53)))
+(((-569) (-13 (-550) (-619 (-1165)) (-833) (-10 -7 (-6 -4430) (-6 -4435) (-6 -4431) (-6 -4425)))) (T -569))
+NIL
+(-13 (-550) (-619 (-1165)) (-833) (-10 -7 (-6 -4430) (-6 -4435) (-6 -4431) (-6 -4425)))
+((-2329 (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069)) 119) (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774)) 121)) (-3313 (((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183)) 197) (((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165)) 196) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069)) 201) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383)) 202) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383)) 203) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383))))) 204) (((-1041) (-319 (-383)) (-1100 (-848 (-383)))) 192) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383)) 191) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383)) 187) (((-1041) (-774)) 179) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069)) 186)))
+(((-570) (-10 -7 (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069))) (-15 -3313 ((-1041) (-774))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -3313 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165))) (-15 -3313 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183))))) (T -570))
+((-3313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383)))) (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383)))) (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-3313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))))
+(-10 -7 (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069))) (-15 -3313 ((-1041) (-774))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-1100 (-848 (-383))))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383))) (-15 -3313 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -3313 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165))) (-15 -3313 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183))))
+((-2907 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|)) 198)) (-2886 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|)) 99)) (-2897 (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|) 194)) (-2916 (((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183))) 203)) (-2927 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183)) 212 (|has| |#3| (-661 |#2|)))))
+(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -2886 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2897 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -2907 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2916 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)))) (IF (|has| |#3| (-661 |#2|)) (-15 -2927 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1208)) (-1106)) (T -571))
+((-2927 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1183)) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-2916 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-4 *2 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1106)))) (-2907 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1106)))) (-2897 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))) (-2886 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
+(-10 -7 (-15 -2886 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2897 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -2907 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2916 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)))) (IF (|has| |#3| (-661 |#2|)) (-15 -2927 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3371 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183))) |%noBranch|))
+((-2938 (((-2 (|:| -3262 |#2|) (|:| |nconst| |#2|)) |#2| (-1183)) 64)) (-2958 (((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|)) 175 (-12 (|has| |#2| (-1145)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 154 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))) (-2949 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 156 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2938 ((-2 (|:| -3262 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -2949 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -2958 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -2958 ((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1044 (-569)) (-457) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -572))
+((-2958 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-848 *2)) (-4 *2 (-1145)) (-4 *2 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *1 (-572 *5 *2)))) (-2958 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2949 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| -3262 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(-10 -7 (-15 -2938 ((-2 (|:| -3262 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -2949 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -2958 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -2958 ((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1875 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))) 41)) (-3313 (((-591 (-412 |#2|)) (-412 |#2|)) 28)) (-2967 (((-3 (-412 |#2|) "failed") (-412 |#2|)) 17)) (-2978 (((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|)) 48)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -3313 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2967 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2978 ((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1875 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -573))
+((-1875 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *5 *6)))) (-2978 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -2209 (-412 *5)) (|:| |coeff| (-412 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) (-2967 (*1 *2 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147) (-1044 (-569)))) (-5 *1 (-573 *3 *4)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
+(-10 -7 (-15 -3313 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2967 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2978 ((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1875 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|)))))
+((-1884 (((-3 (-569) "failed") |#1|) 14)) (-2129 (((-112) |#1|) 13)) (-1405 (((-569) |#1|) 9)))
+(((-574 |#1|) (-10 -7 (-15 -1405 ((-569) |#1|)) (-15 -2129 ((-112) |#1|)) (-15 -1884 ((-3 (-569) "failed") |#1|))) (-1044 (-569))) (T -574))
+((-1884 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))) (-2129 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-569))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
+(-10 -7 (-15 -1405 ((-569) |#1|)) (-15 -2129 ((-112) |#1|)) (-15 -1884 ((-3 (-569) "failed") |#1|)))
+((-1909 (((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|)))) 48)) (-1892 (((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183)) 28)) (-1900 (((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183)) 23)) (-1918 (((-3 (-2 (|:| -2209 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))) 35)))
+(((-575 |#1|) (-10 -7 (-15 -1892 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -1900 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183))) (-15 -1909 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|))))) (-15 -1918 ((-3 (-2 (|:| -2209 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))))) (-13 (-561) (-1044 (-569)) (-147))) (T -575))
+((-1918 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-2 (|:| -2209 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5))))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))) (-1909 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6)))) (-1900 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-147))) (-5 *1 (-575 *4)))) (-1892 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
+(-10 -7 (-15 -1892 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -1900 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183))) (-15 -1909 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|))))) (-15 -1918 ((-3 (-2 (|:| -2209 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))))
+((-2383 (((-112) $ $) 75)) (-2789 (((-112) $) 48)) (-3374 ((|#1| $) 39)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) 79)) (-2691 (($ $) 139)) (-2556 (($ $) 118)) (-3576 ((|#1| $) 37)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $) NIL)) (-2669 (($ $) 141)) (-2534 (($ $) 114)) (-2712 (($ $) 143)) (-2576 (($ $) 122)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) 93)) (-3043 (((-569) $) 95)) (-3351 (((-3 $ "failed") $) 78)) (-2543 (($ |#1| |#1|) 35)) (-2769 (((-112) $) 44)) (-4408 (($) 104)) (-2861 (((-112) $) 55)) (-1589 (($ $ (-569)) NIL)) (-2778 (((-112) $) 45)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2616 (($ $) 106)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-2553 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-412 (-569))) 92)) (-2532 ((|#1| $) 36)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) 81) (($ (-649 $)) NIL)) (-2374 (((-3 $ "failed") $ $) 80)) (-4367 (($ $) 108)) (-2725 (($ $) 147)) (-2588 (($ $) 120)) (-2701 (($ $) 149)) (-2566 (($ $) 124)) (-2680 (($ $) 145)) (-2545 (($ $) 116)) (-2520 (((-112) $ |#1|) 42)) (-2388 (((-867) $) 100) (($ (-569)) 83) (($ $) NIL) (($ (-569)) 83)) (-3263 (((-776)) 102 T CONST)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 161)) (-2627 (($ $) 130)) (-2574 (((-112) $ $) NIL)) (-4094 (($ $) 159)) (-2601 (($ $) 126)) (-4144 (($ $) 157)) (-2648 (($ $) 137)) (-1470 (($ $) 155)) (-2658 (($ $) 135)) (-4131 (($ $) 153)) (-2638 (($ $) 132)) (-4106 (($ $) 151)) (-2615 (($ $) 128)) (-1786 (($) 30 T CONST)) (-1796 (($) 10 T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 49)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 47)) (-2946 (($ $) 53) (($ $ $) 54)) (-2935 (($ $ $) 52)) (** (($ $ (-927)) 71) (($ $ (-776)) NIL) (($ $ $) 110) (($ $ (-412 (-569))) 163)) (* (($ (-927) $) 66) (($ (-776) $) NIL) (($ (-569) $) 65) (($ $ $) 61)))
+(((-576 |#1|) (-559 |#1|) (-13 (-409) (-1208))) (T -576))
+NIL
+(-559 |#1|)
+((-1506 (((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569))) 27)))
+(((-577) (-10 -7 (-15 -1506 ((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569)))))) (T -577))
+((-1506 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 (-569)))) (-5 *3 (-1179 (-569))) (-5 *1 (-577)))))
+(-10 -7 (-15 -1506 ((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569)))))
+((-1927 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183)) 19)) (-1952 (((-649 (-617 |#2|)) (-649 |#2|) (-1183)) 23)) (-3893 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|))) 11)) (-1961 ((|#2| |#2| (-1183)) 59 (|has| |#1| (-561)))) (-1971 ((|#2| |#2| (-1183)) 87 (-12 (|has| |#2| (-287)) (|has| |#1| (-457))))) (-1943 (((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183)) 25)) (-1935 (((-617 |#2|) (-649 (-617 |#2|))) 24)) (-1981 (((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) 115 (-12 (|has| |#2| (-287)) (|has| |#2| (-634)) (|has| |#2| (-1044 (-1183))) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-457)) (|has| |#1| (-892 (-569)))))))
+(((-578 |#1| |#2|) (-10 -7 (-15 -1927 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183))) (-15 -1935 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -1943 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183))) (-15 -3893 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -1952 ((-649 (-617 |#2|)) (-649 |#2|) (-1183))) (IF (|has| |#1| (-561)) (-15 -1961 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -1971 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1044 (-1183))) (-15 -1981 ((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1106) (-435 |#1|)) (T -578))
+((-1981 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-591 *3) *3 (-1183))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1183))) (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1044 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1183)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457)) (-4 *7 (-892 (-569))) (-4 *7 (-1106)) (-5 *2 (-591 *3)) (-5 *1 (-578 *7 *3)))) (-1971 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-1183)) (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1106)) (-5 *1 (-578 *3 *4)))) (-1943 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1183)) (-5 *2 (-617 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *1 (-578 *5 *6)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1106)) (-5 *2 (-617 *5)) (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1183)) (-4 *5 (-435 *4)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -1927 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183))) (-15 -1935 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -1943 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183))) (-15 -3893 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -1952 ((-649 (-617 |#2|)) (-649 |#2|) (-1183))) (IF (|has| |#1| (-561)) (-15 -1961 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -1971 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1044 (-1183))) (-15 -1981 ((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2011 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|)) 201)) (-2043 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|))) 176)) (-2074 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|))) 173)) (-2084 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 164)) (-1990 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-2063 (((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|)) 204)) (-2022 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|)) 207)) (-2104 (((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 88)) (-2113 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2053 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|))) 180)) (-2093 (((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 168)) (-1999 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 191)) (-2032 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|)) 212)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -1990 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1999 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2011 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2022 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -2032 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -2043 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2063 ((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -2084 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2093 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2104 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2113 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -579))
+((-2113 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-628 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4386 *4) (|:| |sol?| (-112))) (-569) *4)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *1 (-579 *4 *5)))) (-2084 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1249 *4)))) (-2074 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7))) (-4 *7 (-1249 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *7)))) (-2063 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -2209 (-412 *6)) (|:| |coeff| (-412 *6)))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2053 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4386 *7) (|:| |sol?| (-112))) (-569) *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-2043 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2209 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-2032 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4386 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2209 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2022 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2209 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2209 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2011 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-1999 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4386 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-1990 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2209 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(-10 -7 (-15 -1990 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1999 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2011 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2022 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -2032 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -2043 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2063 ((-3 (-2 (|:| -2209 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -2084 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2093 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4386 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2104 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2113 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2123 (((-3 |#2| "failed") |#2| (-1183) (-1183)) 10)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2123 ((-3 |#2| "failed") |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-1145) (-29 |#1|))) (T -580))
+((-2123 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-1145) (-29 *4))))))
+(-10 -7 (-15 -2123 ((-3 |#2| "failed") |#2| (-1183) (-1183))))
+((-2527 (((-696 (-1231)) $ (-1231)) 26)) (-2538 (((-696 (-554)) $ (-554)) 25)) (-2515 (((-776) $ (-128)) 27)) (-2548 (((-696 (-129)) $ (-129)) 24)) (-3225 (((-696 (-1231)) $) 12)) (-3174 (((-696 (-1229)) $) 8)) (-3196 (((-696 (-1228)) $) 10)) (-3239 (((-696 (-554)) $) 13)) (-3185 (((-696 (-552)) $) 9)) (-3211 (((-696 (-551)) $) 11)) (-3163 (((-776) $ (-128)) 7)) (-3254 (((-696 (-129)) $) 14)) (-3026 (($ $) 6)))
(((-581) (-140)) (T -581))
NIL
-(-13 (-532) (-866))
-(((-174) . T) ((-532) . T) ((-866) . T))
-((-2976 (((-696 (-1231)) $ (-1231)) NIL)) (-2977 (((-696 (-555)) $ (-555)) NIL)) (-2975 (((-776) $ (-129)) NIL)) (-2978 (((-696 (-128)) $ (-128)) NIL)) (-2188 (((-696 (-1231)) $) NIL)) (-2184 (((-696 (-1229)) $) NIL)) (-2186 (((-696 (-1228)) $) NIL)) (-2189 (((-696 (-555)) $) NIL)) (-2185 (((-696 (-553)) $) NIL)) (-2187 (((-696 (-552)) $) NIL)) (-2183 (((-776) $ (-129)) NIL)) (-2190 (((-696 (-128)) $) NIL)) (-2979 (((-112) $) NIL)) (-2318 (($ (-393)) 14) (($ (-1165)) 16)) (-4396 (((-868) $) NIL)) (-1878 (($ $) NIL)))
-(((-582) (-13 (-581) (-618 (-868)) (-10 -8 (-15 -2318 ($ (-393))) (-15 -2318 ($ (-1165))) (-15 -2979 ((-112) $))))) (T -582))
-((-2318 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582)))))
-(-13 (-581) (-618 (-868)) (-10 -8 (-15 -2318 ($ (-393))) (-15 -2318 ($ (-1165))) (-15 -2979 ((-112) $))))
-((-2986 (((-112) $ $) NIL)) (-3901 (($) 7 T CONST)) (-3681 (((-1165) $) NIL)) (-2320 (($) 6 T CONST)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 14)) (-2319 (($) 8 T CONST)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 10)))
-(((-583) (-13 (-1107) (-10 -8 (-15 -2320 ($) -4402) (-15 -3901 ($) -4402) (-15 -2319 ($) -4402)))) (T -583))
-((-2320 (*1 *1) (-5 *1 (-583))) (-3901 (*1 *1) (-5 *1 (-583))) (-2319 (*1 *1) (-5 *1 (-583))))
-(-13 (-1107) (-10 -8 (-15 -2320 ($) -4402) (-15 -3901 ($) -4402) (-15 -2319 ($) -4402)))
-((-2986 (((-112) $ $) NIL)) (-2321 (((-696 $) (-496)) 21)) (-3681 (((-1165) $) NIL)) (-2323 (($ (-1165)) 14)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 34)) (-2322 (((-214 4 (-128)) $) 24)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 26)))
-(((-584) (-13 (-1107) (-10 -8 (-15 -2323 ($ (-1165))) (-15 -2322 ((-214 4 (-128)) $)) (-15 -2321 ((-696 $) (-496)))))) (T -584))
-((-2323 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-128))) (-5 *1 (-584)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
-(-13 (-1107) (-10 -8 (-15 -2323 ($ (-1165))) (-15 -2322 ((-214 4 (-128)) $)) (-15 -2321 ((-696 $) (-496)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $ (-551)) 77)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3029 (($ (-1177 (-551)) (-551)) 83)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) 68)) (-3030 (($ $) 43)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4221 (((-776) $) 16)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-3032 (((-551)) 37)) (-3031 (((-551) $) 41)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4218 (($ $ (-551)) 24)) (-3907 (((-3 $ "failed") $ $) 73)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) 17)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 74)) (-3033 (((-1160 (-551)) $) 19)) (-3310 (($ $) 26)) (-4396 (((-868) $) 104) (($ (-551)) 63) (($ $) NIL)) (-3548 (((-776)) 15 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-551) $ (-551)) 46)) (-3528 (($) 44 T CONST)) (-3085 (($) 21 T CONST)) (-3473 (((-112) $ $) 54)) (-4287 (($ $) 62) (($ $ $) 48)) (-4289 (($ $ $) 61)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 64) (($ $ $) 65)))
-(((-585 |#1| |#2|) (-875 |#1|) (-551) (-112)) (T -585))
-NIL
-(-875 |#1|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 30)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (($ $ (-925)) NIL (|has| $ (-372))) (($ $) NIL)) (-1853 (((-1195 (-925) (-776)) (-551)) 59)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 $ "failed") $) 95)) (-3594 (($ $) 94)) (-1977 (($ (-1272 $)) 93)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) 44)) (-3413 (($) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) 61)) (-1858 (((-112) $) NIL)) (-1951 (($ $) NIL) (($ $ (-776)) NIL)) (-4173 (((-112) $) NIL)) (-4221 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-2591 (((-112) $) NIL)) (-2201 (($) 49 (|has| $ (-372)))) (-2199 (((-112) $) NIL (|has| $ (-372)))) (-3554 (($ $ (-925)) NIL (|has| $ (-372))) (($ $) NIL)) (-3886 (((-3 $ "failed") $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 $) $ (-925)) NIL (|has| $ (-372))) (((-1177 $) $) 104)) (-2198 (((-925) $) 67)) (-1782 (((-1177 $) $) NIL (|has| $ (-372)))) (-1781 (((-3 (-1177 $) "failed") $ $) NIL (|has| $ (-372))) (((-1177 $) $) NIL (|has| $ (-372)))) (-1783 (($ $ (-1177 $)) NIL (|has| $ (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-2581 (($ (-925)) 60)) (-4381 (((-112) $) 87)) (-3682 (((-1126) $) NIL)) (-2590 (($) 28 (|has| $ (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 54)) (-4182 (((-410 $) $) NIL)) (-4380 (((-925)) 86) (((-837 (-925))) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-4361 (((-134)) NIL)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-4398 (((-925) $) 85) (((-837 (-925)) $) NIL)) (-3623 (((-1177 $)) 102)) (-1852 (($) 66)) (-1784 (($) 50 (|has| $ (-372)))) (-3662 (((-694 $) (-1272 $)) NIL) (((-1272 $) $) 91)) (-4420 (((-551) $) 40)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) 42) (($ $) NIL) (($ (-412 (-551))) NIL)) (-3123 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3548 (((-776)) 51 T CONST)) (-3680 (((-112) $ $) 107)) (-2200 (((-1272 $) (-925)) 97) (((-1272 $)) 96)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) 31 T CONST)) (-3085 (($) 27 T CONST)) (-4378 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 34)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 81) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-586 |#1|) (-13 (-354) (-332 $) (-619 (-551))) (-925)) (T -586))
-NIL
-(-13 (-354) (-332 $) (-619 (-551)))
-((-2324 (((-1278) (-1165)) 10)))
-(((-587) (-10 -7 (-15 -2324 ((-1278) (-1165))))) (T -587))
-((-2324 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
-(-10 -7 (-15 -2324 ((-1278) (-1165))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| "failed") $) 76)) (-3594 ((|#1| $) NIL)) (-2328 ((|#1| $) 30)) (-2326 (((-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2329 (($ |#1| (-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) (-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2327 (((-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) $) 31)) (-3681 (((-1165) $) NIL)) (-3253 (($ |#1| |#1|) 38) (($ |#1| (-1183)) 49 (|has| |#1| (-1044 (-1183))))) (-3682 (((-1126) $) NIL)) (-2325 (((-112) $) 35)) (-4260 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1183)) 89 (|has| |#1| (-906 (-1183))))) (-4396 (((-868) $) 112) (($ |#1|) 29)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 18 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) 17) (($ $ $) NIL)) (-4289 (($ $ $) 85)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 16) (($ (-412 (-551)) $) 41) (($ $ (-412 (-551))) NIL)))
-(((-588 |#1|) (-13 (-722 (-412 (-551))) (-1044 |#1|) (-10 -8 (-15 -2329 ($ |#1| (-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) (-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2328 (|#1| $)) (-15 -2327 ((-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) $)) (-15 -2326 ((-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2325 ((-112) $)) (-15 -3253 ($ |#1| |#1|)) (-15 -4260 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -4260 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -3253 ($ |#1| (-1183))) |%noBranch|))) (-367)) (T -588))
-((-2329 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 *2)) (|:| |logand| (-1177 *2))))) (-5 *4 (-646 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367)) (-5 *1 (-588 *2)))) (-2328 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-367)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 *3)) (|:| |logand| (-1177 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-367)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-367)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-367)))) (-3253 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-367)))) (-4260 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-367)))) (-4260 (*1 *2 *1 *3) (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1183)))) (-3253 (*1 *1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *1 (-588 *2)) (-4 *2 (-1044 *3)) (-4 *2 (-367)))))
-(-13 (-722 (-412 (-551))) (-1044 |#1|) (-10 -8 (-15 -2329 ($ |#1| (-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) (-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2328 (|#1| $)) (-15 -2327 ((-646 (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 |#1|)) (|:| |logand| (-1177 |#1|)))) $)) (-15 -2326 ((-646 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2325 ((-112) $)) (-15 -3253 ($ |#1| |#1|)) (-15 -4260 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -4260 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -3253 ($ |#1| (-1183))) |%noBranch|)))
-((-4408 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -4408 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -4408 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4408 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4408 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-367) (-367)) (T -589))
-((-4408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-589 *5 *6)))) (-4408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) (-4408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2328 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| -2328 *6) (|:| |coeff| *6))) (-5 *1 (-589 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-588 *6)) (-5 *1 (-589 *5 *6)))))
-(-10 -7 (-15 -4408 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -4408 ((-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2328 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4408 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4408 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3860 (((-588 |#2|) (-588 |#2|)) 42)) (-4413 (((-646 |#2|) (-588 |#2|)) 44)) (-2340 ((|#2| (-588 |#2|)) 50)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -3860 ((-588 |#2|) (-588 |#2|))) (-15 -4413 ((-646 |#2|) (-588 |#2|))) (-15 -2340 (|#2| (-588 |#2|)))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-29 |#1|) (-1208))) (T -590))
-((-2340 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1208))) (-5 *1 (-590 *4 *2)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1208))) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-646 *5)) (-5 *1 (-590 *4 *5)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1208))) (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-590 *3 *4)))))
-(-10 -7 (-15 -3860 ((-588 |#2|) (-588 |#2|))) (-15 -4413 ((-646 |#2|) (-588 |#2|))) (-15 -2340 (|#2| (-588 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2332 (($ (-511) (-602)) 14)) (-2330 (($ (-511) (-602) $) 16)) (-2331 (($ (-511) (-602)) 15)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-1188)) 7) (((-1188) $) 6)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-591) (-13 (-1107) (-495 (-1188)) (-10 -8 (-15 -2332 ($ (-511) (-602))) (-15 -2331 ($ (-511) (-602))) (-15 -2330 ($ (-511) (-602) $))))) (T -591))
-((-2332 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))) (-2331 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))) (-2330 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))))
-(-13 (-1107) (-495 (-1188)) (-10 -8 (-15 -2332 ($ (-511) (-602))) (-15 -2331 ($ (-511) (-602))) (-15 -2330 ($ (-511) (-602) $))))
-((-2336 (((-112) |#1|) 16)) (-2337 (((-3 |#1| "failed") |#1|) 14)) (-2334 (((-2 (|:| -3115 |#1|) (|:| -2582 (-776))) |#1|) 39) (((-3 |#1| "failed") |#1| (-776)) 18)) (-2333 (((-112) |#1| (-776)) 19)) (-2338 ((|#1| |#1|) 43)) (-2335 ((|#1| |#1| (-776)) 46)))
-(((-592 |#1|) (-10 -7 (-15 -2333 ((-112) |#1| (-776))) (-15 -2334 ((-3 |#1| "failed") |#1| (-776))) (-15 -2334 ((-2 (|:| -3115 |#1|) (|:| -2582 (-776))) |#1|)) (-15 -2335 (|#1| |#1| (-776))) (-15 -2336 ((-112) |#1|)) (-15 -2337 ((-3 |#1| "failed") |#1|)) (-15 -2338 (|#1| |#1|))) (-550)) (T -592))
-((-2338 (*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2337 (*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| -2582 (-776)))) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2334 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -2333 ((-112) |#1| (-776))) (-15 -2334 ((-3 |#1| "failed") |#1| (-776))) (-15 -2334 ((-2 (|:| -3115 |#1|) (|:| -2582 (-776))) |#1|)) (-15 -2335 (|#1| |#1| (-776))) (-15 -2336 ((-112) |#1|)) (-15 -2337 ((-3 |#1| "failed") |#1|)) (-15 -2338 (|#1| |#1|)))
-((-2339 (((-1177 |#1|) (-925)) 44)))
-(((-593 |#1|) (-10 -7 (-15 -2339 ((-1177 |#1|) (-925)))) (-354)) (T -593))
-((-2339 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-593 *4)) (-4 *4 (-354)))))
-(-10 -7 (-15 -2339 ((-1177 |#1|) (-925))))
-((-3860 (((-588 (-412 (-952 |#1|))) (-588 (-412 (-952 |#1|)))) 27)) (-4262 (((-3 (-317 |#1|) (-646 (-317 |#1|))) (-412 (-952 |#1|)) (-1183)) 34 (|has| |#1| (-147)))) (-4413 (((-646 (-317 |#1|)) (-588 (-412 (-952 |#1|)))) 19)) (-2341 (((-317 |#1|) (-412 (-952 |#1|)) (-1183)) 32 (|has| |#1| (-147)))) (-2340 (((-317 |#1|) (-588 (-412 (-952 |#1|)))) 21)))
-(((-594 |#1|) (-10 -7 (-15 -3860 ((-588 (-412 (-952 |#1|))) (-588 (-412 (-952 |#1|))))) (-15 -4413 ((-646 (-317 |#1|)) (-588 (-412 (-952 |#1|))))) (-15 -2340 ((-317 |#1|) (-588 (-412 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4262 ((-3 (-317 |#1|) (-646 (-317 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -2341 ((-317 |#1|) (-412 (-952 |#1|)) (-1183)))) |%noBranch|)) (-13 (-457) (-1044 (-551)) (-644 (-551)))) (T -594))
-((-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-317 *5)) (-5 *1 (-594 *5)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (-317 *5) (-646 (-317 *5)))) (-5 *1 (-594 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-588 (-412 (-952 *4)))) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-317 *4)) (-5 *1 (-594 *4)))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-588 (-412 (-952 *4)))) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-646 (-317 *4))) (-5 *1 (-594 *4)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-588 (-412 (-952 *3)))) (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-594 *3)))))
-(-10 -7 (-15 -3860 ((-588 (-412 (-952 |#1|))) (-588 (-412 (-952 |#1|))))) (-15 -4413 ((-646 (-317 |#1|)) (-588 (-412 (-952 |#1|))))) (-15 -2340 ((-317 |#1|) (-588 (-412 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4262 ((-3 (-317 |#1|) (-646 (-317 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -2341 ((-317 |#1|) (-412 (-952 |#1|)) (-1183)))) |%noBranch|))
-((-2343 (((-646 (-694 (-551))) (-646 (-551)) (-646 (-908 (-551)))) 78) (((-646 (-694 (-551))) (-646 (-551))) 79) (((-694 (-551)) (-646 (-551)) (-908 (-551))) 72)) (-2342 (((-776) (-646 (-551))) 69)))
-(((-595) (-10 -7 (-15 -2342 ((-776) (-646 (-551)))) (-15 -2343 ((-694 (-551)) (-646 (-551)) (-908 (-551)))) (-15 -2343 ((-646 (-694 (-551))) (-646 (-551)))) (-15 -2343 ((-646 (-694 (-551))) (-646 (-551)) (-646 (-908 (-551))))))) (T -595))
-((-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-551))) (-5 *4 (-646 (-908 (-551)))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-595)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-595)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-551))) (-5 *4 (-908 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-595)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-776)) (-5 *1 (-595)))))
-(-10 -7 (-15 -2342 ((-776) (-646 (-551)))) (-15 -2343 ((-694 (-551)) (-646 (-551)) (-908 (-551)))) (-15 -2343 ((-646 (-694 (-551))) (-646 (-551)))) (-15 -2343 ((-646 (-694 (-551))) (-646 (-551)) (-646 (-908 (-551))))))
-((-3651 (((-646 |#5|) |#5| (-112)) 100)) (-2344 (((-112) |#5| (-646 |#5|)) 34)))
-(((-596 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3651 ((-646 |#5|) |#5| (-112))) (-15 -2344 ((-112) |#5| (-646 |#5|)))) (-13 (-310) (-147)) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -596))
-((-2344 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-1115 *5 *6 *7 *8)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-646 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1115 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3651 ((-646 |#5|) |#5| (-112))) (-15 -2344 ((-112) |#5| (-646 |#5|))))
-((-2986 (((-112) $ $) NIL)) (-3969 (((-1141) $) 11)) (-3970 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-597) (-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))) (T -597))
-((-3970 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))))
-(-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))
-((-2986 (((-112) $ $) NIL (|has| (-144) (-1107)))) (-3868 (($ $) 38)) (-3869 (($ $) NIL)) (-3859 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-3866 (((-112) $ $) 68)) (-3865 (((-112) $ $ (-551)) 62)) (-3860 (((-646 $) $ (-144)) 76) (((-646 $) $ (-141)) 77)) (-1910 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-1908 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-855))))) (-3328 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-144) $ (-551) (-144)) 59 (|has| $ (-6 -4444))) (((-144) $ (-1239 (-551)) (-144)) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-3857 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-3862 (($ $ (-1239 (-551)) $) 57)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-3848 (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1694 (((-144) $ (-551) (-144)) NIL (|has| $ (-6 -4444)))) (-3535 (((-144) $ (-551)) NIL)) (-3867 (((-112) $ $) 90)) (-3861 (((-551) (-1 (-112) (-144)) $) NIL) (((-551) (-144) $) NIL (|has| (-144) (-1107))) (((-551) (-144) $ (-551)) 65 (|has| (-144) (-1107))) (((-551) $ $ (-551)) 63) (((-551) (-141) $ (-551)) 67)) (-2134 (((-646 (-144)) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) (-144)) 9)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 32 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| (-144) (-855)))) (-3959 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-3026 (((-646 (-144)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2393 (((-551) $) 47 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-144) (-855)))) (-3863 (((-112) $ $ (-144)) 91)) (-3864 (((-776) $ $ (-144)) 88)) (-2138 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3870 (($ $) 41)) (-3871 (($ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3858 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3681 (((-1165) $) 43 (|has| (-144) (-1107)))) (-2467 (($ (-144) $ (-551)) NIL) (($ $ $ (-551)) 27)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) 87 (|has| (-144) (-1107)))) (-4250 (((-144) $) NIL (|has| (-551) (-855)))) (-1444 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2391 (($ $ (-144)) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-296 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-646 (-144)) (-646 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2397 (((-646 (-144)) $) NIL)) (-3845 (((-112) $) 15)) (-4014 (($) 10)) (-4249 (((-144) $ (-551) (-144)) NIL) (((-144) $ (-551)) 69) (($ $ (-1239 (-551))) 25) (($ $ $) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-1909 (($ $ $ (-551)) 84 (|has| $ (-6 -4444)))) (-3842 (($ $) 20)) (-4420 (((-540) $) NIL (|has| (-144) (-619 (-540))))) (-3971 (($ (-646 (-144))) NIL)) (-4251 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-646 $)) 85)) (-4396 (($ (-144)) NIL) (((-868) $) 31 (|has| (-144) (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| (-144) (-1107)))) (-2137 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-144) (-855)))) (-3473 (((-112) $ $) 17 (|has| (-144) (-1107)))) (-3105 (((-112) $ $) NIL (|has| (-144) (-855)))) (-3106 (((-112) $ $) 18 (|has| (-144) (-855)))) (-4407 (((-776) $) 16 (|has| $ (-6 -4443)))))
-(((-598 |#1|) (-1150) (-551)) (T -598))
+(-13 (-532) (-865))
+(((-174) . T) ((-532) . T) ((-865) . T))
+((-2527 (((-696 (-1231)) $ (-1231)) NIL)) (-2538 (((-696 (-554)) $ (-554)) NIL)) (-2515 (((-776) $ (-128)) NIL)) (-2548 (((-696 (-129)) $ (-129)) NIL)) (-3225 (((-696 (-1231)) $) NIL)) (-3174 (((-696 (-1229)) $) NIL)) (-3196 (((-696 (-1228)) $) NIL)) (-3239 (((-696 (-554)) $) NIL)) (-3185 (((-696 (-552)) $) NIL)) (-3211 (((-696 (-551)) $) NIL)) (-3163 (((-776) $ (-128)) NIL)) (-3254 (((-696 (-129)) $) NIL)) (-2559 (((-112) $) NIL)) (-2133 (($ (-393)) 14) (($ (-1165)) 16)) (-2388 (((-867) $) NIL)) (-3026 (($ $) NIL)))
+(((-582) (-13 (-581) (-618 (-867)) (-10 -8 (-15 -2133 ($ (-393))) (-15 -2133 ($ (-1165))) (-15 -2559 ((-112) $))))) (T -582))
+((-2133 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582)))))
+(-13 (-581) (-618 (-867)) (-10 -8 (-15 -2133 ($ (-393))) (-15 -2133 ($ (-1165))) (-15 -2559 ((-112) $))))
+((-2383 (((-112) $ $) NIL)) (-1832 (($) 7 T CONST)) (-2050 (((-1165) $) NIL)) (-4193 (($) 6 T CONST)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 14)) (-2142 (($) 8 T CONST)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 10)))
+(((-583) (-13 (-1106) (-10 -8 (-15 -4193 ($) -3600) (-15 -1832 ($) -3600) (-15 -2142 ($) -3600)))) (T -583))
+((-4193 (*1 *1) (-5 *1 (-583))) (-1832 (*1 *1) (-5 *1 (-583))) (-2142 (*1 *1) (-5 *1 (-583))))
+(-13 (-1106) (-10 -8 (-15 -4193 ($) -3600) (-15 -1832 ($) -3600) (-15 -2142 ($) -3600)))
+((-2383 (((-112) $ $) NIL)) (-2849 (((-696 $) (-496)) 21)) (-2050 (((-1165) $) NIL)) (-2162 (($ (-1165)) 14)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 34)) (-2153 (((-214 4 (-129)) $) 24)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 26)))
+(((-584) (-13 (-1106) (-10 -8 (-15 -2162 ($ (-1165))) (-15 -2153 ((-214 4 (-129)) $)) (-15 -2849 ((-696 $) (-496)))))) (T -584))
+((-2162 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
+(-13 (-1106) (-10 -8 (-15 -2162 ($ (-1165))) (-15 -2153 ((-214 4 (-129)) $)) (-15 -2849 ((-696 $) (-496)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $ (-569)) 77)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2943 (($ (-1179 (-569)) (-569)) 83)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) 68)) (-1845 (($ $) 43)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-4315 (((-776) $) 16)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1864 (((-569)) 37)) (-1855 (((-569) $) 41)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4295 (($ $ (-569)) 24)) (-2374 (((-3 $ "failed") $ $) 73)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) 17)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 74)) (-1871 (((-1163 (-569)) $) 19)) (-2745 (($ $) 26)) (-2388 (((-867) $) 104) (($ (-569)) 63) (($ $) NIL)) (-3263 (((-776)) 15 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-569) $ (-569)) 46)) (-1786 (($) 44 T CONST)) (-1796 (($) 21 T CONST)) (-2853 (((-112) $ $) 54)) (-2946 (($ $) 62) (($ $ $) 48)) (-2935 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 64) (($ $ $) 65)))
+(((-585 |#1| |#2|) (-874 |#1|) (-569) (-112)) (T -585))
+NIL
+(-874 |#1|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 30)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-4068 (((-1196 (-927) (-776)) (-569)) 59)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 $ "failed") $) 95)) (-3043 (($ $) 94)) (-2806 (($ (-1273 $)) 93)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) 44)) (-3295 (($) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) 61)) (-4127 (((-112) $) NIL)) (-2525 (($ $) NIL) (($ $ (-776)) NIL)) (-3848 (((-112) $) NIL)) (-4315 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2861 (((-112) $) NIL)) (-3384 (($) 49 (|has| $ (-372)))) (-3359 (((-112) $) NIL (|has| $ (-372)))) (-3334 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3177 (((-3 $ "failed") $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 $) $ (-927)) NIL (|has| $ (-372))) (((-1179 $) $) 104)) (-3348 (((-927) $) 67)) (-1509 (((-1179 $) $) NIL (|has| $ (-372)))) (-1500 (((-3 (-1179 $) "failed") $ $) NIL (|has| $ (-372))) (((-1179 $) $) NIL (|has| $ (-372)))) (-1518 (($ $ (-1179 $)) NIL (|has| $ (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL T CONST)) (-2114 (($ (-927)) 60)) (-1969 (((-112) $) 87)) (-3461 (((-1126) $) NIL)) (-2290 (($) 28 (|has| $ (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 54)) (-3699 (((-423 $) $) NIL)) (-3096 (((-927)) 86) (((-838 (-927))) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2905 (((-134)) NIL)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-2091 (((-927) $) 85) (((-838 (-927)) $) NIL)) (-2760 (((-1179 $)) 102)) (-4056 (($) 66)) (-1529 (($) 50 (|has| $ (-372)))) (-1949 (((-694 $) (-1273 $)) NIL) (((-1273 $) $) 91)) (-1384 (((-569) $) 40)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) 42) (($ $) NIL) (($ (-412 (-569))) NIL)) (-1488 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3263 (((-776)) 51 T CONST)) (-2040 (((-112) $ $) 107)) (-3371 (((-1273 $) (-927)) 97) (((-1273 $)) 96)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) 31 T CONST)) (-1796 (($) 27 T CONST)) (-3075 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 81) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-586 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -586))
+NIL
+(-13 (-353) (-332 $) (-619 (-569)))
+((-2171 (((-1278) (-1165)) 10)))
+(((-587) (-10 -7 (-15 -2171 ((-1278) (-1165))))) (T -587))
+((-2171 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
+(-10 -7 (-15 -2171 ((-1278) (-1165))))
+((-4310 (((-591 |#2|) (-591 |#2|)) 42)) (-1356 (((-649 |#2|) (-591 |#2|)) 44)) (-2316 ((|#2| (-591 |#2|)) 50)))
+(((-588 |#1| |#2|) (-10 -7 (-15 -4310 ((-591 |#2|) (-591 |#2|))) (-15 -1356 ((-649 |#2|) (-591 |#2|))) (-15 -2316 (|#2| (-591 |#2|)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-29 |#1|) (-1208))) (T -588))
+((-2316 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1208))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1208))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 *5)) (-5 *1 (-588 *4 *5)))) (-4310 (*1 *2 *2) (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1208))) (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-588 *3 *4)))))
+(-10 -7 (-15 -4310 ((-591 |#2|) (-591 |#2|))) (-15 -1356 ((-649 |#2|) (-591 |#2|))) (-15 -2316 (|#2| (-591 |#2|))))
+((-1324 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)) 30)))
+(((-589 |#1| |#2|) (-10 -7 (-15 -1324 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1324 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1324 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1324 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-367) (-367)) (T -589))
+((-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-589 *5 *6)))) (-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) (-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2209 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| -2209 *6) (|:| |coeff| *6))) (-5 *1 (-589 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))))
+(-10 -7 (-15 -1324 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1324 ((-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2209 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1324 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1324 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2249 (($ (-511) (-602)) 14)) (-2230 (($ (-511) (-602) $) 16)) (-2241 (($ (-511) (-602)) 15)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-1188)) 7) (((-1188) $) 6)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-590) (-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2249 ($ (-511) (-602))) (-15 -2241 ($ (-511) (-602))) (-15 -2230 ($ (-511) (-602) $))))) (T -590))
+((-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2241 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2230 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2249 ($ (-511) (-602))) (-15 -2241 ($ (-511) (-602))) (-15 -2230 ($ (-511) (-602) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 76)) (-3043 ((|#1| $) NIL)) (-2209 ((|#1| $) 30)) (-2191 (((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2220 (($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2200 (((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $) 31)) (-2050 (((-1165) $) NIL)) (-3434 (($ |#1| |#1|) 38) (($ |#1| (-1183)) 49 (|has| |#1| (-1044 (-1183))))) (-3461 (((-1126) $) NIL)) (-2182 (((-112) $) 35)) (-3430 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1183)) 89 (|has| |#1| (-906 (-1183))))) (-2388 (((-867) $) 112) (($ |#1|) 29)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 18 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) 17) (($ $ $) NIL)) (-2935 (($ $ $) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 16) (($ (-412 (-569)) $) 41) (($ $ (-412 (-569))) NIL)))
+(((-591 |#1|) (-13 (-722 (-412 (-569))) (-1044 |#1|) (-10 -8 (-15 -2220 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2209 (|#1| $)) (-15 -2200 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $)) (-15 -2191 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2182 ((-112) $)) (-15 -3434 ($ |#1| |#1|)) (-15 -3430 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -3430 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -3434 ($ |#1| (-1183))) |%noBranch|))) (-367)) (T -591))
+((-2220 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *2)) (|:| |logand| (-1179 *2))))) (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367)) (-5 *1 (-591 *2)))) (-2209 (*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *3)) (|:| |logand| (-1179 *3))))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-3434 (*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3430 (*1 *2 *1 *3) (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2)) (-5 *3 (-1183)))) (-3434 (*1 *1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *1 (-591 *2)) (-4 *2 (-1044 *3)) (-4 *2 (-367)))))
+(-13 (-722 (-412 (-569))) (-1044 |#1|) (-10 -8 (-15 -2220 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2209 (|#1| $)) (-15 -2200 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $)) (-15 -2191 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2182 ((-112) $)) (-15 -3434 ($ |#1| |#1|)) (-15 -3430 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -3430 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -3434 ($ |#1| (-1183))) |%noBranch|)))
+((-2282 (((-112) |#1|) 16)) (-2291 (((-3 |#1| "failed") |#1|) 14)) (-2265 (((-2 (|:| -4344 |#1|) (|:| -2777 (-776))) |#1|) 39) (((-3 |#1| "failed") |#1| (-776)) 18)) (-2257 (((-112) |#1| (-776)) 19)) (-2299 ((|#1| |#1|) 43)) (-2274 ((|#1| |#1| (-776)) 46)))
+(((-592 |#1|) (-10 -7 (-15 -2257 ((-112) |#1| (-776))) (-15 -2265 ((-3 |#1| "failed") |#1| (-776))) (-15 -2265 ((-2 (|:| -4344 |#1|) (|:| -2777 (-776))) |#1|)) (-15 -2274 (|#1| |#1| (-776))) (-15 -2282 ((-112) |#1|)) (-15 -2291 ((-3 |#1| "failed") |#1|)) (-15 -2299 (|#1| |#1|))) (-550)) (T -592))
+((-2299 (*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2291 (*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2282 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2274 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4344 *3) (|:| -2777 (-776)))) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2265 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -2257 ((-112) |#1| (-776))) (-15 -2265 ((-3 |#1| "failed") |#1| (-776))) (-15 -2265 ((-2 (|:| -4344 |#1|) (|:| -2777 (-776))) |#1|)) (-15 -2274 (|#1| |#1| (-776))) (-15 -2282 ((-112) |#1|)) (-15 -2291 ((-3 |#1| "failed") |#1|)) (-15 -2299 (|#1| |#1|)))
+((-2307 (((-1179 |#1|) (-927)) 44)))
+(((-593 |#1|) (-10 -7 (-15 -2307 ((-1179 |#1|) (-927)))) (-353)) (T -593))
+((-2307 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-593 *4)) (-4 *4 (-353)))))
+(-10 -7 (-15 -2307 ((-1179 |#1|) (-927))))
+((-4310 (((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|)))) 27)) (-3313 (((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183)) 34 (|has| |#1| (-147)))) (-1356 (((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|)))) 19)) (-2325 (((-319 |#1|) (-412 (-958 |#1|)) (-1183)) 32 (|has| |#1| (-147)))) (-2316 (((-319 |#1|) (-591 (-412 (-958 |#1|)))) 21)))
+(((-594 |#1|) (-10 -7 (-15 -4310 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1356 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -2316 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3313 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -2325 ((-319 |#1|) (-412 (-958 |#1|)) (-1183)))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-644 (-569)))) (T -594))
+((-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *5)) (-5 *1 (-594 *5)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-594 *4)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4)))) (-4310 (*1 *2 *2) (-12 (-5 *2 (-591 (-412 (-958 *3)))) (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-594 *3)))))
+(-10 -7 (-15 -4310 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1356 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -2316 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3313 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -2325 ((-319 |#1|) (-412 (-958 |#1|)) (-1183)))) |%noBranch|))
+((-2342 (((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569)))) 78) (((-649 (-694 (-569))) (-649 (-569))) 79) (((-694 (-569)) (-649 (-569)) (-911 (-569))) 72)) (-2332 (((-776) (-649 (-569))) 69)))
+(((-595) (-10 -7 (-15 -2332 ((-776) (-649 (-569)))) (-15 -2342 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -2342 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -2342 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))) (T -595))
+((-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-595)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
+(-10 -7 (-15 -2332 ((-776) (-649 (-569)))) (-15 -2342 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -2342 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -2342 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))
+((-2986 (((-649 |#5|) |#5| (-112)) 100)) (-2351 (((-112) |#5| (-649 |#5|)) 34)))
+(((-596 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2986 ((-649 |#5|) |#5| (-112))) (-15 -2351 ((-112) |#5| (-649 |#5|)))) (-13 (-310) (-147)) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -596))
+((-2351 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1115 *5 *6 *7 *8)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-649 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1115 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2986 ((-649 |#5|) |#5| (-112))) (-15 -2351 ((-112) |#5| (-649 |#5|))))
+((-2383 (((-112) $ $) NIL)) (-2076 (((-1141) $) 11)) (-2065 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-597) (-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))) (T -597))
+((-2065 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))))
+(-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))
+((-2383 (((-112) $ $) NIL (|has| (-144) (-1106)))) (-4328 (($ $) 38)) (-4338 (($ $) NIL)) (-4301 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-2450 (((-112) $ $) 68)) (-2430 (((-112) $ $ (-569)) 62)) (-4310 (((-649 $) $ (-144)) 76) (((-649 $) $ (-141)) 77)) (-3389 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-3364 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-855))))) (-3246 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-144) $ (-569) (-144)) 59 (|has| $ (-6 -4444))) (((-144) $ (-1240 (-569)) (-144)) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-1597 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-4320 (($ $ (-1240 (-569)) $) 57)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1678 (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3074 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4444)))) (-3007 (((-144) $ (-569)) NIL)) (-2468 (((-112) $ $) 90)) (-3975 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 65 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 63) (((-569) (-141) $ (-569)) 67)) (-2796 (((-649 (-144)) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) (-144)) 9)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 32 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| (-144) (-855)))) (-3719 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2912 (((-649 (-144)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1738 (((-569) $) 47 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-144) (-855)))) (-3986 (((-112) $ $ (-144)) 91)) (-4104 (((-776) $ $ (-144)) 88)) (-3065 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4348 (($ $) 41)) (-4357 (($ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-1609 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-2050 (((-1165) $) 43 (|has| (-144) (-1106)))) (-4274 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) 27)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) 87 (|has| (-144) (-1106)))) (-3401 (((-144) $) NIL (|has| (-569) (-855)))) (-4316 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1713 (($ $ (-144)) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1784 (((-649 (-144)) $) NIL)) (-4196 (((-112) $) 15)) (-2825 (($) 10)) (-1852 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) 69) (($ $ (-1240 (-569))) 25) (($ $ $) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-3376 (($ $ $ (-569)) 84 (|has| $ (-6 -4444)))) (-3885 (($ $) 20)) (-1384 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3709 (($ (-649 (-144))) NIL)) (-3632 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-649 $)) 85)) (-2388 (($ (-144)) NIL) (((-867) $) 31 (|has| (-144) (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| (-144) (-1106)))) (-3996 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2853 (((-112) $ $) 17 (|has| (-144) (-1106)))) (-2893 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2872 (((-112) $ $) 18 (|has| (-144) (-855)))) (-2394 (((-776) $) 16 (|has| $ (-6 -4443)))))
+(((-598 |#1|) (-1150) (-569)) (T -598))
NIL
(-1150)
-((-3973 (((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2| (-1095 |#4|)) 32)))
-(((-599 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2| (-1095 |#4|))) (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2|))) (-798) (-855) (-562) (-956 |#3| |#1| |#2|)) (T -599))
-((-3973 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-551)))) (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-3973 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1095 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855)) (-4 *7 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-551)))) (-5 *1 (-599 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2| (-1095 |#4|))) (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| (-551))) |#4| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 72)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-551)) 58) (($ $ (-551) (-551)) 59)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) 65)) (-2375 (($ $) 110)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2373 (((-868) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) (-1032 (-847 (-551))) (-1183) |#1| (-412 (-551))) 243)) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) 36)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3311 (((-112) $) NIL)) (-4221 (((-551) $) 63) (((-551) $ (-551)) 64)) (-2591 (((-112) $) NIL)) (-4226 (($ $ (-925)) 84)) (-4265 (($ (-1 |#1| (-551)) $) 81)) (-4387 (((-112) $) 26)) (-3312 (($ |#1| (-551)) 22) (($ $ (-1088) (-551)) NIL) (($ $ (-646 (-1088)) (-646 (-551))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) 76)) (-2379 (($ (-1032 (-847 (-551))) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) 13)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-4262 (($ $) 163 (|has| |#1| (-38 (-412 (-551)))))) (-2376 (((-3 $ "failed") $ $ (-112)) 109)) (-2374 (($ $ $) 117)) (-3682 (((-1126) $) NIL)) (-2377 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) 15)) (-2378 (((-1032 (-847 (-551))) $) 14)) (-4218 (($ $ (-551)) 47)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-551)))))) (-4249 ((|#1| $ (-551)) 62) (($ $ $) NIL (|has| (-551) (-1118)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (-4398 (((-551) $) NIL)) (-3310 (($ $) 48)) (-4396 (((-868) $) NIL) (($ (-551)) 29) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 28 (|has| |#1| (-173)))) (-4127 ((|#1| $ (-551)) 61)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) 39 T CONST)) (-4222 ((|#1| $) NIL)) (-2354 (($ $) 200 (|has| |#1| (-38 (-412 (-551)))))) (-2366 (($ $) 171 (|has| |#1| (-38 (-412 (-551)))))) (-2356 (($ $) 204 (|has| |#1| (-38 (-412 (-551)))))) (-2368 (($ $) 176 (|has| |#1| (-38 (-412 (-551)))))) (-2352 (($ $) 203 (|has| |#1| (-38 (-412 (-551)))))) (-2364 (($ $) 175 (|has| |#1| (-38 (-412 (-551)))))) (-2371 (($ $ (-412 (-551))) 179 (|has| |#1| (-38 (-412 (-551)))))) (-2372 (($ $ |#1|) 159 (|has| |#1| (-38 (-412 (-551)))))) (-2369 (($ $) 206 (|has| |#1| (-38 (-412 (-551)))))) (-2370 (($ $) 162 (|has| |#1| (-38 (-412 (-551)))))) (-2351 (($ $) 205 (|has| |#1| (-38 (-412 (-551)))))) (-2363 (($ $) 177 (|has| |#1| (-38 (-412 (-551)))))) (-2353 (($ $) 201 (|has| |#1| (-38 (-412 (-551)))))) (-2365 (($ $) 173 (|has| |#1| (-38 (-412 (-551)))))) (-2355 (($ $) 202 (|has| |#1| (-38 (-412 (-551)))))) (-2367 (($ $) 174 (|has| |#1| (-38 (-412 (-551)))))) (-2348 (($ $) 211 (|has| |#1| (-38 (-412 (-551)))))) (-2360 (($ $) 187 (|has| |#1| (-38 (-412 (-551)))))) (-2350 (($ $) 208 (|has| |#1| (-38 (-412 (-551)))))) (-2362 (($ $) 183 (|has| |#1| (-38 (-412 (-551)))))) (-2346 (($ $) 215 (|has| |#1| (-38 (-412 (-551)))))) (-2358 (($ $) 191 (|has| |#1| (-38 (-412 (-551)))))) (-2345 (($ $) 217 (|has| |#1| (-38 (-412 (-551)))))) (-2357 (($ $) 193 (|has| |#1| (-38 (-412 (-551)))))) (-2347 (($ $) 213 (|has| |#1| (-38 (-412 (-551)))))) (-2359 (($ $) 189 (|has| |#1| (-38 (-412 (-551)))))) (-2349 (($ $) 210 (|has| |#1| (-38 (-412 (-551)))))) (-2361 (($ $) 185 (|has| |#1| (-38 (-412 (-551)))))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4219 ((|#1| $ (-551)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3528 (($) 30 T CONST)) (-3085 (($) 40 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (-3473 (((-112) $ $) 74)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) 92) (($ $ $) 73)) (-4289 (($ $ $) 89)) (** (($ $ (-925)) NIL) (($ $ (-776)) 112)) (* (($ (-925) $) 99) (($ (-776) $) 97) (($ (-551) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-600 |#1|) (-13 (-1251 |#1| (-551)) (-10 -8 (-15 -2379 ($ (-1032 (-847 (-551))) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))))) (-15 -2378 ((-1032 (-847 (-551))) $)) (-15 -2377 ((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $)) (-15 -4268 ($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))))) (-15 -4387 ((-112) $)) (-15 -4265 ($ (-1 |#1| (-551)) $)) (-15 -2376 ((-3 $ "failed") $ $ (-112))) (-15 -2375 ($ $)) (-15 -2374 ($ $ $)) (-15 -2373 ((-868) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) (-1032 (-847 (-551))) (-1183) |#1| (-412 (-551)))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $)) (-15 -2372 ($ $ |#1|)) (-15 -2371 ($ $ (-412 (-551)))) (-15 -2370 ($ $)) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -2367 ($ $)) (-15 -2366 ($ $)) (-15 -2365 ($ $)) (-15 -2364 ($ $)) (-15 -2363 ($ $)) (-15 -2362 ($ $)) (-15 -2361 ($ $)) (-15 -2360 ($ $)) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $))) |%noBranch|))) (-1055)) (T -600))
-((-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-2379 (*1 *1 *2 *3) (-12 (-5 *2 (-1032 (-847 (-551)))) (-5 *3 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *4)))) (-4 *4 (-1055)) (-5 *1 (-600 *4)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-1032 (-847 (-551)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-4265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-551))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-2376 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-2375 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-2374 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-2373 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *6)))) (-5 *4 (-1032 (-847 (-551)))) (-5 *5 (-1183)) (-5 *7 (-412 (-551))) (-4 *6 (-1055)) (-5 *2 (-868)) (-5 *1 (-600 *6)))) (-4262 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2372 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1055)))) (-2370 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2365 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2361 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2354 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2349 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))) (-2345 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(-13 (-1251 |#1| (-551)) (-10 -8 (-15 -2379 ($ (-1032 (-847 (-551))) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))))) (-15 -2378 ((-1032 (-847 (-551))) $)) (-15 -2377 ((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $)) (-15 -4268 ($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))))) (-15 -4387 ((-112) $)) (-15 -4265 ($ (-1 |#1| (-551)) $)) (-15 -2376 ((-3 $ "failed") $ $ (-112))) (-15 -2375 ($ $)) (-15 -2374 ($ $ $)) (-15 -2373 ((-868) (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) (-1032 (-847 (-551))) (-1183) |#1| (-412 (-551)))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $)) (-15 -2372 ($ $ |#1|)) (-15 -2371 ($ $ (-412 (-551)))) (-15 -2370 ($ $)) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -2367 ($ $)) (-15 -2366 ($ $)) (-15 -2365 ($ $)) (-15 -2364 ($ $)) (-15 -2363 ($ $)) (-15 -2362 ($ $)) (-15 -2361 ($ $)) (-15 -2360 ($ $)) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 65)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4268 (($ (-1160 |#1|)) 9)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) 48)) (-3311 (((-112) $) 58)) (-4221 (((-776) $) 63) (((-776) $ (-776)) 62)) (-2591 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ "failed") $ $) 50 (|has| |#1| (-562)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-1160 |#1|) $) 29)) (-3548 (((-776)) 57 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 10 T CONST)) (-3085 (($) 14 T CONST)) (-3473 (((-112) $ $) 28)) (-4287 (($ $) 36) (($ $ $) 16)) (-4289 (($ $ $) 31)) (** (($ $ (-925)) NIL) (($ $ (-776)) 55)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-551)) 42)))
-(((-601 |#1|) (-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -4267 ((-1160 |#1|) $)) (-15 -4268 ($ (-1160 |#1|))) (-15 -3311 ((-112) $)) (-15 -4221 ((-776) $)) (-15 -4221 ((-776) $ (-776))) (-15 * ($ $ (-551))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|))) (-1055)) (T -601))
-((-4267 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-4221 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))))
-(-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -4267 ((-1160 |#1|) $)) (-15 -4268 ($ (-1160 |#1|))) (-15 -3311 ((-112) $)) (-15 -4221 ((-776) $)) (-15 -4221 ((-776) $ (-776))) (-15 * ($ $ (-551))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-2382 (($) 8 T CONST)) (-2383 (($) 7 T CONST)) (-2380 (($ $ (-646 $)) 16)) (-3681 (((-1165) $) NIL)) (-2384 (($) 6 T CONST)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-1188)) 15) (((-1188) $) 10)) (-2381 (($) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-602) (-13 (-1107) (-495 (-1188)) (-10 -8 (-15 -2384 ($) -4402) (-15 -2383 ($) -4402) (-15 -2382 ($) -4402) (-15 -2381 ($) -4402) (-15 -2380 ($ $ (-646 $)))))) (T -602))
-((-2384 (*1 *1) (-5 *1 (-602))) (-2383 (*1 *1) (-5 *1 (-602))) (-2382 (*1 *1) (-5 *1 (-602))) (-2381 (*1 *1) (-5 *1 (-602))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-602))) (-5 *1 (-602)))))
-(-13 (-1107) (-495 (-1188)) (-10 -8 (-15 -2384 ($) -4402) (-15 -2383 ($) -4402) (-15 -2382 ($) -4402) (-15 -2381 ($) -4402) (-15 -2380 ($ $ (-646 $)))))
-((-4408 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 15)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -4408 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1222) (-1222)) (T -603))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6)))))
-(-10 -7 (-15 -4408 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|))))
-((-4408 (((-1160 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1160 |#2|)) 20) (((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-606 |#2|)) 19) (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 18)))
-(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -4408 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-606 |#2|))) (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1160 |#2|)))) (-1222) (-1222) (-1222)) (T -604))
-((-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1160 *7)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8)) (-5 *1 (-604 *6 *7 *8)))) (-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1160 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8)) (-5 *1 (-604 *6 *7 *8)))) (-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-606 *8)) (-5 *1 (-604 *6 *7 *8)))))
-(-10 -7 (-15 -4408 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-606 |#2|))) (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1160 |#2|))))
-((-2389 ((|#3| |#3| (-646 (-616 |#3|)) (-646 (-1183))) 57)) (-2388 (((-169 |#2|) |#3|) 121)) (-2385 ((|#3| (-169 |#2|)) 46)) (-2386 ((|#2| |#3|) 21)) (-2387 ((|#3| |#2|) 35)))
-(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -2385 (|#3| (-169 |#2|))) (-15 -2386 (|#2| |#3|)) (-15 -2387 (|#3| |#2|)) (-15 -2388 ((-169 |#2|) |#3|)) (-15 -2389 (|#3| |#3| (-646 (-616 |#3|)) (-646 (-1183))))) (-562) (-13 (-426 |#1|) (-1008) (-1208)) (-13 (-426 (-169 |#1|)) (-1008) (-1208))) (T -605))
-((-2389 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-646 (-616 *2))) (-5 *4 (-646 (-1183))) (-4 *2 (-13 (-426 (-169 *5)) (-1008) (-1208))) (-4 *5 (-562)) (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-426 *5) (-1008) (-1208))))) (-2388 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-169 *5)) (-5 *1 (-605 *4 *5 *3)) (-4 *5 (-13 (-426 *4) (-1008) (-1208))) (-4 *3 (-13 (-426 (-169 *4)) (-1008) (-1208))))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-426 (-169 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-426 *4) (-1008) (-1208))))) (-2386 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-426 *4) (-1008) (-1208))) (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-426 (-169 *4)) (-1008) (-1208))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-426 *4) (-1008) (-1208))) (-4 *4 (-562)) (-4 *2 (-13 (-426 (-169 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *5 *2)))))
-(-10 -7 (-15 -2385 (|#3| (-169 |#2|))) (-15 -2386 (|#2| |#3|)) (-15 -2387 (|#3| |#2|)) (-15 -2388 ((-169 |#2|) |#3|)) (-15 -2389 (|#3| |#3| (-646 (-616 |#3|)) (-646 (-1183)))))
-((-4160 (($ (-1 (-112) |#1|) $) 17)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3898 (($ (-1 |#1| |#1|) |#1|) 9)) (-3897 (($ (-1 (-112) |#1|) $) 13)) (-3896 (($ (-1 (-112) |#1|) $) 15)) (-3971 (((-1160 |#1|) $) 18)) (-4396 (((-868) $) NIL)))
-(((-606 |#1|) (-13 (-618 (-868)) (-10 -8 (-15 -4408 ($ (-1 |#1| |#1|) $)) (-15 -3897 ($ (-1 (-112) |#1|) $)) (-15 -3896 ($ (-1 (-112) |#1|) $)) (-15 -4160 ($ (-1 (-112) |#1|) $)) (-15 -3898 ($ (-1 |#1| |#1|) |#1|)) (-15 -3971 ((-1160 |#1|) $)))) (-1222)) (T -606))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3)))) (-3897 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1222)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4408 ($ (-1 |#1| |#1|) $)) (-15 -3897 ($ (-1 (-112) |#1|) $)) (-15 -3896 ($ (-1 (-112) |#1|) $)) (-15 -4160 ($ (-1 (-112) |#1|) $)) (-15 -3898 ($ (-1 |#1| |#1|) |#1|)) (-15 -3971 ((-1160 |#1|) $))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776)) NIL (|has| |#1| (-23)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4285 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4282 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-4166 (((-112) $ (-776)) NIL)) (-4283 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4286 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4284 (($ $ $) NIL (|has| |#1| (-1055)))) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4287 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4289 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-551) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-607 |#1| |#2|) (-1271 |#1|) (-1222) (-551)) (T -607))
+((-3167 (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|)) 32)))
+(((-599 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|))) (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|)) (T -599))
+((-3167 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-3167 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1100 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855)) (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|))) (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 72)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-569)) 58) (($ $ (-569) (-569)) 59)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 65)) (-1530 (($ $) 110)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1510 (((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569))) 243)) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 36)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2755 (((-112) $) NIL)) (-4315 (((-569) $) 63) (((-569) $ (-569)) 64)) (-2861 (((-112) $) NIL)) (-4352 (($ $ (-927)) 84)) (-3324 (($ (-1 |#1| (-569)) $) 81)) (-2019 (((-112) $) 26)) (-3838 (($ |#1| (-569)) 22) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) 76)) (-1575 (($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 13)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3313 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-1542 (((-3 $ "failed") $ $ (-112)) 109)) (-1519 (($ $ $) 117)) (-3461 (((-1126) $) NIL)) (-1553 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 15)) (-1564 (((-1032 (-848 (-569))) $) 14)) (-4295 (($ $ (-569)) 47)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-1852 ((|#1| $ (-569)) 62) (($ $ $) NIL (|has| (-569) (-1118)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2091 (((-569) $) NIL)) (-2745 (($ $) 48)) (-2388 (((-867) $) NIL) (($ (-569)) 29) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 28 (|has| |#1| (-173)))) (-1503 ((|#1| $ (-569)) 61)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) 39 T CONST)) (-2132 ((|#1| $) NIL)) (-4421 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-1439 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-1322 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-1461 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4399 (($ $) 203 (|has| |#1| (-38 (-412 (-569)))))) (-1419 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-1492 (($ $ (-412 (-569))) 179 (|has| |#1| (-38 (-412 (-569)))))) (-1501 (($ $ |#1|) 159 (|has| |#1| (-38 (-412 (-569)))))) (-1473 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-1483 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-4392 (($ $) 205 (|has| |#1| (-38 (-412 (-569)))))) (-1408 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-4410 (($ $) 201 (|has| |#1| (-38 (-412 (-569)))))) (-1429 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-1313 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-1449 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2386 (($ $) 211 (|has| |#1| (-38 (-412 (-569)))))) (-1371 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-4380 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-1395 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-2367 (($ $) 215 (|has| |#1| (-38 (-412 (-569)))))) (-1348 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-2360 (($ $) 217 (|has| |#1| (-38 (-412 (-569)))))) (-1333 (($ $) 193 (|has| |#1| (-38 (-412 (-569)))))) (-2377 (($ $) 213 (|has| |#1| (-38 (-412 (-569)))))) (-1359 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-4369 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-1382 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3006 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1786 (($) 30 T CONST)) (-1796 (($) 40 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2853 (((-112) $ $) 74)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) 92) (($ $ $) 73)) (-2935 (($ $ $) 89)) (** (($ $ (-927)) NIL) (($ $ (-776)) 112)) (* (($ (-927) $) 99) (($ (-776) $) 97) (($ (-569) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-600 |#1|) (-13 (-1251 |#1| (-569)) (-10 -8 (-15 -1575 ($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -1564 ((-1032 (-848 (-569))) $)) (-15 -1553 ((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -2056 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2019 ((-112) $)) (-15 -3324 ($ (-1 |#1| (-569)) $)) (-15 -1542 ((-3 $ "failed") $ $ (-112))) (-15 -1530 ($ $)) (-15 -1519 ($ $ $)) (-15 -1510 ((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $)) (-15 -1501 ($ $ |#1|)) (-15 -1492 ($ $ (-412 (-569)))) (-15 -1483 ($ $)) (-15 -1473 ($ $)) (-15 -1461 ($ $)) (-15 -1449 ($ $)) (-15 -1439 ($ $)) (-15 -1429 ($ $)) (-15 -1419 ($ $)) (-15 -1408 ($ $)) (-15 -1395 ($ $)) (-15 -1382 ($ $)) (-15 -1371 ($ $)) (-15 -1359 ($ $)) (-15 -1348 ($ $)) (-15 -1333 ($ $)) (-15 -1322 ($ $)) (-15 -1313 ($ $)) (-15 -4421 ($ $)) (-15 -4410 ($ $)) (-15 -4399 ($ $)) (-15 -4392 ($ $)) (-15 -4380 ($ $)) (-15 -4369 ($ $)) (-15 -2386 ($ $)) (-15 -2377 ($ $)) (-15 -2367 ($ $)) (-15 -2360 ($ $))) |%noBranch|))) (-1055)) (T -600))
+((-2019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-1575 (*1 *1 *2 *3) (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1055)) (-5 *1 (-600 *4)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-3324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-1542 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-1530 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-1519 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-1510 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *6)))) (-5 *4 (-1032 (-848 (-569)))) (-5 *5 (-1183)) (-5 *7 (-412 (-569))) (-4 *6 (-1055)) (-5 *2 (-867)) (-5 *1 (-600 *6)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1492 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1055)))) (-1483 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1473 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1461 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1408 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1395 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1382 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1371 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1359 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1333 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1322 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4421 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4399 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4392 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4369 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(-13 (-1251 |#1| (-569)) (-10 -8 (-15 -1575 ($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -1564 ((-1032 (-848 (-569))) $)) (-15 -1553 ((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -2056 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2019 ((-112) $)) (-15 -3324 ($ (-1 |#1| (-569)) $)) (-15 -1542 ((-3 $ "failed") $ $ (-112))) (-15 -1530 ($ $)) (-15 -1519 ($ $ $)) (-15 -1510 ((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $)) (-15 -1501 ($ $ |#1|)) (-15 -1492 ($ $ (-412 (-569)))) (-15 -1483 ($ $)) (-15 -1473 ($ $)) (-15 -1461 ($ $)) (-15 -1449 ($ $)) (-15 -1439 ($ $)) (-15 -1429 ($ $)) (-15 -1419 ($ $)) (-15 -1408 ($ $)) (-15 -1395 ($ $)) (-15 -1382 ($ $)) (-15 -1371 ($ $)) (-15 -1359 ($ $)) (-15 -1348 ($ $)) (-15 -1333 ($ $)) (-15 -1322 ($ $)) (-15 -1313 ($ $)) (-15 -4421 ($ $)) (-15 -4410 ($ $)) (-15 -4399 ($ $)) (-15 -4392 ($ $)) (-15 -4380 ($ $)) (-15 -4369 ($ $)) (-15 -2386 ($ $)) (-15 -2377 ($ $)) (-15 -2367 ($ $)) (-15 -2360 ($ $))) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 65)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2056 (($ (-1163 |#1|)) 9)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) 48)) (-2755 (((-112) $) 58)) (-4315 (((-776) $) 63) (((-776) $ (-776)) 62)) (-2861 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ $) 50 (|has| |#1| (-561)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-1163 |#1|) $) 29)) (-3263 (((-776)) 57 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 10 T CONST)) (-1796 (($) 14 T CONST)) (-2853 (((-112) $ $) 28)) (-2946 (($ $) 36) (($ $ $) 16)) (-2935 (($ $ $) 31)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-569)) 42)))
+(((-601 |#1|) (-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -3346 ((-1163 |#1|) $)) (-15 -2056 ($ (-1163 |#1|))) (-15 -2755 ((-112) $)) (-15 -4315 ((-776) $)) (-15 -4315 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) (-1055)) (T -601))
+((-3346 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-4315 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))))
+(-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -3346 ((-1163 |#1|) $)) (-15 -2056 ($ (-1163 |#1|))) (-15 -2755 ((-112) $)) (-15 -4315 ((-776) $)) (-15 -4315 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-1612 (($) 8 T CONST)) (-1622 (($) 7 T CONST)) (-1588 (($ $ (-649 $)) 16)) (-2050 (((-1165) $) NIL)) (-1633 (($) 6 T CONST)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-1188)) 15) (((-1188) $) 10)) (-1601 (($) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-602) (-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -1633 ($) -3600) (-15 -1622 ($) -3600) (-15 -1612 ($) -3600) (-15 -1601 ($) -3600) (-15 -1588 ($ $ (-649 $)))))) (T -602))
+((-1633 (*1 *1) (-5 *1 (-602))) (-1622 (*1 *1) (-5 *1 (-602))) (-1612 (*1 *1) (-5 *1 (-602))) (-1601 (*1 *1) (-5 *1 (-602))) (-1588 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
+(-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -1633 ($) -3600) (-15 -1622 ($) -3600) (-15 -1612 ($) -3600) (-15 -1601 ($) -3600) (-15 -1588 ($ $ (-649 $)))))
+((-1324 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 15)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -1324 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1223) (-1223)) (T -603))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6)))))
+(-10 -7 (-15 -1324 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|))))
+((-1324 (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|)) 20) (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|)) 19) (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 18)))
+(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -1324 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|))) (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|)))) (-1223) (-1223) (-1223)) (T -604))
+((-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1163 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-606 *8)) (-5 *1 (-604 *6 *7 *8)))))
+(-10 -7 (-15 -1324 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|))) (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|))))
+((-1689 ((|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183))) 57)) (-1676 (((-170 |#2|) |#3|) 121)) (-1643 ((|#3| (-170 |#2|)) 46)) (-1654 ((|#2| |#3|) 21)) (-1664 ((|#3| |#2|) 35)))
+(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1643 (|#3| (-170 |#2|))) (-15 -1654 (|#2| |#3|)) (-15 -1664 (|#3| |#2|)) (-15 -1676 ((-170 |#2|) |#3|)) (-15 -1689 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183))))) (-561) (-13 (-435 |#1|) (-1008) (-1208)) (-13 (-435 (-170 |#1|)) (-1008) (-1208))) (T -605))
+((-1689 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1183))) (-4 *2 (-13 (-435 (-170 *5)) (-1008) (-1208))) (-4 *5 (-561)) (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1008) (-1208))))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))) (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1008) (-1208))))) (-1654 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))) (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))) (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *5 *2)))))
+(-10 -7 (-15 -1643 (|#3| (-170 |#2|))) (-15 -1654 (|#2| |#3|)) (-15 -1664 (|#3| |#2|)) (-15 -1676 ((-170 |#2|) |#3|)) (-15 -1689 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183)))))
+((-1391 (($ (-1 (-112) |#1|) $) 17)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (($ (-1 |#1| |#1|) |#1|) 9)) (-1368 (($ (-1 (-112) |#1|) $) 13)) (-1379 (($ (-1 (-112) |#1|) $) 15)) (-3709 (((-1163 |#1|) $) 18)) (-2388 (((-867) $) NIL)))
+(((-606 |#1|) (-13 (-618 (-867)) (-10 -8 (-15 -1324 ($ (-1 |#1| |#1|) $)) (-15 -1368 ($ (-1 (-112) |#1|) $)) (-15 -1379 ($ (-1 (-112) |#1|) $)) (-15 -1391 ($ (-1 (-112) |#1|) $)) (-15 -1320 ($ (-1 |#1| |#1|) |#1|)) (-15 -3709 ((-1163 |#1|) $)))) (-1223)) (T -606))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1368 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1379 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1320 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1223)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1324 ($ (-1 |#1| |#1|) $)) (-15 -1368 ($ (-1 (-112) |#1|) $)) (-15 -1379 ($ (-1 (-112) |#1|) $)) (-15 -1391 ($ (-1 (-112) |#1|) $)) (-15 -1320 ($ (-1 |#1| |#1|) |#1|)) (-15 -3709 ((-1163 |#1|) $))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776)) NIL (|has| |#1| (-23)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1344 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3503 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1902 (((-112) $ (-776)) NIL)) (-3747 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3523 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3513 (($ $ $) NIL (|has| |#1| (-1055)))) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2946 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2935 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-607 |#1| |#2|) (-1271 |#1|) (-1223) (-569)) (T -607))
NIL
(-1271 |#1|)
-((-2390 (((-1278) $ |#2| |#2|) 35)) (-2392 ((|#2| $) 23)) (-2393 ((|#2| $) 21)) (-2138 (($ (-1 |#3| |#3|) $) 32)) (-4408 (($ (-1 |#3| |#3|) $) 30)) (-4250 ((|#3| $) 26)) (-2391 (($ $ |#3|) 33)) (-2394 (((-112) |#3| $) 17)) (-2397 (((-646 |#3|) $) 15)) (-4249 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-608 |#1| |#2| |#3|) (-10 -8 (-15 -2390 ((-1278) |#1| |#2| |#2|)) (-15 -2391 (|#1| |#1| |#3|)) (-15 -4250 (|#3| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -2394 ((-112) |#3| |#1|)) (-15 -2397 ((-646 |#3|) |#1|)) (-15 -4249 (|#3| |#1| |#2|)) (-15 -4249 (|#3| |#1| |#2| |#3|)) (-15 -2138 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4408 (|#1| (-1 |#3| |#3|) |#1|))) (-609 |#2| |#3|) (-1107) (-1222)) (T -608))
-NIL
-(-10 -8 (-15 -2390 ((-1278) |#1| |#2| |#2|)) (-15 -2391 (|#1| |#1| |#3|)) (-15 -4250 (|#3| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -2394 ((-112) |#3| |#1|)) (-15 -2397 ((-646 |#3|) |#1|)) (-15 -4249 (|#3| |#1| |#2|)) (-15 -4249 (|#3| |#1| |#2| |#3|)) (-15 -2138 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4408 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#2| (-1107)))) (-2390 (((-1278) $ |#1| |#1|) 41 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-1694 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) 52)) (-2134 (((-646 |#2|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-2392 ((|#1| $) 44 (|has| |#1| (-855)))) (-3026 (((-646 |#2|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-2393 ((|#1| $) 45 (|has| |#1| (-855)))) (-2138 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#2| (-1107)))) (-2395 (((-646 |#1|) $) 47)) (-2396 (((-112) |#1| $) 48)) (-3682 (((-1126) $) 21 (|has| |#2| (-1107)))) (-4250 ((|#2| $) 43 (|has| |#1| (-855)))) (-2391 (($ $ |#2|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-2135 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4443))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#2| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#2| (-1107)))) (-2137 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#2| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-609 |#1| |#2|) (-140) (-1107) (-1222)) (T -609))
-((-2397 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-646 *4)))) (-2396 (*1 *2 *3 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-112)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-646 *3)))) (-2394 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1107)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1222)) (-4 *2 (-1107)) (-4 *2 (-855)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1222)) (-4 *2 (-1107)) (-4 *2 (-855)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1107)) (-4 *3 (-855)) (-4 *2 (-1222)))) (-2391 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222)))) (-2390 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-1278)))))
-(-13 (-494 |t#2|) (-291 |t#1| |t#2|) (-10 -8 (-15 -2397 ((-646 |t#2|) $)) (-15 -2396 ((-112) |t#1| $)) (-15 -2395 ((-646 |t#1|) $)) (IF (|has| |t#2| (-1107)) (IF (|has| $ (-6 -4443)) (-15 -2394 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -2393 (|t#1| $)) (-15 -2392 (|t#1| $)) (-15 -4250 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -2391 ($ $ |t#2|)) (-15 -2390 ((-1278) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1107)) ((-618 (-868)) -3978 (|has| |#2| (-1107)) (|has| |#2| (-618 (-868)))) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-1107) |has| |#2| (-1107)) ((-1222) . T))
-((-4396 (((-868) $) 19) (($ (-128)) 13) (((-128) $) 14)))
-(((-610) (-13 (-618 (-868)) (-495 (-128)))) (T -610))
-NIL
-(-13 (-618 (-868)) (-495 (-128)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1223) $) 14) (($ (-646 (-1223))) 13)) (-2398 (((-646 (-1223)) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-611) (-13 (-1089) (-618 (-1223)) (-10 -8 (-15 -4396 ($ (-646 (-1223)))) (-15 -2398 ((-646 (-1223)) $))))) (T -611))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-611)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-611)))))
-(-13 (-1089) (-618 (-1223)) (-10 -8 (-15 -4396 ($ (-646 (-1223)))) (-15 -2398 ((-646 (-1223)) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1957 (((-3 $ #1="failed")) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3661 (((-1272 (-694 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1272 (-694 |#1|)) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1907 (((-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-4174 (($) NIL T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1881 (((-3 $ #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1973 (((-694 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1905 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1971 (((-694 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2585 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2088 (((-1177 (-952 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-367))))) (-2588 (($ $ (-925)) NIL)) (-1903 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1883 (((-1177 |#1|) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1975 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1901 (((-1177 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-1895 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1977 (($ (-1272 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1272 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-3908 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3531 (((-925)) NIL (|has| |#2| (-371 |#1|)))) (-1892 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2612 (($ $ (-925)) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1890 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1882 (((-3 $ #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1974 (((-694 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1906 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1972 (((-694 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2586 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2092 (((-1177 (-952 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-367))))) (-2587 (($ $ (-925)) NIL)) (-1904 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1884 (((-1177 |#1|) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1976 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1902 (((-1177 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-1896 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3681 (((-1165) $) NIL)) (-1887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1889 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1891 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3682 (((-1126) $) NIL)) (-1894 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4249 ((|#1| $ (-551)) NIL (|has| |#2| (-423 |#1|)))) (-3662 (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-423 |#1|))) (((-1272 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $) (-1272 $)) NIL (|has| |#2| (-371 |#1|))) (((-1272 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-4420 (($ (-1272 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1272 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2080 (((-646 (-952 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-646 (-952 |#1|)) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2774 (($ $ $) NIL)) (-1900 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4396 (((-868) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL (|has| |#2| (-423 |#1|)))) (-1885 (((-646 (-1272 |#1|))) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2775 (($ $ $ $) NIL)) (-1898 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2966 (($ (-694 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2773 (($ $ $) NIL)) (-1899 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1897 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1893 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3528 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) 24)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-612 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -4396 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -612))
-((-4396 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3)))))
-(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -4396 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-1875 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) 39)) (-4047 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL) (($) NIL)) (-2390 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-1165) |#1|) 49)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#1| #1="failed") (-1165) $) 52)) (-4174 (($) NIL T CONST)) (-1879 (($ $ (-1165)) 25)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-3847 (((-3 |#1| #1#) (-1165) $) 53) (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (|has| $ (-6 -4443)))) (-3848 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-4292 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-1876 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) 38)) (-1694 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-1165)) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2438 (($ $) 54)) (-1880 (($ (-393)) 23) (($ (-393) (-1165)) 22)) (-3991 (((-393) $) 40)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443))) (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (((-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-2393 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-2834 (((-646 (-1165)) $) 45)) (-2400 (((-112) (-1165) $) NIL)) (-1877 (((-1165) $) 41)) (-1372 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-2395 (((-646 (-1165)) $) NIL)) (-2396 (((-112) (-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 ((|#1| $) NIL (|has| (-1165) (-855)))) (-1444 (((-3 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) "failed") (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-646 (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 43)) (-4249 ((|#1| $ (-1165) |#1|) NIL) ((|#1| $ (-1165)) 48)) (-1573 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL) (($) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (((-776) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (((-776) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-4396 (((-868) $) 21)) (-1878 (($ $) 26)) (-3680 (((-112) $ $) NIL)) (-1374 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
-(((-613 |#1|) (-13 (-369 (-393) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4443) (-15 -2438 ($ $)))) (-1107)) (T -613))
-((-2438 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1107)))))
-(-13 (-369 (-393) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4443) (-15 -2438 ($ $))))
-((-3684 (((-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) 16)) (-2834 (((-646 |#2|) $) 20)) (-2400 (((-112) |#2| $) 12)))
-(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -2834 ((-646 |#2|) |#1|)) (-15 -2400 ((-112) |#2| |#1|)) (-15 -3684 ((-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|))) (-615 |#2| |#3|) (-1107) (-1107)) (T -614))
-NIL
-(-10 -8 (-15 -2834 ((-646 |#2|) |#1|)) (-15 -2400 ((-112) |#2| |#1|)) (-15 -3684 ((-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 56 (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| "failed") |#1| $) 62)) (-4174 (($) 7 T CONST)) (-1443 (($ $) 59 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 63)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 55 (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 57 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-2834 (((-646 |#1|) $) 64)) (-2400 (((-112) |#1| $) 65)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 40)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 41)) (-3682 (((-1126) $) 21 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 52)) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 42)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) 27 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 26 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 25 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 24 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-1573 (($) 50) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 49)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 51)) (-4396 (((-868) $) 18 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 43)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-615 |#1| |#2|) (-140) (-1107) (-1107)) (T -615))
-((-2400 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-112)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-646 *3)))) (-3847 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))) (-2399 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(-13 (-230 (-2 (|:| -4310 |t#1|) (|:| -2264 |t#2|))) (-10 -8 (-15 -2400 ((-112) |t#1| $)) (-15 -2834 ((-646 |t#1|) $)) (-15 -3847 ((-3 |t#2| "failed") |t#1| $)) (-15 -2399 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((-102) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) ((-618 (-868)) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868)))) ((-151 #1#) . T) ((-619 (-540)) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))) ((-230 #1#) . T) ((-236 #1#) . T) ((-312 #1#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-494 #1#) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-1107) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-2401 (((-3 (-1183) "failed") $) 48)) (-1411 (((-1278) $ (-776)) 24)) (-3861 (((-776) $) 23)) (-3466 (((-113) $) 12)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2402 (($ (-113) (-646 |#1|) (-776)) 34) (($ (-1183)) 35)) (-3053 (((-112) $ (-113)) 18) (((-112) $ (-1183)) 16)) (-3021 (((-776) $) 20)) (-3682 (((-1126) $) NIL)) (-4420 (((-896 (-551)) $) 96 (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) 103 (|has| |#1| (-619 (-896 (-382))))) (((-540) $) 89 (|has| |#1| (-619 (-540))))) (-4396 (((-868) $) 73)) (-3680 (((-112) $ $) NIL)) (-2403 (((-646 |#1|) $) 22)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 52)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 54)))
-(((-616 |#1|) (-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3466 ((-113) $)) (-15 -2403 ((-646 |#1|) $)) (-15 -3021 ((-776) $)) (-15 -2402 ($ (-113) (-646 |#1|) (-776))) (-15 -2402 ($ (-1183))) (-15 -2401 ((-3 (-1183) "failed") $)) (-15 -3053 ((-112) $ (-113))) (-15 -3053 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|))) (-1107)) (T -616))
-((-3466 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))) (-2402 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-646 *5)) (-5 *4 (-776)) (-4 *5 (-1107)) (-5 *1 (-616 *5)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))) (-2401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))) (-3053 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-616 *4)) (-4 *4 (-1107)))) (-3053 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-616 *4)) (-4 *4 (-1107)))))
-(-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3466 ((-113) $)) (-15 -2403 ((-646 |#1|) $)) (-15 -3021 ((-776) $)) (-15 -2402 ($ (-113) (-646 |#1|) (-776))) (-15 -2402 ($ (-1183))) (-15 -2401 ((-3 (-1183) "failed") $)) (-15 -3053 ((-112) $ (-113))) (-15 -3053 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|)))
-((-2404 (((-616 |#2|) |#1|) 17)) (-2405 (((-3 |#1| "failed") (-616 |#2|)) 21)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -2404 ((-616 |#2|) |#1|)) (-15 -2405 ((-3 |#1| "failed") (-616 |#2|)))) (-1107) (-1107)) (T -617))
-((-2405 (*1 *2 *3) (|partial| -12 (-5 *3 (-616 *4)) (-4 *4 (-1107)) (-4 *2 (-1107)) (-5 *1 (-617 *2 *4)))) (-2404 (*1 *2 *3) (-12 (-5 *2 (-616 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(-10 -7 (-15 -2404 ((-616 |#2|) |#1|)) (-15 -2405 ((-3 |#1| "failed") (-616 |#2|))))
-((-4396 ((|#1| $) 6)))
-(((-618 |#1|) (-140) (-1222)) (T -618))
-((-4396 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1222)))))
-(-13 (-10 -8 (-15 -4396 (|t#1| $))))
-((-4420 ((|#1| $) 6)))
-(((-619 |#1|) (-140) (-1222)) (T -619))
-((-4420 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1222)))))
-(-13 (-10 -8 (-15 -4420 (|t#1| $))))
-((-2406 (((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-410 |#2|) |#2|)) 15) (((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 16)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2406 ((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -2406 ((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-410 |#2|) |#2|)))) (-13 (-147) (-27) (-1044 (-551)) (-1044 (-412 (-551)))) (-1248 |#1|)) (T -620))
-((-2406 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-147) (-27) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-1177 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))) (-2406 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-1177 (-412 *5))) (-5 *1 (-620 *4 *5)) (-5 *3 (-412 *5)))))
-(-10 -7 (-15 -2406 ((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -2406 ((-3 (-1177 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-410 |#2|) |#2|))))
-((-4396 (($ |#1|) 6)))
-(((-621 |#1|) (-140) (-1222)) (T -621))
-((-4396 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1222)))))
-(-13 (-10 -8 (-15 -4396 ($ |t#1|))))
-((-2986 (((-112) $ $) NIL)) (-2407 (($) 14 T CONST)) (-3276 (($) 15 T CONST)) (-3273 (($ $ $) 29)) (-3764 (($ $) 27)) (-3681 (((-1165) $) NIL)) (-3272 (($ $ $) 30)) (-3682 (((-1126) $) NIL)) (-3275 (($) 11 T CONST)) (-3271 (($ $ $) 31)) (-4396 (((-868) $) 35)) (-4015 (((-112) $ (|[\|\|]| -3275)) 24) (((-112) $ (|[\|\|]| -2407)) 26) (((-112) $ (|[\|\|]| -3276)) 21)) (-3680 (((-112) $ $) NIL)) (-3274 (($ $ $) 28)) (-3473 (((-112) $ $) 18)))
-(((-622) (-13 (-973) (-10 -8 (-15 -2407 ($) -4402) (-15 -4015 ((-112) $ (|[\|\|]| -3275))) (-15 -4015 ((-112) $ (|[\|\|]| -2407))) (-15 -4015 ((-112) $ (|[\|\|]| -3276)))))) (T -622))
-((-2407 (*1 *1) (-5 *1 (-622))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3275)) (-5 *2 (-112)) (-5 *1 (-622)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2407)) (-5 *2 (-112)) (-5 *1 (-622)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3276)) (-5 *2 (-112)) (-5 *1 (-622)))))
-(-13 (-973) (-10 -8 (-15 -2407 ($) -4402) (-15 -4015 ((-112) $ (|[\|\|]| -3275))) (-15 -4015 ((-112) $ (|[\|\|]| -2407))) (-15 -4015 ((-112) $ (|[\|\|]| -3276)))))
-((-4420 (($ |#1|) 6)))
-(((-623 |#1|) (-140) (-1222)) (T -623))
-((-4420 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1222)))))
-(-13 (-10 -8 (-15 -4420 ($ |t#1|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4073 (((-551) $) NIL (|has| |#1| (-853)))) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-3624 (((-112) $) NIL (|has| |#1| (-853)))) (-2591 (((-112) $) NIL)) (-3417 ((|#1| $) 13)) (-3625 (((-112) $) NIL (|has| |#1| (-853)))) (-2952 (($ $ $) NIL (|has| |#1| (-853)))) (-3278 (($ $ $) NIL (|has| |#1| (-853)))) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3416 ((|#3| $) 15)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL)) (-3548 (((-776)) 20 T CONST)) (-3680 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| |#1| (-853)))) (-3528 (($) NIL T CONST)) (-3085 (($) 12 T CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4399 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-624 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -4399 ($ $ |#3|)) (-15 -4399 ($ |#1| |#3|)) (-15 -3417 (|#1| $)) (-15 -3416 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -624))
-((-4399 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-624 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-624 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-3417 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-624 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-3416 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-624 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -4399 ($ $ |#3|)) (-15 -4399 ($ |#1| |#3|)) (-15 -3417 (|#1| $)) (-15 -3416 (|#3| $))))
-((-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) 10)))
-(((-625 |#1| |#2|) (-10 -8 (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-626 |#2|) (-1055)) (T -625))
-NIL
-(-10 -8 (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 41)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-626 |#1|) (-140) (-1055)) (T -626))
-((-4396 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-653 |t#1|) (-10 -8 (-15 -4396 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2408 ((|#2| |#2| (-1183) (-1183)) 16)))
-(((-627 |#1| |#2|) (-10 -7 (-15 -2408 (|#2| |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-966) (-29 |#1|))) (T -627))
-((-2408 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-966) (-29 *4))))))
-(-10 -7 (-15 -2408 (|#2| |#2| (-1183) (-1183))))
-((-2986 (((-112) $ $) 64)) (-3626 (((-112) $) 58)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-2409 ((|#1| $) 55)) (-1410 (((-3 $ "failed") $ $) NIL)) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4201 (((-2 (|:| -1949 $) (|:| -1948 (-412 |#2|))) (-412 |#2|)) 111 (|has| |#1| (-367)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 99) (((-3 |#2| #1#) $) 95)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) 27)) (-3908 (((-3 $ "failed") $) 88)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4221 (((-551) $) 22)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) 40)) (-3312 (($ |#1| (-551)) 24)) (-3612 ((|#1| $) 57)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) 101 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-1762 (((-776) $) 115 (|has| |#1| (-367)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 114 (|has| |#1| (-367)))) (-4260 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-4398 (((-551) $) 38)) (-4420 (((-412 |#2|) $) 47)) (-4396 (((-868) $) 69) (($ (-551)) 35) (($ $) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) 34) (($ |#2|) 25)) (-4127 ((|#1| $ (-551)) 72)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 9 T CONST)) (-3085 (($) 14 T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3473 (((-112) $ $) 21)) (-4287 (($ $) 51) (($ $ $) NIL)) (-4289 (($ $ $) 90)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 29) (($ $ $) 49)))
-(((-628 |#1| |#2|) (-13 (-232 |#2|) (-562) (-619 (-412 |#2|)) (-417 |#1|) (-1044 |#2|) (-10 -8 (-15 -4387 ((-112) $)) (-15 -4398 ((-551) $)) (-15 -4221 ((-551) $)) (-15 -4409 ($ $)) (-15 -3612 (|#1| $)) (-15 -2409 (|#1| $)) (-15 -4127 (|#1| $ (-551))) (-15 -3312 ($ |#1| (-551))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -4201 ((-2 (|:| -1949 $) (|:| -1948 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) (-562) (-1248 |#1|)) (T -628))
-((-4387 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3)))) (-4398 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-551)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3)))) (-4221 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-551)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3)))) (-4409 (*1 *1 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2)))) (-3612 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2)))) (-2409 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *2 (-562)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1248 *2)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-4 *2 (-562)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1248 *2)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-562)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| -1949 (-628 *4 *5)) (|:| -1948 (-412 *5)))) (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5)))))
-(-13 (-232 |#2|) (-562) (-619 (-412 |#2|)) (-417 |#1|) (-1044 |#2|) (-10 -8 (-15 -4387 ((-112) $)) (-15 -4398 ((-551) $)) (-15 -4221 ((-551) $)) (-15 -4409 ($ $)) (-15 -3612 (|#1| $)) (-15 -2409 (|#1| $)) (-15 -4127 (|#1| $ (-551))) (-15 -3312 ($ |#1| (-551))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -4201 ((-2 (|:| -1949 $) (|:| -1948 (-412 |#2|))) (-412 |#2|)))) |%noBranch|)))
-((-4132 (((-646 |#6|) (-646 |#4|) (-112)) 54)) (-2410 ((|#6| |#6|) 48)))
-(((-629 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2410 (|#6| |#6|)) (-15 -4132 ((-646 |#6|) (-646 |#4|) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2| |#3| |#4|)) (T -629))
-((-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 *10)) (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *10 (-1115 *5 *6 *7 *8)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *2 (-1115 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2410 (|#6| |#6|)) (-15 -4132 ((-646 |#6|) (-646 |#4|) (-112))))
-((-2411 (((-112) |#3| (-776) (-646 |#3|)) 32)) (-2412 (((-3 (-2 (|:| |polfac| (-646 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-646 (-1177 |#3|)))) "failed") |#3| (-646 (-1177 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1964 (-646 (-2 (|:| |irr| |#4|) (|:| -2576 (-551)))))) (-646 |#3|) (-646 |#1|) (-646 |#3|)) 73)))
-(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2411 ((-112) |#3| (-776) (-646 |#3|))) (-15 -2412 ((-3 (-2 (|:| |polfac| (-646 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-646 (-1177 |#3|)))) "failed") |#3| (-646 (-1177 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1964 (-646 (-2 (|:| |irr| |#4|) (|:| -2576 (-551)))))) (-646 |#3|) (-646 |#1|) (-646 |#3|)))) (-855) (-798) (-310) (-956 |#3| |#2| |#1|)) (T -630))
-((-2412 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1964 (-646 (-2 (|:| |irr| *10) (|:| -2576 (-551))))))) (-5 *6 (-646 *3)) (-5 *7 (-646 *8)) (-4 *8 (-855)) (-4 *3 (-310)) (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-798)) (-5 *2 (-2 (|:| |polfac| (-646 *10)) (|:| |correct| *3) (|:| |corrfact| (-646 (-1177 *3))))) (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-646 (-1177 *3))))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-776)) (-5 *5 (-646 *3)) (-4 *3 (-310)) (-4 *6 (-855)) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) (-4 *8 (-956 *3 *7 *6)))))
-(-10 -7 (-15 -2411 ((-112) |#3| (-776) (-646 |#3|))) (-15 -2412 ((-3 (-2 (|:| |polfac| (-646 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-646 (-1177 |#3|)))) "failed") |#3| (-646 (-1177 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1964 (-646 (-2 (|:| |irr| |#4|) (|:| -2576 (-551)))))) (-646 |#3|) (-646 |#1|) (-646 |#3|))))
-((-2986 (((-112) $ $) NIL)) (-3969 (((-1141) $) 11)) (-3970 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-631) (-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))) (T -631))
-((-3970 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))))
-(-13 (-1089) (-10 -8 (-15 -3970 ((-1141) $)) (-15 -3969 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-4384 (((-646 |#1|) $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-4386 (($ $) 77)) (-4392 (((-669 |#1| |#2|) $) 60)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 81)) (-2413 (((-646 (-296 |#2|)) $ $) 42)) (-3682 (((-1126) $) NIL)) (-4393 (($ (-669 |#1| |#2|)) 56)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) 66) (((-1288 |#1| |#2|) $) NIL) (((-1293 |#1| |#2|) $) 74)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 61 T CONST)) (-2414 (((-646 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) 41)) (-2415 (((-646 (-669 |#1| |#2|)) (-646 |#1|)) 73)) (-3084 (((-646 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) 46)) (-3473 (((-112) $ $) 62)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ $ $) 52)))
-(((-632 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -4393 ($ (-669 |#1| |#2|))) (-15 -4392 ((-669 |#1| |#2|) $)) (-15 -3084 ((-646 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -4396 ((-1288 |#1| |#2|) $)) (-15 -4396 ((-1293 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -4384 ((-646 |#1|) $)) (-15 -2415 ((-646 (-669 |#1| |#2|)) (-646 |#1|))) (-15 -2414 ((-646 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-646 (-296 |#2|)) $ $)))) (-855) (-13 (-173) (-722 (-412 (-551)))) (-925)) (T -632))
-((-4393 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-5 *1 (-632 *3 *4 *5)) (-14 *5 (-925)))) (-4392 (*1 *2 *1) (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-13 (-173) (-722 (-412 (-551))))) (-14 *4 (-925)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-855)) (-5 *2 (-646 (-669 *4 *5))) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-551))))) (-14 *6 (-925)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))) (-2413 (*1 *2 *1 *1) (-12 (-5 *2 (-646 (-296 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))))
-(-13 (-478) (-10 -8 (-15 -4393 ($ (-669 |#1| |#2|))) (-15 -4392 ((-669 |#1| |#2|) $)) (-15 -3084 ((-646 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -4396 ((-1288 |#1| |#2|) $)) (-15 -4396 ((-1293 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -4384 ((-646 |#1|) $)) (-15 -2415 ((-646 (-669 |#1| |#2|)) (-646 |#1|))) (-15 -2414 ((-646 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-646 (-296 |#2|)) $ $))))
-((-4132 (((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112)) 103) (((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112)) 77)) (-2416 (((-112) (-646 (-785 |#1| (-869 |#2|)))) 26)) (-2420 (((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112)) 102)) (-2419 (((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112)) 76)) (-2418 (((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|)))) 30)) (-2417 (((-3 (-646 (-785 |#1| (-869 |#2|))) "failed") (-646 (-785 |#1| (-869 |#2|)))) 29)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -2416 ((-112) (-646 (-785 |#1| (-869 |#2|))))) (-15 -2417 ((-3 (-646 (-785 |#1| (-869 |#2|))) "failed") (-646 (-785 |#1| (-869 |#2|))))) (-15 -2418 ((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|))))) (-15 -2419 ((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2420 ((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4132 ((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4132 ((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112)))) (-457) (-646 (-1183))) (T -633))
-((-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-646 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-646 (-1183))) (-5 *1 (-633 *3 *4)))) (-2417 (*1 *2 *2) (|partial| -12 (-5 *2 (-646 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-646 (-1183))) (-5 *1 (-633 *3 *4)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-646 (-785 *4 (-869 *5)))) (-4 *4 (-457)) (-14 *5 (-646 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
-(-10 -7 (-15 -2416 ((-112) (-646 (-785 |#1| (-869 |#2|))))) (-15 -2417 ((-3 (-646 (-785 |#1| (-869 |#2|))) "failed") (-646 (-785 |#1| (-869 |#2|))))) (-15 -2418 ((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|))))) (-15 -2419 ((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2420 ((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4132 ((-646 (-1052 |#1| |#2|)) (-646 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4132 ((-646 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-646 (-785 |#1| (-869 |#2|))) (-112))))
-((-3466 (((-113) (-113)) 88)) (-2424 ((|#2| |#2|) 28)) (-3253 ((|#2| |#2| (-1098 |#2|)) 84) ((|#2| |#2| (-1183)) 50)) (-2422 ((|#2| |#2|) 27)) (-2423 ((|#2| |#2|) 29)) (-2421 (((-112) (-113)) 33)) (-2426 ((|#2| |#2|) 24)) (-2427 ((|#2| |#2|) 26)) (-2425 ((|#2| |#2|) 25)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -2427 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (-15 -3253 (|#2| |#2| (-1183))) (-15 -3253 (|#2| |#2| (-1098 |#2|)))) (-562) (-13 (-426 |#1|) (-1008) (-1208))) (T -634))
-((-3253 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-426 *4) (-1008) (-1208))) (-4 *4 (-562)) (-5 *1 (-634 *4 *2)))) (-3253 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-426 *4) (-1008) (-1208))))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008) (-1208))))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-634 *3 *4)) (-4 *4 (-13 (-426 *3) (-1008) (-1208))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-634 *4 *5)) (-4 *5 (-13 (-426 *4) (-1008) (-1208))))))
-(-10 -7 (-15 -2421 ((-112) (-113))) (-15 -3466 ((-113) (-113))) (-15 -2427 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (-15 -3253 (|#2| |#2| (-1183))) (-15 -3253 (|#2| |#2| (-1098 |#2|))))
-((-3933 (($ $) 38)) (-4089 (($ $) 21)) (-3931 (($ $) 37)) (-4088 (($ $) 22)) (-3935 (($ $) 36)) (-4087 (($ $) 23)) (-4077 (($) 48)) (-4392 (($ $) 45)) (-2424 (($ $) 17)) (-3253 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)) (-4393 (($ $) 46)) (-2422 (($ $) 15)) (-2423 (($ $) 16)) (-3936 (($ $) 35)) (-4086 (($ $) 24)) (-3934 (($ $) 34)) (-4085 (($ $) 25)) (-3932 (($ $) 33)) (-4084 (($ $) 26)) (-3939 (($ $) 44)) (-3927 (($ $) 32)) (-3937 (($ $) 43)) (-3925 (($ $) 31)) (-3941 (($ $) 42)) (-3929 (($ $) 30)) (-3942 (($ $) 41)) (-3930 (($ $) 29)) (-3940 (($ $) 40)) (-3928 (($ $) 28)) (-3938 (($ $) 39)) (-3926 (($ $) 27)) (-2426 (($ $) 19)) (-2427 (($ $) 20)) (-2425 (($ $) 18)) (** (($ $ $) 47)))
-(((-635) (-140)) (T -635))
-((-2427 (*1 *1 *1) (-4 *1 (-635))) (-2426 (*1 *1 *1) (-4 *1 (-635))) (-2425 (*1 *1 *1) (-4 *1 (-635))) (-2424 (*1 *1 *1) (-4 *1 (-635))) (-2423 (*1 *1 *1) (-4 *1 (-635))) (-2422 (*1 *1 *1) (-4 *1 (-635))))
-(-13 (-966) (-1208) (-10 -8 (-15 -2427 ($ $)) (-15 -2426 ($ $)) (-15 -2425 ($ $)) (-15 -2424 ($ $)) (-15 -2423 ($ $)) (-15 -2422 ($ $))))
-(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-966) . T) ((-1208) . T) ((-1211) . T))
-((-2437 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-2430 (((-646 (-248 |#1| |#2|)) (-646 (-486 |#1| |#2|))) 92)) (-2431 (((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-869 |#1|)) 94) (((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)) (-869 |#1|)) 93)) (-2428 (((-2 (|:| |gblist| (-646 (-248 |#1| |#2|))) (|:| |gvlist| (-646 (-551)))) (-646 (-486 |#1| |#2|))) 137)) (-2435 (((-646 (-486 |#1| |#2|)) (-869 |#1|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|))) 107)) (-2429 (((-2 (|:| |glbase| (-646 (-248 |#1| |#2|))) (|:| |glval| (-646 (-551)))) (-646 (-248 |#1| |#2|))) 147)) (-2433 (((-1272 |#2|) (-486 |#1| |#2|) (-646 (-486 |#1| |#2|))) 71)) (-2432 (((-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|))) 48)) (-2436 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|))) 63)) (-2434 (((-248 |#1| |#2|) (-646 |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|))) 115)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -2428 ((-2 (|:| |gblist| (-646 (-248 |#1| |#2|))) (|:| |gvlist| (-646 (-551)))) (-646 (-486 |#1| |#2|)))) (-15 -2429 ((-2 (|:| |glbase| (-646 (-248 |#1| |#2|))) (|:| |glval| (-646 (-551)))) (-646 (-248 |#1| |#2|)))) (-15 -2430 ((-646 (-248 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2431 ((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2431 ((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2432 ((-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2433 ((-1272 |#2|) (-486 |#1| |#2|) (-646 (-486 |#1| |#2|)))) (-15 -2434 ((-248 |#1| |#2|) (-646 |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|)))) (-15 -2435 ((-646 (-486 |#1| |#2|)) (-869 |#1|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2436 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|)))) (-15 -2437 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) (-646 (-1183)) (-457)) (T -636))
-((-2437 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))) (-2436 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2435 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-646 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2434 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-248 *5 *6))) (-4 *6 (-457)) (-5 *2 (-248 *5 *6)) (-14 *5 (-646 (-1183))) (-5 *1 (-636 *5 *6)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-646 (-1183))) (-4 *6 (-457)) (-5 *2 (-1272 *6)) (-5 *1 (-636 *5 *6)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-646 (-486 *3 *4))) (-14 *3 (-646 (-1183))) (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))) (-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-646 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-2431 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-646 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-646 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-646 (-486 *4 *5))) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *2 (-646 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))) (-2429 (*1 *2 *3) (-12 (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |glbase| (-646 (-248 *4 *5))) (|:| |glval| (-646 (-551))))) (-5 *1 (-636 *4 *5)) (-5 *3 (-646 (-248 *4 *5))))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-646 (-486 *4 *5))) (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |gblist| (-646 (-248 *4 *5))) (|:| |gvlist| (-646 (-551))))) (-5 *1 (-636 *4 *5)))))
-(-10 -7 (-15 -2428 ((-2 (|:| |gblist| (-646 (-248 |#1| |#2|))) (|:| |gvlist| (-646 (-551)))) (-646 (-486 |#1| |#2|)))) (-15 -2429 ((-2 (|:| |glbase| (-646 (-248 |#1| |#2|))) (|:| |glval| (-646 (-551)))) (-646 (-248 |#1| |#2|)))) (-15 -2430 ((-646 (-248 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2431 ((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2431 ((-486 |#1| |#2|) (-646 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2432 ((-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2433 ((-1272 |#2|) (-486 |#1| |#2|) (-646 (-486 |#1| |#2|)))) (-15 -2434 ((-248 |#1| |#2|) (-646 |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|)))) (-15 -2435 ((-646 (-486 |#1| |#2|)) (-869 |#1|) (-646 (-486 |#1| |#2|)) (-646 (-486 |#1| |#2|)))) (-15 -2436 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-646 (-248 |#1| |#2|)))) (-15 -2437 ((-486 |#1| |#2|) (-248 |#1| |#2|))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL)) (-2390 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-51) $ (-1165) (-51)) 16) (((-51) $ (-1183) (-51)) 17)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 (-51) #1="failed") (-1165) $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-3847 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-51) #1#) (-1165) $) NIL)) (-3848 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (((-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-1694 (((-51) $ (-1165) (-51)) NIL (|has| $ (-6 -4444)))) (-3535 (((-51) $ (-1165)) NIL)) (-2134 (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-2438 (($ $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3026 (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2393 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2439 (($ (-393)) 9)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-2834 (((-646 (-1165)) $) NIL)) (-2400 (((-112) (-1165) $) NIL)) (-1372 (((-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL)) (-4057 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL)) (-2395 (((-646 (-1165)) $) NIL)) (-2396 (((-112) (-1165) $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-4250 (((-51) $) NIL (|has| (-1165) (-855)))) (-1444 (((-3 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) "failed") (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL)) (-2391 (($ $ (-51)) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (($ $ (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (($ $ (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-51)) (-646 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-296 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-646 (-296 (-51)))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2397 (((-646 (-51)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 (((-51) $ (-1165)) 14) (((-51) $ (-1165) (-51)) NIL) (((-51) $ (-1183)) 15)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107)))) (((-776) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107)))) (((-776) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-618 (-868))) (|has| (-51) (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-637) (-13 (-1199 (-1165) (-51)) (-10 -8 (-15 -2439 ($ (-393))) (-15 -2438 ($ $)) (-15 -4249 ((-51) $ (-1183))) (-15 -4237 ((-51) $ (-1183) (-51)))))) (T -637))
-((-2439 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))) (-2438 (*1 *1 *1) (-5 *1 (-637))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-51)) (-5 *1 (-637)))) (-4237 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1183)) (-5 *1 (-637)))))
-(-13 (-1199 (-1165) (-51)) (-10 -8 (-15 -2439 ($ (-393))) (-15 -2438 ($ $)) (-15 -4249 ((-51) $ (-1183))) (-15 -4237 ((-51) $ (-1183) (-51)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1957 (((-3 $ #1="failed")) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3661 (((-1272 (-694 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1272 (-694 |#1|)) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1907 (((-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-4174 (($) NIL T CONST)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1881 (((-3 $ #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1973 (((-694 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1905 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1971 (((-694 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2585 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2088 (((-1177 (-952 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-367))))) (-2588 (($ $ (-925)) NIL)) (-1903 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1883 (((-1177 |#1|) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1975 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1901 (((-1177 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-1895 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1977 (($ (-1272 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1272 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-3908 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3531 (((-925)) NIL (|has| |#2| (-371 |#1|)))) (-1892 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2612 (($ $ (-925)) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1890 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1882 (((-3 $ #1#)) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1974 (((-694 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1906 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1972 (((-694 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2586 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2092 (((-1177 (-952 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-367))))) (-2587 (($ $ (-925)) NIL)) (-1904 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1884 (((-1177 |#1|) $) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1976 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-1902 (((-1177 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-1896 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3681 (((-1165) $) NIL)) (-1887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1889 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1891 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3682 (((-1126) $) NIL)) (-1894 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4249 ((|#1| $ (-551)) NIL (|has| |#2| (-423 |#1|)))) (-3662 (((-694 |#1|) (-1272 $)) NIL (|has| |#2| (-423 |#1|))) (((-1272 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-694 |#1|) (-1272 $) (-1272 $)) NIL (|has| |#2| (-371 |#1|))) (((-1272 |#1|) $ (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-4420 (($ (-1272 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1272 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2080 (((-646 (-952 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-646 (-952 |#1|)) (-1272 $)) NIL (|has| |#2| (-371 |#1|)))) (-2774 (($ $ $) NIL)) (-1900 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4396 (((-868) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL (|has| |#2| (-423 |#1|)))) (-1885 (((-646 (-1272 |#1|))) NIL (-3978 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2775 (($ $ $ $) NIL)) (-1898 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2966 (($ (-694 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2773 (($ $ $) NIL)) (-1899 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1897 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1893 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) 20)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-638 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -4396 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -638))
-((-4396 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-638 *3 *2)) (-4 *2 (-749 *3)))))
-(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -4396 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
-((-4399 (($ $ |#2|) 10)))
-(((-639 |#1| |#2|) (-10 -8 (-15 -4399 (|#1| |#1| |#2|))) (-640 |#2|) (-173)) (T -639))
-NIL
-(-10 -8 (-15 -4399 (|#1| |#1| |#2|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3971 (($ $ $) 34)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 33 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-640 |#1|) (-140) (-173)) (T -640))
-((-3971 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-173)))) (-4399 (*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
-(-13 (-722 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3971 ($ $ $)) (IF (|has| |t#1| (-367)) (-15 -4399 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-2441 (((-3 (-847 |#2|) #1="failed") |#2| (-296 |#2|) (-1165)) 106) (((-3 (-847 |#2|) (-2 (|:| |leftHandLimit| (-3 (-847 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-847 |#2|) #1#))) "failed") |#2| (-296 (-847 |#2|))) 131)) (-2440 (((-3 (-837 |#2|) "failed") |#2| (-296 (-837 |#2|))) 136)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -2441 ((-3 (-847 |#2|) (-2 (|:| |leftHandLimit| (-3 (-847 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-847 |#2|) #1#))) "failed") |#2| (-296 (-847 |#2|)))) (-15 -2440 ((-3 (-837 |#2|) "failed") |#2| (-296 (-837 |#2|)))) (-15 -2441 ((-3 (-847 |#2|) #1#) |#2| (-296 |#2|) (-1165)))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -641))
-((-2441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-296 *3)) (-5 *5 (-1165)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-847 *3)) (-5 *1 (-641 *6 *3)))) (-2440 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-296 (-837 *3))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-837 *3)) (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))) (-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-296 (-847 *3))) (-4 *3 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-3 (-847 *3) (-2 (|:| |leftHandLimit| (-3 (-847 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-847 *3) #1#))) "failed")) (-5 *1 (-641 *5 *3)))))
-(-10 -7 (-15 -2441 ((-3 (-847 |#2|) (-2 (|:| |leftHandLimit| (-3 (-847 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-847 |#2|) #1#))) "failed") |#2| (-296 (-847 |#2|)))) (-15 -2440 ((-3 (-837 |#2|) "failed") |#2| (-296 (-837 |#2|)))) (-15 -2441 ((-3 (-847 |#2|) #1#) |#2| (-296 |#2|) (-1165))))
-((-2441 (((-3 (-847 (-412 (-952 |#1|))) #1="failed") (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))) (-1165)) 86) (((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2="failed") (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|)))) 20) (((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2#) (-412 (-952 |#1|)) (-296 (-847 (-952 |#1|)))) 35)) (-2440 (((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|)))) 23) (((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-837 (-952 |#1|)))) 43)))
-(((-642 |#1|) (-10 -7 (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2="failed") (-412 (-952 |#1|)) (-296 (-847 (-952 |#1|))))) (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2#) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -2440 ((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-837 (-952 |#1|))))) (-15 -2440 ((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) #1#) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))) (-1165)))) (-457)) (T -642))
-((-2441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-296 (-412 (-952 *6)))) (-5 *5 (-1165)) (-5 *3 (-412 (-952 *6))) (-4 *6 (-457)) (-5 *2 (-847 *3)) (-5 *1 (-642 *6)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-296 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-457)) (-5 *2 (-837 *3)) (-5 *1 (-642 *5)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-296 (-837 (-952 *5)))) (-4 *5 (-457)) (-5 *2 (-837 (-412 (-952 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-952 *5))))) (-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-296 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-457)) (-5 *2 (-3 (-847 *3) (-2 (|:| |leftHandLimit| (-3 (-847 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-847 *3) #1#))) #2="failed")) (-5 *1 (-642 *5)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-296 (-847 (-952 *5)))) (-4 *5 (-457)) (-5 *2 (-3 (-847 (-412 (-952 *5))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 *5))) #1#)) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 *5))) #1#))) #2#)) (-5 *1 (-642 *5)) (-5 *3 (-412 (-952 *5))))))
-(-10 -7 (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2="failed") (-412 (-952 |#1|)) (-296 (-847 (-952 |#1|))))) (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-847 (-412 (-952 |#1|))) #1#))) #2#) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -2440 ((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-837 (-952 |#1|))))) (-15 -2440 ((-837 (-412 (-952 |#1|))) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -2441 ((-3 (-847 (-412 (-952 |#1|))) #1#) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))) (-1165))))
-((-2444 (((-3 (-1272 (-412 |#1|)) "failed") (-1272 |#2|) |#2|) 64 (-3764 (|has| |#1| (-367)))) (((-3 (-1272 |#1|) "failed") (-1272 |#2|) |#2|) 49 (|has| |#1| (-367)))) (-2442 (((-112) (-1272 |#2|)) 33)) (-2443 (((-3 (-1272 |#1|) "failed") (-1272 |#2|)) 40)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -2442 ((-112) (-1272 |#2|))) (-15 -2443 ((-3 (-1272 |#1|) "failed") (-1272 |#2|))) (IF (|has| |#1| (-367)) (-15 -2444 ((-3 (-1272 |#1|) "failed") (-1272 |#2|) |#2|)) (-15 -2444 ((-3 (-1272 (-412 |#1|)) "failed") (-1272 |#2|) |#2|)))) (-562) (-644 |#1|)) (T -643))
-((-2444 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 *5)) (-3764 (-4 *5 (-367))) (-4 *5 (-562)) (-5 *2 (-1272 (-412 *5))) (-5 *1 (-643 *5 *4)))) (-2444 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) (-4 *5 (-562)) (-5 *2 (-1272 *5)) (-5 *1 (-643 *5 *4)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-1272 *5)) (-4 *5 (-644 *4)) (-4 *4 (-562)) (-5 *2 (-1272 *4)) (-5 *1 (-643 *4 *5)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1272 *5)) (-4 *5 (-644 *4)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
-(-10 -7 (-15 -2442 ((-112) (-1272 |#2|))) (-15 -2443 ((-3 (-1272 |#1|) "failed") (-1272 |#2|))) (IF (|has| |#1| (-367)) (-15 -2444 ((-3 (-1272 |#1|) "failed") (-1272 |#2|) |#2|)) (-15 -2444 ((-3 (-1272 (-412 |#1|)) "failed") (-1272 |#2|) |#2|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2445 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 39)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-1699 (((-1278) $ |#2| |#2|) 35)) (-1726 ((|#2| $) 23)) (-1738 ((|#2| $) 21)) (-3065 (($ (-1 |#3| |#3|) $) 32)) (-1324 (($ (-1 |#3| |#3|) $) 30)) (-3401 ((|#3| $) 26)) (-1713 (($ $ |#3|) 33)) (-1750 (((-112) |#3| $) 17)) (-1784 (((-649 |#3|) $) 15)) (-1852 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-608 |#1| |#2| |#3|) (-10 -8 (-15 -1699 ((-1278) |#1| |#2| |#2|)) (-15 -1713 (|#1| |#1| |#3|)) (-15 -3401 (|#3| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1738 (|#2| |#1|)) (-15 -1750 ((-112) |#3| |#1|)) (-15 -1784 ((-649 |#3|) |#1|)) (-15 -1852 (|#3| |#1| |#2|)) (-15 -1852 (|#3| |#1| |#2| |#3|)) (-15 -3065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1324 (|#1| (-1 |#3| |#3|) |#1|))) (-609 |#2| |#3|) (-1106) (-1223)) (T -608))
+NIL
+(-10 -8 (-15 -1699 ((-1278) |#1| |#2| |#2|)) (-15 -1713 (|#1| |#1| |#3|)) (-15 -3401 (|#3| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1738 (|#2| |#1|)) (-15 -1750 ((-112) |#3| |#1|)) (-15 -1784 ((-649 |#3|) |#1|)) (-15 -1852 (|#3| |#1| |#2|)) (-15 -1852 (|#3| |#1| |#2| |#3|)) (-15 -3065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1324 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#2| (-1106)))) (-1699 (((-1278) $ |#1| |#1|) 41 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-3074 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) 52)) (-2796 (((-649 |#2|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-1726 ((|#1| $) 44 (|has| |#1| (-855)))) (-2912 (((-649 |#2|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-1738 ((|#1| $) 45 (|has| |#1| (-855)))) (-3065 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#2| (-1106)))) (-1762 (((-649 |#1|) $) 47)) (-1773 (((-112) |#1| $) 48)) (-3461 (((-1126) $) 21 (|has| |#2| (-1106)))) (-3401 ((|#2| $) 43 (|has| |#1| (-855)))) (-1713 (($ $ |#2|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3469 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4443))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#2| (-1106)))) (-3996 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#2| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-609 |#1| |#2|) (-140) (-1106) (-1223)) (T -609))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-649 *4)))) (-1773 (*1 *2 *3 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-649 *3)))) (-1750 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1106)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *3 (-855)) (-4 *2 (-1223)))) (-1713 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-1699 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-1278)))))
+(-13 (-494 |t#2|) (-291 |t#1| |t#2|) (-10 -8 (-15 -1784 ((-649 |t#2|) $)) (-15 -1773 ((-112) |t#1| $)) (-15 -1762 ((-649 |t#1|) $)) (IF (|has| |t#2| (-1106)) (IF (|has| $ (-6 -4443)) (-15 -1750 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -1738 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3401 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -1713 ($ $ |t#2|)) (-15 -1699 ((-1278) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1106)) ((-618 (-867)) -2718 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867)))) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-1106) |has| |#2| (-1106)) ((-1223) . T))
+((-2388 (((-867) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+(((-610) (-13 (-618 (-867)) (-495 (-129)))) (T -610))
+NIL
+(-13 (-618 (-867)) (-495 (-129)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1222) $) 14) (($ (-649 (-1222))) 13)) (-1894 (((-649 (-1222)) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-611) (-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -2388 ($ (-649 (-1222)))) (-15 -1894 ((-649 (-1222)) $))))) (T -611))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))))
+(-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -2388 ($ (-649 (-1222)))) (-15 -1894 ((-649 (-1222)) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2591 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1941 (((-1273 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1273 (-694 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3352 (((-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3863 (($) NIL T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3047 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2766 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3331 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2747 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2808 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1616 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2840 (($ $ (-927)) NIL)) (-3307 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-3070 (((-1179 |#1|) $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2786 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3285 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-3202 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2806 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1273 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3904 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-3168 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1931 (($ $ (-927)) NIL)) (-3123 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3103 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3145 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3061 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2775 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3342 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2757 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2817 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1658 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2829 (($ $ (-927)) NIL)) (-3320 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-3081 (((-1179 |#1|) $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2797 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3297 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-3216 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2050 (((-1165) $) NIL)) (-3112 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3133 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3157 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3461 (((-1126) $) NIL)) (-3189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1852 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-1949 (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $) (-1273 $)) NIL (|has| |#2| (-371 |#1|))) (((-1273 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-1384 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1524 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-4356 (($ $ $) NIL)) (-3270 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2388 (((-867) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL (|has| |#2| (-422 |#1|)))) (-3092 (((-649 (-1273 |#1|))) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4365 (($ $ $ $) NIL)) (-3245 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3341 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-4347 (($ $ $) NIL)) (-3259 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3230 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3178 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1786 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-612 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -2388 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -612))
+((-2388 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3)))))
+(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -2388 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2991 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) 39)) (-4261 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL) (($) NIL)) (-1699 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-1165) |#1|) 49)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#1| "failed") (-1165) $) 52)) (-3863 (($) NIL T CONST)) (-3035 (($ $ (-1165)) 25)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-4218 (((-3 |#1| "failed") (-1165) $) 53) (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (|has| $ (-6 -4443)))) (-1678 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-3485 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-3001 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) 38)) (-3074 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-1165)) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-4025 (($ $) 54)) (-1675 (($ (-393)) 23) (($ (-393) (-1165)) 22)) (-3458 (((-393) $) 40)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443))) (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (((-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-1738 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2715 (((-649 (-1165)) $) 45)) (-1795 (((-112) (-1165) $) NIL)) (-3014 (((-1165) $) 41)) (-3481 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-1762 (((-649 (-1165)) $) NIL)) (-1773 (((-112) (-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 ((|#1| $) NIL (|has| (-1165) (-855)))) (-4316 (((-3 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) "failed") (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 43)) (-1852 ((|#1| $ (-1165) |#1|) NIL) ((|#1| $ (-1165)) 48)) (-3054 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL) (($) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (((-776) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (((-776) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-2388 (((-867) $) 21)) (-3026 (($ $) 26)) (-2040 (((-112) $ $) NIL)) (-3551 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
+(((-613 |#1|) (-13 (-368 (-393) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4443) (-15 -4025 ($ $)))) (-1106)) (T -613))
+((-4025 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1106)))))
+(-13 (-368 (-393) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4443) (-15 -4025 ($ $))))
+((-2060 (((-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) 16)) (-2715 (((-649 |#2|) $) 20)) (-1795 (((-112) |#2| $) 12)))
+(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -2715 ((-649 |#2|) |#1|)) (-15 -1795 ((-112) |#2| |#1|)) (-15 -2060 ((-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|))) (-615 |#2| |#3|) (-1106) (-1106)) (T -614))
+NIL
+(-10 -8 (-15 -2715 ((-649 |#2|) |#1|)) (-15 -1795 ((-112) |#2| |#1|)) (-15 -2060 ((-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 56 (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) 62)) (-3863 (($) 7 T CONST)) (-3437 (($ $) 59 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 63)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 55 (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 57 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2715 (((-649 |#1|) $) 64)) (-1795 (((-112) |#1| $) 65)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 40)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 41)) (-3461 (((-1126) $) 21 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 52)) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 42)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) 27 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 26 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 25 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 24 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3054 (($) 50) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 49)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 51)) (-2388 (((-867) $) 18 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 43)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-615 |#1| |#2|) (-140) (-1106) (-1106)) (T -615))
+((-1795 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-112)))) (-2715 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-649 *3)))) (-4218 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-2311 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+(-13 (-230 (-2 (|:| -1963 |t#1|) (|:| -2179 |t#2|))) (-10 -8 (-15 -1795 ((-112) |t#1| $)) (-15 -2715 ((-649 |t#1|) $)) (-15 -4218 ((-3 |t#2| "failed") |t#1| $)) (-15 -2311 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((-102) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) ((-618 (-867)) -2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-312 #0#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-494 #0#) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-1106) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) ((-1223) . T))
+((-1828 (((-617 |#2|) |#1|) 17)) (-1839 (((-3 |#1| "failed") (-617 |#2|)) 21)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -1828 ((-617 |#2|) |#1|)) (-15 -1839 ((-3 |#1| "failed") (-617 |#2|)))) (-1106) (-1106)) (T -616))
+((-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1106)) (-4 *2 (-1106)) (-5 *1 (-616 *2 *4)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
+(-10 -7 (-15 -1828 ((-617 |#2|) |#1|)) (-15 -1839 ((-3 |#1| "failed") (-617 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-1806 (((-3 (-1183) "failed") $) 48)) (-3811 (((-1278) $ (-776)) 24)) (-3975 (((-776) $) 23)) (-3642 (((-114) $) 12)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-1331 (($ (-114) (-649 |#1|) (-776)) 34) (($ (-1183)) 35)) (-2016 (((-112) $ (-114)) 18) (((-112) $ (-1183)) 16)) (-1399 (((-776) $) 20)) (-3461 (((-1126) $) NIL)) (-1384 (((-898 (-569)) $) 96 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 103 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 89 (|has| |#1| (-619 (-541))))) (-2388 (((-867) $) 73)) (-2040 (((-112) $ $) NIL)) (-1817 (((-649 |#1|) $) 22)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 52)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 54)))
+(((-617 |#1|) (-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3642 ((-114) $)) (-15 -1817 ((-649 |#1|) $)) (-15 -1399 ((-776) $)) (-15 -1331 ($ (-114) (-649 |#1|) (-776))) (-15 -1331 ($ (-1183))) (-15 -1806 ((-3 (-1183) "failed") $)) (-15 -2016 ((-112) $ (-114))) (-15 -2016 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-1106)) (T -617))
+((-3642 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1331 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1106)) (-5 *1 (-617 *5)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1806 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106)))))
+(-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3642 ((-114) $)) (-15 -1817 ((-649 |#1|) $)) (-15 -1399 ((-776) $)) (-15 -1331 ($ (-114) (-649 |#1|) (-776))) (-15 -1331 ($ (-1183))) (-15 -1806 ((-3 (-1183) "failed") $)) (-15 -2016 ((-112) $ (-114))) (-15 -2016 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+((-2388 ((|#1| $) 6)))
+(((-618 |#1|) (-140) (-1223)) (T -618))
+((-2388 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1223)))))
+(-13 (-10 -8 (-15 -2388 (|t#1| $))))
+((-1384 ((|#1| $) 6)))
+(((-619 |#1|) (-140) (-1223)) (T -619))
+((-1384 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1223)))))
+(-13 (-10 -8 (-15 -1384 (|t#1| $))))
+((-1850 (((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)) 15) (((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 16)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -1850 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1850 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)))) (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -620))
+((-1850 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-1179 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))) (-1850 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-1179 (-412 *5))) (-5 *1 (-620 *4 *5)) (-5 *3 (-412 *5)))))
+(-10 -7 (-15 -1850 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1850 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|))))
+((-2388 (($ |#1|) 6)))
+(((-621 |#1|) (-140) (-1223)) (T -621))
+((-2388 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1223)))))
+(-13 (-10 -8 (-15 -2388 ($ |t#1|))))
+((-2383 (((-112) $ $) NIL)) (-1585 (($) 14 T CONST)) (-2919 (($) 15 T CONST)) (-1752 (($ $ $) 29)) (-1728 (($ $) 27)) (-2050 (((-1165) $) NIL)) (-3631 (($ $ $) 30)) (-3461 (((-1126) $) NIL)) (-1840 (($) 11 T CONST)) (-3620 (($ $ $) 31)) (-2388 (((-867) $) 35)) (-1775 (((-112) $ (|[\|\|]| -1840)) 24) (((-112) $ (|[\|\|]| -1585)) 26) (((-112) $ (|[\|\|]| -2919)) 21)) (-2040 (((-112) $ $) NIL)) (-1739 (($ $ $) 28)) (-2853 (((-112) $ $) 18)))
+(((-622) (-13 (-973) (-10 -8 (-15 -1585 ($) -3600) (-15 -1775 ((-112) $ (|[\|\|]| -1840))) (-15 -1775 ((-112) $ (|[\|\|]| -1585))) (-15 -1775 ((-112) $ (|[\|\|]| -2919)))))) (T -622))
+((-1585 (*1 *1) (-5 *1 (-622))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1840)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1585)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2919)) (-5 *2 (-112)) (-5 *1 (-622)))))
+(-13 (-973) (-10 -8 (-15 -1585 ($) -3600) (-15 -1775 ((-112) $ (|[\|\|]| -1840))) (-15 -1775 ((-112) $ (|[\|\|]| -1585))) (-15 -1775 ((-112) $ (|[\|\|]| -2919)))))
+((-1384 (($ |#1|) 6)))
+(((-623 |#1|) (-140) (-1223)) (T -623))
+((-1384 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1223)))))
+(-13 (-10 -8 (-15 -1384 ($ |t#1|))))
+((-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
+(((-624 |#1| |#2|) (-10 -8 (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-625 |#2|) (-1055)) (T -624))
+NIL
+(-10 -8 (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 41)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-625 |#1|) (-140) (-1055)) (T -625))
+((-2388 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1055)))))
+(-13 (-1055) (-653 |t#1|) (-10 -8 (-15 -2388 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2211 (((-569) $) NIL (|has| |#1| (-853)))) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2769 (((-112) $) NIL (|has| |#1| (-853)))) (-2861 (((-112) $) NIL)) (-4378 ((|#1| $) 13)) (-2778 (((-112) $) NIL (|has| |#1| (-853)))) (-2095 (($ $ $) NIL (|has| |#1| (-853)))) (-2406 (($ $ $) NIL (|has| |#1| (-853)))) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-4390 ((|#3| $) 15)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL)) (-3263 (((-776)) 20 T CONST)) (-2040 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-853)))) (-1786 (($) NIL T CONST)) (-1796 (($) 12 T CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-626 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -2956 ($ $ |#3|)) (-15 -2956 ($ |#1| |#3|)) (-15 -4378 (|#1| $)) (-15 -4390 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -626))
+((-2956 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-2956 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4390 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -2956 ($ $ |#3|)) (-15 -2956 ($ |#1| |#3|)) (-15 -4378 (|#1| $)) (-15 -4390 (|#3| $))))
+((-1860 ((|#2| |#2| (-1183) (-1183)) 16)))
+(((-627 |#1| |#2|) (-10 -7 (-15 -1860 (|#2| |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -627))
+((-1860 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-29 *4))))))
+(-10 -7 (-15 -1860 (|#2| |#2| (-1183) (-1183))))
+((-2383 (((-112) $ $) 64)) (-2789 (((-112) $) 58)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3706 ((|#1| $) 55)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4108 (((-2 (|:| -2503 $) (|:| -2494 (-412 |#2|))) (-412 |#2|)) 111 (|has| |#1| (-367)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) 27)) (-3351 (((-3 $ "failed") $) 88)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4315 (((-569) $) 22)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) 40)) (-3838 (($ |#1| (-569)) 24)) (-1820 ((|#1| $) 57)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) 101 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ $) 93)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4409 (((-776) $) 115 (|has| |#1| (-367)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 114 (|has| |#1| (-367)))) (-3430 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2091 (((-569) $) 38)) (-1384 (((-412 |#2|) $) 47)) (-2388 (((-867) $) 69) (($ (-569)) 35) (($ $) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 34) (($ |#2|) 25)) (-1503 ((|#1| $ (-569)) 72)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 9 T CONST)) (-1796 (($) 14 T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2853 (((-112) $ $) 21)) (-2946 (($ $) 51) (($ $ $) NIL)) (-2935 (($ $ $) 90)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 29) (($ $ $) 49)))
+(((-628 |#1| |#2|) (-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1044 |#2|) (-10 -8 (-15 -2019 ((-112) $)) (-15 -2091 ((-569) $)) (-15 -4315 ((-569) $)) (-15 -1842 ($ $)) (-15 -1820 (|#1| $)) (-15 -3706 (|#1| $)) (-15 -1503 (|#1| $ (-569))) (-15 -3838 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -4108 ((-2 (|:| -2503 $) (|:| -2494 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) (-561) (-1249 |#1|)) (T -628))
+((-2019 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-4315 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-1842 (*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-1820 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-3706 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1249 *2)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1249 *2)))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -2503 (-628 *4 *5)) (|:| -2494 (-412 *5)))) (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5)))))
+(-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1044 |#2|) (-10 -8 (-15 -2019 ((-112) $)) (-15 -2091 ((-569) $)) (-15 -4315 ((-569) $)) (-15 -1842 ($ $)) (-15 -1820 (|#1| $)) (-15 -3706 (|#1| $)) (-15 -1503 (|#1| $ (-569))) (-15 -3838 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -4108 ((-2 (|:| -2503 $) (|:| -2494 (-412 |#2|))) (-412 |#2|)))) |%noBranch|)))
+((-1555 (((-649 |#6|) (-649 |#4|) (-112)) 54)) (-3722 ((|#6| |#6|) 48)))
+(((-629 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3722 (|#6| |#6|)) (-15 -1555 ((-649 |#6|) (-649 |#4|) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2| |#3| |#4|)) (T -629))
+((-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10)) (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *10 (-1115 *5 *6 *7 *8)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *2 (-1115 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3722 (|#6| |#6|)) (-15 -1555 ((-649 |#6|) (-649 |#4|) (-112))))
+((-3735 (((-112) |#3| (-776) (-649 |#3|)) 32)) (-3744 (((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2671 (-649 (-2 (|:| |irr| |#4|) (|:| -2727 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)) 73)))
+(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-112) |#3| (-776) (-649 |#3|))) (-15 -3744 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2671 (-649 (-2 (|:| |irr| |#4|) (|:| -2727 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)))) (-855) (-798) (-310) (-955 |#3| |#2| |#1|)) (T -630))
+((-3744 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2671 (-649 (-2 (|:| |irr| *10) (|:| -2727 (-569))))))) (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310)) (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798)) (-5 *2 (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3) (|:| |corrfact| (-649 (-1179 *3))))) (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1179 *3))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855)) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) (-4 *8 (-955 *3 *7 *6)))))
+(-10 -7 (-15 -3735 ((-112) |#3| (-776) (-649 |#3|))) (-15 -3744 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2671 (-649 (-2 (|:| |irr| |#4|) (|:| -2727 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|))))
+((-2383 (((-112) $ $) NIL)) (-2076 (((-1141) $) 11)) (-2065 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-631) (-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))) (T -631))
+((-2065 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))))
+(-13 (-1089) (-10 -8 (-15 -2065 ((-1141) $)) (-15 -2076 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2996 (((-649 |#1|) $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2008 (($ $) 77)) (-2616 (((-669 |#1| |#2|) $) 60)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 81)) (-3757 (((-649 (-297 |#2|)) $ $) 42)) (-3461 (((-1126) $) NIL)) (-4367 (($ (-669 |#1| |#2|)) 56)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) 66) (((-1288 |#1| |#2|) $) NIL) (((-1293 |#1| |#2|) $) 74)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 61 T CONST)) (-3770 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) 41)) (-3784 (((-649 (-669 |#1| |#2|)) (-649 |#1|)) 73)) (-2295 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) 46)) (-2853 (((-112) $ $) 62)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 52)))
+(((-632 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -4367 ($ (-669 |#1| |#2|))) (-15 -2616 ((-669 |#1| |#2|) $)) (-15 -2295 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -2388 ((-1288 |#1| |#2|) $)) (-15 -2388 ((-1293 |#1| |#2|) $)) (-15 -2008 ($ $)) (-15 -2996 ((-649 |#1|) $)) (-15 -3784 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3770 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3757 ((-649 (-297 |#2|)) $ $)))) (-855) (-13 (-173) (-722 (-412 (-569)))) (-927)) (T -632))
+((-4367 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5)) (-14 *5 (-927)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5))) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569))))) (-14 *6 (-927)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3757 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+(-13 (-478) (-10 -8 (-15 -4367 ($ (-669 |#1| |#2|))) (-15 -2616 ((-669 |#1| |#2|) $)) (-15 -2295 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -2388 ((-1288 |#1| |#2|) $)) (-15 -2388 ((-1293 |#1| |#2|) $)) (-15 -2008 ($ $)) (-15 -2996 ((-649 |#1|) $)) (-15 -3784 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3770 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3757 ((-649 (-297 |#2|)) $ $))))
+((-1555 (((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 103) (((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 77)) (-3796 (((-112) (-649 (-785 |#1| (-869 |#2|)))) 26)) (-3845 (((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 102)) (-3832 (((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 76)) (-3821 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) 30)) (-3809 (((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|)))) 29)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -3796 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3809 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -3821 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3832 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3845 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1555 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1555 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)))) (-457) (-649 (-1183))) (T -633))
+((-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))) (-3809 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457)) (-14 *5 (-649 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(-10 -7 (-15 -3796 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3809 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -3821 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3832 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3845 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1555 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1555 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))))
+((-2691 (($ $) 38)) (-2556 (($ $) 21)) (-2669 (($ $) 37)) (-2534 (($ $) 22)) (-2712 (($ $) 36)) (-2576 (($ $) 23)) (-4408 (($) 48)) (-2616 (($ $) 45)) (-4128 (($ $) 17)) (-3434 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)) (-4367 (($ $) 46)) (-2491 (($ $) 15)) (-2523 (($ $) 16)) (-2725 (($ $) 35)) (-2588 (($ $) 24)) (-2701 (($ $) 34)) (-2566 (($ $) 25)) (-2680 (($ $) 33)) (-2545 (($ $) 26)) (-4119 (($ $) 44)) (-2627 (($ $) 32)) (-4094 (($ $) 43)) (-2601 (($ $) 31)) (-4144 (($ $) 42)) (-2648 (($ $) 30)) (-1470 (($ $) 41)) (-2658 (($ $) 29)) (-4131 (($ $) 40)) (-2638 (($ $) 28)) (-4106 (($ $) 39)) (-2615 (($ $) 27)) (-3882 (($ $) 19)) (-3896 (($ $) 20)) (-3872 (($ $) 18)) (** (($ $ $) 47)))
+(((-634) (-140)) (T -634))
+((-3896 (*1 *1 *1) (-4 *1 (-634))) (-3882 (*1 *1 *1) (-4 *1 (-634))) (-3872 (*1 *1 *1) (-4 *1 (-634))) (-4128 (*1 *1 *1) (-4 *1 (-634))) (-2523 (*1 *1 *1) (-4 *1 (-634))) (-2491 (*1 *1 *1) (-4 *1 (-634))))
+(-13 (-965) (-1208) (-10 -8 (-15 -3896 ($ $)) (-15 -3882 ($ $)) (-15 -3872 ($ $)) (-15 -4128 ($ $)) (-15 -2523 ($ $)) (-15 -2491 ($ $))))
+(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-965) . T) ((-1208) . T) ((-1211) . T))
+((-3642 (((-114) (-114)) 88)) (-4128 ((|#2| |#2|) 28)) (-3434 ((|#2| |#2| (-1098 |#2|)) 84) ((|#2| |#2| (-1183)) 50)) (-2491 ((|#2| |#2|) 27)) (-2523 ((|#2| |#2|) 29)) (-3858 (((-112) (-114)) 33)) (-3882 ((|#2| |#2|) 24)) (-3896 ((|#2| |#2|) 26)) (-3872 ((|#2| |#2|) 25)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3896 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1183))) (-15 -3434 (|#2| |#2| (-1098 |#2|)))) (-561) (-13 (-435 |#1|) (-1008) (-1208))) (T -635))
+((-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4)) (-4 *4 (-13 (-435 *3) (-1008) (-1208))))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))))))
+(-10 -7 (-15 -3858 ((-112) (-114))) (-15 -3642 ((-114) (-114))) (-15 -3896 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1183))) (-15 -3434 (|#2| |#2| (-1098 |#2|))))
+((-4013 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-3932 (((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 92)) (-3943 (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 94) (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 93)) (-3908 (((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|))) 137)) (-3991 (((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 107)) (-3919 (((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|))) 147)) (-3966 (((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|))) 71)) (-3954 (((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 48)) (-4002 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 63)) (-3978 (((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 115)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -3908 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -3919 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3932 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3943 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3943 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3954 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3966 ((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -3978 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -3991 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4002 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4013 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) (-649 (-1183)) (-457)) (T -636))
+((-4013 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))) (-4002 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-3991 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-3978 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457)) (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1183))) (-5 *1 (-636 *5 *6)))) (-3966 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-1273 *6)) (-5 *1 (-636 *5 *6)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3943 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))) (-3919 (*1 *2 *3) (-12 (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569))))) (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |gblist| (-649 (-248 *4 *5))) (|:| |gvlist| (-649 (-569))))) (-5 *1 (-636 *4 *5)))))
+(-10 -7 (-15 -3908 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -3919 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3932 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3943 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3943 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3954 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3966 ((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -3978 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -3991 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4002 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4013 ((-486 |#1| |#2|) (-248 |#1| |#2|))))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL)) (-1699 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-52) $ (-1165) (-52)) 16) (((-52) $ (-1183) (-52)) 17)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 (-52) "failed") (-1165) $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-4218 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-52) "failed") (-1165) $) NIL)) (-1678 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (((-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3074 (((-52) $ (-1165) (-52)) NIL (|has| $ (-6 -4444)))) (-3007 (((-52) $ (-1165)) NIL)) (-2796 (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-4025 (($ $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2912 (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1738 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4204 (($ (-393)) 9)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-2715 (((-649 (-1165)) $) NIL)) (-1795 (((-112) (-1165) $) NIL)) (-3481 (((-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL)) (-2086 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL)) (-1762 (((-649 (-1165)) $) NIL)) (-1773 (((-112) (-1165) $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-3401 (((-52) $) NIL (|has| (-1165) (-855)))) (-4316 (((-3 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) "failed") (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL)) (-1713 (($ $ (-52)) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (($ $ (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1784 (((-649 (-52)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 (((-52) $ (-1165)) 14) (((-52) $ (-1165) (-52)) NIL) (((-52) $ (-1183)) 15)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 (-52))) (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-637) (-13 (-1199 (-1165) (-52)) (-10 -8 (-15 -4204 ($ (-393))) (-15 -4025 ($ $)) (-15 -1852 ((-52) $ (-1183))) (-15 -3861 ((-52) $ (-1183) (-52)))))) (T -637))
+((-4204 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))) (-4025 (*1 *1 *1) (-5 *1 (-637))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-637)))) (-3861 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1183)) (-5 *1 (-637)))))
+(-13 (-1199 (-1165) (-52)) (-10 -8 (-15 -4204 ($ (-393))) (-15 -4025 ($ $)) (-15 -1852 ((-52) $ (-1183))) (-15 -3861 ((-52) $ (-1183) (-52)))))
+((-2956 (($ $ |#2|) 10)))
+(((-638 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| |#1| |#2|))) (-639 |#2|) (-173)) (T -638))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1| |#2|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3709 (($ $ $) 34)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 33 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-639 |#1|) (-140) (-173)) (T -639))
+((-3709 (*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)))) (-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(-13 (-722 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3709 ($ $ $)) (IF (|has| |t#1| (-367)) (-15 -2956 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2591 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1941 (((-1273 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1273 (-694 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3352 (((-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3863 (($) NIL T CONST)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3047 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2766 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3331 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2747 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2808 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1616 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2840 (($ $ (-927)) NIL)) (-3307 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-3070 (((-1179 |#1|) $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2786 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3285 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-3202 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2806 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1273 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3904 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-3168 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1931 (($ $ (-927)) NIL)) (-3123 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3103 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3145 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3061 (((-3 $ "failed")) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2775 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3342 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2757 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2817 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1658 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2829 (($ $ (-927)) NIL)) (-3320 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-3081 (((-1179 |#1|) $) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2797 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3297 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-3216 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2050 (((-1165) $) NIL)) (-3112 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3133 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3157 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3461 (((-1126) $) NIL)) (-3189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1852 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-1949 (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $) (-1273 $)) NIL (|has| |#2| (-371 |#1|))) (((-1273 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-1384 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1524 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-4356 (($ $ $) NIL)) (-3270 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2388 (((-867) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL (|has| |#2| (-422 |#1|)))) (-3092 (((-649 (-1273 |#1|))) NIL (-2718 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4365 (($ $ $ $) NIL)) (-3245 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3341 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-4347 (($ $ $) NIL)) (-3259 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3230 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3178 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-640 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -2388 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -640))
+((-2388 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3)))))
+(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -2388 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
+((-4047 (((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165)) 106) (((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|))) 131)) (-4036 (((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|))) 136)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -4047 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -4036 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -4047 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -641))
+((-4047 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1165)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3)))) (-4036 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-297 (-838 *3))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-4047 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-641 *5 *3)))))
+(-10 -7 (-15 -4047 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -4036 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -4047 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165))))
+((-4047 (((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165)) 86) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 20) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|)))) 35)) (-4036 (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 23) (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|)))) 43)))
+(((-642 |#1|) (-10 -7 (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -4036 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -4036 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165)))) (-457)) (T -642))
+((-4047 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1165)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3)) (-5 *1 (-642 *6)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))) (-4047 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-642 *5)))) (-4047 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-3 (-848 (-412 (-958 *5))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))) "failed")) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))))
+(-10 -7 (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -4036 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -4036 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -4047 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165))))
+((-4082 (((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|) 64 (-1728 (|has| |#1| (-367)))) (((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|) 49 (|has| |#1| (-367)))) (-4059 (((-112) (-1273 |#2|)) 33)) (-4071 (((-3 (-1273 |#1|) "failed") (-1273 |#2|)) 40)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -4059 ((-112) (-1273 |#2|))) (-15 -4071 ((-3 (-1273 |#1|) "failed") (-1273 |#2|))) (IF (|has| |#1| (-367)) (-15 -4082 ((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|)) (-15 -4082 ((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|)))) (-561) (-644 |#1|)) (T -643))
+((-4082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-1728 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1273 (-412 *5))) (-5 *1 (-643 *5 *4)))) (-4082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-1273 *5)) (-5 *1 (-643 *5 *4)))) (-4071 (*1 *2 *3) (|partial| -12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-1273 *4)) (-5 *1 (-643 *4 *5)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
+(-10 -7 (-15 -4059 ((-112) (-1273 |#2|))) (-15 -4071 ((-3 (-1273 |#1|) "failed") (-1273 |#2|))) (IF (|has| |#1| (-367)) (-15 -4082 ((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|)) (-15 -4082 ((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4091 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 39)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-644 |#1|) (-140) (-1055)) (T -644))
-((-2445 (*1 *2 *3) (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055)) (-5 *2 (-694 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *1)) (-5 *4 (-1272 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -1758 (-694 *5)) (|:| |vec| (-1272 *5)))))))
-(-13 (-1055) (-10 -8 (-15 -2445 ((-694 |t#1|) (-694 $))) (-15 -2445 ((-2 (|:| -1758 (-694 |t#1|)) (|:| |vec| (-1272 |t#1|))) (-694 $) (-1272 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 16 T CONST)) (-3473 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-645 |#1|) (-140) (-1063)) (T -645))
+((-4091 (*1 *2 *3) (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055)) (-5 *2 (-694 *4)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *1)) (-5 *4 (-1273 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -4368 (-694 *5)) (|:| |vec| (-1273 *5)))))))
+(-13 (-1055) (-10 -8 (-15 -4091 ((-694 |t#1|) (-694 $))) (-15 -4091 ((-2 (|:| -4368 (-694 |t#1|)) (|:| |vec| (-1273 |t#1|))) (-694 $) (-1273 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 16 T CONST)) (-2853 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-645 |#1|) (-140) (-1064)) (T -645))
NIL
(-13 (-651 |t#1|) (-1057 |t#1|))
-(((-102) . T) ((-618 (-868)) . T) ((-651 |#1|) . T) ((-1057 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) NIL)) (-4244 ((|#1| $) NIL)) (-4246 (($ $) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1908 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3328 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4236 (($ $ $) NIL (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-2448 (($ $ $) 37 (|has| |#1| (-1107)))) (-2447 (($ $ $) 41 (|has| |#1| (-1107)))) (-2446 (($ $ $) 44 (|has| |#1| (-1107)))) (-1688 (($ (-1 (-112) |#1|) $) NIL)) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4245 ((|#1| $) NIL)) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-4248 (($ $) 23) (($ $ (-776)) NIL)) (-2544 (($ $) NIL (|has| |#1| (-1107)))) (-1443 (($ $) 36 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) NIL (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) NIL)) (-3848 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3884 (((-112) $) NIL)) (-3861 (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107))) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) (-1 (-112) |#1|) $) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2450 (((-112) $) 11)) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2451 (($) 9 T CONST)) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3277 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3959 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3983 (($ |#1|) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4247 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4057 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) 20) (($ $ (-776)) NIL)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3885 (((-112) $) NIL)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) 39)) (-4014 (($) 38)) (-4249 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1239 (-551))) NIL) ((|#1| $ (-551)) 42) ((|#1| $ (-551) |#1|) NIL)) (-3448 (((-551) $ $) NIL)) (-1689 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-4083 (((-112) $) NIL)) (-4241 (($ $) NIL)) (-4239 (($ $) NIL (|has| $ (-6 -4444)))) (-4242 (((-776) $) NIL)) (-4243 (($ $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) 53 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-3902 (($ |#1| $) 12)) (-4240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4251 (($ $ $) 35) (($ |#1| $) 43) (($ (-646 $)) NIL) (($ $ |#1|) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2449 (($ $ $) 13)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2918 (((-1165) $) 31 (|has| |#1| (-826))) (((-1165) $ (-112)) 32 (|has| |#1| (-826))) (((-1278) (-828) $) 33 (|has| |#1| (-826))) (((-1278) (-828) $ (-112)) 34 (|has| |#1| (-826)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-646 |#1|) (-13 (-671 |#1|) (-10 -8 (-15 -2451 ($) -4402) (-15 -2450 ((-112) $)) (-15 -3902 ($ |#1| $)) (-15 -2449 ($ $ $)) (IF (|has| |#1| (-1107)) (PROGN (-15 -2448 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -2446 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-1222)) (T -646))
-((-2451 (*1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-1222)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222)))) (-2449 (*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222)))) (-2448 (*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))) (-2447 (*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))) (-2446 (*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))))
-(-13 (-671 |#1|) (-10 -8 (-15 -2451 ($) -4402) (-15 -2450 ((-112) $)) (-15 -3902 ($ |#1| $)) (-15 -2449 ($ $ $)) (IF (|has| |#1| (-1107)) (PROGN (-15 -2448 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -2446 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|)))
-((-4291 (((-646 |#2|) (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|) 16)) (-4292 ((|#2| (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|) 18)) (-4408 (((-646 |#2|) (-1 |#2| |#1|) (-646 |#1|)) 13)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -4291 ((-646 |#2|) (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|)) (-15 -4408 ((-646 |#2|) (-1 |#2| |#1|) (-646 |#1|)))) (-1222) (-1222)) (T -647))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-646 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-646 *6)) (-5 *1 (-647 *5 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-646 *5)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-647 *5 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-646 *6)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-5 *2 (-646 *5)) (-5 *1 (-647 *6 *5)))))
-(-10 -7 (-15 -4291 ((-646 |#2|) (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-646 |#1|) |#2|)) (-15 -4408 ((-646 |#2|) (-1 |#2| |#1|) (-646 |#1|))))
-((-3864 ((|#2| (-646 |#1|) (-646 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-646 |#1|) (-646 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) |#2|) 17) ((|#2| (-646 |#1|) (-646 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|)) 12)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|))) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1|)) (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) |#2|)) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1| |#2|)) (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) (-1 |#2| |#1|))) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1| (-1 |#2| |#1|)))) (-1107) (-1222)) (T -648))
-((-3864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1107)) (-4 *2 (-1222)) (-5 *1 (-648 *5 *2)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-646 *5)) (-5 *4 (-646 *6)) (-4 *5 (-1107)) (-4 *6 (-1222)) (-5 *1 (-648 *5 *6)))) (-3864 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-4 *5 (-1107)) (-4 *2 (-1222)) (-5 *1 (-648 *5 *2)))) (-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 *5)) (-4 *6 (-1107)) (-4 *5 (-1222)) (-5 *2 (-1 *5 *6)) (-5 *1 (-648 *6 *5)))) (-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-4 *5 (-1107)) (-4 *2 (-1222)) (-5 *1 (-648 *5 *2)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *6)) (-4 *5 (-1107)) (-4 *6 (-1222)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *6)))))
-(-10 -7 (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|))) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1|)) (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) |#2|)) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1| |#2|)) (-15 -3864 ((-1 |#2| |#1|) (-646 |#1|) (-646 |#2|) (-1 |#2| |#1|))) (-15 -3864 (|#2| (-646 |#1|) (-646 |#2|) |#1| (-1 |#2| |#1|))))
-((-4408 (((-646 |#3|) (-1 |#3| |#1| |#2|) (-646 |#1|) (-646 |#2|)) 21)))
-(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -4408 ((-646 |#3|) (-1 |#3| |#1| |#2|) (-646 |#1|) (-646 |#2|)))) (-1222) (-1222) (-1222)) (T -649))
-((-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-646 *6)) (-5 *5 (-646 *7)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-646 *8)) (-5 *1 (-649 *6 *7 *8)))))
-(-10 -7 (-15 -4408 ((-646 |#3|) (-1 |#3| |#1| |#2|) (-646 |#1|) (-646 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 11) (($ (-1188)) NIL) (((-1188) $) NIL) ((|#1| $) 8)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-650 |#1|) (-13 (-1089) (-618 |#1|)) (-1107)) (T -650))
+(((-102) . T) ((-618 (-867)) . T) ((-651 |#1|) . T) ((-1057 |#1|) . T) ((-1106) . T))
+((-4104 ((|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|) 17) ((|#2| (-649 |#1|) (-649 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|)) 12)))
+(((-646 |#1| |#2|) (-10 -7 (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)))) (-1106) (-1223)) (T -646))
+((-4104 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4104 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-646 *5 *6)))) (-4104 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1106)) (-4 *5 (-1223)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) (-4104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6)))))
+(-10 -7 (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4104 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4104 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|))))
+((-3535 (((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 16)) (-3485 ((|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 18)) (-1324 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 13)))
+(((-647 |#1| |#2|) (-10 -7 (-15 -3535 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1324 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-1223) (-1223)) (T -647))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-647 *5 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5)))))
+(-10 -7 (-15 -3535 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1324 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|))))
+((-1324 (((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)) 21)))
+(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -1324 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)))) (-1223) (-1223) (-1223)) (T -648))
+((-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-649 *8)) (-5 *1 (-648 *6 *7 *8)))))
+(-10 -7 (-15 -1324 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) NIL)) (-2498 ((|#1| $) NIL)) (-1528 (($ $) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3364 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3246 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3116 (($ $ $) NIL (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "rest" $) NIL (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3330 (($ $ $) 37 (|has| |#1| (-1106)))) (-3319 (($ $ $) 41 (|has| |#1| (-1106)))) (-3308 (($ $ $) 44 (|has| |#1| (-1106)))) (-1816 (($ (-1 (-112) |#1|) $) NIL)) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2487 ((|#1| $) NIL)) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3414 (($ $) 23) (($ $ (-776)) NIL)) (-3686 (($ $) NIL (|has| |#1| (-1106)))) (-3437 (($ $) 36 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3154 (((-112) $) NIL)) (-3975 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1714 (((-112) $) 11)) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2973 (($) 9 T CONST)) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3644 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3719 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3271 (($ |#1|) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1702 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-2086 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) 20) (($ $ (-776)) NIL)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3166 (((-112) $) NIL)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) 39)) (-2825 (($) 38)) (-1852 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) 42) ((|#1| $ (-569) |#1|) NIL)) (-1797 (((-569) $ $) NIL)) (-1827 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-2284 (((-112) $) NIL)) (-3161 (($ $) NIL)) (-3137 (($ $) NIL (|has| $ (-6 -4444)))) (-3172 (((-776) $) NIL)) (-3182 (($ $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) 53 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-1812 (($ |#1| $) 12)) (-3149 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3632 (($ $ $) 35) (($ |#1| $) 43) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1818 (($ $ $) 13)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3218 (((-1165) $) 31 (|has| |#1| (-833))) (((-1165) $ (-112)) 32 (|has| |#1| (-833))) (((-1278) (-827) $) 33 (|has| |#1| (-833))) (((-1278) (-827) $ (-112)) 34 (|has| |#1| (-833)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-649 |#1|) (-13 (-671 |#1|) (-10 -8 (-15 -2973 ($) -3600) (-15 -1714 ((-112) $)) (-15 -1812 ($ |#1| $)) (-15 -1818 ($ $ $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -3330 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -3308 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1223)) (T -649))
+((-2973 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1223)))) (-1812 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-1818 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-3330 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))) (-3319 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))) (-3308 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
+(-13 (-671 |#1|) (-10 -8 (-15 -2973 ($) -3600) (-15 -1714 ((-112) $)) (-15 -1812 ($ |#1| $)) (-15 -1818 ($ $ $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -3330 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -3308 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 11) (($ (-1188)) NIL) (((-1188) $) NIL) ((|#1| $) 8)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-650 |#1|) (-13 (-1089) (-618 |#1|)) (-1106)) (T -650))
NIL
(-13 (-1089) (-618 |#1|))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 16 T CONST)) (-3473 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-651 |#1|) (-140) (-1063)) (T -651))
-((-3528 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1063)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1063)))))
-(-13 (-1107) (-10 -8 (-15 (-3528) ($) -4402) (-15 -3626 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2452 (($ |#1| |#1| $) 46)) (-1312 (((-112) $ (-776)) NIL)) (-1688 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2544 (($ $) 48)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) 59 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 9 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 37)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) 50)) (-4057 (($ |#1| $) 29) (($ |#1| $ (-776)) 45)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1373 ((|#1| $) 53)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 23)) (-4014 (($) 28)) (-2453 (((-112) $) 57)) (-2543 (((-646 (-2 (|:| -2264 |#1|) (|:| -2135 (-776)))) $) 69)) (-1573 (($) 26) (($ (-646 |#1|)) 19)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) 66 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 20)) (-4420 (((-540) $) 34 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) NIL)) (-4396 (((-868) $) 14 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 24)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 71 (|has| |#1| (-1107)))) (-4407 (((-776) $) 17 (|has| $ (-6 -4443)))))
-(((-652 |#1|) (-13 (-700 |#1|) (-10 -8 (-6 -4443) (-15 -2453 ((-112) $)) (-15 -2452 ($ |#1| |#1| $)))) (-1107)) (T -652))
-((-2453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1107)))) (-2452 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1107)))))
-(-13 (-700 |#1|) (-10 -8 (-6 -4443) (-15 -2453 ((-112) $)) (-15 -2452 ($ |#1| |#1| $))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27)))
-(((-653 |#1|) (-140) (-1063)) (T -653))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 16 T CONST)) (-2853 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-651 |#1|) (-140) (-1064)) (T -651))
+((-1786 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064)))))
+(-13 (-1106) (-10 -8 (-15 (-1786) ($) -3600) (-15 -2789 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3426 (($ |#1| |#1| $) 46)) (-1610 (((-112) $ (-776)) NIL)) (-1816 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-3686 (($ $) 48)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) 59 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 9 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 37)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) 50)) (-2086 (($ |#1| $) 29) (($ |#1| $ (-776)) 45)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3493 ((|#1| $) 53)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 23)) (-2825 (($) 28)) (-4103 (((-112) $) 57)) (-3672 (((-649 (-2 (|:| -2179 |#1|) (|:| -3469 (-776)))) $) 69)) (-3054 (($) 26) (($ (-649 |#1|)) 19)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) 66 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 20)) (-1384 (((-541) $) 34 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) NIL)) (-2388 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 24)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 71 (|has| |#1| (-1106)))) (-2394 (((-776) $) 17 (|has| $ (-6 -4443)))))
+(((-652 |#1|) (-13 (-700 |#1|) (-10 -8 (-6 -4443) (-15 -4103 ((-112) $)) (-15 -3426 ($ |#1| |#1| $)))) (-1106)) (T -652))
+((-4103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1106)))) (-3426 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1106)))))
+(-13 (-700 |#1|) (-10 -8 (-6 -4443) (-15 -4103 ((-112) $)) (-15 -3426 ($ |#1| |#1| $))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27)))
+(((-653 |#1|) (-140) (-1064)) (T -653))
NIL
(-13 (-21) (-651 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776) $) 17)) (-2458 (($ $ |#1|) 69)) (-2460 (($ $) 39)) (-2461 (($ $) 37)) (-3595 (((-3 |#1| "failed") $) 61)) (-3594 ((|#1| $) NIL)) (-2495 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3974 (((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-551)) 56)) (-2462 ((|#1| $ (-551)) 35)) (-2463 ((|#2| $ (-551)) 34)) (-2454 (($ (-1 |#1| |#1|) $) 41)) (-2455 (($ (-1 |#2| |#2|) $) 47)) (-2459 (($) 11)) (-2465 (($ |#1| |#2|) 24)) (-2464 (($ (-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|)))) 25)) (-2466 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))) $) 14)) (-2457 (($ |#1| $) 71)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2456 (((-112) $ $) 76)) (-4396 (((-868) $) 21) (($ |#1|) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 27)))
-(((-654 |#1| |#2| |#3|) (-13 (-1107) (-1044 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-551))) (-15 -2466 ((-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))) $)) (-15 -2465 ($ |#1| |#2|)) (-15 -2464 ($ (-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))))) (-15 -2463 (|#2| $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -2461 ($ $)) (-15 -2460 ($ $)) (-15 -3558 ((-776) $)) (-15 -2459 ($)) (-15 -2458 ($ $ |#1|)) (-15 -2457 ($ |#1| $)) (-15 -2495 ($ |#1| |#2| $)) (-15 -2495 ($ $ $)) (-15 -2456 ((-112) $ $)) (-15 -2455 ($ (-1 |#2| |#2|) $)) (-15 -2454 ($ (-1 |#1| |#1|) $)))) (-1107) (-23) |#2|) (T -654))
-((-3974 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-551)) (-5 *2 (-868)) (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1107)) (-4 *6 (-23)) (-14 *7 *6))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4)))) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23)) (-14 *5 *4))) (-2465 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2464 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4)))) (-4 *3 (-1107)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))) (-2463 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1107)) (-14 *5 *2))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *2 (-1107)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2461 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2460 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23)) (-14 *5 *4))) (-2459 (*1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2458 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2457 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2495 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23)) (-14 *5 *4))) (-2455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)))) (-2454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1107) (-1044 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-551))) (-15 -2466 ((-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))) $)) (-15 -2465 ($ |#1| |#2|)) (-15 -2464 ($ (-646 (-2 (|:| |gen| |#1|) (|:| -4393 |#2|))))) (-15 -2463 (|#2| $ (-551))) (-15 -2462 (|#1| $ (-551))) (-15 -2461 ($ $)) (-15 -2460 ($ $)) (-15 -3558 ((-776) $)) (-15 -2459 ($)) (-15 -2458 ($ $ |#1|)) (-15 -2457 ($ |#1| $)) (-15 -2495 ($ |#1| |#2| $)) (-15 -2495 ($ $ $)) (-15 -2456 ((-112) $ $)) (-15 -2455 ($ (-1 |#2| |#2|) $)) (-15 -2454 ($ (-1 |#1| |#1|) $))))
-((-2393 (((-551) $) 31)) (-2467 (($ |#2| $ (-551)) 27) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) 12)) (-2396 (((-112) (-551) $) 18)) (-4251 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-646 $)) NIL)))
-(((-655 |#1| |#2|) (-10 -8 (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2393 ((-551) |#1|)) (-15 -2395 ((-646 (-551)) |#1|)) (-15 -2396 ((-112) (-551) |#1|))) (-656 |#2|) (-1222)) (T -655))
-NIL
-(-10 -8 (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2393 ((-551) |#1|)) (-15 -2395 ((-646 (-551)) |#1|)) (-15 -2396 ((-112) (-551) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 71)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-656 |#1|) (-140) (-1222)) (T -656))
-((-4064 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-4251 (*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222)))) (-4251 (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222)))) (-4251 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-4408 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-2467 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-656 *2)) (-4 *2 (-1222)))) (-2467 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))) (-4237 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1239 (-551))) (|has| *1 (-6 -4444)) (-4 *1 (-656 *2)) (-4 *2 (-1222)))))
-(-13 (-609 (-551) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4064 ($ (-776) |t#1|)) (-15 -4251 ($ $ |t#1|)) (-15 -4251 ($ |t#1| $)) (-15 -4251 ($ $ $)) (-15 -4251 ($ (-646 $))) (-15 -4408 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4249 ($ $ (-1239 (-551)))) (-15 -2468 ($ $ (-551))) (-15 -2468 ($ $ (-1239 (-551)))) (-15 -2467 ($ |t#1| $ (-551))) (-15 -2467 ($ $ $ (-551))) (IF (|has| $ (-6 -4444)) (-15 -4237 (|t#1| $ (-1239 (-551)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 15)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3417 ((|#1| $) 23)) (-2952 (($ $ $) NIL (|has| |#1| (-796)))) (-3278 (($ $ $) NIL (|has| |#1| (-796)))) (-3681 (((-1165) $) 48)) (-3682 (((-1126) $) NIL)) (-3416 ((|#3| $) 24)) (-4396 (((-868) $) 43)) (-3680 (((-112) $ $) 22)) (-3528 (($) 10 T CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-796)))) (-3473 (((-112) $ $) 20)) (-3105 (((-112) $ $) NIL (|has| |#1| (-796)))) (-3106 (((-112) $ $) 26 (|has| |#1| (-796)))) (-4399 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4287 (($ $) 17) (($ $ $) NIL)) (-4289 (($ $ $) 29)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-657 |#1| |#2| |#3|) (-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -4399 ($ $ |#3|)) (-15 -4399 ($ |#1| |#3|)) (-15 -3417 (|#1| $)) (-15 -3416 (|#3| $)))) (-722 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -657))
-((-4399 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-722 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-722 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-3417 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-657 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-3416 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-722 *4)))))
-(-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -4399 ($ $ |#3|)) (-15 -4399 ($ |#1| |#3|)) (-15 -3417 (|#1| $)) (-15 -3416 (|#3| $))))
-((-4022 (((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-646 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) "failed") |#3| |#2| (-1183)) 44)))
-(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -4022 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-646 |#2|)))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)) (-13 (-29 |#1|) (-1208) (-966)) (-663 |#2|)) (T -658))
-((-4022 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-663 *2)))) (-4022 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2200 (-646 *4)))) (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-663 *4)))))
-(-10 -7 (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -4022 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-646 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2469 (($ $) NIL (|has| |#1| (-367)))) (-2471 (($ $ $) 28 (|has| |#1| (-367)))) (-2472 (($ $ (-776)) 31 (|has| |#1| (-367)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-2957 (($ $ $) NIL (|has| |#1| (-367)))) (-2958 (($ $ $) NIL (|has| |#1| (-367)))) (-2959 (($ $ $) NIL (|has| |#1| (-367)))) (-2955 (($ $ $) NIL (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2956 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-2591 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) NIL)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-3241 (((-776) $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-367)))) (-2964 (($ $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ $) NIL (|has| |#1| (-367)))) (-2961 (($ $ $) NIL (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2962 (((-3 $ #1#) $ $) NIL (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-562)))) (-4249 ((|#1| $ |#1|) 24)) (-2473 (($ $ $) 33 (|has| |#1| (-367)))) (-4398 (((-776) $) NIL)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) 20) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) NIL)) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2966 ((|#1| $ |#1| |#1|) 23)) (-2938 (($ $) NIL)) (-3528 (($) 21 T CONST)) (-3085 (($) 8 T CONST)) (-3090 (($) NIL)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-659 |#1| |#2|) (-663 |#1|) (-1055) (-1 |#1| |#1|)) (T -659))
-NIL
-(-663 |#1|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2469 (($ $) NIL (|has| |#1| (-367)))) (-2471 (($ $ $) NIL (|has| |#1| (-367)))) (-2472 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-2957 (($ $ $) NIL (|has| |#1| (-367)))) (-2958 (($ $ $) NIL (|has| |#1| (-367)))) (-2959 (($ $ $) NIL (|has| |#1| (-367)))) (-2955 (($ $ $) NIL (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2956 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-2591 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) NIL)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-3241 (((-776) $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-367)))) (-2964 (($ $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ $) NIL (|has| |#1| (-367)))) (-2961 (($ $ $) NIL (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2962 (((-3 $ #1#) $ $) NIL (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-562)))) (-4249 ((|#1| $ |#1|) NIL)) (-2473 (($ $ $) NIL (|has| |#1| (-367)))) (-4398 (((-776) $) NIL)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) NIL)) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2966 ((|#1| $ |#1| |#1|) NIL)) (-2938 (($ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($) NIL)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-660 |#1|) (-663 |#1|) (-234)) (T -660))
-NIL
-(-663 |#1|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2469 (($ $) NIL (|has| |#1| (-367)))) (-2471 (($ $ $) NIL (|has| |#1| (-367)))) (-2472 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-2957 (($ $ $) NIL (|has| |#1| (-367)))) (-2958 (($ $ $) NIL (|has| |#1| (-367)))) (-2959 (($ $ $) NIL (|has| |#1| (-367)))) (-2955 (($ $ $) NIL (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2956 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-2591 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) NIL)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-3241 (((-776) $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-367)))) (-2964 (($ $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ $) NIL (|has| |#1| (-367)))) (-2961 (($ $ $) NIL (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2962 (((-3 $ #1#) $ $) NIL (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-562)))) (-4249 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2473 (($ $ $) NIL (|has| |#1| (-367)))) (-4398 (((-776) $) NIL)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) NIL)) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2966 ((|#1| $ |#1| |#1|) NIL)) (-2938 (($ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($) NIL)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-661 |#1| |#2|) (-13 (-663 |#1|) (-289 |#2| |#2|)) (-234) (-13 (-653 |#1|) (-10 -8 (-15 -4260 ($ $))))) (T -661))
-NIL
-(-13 (-663 |#1|) (-289 |#2| |#2|))
-((-2469 (($ $) 29)) (-2938 (($ $) 27)) (-3090 (($) 13)))
-(((-662 |#1| |#2|) (-10 -8 (-15 -2469 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3090 (|#1|))) (-663 |#2|) (-1055)) (T -662))
-NIL
-(-10 -8 (-15 -2469 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3090 (|#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2469 (($ $) 87 (|has| |#1| (-367)))) (-2471 (($ $ $) 89 (|has| |#1| (-367)))) (-2472 (($ $ (-776)) 88 (|has| |#1| (-367)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2957 (($ $ $) 50 (|has| |#1| (-367)))) (-2958 (($ $ $) 51 (|has| |#1| (-367)))) (-2959 (($ $ $) 53 (|has| |#1| (-367)))) (-2955 (($ $ $) 48 (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 47 (|has| |#1| (-367)))) (-2956 (((-3 $ #1="failed") $ $) 49 (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 52 (|has| |#1| (-367)))) (-3595 (((-3 (-551) #2="failed") $) 80 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) 77 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) 74)) (-3594 (((-551) $) 79 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 76 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 75)) (-4409 (($ $) 69)) (-3908 (((-3 $ "failed") $) 37)) (-3944 (($ $) 60 (|has| |#1| (-457)))) (-2591 (((-112) $) 35)) (-3312 (($ |#1| (-776)) 67)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 62 (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63 (|has| |#1| (-562)))) (-3241 (((-776) $) 71)) (-2963 (($ $ $) 57 (|has| |#1| (-367)))) (-2964 (($ $ $) 58 (|has| |#1| (-367)))) (-2953 (($ $ $) 46 (|has| |#1| (-367)))) (-2961 (($ $ $) 55 (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 54 (|has| |#1| (-367)))) (-2962 (((-3 $ #1#) $ $) 56 (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 59 (|has| |#1| (-367)))) (-3612 ((|#1| $) 70)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ #1#) $ |#1|) 64 (|has| |#1| (-562)))) (-4249 ((|#1| $ |#1|) 92)) (-2473 (($ $ $) 86 (|has| |#1| (-367)))) (-4398 (((-776) $) 72)) (-3238 ((|#1| $) 61 (|has| |#1| (-457)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 78 (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) 73)) (-4267 (((-646 |#1|) $) 66)) (-4127 ((|#1| $ (-776)) 68)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2966 ((|#1| $ |#1| |#1|) 65)) (-2938 (($ $) 90)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($) 91)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-663 |#1|) (-140) (-1055)) (T -663))
-((-3090 (*1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)))) (-2471 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-663 *3)) (-4 *3 (-1055)) (-4 *3 (-367)))) (-2469 (*1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(-13 (-857 |t#1|) (-289 |t#1| |t#1|) (-10 -8 (-15 -3090 ($)) (-15 -2938 ($ $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -2471 ($ $ $)) (-15 -2472 ($ $ (-776))) (-15 -2469 ($ $)) (-15 -2473 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #1=(-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-289 |#1| |#1|) . T) ((-417 |#1|) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #1#) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-857 |#1|) . T))
-((-2470 (((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|))) 87 (|has| |#1| (-27)))) (-4182 (((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|))) 86 (|has| |#1| (-27))) (((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|)) 19)))
-(((-664 |#1| |#2|) (-10 -7 (-15 -4182 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4182 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|)))) (-15 -2470 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|))))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))) (-1248 |#1|)) (T -664))
-((-2470 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-660 (-412 *5)))) (-5 *1 (-664 *4 *5)) (-5 *3 (-660 (-412 *5))))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-660 (-412 *5)))) (-5 *1 (-664 *4 *5)) (-5 *3 (-660 (-412 *5))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-660 (-412 *6)))) (-5 *1 (-664 *5 *6)) (-5 *3 (-660 (-412 *6))))))
-(-10 -7 (-15 -4182 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4182 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|)))) (-15 -2470 ((-646 (-660 (-412 |#2|))) (-660 (-412 |#2|))))) |%noBranch|))
-((-2471 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2472 ((|#2| |#2| (-776) (-1 |#1| |#1|)) 48)) (-2473 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-665 |#1| |#2|) (-10 -7 (-15 -2471 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2472 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2473 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-367) (-663 |#1|)) (T -665))
-((-2473 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-665 *4 *2)) (-4 *2 (-663 *4)))) (-2472 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-665 *5 *2)) (-4 *2 (-663 *5)))) (-2471 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-665 *4 *2)) (-4 *2 (-663 *4)))))
-(-10 -7 (-15 -2471 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2472 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2473 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2474 (($ $ $) 9)))
-(((-666 |#1|) (-10 -8 (-15 -2474 (|#1| |#1| |#1|))) (-667)) (T -666))
-NIL
-(-10 -8 (-15 -2474 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-2476 (($ $) 10)) (-2474 (($ $ $) 8)) (-3473 (((-112) $ $) 6)) (-2475 (($ $ $) 9)))
-(((-667) (-140)) (T -667))
-((-2476 (*1 *1 *1) (-4 *1 (-667))) (-2475 (*1 *1 *1 *1) (-4 *1 (-667))) (-2474 (*1 *1 *1 *1) (-4 *1 (-667))))
-(-13 (-102) (-10 -8 (-15 -2476 ($ $)) (-15 -2475 ($ $ $)) (-15 -2474 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776) $) 17)) (-4164 (($ $ |#1|) 69)) (-4188 (($ $) 39)) (-2214 (($ $) 37)) (-4359 (((-3 |#1| "failed") $) 61)) (-3043 ((|#1| $) NIL)) (-3138 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2557 (((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569)) 56)) (-4199 ((|#1| $ (-569)) 35)) (-4209 ((|#2| $ (-569)) 34)) (-4117 (($ (-1 |#1| |#1|) $) 41)) (-4129 (($ (-1 |#2| |#2|) $) 47)) (-4178 (($) 11)) (-4231 (($ |#1| |#2|) 24)) (-4221 (($ (-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|)))) 25)) (-4243 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))) $) 14)) (-4154 (($ |#1| $) 71)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-4142 (((-112) $ $) 76)) (-2388 (((-867) $) 21) (($ |#1|) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 27)))
+(((-654 |#1| |#2| |#3|) (-13 (-1106) (-1044 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -4243 ((-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))) $)) (-15 -4231 ($ |#1| |#2|)) (-15 -4221 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))))) (-15 -4209 (|#2| $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -2214 ($ $)) (-15 -4188 ($ $)) (-15 -3363 ((-776) $)) (-15 -4178 ($)) (-15 -4164 ($ $ |#1|)) (-15 -4154 ($ |#1| $)) (-15 -3138 ($ |#1| |#2| $)) (-15 -3138 ($ $ $)) (-15 -4142 ((-112) $ $)) (-15 -4129 ($ (-1 |#2| |#2|) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)))) (-1106) (-23) |#2|) (T -654))
+((-2557 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867)) (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1106)) (-4 *6 (-23)) (-14 *7 *6))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4)))) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-4231 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4)))) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1106)) (-14 *5 *2))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-1106)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4188 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-4178 (*1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4164 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4154 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3138 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3138 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4142 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-4129 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1106) (-1044 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -4243 ((-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))) $)) (-15 -4231 ($ |#1| |#2|)) (-15 -4221 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4367 |#2|))))) (-15 -4209 (|#2| $ (-569))) (-15 -4199 (|#1| $ (-569))) (-15 -2214 ($ $)) (-15 -4188 ($ $)) (-15 -3363 ((-776) $)) (-15 -4178 ($)) (-15 -4164 ($ $ |#1|)) (-15 -4154 ($ |#1| $)) (-15 -3138 ($ |#1| |#2| $)) (-15 -3138 ($ $ $)) (-15 -4142 ((-112) $ $)) (-15 -4129 ($ (-1 |#2| |#2|) $)) (-15 -4117 ($ (-1 |#1| |#1|) $))))
+((-1738 (((-569) $) 31)) (-4274 (($ |#2| $ (-569)) 27) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) 12)) (-1773 (((-112) (-569) $) 18)) (-3632 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-649 $)) NIL)))
+(((-655 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1738 ((-569) |#1|)) (-15 -1762 ((-649 (-569)) |#1|)) (-15 -1773 ((-112) (-569) |#1|))) (-656 |#2|) (-1223)) (T -655))
+NIL
+(-10 -8 (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -3632 (|#1| (-649 |#1|))) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1738 ((-569) |#1|)) (-15 -1762 ((-649 (-569)) |#1|)) (-15 -1773 ((-112) (-569) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 71)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-656 |#1|) (-140) (-1223)) (T -656))
+((-4275 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-3632 (*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-3632 (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-3632 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-1324 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4274 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-4274 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-3861 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1240 (-569))) (|has| *1 (-6 -4444)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))))
+(-13 (-609 (-569) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4275 ($ (-776) |t#1|)) (-15 -3632 ($ $ |t#1|)) (-15 -3632 ($ |t#1| $)) (-15 -3632 ($ $ $)) (-15 -3632 ($ (-649 $))) (-15 -1324 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1852 ($ $ (-1240 (-569)))) (-15 -4326 ($ $ (-569))) (-15 -4326 ($ $ (-1240 (-569)))) (-15 -4274 ($ |t#1| $ (-569))) (-15 -4274 ($ $ $ (-569))) (IF (|has| $ (-6 -4444)) (-15 -3861 (|t#1| $ (-1240 (-569)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2888 (((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) "failed") |#3| |#2| (-1183)) 44)))
+(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -2888 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965)) (-661 |#2|)) (T -657))
+((-2888 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2)))) (-2888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3371 (-649 *4)))) (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -2888 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4255 (($ $) NIL (|has| |#1| (-367)))) (-4282 (($ $ $) NIL (|has| |#1| (-367)))) (-4292 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2371 (($ $ $) NIL (|has| |#1| (-367)))) (-2381 (($ $ $) NIL (|has| |#1| (-367)))) (-2391 (($ $ $) NIL (|has| |#1| (-367)))) (-3589 (($ $ $) NIL (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-2861 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) NIL)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-3304 (((-776) $) NIL)) (-2429 (($ $ $) NIL (|has| |#1| (-367)))) (-2437 (($ $ $) NIL (|has| |#1| (-367)))) (-3570 (($ $ $) NIL (|has| |#1| (-367)))) (-2411 (($ $ $) NIL (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1852 ((|#1| $ |#1|) NIL)) (-4303 (($ $ $) NIL (|has| |#1| (-367)))) (-2091 (((-776) $) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3341 ((|#1| $ |#1| |#1|) NIL)) (-3439 (($ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($) NIL)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-658 |#1|) (-661 |#1|) (-234)) (T -658))
+NIL
+(-661 |#1|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4255 (($ $) NIL (|has| |#1| (-367)))) (-4282 (($ $ $) NIL (|has| |#1| (-367)))) (-4292 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2371 (($ $ $) NIL (|has| |#1| (-367)))) (-2381 (($ $ $) NIL (|has| |#1| (-367)))) (-2391 (($ $ $) NIL (|has| |#1| (-367)))) (-3589 (($ $ $) NIL (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-2861 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) NIL)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-3304 (((-776) $) NIL)) (-2429 (($ $ $) NIL (|has| |#1| (-367)))) (-2437 (($ $ $) NIL (|has| |#1| (-367)))) (-3570 (($ $ $) NIL (|has| |#1| (-367)))) (-2411 (($ $ $) NIL (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1852 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4303 (($ $ $) NIL (|has| |#1| (-367)))) (-2091 (((-776) $) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3341 ((|#1| $ |#1| |#1|) NIL)) (-3439 (($ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($) NIL)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-659 |#1| |#2|) (-13 (-661 |#1|) (-289 |#2| |#2|)) (-234) (-13 (-653 |#1|) (-10 -8 (-15 -3430 ($ $))))) (T -659))
+NIL
+(-13 (-661 |#1|) (-289 |#2| |#2|))
+((-4255 (($ $) 29)) (-3439 (($ $) 27)) (-2749 (($) 13)))
+(((-660 |#1| |#2|) (-10 -8 (-15 -4255 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2749 (|#1|))) (-661 |#2|) (-1055)) (T -660))
+NIL
+(-10 -8 (-15 -4255 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2749 (|#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-4255 (($ $) 87 (|has| |#1| (-367)))) (-4282 (($ $ $) 89 (|has| |#1| (-367)))) (-4292 (($ $ (-776)) 88 (|has| |#1| (-367)))) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2371 (($ $ $) 50 (|has| |#1| (-367)))) (-2381 (($ $ $) 51 (|has| |#1| (-367)))) (-2391 (($ $ $) 53 (|has| |#1| (-367)))) (-3589 (($ $ $) 48 (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 47 (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 52 (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3043 (((-569) $) 79 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 75)) (-1842 (($ $) 69)) (-3351 (((-3 $ "failed") $) 37)) (-3556 (($ $) 60 (|has| |#1| (-457)))) (-2861 (((-112) $) 35)) (-3838 (($ |#1| (-776)) 67)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 62 (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63 (|has| |#1| (-561)))) (-3304 (((-776) $) 71)) (-2429 (($ $ $) 57 (|has| |#1| (-367)))) (-2437 (($ $ $) 58 (|has| |#1| (-367)))) (-3570 (($ $ $) 46 (|has| |#1| (-367)))) (-2411 (($ $ $) 55 (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 54 (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 59 (|has| |#1| (-367)))) (-1820 ((|#1| $) 70)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-1852 ((|#1| $ |#1|) 92)) (-4303 (($ $ $) 86 (|has| |#1| (-367)))) (-2091 (((-776) $) 72)) (-3281 ((|#1| $) 61 (|has| |#1| (-457)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 73)) (-3346 (((-649 |#1|) $) 66)) (-1503 ((|#1| $ (-776)) 68)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3341 ((|#1| $ |#1| |#1|) 65)) (-3439 (($ $) 90)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($) 91)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-661 |#1|) (-140) (-1055)) (T -661))
+((-2749 (*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)))) (-3439 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)))) (-4282 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4292 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1055)) (-4 *3 (-367)))) (-4255 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4303 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(-13 (-857 |t#1|) (-289 |t#1| |t#1|) (-10 -8 (-15 -2749 ($)) (-15 -3439 ($ $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -4282 ($ $ $)) (-15 -4292 ($ $ (-776))) (-15 -4255 ($ $)) (-15 -4303 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-289 |#1| |#1|) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-857 |#1|) . T))
+((-4267 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 87 (|has| |#1| (-27)))) (-3699 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 86 (|has| |#1| (-27))) (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 19)))
+(((-662 |#1| |#2|) (-10 -7 (-15 -3699 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3699 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -4267 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -662))
+((-4267 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-658 (-412 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6))))))
+(-10 -7 (-15 -3699 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3699 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -4267 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4255 (($ $) NIL (|has| |#1| (-367)))) (-4282 (($ $ $) 28 (|has| |#1| (-367)))) (-4292 (($ $ (-776)) 31 (|has| |#1| (-367)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2371 (($ $ $) NIL (|has| |#1| (-367)))) (-2381 (($ $ $) NIL (|has| |#1| (-367)))) (-2391 (($ $ $) NIL (|has| |#1| (-367)))) (-3589 (($ $ $) NIL (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-2861 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) NIL)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-3304 (((-776) $) NIL)) (-2429 (($ $ $) NIL (|has| |#1| (-367)))) (-2437 (($ $ $) NIL (|has| |#1| (-367)))) (-3570 (($ $ $) NIL (|has| |#1| (-367)))) (-2411 (($ $ $) NIL (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1852 ((|#1| $ |#1|) 24)) (-4303 (($ $ $) 33 (|has| |#1| (-367)))) (-2091 (((-776) $) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) 20) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3341 ((|#1| $ |#1| |#1|) 23)) (-3439 (($ $) NIL)) (-1786 (($) 21 T CONST)) (-1796 (($) 8 T CONST)) (-2749 (($) NIL)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-663 |#1| |#2|) (-661 |#1|) (-1055) (-1 |#1| |#1|)) (T -663))
+NIL
+(-661 |#1|)
+((-4282 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-4292 ((|#2| |#2| (-776) (-1 |#1| |#1|)) 48)) (-4303 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-664 |#1| |#2|) (-10 -7 (-15 -4282 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4292 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -4303 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -664))
+((-4303 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))) (-4292 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))) (-4282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))))
+(-10 -7 (-15 -4282 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4292 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -4303 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-4415 (($ $ $) 9)))
+(((-665 |#1|) (-10 -8 (-15 -4415 (|#1| |#1| |#1|))) (-666)) (T -665))
+NIL
+(-10 -8 (-15 -4415 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2400 (($ $) 10)) (-4415 (($ $ $) 8)) (-2853 (((-112) $ $) 6)) (-4404 (($ $ $) 9)))
+(((-666) (-140)) (T -666))
+((-2400 (*1 *1 *1) (-4 *1 (-666))) (-4404 (*1 *1 *1 *1) (-4 *1 (-666))) (-4415 (*1 *1 *1 *1) (-4 *1 (-666))))
+(-13 (-102) (-10 -8 (-15 -2400 ($ $)) (-15 -4404 ($ $ $)) (-15 -4415 ($ $ $))))
(((-102) . T))
-((-2477 (((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|)) 33)))
-(((-668 |#1|) (-10 -7 (-15 -2477 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|)))) (-916)) (T -668))
-((-2477 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 *4))) (-5 *3 (-1177 *4)) (-4 *4 (-916)) (-5 *1 (-668 *4)))))
-(-10 -7 (-15 -2477 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4384 (((-646 |#1|) $) 84)) (-4397 (($ $ (-776)) 94)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4389 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 50)) (-3595 (((-3 (-677 |#1|) "failed") $) NIL)) (-3594 (((-677 |#1|) $) NIL)) (-4409 (($ $) 93)) (-2599 (((-776) $) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ (-677 |#1|) |#2|) 70)) (-4386 (($ $) 89)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-4390 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 49)) (-1927 (((-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3313 (((-677 |#1|) $) NIL)) (-3612 ((|#2| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4217 (($ $ |#1| $) 32) (($ $ (-646 |#1|) (-646 $)) 34)) (-4398 (((-776) $) 91)) (-3971 (($ $ $) 20) (($ (-677 |#1|) (-677 |#1|)) 79) (($ (-677 |#1|) $) 77) (($ $ (-677 |#1|)) 78)) (-4396 (((-868) $) NIL) (($ |#1|) 76) (((-1288 |#1| |#2|) $) 60) (((-1297 |#1| |#2|) $) 43) (($ (-677 |#1|)) 27)) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-677 |#1|)) NIL)) (-4404 ((|#2| (-1297 |#1| |#2|) $) 45)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 23 T CONST)) (-3084 (((-646 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4395 (((-3 $ "failed") (-1288 |#1| |#2|)) 62)) (-1911 (($ (-677 |#1|)) 14)) (-3473 (((-112) $ $) 46)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) 68) (($ $ $) NIL)) (-4289 (($ $ $) 31)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-677 |#1|)) NIL)))
-(((-669 |#1| |#2|) (-13 (-378 |#1| |#2|) (-388 |#2| (-677 |#1|)) (-10 -8 (-15 -4395 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3971 ($ (-677 |#1|) (-677 |#1|))) (-15 -3971 ($ (-677 |#1|) $)) (-15 -3971 ($ $ (-677 |#1|))))) (-855) (-173)) (T -669))
-((-4395 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-669 *3 *4)))) (-3971 (*1 *1 *2 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3971 (*1 *1 *2 *1) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3971 (*1 *1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))))
-(-13 (-378 |#1| |#2|) (-388 |#2| (-677 |#1|)) (-10 -8 (-15 -4395 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3971 ($ (-677 |#1|) (-677 |#1|))) (-15 -3971 ($ (-677 |#1|) $)) (-15 -3971 ($ $ (-677 |#1|)))))
-((-1910 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1908 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1688 (($ (-1 (-112) |#2|) $) 29)) (-2460 (($ $) 67)) (-2544 (($ $) 78)) (-3847 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-4292 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3861 (((-551) |#2| $ (-551)) 75) (((-551) |#2| $) NIL) (((-551) (-1 (-112) |#2|) $) 56)) (-4064 (($ (-776) |#2|) 65)) (-3277 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3959 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4408 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3983 (($ |#2|) 15)) (-4057 (($ $ $ (-551)) 42) (($ |#2| $ (-551)) 40)) (-1444 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1689 (($ $ (-1239 (-551))) 51) (($ $ (-551)) 44)) (-1909 (($ $ $ (-551)) 74)) (-3842 (($ $) 72)) (-3106 (((-112) $ $) 80)))
-(((-670 |#1| |#2|) (-10 -8 (-15 -3983 (|#1| |#2|)) (-15 -1689 (|#1| |#1| (-551))) (-15 -1689 (|#1| |#1| (-1239 (-551)))) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4057 (|#1| |#2| |#1| (-551))) (-15 -4057 (|#1| |#1| |#1| (-551))) (-15 -3277 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1688 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3277 (|#1| |#1| |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3959 (|#1| |#1| |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -1909 (|#1| |#1| |#1| (-551))) (-15 -2460 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4064 (|#1| (-776) |#2|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3842 (|#1| |#1|))) (-671 |#2|) (-1222)) (T -670))
-NIL
-(-10 -8 (-15 -3983 (|#1| |#2|)) (-15 -1689 (|#1| |#1| (-551))) (-15 -1689 (|#1| |#1| (-1239 (-551)))) (-15 -3847 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4057 (|#1| |#2| |#1| (-551))) (-15 -4057 (|#1| |#1| |#1| (-551))) (-15 -3277 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1688 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3847 (|#1| |#2| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3277 (|#1| |#1| |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3861 ((-551) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-551) |#2| |#1|)) (-15 -3861 ((-551) |#2| |#1| (-551))) (-15 -3959 (|#1| |#1| |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -1909 (|#1| |#1| |#1| (-551))) (-15 -2460 (|#1| |#1|)) (-15 -1908 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -3106 ((-112) |#1| |#1|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1444 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4064 (|#1| (-776) |#2|)) (-15 -4408 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3842 (|#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-4244 ((|#1| $) 66)) (-4246 (($ $) 68)) (-2390 (((-1278) $ (-551) (-551)) 98 (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 53 (|has| $ (-6 -4444)))) (-1910 (((-112) $) 143 (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1908 (($ $) 147 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4444)))) (-3328 (($ $) 142 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-4236 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) 87 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-1688 (($ (-1 (-112) |#1|) $) 130)) (-4160 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4443)))) (-4245 ((|#1| $) 67)) (-4174 (($) 7 T CONST)) (-2460 (($ $) 145 (|has| $ (-6 -4444)))) (-2461 (($ $) 135)) (-4248 (($ $) 74) (($ $ (-776)) 72)) (-2544 (($ $) 132 (|has| |#1| (-1107)))) (-1443 (($ $) 100 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 131 (|has| |#1| (-1107))) (($ (-1 (-112) |#1|) $) 126)) (-3848 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4443))) (($ |#1| $) 101 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1694 ((|#1| $ (-551) |#1|) 86 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 88)) (-3884 (((-112) $) 84)) (-3861 (((-551) |#1| $ (-551)) 140 (|has| |#1| (-1107))) (((-551) |#1| $) 139 (|has| |#1| (-1107))) (((-551) (-1 (-112) |#1|) $) 138)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) 109)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 96 (|has| (-551) (-855)))) (-2952 (($ $ $) 148 (|has| |#1| (-855)))) (-3277 (($ $ $) 133 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3959 (($ $ $) 141 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 95 (|has| (-551) (-855)))) (-3278 (($ $ $) 149 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3983 (($ |#1|) 123)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4247 ((|#1| $) 71) (($ $ (-776)) 69)) (-4057 (($ $ $ (-551)) 128) (($ |#1| $ (-551)) 127)) (-2467 (($ $ $ (-551)) 117) (($ |#1| $ (-551)) 116)) (-2395 (((-646 (-551)) $) 93)) (-2396 (((-112) (-551) $) 92)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 77) (($ $ (-776)) 75)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2391 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-3885 (((-112) $) 85)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 91)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1239 (-551))) 113) ((|#1| $ (-551)) 90) ((|#1| $ (-551) |#1|) 89)) (-3448 (((-551) $ $) 45)) (-1689 (($ $ (-1239 (-551))) 125) (($ $ (-551)) 124)) (-2468 (($ $ (-1239 (-551))) 115) (($ $ (-551)) 114)) (-4083 (((-112) $) 47)) (-4241 (($ $) 63)) (-4239 (($ $) 60 (|has| $ (-6 -4444)))) (-4242 (((-776) $) 64)) (-4243 (($ $) 65)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 144 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 99 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 108)) (-4240 (($ $ $) 62) (($ $ |#1|) 61)) (-4251 (($ $ $) 79) (($ |#1| $) 78) (($ (-646 $)) 111) (($ $ |#1|) 110)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 151 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 152 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) 150 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 153 (|has| |#1| (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-671 |#1|) (-140) (-1222)) (T -671))
-((-3983 (*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1222)))))
-(-13 (-1155 |t#1|) (-376 |t#1|) (-285 |t#1|) (-10 -8 (-15 -3983 ($ |t#1|))))
-(((-34) . T) ((-102) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-285 |#1|) . T) ((-376 |#1|) . T) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1016 |#1|) . T) ((-1107) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-1155 |#1|) . T) ((-1222) . T) ((-1261 |#1|) . T))
-((-4022 (((-646 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2200 (-646 |#3|)))) |#4| (-646 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2200 (-646 |#3|))) |#4| |#3|) 60)) (-3531 (((-776) |#4| |#3|) 18)) (-3782 (((-3 |#3| #1#) |#4| |#3|) 21)) (-2478 (((-112) |#4| |#3|) 14)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4022 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2200 (-646 |#3|))) |#4| |#3|)) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2200 (-646 |#3|)))) |#4| (-646 |#3|))) (-15 -3782 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2478 ((-112) |#4| |#3|)) (-15 -3531 ((-776) |#4| |#3|))) (-367) (-13 (-376 |#1|) (-10 -7 (-6 -4444))) (-13 (-376 |#1|) (-10 -7 (-6 -4444))) (-691 |#1| |#2| |#3|)) (T -672))
-((-3531 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-776)) (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4)))) (-2478 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-112)) (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4)))) (-3782 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-376 *4) (-10 -7 (-6 -4444)))) (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))) (-5 *1 (-672 *4 *5 *2 *3)) (-4 *3 (-691 *4 *5 *2)))) (-4022 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-4 *7 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-646 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2200 (-646 *7))))) (-5 *1 (-672 *5 *6 *7 *3)) (-5 *4 (-646 *7)) (-4 *3 (-691 *5 *6 *7)))) (-4022 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2200 (-646 *4)))) (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4)))))
-(-10 -7 (-15 -4022 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2200 (-646 |#3|))) |#4| |#3|)) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2200 (-646 |#3|)))) |#4| (-646 |#3|))) (-15 -3782 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2478 ((-112) |#4| |#3|)) (-15 -3531 ((-776) |#4| |#3|)))
-((-4022 (((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1="failed")) (|:| -2200 (-646 (-1272 |#1|))))) (-646 (-646 |#1|)) (-646 (-1272 |#1|))) 22) (((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|))))) (-694 |#1|) (-646 (-1272 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|)))) (-646 (-646 |#1|)) (-1272 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|)) 14)) (-3531 (((-776) (-694 |#1|) (-1272 |#1|)) 30)) (-3782 (((-3 (-1272 |#1|) #1#) (-694 |#1|) (-1272 |#1|)) 24)) (-2478 (((-112) (-694 |#1|) (-1272 |#1|)) 27)))
-(((-673 |#1|) (-10 -7 (-15 -4022 ((-2 (|:| |particular| (-3 (-1272 |#1|) #1="failed")) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|))) (-15 -4022 ((-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|)))) (-646 (-646 |#1|)) (-1272 |#1|))) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|))))) (-694 |#1|) (-646 (-1272 |#1|)))) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|))))) (-646 (-646 |#1|)) (-646 (-1272 |#1|)))) (-15 -3782 ((-3 (-1272 |#1|) #1#) (-694 |#1|) (-1272 |#1|))) (-15 -2478 ((-112) (-694 |#1|) (-1272 |#1|))) (-15 -3531 ((-776) (-694 |#1|) (-1272 |#1|)))) (-367)) (T -673))
-((-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-673 *5)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-5 *2 (-112)) (-5 *1 (-673 *5)))) (-3782 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1272 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *1 (-673 *4)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-646 *5))) (-4 *5 (-367)) (-5 *2 (-646 (-2 (|:| |particular| (-3 (-1272 *5) #1="failed")) (|:| -2200 (-646 (-1272 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-646 (-1272 *5))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-646 (-2 (|:| |particular| (-3 (-1272 *5) #1#)) (|:| -2200 (-646 (-1272 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-646 (-1272 *5))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-646 *5))) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1272 *5) #1#)) (|:| -2200 (-646 (-1272 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1272 *5)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1272 *5) #1#)) (|:| -2200 (-646 (-1272 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1272 *5)))))
-(-10 -7 (-15 -4022 ((-2 (|:| |particular| (-3 (-1272 |#1|) #1="failed")) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|))) (-15 -4022 ((-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|)))) (-646 (-646 |#1|)) (-1272 |#1|))) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|))))) (-694 |#1|) (-646 (-1272 |#1|)))) (-15 -4022 ((-646 (-2 (|:| |particular| (-3 (-1272 |#1|) #1#)) (|:| -2200 (-646 (-1272 |#1|))))) (-646 (-646 |#1|)) (-646 (-1272 |#1|)))) (-15 -3782 ((-3 (-1272 |#1|) #1#) (-694 |#1|) (-1272 |#1|))) (-15 -2478 ((-112) (-694 |#1|) (-1272 |#1|))) (-15 -3531 ((-776) (-694 |#1|) (-1272 |#1|))))
-((-2479 (((-2 (|:| |particular| (-3 (-1272 (-412 |#4|)) "failed")) (|:| -2200 (-646 (-1272 (-412 |#4|))))) (-646 |#4|) (-646 |#3|)) 52)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-2 (|:| |particular| (-3 (-1272 (-412 |#4|)) "failed")) (|:| -2200 (-646 (-1272 (-412 |#4|))))) (-646 |#4|) (-646 |#3|)))) (-562) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -674))
-((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *7)) (-4 *7 (-855)) (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |particular| (-3 (-1272 (-412 *8)) "failed")) (|:| -2200 (-646 (-1272 (-412 *8)))))) (-5 *1 (-674 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2479 ((-2 (|:| |particular| (-3 (-1272 (-412 |#4|)) "failed")) (|:| -2200 (-646 (-1272 (-412 |#4|))))) (-646 |#4|) (-646 |#3|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1957 (((-3 $ #1="failed")) NIL (|has| |#2| (-562)))) (-3772 ((|#2| $) NIL)) (-3543 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3661 (((-1272 (-694 |#2|))) NIL) (((-1272 (-694 |#2|)) (-1272 $)) NIL)) (-3545 (((-112) $) NIL)) (-1907 (((-1272 $)) 44)) (-1312 (((-112) $ (-776)) NIL)) (-3775 (($ |#2|) NIL)) (-4174 (($) NIL T CONST)) (-3532 (($ $) NIL (|has| |#2| (-310)))) (-3534 (((-240 |#1| |#2|) $ (-551)) NIL)) (-2094 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (|has| |#2| (-562)))) (-1881 (((-3 $ #1#)) NIL (|has| |#2| (-562)))) (-1973 (((-694 |#2|)) NIL) (((-694 |#2|) (-1272 $)) NIL)) (-1905 ((|#2| $) NIL)) (-1971 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1272 $)) NIL)) (-2585 (((-3 $ #1#) $) NIL (|has| |#2| (-562)))) (-2088 (((-1177 (-952 |#2|))) NIL (|has| |#2| (-367)))) (-2588 (($ $ (-925)) NIL)) (-1903 ((|#2| $) NIL)) (-1883 (((-1177 |#2|) $) NIL (|has| |#2| (-562)))) (-1975 ((|#2|) NIL) ((|#2| (-1272 $)) NIL)) (-1901 (((-1177 |#2|) $) NIL)) (-1895 (((-112)) NIL)) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 |#2| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) ((|#2| $) NIL)) (-1977 (($ (-1272 |#2|)) NIL) (($ (-1272 |#2|) (-1272 $)) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3531 (((-776) $) NIL (|has| |#2| (-562))) (((-925)) 45)) (-3535 ((|#2| $ (-551) (-551)) NIL)) (-1892 (((-112)) NIL)) (-2612 (($ $ (-925)) NIL)) (-2134 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL)) (-3530 (((-776) $) NIL (|has| |#2| (-562)))) (-3529 (((-646 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-562)))) (-3537 (((-776) $) NIL)) (-1888 (((-112)) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3769 ((|#2| $) NIL (|has| |#2| (-6 (-4445 #3="*"))))) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-3546 (($ (-646 (-646 |#2|))) NIL)) (-2138 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4043 (((-646 (-646 |#2|)) $) NIL)) (-1886 (((-112)) NIL)) (-1890 (((-112)) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-2095 (((-3 (-2 (|:| |particular| $) (|:| -2200 (-646 $))) #1#)) NIL (|has| |#2| (-562)))) (-1882 (((-3 $ #1#)) NIL (|has| |#2| (-562)))) (-1974 (((-694 |#2|)) NIL) (((-694 |#2|) (-1272 $)) NIL)) (-1906 ((|#2| $) NIL)) (-1972 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1272 $)) NIL)) (-2586 (((-3 $ #1#) $) NIL (|has| |#2| (-562)))) (-2092 (((-1177 (-952 |#2|))) NIL (|has| |#2| (-367)))) (-2587 (($ $ (-925)) NIL)) (-1904 ((|#2| $) NIL)) (-1884 (((-1177 |#2|) $) NIL (|has| |#2| (-562)))) (-1976 ((|#2|) NIL) ((|#2| (-1272 $)) NIL)) (-1902 (((-1177 |#2|) $) NIL)) (-1896 (((-112)) NIL)) (-3681 (((-1165) $) NIL)) (-1887 (((-112)) NIL)) (-1889 (((-112)) NIL)) (-1891 (((-112)) NIL)) (-4039 (((-3 $ "failed") $) NIL (|has| |#2| (-367)))) (-3682 (((-1126) $) NIL)) (-1894 (((-112)) NIL)) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-2136 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ (-551) (-551) |#2|) NIL) ((|#2| $ (-551) (-551)) 30) ((|#2| $ (-551)) NIL)) (-4260 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3771 ((|#2| $) NIL)) (-3774 (($ (-646 |#2|)) NIL)) (-3544 (((-112) $) NIL)) (-3773 (((-240 |#1| |#2|) $) NIL)) (-3770 ((|#2| $) NIL (|has| |#2| (-6 (-4445 #3#))))) (-2135 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3842 (($ $) NIL)) (-3662 (((-694 |#2|) (-1272 $)) NIL) (((-1272 |#2|) $) NIL) (((-694 |#2|) (-1272 $) (-1272 $)) NIL) (((-1272 |#2|) $ (-1272 $)) 33)) (-4420 (($ (-1272 |#2|)) NIL) (((-1272 |#2|) $) NIL)) (-2080 (((-646 (-952 |#2|))) NIL) (((-646 (-952 |#2|)) (-1272 $)) NIL)) (-2774 (($ $ $) NIL)) (-1900 (((-112)) NIL)) (-3533 (((-240 |#1| |#2|) $ (-551)) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#2| (-1044 (-412 (-551))))) (($ |#2|) NIL) (((-694 |#2|) $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 43)) (-1885 (((-646 (-1272 |#2|))) NIL (|has| |#2| (-562)))) (-2775 (($ $ $ $) NIL)) (-1898 (((-112)) NIL)) (-2966 (($ (-694 |#2|) $) NIL)) (-2137 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-2773 (($ $ $) NIL)) (-1899 (((-112)) NIL)) (-1897 (((-112)) NIL)) (-1893 (((-112)) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#2| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-675 |#1| |#2|) (-13 (-1129 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-618 (-694 |#2|)) (-423 |#2|)) (-925) (-173)) (T -675))
-NIL
-(-13 (-1129 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-618 (-694 |#2|)) (-423 |#2|))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3687 (((-646 (-1141)) $) 10)) (-4396 (((-868) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-676) (-13 (-1089) (-10 -8 (-15 -3687 ((-646 (-1141)) $))))) (T -676))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-676)))))
-(-13 (-1089) (-10 -8 (-15 -3687 ((-646 (-1141)) $))))
-((-2986 (((-112) $ $) NIL)) (-4384 (((-646 |#1|) $) NIL)) (-3559 (($ $) 62)) (-3083 (((-112) $) NIL)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-2482 (((-3 $ "failed") (-824 |#1|)) 27)) (-2484 (((-112) (-824 |#1|)) 17)) (-2483 (($ (-824 |#1|)) 28)) (-2857 (((-112) $ $) 36)) (-4283 (((-925) $) 43)) (-3560 (($ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4182 (((-646 $) (-824 |#1|)) 19)) (-4396 (((-868) $) 51) (($ |#1|) 40) (((-824 |#1|) $) 47) (((-682 |#1|) $) 52)) (-3680 (((-112) $ $) NIL)) (-2481 (((-58 (-646 $)) (-646 |#1|) (-925)) 67)) (-2480 (((-646 $) (-646 |#1|) (-925)) 72)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 63)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 46)))
-(((-677 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 -3083 ((-112) $)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -4283 ((-925) $)) (-15 -2857 ((-112) $ $)) (-15 -4396 ((-824 |#1|) $)) (-15 -4396 ((-682 |#1|) $)) (-15 -4182 ((-646 $) (-824 |#1|))) (-15 -2484 ((-112) (-824 |#1|))) (-15 -2483 ($ (-824 |#1|))) (-15 -2482 ((-3 $ "failed") (-824 |#1|))) (-15 -4384 ((-646 |#1|) $)) (-15 -2481 ((-58 (-646 $)) (-646 |#1|) (-925))) (-15 -2480 ((-646 $) (-646 |#1|) (-925))))) (-855)) (T -677))
-((-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-3559 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-646 (-677 *4))) (-5 *1 (-677 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-2483 (*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-2482 (*1 *1 *2) (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-925)) (-4 *5 (-855)) (-5 *2 (-58 (-646 (-677 *5)))) (-5 *1 (-677 *5)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-925)) (-4 *5 (-855)) (-5 *2 (-646 (-677 *5))) (-5 *1 (-677 *5)))))
-(-13 (-855) (-1044 |#1|) (-10 -8 (-15 -3083 ((-112) $)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -4283 ((-925) $)) (-15 -2857 ((-112) $ $)) (-15 -4396 ((-824 |#1|) $)) (-15 -4396 ((-682 |#1|) $)) (-15 -4182 ((-646 $) (-824 |#1|))) (-15 -2484 ((-112) (-824 |#1|))) (-15 -2483 ($ (-824 |#1|))) (-15 -2482 ((-3 $ "failed") (-824 |#1|))) (-15 -4384 ((-646 |#1|) $)) (-15 -2481 ((-58 (-646 $)) (-646 |#1|) (-925))) (-15 -2480 ((-646 $) (-646 |#1|) (-925)))))
-((-3844 ((|#2| $) 103)) (-4246 (($ $) 124)) (-1312 (((-112) $ (-776)) 35)) (-4248 (($ $) 112) (($ $ (-776)) 115)) (-3884 (((-112) $) 125)) (-3450 (((-646 $) $) 99)) (-3446 (((-112) $ $) 95)) (-4169 (((-112) $ (-776)) 33)) (-2392 (((-551) $) 69)) (-2393 (((-551) $) 68)) (-4166 (((-112) $ (-776)) 31)) (-3968 (((-112) $) 101)) (-4247 ((|#2| $) 116) (($ $ (-776)) 120)) (-2467 (($ $ $ (-551)) 86) (($ |#2| $ (-551)) 85)) (-2395 (((-646 (-551)) $) 67)) (-2396 (((-112) (-551) $) 61)) (-4250 ((|#2| $) NIL) (($ $ (-776)) 111)) (-4218 (($ $ (-551)) 128)) (-3885 (((-112) $) 127)) (-2136 (((-112) (-1 (-112) |#2|) $) 44)) (-2397 (((-646 |#2|) $) 48)) (-4249 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1239 (-551))) 82) ((|#2| $ (-551)) 59) ((|#2| $ (-551) |#2|) 60)) (-3448 (((-551) $ $) 94)) (-2468 (($ $ (-1239 (-551))) 81) (($ $ (-551)) 75)) (-4083 (((-112) $) 90)) (-4241 (($ $) 108)) (-4242 (((-776) $) 107)) (-4243 (($ $) 106)) (-3971 (($ (-646 |#2|)) 55)) (-3310 (($ $) 129)) (-3963 (((-646 $) $) 93)) (-3447 (((-112) $ $) 92)) (-2137 (((-112) (-1 (-112) |#2|) $) 43)) (-3473 (((-112) $ $) 20)) (-4407 (((-776) $) 41)))
-(((-678 |#1| |#2|) (-10 -8 (-15 -3310 (|#1| |#1|)) (-15 -4218 (|#1| |#1| (-551))) (-15 -3884 ((-112) |#1|)) (-15 -3885 ((-112) |#1|)) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -2397 ((-646 |#2|) |#1|)) (-15 -2396 ((-112) (-551) |#1|)) (-15 -2395 ((-646 (-551)) |#1|)) (-15 -2393 ((-551) |#1|)) (-15 -2392 ((-551) |#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -4241 (|#1| |#1|)) (-15 -4242 ((-776) |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4247 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "last")) (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| "rest")) (-15 -4248 (|#1| |#1|)) (-15 -4250 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "first")) (-15 -4250 (|#2| |#1|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -3447 ((-112) |#1| |#1|)) (-15 -3448 ((-551) |#1| |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| "value")) (-15 -3844 (|#2| |#1|)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776)))) (-679 |#2|) (-1222)) (T -678))
-NIL
-(-10 -8 (-15 -3310 (|#1| |#1|)) (-15 -4218 (|#1| |#1| (-551))) (-15 -3884 ((-112) |#1|)) (-15 -3885 ((-112) |#1|)) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -2397 ((-646 |#2|) |#1|)) (-15 -2396 ((-112) (-551) |#1|)) (-15 -2395 ((-646 (-551)) |#1|)) (-15 -2393 ((-551) |#1|)) (-15 -2392 ((-551) |#1|)) (-15 -3971 (|#1| (-646 |#2|))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -2468 (|#1| |#1| (-551))) (-15 -2468 (|#1| |#1| (-1239 (-551)))) (-15 -2467 (|#1| |#2| |#1| (-551))) (-15 -2467 (|#1| |#1| |#1| (-551))) (-15 -4241 (|#1| |#1|)) (-15 -4242 ((-776) |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4247 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "last")) (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| "rest")) (-15 -4248 (|#1| |#1|)) (-15 -4250 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "first")) (-15 -4250 (|#2| |#1|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -3447 ((-112) |#1| |#1|)) (-15 -3448 ((-551) |#1| |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| "value")) (-15 -3844 (|#2| |#1|)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -2136 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-4244 ((|#1| $) 66)) (-4246 (($ $) 68)) (-2390 (((-1278) $ (-551) (-551)) 98 (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 53 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-4236 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) 87 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 103)) (-4245 ((|#1| $) 67)) (-4174 (($) 7 T CONST)) (-2486 (($ $) 125)) (-4248 (($ $) 74) (($ $ (-776)) 72)) (-1443 (($ $) 100 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 101 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 104)) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1694 ((|#1| $ (-551) |#1|) 86 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 88)) (-3884 (((-112) $) 84)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-2485 (((-776) $) 124)) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) 109)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 96 (|has| (-551) (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 95 (|has| (-551) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-2488 (($ $) 127)) (-2489 (((-112) $) 128)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4247 ((|#1| $) 71) (($ $ (-776)) 69)) (-2467 (($ $ $ (-551)) 117) (($ |#1| $ (-551)) 116)) (-2395 (((-646 (-551)) $) 93)) (-2396 (((-112) (-551) $) 92)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2487 ((|#1| $) 126)) (-4250 ((|#1| $) 77) (($ $ (-776)) 75)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2391 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-4218 (($ $ (-551)) 123)) (-3885 (((-112) $) 85)) (-2490 (((-112) $) 129)) (-2491 (((-112) $) 130)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 91)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1239 (-551))) 113) ((|#1| $ (-551)) 90) ((|#1| $ (-551) |#1|) 89)) (-3448 (((-551) $ $) 45)) (-2468 (($ $ (-1239 (-551))) 115) (($ $ (-551)) 114)) (-4083 (((-112) $) 47)) (-4241 (($ $) 63)) (-4239 (($ $) 60 (|has| $ (-6 -4444)))) (-4242 (((-776) $) 64)) (-4243 (($ $) 65)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 99 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 108)) (-4240 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-4251 (($ $ $) 79) (($ |#1| $) 78) (($ (-646 $)) 111) (($ $ |#1|) 110)) (-3310 (($ $) 122)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-679 |#1|) (-140) (-1222)) (T -679))
-((-3848 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1222)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1222)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-679 *3)) (-4 *3 (-1222)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))))
-(-13 (-1155 |t#1|) (-10 -8 (-15 -3848 ($ (-1 (-112) |t#1|) $)) (-15 -4160 ($ (-1 (-112) |t#1|) $)) (-15 -2491 ((-112) $)) (-15 -2490 ((-112) $)) (-15 -2489 ((-112) $)) (-15 -2488 ($ $)) (-15 -2487 (|t#1| $)) (-15 -2486 ($ $)) (-15 -2485 ((-776) $)) (-15 -4218 ($ $ (-551))) (-15 -3310 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1155 |#1|) . T) ((-1222) . T) ((-1261 |#1|) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2497 (($ (-776) (-776) (-776)) 55 (|has| |#1| (-1055)))) (-1312 (((-112) $ (-776)) NIL)) (-2494 ((|#1| $ (-776) (-776) (-776) |#1|) 49)) (-4174 (($) NIL T CONST)) (-2495 (($ $ $) 60 (|has| |#1| (-1055)))) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2492 (((-1272 (-776)) $) 12)) (-2493 (($ (-1183) $ $) 37)) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2496 (($ (-776)) 57 (|has| |#1| (-1055)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-776) (-776) (-776)) 46)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-3971 (($ (-646 (-646 (-646 |#1|)))) 70)) (-4396 (($ (-964 (-964 (-964 |#1|)))) 23) (((-964 (-964 (-964 |#1|))) $) 19) (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-680 |#1|) (-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -2497 ($ (-776) (-776) (-776))) (-15 -2496 ($ (-776))) (-15 -2495 ($ $ $))) |%noBranch|) (-15 -3971 ($ (-646 (-646 (-646 |#1|))))) (-15 -4249 (|#1| $ (-776) (-776) (-776))) (-15 -2494 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -4396 ($ (-964 (-964 (-964 |#1|))))) (-15 -4396 ((-964 (-964 (-964 |#1|))) $)) (-15 -2493 ($ (-1183) $ $)) (-15 -2492 ((-1272 (-776)) $)))) (-1107)) (T -680))
-((-2497 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1107)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1107)))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1107)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-646 *3)))) (-4 *3 (-1107)) (-5 *1 (-680 *3)))) (-4249 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1107)))) (-2494 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1107)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1107)) (-5 *1 (-680 *3)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1107)))) (-2493 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1107)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1272 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1107)))))
-(-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -2497 ($ (-776) (-776) (-776))) (-15 -2496 ($ (-776))) (-15 -2495 ($ $ $))) |%noBranch|) (-15 -3971 ($ (-646 (-646 (-646 |#1|))))) (-15 -4249 (|#1| $ (-776) (-776) (-776))) (-15 -2494 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -4396 ($ (-964 (-964 (-964 |#1|))))) (-15 -4396 ((-964 (-964 (-964 |#1|))) $)) (-15 -2493 ($ (-1183) $ $)) (-15 -2492 ((-1272 (-776)) $))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3616 (((-488) $) 10)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 12)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-681) (-13 (-1089) (-10 -8 (-15 -3616 ((-488) $)) (-15 -3671 ((-1141) $))))) (T -681))
-((-3616 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681)))))
-(-13 (-1089) (-10 -8 (-15 -3616 ((-488) $)) (-15 -3671 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-4384 (((-646 |#1|) $) 15)) (-3559 (($ $) 19)) (-3083 (((-112) $) 20)) (-3595 (((-3 |#1| "failed") $) 23)) (-3594 ((|#1| $) 21)) (-4248 (($ $) 37)) (-4386 (($ $) 25)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-2857 (((-112) $ $) 47)) (-4283 (((-925) $) 40)) (-3560 (($ $) 18)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 ((|#1| $) 36)) (-4396 (((-868) $) 32) (($ |#1|) 24) (((-824 |#1|) $) 28)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 13)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-682 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4396 ((-824 |#1|) $)) (-15 -4250 (|#1| $)) (-15 -3560 ($ $)) (-15 -4283 ((-925) $)) (-15 -2857 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -4248 ($ $)) (-15 -3083 ((-112) $)) (-15 -3559 ($ $)) (-15 -4384 ((-646 |#1|) $)))) (-855)) (T -682))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4250 (*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3559 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4396 ((-824 |#1|) $)) (-15 -4250 (|#1| $)) (-15 -3560 ($ $)) (-15 -4283 ((-925) $)) (-15 -2857 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -4248 ($ $)) (-15 -3083 ((-112) $)) (-15 -3559 ($ $)) (-15 -4384 ((-646 |#1|) $))))
-((-2506 ((|#1| (-1 |#1| (-776) |#1|) (-776) |#1|) 14)) (-2498 ((|#1| (-1 |#1| |#1|) (-776) |#1|) 12)))
-(((-683 |#1|) (-10 -7 (-15 -2498 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -2506 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) (-1107)) (T -683))
-((-2506 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1107)) (-5 *1 (-683 *2)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1107)) (-5 *1 (-683 *2)))))
-(-10 -7 (-15 -2498 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -2506 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|)))
-((-2500 ((|#2| |#1| |#2|) 9)) (-2499 ((|#1| |#1| |#2|) 8)))
-(((-684 |#1| |#2|) (-10 -7 (-15 -2499 (|#1| |#1| |#2|)) (-15 -2500 (|#2| |#1| |#2|))) (-1107) (-1107)) (T -684))
-((-2500 (*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(-10 -7 (-15 -2499 (|#1| |#1| |#2|)) (-15 -2500 (|#2| |#1| |#2|)))
-((-2501 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -2501 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1107) (-1107) (-1107)) (T -685))
-((-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)) (-5 *1 (-685 *5 *6 *2)))))
-(-10 -7 (-15 -2501 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3757 (((-1223) $) 21)) (-3756 (((-646 (-1223)) $) 19)) (-2502 (($ (-646 (-1223)) (-1223)) 14)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 29) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1223) $) 22) (($ (-1121)) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-686) (-13 (-1089) (-618 (-1223)) (-10 -8 (-15 -4396 ($ (-1121))) (-15 -2502 ($ (-646 (-1223)) (-1223))) (-15 -3756 ((-646 (-1223)) $)) (-15 -3757 ((-1223) $))))) (T -686))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-686)))) (-2502 (*1 *1 *2 *3) (-12 (-5 *2 (-646 (-1223))) (-5 *3 (-1223)) (-5 *1 (-686)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-686)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-686)))))
-(-13 (-1089) (-618 (-1223)) (-10 -8 (-15 -4396 ($ (-1121))) (-15 -2502 ($ (-646 (-1223)) (-1223))) (-15 -3756 ((-646 (-1223)) $)) (-15 -3757 ((-1223) $))))
-((-2506 (((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)) 29)) (-2503 (((-1 |#1|) |#1|) 8)) (-2505 ((|#1| |#1|) 23)) (-2504 (((-646 |#1|) (-1 (-646 |#1|) (-646 |#1|)) (-551)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4396 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-776)) 26)))
-(((-687 |#1|) (-10 -7 (-15 -2503 ((-1 |#1|) |#1|)) (-15 -4396 ((-1 |#1|) |#1|)) (-15 -2504 (|#1| (-1 |#1| |#1|))) (-15 -2504 ((-646 |#1|) (-1 (-646 |#1|) (-646 |#1|)) (-551))) (-15 -2505 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -2506 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) (-1107)) (T -687))
-((-2506 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1107)) (-5 *1 (-687 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1107)) (-5 *1 (-687 *4)))) (-2505 (*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1107)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-646 *5) (-646 *5))) (-5 *4 (-551)) (-5 *2 (-646 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1107)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1107)))) (-4396 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1107)))) (-2503 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1107)))))
-(-10 -7 (-15 -2503 ((-1 |#1|) |#1|)) (-15 -4396 ((-1 |#1|) |#1|)) (-15 -2504 (|#1| (-1 |#1| |#1|))) (-15 -2504 ((-646 |#1|) (-1 (-646 |#1|) (-646 |#1|)) (-551))) (-15 -2505 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -2506 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|))))
-((-2509 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2508 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4402 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2507 (((-1 |#2| |#1|) |#2|) 11)))
-(((-688 |#1| |#2|) (-10 -7 (-15 -2507 ((-1 |#2| |#1|) |#2|)) (-15 -2508 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4402 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2509 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1107) (-1107)) (T -688))
-((-2509 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1107)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)) (-4 *4 (-1107)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))) (-2507 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1107)) (-4 *3 (-1107)))))
-(-10 -7 (-15 -2507 ((-1 |#2| |#1|) |#2|)) (-15 -2508 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4402 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2509 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2514 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2510 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2511 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2512 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2513 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -2510 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2511 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2512 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2513 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2514 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1107) (-1107) (-1107)) (T -689))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1107)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1107)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1107)) (-4 *4 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
-(-10 -7 (-15 -2510 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2511 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2512 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2513 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2514 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-4288 (($ (-776) (-776)) 43)) (-2519 (($ $ $) 71)) (-3856 (($ |#3|) 66) (($ $) 67)) (-3543 (((-112) $) 38)) (-2518 (($ $ (-551) (-551)) 82)) (-2517 (($ $ (-551) (-551)) 83)) (-2516 (($ $ (-551) (-551) (-551) (-551)) 88)) (-2521 (($ $) 69)) (-3545 (((-112) $) 15)) (-2515 (($ $ (-551) (-551) $) 89)) (-4237 ((|#2| $ (-551) (-551) |#2|) NIL) (($ $ (-646 (-551)) (-646 (-551)) $) 87)) (-3775 (($ (-776) |#2|) 53)) (-3546 (($ (-646 (-646 |#2|))) 51)) (-4043 (((-646 (-646 |#2|)) $) 78)) (-2520 (($ $ $) 70)) (-3907 (((-3 $ "failed") $ |#2|) 121)) (-4249 ((|#2| $ (-551) (-551)) NIL) ((|#2| $ (-551) (-551) |#2|) NIL) (($ $ (-646 (-551)) (-646 (-551))) 86)) (-3774 (($ (-646 |#2|)) 54) (($ (-646 $)) 56)) (-3544 (((-112) $) 28)) (-4396 (($ |#4|) 61) (((-868) $) NIL)) (-3542 (((-112) $) 40)) (-4399 (($ $ |#2|) 123)) (-4287 (($ $ $) 93) (($ $) 96)) (-4289 (($ $ $) 91)) (** (($ $ (-776)) 110) (($ $ (-551)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-551) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
-(((-690 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -4399 (|#1| |#1| |#2|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -2515 (|#1| |#1| (-551) (-551) |#1|)) (-15 -2516 (|#1| |#1| (-551) (-551) (-551) (-551))) (-15 -2517 (|#1| |#1| (-551) (-551))) (-15 -2518 (|#1| |#1| (-551) (-551))) (-15 -4237 (|#1| |#1| (-646 (-551)) (-646 (-551)) |#1|)) (-15 -4249 (|#1| |#1| (-646 (-551)) (-646 (-551)))) (-15 -4043 ((-646 (-646 |#2|)) |#1|)) (-15 -2519 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3856 (|#1| |#3|)) (-15 -4396 (|#1| |#4|)) (-15 -3774 (|#1| (-646 |#1|))) (-15 -3774 (|#1| (-646 |#2|))) (-15 -3775 (|#1| (-776) |#2|)) (-15 -3546 (|#1| (-646 (-646 |#2|)))) (-15 -4288 (|#1| (-776) (-776))) (-15 -3542 ((-112) |#1|)) (-15 -3543 ((-112) |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 -4237 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551)))) (-691 |#2| |#3| |#4|) (-1055) (-376 |#2|) (-376 |#2|)) (T -690))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -4399 (|#1| |#1| |#2|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -2515 (|#1| |#1| (-551) (-551) |#1|)) (-15 -2516 (|#1| |#1| (-551) (-551) (-551) (-551))) (-15 -2517 (|#1| |#1| (-551) (-551))) (-15 -2518 (|#1| |#1| (-551) (-551))) (-15 -4237 (|#1| |#1| (-646 (-551)) (-646 (-551)) |#1|)) (-15 -4249 (|#1| |#1| (-646 (-551)) (-646 (-551)))) (-15 -4043 ((-646 (-646 |#2|)) |#1|)) (-15 -2519 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3856 (|#1| |#3|)) (-15 -4396 (|#1| |#4|)) (-15 -3774 (|#1| (-646 |#1|))) (-15 -3774 (|#1| (-646 |#2|))) (-15 -3775 (|#1| (-776) |#2|)) (-15 -3546 (|#1| (-646 (-646 |#2|)))) (-15 -4288 (|#1| (-776) (-776))) (-15 -3542 ((-112) |#1|)) (-15 -3543 ((-112) |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 -4237 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) (-551))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-4288 (($ (-776) (-776)) 98)) (-2519 (($ $ $) 88)) (-3856 (($ |#2|) 92) (($ $) 91)) (-3543 (((-112) $) 100)) (-2518 (($ $ (-551) (-551)) 84)) (-2517 (($ $ (-551) (-551)) 83)) (-2516 (($ $ (-551) (-551) (-551) (-551)) 82)) (-2521 (($ $) 90)) (-3545 (((-112) $) 102)) (-1312 (((-112) $ (-776)) 8)) (-2515 (($ $ (-551) (-551) $) 81)) (-4237 ((|#1| $ (-551) (-551) |#1|) 45) (($ $ (-646 (-551)) (-646 (-551)) $) 85)) (-1348 (($ $ (-551) |#2|) 43)) (-1347 (($ $ (-551) |#3|) 42)) (-3775 (($ (-776) |#1|) 96)) (-4174 (($) 7 T CONST)) (-3532 (($ $) 68 (|has| |#1| (-310)))) (-3534 ((|#2| $ (-551)) 47)) (-3531 (((-776) $) 67 (|has| |#1| (-562)))) (-1694 ((|#1| $ (-551) (-551) |#1|) 44)) (-3535 ((|#1| $ (-551) (-551)) 49)) (-2134 (((-646 |#1|) $) 31)) (-3530 (((-776) $) 66 (|has| |#1| (-562)))) (-3529 (((-646 |#3|) $) 65 (|has| |#1| (-562)))) (-3537 (((-776) $) 52)) (-4064 (($ (-776) (-776) |#1|) 58)) (-3536 (((-776) $) 51)) (-4169 (((-112) $ (-776)) 9)) (-3769 ((|#1| $) 63 (|has| |#1| (-6 (-4445 #1="*"))))) (-3541 (((-551) $) 56)) (-3539 (((-551) $) 54)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3540 (((-551) $) 55)) (-3538 (((-551) $) 53)) (-3546 (($ (-646 (-646 |#1|))) 97)) (-2138 (($ (-1 |#1| |#1|) $) 35)) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4043 (((-646 (-646 |#1|)) $) 87)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4039 (((-3 $ "failed") $) 62 (|has| |#1| (-367)))) (-2520 (($ $ $) 89)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) 57)) (-3907 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-562)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) (-551)) 50) ((|#1| $ (-551) (-551) |#1|) 48) (($ $ (-646 (-551)) (-646 (-551))) 86)) (-3774 (($ (-646 |#1|)) 95) (($ (-646 $)) 94)) (-3544 (((-112) $) 101)) (-3770 ((|#1| $) 64 (|has| |#1| (-6 (-4445 #1#))))) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-3533 ((|#3| $ (-551)) 46)) (-4396 (($ |#3|) 93) (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3542 (((-112) $) 99)) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4399 (($ $ |#1|) 69 (|has| |#1| (-367)))) (-4287 (($ $ $) 79) (($ $) 78)) (-4289 (($ $ $) 80)) (** (($ $ (-776)) 71) (($ $ (-551)) 61 (|has| |#1| (-367)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-551) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-691 |#1| |#2| |#3|) (-140) (-1055) (-376 |t#1|) (-376 |t#1|)) (T -691))
-((-3545 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-112)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-112)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-112)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-112)))) (-4288 (*1 *1 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-3546 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-3775 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4396 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *2)) (-4 *4 (-376 *3)) (-4 *2 (-376 *3)))) (-3856 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-691 *3 *2 *4)) (-4 *2 (-376 *3)) (-4 *4 (-376 *3)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-2519 (*1 *1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-646 (-646 *3))))) (-4249 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-646 (-551))) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4237 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-646 (-551))) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-2518 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-2517 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-2516 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-2515 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-4289 (*1 *1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-691 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *2 (-376 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-691 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-376 *3)) (-4 *4 (-376 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (-4 *2 (-562)))) (-4399 (*1 *1 *1 *2) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (-4 *2 (-367)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (-4 *2 (-310)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-776)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-776)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-646 *5)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (|has| *2 (-6 (-4445 #1="*"))) (-4 *2 (-1055)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (|has| *2 (-6 (-4445 #1#))) (-4 *2 (-1055)))) (-4039 (*1 *1 *1) (|partial| -12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2)) (-4 *2 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-4 *3 (-367)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3545 ((-112) $)) (-15 -3544 ((-112) $)) (-15 -3543 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -4288 ($ (-776) (-776))) (-15 -3546 ($ (-646 (-646 |t#1|)))) (-15 -3775 ($ (-776) |t#1|)) (-15 -3774 ($ (-646 |t#1|))) (-15 -3774 ($ (-646 $))) (-15 -4396 ($ |t#3|)) (-15 -3856 ($ |t#2|)) (-15 -3856 ($ $)) (-15 -2521 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 ($ $ $)) (-15 -4043 ((-646 (-646 |t#1|)) $)) (-15 -4249 ($ $ (-646 (-551)) (-646 (-551)))) (-15 -4237 ($ $ (-646 (-551)) (-646 (-551)) $)) (-15 -2518 ($ $ (-551) (-551))) (-15 -2517 ($ $ (-551) (-551))) (-15 -2516 ($ $ (-551) (-551) (-551) (-551))) (-15 -2515 ($ $ (-551) (-551) $)) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -4287 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-551) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-776))) (IF (|has| |t#1| (-562)) (-15 -3907 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -4399 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-310)) (-15 -3532 ($ $)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -3531 ((-776) $)) (-15 -3530 ((-776) $)) (-15 -3529 ((-646 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4445 "*"))) (PROGN (-15 -3770 (|t#1| $)) (-15 -3769 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -4039 ((-3 $ "failed") $)) (-15 ** ($ $ (-551)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-57 |#1| |#2| |#3|) . T) ((-1222) . T))
-((-4292 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4408 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-692 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4408 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4408 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4292 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1055) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|) (-1055) (-376 |#5|) (-376 |#5|) (-691 |#5| |#6| |#7|)) (T -692))
-((-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055)) (-4 *6 (-376 *5)) (-4 *7 (-376 *5)) (-4 *8 (-376 *2)) (-4 *9 (-376 *2)) (-5 *1 (-692 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-691 *5 *6 *7)) (-4 *10 (-691 *2 *8 *9)))) (-4408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-376 *5)) (-4 *7 (-376 *5)) (-4 *2 (-691 *8 *9 *10)) (-5 *1 (-692 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-691 *5 *6 *7)) (-4 *9 (-376 *8)) (-4 *10 (-376 *8)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-376 *5)) (-4 *7 (-376 *5)) (-4 *2 (-691 *8 *9 *10)) (-5 *1 (-692 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-691 *5 *6 *7)) (-4 *9 (-376 *8)) (-4 *10 (-376 *8)))))
-(-10 -7 (-15 -4408 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4408 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4292 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3532 ((|#4| |#4|) 97 (|has| |#1| (-310)))) (-3531 (((-776) |#4|) 125 (|has| |#1| (-562)))) (-3530 (((-776) |#4|) 101 (|has| |#1| (-562)))) (-3529 (((-646 |#3|) |#4|) 108 (|has| |#1| (-562)))) (-2560 (((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|) 140 (|has| |#1| (-310)))) (-3769 ((|#1| |#4|) 57)) (-2526 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-562)))) (-4039 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-367)))) (-2525 ((|#4| |#4|) 93 (|has| |#1| (-562)))) (-2523 ((|#4| |#4| |#1| (-551) (-551)) 65)) (-2522 ((|#4| |#4| (-551) (-551)) 60)) (-2524 ((|#4| |#4| |#1| (-551) (-551)) 70)) (-3770 ((|#1| |#4|) 103)) (-2938 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-562)))))
-(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -3769 (|#1| |#4|)) (-15 -2522 (|#4| |#4| (-551) (-551))) (-15 -2523 (|#4| |#4| |#1| (-551) (-551))) (-15 -2524 (|#4| |#4| |#1| (-551) (-551))) (IF (|has| |#1| (-562)) (PROGN (-15 -3531 ((-776) |#4|)) (-15 -3530 ((-776) |#4|)) (-15 -3529 ((-646 |#3|) |#4|)) (-15 -2525 (|#4| |#4|)) (-15 -2526 ((-3 |#4| "failed") |#4|)) (-15 -2938 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -3532 (|#4| |#4|)) (-15 -2560 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4039 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|)) (T -693))
-((-4039 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-2560 (*1 *2 *3 *3) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-691 *3 *4 *5)))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-2526 (*1 *2 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-2525 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-3529 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-646 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3531 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-2524 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-551)) (-4 *3 (-173)) (-4 *5 (-376 *3)) (-4 *6 (-376 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-691 *3 *5 *6)))) (-2523 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-551)) (-4 *3 (-173)) (-4 *5 (-376 *3)) (-4 *6 (-376 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-691 *3 *5 *6)))) (-2522 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-551)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-691 *4 *5 *6)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5)))))
-(-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -3769 (|#1| |#4|)) (-15 -2522 (|#4| |#4| (-551) (-551))) (-15 -2523 (|#4| |#4| |#1| (-551) (-551))) (-15 -2524 (|#4| |#4| |#1| (-551) (-551))) (IF (|has| |#1| (-562)) (PROGN (-15 -3531 ((-776) |#4|)) (-15 -3530 ((-776) |#4|)) (-15 -3529 ((-646 |#3|) |#4|)) (-15 -2525 (|#4| |#4|)) (-15 -2526 ((-3 |#4| "failed") |#4|)) (-15 -2938 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -3532 (|#4| |#4|)) (-15 -2560 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4039 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776) (-776)) 64)) (-2519 (($ $ $) NIL)) (-3856 (($ (-1272 |#1|)) NIL) (($ $) NIL)) (-3543 (((-112) $) NIL)) (-2518 (($ $ (-551) (-551)) 22)) (-2517 (($ $ (-551) (-551)) NIL)) (-2516 (($ $ (-551) (-551) (-551) (-551)) NIL)) (-2521 (($ $) NIL)) (-3545 (((-112) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-2515 (($ $ (-551) (-551) $) NIL)) (-4237 ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551)) $) NIL)) (-1348 (($ $ (-551) (-1272 |#1|)) NIL)) (-1347 (($ $ (-551) (-1272 |#1|)) NIL)) (-3775 (($ (-776) |#1|) 37)) (-4174 (($) NIL T CONST)) (-3532 (($ $) 46 (|has| |#1| (-310)))) (-3534 (((-1272 |#1|) $ (-551)) NIL)) (-3531 (((-776) $) 48 (|has| |#1| (-562)))) (-1694 ((|#1| $ (-551) (-551) |#1|) 69)) (-3535 ((|#1| $ (-551) (-551)) NIL)) (-2134 (((-646 |#1|) $) NIL)) (-3530 (((-776) $) 50 (|has| |#1| (-562)))) (-3529 (((-646 (-1272 |#1|)) $) 53 (|has| |#1| (-562)))) (-3537 (((-776) $) 32)) (-4064 (($ (-776) (-776) |#1|) 28)) (-3536 (((-776) $) 33)) (-4169 (((-112) $ (-776)) NIL)) (-3769 ((|#1| $) 44 (|has| |#1| (-6 (-4445 #1="*"))))) (-3541 (((-551) $) 10)) (-3539 (((-551) $) 11)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3540 (((-551) $) 14)) (-3538 (((-551) $) 65)) (-3546 (($ (-646 (-646 |#1|))) NIL)) (-2138 (($ (-1 |#1| |#1|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-646 (-646 |#1|)) $) 76)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4039 (((-3 $ #2="failed") $) 60 (|has| |#1| (-367)))) (-2520 (($ $ $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2391 (($ $ |#1|) NIL)) (-3907 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-562)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) (-551)) NIL) ((|#1| $ (-551) (-551) |#1|) NIL) (($ $ (-646 (-551)) (-646 (-551))) NIL)) (-3774 (($ (-646 |#1|)) NIL) (($ (-646 $)) NIL) (($ (-1272 |#1|)) 70)) (-3544 (((-112) $) NIL)) (-3770 ((|#1| $) 42 (|has| |#1| (-6 (-4445 #1#))))) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3533 (((-1272 |#1|) $ (-551)) NIL)) (-4396 (($ (-1272 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $ $) NIL) (($ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) 38) (($ $ (-551)) 62 (|has| |#1| (-367)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-551) $) NIL) (((-1272 |#1|) $ (-1272 |#1|)) NIL) (((-1272 |#1|) (-1272 |#1|) $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-694 |#1|) (-13 (-691 |#1| (-1272 |#1|) (-1272 |#1|)) (-10 -8 (-15 -3774 ($ (-1272 |#1|))) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4039 ((-3 $ "failed") $)) |%noBranch|))) (-1055)) (T -694))
-((-4039 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3)))))
-(-13 (-691 |#1| (-1272 |#1|) (-1272 |#1|)) (-10 -8 (-15 -3774 ($ (-1272 |#1|))) (IF (|has| |#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4039 ((-3 $ "failed") $)) |%noBranch|)))
-((-2532 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 37)) (-2531 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 34)) (-2533 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776)) 43)) (-2528 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 27)) (-2529 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 31) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 29)) (-2530 (((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|)) 33)) (-2527 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 25)) (** (((-694 |#1|) (-694 |#1|) (-776)) 46)))
-(((-695 |#1|) (-10 -7 (-15 -2527 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2528 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2529 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2529 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2530 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -2531 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2532 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2533 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) (-1055)) (T -695))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-2533 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-2532 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2531 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2530 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2529 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2529 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2528 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-2527 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(-10 -7 (-15 -2527 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2528 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2529 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2529 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2530 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -2531 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2532 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2533 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776))))
-((-3595 (((-3 |#1| "failed") $) 18)) (-3594 ((|#1| $) NIL)) (-2534 (($) 7 T CONST)) (-2535 (($ |#1|) 8)) (-4396 (($ |#1|) 16) (((-868) $) 23)) (-4015 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2534)) 11)) (-4021 ((|#1| $) 15)))
-(((-696 |#1|) (-13 (-1268) (-1044 |#1|) (-618 (-868)) (-10 -8 (-15 -2535 ($ |#1|)) (-15 -4015 ((-112) $ (|[\|\|]| |#1|))) (-15 -4015 ((-112) $ (|[\|\|]| -2534))) (-15 -4021 (|#1| $)) (-15 -2534 ($) -4402))) (-618 (-868))) (T -696))
-((-2535 (*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868))))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-868))) (-5 *2 (-112)) (-5 *1 (-696 *4)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2534)) (-5 *2 (-112)) (-5 *1 (-696 *4)) (-4 *4 (-618 (-868))))) (-4021 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868))))) (-2534 (*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868))))))
-(-13 (-1268) (-1044 |#1|) (-618 (-868)) (-10 -8 (-15 -2535 ($ |#1|)) (-15 -4015 ((-112) $ (|[\|\|]| |#1|))) (-15 -4015 ((-112) $ (|[\|\|]| -2534))) (-15 -4021 (|#1| $)) (-15 -2534 ($) -4402)))
-((-2538 ((|#2| |#2| |#4|) 33)) (-2541 (((-694 |#2|) |#3| |#4|) 39)) (-2539 (((-694 |#2|) |#2| |#4|) 38)) (-2536 (((-1272 |#2|) |#2| |#4|) 16)) (-2537 ((|#2| |#3| |#4|) 32)) (-2542 (((-694 |#2|) |#3| |#4| (-776) (-776)) 48)) (-2540 (((-694 |#2|) |#2| |#4| (-776)) 47)))
-(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 ((-1272 |#2|) |#2| |#4|)) (-15 -2537 (|#2| |#3| |#4|)) (-15 -2538 (|#2| |#2| |#4|)) (-15 -2539 ((-694 |#2|) |#2| |#4|)) (-15 -2540 ((-694 |#2|) |#2| |#4| (-776))) (-15 -2541 ((-694 |#2|) |#3| |#4|)) (-15 -2542 ((-694 |#2|) |#3| |#4| (-776) (-776)))) (-1107) (-906 |#1|) (-376 |#2|) (-13 (-376 |#1|) (-10 -7 (-6 -4443)))) (T -697))
-((-2542 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1107)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-376 *7)) (-4 *4 (-13 (-376 *6) (-10 -7 (-6 -4443)))))) (-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-376 *6)) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))) (-2540 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1107)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-376 *3)) (-4 *4 (-13 (-376 *6) (-10 -7 (-6 -4443)))))) (-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-376 *3)) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))) (-2538 (*1 *2 *2 *3) (-12 (-4 *4 (-1107)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *5 (-376 *2)) (-4 *3 (-13 (-376 *4) (-10 -7 (-6 -4443)))))) (-2537 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) (-4 *3 (-376 *2)) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))) (-2536 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-4 *3 (-906 *5)) (-5 *2 (-1272 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-376 *3)) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))))
-(-10 -7 (-15 -2536 ((-1272 |#2|) |#2| |#4|)) (-15 -2537 (|#2| |#3| |#4|)) (-15 -2538 (|#2| |#2| |#4|)) (-15 -2539 ((-694 |#2|) |#2| |#4|)) (-15 -2540 ((-694 |#2|) |#2| |#4| (-776))) (-15 -2541 ((-694 |#2|) |#3| |#4|)) (-15 -2542 ((-694 |#2|) |#3| |#4| (-776) (-776))))
-((-4191 (((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)) 20)) (-4189 ((|#1| (-694 |#2|)) 9)) (-4190 (((-694 |#1|) (-694 |#2|)) 18)))
-(((-698 |#1| |#2|) (-10 -7 (-15 -4189 (|#1| (-694 |#2|))) (-15 -4190 ((-694 |#1|) (-694 |#2|))) (-15 -4191 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) (-562) (-997 |#1|)) (T -698))
-((-4191 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-997 *4)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-997 *4)) (-4 *4 (-562)) (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-698 *2 *4)))))
-(-10 -7 (-15 -4189 (|#1| (-694 |#2|))) (-15 -4190 ((-694 |#1|) (-694 |#2|))) (-15 -4191 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1967 (((-694 (-704))) NIL) (((-694 (-704)) (-1272 $)) NIL)) (-3772 (((-704) $) NIL)) (-3933 (($ $) NIL (|has| (-704) (-1208)))) (-4089 (($ $) NIL (|has| (-704) (-1208)))) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-704) (-354)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-916))))) (-4224 (($ $) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| (-704) (-916))) (|has| (-704) (-367))))) (-4419 (((-410 $) $) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| (-704) (-916))) (|has| (-704) (-367))))) (-3456 (($ $) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-916))))) (-1763 (((-112) $ $) NIL (|has| (-704) (-310)))) (-3558 (((-776)) NIL (|has| (-704) (-372)))) (-3931 (($ $) NIL (|has| (-704) (-1208)))) (-4088 (($ $) NIL (|has| (-704) (-1208)))) (-3935 (($ $) NIL (|has| (-704) (-1208)))) (-4087 (($ $) NIL (|has| (-704) (-1208)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) NIL) (((-3 (-704) #2#) $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-704) (-1044 (-412 (-551)))))) (-3594 (((-551) $) NIL) (((-704) $) NIL) (((-412 (-551)) $) NIL (|has| (-704) (-1044 (-412 (-551)))))) (-1977 (($ (-1272 (-704))) NIL) (($ (-1272 (-704)) (-1272 $)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-704) (-354)))) (-2982 (($ $ $) NIL (|has| (-704) (-310)))) (-1966 (((-694 (-704)) $) NIL) (((-694 (-704)) $ (-1272 $)) NIL)) (-2445 (((-694 (-704)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-704))) (|:| |vec| (-1272 (-704)))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-704) (-644 (-551)))) (((-694 (-551)) (-694 $)) NIL (|has| (-704) (-644 (-551))))) (-4292 (((-3 $ "failed") (-412 (-1177 (-704)))) NIL (|has| (-704) (-367))) (($ (-1177 (-704))) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4093 (((-704) $) 29)) (-3443 (((-3 (-412 (-551)) #3="failed") $) NIL (|has| (-704) (-550)))) (-3442 (((-112) $) NIL (|has| (-704) (-550)))) (-3441 (((-412 (-551)) $) NIL (|has| (-704) (-550)))) (-3531 (((-925)) NIL)) (-3413 (($) NIL (|has| (-704) (-372)))) (-2981 (($ $ $) NIL (|has| (-704) (-310)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| (-704) (-310)))) (-3254 (($) NIL (|has| (-704) (-354)))) (-1858 (((-112) $) NIL (|has| (-704) (-354)))) (-1951 (($ $) NIL (|has| (-704) (-354))) (($ $ (-776)) NIL (|has| (-704) (-354)))) (-4173 (((-112) $) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| (-704) (-916))) (|has| (-704) (-367))))) (-1465 (((-2 (|:| |r| (-704)) (|:| |phi| (-704))) $) NIL (-12 (|has| (-704) (-1066)) (|has| (-704) (-1208))))) (-4077 (($) NIL (|has| (-704) (-1208)))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-704) (-892 (-382)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-704) (-892 (-551))))) (-4221 (((-837 (-925)) $) NIL (|has| (-704) (-354))) (((-925) $) NIL (|has| (-704) (-354)))) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-3554 (((-704) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-704) (-354)))) (-1760 (((-3 (-646 $) #4="failed") (-646 $) $) NIL (|has| (-704) (-310)))) (-2202 (((-1177 (-704)) $) NIL (|has| (-704) (-367)))) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4408 (($ (-1 (-704) (-704)) $) NIL)) (-2198 (((-925) $) NIL (|has| (-704) (-372)))) (-4392 (($ $) NIL (|has| (-704) (-1208)))) (-3499 (((-1177 (-704)) $) NIL)) (-2079 (($ (-646 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| (-704) (-367)))) (-3887 (($) NIL (|has| (-704) (-354)) CONST)) (-2581 (($ (-925)) NIL (|has| (-704) (-372)))) (-1467 (($) NIL)) (-4094 (((-704) $) 31)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| (-704) (-310)))) (-3582 (($ (-646 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-704) (-354)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-916))))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-916))))) (-4182 (((-410 $) $) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| (-704) (-916))) (|has| (-704) (-367))))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-704) (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| (-704) (-310)))) (-3907 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-704)) NIL (|has| (-704) (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| (-704) (-310)))) (-4393 (($ $) NIL (|has| (-704) (-1208)))) (-4217 (($ $ (-1183) (-704)) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-646 (-1183)) (-646 (-704))) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-646 (-296 (-704)))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-296 (-704))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-704) (-704)) NIL (|has| (-704) (-312 (-704)))) (($ $ (-646 (-704)) (-646 (-704))) NIL (|has| (-704) (-312 (-704))))) (-1762 (((-776) $) NIL (|has| (-704) (-310)))) (-4249 (($ $ (-704)) NIL (|has| (-704) (-289 (-704) (-704))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| (-704) (-310)))) (-4207 (((-704)) NIL) (((-704) (-1272 $)) NIL)) (-1952 (((-3 (-776) "failed") $ $) NIL (|has| (-704) (-354))) (((-776) $) NIL (|has| (-704) (-354)))) (-4260 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2589 (((-694 (-704)) (-1272 $) (-1 (-704) (-704))) NIL (|has| (-704) (-367)))) (-3623 (((-1177 (-704))) NIL)) (-3936 (($ $) NIL (|has| (-704) (-1208)))) (-4086 (($ $) NIL (|has| (-704) (-1208)))) (-1852 (($) NIL (|has| (-704) (-354)))) (-3934 (($ $) NIL (|has| (-704) (-1208)))) (-4085 (($ $) NIL (|has| (-704) (-1208)))) (-3932 (($ $) NIL (|has| (-704) (-1208)))) (-4084 (($ $) NIL (|has| (-704) (-1208)))) (-3662 (((-694 (-704)) (-1272 $)) NIL) (((-1272 (-704)) $) NIL) (((-694 (-704)) (-1272 $) (-1272 $)) NIL) (((-1272 (-704)) $ (-1272 $)) NIL)) (-4420 (((-540) $) NIL (|has| (-704) (-619 (-540)))) (((-169 (-226)) $) NIL (|has| (-704) (-1026))) (((-169 (-382)) $) NIL (|has| (-704) (-1026))) (((-896 (-382)) $) NIL (|has| (-704) (-619 (-896 (-382))))) (((-896 (-551)) $) NIL (|has| (-704) (-619 (-896 (-551))))) (($ (-1177 (-704))) NIL) (((-1177 (-704)) $) NIL) (($ (-1272 (-704))) NIL) (((-1272 (-704)) $) NIL)) (-3428 (($ $) NIL)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-916))) (|has| (-704) (-354))))) (-1466 (($ (-704) (-704)) 12)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-551)) NIL) (($ (-704)) NIL) (($ (-169 (-382))) 13) (($ (-169 (-551))) 19) (($ (-169 (-704))) 28) (($ (-169 (-706))) 25) (((-169 (-382)) $) 33) (($ (-412 (-551))) NIL (-3978 (|has| (-704) (-367)) (|has| (-704) (-1044 (-412 (-551))))))) (-3123 (($ $) NIL (|has| (-704) (-354))) (((-3 $ #1#) $) NIL (-3978 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-916))) (|has| (-704) (-145))))) (-2788 (((-1177 (-704)) $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL)) (-3939 (($ $) NIL (|has| (-704) (-1208)))) (-3927 (($ $) NIL (|has| (-704) (-1208)))) (-2250 (((-112) $ $) NIL)) (-3937 (($ $) NIL (|has| (-704) (-1208)))) (-3925 (($ $) NIL (|has| (-704) (-1208)))) (-3941 (($ $) NIL (|has| (-704) (-1208)))) (-3929 (($ $) NIL (|has| (-704) (-1208)))) (-2403 (((-704) $) NIL (|has| (-704) (-1208)))) (-3942 (($ $) NIL (|has| (-704) (-1208)))) (-3930 (($ $) NIL (|has| (-704) (-1208)))) (-3940 (($ $) NIL (|has| (-704) (-1208)))) (-3928 (($ $) NIL (|has| (-704) (-1208)))) (-3938 (($ $) NIL (|has| (-704) (-1208)))) (-3926 (($ $) NIL (|has| (-704) (-1208)))) (-3825 (($ $) NIL (|has| (-704) (-1066)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL (|has| (-704) (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| (-704) (-1208))) (($ $ (-412 (-551))) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208)))) (($ $ (-551)) NIL (|has| (-704) (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ (-704) $) NIL) (($ $ (-704)) NIL) (($ (-412 (-551)) $) NIL (|has| (-704) (-367))) (($ $ (-412 (-551))) NIL (|has| (-704) (-367)))))
-(((-699) (-13 (-392) (-166 (-704)) (-10 -8 (-15 -4396 ($ (-169 (-382)))) (-15 -4396 ($ (-169 (-551)))) (-15 -4396 ($ (-169 (-704)))) (-15 -4396 ($ (-169 (-706)))) (-15 -4396 ((-169 (-382)) $))))) (T -699))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-169 (-382))) (-5 *1 (-699)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-169 (-551))) (-5 *1 (-699)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-169 (-704))) (-5 *1 (-699)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-169 (-706))) (-5 *1 (-699)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-169 (-382))) (-5 *1 (-699)))))
-(-13 (-392) (-166 (-704)) (-10 -8 (-15 -4396 ($ (-169 (-382)))) (-15 -4396 ($ (-169 (-551)))) (-15 -4396 ($ (-169 (-704)))) (-15 -4396 ($ (-169 (-706)))) (-15 -4396 ((-169 (-382)) $))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2544 (($ $) 63)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2543 (((-646 (-2 (|:| -2264 |#1|) (|:| -2135 (-776)))) $) 62)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-700 |#1|) (-140) (-1107)) (T -700))
-((-4057 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1107)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1107)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-700 *3)) (-4 *3 (-1107)) (-5 *2 (-646 (-2 (|:| -2264 *3) (|:| -2135 (-776))))))))
-(-13 (-236 |t#1|) (-10 -8 (-15 -4057 ($ |t#1| $ (-776))) (-15 -2544 ($ $)) (-15 -2543 ((-646 (-2 (|:| -2264 |t#1|) (|:| -2135 (-776)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2547 (((-646 |#1|) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) (-551)) 65)) (-2545 ((|#1| |#1| (-551)) 62)) (-3582 ((|#1| |#1| |#1| (-551)) 46)) (-4182 (((-646 |#1|) |#1| (-551)) 49)) (-2548 ((|#1| |#1| (-551) |#1| (-551)) 40)) (-2546 (((-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) |#1| (-551)) 61)))
-(((-701 |#1|) (-10 -7 (-15 -3582 (|#1| |#1| |#1| (-551))) (-15 -2545 (|#1| |#1| (-551))) (-15 -4182 ((-646 |#1|) |#1| (-551))) (-15 -2546 ((-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) |#1| (-551))) (-15 -2547 ((-646 |#1|) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) (-551))) (-15 -2548 (|#1| |#1| (-551) |#1| (-551)))) (-1248 (-551))) (T -701))
-((-2548 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3)))) (-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-2 (|:| -4182 *5) (|:| -4398 (-551))))) (-5 *4 (-551)) (-4 *5 (-1248 *4)) (-5 *2 (-646 *5)) (-5 *1 (-701 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-5 *2 (-646 (-2 (|:| -4182 *3) (|:| -4398 *4)))) (-5 *1 (-701 *3)) (-4 *3 (-1248 *4)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-5 *2 (-646 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1248 *4)))) (-2545 (*1 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3)))) (-3582 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -3582 (|#1| |#1| |#1| (-551))) (-15 -2545 (|#1| |#1| (-551))) (-15 -4182 ((-646 |#1|) |#1| (-551))) (-15 -2546 ((-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) |#1| (-551))) (-15 -2547 ((-646 |#1|) (-646 (-2 (|:| -4182 |#1|) (|:| -4398 (-551)))) (-551))) (-15 -2548 (|#1| |#1| (-551) |#1| (-551))))
-((-2552 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-2549 (((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263))) 56) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263))) 58) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1095 (-226)) (-1095 (-226)) (-646 (-263))) 60)) (-2551 (((-1139 (-226)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-646 (-263))) NIL)) (-2550 (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1095 (-226)) (-1095 (-226)) (-646 (-263))) 61)))
-(((-702) (-10 -7 (-15 -2549 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2549 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2549 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2550 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2551 ((-1139 (-226)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2552 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -702))
-((-2552 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))) (-2551 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226))) (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2550 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined")) (-5 *5 (-1095 (-226))) (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2549 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-226))) (-5 *5 (-646 (-263))) (-5 *1 (-702)))) (-2549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-226))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2549 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) #1#)) (-5 *5 (-1095 (-226))) (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))))
-(-10 -7 (-15 -2549 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2549 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2549 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2550 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1095 (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2551 ((-1139 (-226)) (-317 (-551)) (-317 (-551)) (-317 (-551)) (-1 (-226) (-226)) (-1095 (-226)) (-646 (-263)))) (-15 -2552 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
-((-4182 (((-410 (-1177 |#4|)) (-1177 |#4|)) 86) (((-410 |#4|) |#4|) 269)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4|)) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|)))) (-855) (-798) (-354) (-956 |#3| |#2| |#1|)) (T -703))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-354)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-354)) (-5 *2 (-410 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4|)) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 97)) (-3551 (((-551) $) 34)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4220 (($ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) NIL)) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL)) (-4174 (($) NIL T CONST)) (-3549 (($ $) NIL)) (-3595 (((-3 (-551) #1="failed") $) 85) (((-3 (-412 (-551)) #1#) $) 28) (((-3 (-382) #1#) $) 82)) (-3594 (((-551) $) 87) (((-412 (-551)) $) 79) (((-382) $) 80)) (-2982 (($ $ $) 109)) (-3908 (((-3 $ "failed") $) 100)) (-2981 (($ $ $) 108)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2555 (((-925)) 89) (((-925) (-925)) 88)) (-3624 (((-112) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL)) (-4221 (((-551) $) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL)) (-3554 (($ $) NIL)) (-3625 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL)) (-2553 (((-551) (-551)) 94) (((-551)) 95)) (-2952 (($ $ $) NIL) (($) NIL (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-2554 (((-551) (-551)) 92) (((-551)) 93)) (-3278 (($ $ $) NIL) (($) NIL (-12 (-3764 (|has| $ (-6 -4426))) (-3764 (|has| $ (-6 -4434)))))) (-2556 (((-551) $) 17)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 104)) (-1954 (((-925) (-551)) NIL (|has| $ (-6 -4434)))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL)) (-3552 (($ $) NIL)) (-3693 (($ (-551) (-551)) NIL) (($ (-551) (-551) (-925)) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) 105)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-2582 (((-551) $) 24)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 107)) (-3033 (((-925)) NIL) (((-925) (-925)) NIL (|has| $ (-6 -4434)))) (-1953 (((-925) (-551)) NIL (|has| $ (-6 -4434)))) (-4420 (((-382) $) NIL) (((-226) $) NIL) (((-896 (-382)) $) NIL)) (-4396 (((-868) $) 63) (($ (-551)) 75) (($ $) NIL) (($ (-412 (-551))) 78) (($ (-551)) 75) (($ (-412 (-551))) 78) (($ (-382)) 72) (((-382) $) 61) (($ (-706)) 66)) (-3548 (((-776)) 119 T CONST)) (-3366 (($ (-551) (-551) (-925)) 54)) (-3553 (($ $) NIL)) (-1955 (((-925)) NIL) (((-925) (-925)) NIL (|has| $ (-6 -4434)))) (-3680 (((-112) $ $) NIL)) (-3115 (((-925)) 91) (((-925) (-925)) 90)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL)) (-3528 (($) 37 T CONST)) (-3085 (($) 18 T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 96)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 118)) (-4399 (($ $ $) 77)) (-4287 (($ $) 115) (($ $ $) 116)) (-4289 (($ $ $) 114)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL) (($ $ (-412 (-551))) 103)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 110) (($ $ $) 101) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-704) (-13 (-409) (-392) (-367) (-1044 (-382)) (-1044 (-412 (-551))) (-147) (-10 -8 (-15 -2555 ((-925) (-925))) (-15 -2555 ((-925))) (-15 -3115 ((-925) (-925))) (-15 -2554 ((-551) (-551))) (-15 -2554 ((-551))) (-15 -2553 ((-551) (-551))) (-15 -2553 ((-551))) (-15 -4396 ((-382) $)) (-15 -4396 ($ (-706))) (-15 -2556 ((-551) $)) (-15 -2582 ((-551) $)) (-15 -3366 ($ (-551) (-551) (-925)))))) (T -704))
-((-2582 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-2555 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-2554 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-2553 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-382)) (-5 *1 (-704)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) (-3366 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-925)) (-5 *1 (-704)))))
-(-13 (-409) (-392) (-367) (-1044 (-382)) (-1044 (-412 (-551))) (-147) (-10 -8 (-15 -2555 ((-925) (-925))) (-15 -2555 ((-925))) (-15 -3115 ((-925) (-925))) (-15 -2554 ((-551) (-551))) (-15 -2554 ((-551))) (-15 -2553 ((-551) (-551))) (-15 -2553 ((-551))) (-15 -4396 ((-382) $)) (-15 -4396 ($ (-706))) (-15 -2556 ((-551) $)) (-15 -2582 ((-551) $)) (-15 -3366 ($ (-551) (-551) (-925)))))
-((-2559 (((-694 |#1|) (-694 |#1|) |#1| |#1|) 88)) (-3532 (((-694 |#1|) (-694 |#1|) |#1|) 67)) (-2558 (((-694 |#1|) (-694 |#1|) |#1|) 89)) (-2557 (((-694 |#1|) (-694 |#1|)) 68)) (-2560 (((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|) 87)))
-(((-705 |#1|) (-10 -7 (-15 -2557 ((-694 |#1|) (-694 |#1|))) (-15 -3532 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2558 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2559 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2560 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|))) (-310)) (T -705))
-((-2560 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-705 *3)) (-4 *3 (-310)))) (-2559 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2558 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2557 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(-10 -7 (-15 -2557 ((-694 |#1|) (-694 |#1|))) (-15 -3532 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2558 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2559 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2560 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-2235 (($ $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2230 (($ $ $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL)) (-2780 (($ $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) "failed") $) 31)) (-3594 (((-551) $) 29)) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL)) (-3442 (((-112) $) NIL)) (-3441 (((-412 (-551)) $) NIL)) (-3413 (($ $) NIL) (($) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2228 (($ $ $ $) NIL)) (-2236 (($ $ $) NIL)) (-3624 (((-112) $) NIL)) (-1459 (($ $ $) NIL)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL)) (-2591 (((-112) $) NIL)) (-3094 (((-112) $) NIL)) (-3886 (((-3 $ "failed") $) NIL)) (-3625 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2229 (($ $ $ $) NIL)) (-2952 (($ $ $) NIL)) (-2561 (((-925) (-925)) 10) (((-925)) 9)) (-3278 (($ $ $) NIL)) (-2232 (($ $) NIL)) (-4283 (($ $) NIL)) (-2079 (($ (-646 $)) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2227 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-2234 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ (-646 $)) NIL) (($ $ $) NIL)) (-1457 (($ $) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL) (($ $ (-776)) NIL)) (-2233 (($ $) NIL)) (-3842 (($ $) NIL)) (-4420 (((-226) $) NIL) (((-382) $) NIL) (((-896 (-551)) $) NIL) (((-540) $) NIL) (((-551) $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) 28) (($ $) NIL) (($ (-551)) 28) (((-317 $) (-317 (-551))) 18)) (-3548 (((-776)) NIL T CONST)) (-2237 (((-112) $ $) NIL)) (-3523 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3115 (($) NIL)) (-2250 (((-112) $ $) NIL)) (-2231 (($ $ $ $) NIL)) (-3825 (($ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL) (($ $ (-776)) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL)))
-(((-706) (-13 (-392) (-550) (-10 -8 (-15 -2561 ((-925) (-925))) (-15 -2561 ((-925))) (-15 -4396 ((-317 $) (-317 (-551))))))) (T -706))
-((-2561 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-706)))) (-2561 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-706)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-317 (-551))) (-5 *2 (-317 (-706))) (-5 *1 (-706)))))
-(-13 (-392) (-550) (-10 -8 (-15 -2561 ((-925) (-925))) (-15 -2561 ((-925))) (-15 -4396 ((-317 $) (-317 (-551))))))
-((-2567 (((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)) 19)) (-2562 (((-1 |#4| |#2| |#3|) (-1183)) 12)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2562 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2567 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)))) (-619 (-540)) (-1222) (-1222) (-1222)) (T -707))
-((-2567 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) (-4 *3 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *7 (-1222)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *4 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *7 (-1222)))))
-(-10 -7 (-15 -2562 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2567 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183))))
-((-2563 (((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)) 43) (((-1 (-226) (-226)) |#1| (-1183)) 48)))
-(((-708 |#1|) (-10 -7 (-15 -2563 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2563 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)))) (-619 (-540))) (T -708))
-((-2563 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-540))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-540))))))
-(-10 -7 (-15 -2563 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2563 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183))))
-((-2564 (((-1183) |#1| (-1183) (-646 (-1183))) 10) (((-1183) |#1| (-1183) (-1183) (-1183)) 13) (((-1183) |#1| (-1183) (-1183)) 12) (((-1183) |#1| (-1183)) 11)))
-(((-709 |#1|) (-10 -7 (-15 -2564 ((-1183) |#1| (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-646 (-1183))))) (-619 (-540))) (T -709))
-((-2564 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-646 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540))))) (-2564 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540))))) (-2564 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540))))) (-2564 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540))))))
-(-10 -7 (-15 -2564 ((-1183) |#1| (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -2564 ((-1183) |#1| (-1183) (-646 (-1183)))))
-((-2565 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-710 |#1| |#2|) (-10 -7 (-15 -2565 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1222) (-1222)) (T -710))
-((-2565 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1222)) (-4 *4 (-1222)))))
-(-10 -7 (-15 -2565 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2566 (((-1 |#3| |#2|) (-1183)) 11)) (-2567 (((-1 |#3| |#2|) |#1| (-1183)) 21)))
-(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -2566 ((-1 |#3| |#2|) (-1183))) (-15 -2567 ((-1 |#3| |#2|) |#1| (-1183)))) (-619 (-540)) (-1222) (-1222)) (T -711))
-((-2567 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) (-4 *3 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) (-4 *4 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)))))
-(-10 -7 (-15 -2566 ((-1 |#3| |#2|) (-1183))) (-15 -2567 ((-1 |#3| |#2|) |#1| (-1183))))
-((-2570 (((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#4|)) (-646 |#3|) (-646 |#4|) (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#4|)))) (-646 (-776)) (-1272 (-646 (-1177 |#3|))) |#3|) 95)) (-2569 (((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#3|)) (-646 |#3|) (-646 |#4|) (-646 (-776)) |#3|) 113)) (-2568 (((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 |#3|) (-646 (-776)) (-646 (-1177 |#4|)) (-1272 (-646 (-1177 |#3|))) |#3|) 47)))
-(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2568 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 |#3|) (-646 (-776)) (-646 (-1177 |#4|)) (-1272 (-646 (-1177 |#3|))) |#3|)) (-15 -2569 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#3|)) (-646 |#3|) (-646 |#4|) (-646 (-776)) |#3|)) (-15 -2570 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#4|)) (-646 |#3|) (-646 |#4|) (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#4|)))) (-646 (-776)) (-1272 (-646 (-1177 |#3|))) |#3|))) (-798) (-855) (-310) (-956 |#3| |#1| |#2|)) (T -712))
-((-2570 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-646 (-1177 *13))) (-5 *3 (-1177 *13)) (-5 *4 (-646 *12)) (-5 *5 (-646 *10)) (-5 *6 (-646 *13)) (-5 *7 (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| *13))))) (-5 *8 (-646 (-776))) (-5 *9 (-1272 (-646 (-1177 *10)))) (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-956 *10 *11 *12)) (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))) (-2569 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-646 *11)) (-5 *5 (-646 (-1177 *9))) (-5 *6 (-646 *9)) (-5 *7 (-646 *12)) (-5 *8 (-646 (-776))) (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-956 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-646 (-1177 *12))) (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1177 *12)))) (-2568 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-646 (-1177 *11))) (-5 *3 (-1177 *11)) (-5 *4 (-646 *10)) (-5 *5 (-646 *8)) (-5 *6 (-646 (-776))) (-5 *7 (-1272 (-646 (-1177 *8)))) (-4 *10 (-855)) (-4 *8 (-310)) (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2568 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 |#3|) (-646 (-776)) (-646 (-1177 |#4|)) (-1272 (-646 (-1177 |#3|))) |#3|)) (-15 -2569 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#3|)) (-646 |#3|) (-646 |#4|) (-646 (-776)) |#3|)) (-15 -2570 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-646 |#2|) (-646 (-1177 |#4|)) (-646 |#3|) (-646 |#4|) (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#4|)))) (-646 (-776)) (-1272 (-646 (-1177 |#3|))) |#3|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4409 (($ $) 48)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3312 (($ |#1| (-776)) 46)) (-3241 (((-776) $) 50)) (-3612 ((|#1| $) 49)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4398 (((-776) $) 51)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-4127 ((|#1| $ (-776)) 47)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 15)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4378 ((|#1| $) 23)) (-2095 (($ $ $) NIL (|has| |#1| (-796)))) (-2406 (($ $ $) NIL (|has| |#1| (-796)))) (-2050 (((-1165) $) 48)) (-3461 (((-1126) $) NIL)) (-4390 ((|#3| $) 24)) (-2388 (((-867) $) 43)) (-2040 (((-112) $ $) 22)) (-1786 (($) 10 T CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2853 (((-112) $ $) 20)) (-2893 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2872 (((-112) $ $) 26 (|has| |#1| (-796)))) (-2956 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-2946 (($ $) 17) (($ $ $) NIL)) (-2935 (($ $ $) 29)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-667 |#1| |#2| |#3|) (-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -2956 ($ $ |#3|)) (-15 -2956 ($ |#1| |#3|)) (-15 -4378 (|#1| $)) (-15 -4390 (|#3| $)))) (-722 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -667))
+((-2956 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-2956 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4390 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)))))
+(-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -2956 ($ $ |#3|)) (-15 -2956 ($ |#1| |#3|)) (-15 -4378 (|#1| $)) (-15 -4390 (|#3| $))))
+((-4313 (((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|)) 33)))
+(((-668 |#1|) (-10 -7 (-15 -4313 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|)))) (-915)) (T -668))
+((-4313 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *4))) (-5 *3 (-1179 *4)) (-4 *4 (-915)) (-5 *1 (-668 *4)))))
+(-10 -7 (-15 -4313 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2996 (((-649 |#1|) $) 84)) (-2082 (($ $ (-776)) 94)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2030 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 50)) (-4359 (((-3 (-677 |#1|) "failed") $) NIL)) (-3043 (((-677 |#1|) $) NIL)) (-1842 (($ $) 93)) (-2933 (((-776) $) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ (-677 |#1|) |#2|) 70)) (-2008 (($ $) 89)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-2041 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 49)) (-3578 (((-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1808 (((-677 |#1|) $) NIL)) (-1820 ((|#2| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1679 (($ $ |#1| $) 32) (($ $ (-649 |#1|) (-649 $)) 34)) (-2091 (((-776) $) 91)) (-3709 (($ $ $) 20) (($ (-677 |#1|) (-677 |#1|)) 79) (($ (-677 |#1|) $) 77) (($ $ (-677 |#1|)) 78)) (-2388 (((-867) $) NIL) (($ |#1|) 76) (((-1288 |#1| |#2|) $) 60) (((-1297 |#1| |#2|) $) 43) (($ (-677 |#1|)) 27)) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-677 |#1|)) NIL)) (-1406 ((|#2| (-1297 |#1| |#2|) $) 45)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 23 T CONST)) (-2295 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2072 (((-3 $ "failed") (-1288 |#1| |#2|)) 62)) (-3402 (($ (-677 |#1|)) 14)) (-2853 (((-112) $ $) 46)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) 68) (($ $ $) NIL)) (-2935 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-677 |#1|)) NIL)))
+(((-669 |#1| |#2|) (-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -2072 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3709 ($ (-677 |#1|) (-677 |#1|))) (-15 -3709 ($ (-677 |#1|) $)) (-15 -3709 ($ $ (-677 |#1|))))) (-855) (-173)) (T -669))
+((-2072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-669 *3 *4)))) (-3709 (*1 *1 *2 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))))
+(-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -2072 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3709 ($ (-677 |#1|) (-677 |#1|))) (-15 -3709 ($ (-677 |#1|) $)) (-15 -3709 ($ $ (-677 |#1|)))))
+((-3389 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3364 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1816 (($ (-1 (-112) |#2|) $) 29)) (-4188 (($ $) 67)) (-3686 (($ $) 78)) (-4218 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3485 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3975 (((-569) |#2| $ (-569)) 75) (((-569) |#2| $) NIL) (((-569) (-1 (-112) |#2|) $) 56)) (-4275 (($ (-776) |#2|) 65)) (-3644 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3719 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1324 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3271 (($ |#2|) 15)) (-2086 (($ $ $ (-569)) 42) (($ |#2| $ (-569)) 40)) (-4316 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1827 (($ $ (-1240 (-569))) 51) (($ $ (-569)) 44)) (-3376 (($ $ $ (-569)) 74)) (-3885 (($ $) 72)) (-2872 (((-112) $ $) 80)))
+(((-670 |#1| |#2|) (-10 -8 (-15 -3271 (|#1| |#2|)) (-15 -1827 (|#1| |#1| (-569))) (-15 -1827 (|#1| |#1| (-1240 (-569)))) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2086 (|#1| |#2| |#1| (-569))) (-15 -2086 (|#1| |#1| |#1| (-569))) (-15 -3644 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3389 ((-112) |#1|)) (-15 -3376 (|#1| |#1| |#1| (-569))) (-15 -4188 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4275 (|#1| (-776) |#2|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3885 (|#1| |#1|))) (-671 |#2|) (-1223)) (T -670))
+NIL
+(-10 -8 (-15 -3271 (|#1| |#2|)) (-15 -1827 (|#1| |#1| (-569))) (-15 -1827 (|#1| |#1| (-1240 (-569)))) (-15 -4218 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2086 (|#1| |#2| |#1| (-569))) (-15 -2086 (|#1| |#1| |#1| (-569))) (-15 -3644 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3389 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3975 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-569) |#2| |#1|)) (-15 -3975 ((-569) |#2| |#1| (-569))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3389 ((-112) |#1|)) (-15 -3376 (|#1| |#1| |#1| (-569))) (-15 -4188 (|#1| |#1|)) (-15 -3364 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3485 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4316 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4275 (|#1| (-776) |#2|)) (-15 -1324 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3885 (|#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-2498 ((|#1| $) 66)) (-1528 (($ $) 68)) (-1699 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 53 (|has| $ (-6 -4444)))) (-3389 (((-112) $) 143 (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3364 (($ $) 147 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4444)))) (-3246 (($ $) 142 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3116 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ "rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-1816 (($ (-1 (-112) |#1|) $) 130)) (-1391 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4443)))) (-2487 ((|#1| $) 67)) (-3863 (($) 7 T CONST)) (-4188 (($ $) 145 (|has| $ (-6 -4444)))) (-2214 (($ $) 135)) (-3414 (($ $) 74) (($ $ (-776)) 72)) (-3686 (($ $) 132 (|has| |#1| (-1106)))) (-3437 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 131 (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) 126)) (-1678 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4443))) (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3074 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 88)) (-3154 (((-112) $) 84)) (-3975 (((-569) |#1| $ (-569)) 140 (|has| |#1| (-1106))) (((-569) |#1| $) 139 (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) 138)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) 109)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 96 (|has| (-569) (-855)))) (-2095 (($ $ $) 148 (|has| |#1| (-855)))) (-3644 (($ $ $) 133 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3719 (($ $ $) 141 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 95 (|has| (-569) (-855)))) (-2406 (($ $ $) 149 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3271 (($ |#1|) 123)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1702 ((|#1| $) 71) (($ $ (-776)) 69)) (-2086 (($ $ $ (-569)) 128) (($ |#1| $ (-569)) 127)) (-4274 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1762 (((-649 (-569)) $) 93)) (-1773 (((-112) (-569) $) 92)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 77) (($ $ (-776)) 75)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1713 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-3166 (((-112) $) 85)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 91)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-1797 (((-569) $ $) 45)) (-1827 (($ $ (-1240 (-569))) 125) (($ $ (-569)) 124)) (-4326 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2284 (((-112) $) 47)) (-3161 (($ $) 63)) (-3137 (($ $) 60 (|has| $ (-6 -4444)))) (-3172 (((-776) $) 64)) (-3182 (($ $) 65)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 144 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 108)) (-3149 (($ $ $) 62) (($ $ |#1|) 61)) (-3632 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 151 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 152 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) 150 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 153 (|has| |#1| (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-671 |#1|) (-140) (-1223)) (T -671))
+((-3271 (*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1223)))))
+(-13 (-1155 |t#1|) (-377 |t#1|) (-285 |t#1|) (-10 -8 (-15 -3271 ($ |t#1|))))
+(((-34) . T) ((-102) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-285 |#1|) . T) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1016 |#1|) . T) ((-1106) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1155 |#1|) . T) ((-1223) . T) ((-1261 |#1|) . T))
+((-2888 (((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|))) 22) (((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)) 14)) (-3904 (((-776) (-694 |#1|) (-1273 |#1|)) 30)) (-1709 (((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|)) 24)) (-4322 (((-112) (-694 |#1|) (-1273 |#1|)) 27)))
+(((-672 |#1|) (-10 -7 (-15 -2888 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))) (-15 -2888 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|))) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|)))) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|)))) (-15 -1709 ((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|))) (-15 -4322 ((-112) (-694 |#1|) (-1273 |#1|))) (-15 -3904 ((-776) (-694 |#1|) (-1273 |#1|)))) (-367)) (T -672))
+((-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-672 *5)))) (-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-5 *2 (-112)) (-5 *1 (-672 *5)))) (-1709 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1273 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *1 (-672 *4)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -3371 (-649 (-1273 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -3371 (-649 (-1273 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -3371 (-649 (-1273 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1273 *5)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -3371 (-649 (-1273 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1273 *5)))))
+(-10 -7 (-15 -2888 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))) (-15 -2888 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|))) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|)))) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|)))) (-15 -1709 ((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|))) (-15 -4322 ((-112) (-694 |#1|) (-1273 |#1|))) (-15 -3904 ((-776) (-694 |#1|) (-1273 |#1|))))
+((-2888 (((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|)))) |#4| (-649 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|) 60)) (-3904 (((-776) |#4| |#3|) 18)) (-1709 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4322 (((-112) |#4| |#3|) 14)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|)) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1709 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4322 ((-112) |#4| |#3|)) (-15 -3904 ((-776) |#4| |#3|))) (-367) (-13 (-377 |#1|) (-10 -7 (-6 -4444))) (-13 (-377 |#1|) (-10 -7 (-6 -4444))) (-692 |#1| |#2| |#3|)) (T -673))
+((-3904 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-776)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-4322 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-112)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-1709 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4444)))) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))) (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2)))) (-2888 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-649 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3371 (-649 *7))))) (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7)) (-4 *3 (-692 *5 *6 *7)))) (-2888 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(-10 -7 (-15 -2888 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|)) (-15 -2888 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1709 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4322 ((-112) |#4| |#3|)) (-15 -3904 ((-776) |#4| |#3|)))
+((-4330 (((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -3371 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)) 52)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4330 ((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -3371 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)))) (-561) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -674))
+((-4330 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 (-412 *8)) "failed")) (|:| -3371 (-649 (-1273 (-412 *8)))))) (-5 *1 (-674 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4330 ((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -3371 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2591 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3057 ((|#2| $) NIL)) (-3205 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1941 (((-1273 (-694 |#2|))) NIL) (((-1273 (-694 |#2|)) (-1273 $)) NIL)) (-3233 (((-112) $) NIL)) (-3352 (((-1273 $)) 44)) (-1610 (((-112) $ (-776)) NIL)) (-1630 (($ |#2|) NIL)) (-3863 (($) NIL T CONST)) (-3115 (($ $) NIL (|has| |#2| (-310)))) (-3136 (((-241 |#1| |#2|) $ (-569)) NIL)) (-1683 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-3047 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-2766 (((-694 |#2|)) NIL) (((-694 |#2|) (-1273 $)) NIL)) (-3331 ((|#2| $) NIL)) (-2747 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1273 $)) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-1616 (((-1179 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2840 (($ $ (-927)) NIL)) (-3307 ((|#2| $) NIL)) (-3070 (((-1179 |#2|) $) NIL (|has| |#2| (-561)))) (-2786 ((|#2|) NIL) ((|#2| (-1273 $)) NIL)) (-3285 (((-1179 |#2|) $) NIL)) (-3202 (((-112)) NIL)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-2806 (($ (-1273 |#2|)) NIL) (($ (-1273 |#2|) (-1273 $)) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3904 (((-776) $) NIL (|has| |#2| (-561))) (((-927)) 45)) (-3007 ((|#2| $ (-569) (-569)) NIL)) (-3168 (((-112)) NIL)) (-1931 (($ $ (-927)) NIL)) (-2796 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL)) (-3106 (((-776) $) NIL (|has| |#2| (-561)))) (-3095 (((-649 (-241 |#1| |#2|)) $) NIL (|has| |#2| (-561)))) (-2511 (((-776) $) NIL)) (-3123 (((-112)) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1572 ((|#2| $) NIL (|has| |#2| (-6 (-4445 "*"))))) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-2375 (($ (-649 (-649 |#2|))) NIL)) (-3065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-649 (-649 |#2|)) $) NIL)) (-3103 (((-112)) NIL)) (-3145 (((-112)) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-1693 (((-3 (-2 (|:| |particular| $) (|:| -3371 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-3061 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-2775 (((-694 |#2|)) NIL) (((-694 |#2|) (-1273 $)) NIL)) (-3342 ((|#2| $) NIL)) (-2757 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1273 $)) NIL)) (-2817 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-1658 (((-1179 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2829 (($ $ (-927)) NIL)) (-3320 ((|#2| $) NIL)) (-3081 (((-1179 |#2|) $) NIL (|has| |#2| (-561)))) (-2797 ((|#2|) NIL) ((|#2| (-1273 $)) NIL)) (-3297 (((-1179 |#2|) $) NIL)) (-3216 (((-112)) NIL)) (-2050 (((-1165) $) NIL)) (-3112 (((-112)) NIL)) (-3133 (((-112)) NIL)) (-3157 (((-112)) NIL)) (-3059 (((-3 $ "failed") $) NIL (|has| |#2| (-367)))) (-3461 (((-1126) $) NIL)) (-3189 (((-112)) NIL)) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3983 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) 30) ((|#2| $ (-569)) NIL)) (-3430 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1596 ((|#2| $) NIL)) (-1619 (($ (-649 |#2|)) NIL)) (-3219 (((-112) $) NIL)) (-1608 (((-241 |#1| |#2|) $) NIL)) (-1583 ((|#2| $) NIL (|has| |#2| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3885 (($ $) NIL)) (-1949 (((-694 |#2|) (-1273 $)) NIL) (((-1273 |#2|) $) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $ (-1273 $)) 33)) (-1384 (($ (-1273 |#2|)) NIL) (((-1273 |#2|) $) NIL)) (-1524 (((-649 (-958 |#2|))) NIL) (((-649 (-958 |#2|)) (-1273 $)) NIL)) (-4356 (($ $ $) NIL)) (-3270 (((-112)) NIL)) (-3126 (((-241 |#1| |#2|) $ (-569)) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 43)) (-3092 (((-649 (-1273 |#2|))) NIL (|has| |#2| (-561)))) (-4365 (($ $ $ $) NIL)) (-3245 (((-112)) NIL)) (-3341 (($ (-694 |#2|) $) NIL)) (-3996 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-4347 (($ $ $) NIL)) (-3259 (((-112)) NIL)) (-3230 (((-112)) NIL)) (-3178 (((-112)) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) NIL) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-675 |#1| |#2|) (-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|)) (-927) (-173)) (T -675))
+NIL
+(-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2090 (((-649 (-1141)) $) 10)) (-2388 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-676) (-13 (-1089) (-10 -8 (-15 -2090 ((-649 (-1141)) $))))) (T -676))
+((-2090 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-676)))))
+(-13 (-1089) (-10 -8 (-15 -2090 ((-649 (-1141)) $))))
+((-2383 (((-112) $ $) NIL)) (-2996 (((-649 |#1|) $) NIL)) (-4386 (($ $) 62)) (-2286 (((-112) $) NIL)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-3037 (((-3 $ "failed") (-824 |#1|)) 27)) (-3063 (((-112) (-824 |#1|)) 17)) (-3048 (($ (-824 |#1|)) 28)) (-3844 (((-112) $ $) 36)) (-3747 (((-927) $) 43)) (-4375 (($ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3699 (((-649 $) (-824 |#1|)) 19)) (-2388 (((-867) $) 51) (($ |#1|) 40) (((-824 |#1|) $) 47) (((-682 |#1|) $) 52)) (-2040 (((-112) $ $) NIL)) (-4350 (((-59 (-649 $)) (-649 |#1|) (-927)) 67)) (-4340 (((-649 $) (-649 |#1|) (-927)) 72)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 63)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 46)))
+(((-677 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 -2286 ((-112) $)) (-15 -4375 ($ $)) (-15 -4386 ($ $)) (-15 -3747 ((-927) $)) (-15 -3844 ((-112) $ $)) (-15 -2388 ((-824 |#1|) $)) (-15 -2388 ((-682 |#1|) $)) (-15 -3699 ((-649 $) (-824 |#1|))) (-15 -3063 ((-112) (-824 |#1|))) (-15 -3048 ($ (-824 |#1|))) (-15 -3037 ((-3 $ "failed") (-824 |#1|))) (-15 -2996 ((-649 |#1|) $)) (-15 -4350 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -4340 ((-649 $) (-649 |#1|) (-927))))) (-855)) (T -677))
+((-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4375 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3844 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4))) (-5 *1 (-677 *4)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-3048 (*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3037 (*1 *1 *2) (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))) (-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
+(-13 (-855) (-1044 |#1|) (-10 -8 (-15 -2286 ((-112) $)) (-15 -4375 ($ $)) (-15 -4386 ($ $)) (-15 -3747 ((-927) $)) (-15 -3844 ((-112) $ $)) (-15 -2388 ((-824 |#1|) $)) (-15 -2388 ((-682 |#1|) $)) (-15 -3699 ((-649 $) (-824 |#1|))) (-15 -3063 ((-112) (-824 |#1|))) (-15 -3048 ($ (-824 |#1|))) (-15 -3037 ((-3 $ "failed") (-824 |#1|))) (-15 -2996 ((-649 |#1|) $)) (-15 -4350 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -4340 ((-649 $) (-649 |#1|) (-927)))))
+((-2150 ((|#2| $) 103)) (-1528 (($ $) 124)) (-1610 (((-112) $ (-776)) 35)) (-3414 (($ $) 112) (($ $ (-776)) 115)) (-3154 (((-112) $) 125)) (-1807 (((-649 $) $) 99)) (-1774 (((-112) $ $) 95)) (-3799 (((-112) $ (-776)) 33)) (-1726 (((-569) $) 69)) (-1738 (((-569) $) 68)) (-1902 (((-112) $ (-776)) 31)) (-2546 (((-112) $) 101)) (-1702 ((|#2| $) 116) (($ $ (-776)) 120)) (-4274 (($ $ $ (-569)) 86) (($ |#2| $ (-569)) 85)) (-1762 (((-649 (-569)) $) 67)) (-1773 (((-112) (-569) $) 61)) (-3401 ((|#2| $) NIL) (($ $ (-776)) 111)) (-4295 (($ $ (-569)) 128)) (-3166 (((-112) $) 127)) (-3983 (((-112) (-1 (-112) |#2|) $) 44)) (-1784 (((-649 |#2|) $) 48)) (-1852 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1240 (-569))) 82) ((|#2| $ (-569)) 59) ((|#2| $ (-569) |#2|) 60)) (-1797 (((-569) $ $) 94)) (-4326 (($ $ (-1240 (-569))) 81) (($ $ (-569)) 75)) (-2284 (((-112) $) 90)) (-3161 (($ $) 108)) (-3172 (((-776) $) 107)) (-3182 (($ $) 106)) (-3709 (($ (-649 |#2|)) 55)) (-2745 (($ $) 129)) (-2492 (((-649 $) $) 93)) (-1785 (((-112) $ $) 92)) (-3996 (((-112) (-1 (-112) |#2|) $) 43)) (-2853 (((-112) $ $) 20)) (-2394 (((-776) $) 41)))
+(((-678 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -4295 (|#1| |#1| (-569))) (-15 -3154 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1784 ((-649 |#2|) |#1|)) (-15 -1773 ((-112) (-569) |#1|)) (-15 -1762 ((-649 (-569)) |#1|)) (-15 -1738 ((-569) |#1|)) (-15 -1726 ((-569) |#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -3161 (|#1| |#1|)) (-15 -3172 ((-776) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1702 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "last")) (-15 -1702 (|#2| |#1|)) (-15 -3414 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| "rest")) (-15 -3414 (|#1| |#1|)) (-15 -3401 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "first")) (-15 -3401 (|#2| |#1|)) (-15 -1774 ((-112) |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1797 ((-569) |#1| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776)))) (-679 |#2|) (-1223)) (T -678))
+NIL
+(-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -4295 (|#1| |#1| (-569))) (-15 -3154 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1784 ((-649 |#2|) |#1|)) (-15 -1773 ((-112) (-569) |#1|)) (-15 -1762 ((-649 (-569)) |#1|)) (-15 -1738 ((-569) |#1|)) (-15 -1726 ((-569) |#1|)) (-15 -3709 (|#1| (-649 |#2|))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -4326 (|#1| |#1| (-569))) (-15 -4326 (|#1| |#1| (-1240 (-569)))) (-15 -4274 (|#1| |#2| |#1| (-569))) (-15 -4274 (|#1| |#1| |#1| (-569))) (-15 -3161 (|#1| |#1|)) (-15 -3172 ((-776) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1702 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "last")) (-15 -1702 (|#2| |#1|)) (-15 -3414 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| "rest")) (-15 -3414 (|#1| |#1|)) (-15 -3401 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "first")) (-15 -3401 (|#2| |#1|)) (-15 -1774 ((-112) |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1797 ((-569) |#1| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -3983 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-2498 ((|#1| $) 66)) (-1528 (($ $) 68)) (-1699 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 53 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3116 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ "rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 103)) (-2487 ((|#1| $) 67)) (-3863 (($) 7 T CONST)) (-3083 (($ $) 125)) (-3414 (($ $) 74) (($ $ (-776)) 72)) (-3437 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 104)) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3074 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 88)) (-3154 (((-112) $) 84)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3072 (((-776) $) 124)) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) 109)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 96 (|has| (-569) (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 95 (|has| (-569) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-3105 (($ $) 127)) (-3114 (((-112) $) 128)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1702 ((|#1| $) 71) (($ $ (-776)) 69)) (-4274 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1762 (((-649 (-569)) $) 93)) (-1773 (((-112) (-569) $) 92)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3094 ((|#1| $) 126)) (-3401 ((|#1| $) 77) (($ $ (-776)) 75)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1713 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-4295 (($ $ (-569)) 123)) (-3166 (((-112) $) 85)) (-3125 (((-112) $) 129)) (-3135 (((-112) $) 130)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 91)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-1797 (((-569) $ $) 45)) (-4326 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2284 (((-112) $) 47)) (-3161 (($ $) 63)) (-3137 (($ $) 60 (|has| $ (-6 -4444)))) (-3172 (((-776) $) 64)) (-3182 (($ $) 65)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 108)) (-3149 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-3632 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-2745 (($ $) 122)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-679 |#1|) (-140) (-1223)) (T -679))
+((-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
+(-13 (-1155 |t#1|) (-10 -8 (-15 -1678 ($ (-1 (-112) |t#1|) $)) (-15 -1391 ($ (-1 (-112) |t#1|) $)) (-15 -3135 ((-112) $)) (-15 -3125 ((-112) $)) (-15 -3114 ((-112) $)) (-15 -3105 ($ $)) (-15 -3094 (|t#1| $)) (-15 -3083 ($ $)) (-15 -3072 ((-776) $)) (-15 -4295 ($ $ (-569))) (-15 -2745 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1155 |#1|) . T) ((-1223) . T) ((-1261 |#1|) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3191 (($ (-776) (-776) (-776)) 55 (|has| |#1| (-1055)))) (-1610 (((-112) $ (-776)) NIL)) (-3170 ((|#1| $ (-776) (-776) (-776) |#1|) 49)) (-3863 (($) NIL T CONST)) (-3138 (($ $ $) 60 (|has| |#1| (-1055)))) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3147 (((-1273 (-776)) $) 12)) (-3159 (($ (-1183) $ $) 37)) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3180 (($ (-776)) 57 (|has| |#1| (-1055)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-776) (-776) (-776)) 46)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-3709 (($ (-649 (-649 (-649 |#1|)))) 70)) (-2388 (($ (-964 (-964 (-964 |#1|)))) 23) (((-964 (-964 (-964 |#1|))) $) 19) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-680 |#1|) (-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -3191 ($ (-776) (-776) (-776))) (-15 -3180 ($ (-776))) (-15 -3138 ($ $ $))) |%noBranch|) (-15 -3709 ($ (-649 (-649 (-649 |#1|))))) (-15 -1852 (|#1| $ (-776) (-776) (-776))) (-15 -3170 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -2388 ($ (-964 (-964 (-964 |#1|))))) (-15 -2388 ((-964 (-964 (-964 |#1|))) $)) (-15 -3159 ($ (-1183) $ $)) (-15 -3147 ((-1273 (-776)) $)))) (-1106)) (T -680))
+((-3191 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1106)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1106)))) (-3138 (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1106)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1106)) (-5 *1 (-680 *3)))) (-1852 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))) (-3170 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1106)) (-5 *1 (-680 *3)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))) (-3159 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1106)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-1273 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
+(-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -3191 ($ (-776) (-776) (-776))) (-15 -3180 ($ (-776))) (-15 -3138 ($ $ $))) |%noBranch|) (-15 -3709 ($ (-649 (-649 (-649 |#1|))))) (-15 -1852 (|#1| $ (-776) (-776) (-776))) (-15 -3170 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -2388 ($ (-964 (-964 (-964 |#1|))))) (-15 -2388 ((-964 (-964 (-964 |#1|))) $)) (-15 -3159 ($ (-1183) $ $)) (-15 -3147 ((-1273 (-776)) $))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2695 (((-488) $) 10)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 12)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-681) (-13 (-1089) (-10 -8 (-15 -2695 ((-488) $)) (-15 -3473 ((-1141) $))))) (T -681))
+((-2695 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681)))))
+(-13 (-1089) (-10 -8 (-15 -2695 ((-488) $)) (-15 -3473 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2996 (((-649 |#1|) $) 15)) (-4386 (($ $) 19)) (-2286 (((-112) $) 20)) (-4359 (((-3 |#1| "failed") $) 23)) (-3043 ((|#1| $) 21)) (-3414 (($ $) 37)) (-2008 (($ $) 25)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-3844 (((-112) $ $) 47)) (-3747 (((-927) $) 40)) (-4375 (($ $) 18)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 ((|#1| $) 36)) (-2388 (((-867) $) 32) (($ |#1|) 24) (((-824 |#1|) $) 28)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 13)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-682 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2388 ((-824 |#1|) $)) (-15 -3401 (|#1| $)) (-15 -4375 ($ $)) (-15 -3747 ((-927) $)) (-15 -3844 ((-112) $ $)) (-15 -2008 ($ $)) (-15 -3414 ($ $)) (-15 -2286 ((-112) $)) (-15 -4386 ($ $)) (-15 -2996 ((-649 |#1|) $)))) (-855)) (T -682))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3401 (*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4375 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3844 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2388 ((-824 |#1|) $)) (-15 -3401 (|#1| $)) (-15 -4375 ($ $)) (-15 -3747 ((-927) $)) (-15 -3844 ((-112) $ $)) (-15 -2008 ($ $)) (-15 -3414 ($ $)) (-15 -2286 ((-112) $)) (-15 -4386 ($ $)) (-15 -2996 ((-649 |#1|) $))))
+((-3249 ((|#1| (-1 |#1| (-776) |#1|) (-776) |#1|) 14)) (-4298 ((|#1| (-1 |#1| |#1|) (-776) |#1|) 12)))
+(((-683 |#1|) (-10 -7 (-15 -4298 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -3249 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) (-1106)) (T -683))
+((-3249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1106)) (-5 *1 (-683 *2)))) (-4298 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1106)) (-5 *1 (-683 *2)))))
+(-10 -7 (-15 -4298 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -3249 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|)))
+((-4069 ((|#2| |#1| |#2|) 9)) (-4057 ((|#1| |#1| |#2|) 8)))
+(((-684 |#1| |#2|) (-10 -7 (-15 -4057 (|#1| |#1| |#2|)) (-15 -4069 (|#2| |#1| |#2|))) (-1106) (-1106)) (T -684))
+((-4069 (*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-4057 (*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(-10 -7 (-15 -4057 (|#1| |#1| |#2|)) (-15 -4069 (|#2| |#1| |#2|)))
+((-3222 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3222 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1106) (-1106) (-1106)) (T -685))
+((-3222 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)) (-5 *1 (-685 *5 *6 *2)))))
+(-10 -7 (-15 -3222 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-3778 (((-1222) $) 21)) (-3717 (((-649 (-1222)) $) 19)) (-3204 (($ (-649 (-1222)) (-1222)) 14)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 29) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1222) $) 22) (($ (-1124)) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-686) (-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -2388 ($ (-1124))) (-15 -3204 ($ (-649 (-1222)) (-1222))) (-15 -3717 ((-649 (-1222)) $)) (-15 -3778 ((-1222) $))))) (T -686))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-686)))) (-3204 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1222))) (-5 *3 (-1222)) (-5 *1 (-686)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-686)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-686)))))
+(-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -2388 ($ (-1124))) (-15 -3204 ($ (-649 (-1222)) (-1222))) (-15 -3717 ((-649 (-1222)) $)) (-15 -3778 ((-1222) $))))
+((-3249 (((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)) 29)) (-3217 (((-1 |#1|) |#1|) 8)) (-4238 ((|#1| |#1|) 23)) (-3232 (((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2388 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-776)) 26)))
+(((-687 |#1|) (-10 -7 (-15 -3217 ((-1 |#1|) |#1|)) (-15 -2388 ((-1 |#1|) |#1|)) (-15 -3232 (|#1| (-1 |#1| |#1|))) (-15 -3232 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4238 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -3249 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) (-1106)) (T -687))
+((-3249 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1106)) (-5 *1 (-687 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1106)) (-5 *1 (-687 *4)))) (-4238 (*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1106)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569)) (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1106)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1106)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))))
+(-10 -7 (-15 -3217 ((-1 |#1|) |#1|)) (-15 -2388 ((-1 |#1|) |#1|)) (-15 -3232 (|#1| (-1 |#1| |#1|))) (-15 -3232 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4238 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -3249 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|))))
+((-3287 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3272 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3600 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3262 (((-1 |#2| |#1|) |#2|) 11)))
+(((-688 |#1| |#2|) (-10 -7 (-15 -3262 ((-1 |#2| |#1|) |#2|)) (-15 -3272 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3600 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3287 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1106) (-1106)) (T -688))
+((-3287 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)) (-4 *4 (-1106)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))) (-3262 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1106)) (-4 *3 (-1106)))))
+(-10 -7 (-15 -3262 ((-1 |#2| |#1|) |#2|)) (-15 -3272 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3600 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3287 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3344 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3299 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3309 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3322 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3333 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -3299 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3309 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3322 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3333 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3344 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1106) (-1106) (-1106)) (T -689))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1106)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1106)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1106)) (-4 *4 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+(-10 -7 (-15 -3299 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3309 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3322 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3333 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3344 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3485 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1324 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1324 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1324 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3485 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1055) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1055) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -690))
+((-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2)) (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9)))) (-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))))
+(-10 -7 (-15 -1324 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1324 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3485 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3357 (($ (-776) (-776)) 43)) (-3404 (($ $ $) 71)) (-4290 (($ |#3|) 66) (($ $) 67)) (-3205 (((-112) $) 38)) (-3392 (($ $ (-569) (-569)) 82)) (-3378 (($ $ (-569) (-569)) 83)) (-3366 (($ $ (-569) (-569) (-569) (-569)) 88)) (-3427 (($ $) 69)) (-3233 (((-112) $) 15)) (-3354 (($ $ (-569) (-569) $) 89)) (-3861 ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) 87)) (-1630 (($ (-776) |#2|) 53)) (-2375 (($ (-649 (-649 |#2|))) 51)) (-1954 (((-649 (-649 |#2|)) $) 78)) (-3415 (($ $ $) 70)) (-2374 (((-3 $ "failed") $ |#2|) 121)) (-1852 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-1619 (($ (-649 |#2|)) 54) (($ (-649 $)) 56)) (-3219 (((-112) $) 28)) (-2388 (($ |#4|) 61) (((-867) $) NIL)) (-3192 (((-112) $) 40)) (-2956 (($ $ |#2|) 123)) (-2946 (($ $ $) 93) (($ $) 96)) (-2935 (($ $ $) 91)) (** (($ $ (-776)) 110) (($ $ (-569)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-569) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2956 (|#1| |#1| |#2|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1| (-569) (-569) |#1|)) (-15 -3366 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -3378 (|#1| |#1| (-569) (-569))) (-15 -3392 (|#1| |#1| (-569) (-569))) (-15 -3861 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1852 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -1954 ((-649 (-649 |#2|)) |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4290 (|#1| |#3|)) (-15 -2388 (|#1| |#4|)) (-15 -1619 (|#1| (-649 |#1|))) (-15 -1619 (|#1| (-649 |#2|))) (-15 -1630 (|#1| (-776) |#2|)) (-15 -2375 (|#1| (-649 (-649 |#2|)))) (-15 -3357 (|#1| (-776) (-776))) (-15 -3192 ((-112) |#1|)) (-15 -3205 ((-112) |#1|)) (-15 -3219 ((-112) |#1|)) (-15 -3233 ((-112) |#1|)) (-15 -3861 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569)))) (-692 |#2| |#3| |#4|) (-1055) (-377 |#2|) (-377 |#2|)) (T -691))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2956 (|#1| |#1| |#2|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1| (-569) (-569) |#1|)) (-15 -3366 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -3378 (|#1| |#1| (-569) (-569))) (-15 -3392 (|#1| |#1| (-569) (-569))) (-15 -3861 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1852 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -1954 ((-649 (-649 |#2|)) |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4290 (|#1| |#3|)) (-15 -2388 (|#1| |#4|)) (-15 -1619 (|#1| (-649 |#1|))) (-15 -1619 (|#1| (-649 |#2|))) (-15 -1630 (|#1| (-776) |#2|)) (-15 -2375 (|#1| (-649 (-649 |#2|)))) (-15 -3357 (|#1| (-776) (-776))) (-15 -3192 ((-112) |#1|)) (-15 -3205 ((-112) |#1|)) (-15 -3219 ((-112) |#1|)) (-15 -3233 ((-112) |#1|)) (-15 -3861 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) (-569))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3357 (($ (-776) (-776)) 98)) (-3404 (($ $ $) 88)) (-4290 (($ |#2|) 92) (($ $) 91)) (-3205 (((-112) $) 100)) (-3392 (($ $ (-569) (-569)) 84)) (-3378 (($ $ (-569) (-569)) 83)) (-3366 (($ $ (-569) (-569) (-569) (-569)) 82)) (-3427 (($ $) 90)) (-3233 (((-112) $) 102)) (-1610 (((-112) $ (-776)) 8)) (-3354 (($ $ (-569) (-569) $) 81)) (-3861 ((|#1| $ (-569) (-569) |#1|) 45) (($ $ (-649 (-569)) (-649 (-569)) $) 85)) (-2009 (($ $ (-569) |#2|) 43)) (-1933 (($ $ (-569) |#3|) 42)) (-1630 (($ (-776) |#1|) 96)) (-3863 (($) 7 T CONST)) (-3115 (($ $) 68 (|has| |#1| (-310)))) (-3136 ((|#2| $ (-569)) 47)) (-3904 (((-776) $) 67 (|has| |#1| (-561)))) (-3074 ((|#1| $ (-569) (-569) |#1|) 44)) (-3007 ((|#1| $ (-569) (-569)) 49)) (-2796 (((-649 |#1|) $) 31)) (-3106 (((-776) $) 66 (|has| |#1| (-561)))) (-3095 (((-649 |#3|) $) 65 (|has| |#1| (-561)))) (-2511 (((-776) $) 52)) (-4275 (($ (-776) (-776) |#1|) 58)) (-2522 (((-776) $) 51)) (-3799 (((-112) $ (-776)) 9)) (-1572 ((|#1| $) 63 (|has| |#1| (-6 (-4445 "*"))))) (-3181 (((-569) $) 56)) (-3160 (((-569) $) 54)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3171 (((-569) $) 55)) (-3148 (((-569) $) 53)) (-2375 (($ (-649 (-649 |#1|))) 97)) (-3065 (($ (-1 |#1| |#1|) $) 35)) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1954 (((-649 (-649 |#1|)) $) 87)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3059 (((-3 $ "failed") $) 62 (|has| |#1| (-367)))) (-3415 (($ $ $) 89)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) 57)) (-2374 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-561)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-1619 (($ (-649 |#1|)) 95) (($ (-649 $)) 94)) (-3219 (((-112) $) 101)) (-1583 ((|#1| $) 64 (|has| |#1| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-3126 ((|#3| $ (-569)) 46)) (-2388 (($ |#3|) 93) (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3192 (((-112) $) 99)) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2956 (($ $ |#1|) 69 (|has| |#1| (-367)))) (-2946 (($ $ $) 79) (($ $) 78)) (-2935 (($ $ $) 80)) (** (($ $ (-776)) 71) (($ $ (-569)) 61 (|has| |#1| (-367)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-569) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-692 |#1| |#2| |#3|) (-140) (-1055) (-377 |t#1|) (-377 |t#1|)) (T -692))
+((-3233 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3357 (*1 *1 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1630 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2388 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (-4290 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (-4290 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3427 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3404 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3))))) (-1852 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3861 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3392 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3378 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3366 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3354 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561)))) (-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-310)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))) (-3059 (*1 *1 *1) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3233 ((-112) $)) (-15 -3219 ((-112) $)) (-15 -3205 ((-112) $)) (-15 -3192 ((-112) $)) (-15 -3357 ($ (-776) (-776))) (-15 -2375 ($ (-649 (-649 |t#1|)))) (-15 -1630 ($ (-776) |t#1|)) (-15 -1619 ($ (-649 |t#1|))) (-15 -1619 ($ (-649 $))) (-15 -2388 ($ |t#3|)) (-15 -4290 ($ |t#2|)) (-15 -4290 ($ $)) (-15 -3427 ($ $)) (-15 -3415 ($ $ $)) (-15 -3404 ($ $ $)) (-15 -1954 ((-649 (-649 |t#1|)) $)) (-15 -1852 ($ $ (-649 (-569)) (-649 (-569)))) (-15 -3861 ($ $ (-649 (-569)) (-649 (-569)) $)) (-15 -3392 ($ $ (-569) (-569))) (-15 -3378 ($ $ (-569) (-569))) (-15 -3366 ($ $ (-569) (-569) (-569) (-569))) (-15 -3354 ($ $ (-569) (-569) $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2946 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-569) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-776))) (IF (|has| |t#1| (-561)) (-15 -2374 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2956 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-310)) (-15 -3115 ($ $)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3904 ((-776) $)) (-15 -3106 ((-776) $)) (-15 -3095 ((-649 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4445 "*"))) (PROGN (-15 -1583 (|t#1| $)) (-15 -1572 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -3059 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-57 |#1| |#2| |#3|) . T) ((-1223) . T))
+((-3115 ((|#4| |#4|) 97 (|has| |#1| (-310)))) (-3904 (((-776) |#4|) 125 (|has| |#1| (-561)))) (-3106 (((-776) |#4|) 101 (|has| |#1| (-561)))) (-3095 (((-649 |#3|) |#4|) 108 (|has| |#1| (-561)))) (-2570 (((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|) 140 (|has| |#1| (-310)))) (-1572 ((|#1| |#4|) 57)) (-3490 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-561)))) (-3059 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-367)))) (-3478 ((|#4| |#4|) 93 (|has| |#1| (-561)))) (-3449 ((|#4| |#4| |#1| (-569) (-569)) 65)) (-3440 ((|#4| |#4| (-569) (-569)) 60)) (-3465 ((|#4| |#4| |#1| (-569) (-569)) 70)) (-1583 ((|#1| |#4|) 103)) (-3439 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-561)))))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1583 (|#1| |#4|)) (-15 -1572 (|#1| |#4|)) (-15 -3440 (|#4| |#4| (-569) (-569))) (-15 -3449 (|#4| |#4| |#1| (-569) (-569))) (-15 -3465 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3904 ((-776) |#4|)) (-15 -3106 ((-776) |#4|)) (-15 -3095 ((-649 |#3|) |#4|)) (-15 -3478 (|#4| |#4|)) (-15 -3490 ((-3 |#4| "failed") |#4|)) (-15 -3439 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -3115 (|#4| |#4|)) (-15 -2570 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3059 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -693))
+((-3059 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2570 (*1 *2 *3 *3) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3490 (*1 *2 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3095 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3465 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-3449 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-3440 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-692 *4 *5 *6)))) (-1572 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))))
+(-10 -7 (-15 -1583 (|#1| |#4|)) (-15 -1572 (|#1| |#4|)) (-15 -3440 (|#4| |#4| (-569) (-569))) (-15 -3449 (|#4| |#4| |#1| (-569) (-569))) (-15 -3465 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3904 ((-776) |#4|)) (-15 -3106 ((-776) |#4|)) (-15 -3095 ((-649 |#3|) |#4|)) (-15 -3478 (|#4| |#4|)) (-15 -3490 ((-3 |#4| "failed") |#4|)) (-15 -3439 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -3115 (|#4| |#4|)) (-15 -2570 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3059 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776) (-776)) 64)) (-3404 (($ $ $) NIL)) (-4290 (($ (-1273 |#1|)) NIL) (($ $) NIL)) (-3205 (((-112) $) NIL)) (-3392 (($ $ (-569) (-569)) 22)) (-3378 (($ $ (-569) (-569)) NIL)) (-3366 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-3427 (($ $) NIL)) (-3233 (((-112) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3354 (($ $ (-569) (-569) $) NIL)) (-3861 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2009 (($ $ (-569) (-1273 |#1|)) NIL)) (-1933 (($ $ (-569) (-1273 |#1|)) NIL)) (-1630 (($ (-776) |#1|) 37)) (-3863 (($) NIL T CONST)) (-3115 (($ $) 46 (|has| |#1| (-310)))) (-3136 (((-1273 |#1|) $ (-569)) NIL)) (-3904 (((-776) $) 48 (|has| |#1| (-561)))) (-3074 ((|#1| $ (-569) (-569) |#1|) 69)) (-3007 ((|#1| $ (-569) (-569)) NIL)) (-2796 (((-649 |#1|) $) NIL)) (-3106 (((-776) $) 50 (|has| |#1| (-561)))) (-3095 (((-649 (-1273 |#1|)) $) 53 (|has| |#1| (-561)))) (-2511 (((-776) $) 32)) (-4275 (($ (-776) (-776) |#1|) 28)) (-2522 (((-776) $) 33)) (-3799 (((-112) $ (-776)) NIL)) (-1572 ((|#1| $) 44 (|has| |#1| (-6 (-4445 "*"))))) (-3181 (((-569) $) 10)) (-3160 (((-569) $) 11)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3171 (((-569) $) 14)) (-3148 (((-569) $) 65)) (-2375 (($ (-649 (-649 |#1|))) NIL)) (-3065 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1954 (((-649 (-649 |#1|)) $) 76)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3059 (((-3 $ "failed") $) 60 (|has| |#1| (-367)))) (-3415 (($ $ $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1713 (($ $ |#1|) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-1619 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL) (($ (-1273 |#1|)) 70)) (-3219 (((-112) $) NIL)) (-1583 ((|#1| $) 42 (|has| |#1| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3126 (((-1273 |#1|) $ (-569)) NIL)) (-2388 (($ (-1273 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $ $) NIL) (($ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) 38) (($ $ (-569)) 62 (|has| |#1| (-367)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1273 |#1|) $ (-1273 |#1|)) NIL) (((-1273 |#1|) (-1273 |#1|) $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-694 |#1|) (-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 -1619 ($ (-1273 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3059 ((-3 $ "failed") $)) |%noBranch|))) (-1055)) (T -694))
+((-3059 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3)))))
+(-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 -1619 ($ (-1273 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3059 ((-3 $ "failed") $)) |%noBranch|)))
+((-3559 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 37)) (-3546 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 34)) (-3571 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776)) 43)) (-3511 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 27)) (-3521 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 31) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 29)) (-3530 (((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|)) 33)) (-3501 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 25)) (** (((-694 |#1|) (-694 |#1|) (-776)) 46)))
+(((-695 |#1|) (-10 -7 (-15 -3501 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3511 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3521 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3521 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3530 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -3546 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -3559 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3571 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) (-1055)) (T -695))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-3571 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-3559 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3546 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3530 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3521 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3521 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3511 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3501 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(-10 -7 (-15 -3501 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3511 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3521 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3521 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3530 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -3546 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -3559 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3571 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776))))
+((-4359 (((-3 |#1| "failed") $) 18)) (-3043 ((|#1| $) NIL)) (-3311 (($) 7 T CONST)) (-3580 (($ |#1|) 8)) (-2388 (($ |#1|) 16) (((-867) $) 23)) (-1775 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3311)) 11)) (-3922 ((|#1| $) 15)))
+(((-696 |#1|) (-13 (-1268) (-1044 |#1|) (-618 (-867)) (-10 -8 (-15 -3580 ($ |#1|)) (-15 -1775 ((-112) $ (|[\|\|]| |#1|))) (-15 -1775 ((-112) $ (|[\|\|]| -3311))) (-15 -3922 (|#1| $)) (-15 -3311 ($) -3600))) (-618 (-867))) (T -696))
+((-3580 (*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112)) (-5 *1 (-696 *4)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3311)) (-5 *2 (-112)) (-5 *1 (-696 *4)) (-4 *4 (-618 (-867))))) (-3922 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-3311 (*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(-13 (-1268) (-1044 |#1|) (-618 (-867)) (-10 -8 (-15 -3580 ($ |#1|)) (-15 -1775 ((-112) $ (|[\|\|]| |#1|))) (-15 -1775 ((-112) $ (|[\|\|]| -3311))) (-15 -3922 (|#1| $)) (-15 -3311 ($) -3600)))
+((-3612 ((|#2| |#2| |#4|) 33)) (-3650 (((-694 |#2|) |#3| |#4|) 39)) (-3625 (((-694 |#2|) |#2| |#4|) 38)) (-3590 (((-1273 |#2|) |#2| |#4|) 16)) (-3602 ((|#2| |#3| |#4|) 32)) (-3659 (((-694 |#2|) |#3| |#4| (-776) (-776)) 48)) (-3638 (((-694 |#2|) |#2| |#4| (-776)) 47)))
+(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3590 ((-1273 |#2|) |#2| |#4|)) (-15 -3602 (|#2| |#3| |#4|)) (-15 -3612 (|#2| |#2| |#4|)) (-15 -3625 ((-694 |#2|) |#2| |#4|)) (-15 -3638 ((-694 |#2|) |#2| |#4| (-776))) (-15 -3650 ((-694 |#2|) |#3| |#4|)) (-15 -3659 ((-694 |#2|) |#3| |#4| (-776) (-776)))) (-1106) (-906 |#1|) (-377 |#2|) (-13 (-377 |#1|) (-10 -7 (-6 -4443)))) (T -697))
+((-3659 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4443)))))) (-3650 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4443)))))) (-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))) (-3612 (*1 *2 *2 *3) (-12 (-4 *4 (-1106)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4443)))))) (-3602 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))) (-3590 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-1273 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))))
+(-10 -7 (-15 -3590 ((-1273 |#2|) |#2| |#4|)) (-15 -3602 (|#2| |#3| |#4|)) (-15 -3612 (|#2| |#2| |#4|)) (-15 -3625 ((-694 |#2|) |#2| |#4|)) (-15 -3638 ((-694 |#2|) |#2| |#4| (-776))) (-15 -3650 ((-694 |#2|) |#3| |#4|)) (-15 -3659 ((-694 |#2|) |#3| |#4| (-776) (-776))))
+((-3994 (((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)) 20)) (-3969 ((|#1| (-694 |#2|)) 9)) (-3981 (((-694 |#1|) (-694 |#2|)) 18)))
+(((-698 |#1| |#2|) (-10 -7 (-15 -3969 (|#1| (-694 |#2|))) (-15 -3981 ((-694 |#1|) (-694 |#2|))) (-15 -3994 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) (-561) (-998 |#1|)) (T -698))
+((-3994 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561)) (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-698 *2 *4)))))
+(-10 -7 (-15 -3969 (|#1| (-694 |#2|))) (-15 -3981 ((-694 |#1|) (-694 |#2|))) (-15 -3994 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-2702 (((-694 (-704))) NIL) (((-694 (-704)) (-1273 $)) NIL)) (-3057 (((-704) $) NIL)) (-2691 (($ $) NIL (|has| (-704) (-1208)))) (-2556 (($ $) NIL (|has| (-704) (-1208)))) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-704) (-353)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-4332 (($ $) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-2207 (((-423 $) $) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3714 (($ $) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-4420 (((-112) $ $) NIL (|has| (-704) (-310)))) (-3363 (((-776)) NIL (|has| (-704) (-372)))) (-2669 (($ $) NIL (|has| (-704) (-1208)))) (-2534 (($ $) NIL (|has| (-704) (-1208)))) (-2712 (($ $) NIL (|has| (-704) (-1208)))) (-2576 (($ $) NIL (|has| (-704) (-1208)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-704) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-1044 (-412 (-569)))))) (-3043 (((-569) $) NIL) (((-704) $) NIL) (((-412 (-569)) $) NIL (|has| (-704) (-1044 (-412 (-569)))))) (-2806 (($ (-1273 (-704))) NIL) (($ (-1273 (-704)) (-1273 $)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-704) (-353)))) (-2339 (($ $ $) NIL (|has| (-704) (-310)))) (-2692 (((-694 (-704)) $) NIL) (((-694 (-704)) $ (-1273 $)) NIL)) (-4091 (((-694 (-704)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-704))) (|:| |vec| (-1273 (-704)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-704) (-644 (-569)))) (((-694 (-569)) (-694 $)) NIL (|has| (-704) (-644 (-569))))) (-3485 (((-3 $ "failed") (-412 (-1179 (-704)))) NIL (|has| (-704) (-367))) (($ (-1179 (-704))) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3728 (((-704) $) 29)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-550)))) (-1727 (((-112) $) NIL (|has| (-704) (-550)))) (-1715 (((-412 (-569)) $) NIL (|has| (-704) (-550)))) (-3904 (((-927)) NIL)) (-3295 (($) NIL (|has| (-704) (-372)))) (-2348 (($ $ $) NIL (|has| (-704) (-310)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| (-704) (-310)))) (-3445 (($) NIL (|has| (-704) (-353)))) (-4127 (((-112) $) NIL (|has| (-704) (-353)))) (-2525 (($ $) NIL (|has| (-704) (-353))) (($ $ (-776)) NIL (|has| (-704) (-353)))) (-3848 (((-112) $) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-1413 (((-2 (|:| |r| (-704)) (|:| |phi| (-704))) $) NIL (-12 (|has| (-704) (-1066)) (|has| (-704) (-1208))))) (-4408 (($) NIL (|has| (-704) (-1208)))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-704) (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-704) (-892 (-569))))) (-4315 (((-838 (-927)) $) NIL (|has| (-704) (-353))) (((-927) $) NIL (|has| (-704) (-353)))) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-3334 (((-704) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-704) (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-3397 (((-1179 (-704)) $) NIL (|has| (-704) (-367)))) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1324 (($ (-1 (-704) (-704)) $) NIL)) (-3348 (((-927) $) NIL (|has| (-704) (-372)))) (-2616 (($ $) NIL (|has| (-704) (-1208)))) (-3472 (((-1179 (-704)) $) NIL)) (-1798 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| (-704) (-367)))) (-2267 (($) NIL (|has| (-704) (-353)) CONST)) (-2114 (($ (-927)) NIL (|has| (-704) (-372)))) (-1423 (($) NIL)) (-3740 (((-704) $) 31)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-704) (-310)))) (-1830 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-704) (-353)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3699 (((-423 $) $) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-704) (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| (-704) (-310)))) (-2374 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-704)) NIL (|has| (-704) (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-4367 (($ $) NIL (|has| (-704) (-1208)))) (-1679 (($ $ (-1183) (-704)) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-649 (-1183)) (-649 (-704))) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-649 (-297 (-704)))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-297 (-704))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-704) (-704)) NIL (|has| (-704) (-312 (-704)))) (($ $ (-649 (-704)) (-649 (-704))) NIL (|has| (-704) (-312 (-704))))) (-4409 (((-776) $) NIL (|has| (-704) (-310)))) (-1852 (($ $ (-704)) NIL (|has| (-704) (-289 (-704) (-704))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| (-704) (-310)))) (-4180 (((-704)) NIL) (((-704) (-1273 $)) NIL)) (-2536 (((-3 (-776) "failed") $ $) NIL (|has| (-704) (-353))) (((-776) $) NIL (|has| (-704) (-353)))) (-3430 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2851 (((-694 (-704)) (-1273 $) (-1 (-704) (-704))) NIL (|has| (-704) (-367)))) (-2760 (((-1179 (-704))) NIL)) (-2725 (($ $) NIL (|has| (-704) (-1208)))) (-2588 (($ $) NIL (|has| (-704) (-1208)))) (-4056 (($) NIL (|has| (-704) (-353)))) (-2701 (($ $) NIL (|has| (-704) (-1208)))) (-2566 (($ $) NIL (|has| (-704) (-1208)))) (-2680 (($ $) NIL (|has| (-704) (-1208)))) (-2545 (($ $) NIL (|has| (-704) (-1208)))) (-1949 (((-694 (-704)) (-1273 $)) NIL) (((-1273 (-704)) $) NIL) (((-694 (-704)) (-1273 $) (-1273 $)) NIL) (((-1273 (-704)) $ (-1273 $)) NIL)) (-1384 (((-541) $) NIL (|has| (-704) (-619 (-541)))) (((-170 (-226)) $) NIL (|has| (-704) (-1028))) (((-170 (-383)) $) NIL (|has| (-704) (-1028))) (((-898 (-383)) $) NIL (|has| (-704) (-619 (-898 (-383))))) (((-898 (-569)) $) NIL (|has| (-704) (-619 (-898 (-569))))) (($ (-1179 (-704))) NIL) (((-1179 (-704)) $) NIL) (($ (-1273 (-704))) NIL) (((-1273 (-704)) $) NIL)) (-1565 (($ $) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-353))))) (-3016 (($ (-704) (-704)) 12)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-704)) NIL) (($ (-170 (-383))) 13) (($ (-170 (-569))) 19) (($ (-170 (-704))) 28) (($ (-170 (-706))) 25) (((-170 (-383)) $) 33) (($ (-412 (-569))) NIL (-2718 (|has| (-704) (-1044 (-412 (-569)))) (|has| (-704) (-367))))) (-1488 (($ $) NIL (|has| (-704) (-353))) (((-3 $ "failed") $) NIL (-2718 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-145))))) (-3176 (((-1179 (-704)) $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL)) (-4119 (($ $) NIL (|has| (-704) (-1208)))) (-2627 (($ $) NIL (|has| (-704) (-1208)))) (-2574 (((-112) $ $) NIL)) (-4094 (($ $) NIL (|has| (-704) (-1208)))) (-2601 (($ $) NIL (|has| (-704) (-1208)))) (-4144 (($ $) NIL (|has| (-704) (-1208)))) (-2648 (($ $) NIL (|has| (-704) (-1208)))) (-1817 (((-704) $) NIL (|has| (-704) (-1208)))) (-1470 (($ $) NIL (|has| (-704) (-1208)))) (-2658 (($ $) NIL (|has| (-704) (-1208)))) (-4131 (($ $) NIL (|has| (-704) (-1208)))) (-2638 (($ $) NIL (|has| (-704) (-1208)))) (-4106 (($ $) NIL (|has| (-704) (-1208)))) (-2615 (($ $) NIL (|has| (-704) (-1208)))) (-3999 (($ $) NIL (|has| (-704) (-1066)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL (|has| (-704) (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| (-704) (-1208))) (($ $ (-412 (-569))) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208)))) (($ $ (-569)) NIL (|has| (-704) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-704) $) NIL) (($ $ (-704)) NIL) (($ (-412 (-569)) $) NIL (|has| (-704) (-367))) (($ $ (-412 (-569))) NIL (|has| (-704) (-367)))))
+(((-699) (-13 (-392) (-166 (-704)) (-10 -8 (-15 -2388 ($ (-170 (-383)))) (-15 -2388 ($ (-170 (-569)))) (-15 -2388 ($ (-170 (-704)))) (-15 -2388 ($ (-170 (-706)))) (-15 -2388 ((-170 (-383)) $))))) (T -699))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))))
+(-13 (-392) (-166 (-704)) (-10 -8 (-15 -2388 ($ (-170 (-383)))) (-15 -2388 ($ (-170 (-569)))) (-15 -2388 ($ (-170 (-704)))) (-15 -2388 ($ (-170 (-706)))) (-15 -2388 ((-170 (-383)) $))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3686 (($ $) 63)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3672 (((-649 (-2 (|:| -2179 |#1|) (|:| -3469 (-776)))) $) 62)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-700 |#1|) (-140) (-1106)) (T -700))
+((-2086 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1106)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1106)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-700 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-2 (|:| -2179 *3) (|:| -3469 (-776))))))))
+(-13 (-236 |t#1|) (-10 -8 (-15 -2086 ($ |t#1| $ (-776))) (-15 -3686 ($ $)) (-15 -3672 ((-649 (-2 (|:| -2179 |t#1|) (|:| -3469 (-776)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2458 (((-649 |#1|) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) (-569)) 65)) (-2438 ((|#1| |#1| (-569)) 62)) (-1830 ((|#1| |#1| |#1| (-569)) 46)) (-3699 (((-649 |#1|) |#1| (-569)) 49)) (-2465 ((|#1| |#1| (-569) |#1| (-569)) 40)) (-2447 (((-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) |#1| (-569)) 61)))
+(((-701 |#1|) (-10 -7 (-15 -1830 (|#1| |#1| |#1| (-569))) (-15 -2438 (|#1| |#1| (-569))) (-15 -3699 ((-649 |#1|) |#1| (-569))) (-15 -2447 ((-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) |#1| (-569))) (-15 -2458 ((-649 |#1|) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) (-569))) (-15 -2465 (|#1| |#1| (-569) |#1| (-569)))) (-1249 (-569))) (T -701))
+((-2465 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| -3699 *5) (|:| -2091 (-569))))) (-5 *4 (-569)) (-4 *5 (-1249 *4)) (-5 *2 (-649 *5)) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3699 *3) (|:| -2091 *4)))) (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))) (-1830 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -1830 (|#1| |#1| |#1| (-569))) (-15 -2438 (|#1| |#1| (-569))) (-15 -3699 ((-649 |#1|) |#1| (-569))) (-15 -2447 ((-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) |#1| (-569))) (-15 -2458 ((-649 |#1|) (-649 (-2 (|:| -3699 |#1|) (|:| -2091 (-569)))) (-569))) (-15 -2465 (|#1| |#1| (-569) |#1| (-569))))
+((-2505 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-2477 (((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 56) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 58) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 60)) (-2496 (((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265))) NIL)) (-2485 (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 61)))
+(((-702) (-10 -7 (-15 -2477 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2477 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2477 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2485 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2496 ((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2505 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -702))
+((-2505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))) (-2496 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2485 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2477 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))) (-2477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-2477 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))))
+(-10 -7 (-15 -2477 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2477 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2477 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2485 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2496 ((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -2505 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
+((-3699 (((-423 (-1179 |#4|)) (-1179 |#4|)) 86) (((-423 |#4|) |#4|) 269)))
+(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4|)) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|)))) (-855) (-798) (-353) (-955 |#3| |#2| |#1|)) (T -703))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4|)) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 97)) (-3300 (((-569) $) 34)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-4305 (($ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) NIL)) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL)) (-3863 (($) NIL T CONST)) (-3274 (($ $) NIL)) (-4359 (((-3 (-569) "failed") $) 85) (((-3 (-412 (-569)) "failed") $) 28) (((-3 (-383) "failed") $) 82)) (-3043 (((-569) $) 87) (((-412 (-569)) $) 79) (((-383) $) 80)) (-2339 (($ $ $) 109)) (-3351 (((-3 $ "failed") $) 100)) (-2348 (($ $ $) 108)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3390 (((-927)) 89) (((-927) (-927)) 88)) (-2769 (((-112) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-4315 (((-569) $) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL)) (-3334 (($ $) NIL)) (-2778 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2516 (((-569) (-569)) 94) (((-569)) 95)) (-2095 (($ $ $) NIL) (($) NIL (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2526 (((-569) (-569)) 92) (((-569)) 93)) (-2406 (($ $ $) NIL) (($) NIL (-12 (-1728 (|has| $ (-6 -4426))) (-1728 (|has| $ (-6 -4434)))))) (-2931 (((-569) $) 17)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 104)) (-2558 (((-927) (-569)) NIL (|has| $ (-6 -4434)))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL)) (-3312 (($ $) NIL)) (-2493 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) 105)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2777 (((-569) $) 24)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 107)) (-1871 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4434)))) (-2547 (((-927) (-569)) NIL (|has| $ (-6 -4434)))) (-1384 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) NIL)) (-2388 (((-867) $) 63) (($ (-569)) 75) (($ $) NIL) (($ (-412 (-569))) 78) (($ (-569)) 75) (($ (-412 (-569))) 78) (($ (-383)) 72) (((-383) $) 61) (($ (-706)) 66)) (-3263 (((-776)) 119 T CONST)) (-2124 (($ (-569) (-569) (-927)) 54)) (-3323 (($ $) NIL)) (-2568 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4434)))) (-2040 (((-112) $ $) NIL)) (-4344 (((-927)) 91) (((-927) (-927)) 90)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL)) (-1786 (($) 37 T CONST)) (-1796 (($) 18 T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 96)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 118)) (-2956 (($ $ $) 77)) (-2946 (($ $) 115) (($ $ $) 116)) (-2935 (($ $ $) 114)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-704) (-13 (-409) (-392) (-367) (-1044 (-383)) (-1044 (-412 (-569))) (-147) (-10 -8 (-15 -3390 ((-927) (-927))) (-15 -3390 ((-927))) (-15 -4344 ((-927) (-927))) (-15 -2526 ((-569) (-569))) (-15 -2526 ((-569))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2388 ((-383) $)) (-15 -2388 ($ (-706))) (-15 -2931 ((-569) $)) (-15 -2777 ((-569) $)) (-15 -2124 ($ (-569) (-569) (-927)))))) (T -704))
+((-2777 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3390 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-4344 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-2526 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2526 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2516 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) (-2124 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704)))))
+(-13 (-409) (-392) (-367) (-1044 (-383)) (-1044 (-412 (-569))) (-147) (-10 -8 (-15 -3390 ((-927) (-927))) (-15 -3390 ((-927))) (-15 -4344 ((-927) (-927))) (-15 -2526 ((-569) (-569))) (-15 -2526 ((-569))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2388 ((-383) $)) (-15 -2388 ($ (-706))) (-15 -2931 ((-569) $)) (-15 -2777 ((-569) $)) (-15 -2124 ($ (-569) (-569) (-927)))))
+((-2560 (((-694 |#1|) (-694 |#1|) |#1| |#1|) 88)) (-3115 (((-694 |#1|) (-694 |#1|) |#1|) 67)) (-2549 (((-694 |#1|) (-694 |#1|) |#1|) 89)) (-2539 (((-694 |#1|) (-694 |#1|)) 68)) (-2570 (((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|) 87)))
+(((-705 |#1|) (-10 -7 (-15 -2539 ((-694 |#1|) (-694 |#1|))) (-15 -3115 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2549 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2560 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2570 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|))) (-310)) (T -705))
+((-2570 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-705 *3)) (-4 *3 (-310)))) (-2560 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(-10 -7 (-15 -2539 ((-694 |#1|) (-694 |#1|))) (-15 -3115 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2549 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2560 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2570 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-2424 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2405 (($ $ $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL)) (-2979 (($ $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) 31)) (-3043 (((-569) $) 29)) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL)) (-1727 (((-112) $) NIL)) (-1715 (((-412 (-569)) $) NIL)) (-3295 (($ $) NIL) (($) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3630 (($ $ $ $) NIL)) (-2432 (($ $ $) NIL)) (-2769 (((-112) $) NIL)) (-1335 (($ $ $) NIL)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2861 (((-112) $) NIL)) (-2355 (((-112) $) NIL)) (-3177 (((-3 $ "failed") $) NIL)) (-2778 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3643 (($ $ $ $) NIL)) (-2095 (($ $ $) NIL)) (-2580 (((-927) (-927)) 10) (((-927)) 9)) (-2406 (($ $ $) NIL)) (-2537 (($ $) NIL)) (-3747 (($ $) NIL)) (-1798 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3619 (($ $ $) NIL)) (-2267 (($) NIL T CONST)) (-1566 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1315 (($ $) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL) (($ $ (-776)) NIL)) (-3003 (($ $) NIL)) (-3885 (($ $) NIL)) (-1384 (((-226) $) NIL) (((-383) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (((-569) $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) 28) (($ $) NIL) (($ (-569)) 28) (((-319 $) (-319 (-569))) 18)) (-3263 (((-776)) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-3038 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-4344 (($) NIL)) (-2574 (((-112) $ $) NIL)) (-2416 (($ $ $ $) NIL)) (-3999 (($ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL) (($ $ (-776)) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-706) (-13 (-392) (-550) (-10 -8 (-15 -2580 ((-927) (-927))) (-15 -2580 ((-927))) (-15 -2388 ((-319 $) (-319 (-569))))))) (T -706))
+((-2580 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-2580 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706)))))
+(-13 (-392) (-550) (-10 -8 (-15 -2580 ((-927) (-927))) (-15 -2580 ((-927))) (-15 -2388 ((-319 $) (-319 (-569))))))
+((-2630 (((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)) 19)) (-2593 (((-1 |#4| |#2| |#3|) (-1183)) 12)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2593 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2630 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)))) (-619 (-541)) (-1223) (-1223) (-1223)) (T -707))
+((-2630 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *7 (-1223)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *7 (-1223)))))
+(-10 -7 (-15 -2593 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2630 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183))))
+((-2606 (((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)) 43) (((-1 (-226) (-226)) |#1| (-1183)) 48)))
+(((-708 |#1|) (-10 -7 (-15 -2606 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2606 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)))) (-619 (-541))) (T -708))
+((-2606 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -2606 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2606 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183))))
+((-2785 (((-1183) |#1| (-1183) (-649 (-1183))) 10) (((-1183) |#1| (-1183) (-1183) (-1183)) 13) (((-1183) |#1| (-1183) (-1183)) 12) (((-1183) |#1| (-1183)) 11)))
+(((-709 |#1|) (-10 -7 (-15 -2785 ((-1183) |#1| (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-649 (-1183))))) (-619 (-541))) (T -709))
+((-2785 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-2785 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-2785 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-2785 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -2785 ((-1183) |#1| (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -2785 ((-1183) |#1| (-1183) (-649 (-1183)))))
+((-1455 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-710 |#1| |#2|) (-10 -7 (-15 -1455 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1223) (-1223)) (T -710))
+((-1455 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1223)) (-4 *4 (-1223)))))
+(-10 -7 (-15 -1455 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2620 (((-1 |#3| |#2|) (-1183)) 11)) (-2630 (((-1 |#3| |#2|) |#1| (-1183)) 21)))
+(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -2620 ((-1 |#3| |#2|) (-1183))) (-15 -2630 ((-1 |#3| |#2|) |#1| (-1183)))) (-619 (-541)) (-1223) (-1223)) (T -711))
+((-2630 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
+(-10 -7 (-15 -2620 ((-1 |#3| |#2|) (-1183))) (-15 -2630 ((-1 |#3| |#2|) |#1| (-1183))))
+((-2660 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|) 95)) (-2651 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|) 113)) (-2641 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|) 47)))
+(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|)) (-15 -2651 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -2660 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -712))
+((-2660 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-649 (-1179 *13))) (-5 *3 (-1179 *13)) (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13)) (-5 *7 (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| *13))))) (-5 *8 (-649 (-776))) (-5 *9 (-1273 (-649 (-1179 *10)))) (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12)) (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))) (-2651 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1179 *9))) (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776))) (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-649 (-1179 *12))) (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1179 *12)))) (-2641 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-649 (-1179 *11))) (-5 *3 (-1179 *11)) (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776))) (-5 *7 (-1273 (-649 (-1179 *8)))) (-4 *10 (-855)) (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2641 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|)) (-15 -2651 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -2660 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-1842 (($ $) 48)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-3838 (($ |#1| (-776)) 46)) (-3304 (((-776) $) 50)) (-1820 ((|#1| $) 49)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2091 (((-776) $) 51)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-1503 ((|#1| $ (-776)) 47)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
(((-713 |#1|) (-140) (-1055)) (T -713))
-((-4398 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-4409 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4398 ((-776) $)) (-15 -3241 ((-776) $)) (-15 -3612 (|t#1| $)) (-15 -4409 ($ $)) (-15 -4127 (|t#1| $ (-776))) (-15 -3312 ($ |t#1| (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-4408 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-714 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4408 (|#6| (-1 |#4| |#1|) |#3|))) (-562) (-1248 |#1|) (-1248 (-412 |#2|)) (-562) (-1248 |#4|) (-1248 (-412 |#5|))) (T -714))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562)) (-4 *6 (-1248 *5)) (-4 *2 (-1248 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1248 (-412 *6))) (-4 *8 (-1248 *7)))))
-(-10 -7 (-15 -4408 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2571 (((-1165) (-868)) 38)) (-4067 (((-1278) (-1165)) 31)) (-2573 (((-1165) (-868)) 28)) (-2572 (((-1165) (-868)) 29)) (-4396 (((-868) $) NIL) (((-1165) (-868)) 27)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-715) (-13 (-1107) (-10 -7 (-15 -4396 ((-1165) (-868))) (-15 -2573 ((-1165) (-868))) (-15 -2572 ((-1165) (-868))) (-15 -2571 ((-1165) (-868))) (-15 -4067 ((-1278) (-1165)))))) (T -715))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715)))))
-(-13 (-1107) (-10 -7 (-15 -4396 ((-1165) (-868))) (-15 -2573 ((-1165) (-868))) (-15 -2572 ((-1165) (-868))) (-15 -2571 ((-1165) (-868))) (-15 -4067 ((-1278) (-1165)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL)) (-4292 (($ |#1| |#2|) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-3032 ((|#2| $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-2583 (((-3 $ "failed") $ $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) ((|#1| $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-367) (-10 -8 (-15 -3032 (|#2| $)) (-15 -4396 (|#1| $)) (-15 -4292 ($ |#1| |#2|)) (-15 -2583 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
-((-3032 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4396 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4292 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2583 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-(-13 (-367) (-10 -8 (-15 -3032 (|#2| $)) (-15 -4396 (|#1| $)) (-15 -4292 ($ |#1| |#2|)) (-15 -2583 ((-3 $ "failed") $ $))))
-((-2986 (((-112) $ $) 90)) (-3626 (((-112) $) 36)) (-4216 (((-1272 |#1|) $ (-776)) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4214 (($ (-1177 |#1|)) NIL)) (-3505 (((-1177 $) $ (-1088)) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1088))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4205 (($ $ $) NIL (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3558 (((-776)) 56 (|has| |#1| (-372)))) (-4210 (($ $ (-776)) NIL)) (-4209 (($ $ (-776)) NIL)) (-2580 ((|#2| |#2|) 52)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-1088) #2#) $) NIL)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-1088) $) NIL)) (-4206 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) 40)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-4292 (($ |#2|) 50)) (-3908 (((-3 $ "failed") $) 100)) (-3413 (($) 61 (|has| |#1| (-372)))) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4208 (($ $ $) NIL)) (-4203 (($ $ $) NIL (|has| |#1| (-562)))) (-4202 (((-2 (|:| -4404 |#1|) (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-2576 (((-964 $)) 92)) (-1779 (($ $ |#1| (-776) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1088) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1088) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ $) NIL (|has| |#1| (-562)))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-1157)))) (-3506 (($ (-1177 |#1|) (-1088)) NIL) (($ (-1177 $) (-1088)) NIL)) (-4226 (($ $ (-776)) NIL)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) 88) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1088)) NIL) (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3032 ((|#2|) 53)) (-3241 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-1780 (($ (-1 (-776) (-776)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4215 (((-1177 |#1|) $) NIL)) (-3504 (((-3 (-1088) #4="failed") $) NIL)) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-3499 ((|#2| $) 49)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) 34)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) NIL)) (-3244 (((-3 (-646 $) #4#) $) NIL)) (-3243 (((-3 (-646 $) #4#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1088)) (|:| -2582 (-776))) #4#) $) NIL)) (-4262 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) NIL (|has| |#1| (-1157)) CONST)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2574 (($ $) 91 (|has| |#1| (-354)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-646 (-1088)) (-646 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-646 (-1088)) (-646 $)) NIL)) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-562))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-562)))) (-4213 (((-3 $ #5="failed") $ (-776)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 101 (|has| |#1| (-367)))) (-4207 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-4260 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4398 (((-776) $) 38) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1088) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-2575 (((-964 $)) 42)) (-4204 (((-3 $ #5#) $ $) NIL (|has| |#1| (-562))) (((-3 (-412 $) #5#) (-412 $) $) NIL (|has| |#1| (-562)))) (-4396 (((-868) $) 71) (($ (-551)) NIL) (($ |#1|) 68) (($ (-1088)) NIL) (($ |#2|) 78) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) 73) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 25 T CONST)) (-2579 (((-1272 |#1|) $) 86)) (-2578 (($ (-1272 |#1|)) 60)) (-3085 (($) 8 T CONST)) (-3090 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2577 (((-1272 |#1|) $) NIL)) (-3473 (((-112) $ $) 79)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) 82) (($ $ $) NIL)) (-4289 (($ $ $) 39)) (** (($ $ (-925)) NIL) (($ $ (-776)) 95)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 67) (($ $ $) 85) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
-(((-717 |#1| |#2|) (-13 (-1248 |#1|) (-621 |#2|) (-10 -8 (-15 -2580 (|#2| |#2|)) (-15 -3032 (|#2|)) (-15 -4292 ($ |#2|)) (-15 -3499 (|#2| $)) (-15 -2579 ((-1272 |#1|) $)) (-15 -2578 ($ (-1272 |#1|))) (-15 -2577 ((-1272 |#1|) $)) (-15 -2576 ((-964 $))) (-15 -2575 ((-964 $))) (IF (|has| |#1| (-354)) (-15 -2574 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) (-1055) (-1248 |#1|)) (T -717))
-((-2580 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1248 *3)))) (-3032 (*1 *2) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-4292 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1248 *3)))) (-3499 (*1 *2 *1) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-2579 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1272 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1248 *3)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1248 *3)))) (-2577 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1272 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1248 *3)))) (-2576 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1248 *3)))) (-2575 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1248 *3)))) (-2574 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1248 *2)))))
-(-13 (-1248 |#1|) (-621 |#2|) (-10 -8 (-15 -2580 (|#2| |#2|)) (-15 -3032 (|#2|)) (-15 -4292 ($ |#2|)) (-15 -3499 (|#2| $)) (-15 -2579 ((-1272 |#1|) $)) (-15 -2578 ($ (-1272 |#1|))) (-15 -2577 ((-1272 |#1|) $)) (-15 -2576 ((-964 $))) (-15 -2575 ((-964 $))) (IF (|has| |#1| (-354)) (-15 -2574 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 ((|#1| $) 13)) (-3682 (((-1126) $) NIL)) (-2582 ((|#2| $) 12)) (-3971 (($ |#1| |#2|) 16)) (-4396 (((-868) $) NIL) (($ (-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) 15) (((-2 (|:| -2581 |#1|) (|:| -2582 |#2|)) $) 14)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 11)))
-(((-718 |#1| |#2| |#3|) (-13 (-855) (-495 (-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) (-10 -8 (-15 -2582 (|#2| $)) (-15 -2581 (|#1| $)) (-15 -3971 ($ |#1| |#2|)))) (-855) (-1107) (-1 (-112) (-2 (|:| -2581 |#1|) (|:| -2582 |#2|)) (-2 (|:| -2581 |#1|) (|:| -2582 |#2|)))) (T -718))
-((-2582 (*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) (-14 *4 (-1 (-112) (-2 (|:| -2581 *3) (|:| -2582 *2)) (-2 (|:| -2581 *3) (|:| -2582 *2)))))) (-2581 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1107)) (-14 *4 (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *3)) (-2 (|:| -2581 *2) (|:| -2582 *3)))))) (-3971 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1107)) (-14 *4 (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *3)) (-2 (|:| -2581 *2) (|:| -2582 *3)))))))
-(-13 (-855) (-495 (-2 (|:| -2581 |#1|) (|:| -2582 |#2|))) (-10 -8 (-15 -2582 (|#2| $)) (-15 -2581 (|#1| $)) (-15 -3971 ($ |#1| |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 66)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #1="failed") $) 105) (((-3 (-113) #1#) $) 111)) (-3594 ((|#1| $) NIL) (((-113) $) 39)) (-3908 (((-3 $ "failed") $) 106)) (-2934 ((|#2| (-113) |#2|) 93)) (-2591 (((-112) $) NIL)) (-2933 (($ |#1| (-365 (-113))) 14)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2935 (($ $ (-1 |#2| |#2|)) 65)) (-2936 (($ $ (-1 |#2| |#2|)) 44)) (-4249 ((|#2| $ |#2|) 33)) (-2937 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-4396 (((-868) $) 73) (($ (-551)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) 37 T CONST)) (-3680 (((-112) $ $) NIL)) (-2938 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-3528 (($) 21 T CONST)) (-3085 (($) 9 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) 48) (($ $ $) NIL)) (-4289 (($ $ $) 83)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ (-113) (-551)) NIL) (($ $ (-551)) 64)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173)))))
-(((-719 |#1| |#2|) (-13 (-1055) (-1044 |#1|) (-1044 (-113)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2938 ($ $)) (-15 -2938 ($ $ $)) (-15 -2937 (|#1| |#1|))) |%noBranch|) (-15 -2936 ($ $ (-1 |#2| |#2|))) (-15 -2935 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-551))) (-15 ** ($ $ (-551))) (-15 -2934 (|#2| (-113) |#2|)) (-15 -2933 ($ |#1| (-365 (-113)))))) (-1055) (-653 |#1|)) (T -719))
-((-2938 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2938 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2937 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3)))) (-2934 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4)))) (-2933 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-113))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4)) (-4 *4 (-653 *2)))))
-(-13 (-1055) (-1044 |#1|) (-1044 (-113)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2938 ($ $)) (-15 -2938 ($ $ $)) (-15 -2937 (|#1| |#1|))) |%noBranch|) (-15 -2936 ($ $ (-1 |#2| |#2|))) (-15 -2935 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-551))) (-15 ** ($ $ (-551))) (-15 -2934 (|#2| (-113) |#2|)) (-15 -2933 ($ |#1| (-365 (-113))))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 33)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4292 (($ |#1| |#2|) 25)) (-3908 (((-3 $ "failed") $) 51)) (-2591 (((-112) $) 35)) (-3032 ((|#2| $) 12)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 52)) (-3682 (((-1126) $) NIL)) (-2583 (((-3 $ "failed") $ $) 50)) (-4396 (((-868) $) 24) (($ (-551)) 19) ((|#1| $) 13)) (-3548 (((-776)) 28 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 16 T CONST)) (-3085 (($) 30 T CONST)) (-3473 (((-112) $ $) 41)) (-4287 (($ $) 46) (($ $ $) 40)) (-4289 (($ $ $) 43)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 21) (($ $ $) 20)))
-(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-1055) (-10 -8 (-15 -3032 (|#2| $)) (-15 -4396 (|#1| $)) (-15 -4292 ($ |#1| |#2|)) (-15 -2583 ((-3 $ "failed") $ $)) (-15 -3908 ((-3 $ "failed") $)) (-15 -2824 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720))
-((-3908 (*1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4396 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4292 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2583 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2824 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-(-13 (-1055) (-10 -8 (-15 -3032 (|#2| $)) (-15 -4396 (|#1| $)) (-15 -4292 ($ |#1| |#2|)) (-15 -2583 ((-3 $ "failed") $ $)) (-15 -3908 ((-3 $ "failed") $)) (-15 -2824 ($ $))))
-((* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-721 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|))) (-722 |#2|) (-173)) (T -721))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+((-2091 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))))
+(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2091 ((-776) $)) (-15 -3304 ((-776) $)) (-15 -1820 (|t#1| $)) (-15 -1842 ($ $)) (-15 -1503 (|t#1| $ (-776))) (-15 -3838 ($ |t#1| (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-1324 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-714 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1324 (|#6| (-1 |#4| |#1|) |#3|))) (-561) (-1249 |#1|) (-1249 (-412 |#2|)) (-561) (-1249 |#4|) (-1249 (-412 |#5|))) (T -714))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1249 *5)) (-4 *2 (-1249 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1249 (-412 *6))) (-4 *8 (-1249 *7)))))
+(-10 -7 (-15 -1324 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2673 (((-1165) (-867)) 38)) (-4138 (((-1278) (-1165)) 31)) (-2694 (((-1165) (-867)) 28)) (-2684 (((-1165) (-867)) 29)) (-2388 (((-867) $) NIL) (((-1165) (-867)) 27)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-715) (-13 (-1106) (-10 -7 (-15 -2388 ((-1165) (-867))) (-15 -2694 ((-1165) (-867))) (-15 -2684 ((-1165) (-867))) (-15 -2673 ((-1165) (-867))) (-15 -4138 ((-1278) (-1165)))))) (T -715))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715)))))
+(-13 (-1106) (-10 -7 (-15 -2388 ((-1165) (-867))) (-15 -2694 ((-1165) (-867))) (-15 -2684 ((-1165) (-867))) (-15 -2673 ((-1165) (-867))) (-15 -4138 ((-1278) (-1165)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL)) (-3485 (($ |#1| |#2|) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1864 ((|#2| $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2788 (((-3 $ "failed") $ $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) ((|#1| $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-367) (-10 -8 (-15 -1864 (|#2| $)) (-15 -2388 (|#1| $)) (-15 -3485 ($ |#1| |#2|)) (-15 -2788 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
+((-1864 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2788 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-367) (-10 -8 (-15 -1864 (|#2| $)) (-15 -2388 (|#1| $)) (-15 -3485 ($ |#1| |#2|)) (-15 -2788 ((-3 $ "failed") $ $))))
+((-2383 (((-112) $ $) 90)) (-2789 (((-112) $) 36)) (-4284 (((-1273 |#1|) $ (-776)) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-4258 (($ (-1179 |#1|)) NIL)) (-3663 (((-1179 $) $ (-1088)) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4156 (($ $ $) NIL (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3363 (((-776)) 56 (|has| |#1| (-372)))) (-4213 (($ $ (-776)) NIL)) (-4201 (($ $ (-776)) NIL)) (-2768 ((|#2| |#2|) 52)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL)) (-4168 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) 40)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3485 (($ |#2|) 50)) (-3351 (((-3 $ "failed") $) 100)) (-3295 (($) 61 (|has| |#1| (-372)))) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-4190 (($ $ $) NIL)) (-4133 (($ $ $) NIL (|has| |#1| (-561)))) (-4121 (((-2 (|:| -1406 |#1|) (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-2727 (((-964 $)) 92)) (-1482 (($ $ |#1| (-776) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-3851 (($ (-1179 |#1|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-4352 (($ $ (-776)) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) 88) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1088)) NIL) (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1864 ((|#2|) 53)) (-3304 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1491 (($ (-1 (-776) (-776)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-4270 (((-1179 |#1|) $) NIL)) (-4212 (((-3 (-1088) "failed") $) NIL)) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-3472 ((|#2| $) 49)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) 34)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1088)) (|:| -2777 (-776))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) NIL (|has| |#1| (-1158)) CONST)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2703 (($ $) 91 (|has| |#1| (-353)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-4247 (((-3 $ "failed") $ (-776)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 101 (|has| |#1| (-367)))) (-4180 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3430 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2091 (((-776) $) 38) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2714 (((-964 $)) 42)) (-4146 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-2388 (((-867) $) 71) (($ (-569)) NIL) (($ |#1|) 68) (($ (-1088)) NIL) (($ |#2|) 78) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) 73) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 25 T CONST)) (-2759 (((-1273 |#1|) $) 86)) (-2750 (($ (-1273 |#1|)) 60)) (-1796 (($) 8 T CONST)) (-2749 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2737 (((-1273 |#1|) $) NIL)) (-2853 (((-112) $ $) 79)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) 82) (($ $ $) NIL)) (-2935 (($ $ $) 39)) (** (($ $ (-927)) NIL) (($ $ (-776)) 95)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 67) (($ $ $) 85) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
+(((-717 |#1| |#2|) (-13 (-1249 |#1|) (-621 |#2|) (-10 -8 (-15 -2768 (|#2| |#2|)) (-15 -1864 (|#2|)) (-15 -3485 ($ |#2|)) (-15 -3472 (|#2| $)) (-15 -2759 ((-1273 |#1|) $)) (-15 -2750 ($ (-1273 |#1|))) (-15 -2737 ((-1273 |#1|) $)) (-15 -2727 ((-964 $))) (-15 -2714 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -2703 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) (-1055) (-1249 |#1|)) (T -717))
+((-2768 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))) (-1864 (*1 *2) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-3485 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-2759 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-2750 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-2737 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-2727 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-2714 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-2703 (*1 *1 *1) (-12 (-4 *2 (-353)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1249 *2)))))
+(-13 (-1249 |#1|) (-621 |#2|) (-10 -8 (-15 -2768 (|#2| |#2|)) (-15 -1864 (|#2|)) (-15 -3485 ($ |#2|)) (-15 -3472 (|#2| $)) (-15 -2759 ((-1273 |#1|) $)) (-15 -2750 ($ (-1273 |#1|))) (-15 -2737 ((-1273 |#1|) $)) (-15 -2727 ((-964 $))) (-15 -2714 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -2703 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 ((|#1| $) 13)) (-3461 (((-1126) $) NIL)) (-2777 ((|#2| $) 12)) (-3709 (($ |#1| |#2|) 16)) (-2388 (((-867) $) NIL) (($ (-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) 15) (((-2 (|:| -2114 |#1|) (|:| -2777 |#2|)) $) 14)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 11)))
+(((-718 |#1| |#2| |#3|) (-13 (-855) (-495 (-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) (-10 -8 (-15 -2777 (|#2| $)) (-15 -2114 (|#1| $)) (-15 -3709 ($ |#1| |#2|)))) (-855) (-1106) (-1 (-112) (-2 (|:| -2114 |#1|) (|:| -2777 |#2|)) (-2 (|:| -2114 |#1|) (|:| -2777 |#2|)))) (T -718))
+((-2777 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) (-14 *4 (-1 (-112) (-2 (|:| -2114 *3) (|:| -2777 *2)) (-2 (|:| -2114 *3) (|:| -2777 *2)))))) (-2114 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1106)) (-14 *4 (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *3)) (-2 (|:| -2114 *2) (|:| -2777 *3)))))) (-3709 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1106)) (-14 *4 (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *3)) (-2 (|:| -2114 *2) (|:| -2777 *3)))))))
+(-13 (-855) (-495 (-2 (|:| -2114 |#1|) (|:| -2777 |#2|))) (-10 -8 (-15 -2777 (|#2| $)) (-15 -2114 (|#1| $)) (-15 -3709 ($ |#1| |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 66)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3043 ((|#1| $) NIL) (((-114) $) 39)) (-3351 (((-3 $ "failed") $) 106)) (-3391 ((|#2| (-114) |#2|) 93)) (-2861 (((-112) $) NIL)) (-3377 (($ |#1| (-365 (-114))) 14)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3403 (($ $ (-1 |#2| |#2|)) 65)) (-3416 (($ $ (-1 |#2| |#2|)) 44)) (-1852 ((|#2| $ |#2|) 33)) (-3428 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-2388 (((-867) $) 73) (($ (-569)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) 37 T CONST)) (-2040 (((-112) $ $) NIL)) (-3439 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-1786 (($) 21 T CONST)) (-1796 (($) 9 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) 48) (($ $ $) NIL)) (-2935 (($ $ $) 83)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) 64)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173)))))
+(((-719 |#1| |#2|) (-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -3439 ($ $)) (-15 -3439 ($ $ $)) (-15 -3428 (|#1| |#1|))) |%noBranch|) (-15 -3416 ($ $ (-1 |#2| |#2|))) (-15 -3403 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -3391 (|#2| (-114) |#2|)) (-15 -3377 ($ |#1| (-365 (-114)))))) (-1055) (-653 |#1|)) (T -719))
+((-3439 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-3439 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-3428 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3)))) (-3391 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4)))) (-3377 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4)) (-4 *4 (-653 *2)))))
+(-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -3439 ($ $)) (-15 -3439 ($ $ $)) (-15 -3428 (|#1| |#1|))) |%noBranch|) (-15 -3416 ($ $ (-1 |#2| |#2|))) (-15 -3403 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -3391 (|#2| (-114) |#2|)) (-15 -3377 ($ |#1| (-365 (-114))))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 33)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3485 (($ |#1| |#2|) 25)) (-3351 (((-3 $ "failed") $) 51)) (-2861 (((-112) $) 35)) (-1864 ((|#2| $) 12)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 52)) (-3461 (((-1126) $) NIL)) (-2788 (((-3 $ "failed") $ $) 50)) (-2388 (((-867) $) 24) (($ (-569)) 19) ((|#1| $) 13)) (-3263 (((-776)) 28 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 16 T CONST)) (-1796 (($) 30 T CONST)) (-2853 (((-112) $ $) 41)) (-2946 (($ $) 46) (($ $ $) 40)) (-2935 (($ $ $) 43)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21) (($ $ $) 20)))
+(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-1055) (-10 -8 (-15 -1864 (|#2| $)) (-15 -2388 (|#1| $)) (-15 -3485 ($ |#1| |#2|)) (-15 -2788 ((-3 $ "failed") $ $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -1776 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720))
+((-3351 (*1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1864 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2788 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1776 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1055) (-10 -8 (-15 -1864 (|#2| $)) (-15 -2388 (|#1| $)) (-15 -3485 ($ |#1| |#2|)) (-15 -2788 ((-3 $ "failed") $ $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -1776 ($ $))))
+((* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-721 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-722 |#2|) (-173)) (T -721))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-722 |#1|) (-140) (-173)) (T -722))
NIL
(-13 (-111 |t#1| |t#1|) (-645 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-2780 (($ |#1|) 17) (($ $ |#1|) 20)) (-4297 (($ |#1|) 18) (($ $ |#1|) 21)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2591 (((-112) $) NIL)) (-2584 (($ |#1| |#1| |#1| |#1|) 8)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 16)) (-3682 (((-1126) $) NIL)) (-4217 ((|#1| $ |#1|) 24) (((-837 |#1|) $ (-837 |#1|)) 32)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-4396 (((-868) $) 39)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 9 T CONST)) (-3473 (((-112) $ $) 48)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ $ $) 14)))
-(((-723 |#1|) (-13 (-478) (-10 -8 (-15 -2584 ($ |#1| |#1| |#1| |#1|)) (-15 -2780 ($ |#1|)) (-15 -4297 ($ |#1|)) (-15 -3908 ($)) (-15 -2780 ($ $ |#1|)) (-15 -4297 ($ $ |#1|)) (-15 -3908 ($ $)) (-15 -4217 (|#1| $ |#1|)) (-15 -4217 ((-837 |#1|) $ (-837 |#1|))))) (-367)) (T -723))
-((-2584 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2780 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4297 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3908 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *2 (-837 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3)))))
-(-13 (-478) (-10 -8 (-15 -2584 ($ |#1| |#1| |#1| |#1|)) (-15 -2780 ($ |#1|)) (-15 -4297 ($ |#1|)) (-15 -3908 ($)) (-15 -2780 ($ $ |#1|)) (-15 -4297 ($ $ |#1|)) (-15 -3908 ($ $)) (-15 -4217 (|#1| $ |#1|)) (-15 -4217 ((-837 |#1|) $ (-837 |#1|)))))
-((-2588 (($ $ (-925)) 21)) (-2587 (($ $ (-925)) 22)) (** (($ $ (-925)) 10)))
-(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-925))) (-15 -2587 (|#1| |#1| (-925))) (-15 -2588 (|#1| |#1| (-925)))) (-725)) (T -724))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-925))) (-15 -2587 (|#1| |#1| (-925))) (-15 -2588 (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-2588 (($ $ (-925)) 16)) (-2587 (($ $ (-925)) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)) (** (($ $ (-925)) 14)) (* (($ $ $) 17)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2979 (($ |#1|) 17) (($ $ |#1|) 20)) (-3573 (($ |#1|) 18) (($ $ |#1|) 21)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2861 (((-112) $) NIL)) (-2799 (($ |#1| |#1| |#1| |#1|) 8)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 16)) (-3461 (((-1126) $) NIL)) (-1679 ((|#1| $ |#1|) 24) (((-838 |#1|) $ (-838 |#1|)) 32)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-2388 (((-867) $) 39)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 9 T CONST)) (-2853 (((-112) $ $) 48)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 14)))
+(((-723 |#1|) (-13 (-478) (-10 -8 (-15 -2799 ($ |#1| |#1| |#1| |#1|)) (-15 -2979 ($ |#1|)) (-15 -3573 ($ |#1|)) (-15 -3351 ($)) (-15 -2979 ($ $ |#1|)) (-15 -3573 ($ $ |#1|)) (-15 -3351 ($ $)) (-15 -1679 (|#1| $ |#1|)) (-15 -1679 ((-838 |#1|) $ (-838 |#1|))))) (-367)) (T -723))
+((-2799 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2979 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3573 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3351 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1679 (*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1679 (*1 *2 *1 *2) (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3)))))
+(-13 (-478) (-10 -8 (-15 -2799 ($ |#1| |#1| |#1| |#1|)) (-15 -2979 ($ |#1|)) (-15 -3573 ($ |#1|)) (-15 -3351 ($)) (-15 -2979 ($ $ |#1|)) (-15 -3573 ($ $ |#1|)) (-15 -3351 ($ $)) (-15 -1679 (|#1| $ |#1|)) (-15 -1679 ((-838 |#1|) $ (-838 |#1|)))))
+((-2840 (($ $ (-927)) 21)) (-2829 (($ $ (-927)) 22)) (** (($ $ (-927)) 10)))
+(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2829 (|#1| |#1| (-927))) (-15 -2840 (|#1| |#1| (-927)))) (-725)) (T -724))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2829 (|#1| |#1| (-927))) (-15 -2840 (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-2840 (($ $ (-927)) 16)) (-2829 (($ $ (-927)) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 17)))
(((-725) (-140)) (T -725))
-((* (*1 *1 *1 *1) (-4 *1 (-725))) (-2588 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925)))) (-2587 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925)))))
-(-13 (-1107) (-10 -8 (-15 * ($ $ $)) (-15 -2588 ($ $ (-925))) (-15 -2587 ($ $ (-925))) (-15 ** ($ $ (-925)))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2588 (($ $ (-925)) NIL) (($ $ (-776)) 21)) (-2591 (((-112) $) 10)) (-2587 (($ $ (-925)) NIL) (($ $ (-776)) 22)) (** (($ $ (-925)) NIL) (($ $ (-776)) 16)))
-(((-726 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2587 (|#1| |#1| (-776))) (-15 -2588 (|#1| |#1| (-776))) (-15 -2591 ((-112) |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 -2587 (|#1| |#1| (-925))) (-15 -2588 (|#1| |#1| (-925)))) (-727)) (T -726))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2587 (|#1| |#1| (-776))) (-15 -2588 (|#1| |#1| (-776))) (-15 -2591 ((-112) |#1|)) (-15 ** (|#1| |#1| (-925))) (-15 -2587 (|#1| |#1| (-925))) (-15 -2588 (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-2585 (((-3 $ "failed") $) 18)) (-2588 (($ $ (-925)) 16) (($ $ (-776)) 23)) (-3908 (((-3 $ "failed") $) 20)) (-2591 (((-112) $) 24)) (-2586 (((-3 $ "failed") $) 19)) (-2587 (($ $ (-925)) 15) (($ $ (-776)) 22)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3085 (($) 25 T CONST)) (-3473 (((-112) $ $) 6)) (** (($ $ (-925)) 14) (($ $ (-776)) 21)) (* (($ $ $) 17)))
+((* (*1 *1 *1 *1) (-4 *1 (-725))) (-2840 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (-2829 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))))
+(-13 (-1106) (-10 -8 (-15 * ($ $ $)) (-15 -2840 ($ $ (-927))) (-15 -2829 ($ $ (-927))) (-15 ** ($ $ (-927)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2840 (($ $ (-927)) NIL) (($ $ (-776)) 21)) (-2861 (((-112) $) 10)) (-2829 (($ $ (-927)) NIL) (($ $ (-776)) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) 16)))
+(((-726 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2829 (|#1| |#1| (-776))) (-15 -2840 (|#1| |#1| (-776))) (-15 -2861 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2829 (|#1| |#1| (-927))) (-15 -2840 (|#1| |#1| (-927)))) (-727)) (T -726))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2829 (|#1| |#1| (-776))) (-15 -2840 (|#1| |#1| (-776))) (-15 -2861 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2829 (|#1| |#1| (-927))) (-15 -2840 (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-2808 (((-3 $ "failed") $) 18)) (-2840 (($ $ (-927)) 16) (($ $ (-776)) 23)) (-3351 (((-3 $ "failed") $) 20)) (-2861 (((-112) $) 24)) (-2817 (((-3 $ "failed") $) 19)) (-2829 (($ $ (-927)) 15) (($ $ (-776)) 22)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1796 (($) 25 T CONST)) (-2853 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 21)) (* (($ $ $) 17)))
(((-727) (-140)) (T -727))
-((-3085 (*1 *1) (-4 *1 (-727))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (-2588 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-2587 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-3908 (*1 *1 *1) (|partial| -4 *1 (-727))) (-2586 (*1 *1 *1) (|partial| -4 *1 (-727))) (-2585 (*1 *1 *1) (|partial| -4 *1 (-727))))
-(-13 (-725) (-10 -8 (-15 (-3085) ($) -4402) (-15 -2591 ((-112) $)) (-15 -2588 ($ $ (-776))) (-15 -2587 ($ $ (-776))) (-15 ** ($ $ (-776))) (-15 -3908 ((-3 $ "failed") $)) (-15 -2586 ((-3 $ "failed") $)) (-15 -2585 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-868)) . T) ((-725) . T) ((-1107) . T))
-((-3558 (((-776)) 42)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#2| #1#) $) 26)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL) ((|#2| $) 23)) (-4292 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) 52)) (-3908 (((-3 $ "failed") $) 72)) (-3413 (($) 46)) (-3554 ((|#2| $) 21)) (-2590 (($) 18)) (-4260 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2589 (((-694 |#2|) (-1272 $) (-1 |#2| |#2|)) 67)) (-4420 (((-1272 |#2|) $) NIL) (($ (-1272 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2788 ((|#3| $) 39)) (-2200 (((-1272 $)) 36)))
-(((-728 |#1| |#2| |#3|) (-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3413 (|#1|)) (-15 -3558 ((-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2589 ((-694 |#2|) (-1272 |#1|) (-1 |#2| |#2|))) (-15 -4292 ((-3 |#1| "failed") (-412 |#3|))) (-15 -4420 (|#1| |#3|)) (-15 -4292 (|#1| |#3|)) (-15 -2590 (|#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 (|#3| |#1|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -2200 ((-1272 |#1|))) (-15 -2788 (|#3| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|))) (-729 |#2| |#3|) (-173) (-1248 |#2|)) (T -728))
-((-3558 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5)))))
-(-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -3413 (|#1|)) (-15 -3558 ((-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2589 ((-694 |#2|) (-1272 |#1|) (-1 |#2| |#2|))) (-15 -4292 ((-3 |#1| "failed") (-412 |#3|))) (-15 -4420 (|#1| |#3|)) (-15 -4292 (|#1| |#3|)) (-15 -2590 (|#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4420 (|#3| |#1|)) (-15 -4420 (|#1| (-1272 |#2|))) (-15 -4420 ((-1272 |#2|) |#1|)) (-15 -2200 ((-1272 |#1|))) (-15 -2788 (|#3| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3908 ((-3 |#1| "failed") |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (|has| |#1| (-367)))) (-2251 (($ $) 103 (|has| |#1| (-367)))) (-2249 (((-112) $) 105 (|has| |#1| (-367)))) (-1967 (((-694 |#1|) (-1272 $)) 53) (((-694 |#1|)) 68)) (-3772 ((|#1| $) 59)) (-1853 (((-1195 (-925) (-776)) (-551)) 155 (|has| |#1| (-354)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 122 (|has| |#1| (-367)))) (-4419 (((-410 $) $) 123 (|has| |#1| (-367)))) (-1763 (((-112) $ $) 113 (|has| |#1| (-367)))) (-3558 (((-776)) 96 (|has| |#1| (-372)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 178 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 176 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 173)) (-3594 (((-551) $) 177 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 175 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 174)) (-1977 (($ (-1272 |#1|) (-1272 $)) 55) (($ (-1272 |#1|)) 71)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2982 (($ $ $) 117 (|has| |#1| (-367)))) (-1966 (((-694 |#1|) $ (-1272 $)) 60) (((-694 |#1|) $) 66)) (-2445 (((-694 (-551)) (-694 $)) 172 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 171 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-4292 (($ |#2|) 166) (((-3 $ "failed") (-412 |#2|)) 163 (|has| |#1| (-367)))) (-3908 (((-3 $ "failed") $) 37)) (-3531 (((-925)) 61)) (-3413 (($) 99 (|has| |#1| (-372)))) (-2981 (($ $ $) 116 (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 111 (|has| |#1| (-367)))) (-3254 (($) 157 (|has| |#1| (-354)))) (-1858 (((-112) $) 158 (|has| |#1| (-354)))) (-1951 (($ $ (-776)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-4173 (((-112) $) 124 (|has| |#1| (-367)))) (-4221 (((-925) $) 160 (|has| |#1| (-354))) (((-837 (-925)) $) 146 (|has| |#1| (-354)))) (-2591 (((-112) $) 35)) (-3554 ((|#1| $) 58)) (-3886 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 120 (|has| |#1| (-367)))) (-2202 ((|#2| $) 51 (|has| |#1| (-367)))) (-2198 (((-925) $) 98 (|has| |#1| (-372)))) (-3499 ((|#2| $) 164)) (-2079 (($ (-646 $)) 109 (|has| |#1| (-367))) (($ $ $) 108 (|has| |#1| (-367)))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 125 (|has| |#1| (-367)))) (-3887 (($) 151 (|has| |#1| (-354)) CONST)) (-2581 (($ (-925)) 97 (|has| |#1| (-372)))) (-3682 (((-1126) $) 11)) (-2590 (($) 168)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 110 (|has| |#1| (-367)))) (-3582 (($ (-646 $)) 107 (|has| |#1| (-367))) (($ $ $) 106 (|has| |#1| (-367)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) 154 (|has| |#1| (-354)))) (-4182 (((-410 $) $) 121 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 118 (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ $) 101 (|has| |#1| (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 112 (|has| |#1| (-367)))) (-1762 (((-776) $) 114 (|has| |#1| (-367)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 115 (|has| |#1| (-367)))) (-4207 ((|#1| (-1272 $)) 54) ((|#1|) 67)) (-1952 (((-776) $) 159 (|has| |#1| (-354))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-354)))) (-4260 (($ $) 145 (-3978 (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-776)) 143 (-3978 (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-1183)) 141 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-646 (-1183))) 140 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 139 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-646 (-1183)) (-646 (-776))) 138 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 131 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-367)))) (-2589 (((-694 |#1|) (-1272 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-3623 ((|#2|) 167)) (-1852 (($) 156 (|has| |#1| (-354)))) (-3662 (((-1272 |#1|) $ (-1272 $)) 57) (((-694 |#1|) (-1272 $) (-1272 $)) 56) (((-1272 |#1|) $) 73) (((-694 |#1|) (-1272 $)) 72)) (-4420 (((-1272 |#1|) $) 70) (($ (-1272 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 153 (|has| |#1| (-354)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-367))) (($ (-412 (-551))) 95 (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551))))))) (-3123 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2788 ((|#2| $) 52)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2200 (((-1272 $)) 74)) (-2250 (((-112) $ $) 104 (|has| |#1| (-367)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $) 144 (-3978 (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-776)) 142 (-3978 (-3274 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-1183)) 137 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-646 (-1183))) 136 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 135 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-646 (-1183)) (-646 (-776))) 134 (-3274 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 133 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-367)))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 129 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 126 (|has| |#1| (-367)))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-551)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-551))) 127 (|has| |#1| (-367)))))
-(((-729 |#1| |#2|) (-140) (-173) (-1248 |t#1|)) (T -729))
-((-2590 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1248 *2)))) (-3623 (*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3)))) (-4292 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1248 *3)))) (-4420 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1248 *3)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3)))) (-4292 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-367)) (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-1272 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1248 *5)) (-5 *2 (-694 *5)))))
-(-13 (-415 |t#1| |t#2|) (-173) (-619 |t#2|) (-417 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2590 ($)) (-15 -3623 (|t#2|)) (-15 -4292 ($ |t#2|)) (-15 -4420 ($ |t#2|)) (-15 -3499 (|t#2| $)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-6 (-232 |t#1|)) (-15 -4292 ((-3 $ "failed") (-412 |t#2|))) (-15 -2589 ((-694 |t#1|) (-1272 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-102) . T) ((-111 #1# #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3978 (|has| |#1| (-354)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-354)) (|has| |#1| (-367))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 $) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) . T) ((-619 |#2|) . T) ((-232 |#1|) |has| |#1| (-367)) ((-234) -3978 (|has| |#1| (-354)) (-12 (|has| |#1| (-234)) (|has| |#1| (-367)))) ((-244) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-293) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-310) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-367) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-407) |has| |#1| (-354)) ((-372) -3978 (|has| |#1| (-354)) (|has| |#1| (-372))) ((-354) |has| |#1| (-354)) ((-374 |#1| |#2|) . T) ((-415 |#1| |#2|) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-562) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-651 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))) ((-927) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #1#) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| |#1| (-354)) ((-1227) -3978 (|has| |#1| (-354)) (|has| |#1| (-367))))
-((-4174 (($) 11)) (-3908 (((-3 $ "failed") $) 14)) (-2591 (((-112) $) 10)) (** (($ $ (-925)) NIL) (($ $ (-776)) 20)))
-(((-730 |#1|) (-10 -8 (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2591 ((-112) |#1|)) (-15 -4174 (|#1|)) (-15 ** (|#1| |#1| (-925)))) (-731)) (T -730))
-NIL
-(-10 -8 (-15 -3908 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2591 ((-112) |#1|)) (-15 -4174 (|#1|)) (-15 ** (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-4174 (($) 19 T CONST)) (-3908 (((-3 $ "failed") $) 16)) (-2591 (((-112) $) 18)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3085 (($) 20 T CONST)) (-3473 (((-112) $ $) 6)) (** (($ $ (-925)) 14) (($ $ (-776)) 17)) (* (($ $ $) 15)))
+((-1796 (*1 *1) (-4 *1 (-727))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (-2840 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-2829 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-3351 (*1 *1 *1) (|partial| -4 *1 (-727))) (-2817 (*1 *1 *1) (|partial| -4 *1 (-727))) (-2808 (*1 *1 *1) (|partial| -4 *1 (-727))))
+(-13 (-725) (-10 -8 (-15 (-1796) ($) -3600) (-15 -2861 ((-112) $)) (-15 -2840 ($ $ (-776))) (-15 -2829 ($ $ (-776))) (-15 ** ($ $ (-776))) (-15 -3351 ((-3 $ "failed") $)) (-15 -2817 ((-3 $ "failed") $)) (-15 -2808 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-725) . T) ((-1106) . T))
+((-3363 (((-776)) 42)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 23)) (-3485 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) 52)) (-3351 (((-3 $ "failed") $) 72)) (-3295 (($) 46)) (-3334 ((|#2| $) 21)) (-2290 (($) 18)) (-3430 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2851 (((-694 |#2|) (-1273 $) (-1 |#2| |#2|)) 67)) (-1384 (((-1273 |#2|) $) NIL) (($ (-1273 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3176 ((|#3| $) 39)) (-3371 (((-1273 $)) 36)))
+(((-728 |#1| |#2| |#3|) (-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3295 (|#1|)) (-15 -3363 ((-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2851 ((-694 |#2|) (-1273 |#1|) (-1 |#2| |#2|))) (-15 -3485 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1384 (|#1| |#3|)) (-15 -3485 (|#1| |#3|)) (-15 -2290 (|#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 (|#3| |#1|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -3371 ((-1273 |#1|))) (-15 -3176 (|#3| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|))) (-729 |#2| |#3|) (-173) (-1249 |#2|)) (T -728))
+((-3363 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5)))))
+(-10 -8 (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3295 (|#1|)) (-15 -3363 ((-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2851 ((-694 |#2|) (-1273 |#1|) (-1 |#2| |#2|))) (-15 -3485 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1384 (|#1| |#3|)) (-15 -3485 (|#1| |#3|)) (-15 -2290 (|#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -1384 (|#3| |#1|)) (-15 -1384 (|#1| (-1273 |#2|))) (-15 -1384 ((-1273 |#2|) |#1|)) (-15 -3371 ((-1273 |#1|))) (-15 -3176 (|#3| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 102 (|has| |#1| (-367)))) (-2586 (($ $) 103 (|has| |#1| (-367)))) (-2564 (((-112) $) 105 (|has| |#1| (-367)))) (-2702 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3057 ((|#1| $) 59)) (-4068 (((-1196 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 122 (|has| |#1| (-367)))) (-2207 (((-423 $) $) 123 (|has| |#1| (-367)))) (-4420 (((-112) $ $) 113 (|has| |#1| (-367)))) (-3363 (((-776)) 96 (|has| |#1| (-372)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3043 (((-569) $) 177 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 174)) (-2806 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2339 (($ $ $) 117 (|has| |#1| (-367)))) (-2692 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-4091 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3485 (($ |#2|) 166) (((-3 $ "failed") (-412 |#2|)) 163 (|has| |#1| (-367)))) (-3351 (((-3 $ "failed") $) 37)) (-3904 (((-927)) 61)) (-3295 (($) 99 (|has| |#1| (-372)))) (-2348 (($ $ $) 116 (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 111 (|has| |#1| (-367)))) (-3445 (($) 157 (|has| |#1| (-353)))) (-4127 (((-112) $) 158 (|has| |#1| (-353)))) (-2525 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-3848 (((-112) $) 124 (|has| |#1| (-367)))) (-4315 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2861 (((-112) $) 35)) (-3334 ((|#1| $) 58)) (-3177 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-367)))) (-3397 ((|#2| $) 51 (|has| |#1| (-367)))) (-3348 (((-927) $) 98 (|has| |#1| (-372)))) (-3472 ((|#2| $) 164)) (-1798 (($ (-649 $)) 109 (|has| |#1| (-367))) (($ $ $) 108 (|has| |#1| (-367)))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 125 (|has| |#1| (-367)))) (-2267 (($) 151 (|has| |#1| (-353)) CONST)) (-2114 (($ (-927)) 97 (|has| |#1| (-372)))) (-3461 (((-1126) $) 11)) (-2290 (($) 168)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 110 (|has| |#1| (-367)))) (-1830 (($ (-649 $)) 107 (|has| |#1| (-367))) (($ $ $) 106 (|has| |#1| (-367)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) 154 (|has| |#1| (-353)))) (-3699 (((-423 $) $) 121 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 118 (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ $) 101 (|has| |#1| (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-367)))) (-4409 (((-776) $) 114 (|has| |#1| (-367)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 115 (|has| |#1| (-367)))) (-4180 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-2536 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3430 (($ $) 145 (-2718 (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 143 (-2718 (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) 141 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183))) 140 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 139 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-776))) 138 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 131 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-367)))) (-2851 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-2760 ((|#2|) 167)) (-4056 (($) 156 (|has| |#1| (-353)))) (-1949 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1384 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 153 (|has| |#1| (-353)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-367))) (($ (-412 (-569))) 95 (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-1488 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3176 ((|#2| $) 52)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3371 (((-1273 $)) 74)) (-2574 (((-112) $ $) 104 (|has| |#1| (-367)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $) 144 (-2718 (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 142 (-2718 (-1739 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) 137 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183))) 136 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 135 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-776))) 134 (-1739 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 133 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-367)))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 129 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
+(((-729 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -729))
+((-2290 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1249 *2)))) (-2760 (*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-3485 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3)))) (-1384 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3)))) (-3472 (*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-3485 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-367)) (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1249 *5)) (-5 *2 (-694 *5)))))
+(-13 (-414 |t#1| |t#2|) (-173) (-619 |t#2|) (-416 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2290 ($)) (-15 -2760 (|t#2|)) (-15 -3485 ($ |t#2|)) (-15 -1384 ($ |t#2|)) (-15 -3472 (|t#2| $)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-6 (-232 |t#1|)) (-15 -3485 ((-3 $ "failed") (-412 |t#2|))) (-15 -2851 ((-694 |t#1|) (-1273 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-102) . T) ((-111 #0# #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2718 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#2|) . T) ((-232 |#1|) |has| |#1| (-367)) ((-234) -2718 (|has| |#1| (-353)) (-12 (|has| |#1| (-234)) (|has| |#1| (-367)))) ((-244) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-293) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-310) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-367) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2718 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| |#2|) . T) ((-414 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-561) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))) ((-926) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-353)) ((-1227) -2718 (|has| |#1| (-353)) (|has| |#1| (-367))))
+((-3863 (($) 11)) (-3351 (((-3 $ "failed") $) 14)) (-2861 (((-112) $) 10)) (** (($ $ (-927)) NIL) (($ $ (-776)) 20)))
+(((-730 |#1|) (-10 -8 (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2861 ((-112) |#1|)) (-15 -3863 (|#1|)) (-15 ** (|#1| |#1| (-927)))) (-731)) (T -730))
+NIL
+(-10 -8 (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2861 ((-112) |#1|)) (-15 -3863 (|#1|)) (-15 ** (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-3863 (($) 19 T CONST)) (-3351 (((-3 $ "failed") $) 16)) (-2861 (((-112) $) 18)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1796 (($) 20 T CONST)) (-2853 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 17)) (* (($ $ $) 15)))
(((-731) (-140)) (T -731))
-((-3085 (*1 *1) (-4 *1 (-731))) (-4174 (*1 *1) (-4 *1 (-731))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) (-3908 (*1 *1 *1) (|partial| -4 *1 (-731))))
-(-13 (-1118) (-10 -8 (-15 (-3085) ($) -4402) (-15 -4174 ($) -4402) (-15 -2591 ((-112) $)) (-15 ** ($ $ (-776))) (-15 -3908 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1118) . T) ((-1107) . T))
-((-2592 (((-2 (|:| -3511 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3860 (((-2 (|:| -3511 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2593 ((|#2| (-412 |#2|) (-1 |#2| |#2|)) 13)) (-3877 (((-2 (|:| |poly| |#2|) (|:| -3511 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)) 48)))
-(((-732 |#1| |#2|) (-10 -7 (-15 -3860 ((-2 (|:| -3511 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2592 ((-2 (|:| -3511 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2593 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -3877 ((-2 (|:| |poly| |#2|) (|:| -3511 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1248 |#1|)) (T -732))
-((-3877 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3511 (-412 *6)) (|:| |special| (-412 *6)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1248 *5)) (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3511 (-410 *3)) (|:| |special| (-410 *3)))) (-5 *1 (-732 *5 *3)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3511 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3)))))
-(-10 -7 (-15 -3860 ((-2 (|:| -3511 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2592 ((-2 (|:| -3511 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2593 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -3877 ((-2 (|:| |poly| |#2|) (|:| -3511 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|))))
-((-2594 ((|#7| (-646 |#5|) |#6|) NIL)) (-4408 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-733 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4408 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2594 (|#7| (-646 |#5|) |#6|))) (-855) (-798) (-798) (-1055) (-1055) (-956 |#4| |#2| |#1|) (-956 |#5| |#3| |#1|)) (T -733))
-((-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-1055)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-956 *8 *6 *5)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-956 *8 *6 *5)))))
-(-10 -7 (-15 -4408 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2594 (|#7| (-646 |#5|) |#6|)))
-((-4408 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4408 (|#7| (-1 |#2| |#1|) |#6|))) (-855) (-855) (-798) (-798) (-1055) (-956 |#5| |#3| |#1|) (-956 |#5| |#4| |#2|)) (T -734))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) (-4 *9 (-1055)) (-4 *2 (-956 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) (-4 *4 (-956 *9 *7 *5)))))
-(-10 -7 (-15 -4408 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4182 (((-410 |#4|) |#4|) 42)))
-(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))) (-310) (-956 (-952 |#3|) |#1| |#2|)) (T -735))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183)))))) (-4 *6 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-956 (-952 *6) *4 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-869 |#1|)) $) NIL)) (-3505 (((-1177 $) $ (-869 |#1|)) NIL) (((-1177 |#2|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2251 (($ $) NIL (|has| |#2| (-562)))) (-2249 (((-112) $) NIL (|has| |#2| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-869 |#1|))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL (|has| |#2| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-869 |#1|) #2#) $) NIL)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-869 |#1|) $) NIL)) (-4206 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#2| (-916)))) (-1779 (($ $ |#2| (-536 (-869 |#1|)) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#2|) (-869 |#1|)) NIL) (($ (-1177 $) (-869 |#1|)) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#2| (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-869 |#1|)) NIL)) (-3241 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-1780 (($ (-1 (-536 (-869 |#1|)) (-536 (-869 |#1|))) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-3504 (((-3 (-869 |#1|) #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#2| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2582 (-776))) #3#) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#2| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-916)))) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-646 (-869 |#1|)) (-646 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-646 (-869 |#1|)) (-646 $)) NIL)) (-4207 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4260 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-4398 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-646 (-776)) $ (-646 (-869 |#1|))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-869 |#1|) (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ $) NIL (|has| |#2| (-562))) (($ (-412 (-551))) NIL (-3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551))))))) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3123 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-869 |#1|)) NIL) (($ $ (-646 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-646 (-869 |#1|)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#2| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#2| (-38 (-412 (-551))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-736 |#1| |#2|) (-956 |#2| (-536 (-869 |#1|)) (-869 |#1|)) (-646 (-1183)) (-1055)) (T -736))
-NIL
-(-956 |#2| (-536 (-869 |#1|)) (-869 |#1|))
-((-2595 (((-2 (|:| -2823 (-952 |#3|)) (|:| -2246 (-952 |#3|))) |#4|) 14)) (-3405 ((|#4| |#4| |#2|) 33)) (-2598 ((|#4| (-412 (-952 |#3|)) |#2|) 64)) (-2597 ((|#4| (-1177 (-952 |#3|)) |#2|) 77)) (-2596 ((|#4| (-1177 |#4|) |#2|) 51)) (-3404 ((|#4| |#4| |#2|) 54)) (-4182 (((-410 |#4|) |#4|) 40)))
-(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2595 ((-2 (|:| -2823 (-952 |#3|)) (|:| -2246 (-952 |#3|))) |#4|)) (-15 -3404 (|#4| |#4| |#2|)) (-15 -2596 (|#4| (-1177 |#4|) |#2|)) (-15 -3405 (|#4| |#4| |#2|)) (-15 -2597 (|#4| (-1177 (-952 |#3|)) |#2|)) (-15 -2598 (|#4| (-412 (-952 |#3|)) |#2|)) (-15 -4182 ((-410 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)))) (-562) (-956 (-412 (-952 |#3|)) |#1| |#2|)) (T -737))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *6 (-562)) (-5 *2 (-410 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-956 (-412 (-952 *6)) *4 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-952 *6))) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))))) (-2597 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-952 *6))) (-4 *6 (-562)) (-4 *2 (-956 (-412 (-952 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))))) (-3405 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *5 (-562)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-956 (-412 (-952 *5)) *4 *3)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *2)) (-4 *2 (-956 (-412 (-952 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *6 (-562)))) (-3404 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *5 (-562)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-956 (-412 (-952 *5)) *4 *3)))) (-2595 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *6 (-562)) (-5 *2 (-2 (|:| -2823 (-952 *6)) (|:| -2246 (-952 *6)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-956 (-412 (-952 *6)) *4 *5)))))
-(-10 -7 (-15 -2595 ((-2 (|:| -2823 (-952 |#3|)) (|:| -2246 (-952 |#3|))) |#4|)) (-15 -3404 (|#4| |#4| |#2|)) (-15 -2596 (|#4| (-1177 |#4|) |#2|)) (-15 -3405 (|#4| |#4| |#2|)) (-15 -2597 (|#4| (-1177 (-952 |#3|)) |#2|)) (-15 -2598 (|#4| (-412 (-952 |#3|)) |#2|)) (-15 -4182 ((-410 |#4|) |#4|)))
-((-4182 (((-410 |#4|) |#4|) 54)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4|))) (-798) (-855) (-13 (-310) (-147)) (-956 (-412 |#3|) |#1| |#2|)) (T -738))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-410 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-412 *6) *4 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4|)))
-((-4408 (((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)) 18)))
-(((-739 |#1| |#2| |#3|) (-10 -7 (-15 -4408 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) (-1055) (-1055) (-731)) (T -739))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7)))))
-(-10 -7 (-15 -4408 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 38)) (-4223 (((-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|))) $) 39)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776)) 22 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #1="failed") $) 78) (((-3 |#1| #1#) $) 81)) (-3594 ((|#2| $) NIL) ((|#1| $) NIL)) (-4409 (($ $) 104 (|has| |#2| (-855)))) (-3908 (((-3 $ "failed") $) 87)) (-3413 (($) 50 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) 72)) (-3242 (((-646 $) $) 54)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| |#2|) 17)) (-4408 (($ (-1 |#1| |#1|) $) 70)) (-2198 (((-925) $) 45 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3313 ((|#2| $) 103 (|has| |#2| (-855)))) (-3612 ((|#1| $) 102 (|has| |#2| (-855)))) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) 37 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 101) (($ (-551)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|)))) 11)) (-4267 (((-646 |#1|) $) 56)) (-4127 ((|#1| $ |#2|) 117)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 12 T CONST)) (-3085 (($) 46 T CONST)) (-3473 (((-112) $ $) 107)) (-4287 (($ $) 63) (($ $ $) NIL)) (-4289 (($ $ $) 35)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-740 |#1| |#2|) (-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3312 ($ |#1| |#2|)) (-15 -4127 (|#1| $ |#2|)) (-15 -4396 ($ (-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|))))) (-15 -4223 ((-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|))) $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (-15 -4387 ((-112) $)) (-15 -4267 ((-646 |#1|) $)) (-15 -3242 ((-646 $) $)) (-15 -2599 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -3313 (|#2| $)) (-15 -3612 (|#1| $)) (-15 -4409 ($ $))) |%noBranch|))) (-1055) (-731)) (T -740))
-((-3312 (*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731)))) (-4127 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4404 *3) (|:| -4388 *4)))) (-4 *3 (-1055)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| -4404 *3) (|:| -4388 *4)))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-646 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-3313 (*1 *2 *1) (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1055)))) (-3612 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731)))) (-4409 (*1 *1 *1) (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055)) (-4 *3 (-731)))))
-(-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3312 ($ |#1| |#2|)) (-15 -4127 (|#1| $ |#2|)) (-15 -4396 ($ (-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|))))) (-15 -4223 ((-646 (-2 (|:| -4404 |#1|) (|:| -4388 |#2|))) $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (-15 -4387 ((-112) $)) (-15 -4267 ((-646 |#1|) $)) (-15 -3242 ((-646 $) $)) (-15 -2599 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -3313 (|#2| $)) (-15 -3612 (|#1| $)) (-15 -4409 ($ $))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3672 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3674 (($ $ $) 99)) (-3673 (((-112) $ $) 107)) (-1312 (((-112) $ (-776)) NIL)) (-3677 (($ (-646 |#1|)) 26) (($) 17)) (-1688 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2544 (($ $) 85)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) 70 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4443))) (($ |#1| $ (-551)) 75) (($ (-1 (-112) |#1|) $ (-551)) 78)) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $ (-551)) 80) (($ (-1 (-112) |#1|) $ (-551)) 81)) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 32 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) 106)) (-2600 (($) 15) (($ |#1|) 28) (($ (-646 |#1|)) 23)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) 38)) (-3684 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 89)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3676 (($ $ $) 97)) (-1372 ((|#1| $) 62)) (-4057 (($ |#1| $) 63) (($ |#1| $ (-776)) 86)) (-3682 (((-1126) $) NIL)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1373 ((|#1| $) 61)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 56)) (-4014 (($) 14)) (-2543 (((-646 (-2 (|:| -2264 |#1|) (|:| -2135 (-776)))) $) 55)) (-3675 (($ $ |#1|) NIL) (($ $ $) 98)) (-1573 (($) 16) (($ (-646 |#1|)) 25)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) 68 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 79)) (-4420 (((-540) $) 36 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 22)) (-4396 (((-868) $) 49)) (-3678 (($ (-646 |#1|)) 27) (($) 18)) (-3680 (((-112) $ $) NIL)) (-1374 (($ (-646 |#1|)) 24)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 103)) (-4407 (((-776) $) 67 (|has| $ (-6 -4443)))))
-(((-741 |#1|) (-13 (-742 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2600 ($)) (-15 -2600 ($ |#1|)) (-15 -2600 ($ (-646 |#1|))) (-15 -3026 ((-646 |#1|) $)) (-15 -3848 ($ |#1| $ (-551))) (-15 -3848 ($ (-1 (-112) |#1|) $ (-551))) (-15 -3847 ($ |#1| $ (-551))) (-15 -3847 ($ (-1 (-112) |#1|) $ (-551))))) (-1107)) (T -741))
-((-2600 (*1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-1107)))) (-2600 (*1 *1 *2) (-12 (-5 *1 (-741 *2)) (-4 *2 (-1107)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-741 *3)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-741 *3)) (-4 *3 (-1107)))) (-3848 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-741 *2)) (-4 *2 (-1107)))) (-3848 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-551)) (-4 *4 (-1107)) (-5 *1 (-741 *4)))) (-3847 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-741 *2)) (-4 *2 (-1107)))) (-3847 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-551)) (-4 *4 (-1107)) (-5 *1 (-741 *4)))))
-(-13 (-742 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2600 ($)) (-15 -2600 ($ |#1|)) (-15 -2600 ($ (-646 |#1|))) (-15 -3026 ((-646 |#1|) $)) (-15 -3848 ($ |#1| $ (-551))) (-15 -3848 ($ (-1 (-112) |#1|) $ (-551))) (-15 -3847 ($ |#1| $ (-551))) (-15 -3847 ($ (-1 (-112) |#1|) $ (-551)))))
-((-2986 (((-112) $ $) 19)) (-3672 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3674 (($ $ $) 73)) (-3673 (((-112) $ $) 74)) (-1312 (((-112) $ (-776)) 8)) (-3677 (($ (-646 |#1|)) 69) (($) 68)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2544 (($ $) 63)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) 65)) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22)) (-3676 (($ $ $) 70)) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3682 (((-1126) $) 21)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2543 (((-646 (-2 (|:| -2264 |#1|) (|:| -2135 (-776)))) $) 62)) (-3675 (($ $ |#1|) 72) (($ $ $) 71)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-4396 (((-868) $) 18)) (-3678 (($ (-646 |#1|)) 67) (($) 66)) (-3680 (((-112) $ $) 23)) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20)) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-742 |#1|) (-140) (-1107)) (T -742))
-NIL
-(-13 (-700 |t#1|) (-1105 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-700 |#1|) . T) ((-1105 |#1|) . T) ((-1107) . T) ((-1222) . T))
-((-2601 (((-1278) (-1165)) 8)))
-(((-743) (-10 -7 (-15 -2601 ((-1278) (-1165))))) (T -743))
-((-2601 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
-(-10 -7 (-15 -2601 ((-1278) (-1165))))
-((-2602 (((-646 |#1|) (-646 |#1|) (-646 |#1|)) 15)))
-(((-744 |#1|) (-10 -7 (-15 -2602 ((-646 |#1|) (-646 |#1|) (-646 |#1|)))) (-855)) (T -744))
-((-2602 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
-(-10 -7 (-15 -2602 ((-646 |#1|) (-646 |#1|) (-646 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 |#2|) $) 148)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 141 (|has| |#1| (-562)))) (-2251 (($ $) 140 (|has| |#1| (-562)))) (-2249 (((-112) $) 138 (|has| |#1| (-562)))) (-3933 (($ $) 97 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 80 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-3456 (($ $) 79 (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) 96 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 81 (|has| |#1| (-38 (-412 (-551)))))) (-3935 (($ $) 95 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 82 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-4409 (($ $) 132)) (-3908 (((-3 $ "failed") $) 37)) (-4264 (((-952 |#1|) $ (-776)) 110) (((-952 |#1|) $ (-776) (-776)) 109)) (-3311 (((-112) $) 149)) (-4077 (($) 107 (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $ |#2|) 112) (((-776) $ |#2| (-776)) 111)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 78 (|has| |#1| (-38 (-412 (-551)))))) (-4387 (((-112) $) 130)) (-3312 (($ $ (-646 |#2|) (-646 (-536 |#2|))) 147) (($ $ |#2| (-536 |#2|)) 146) (($ |#1| (-536 |#2|)) 131) (($ $ |#2| (-776)) 114) (($ $ (-646 |#2|) (-646 (-776))) 113)) (-4408 (($ (-1 |#1| |#1|) $) 129)) (-4392 (($ $) 104 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 127)) (-3612 ((|#1| $) 126)) (-3681 (((-1165) $) 10)) (-4262 (($ $ |#2|) 108 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) 11)) (-4218 (($ $ (-776)) 115)) (-3907 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-4393 (($ $) 105 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (($ $ |#2| $) 123) (($ $ (-646 |#2|) (-646 $)) 122) (($ $ (-646 (-296 $))) 121) (($ $ (-296 $)) 120) (($ $ $ $) 119) (($ $ (-646 $) (-646 $)) 118)) (-4260 (($ $ |#2|) 46) (($ $ (-646 |#2|)) 45) (($ $ |#2| (-776)) 44) (($ $ (-646 |#2|) (-646 (-776))) 43)) (-4398 (((-536 |#2|) $) 128)) (-3936 (($ $) 94 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 83 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 93 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 84 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 92 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 85 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 150)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-562))) (($ (-412 (-551))) 135 (|has| |#1| (-38 (-412 (-551)))))) (-4127 ((|#1| $ (-536 |#2|)) 133) (($ $ |#2| (-776)) 117) (($ $ (-646 |#2|) (-646 (-776))) 116)) (-3123 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 103 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 91 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 139 (|has| |#1| (-562)))) (-3937 (($ $) 102 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 90 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 101 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 89 (|has| |#1| (-38 (-412 (-551)))))) (-3942 (($ $) 100 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 88 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 99 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 87 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 98 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 86 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ |#2|) 42) (($ $ (-646 |#2|)) 41) (($ $ |#2| (-776)) 40) (($ $ (-646 |#2|) (-646 (-776))) 39)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 134 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ $) 106 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 77 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 137 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 136 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+((-1796 (*1 *1) (-4 *1 (-731))) (-3863 (*1 *1) (-4 *1 (-731))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) (-3351 (*1 *1 *1) (|partial| -4 *1 (-731))))
+(-13 (-1118) (-10 -8 (-15 (-1796) ($) -3600) (-15 -3863 ($) -3600) (-15 -2861 ((-112) $)) (-15 ** ($ $ (-776))) (-15 -3351 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1118) . T) ((-1106) . T))
+((-2870 (((-2 (|:| -3252 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4310 (((-2 (|:| -3252 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2880 ((|#2| (-412 |#2|) (-1 |#2| |#2|)) 13)) (-3101 (((-2 (|:| |poly| |#2|) (|:| -3252 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)) 48)))
+(((-732 |#1| |#2|) (-10 -7 (-15 -4310 ((-2 (|:| -3252 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2870 ((-2 (|:| -3252 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2880 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -3101 ((-2 (|:| |poly| |#2|) (|:| -3252 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -732))
+((-3101 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3252 (-412 *6)) (|:| |special| (-412 *6)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) (-2880 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))) (-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3252 (-423 *3)) (|:| |special| (-423 *3)))) (-5 *1 (-732 *5 *3)))) (-4310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3252 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3)))))
+(-10 -7 (-15 -4310 ((-2 (|:| -3252 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2870 ((-2 (|:| -3252 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2880 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -3101 ((-2 (|:| |poly| |#2|) (|:| -3252 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|))))
+((-3852 ((|#7| (-649 |#5|) |#6|) NIL)) (-1324 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-733 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1324 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3852 (|#7| (-649 |#5|) |#6|))) (-855) (-798) (-798) (-1055) (-1055) (-955 |#4| |#2| |#1|) (-955 |#5| |#3| |#1|)) (T -733))
+((-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-1055)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))))
+(-10 -7 (-15 -1324 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3852 (|#7| (-649 |#5|) |#6|)))
+((-1324 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1324 (|#7| (-1 |#2| |#1|) |#6|))) (-855) (-855) (-798) (-798) (-1055) (-955 |#5| |#3| |#1|) (-955 |#5| |#4| |#2|)) (T -734))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) (-4 *9 (-1055)) (-4 *2 (-955 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) (-4 *4 (-955 *9 *7 *5)))))
+(-10 -7 (-15 -1324 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3699 (((-423 |#4|) |#4|) 42)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183))))) (-310) (-955 (-958 |#3|) |#1| |#2|)) (T -735))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-955 (-958 *6) *4 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-869 |#1|)) $) NIL)) (-3663 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2586 (($ $) NIL (|has| |#2| (-561)))) (-2564 (((-112) $) NIL (|has| |#2| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL (|has| |#2| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4168 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-915)))) (-1482 (($ $ |#2| (-536 (-869 |#1|)) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#2| (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-869 |#1|)) NIL)) (-3304 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1491 (($ (-1 (-536 (-869 |#1|)) (-536 (-869 |#1|))) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-4212 (((-3 (-869 |#1|) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#2| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -2777 (-776))) "failed") $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#2| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4180 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3430 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2091 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ $) NIL (|has| |#2| (-561))) (($ (-412 (-569))) NIL (-2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))))) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-736 |#1| |#2|) (-955 |#2| (-536 (-869 |#1|)) (-869 |#1|)) (-649 (-1183)) (-1055)) (T -736))
+NIL
+(-955 |#2| (-536 (-869 |#1|)) (-869 |#1|))
+((-2891 (((-2 (|:| -3576 (-958 |#3|)) (|:| -2532 (-958 |#3|))) |#4|) 14)) (-1349 ((|#4| |#4| |#2|) 33)) (-2922 ((|#4| (-412 (-958 |#3|)) |#2|) 64)) (-2913 ((|#4| (-1179 (-958 |#3|)) |#2|) 77)) (-2902 ((|#4| (-1179 |#4|) |#2|) 51)) (-1334 ((|#4| |#4| |#2|) 54)) (-3699 (((-423 |#4|) |#4|) 40)))
+(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2891 ((-2 (|:| -3576 (-958 |#3|)) (|:| -2532 (-958 |#3|))) |#4|)) (-15 -1334 (|#4| |#4| |#2|)) (-15 -2902 (|#4| (-1179 |#4|) |#2|)) (-15 -1349 (|#4| |#4| |#2|)) (-15 -2913 (|#4| (-1179 (-958 |#3|)) |#2|)) (-15 -2922 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3699 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)))) (-561) (-955 (-412 (-958 |#3|)) |#1| |#2|)) (T -737))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *6 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))) (-2922 (*1 *2 *3 *4) (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-958 *6))) (-4 *6 (-561)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))))) (-1349 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *6 (-561)))) (-1334 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *6 (-561)) (-5 *2 (-2 (|:| -3576 (-958 *6)) (|:| -2532 (-958 *6)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
+(-10 -7 (-15 -2891 ((-2 (|:| -3576 (-958 |#3|)) (|:| -2532 (-958 |#3|))) |#4|)) (-15 -1334 (|#4| |#4| |#2|)) (-15 -2902 (|#4| (-1179 |#4|) |#2|)) (-15 -1349 (|#4| |#4| |#2|)) (-15 -2913 (|#4| (-1179 (-958 |#3|)) |#2|)) (-15 -2922 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3699 ((-423 |#4|) |#4|)))
+((-3699 (((-423 |#4|) |#4|) 54)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4|))) (-798) (-855) (-13 (-310) (-147)) (-955 (-412 |#3|) |#1| |#2|)) (T -738))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-955 (-412 *6) *4 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4|)))
+((-1324 (((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)) 18)))
+(((-739 |#1| |#2| |#3|) (-10 -7 (-15 -1324 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) (-1055) (-1055) (-731)) (T -739))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7)))))
+(-10 -7 (-15 -1324 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 38)) (-4324 (((-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|))) $) 39)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776)) 22 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3043 ((|#2| $) NIL) ((|#1| $) NIL)) (-1842 (($ $) 104 (|has| |#2| (-855)))) (-3351 (((-3 $ "failed") $) 87)) (-3295 (($) 50 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) 72)) (-3316 (((-649 $) $) 54)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| |#2|) 17)) (-1324 (($ (-1 |#1| |#1|) $) 70)) (-3348 (((-927) $) 45 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-1808 ((|#2| $) 103 (|has| |#2| (-855)))) (-1820 ((|#1| $) 102 (|has| |#2| (-855)))) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) 37 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 101) (($ (-569)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|)))) 11)) (-3346 (((-649 |#1|) $) 56)) (-1503 ((|#1| $ |#2|) 117)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 12 T CONST)) (-1796 (($) 46 T CONST)) (-2853 (((-112) $ $) 107)) (-2946 (($ $) 63) (($ $ $) NIL)) (-2935 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-740 |#1| |#2|) (-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3838 ($ |#1| |#2|)) (-15 -1503 (|#1| $ |#2|)) (-15 -2388 ($ (-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|))))) (-15 -4324 ((-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|))) $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (-15 -2019 ((-112) $)) (-15 -3346 ((-649 |#1|) $)) (-15 -3316 ((-649 $) $)) (-15 -2933 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1808 (|#2| $)) (-15 -1820 (|#1| $)) (-15 -1842 ($ $))) |%noBranch|))) (-1055) (-731)) (T -740))
+((-3838 (*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731)))) (-1503 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1406 *3) (|:| -3236 *4)))) (-4 *3 (-1055)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1406 *3) (|:| -3236 *4)))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-1808 (*1 *2 *1) (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1055)))) (-1820 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055)) (-4 *3 (-731)))))
+(-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3838 ($ |#1| |#2|)) (-15 -1503 (|#1| $ |#2|)) (-15 -2388 ($ (-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|))))) (-15 -4324 ((-649 (-2 (|:| -1406 |#1|) (|:| -3236 |#2|))) $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (-15 -2019 ((-112) $)) (-15 -3346 ((-649 |#1|) $)) (-15 -3316 ((-649 $) $)) (-15 -2933 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1808 (|#2| $)) (-15 -1820 (|#1| $)) (-15 -1842 ($ $))) |%noBranch|)))
+((-2383 (((-112) $ $) 19)) (-3893 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1996 (($ $ $) 73)) (-1987 (((-112) $ $) 74)) (-1610 (((-112) $ (-776)) 8)) (-4250 (($ (-649 |#1|)) 69) (($) 68)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3686 (($ $) 63)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) 65)) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22)) (-2018 (($ $ $) 70)) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3461 (((-1126) $) 21)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3672 (((-649 (-2 (|:| -2179 |#1|) (|:| -3469 (-776)))) $) 62)) (-2006 (($ $ |#1|) 72) (($ $ $) 71)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2388 (((-867) $) 18)) (-3776 (($ (-649 |#1|)) 67) (($) 66)) (-2040 (((-112) $ $) 23)) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20)) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-741 |#1|) (-140) (-1106)) (T -741))
+NIL
+(-13 (-700 |t#1|) (-1104 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-700 |#1|) . T) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-3893 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-1996 (($ $ $) 99)) (-1987 (((-112) $ $) 107)) (-1610 (((-112) $ (-776)) NIL)) (-4250 (($ (-649 |#1|)) 26) (($) 17)) (-1816 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-3686 (($ $) 85)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) 70 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4443))) (($ |#1| $ (-569)) 75) (($ (-1 (-112) |#1|) $ (-569)) 78)) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (($ |#1| $ (-569)) 80) (($ (-1 (-112) |#1|) $ (-569)) 81)) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 32 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) 106)) (-2944 (($) 15) (($ |#1|) 28) (($ (-649 |#1|)) 23)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) 38)) (-2060 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 89)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2018 (($ $ $) 97)) (-3481 ((|#1| $) 62)) (-2086 (($ |#1| $) 63) (($ |#1| $ (-776)) 86)) (-3461 (((-1126) $) NIL)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3493 ((|#1| $) 61)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 56)) (-2825 (($) 14)) (-3672 (((-649 (-2 (|:| -2179 |#1|) (|:| -3469 (-776)))) $) 55)) (-2006 (($ $ |#1|) NIL) (($ $ $) 98)) (-3054 (($) 16) (($ (-649 |#1|)) 25)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) 68 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 79)) (-1384 (((-541) $) 36 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 22)) (-2388 (((-867) $) 49)) (-3776 (($ (-649 |#1|)) 27) (($) 18)) (-2040 (((-112) $ $) NIL)) (-3551 (($ (-649 |#1|)) 24)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 103)) (-2394 (((-776) $) 67 (|has| $ (-6 -4443)))))
+(((-742 |#1|) (-13 (-741 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2944 ($)) (-15 -2944 ($ |#1|)) (-15 -2944 ($ (-649 |#1|))) (-15 -2912 ((-649 |#1|) $)) (-15 -1678 ($ |#1| $ (-569))) (-15 -1678 ($ (-1 (-112) |#1|) $ (-569))) (-15 -4218 ($ |#1| $ (-569))) (-15 -4218 ($ (-1 (-112) |#1|) $ (-569))))) (-1106)) (T -742))
+((-2944 (*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-2944 (*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-742 *3)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1106)))) (-1678 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-1678 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106)) (-5 *1 (-742 *4)))) (-4218 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-4218 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106)) (-5 *1 (-742 *4)))))
+(-13 (-741 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2944 ($)) (-15 -2944 ($ |#1|)) (-15 -2944 ($ (-649 |#1|))) (-15 -2912 ((-649 |#1|) $)) (-15 -1678 ($ |#1| $ (-569))) (-15 -1678 ($ (-1 (-112) |#1|) $ (-569))) (-15 -4218 ($ |#1| $ (-569))) (-15 -4218 ($ (-1 (-112) |#1|) $ (-569)))))
+((-3208 (((-1278) (-1165)) 8)))
+(((-743) (-10 -7 (-15 -3208 ((-1278) (-1165))))) (T -743))
+((-3208 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
+(-10 -7 (-15 -3208 ((-1278) (-1165))))
+((-2953 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 15)))
+(((-744 |#1|) (-10 -7 (-15 -2953 ((-649 |#1|) (-649 |#1|) (-649 |#1|)))) (-855)) (T -744))
+((-2953 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
+(-10 -7 (-15 -2953 ((-649 |#1|) (-649 |#1|) (-649 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 |#2|) $) 148)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 141 (|has| |#1| (-561)))) (-2586 (($ $) 140 (|has| |#1| (-561)))) (-2564 (((-112) $) 138 (|has| |#1| (-561)))) (-2691 (($ $) 97 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 80 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-3714 (($ $) 79 (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 95 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-1842 (($ $) 132)) (-3351 (((-3 $ "failed") $) 37)) (-2445 (((-958 |#1|) $ (-776)) 110) (((-958 |#1|) $ (-776) (-776)) 109)) (-2755 (((-112) $) 149)) (-4408 (($) 107 (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $ |#2|) 112) (((-776) $ |#2| (-776)) 111)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 78 (|has| |#1| (-38 (-412 (-569)))))) (-2019 (((-112) $) 130)) (-3838 (($ $ (-649 |#2|) (-649 (-536 |#2|))) 147) (($ $ |#2| (-536 |#2|)) 146) (($ |#1| (-536 |#2|)) 131) (($ $ |#2| (-776)) 114) (($ $ (-649 |#2|) (-649 (-776))) 113)) (-1324 (($ (-1 |#1| |#1|) $) 129)) (-2616 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 127)) (-1820 ((|#1| $) 126)) (-2050 (((-1165) $) 10)) (-3313 (($ $ |#2|) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) 11)) (-4295 (($ $ (-776)) 115)) (-2374 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4367 (($ $) 105 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (($ $ |#2| $) 123) (($ $ (-649 |#2|) (-649 $)) 122) (($ $ (-649 (-297 $))) 121) (($ $ (-297 $)) 120) (($ $ $ $) 119) (($ $ (-649 $) (-649 $)) 118)) (-3430 (($ $ |#2|) 46) (($ $ (-649 |#2|)) 45) (($ $ |#2| (-776)) 44) (($ $ (-649 |#2|) (-649 (-776))) 43)) (-2091 (((-536 |#2|) $) 128)) (-2725 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 83 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 93 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 84 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 85 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 150)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-561))) (($ (-412 (-569))) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1503 ((|#1| $ (-536 |#2|)) 133) (($ $ |#2| (-776)) 117) (($ $ (-649 |#2|) (-649 (-776))) 116)) (-1488 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 103 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 91 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 139 (|has| |#1| (-561)))) (-4094 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 101 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 89 (|has| |#1| (-38 (-412 (-569)))))) (-1470 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 99 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 87 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 86 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ |#2|) 42) (($ $ (-649 |#2|)) 41) (($ $ |#2| (-776)) 40) (($ $ (-649 |#2|) (-649 (-776))) 39)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 134 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 77 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 136 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
(((-745 |#1| |#2|) (-140) (-1055) (-855)) (T -745))
-((-4127 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *5)) (-5 *3 (-646 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-855)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *5)) (-5 *3 (-646 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-4221 (*1 *2 *1 *3) (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-952 *4)))) (-4264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-952 *4)))) (-4262 (*1 *1 *1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)) (-4 *3 (-38 (-412 (-551)))))))
-(-13 (-906 |t#2|) (-979 |t#1| (-536 |t#2|) |t#2|) (-519 |t#2| $) (-312 $) (-10 -8 (-15 -4127 ($ $ |t#2| (-776))) (-15 -4127 ($ $ (-646 |t#2|) (-646 (-776)))) (-15 -4218 ($ $ (-776))) (-15 -3312 ($ $ |t#2| (-776))) (-15 -3312 ($ $ (-646 |t#2|) (-646 (-776)))) (-15 -4221 ((-776) $ |t#2|)) (-15 -4221 ((-776) $ |t#2| (-776))) (-15 -4264 ((-952 |t#1|) $ (-776))) (-15 -4264 ((-952 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $ |t#2|)) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-536 |#2|)) . T) ((-25) . T) ((-38 #2=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) |has| |#1| (-38 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-293) |has| |#1| (-562)) ((-312 $) . T) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-519 |#2| $) . T) ((-519 $ $) . T) ((-562) |has| |#1| (-562)) ((-651 #2#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #2#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-906 |#2|) . T) ((-979 |#1| #1# |#2|) . T) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1057 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))))
-((-4182 (((-410 (-1177 |#4|)) (-1177 |#4|)) 30) (((-410 |#4|) |#4|) 26)))
-(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 |#4|) |#4|)) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|)))) (-855) (-798) (-13 (-310) (-147)) (-956 |#3| |#2| |#1|)) (T -746))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-410 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -4182 ((-410 |#4|) |#4|)) (-15 -4182 ((-410 (-1177 |#4|)) (-1177 |#4|))))
-((-2605 (((-410 |#4|) |#4| |#2|) 142)) (-2603 (((-410 |#4|) |#4|) NIL)) (-4419 (((-410 (-1177 |#4|)) (-1177 |#4|)) 127) (((-410 |#4|) |#4|) 52)) (-2607 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-646 (-2 (|:| -4182 (-1177 |#4|)) (|:| -2582 (-551)))))) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|))) 81)) (-2611 (((-1177 |#3|) (-1177 |#3|) (-551)) 168)) (-2610 (((-646 (-776)) (-1177 |#4|) (-646 |#2|) (-776)) 75)) (-3499 (((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-1177 |#3|) (-1177 |#3|) |#4| (-646 |#2|) (-646 (-776)) (-646 |#3|)) 79)) (-2608 (((-2 (|:| |upol| (-1177 |#3|)) (|:| |Lval| (-646 |#3|)) (|:| |Lfact| (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551))))) (|:| |ctpol| |#3|)) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|))) 27)) (-2606 (((-2 (|:| -2192 (-1177 |#4|)) (|:| |polval| (-1177 |#3|))) (-1177 |#4|) (-1177 |#3|) (-551)) 72)) (-2604 (((-551) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551))))) 164)) (-2609 ((|#4| (-551) (-410 |#4|)) 73)) (-3799 (((-112) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551))))) NIL)))
-(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4419 ((-410 |#4|) |#4|)) (-15 -4419 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -2603 ((-410 |#4|) |#4|)) (-15 -2604 ((-551) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))))) (-15 -2605 ((-410 |#4|) |#4| |#2|)) (-15 -2606 ((-2 (|:| -2192 (-1177 |#4|)) (|:| |polval| (-1177 |#3|))) (-1177 |#4|) (-1177 |#3|) (-551))) (-15 -2607 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-646 (-2 (|:| -4182 (-1177 |#4|)) (|:| -2582 (-551)))))) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|)))) (-15 -2608 ((-2 (|:| |upol| (-1177 |#3|)) (|:| |Lval| (-646 |#3|)) (|:| |Lfact| (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551))))) (|:| |ctpol| |#3|)) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|)))) (-15 -2609 (|#4| (-551) (-410 |#4|))) (-15 -3799 ((-112) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))))) (-15 -3499 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-1177 |#3|) (-1177 |#3|) |#4| (-646 |#2|) (-646 (-776)) (-646 |#3|))) (-15 -2610 ((-646 (-776)) (-1177 |#4|) (-646 |#2|) (-776))) (-15 -2611 ((-1177 |#3|) (-1177 |#3|) (-551)))) (-798) (-855) (-310) (-956 |#3| |#1| |#2|)) (T -747))
-((-2611 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *6)) (-5 *3 (-551)) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-2610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-4 *7 (-855)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-646 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))) (-3499 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1177 *11)) (-5 *6 (-646 *10)) (-5 *7 (-646 (-776))) (-5 *8 (-646 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-956 *11 *9 *10)) (-5 *2 (-646 (-1177 *5))) (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1177 *5)))) (-3799 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-2 (|:| -4182 (-1177 *6)) (|:| -2582 (-551))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-551)) (-5 *4 (-410 *2)) (-4 *2 (-956 *7 *5 *6)) (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))) (-2608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-5 *5 (-646 (-646 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |upol| (-1177 *8)) (|:| |Lval| (-646 *8)) (|:| |Lfact| (-646 (-2 (|:| -4182 (-1177 *8)) (|:| -2582 (-551))))) (|:| |ctpol| *8))) (-5 *1 (-747 *6 *7 *8 *9)))) (-2607 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-646 *7)) (-5 *5 (-646 (-646 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-646 (-2 (|:| -4182 (-1177 *9)) (|:| -2582 (-551))))))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1177 *9)))) (-2606 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-551)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| -2192 (-1177 *9)) (|:| |polval| (-1177 *8)))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1177 *9)) (-5 *4 (-1177 *8)))) (-2605 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -4182 (-1177 *6)) (|:| -2582 (-551))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-551)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))) (-4419 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-4419 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))))
-(-10 -7 (-15 -4419 ((-410 |#4|) |#4|)) (-15 -4419 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -2603 ((-410 |#4|) |#4|)) (-15 -2604 ((-551) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))))) (-15 -2605 ((-410 |#4|) |#4| |#2|)) (-15 -2606 ((-2 (|:| -2192 (-1177 |#4|)) (|:| |polval| (-1177 |#3|))) (-1177 |#4|) (-1177 |#3|) (-551))) (-15 -2607 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-646 (-2 (|:| -4182 (-1177 |#4|)) (|:| -2582 (-551)))))) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|)))) (-15 -2608 ((-2 (|:| |upol| (-1177 |#3|)) (|:| |Lval| (-646 |#3|)) (|:| |Lfact| (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551))))) (|:| |ctpol| |#3|)) (-1177 |#4|) (-646 |#2|) (-646 (-646 |#3|)))) (-15 -2609 (|#4| (-551) (-410 |#4|))) (-15 -3799 ((-112) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))) (-646 (-2 (|:| -4182 (-1177 |#3|)) (|:| -2582 (-551)))))) (-15 -3499 ((-3 (-646 (-1177 |#4|)) "failed") (-1177 |#4|) (-1177 |#3|) (-1177 |#3|) |#4| (-646 |#2|) (-646 (-776)) (-646 |#3|))) (-15 -2610 ((-646 (-776)) (-1177 |#4|) (-646 |#2|) (-776))) (-15 -2611 ((-1177 |#3|) (-1177 |#3|) (-551))))
-((-2612 (($ $ (-925)) 17)))
-(((-748 |#1| |#2|) (-10 -8 (-15 -2612 (|#1| |#1| (-925)))) (-749 |#2|) (-173)) (T -748))
-NIL
-(-10 -8 (-15 -2612 (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2588 (($ $ (-925)) 31)) (-2612 (($ $ (-925)) 38)) (-2587 (($ $ (-925)) 32)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-2774 (($ $ $) 28)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2775 (($ $ $ $) 29)) (-2773 (($ $ $) 27)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 33)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-1503 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-1503 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-855)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-4315 (*1 *2 *1 *3) (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4315 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-2445 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)) (-4 *3 (-38 (-412 (-569)))))))
+(-13 (-906 |t#2|) (-979 |t#1| (-536 |t#2|) |t#2|) (-519 |t#2| $) (-312 $) (-10 -8 (-15 -1503 ($ $ |t#2| (-776))) (-15 -1503 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -4295 ($ $ (-776))) (-15 -3838 ($ $ |t#2| (-776))) (-15 -3838 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -4315 ((-776) $ |t#2|)) (-15 -4315 ((-776) $ |t#2| (-776))) (-15 -2445 ((-958 |t#1|) $ (-776))) (-15 -2445 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $ |t#2|)) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-536 |#2|)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-293) |has| |#1| (-561)) ((-312 $) . T) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 |#2| $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 |#2|) . T) ((-979 |#1| #0# |#2|) . T) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))))
+((-3699 (((-423 (-1179 |#4|)) (-1179 |#4|)) 30) (((-423 |#4|) |#4|) 26)))
+(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 |#4|) |#4|)) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|)))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -746))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -3699 ((-423 |#4|) |#4|)) (-15 -3699 ((-423 (-1179 |#4|)) (-1179 |#4|))))
+((-2985 (((-423 |#4|) |#4| |#2|) 142)) (-2963 (((-423 |#4|) |#4|) NIL)) (-2207 (((-423 (-1179 |#4|)) (-1179 |#4|)) 127) (((-423 |#4|) |#4|) 52)) (-3004 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3699 (-1179 |#4|)) (|:| -2777 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 81)) (-1923 (((-1179 |#3|) (-1179 |#3|) (-569)) 168)) (-1914 (((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776)) 75)) (-3472 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|)) 79)) (-3018 (((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 27)) (-2993 (((-2 (|:| -3280 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569)) 72)) (-2974 (((-569) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569))))) 164)) (-1905 ((|#4| (-569) (-423 |#4|)) 73)) (-1881 (((-112) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569))))) NIL)))
+(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-423 |#4|) |#4|)) (-15 -2207 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -2963 ((-423 |#4|) |#4|)) (-15 -2974 ((-569) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))))) (-15 -2985 ((-423 |#4|) |#4| |#2|)) (-15 -2993 ((-2 (|:| -3280 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569))) (-15 -3004 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3699 (-1179 |#4|)) (|:| -2777 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3018 ((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -1905 (|#4| (-569) (-423 |#4|))) (-15 -1881 ((-112) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))))) (-15 -3472 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -1914 ((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776))) (-15 -1923 ((-1179 |#3|) (-1179 |#3|) (-569)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -747))
+((-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))) (-3472 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1179 *11)) (-5 *6 (-649 *10)) (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10)) (-5 *2 (-649 (-1179 *5))) (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1179 *5)))) (-1881 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-2 (|:| -3699 (-1179 *6)) (|:| -2777 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6)) (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |upol| (-1179 *8)) (|:| |Lval| (-649 *8)) (|:| |Lfact| (-649 (-2 (|:| -3699 (-1179 *8)) (|:| -2777 (-569))))) (|:| |ctpol| *8))) (-5 *1 (-747 *6 *7 *8 *9)))) (-3004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-649 (-2 (|:| -3699 (-1179 *9)) (|:| -2777 (-569))))))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)))) (-2993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| -3280 (-1179 *9)) (|:| |polval| (-1179 *8)))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)) (-5 *4 (-1179 *8)))) (-2985 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3699 (-1179 *6)) (|:| -2777 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-2963 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
+(-10 -7 (-15 -2207 ((-423 |#4|) |#4|)) (-15 -2207 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -2963 ((-423 |#4|) |#4|)) (-15 -2974 ((-569) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))))) (-15 -2985 ((-423 |#4|) |#4| |#2|)) (-15 -2993 ((-2 (|:| -3280 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569))) (-15 -3004 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3699 (-1179 |#4|)) (|:| -2777 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3018 ((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -1905 (|#4| (-569) (-423 |#4|))) (-15 -1881 ((-112) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))) (-649 (-2 (|:| -3699 (-1179 |#3|)) (|:| -2777 (-569)))))) (-15 -3472 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -1914 ((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776))) (-15 -1923 ((-1179 |#3|) (-1179 |#3|) (-569))))
+((-1931 (($ $ (-927)) 17)))
+(((-748 |#1| |#2|) (-10 -8 (-15 -1931 (|#1| |#1| (-927)))) (-749 |#2|) (-173)) (T -748))
+NIL
+(-10 -8 (-15 -1931 (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2840 (($ $ (-927)) 31)) (-1931 (($ $ (-927)) 38)) (-2829 (($ $ (-927)) 32)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4356 (($ $ $) 28)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-4365 (($ $ $ $) 29)) (-4347 (($ $ $) 27)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-749 |#1|) (-140) (-173)) (T -749))
-((-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
-(-13 (-766) (-722 |t#1|) (-10 -8 (-15 -2612 ($ $ (-925)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-2614 (((-1041) (-694 (-226)) (-551) (-112) (-551)) 25)) (-2613 (((-1041) (-694 (-226)) (-551) (-112) (-551)) 24)))
-(((-750) (-10 -7 (-15 -2613 ((-1041) (-694 (-226)) (-551) (-112) (-551))) (-15 -2614 ((-1041) (-694 (-226)) (-551) (-112) (-551))))) (T -750))
-((-2614 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))) (-2613 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))))
-(-10 -7 (-15 -2613 ((-1041) (-694 (-226)) (-551) (-112) (-551))) (-15 -2614 ((-1041) (-694 (-226)) (-551) (-112) (-551))))
-((-2617 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) 43)) (-2616 (((-1041) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) 39)) (-2615 (((-1041) (-226) (-226) (-226) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) 32)))
-(((-751) (-10 -7 (-15 -2615 ((-1041) (-226) (-226) (-226) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2616 ((-1041) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -2617 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))) (T -751))
-((-2617 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-2616 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-2615 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041)) (-5 *1 (-751)))))
-(-10 -7 (-15 -2615 ((-1041) (-226) (-226) (-226) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2616 ((-1041) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -2617 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))
-((-2629 (((-1041) (-551) (-551) (-694 (-226)) (-551)) 34)) (-2628 (((-1041) (-551) (-551) (-694 (-226)) (-551)) 33)) (-2627 (((-1041) (-551) (-694 (-226)) (-551)) 32)) (-2626 (((-1041) (-551) (-694 (-226)) (-551)) 31)) (-2625 (((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 30)) (-2624 (((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 29)) (-2623 (((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551)) 28)) (-2622 (((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551)) 27)) (-2621 (((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 24)) (-2620 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551)) 23)) (-2619 (((-1041) (-551) (-694 (-226)) (-551)) 22)) (-2618 (((-1041) (-551) (-694 (-226)) (-551)) 21)))
-(((-752) (-10 -7 (-15 -2618 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2619 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2620 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2621 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2622 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2623 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2624 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2625 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2626 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2627 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2628 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2629 ((-1041) (-551) (-551) (-694 (-226)) (-551))))) (T -752))
-((-2629 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2628 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2627 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2626 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2625 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2624 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2623 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2622 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2621 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2620 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2619 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2618 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
-(-10 -7 (-15 -2618 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2619 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2620 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2621 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2622 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2623 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2624 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2625 ((-1041) (-551) (-551) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2626 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2627 ((-1041) (-551) (-694 (-226)) (-551))) (-15 -2628 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2629 ((-1041) (-551) (-551) (-694 (-226)) (-551))))
-((-2641 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2640 (((-1041) (-694 (-226)) (-694 (-226)) (-551) (-551)) 51)) (-2639 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2638 (((-1041) (-226) (-226) (-551) (-551) (-551) (-551)) 46)) (-2637 (((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) 45)) (-2636 (((-1041) (-226) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) 44)) (-2635 (((-1041) (-226) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) 43)) (-2634 (((-1041) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) 42)) (-2633 (((-1041) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) 38)) (-2632 (((-1041) (-226) (-226) (-551) (-694 (-226)) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) 37)) (-2631 (((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) 33)) (-2630 (((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) 32)))
-(((-753) (-10 -7 (-15 -2630 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2631 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2632 ((-1041) (-226) (-226) (-551) (-694 (-226)) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2633 ((-1041) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2634 ((-1041) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2635 ((-1041) (-226) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2636 ((-1041) (-226) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2637 ((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2638 ((-1041) (-226) (-226) (-551) (-551) (-551) (-551))) (-15 -2639 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN))))) (-15 -2640 ((-1041) (-694 (-226)) (-694 (-226)) (-551) (-551))) (-15 -2641 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN))))))) (T -753))
-((-2641 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2640 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2639 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2638 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2637 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2636 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2635 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2634 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2633 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2632 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2631 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2630 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041)) (-5 *1 (-753)))))
-(-10 -7 (-15 -2630 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2631 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2632 ((-1041) (-226) (-226) (-551) (-694 (-226)) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2633 ((-1041) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514))))) (-15 -2634 ((-1041) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2635 ((-1041) (-226) (-226) (-226) (-226) (-551) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2636 ((-1041) (-226) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2637 ((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G))))) (-15 -2638 ((-1041) (-226) (-226) (-551) (-551) (-551) (-551))) (-15 -2639 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN))))) (-15 -2640 ((-1041) (-694 (-226)) (-694 (-226)) (-551) (-551))) (-15 -2641 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-226) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN))))))
-((-2649 (((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2648 (((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL))) (-393) (-393)) 69) (((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2647 (((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCNG)))) 57)) (-2646 (((-1041) (-694 (-226)) (-694 (-226)) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) 50)) (-2645 (((-1041) (-226) (-551) (-551) (-1165) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2644 (((-1041) (-226) (-551) (-551) (-226) (-1165) (-226) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2643 (((-1041) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) 42)) (-2642 (((-1041) (-226) (-551) (-551) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) 38)))
-(((-754) (-10 -7 (-15 -2642 ((-1041) (-226) (-551) (-551) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2643 ((-1041) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))) (-15 -2644 ((-1041) (-226) (-551) (-551) (-226) (-1165) (-226) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2645 ((-1041) (-226) (-551) (-551) (-1165) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2646 ((-1041) (-694 (-226)) (-694 (-226)) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))) (-15 -2647 ((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCNG))))) (-15 -2648 ((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL))))) (-15 -2648 ((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL))) (-393) (-393))) (-15 -2649 ((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -754))
-((-2649 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2648 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-393)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2648 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2647 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2646 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2645 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-551)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2644 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-551)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2643 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2642 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(-10 -7 (-15 -2642 ((-1041) (-226) (-551) (-551) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2643 ((-1041) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))) (-15 -2644 ((-1041) (-226) (-551) (-551) (-226) (-1165) (-226) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2645 ((-1041) (-226) (-551) (-551) (-1165) (-551) (-226) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT))))) (-15 -2646 ((-1041) (-694 (-226)) (-694 (-226)) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))) (-15 -2647 ((-1041) (-226) (-226) (-551) (-226) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCNG))))) (-15 -2648 ((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL))))) (-15 -2648 ((-1041) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL))) (-393) (-393))) (-15 -2649 ((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 G JACOBG JACGEP))))))
-((-2652 (((-1041) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-680 (-226)) (-551)) 45)) (-2651 (((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-1165) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 BNDY)))) 41)) (-2650 (((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 23)))
-(((-755) (-10 -7 (-15 -2650 ((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2651 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-1165) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 BNDY))))) (-15 -2652 ((-1041) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-680 (-226)) (-551))))) (T -755))
-((-2652 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2651 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-1165)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2650 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
-(-10 -7 (-15 -2650 ((-1041) (-551) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2651 ((-1041) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-1165) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 BNDY))))) (-15 -2652 ((-1041) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-680 (-226)) (-551))))
-((-2662 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-551)) 35)) (-2661 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-226) (-226) (-551)) 34)) (-2660 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-694 (-226)) (-226) (-226) (-551)) 33)) (-2659 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 29)) (-2658 (((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 28)) (-2657 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551)) 27)) (-2656 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551)) 24)) (-2655 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551)) 23)) (-2654 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551)) 22)) (-2653 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551)) 21)))
-(((-756) (-10 -7 (-15 -2653 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))) (-15 -2654 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2655 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2656 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2657 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551))) (-15 -2658 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2659 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2660 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-694 (-226)) (-226) (-226) (-551))) (-15 -2661 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-226) (-226) (-551))) (-15 -2662 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-551))))) (T -756))
-((-2662 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2661 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2660 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *6 (-226)) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2659 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2658 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2657 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2656 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2655 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2654 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2653 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(-10 -7 (-15 -2653 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))) (-15 -2654 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2655 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2656 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2657 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-551))) (-15 -2658 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2659 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2660 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-694 (-226)) (-226) (-226) (-551))) (-15 -2661 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-226) (-226) (-551))) (-15 -2662 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-551))))
-((-2680 (((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551)) 45)) (-2679 (((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-551)) 44)) (-2678 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551)) 43)) (-2677 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 42)) (-2676 (((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551)) 41)) (-2675 (((-1041) (-1165) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551)) 40)) (-2674 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551) (-551) (-551) (-226) (-694 (-226)) (-551)) 39)) (-2673 (((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551))) 38)) (-2672 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551)) 35)) (-2671 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551)) 34)) (-2670 (((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551)) 33)) (-2669 (((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 32)) (-2668 (((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551)) 31)) (-2667 (((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-551)) 30)) (-2666 (((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-551) (-551) (-551)) 29)) (-2665 (((-1041) (-551) (-551) (-551) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-551)) (-551) (-551) (-551)) 28)) (-2664 (((-1041) (-551) (-694 (-226)) (-226) (-551)) 24)) (-2663 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 21)))
-(((-757) (-10 -7 (-15 -2663 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2664 ((-1041) (-551) (-694 (-226)) (-226) (-551))) (-15 -2665 ((-1041) (-551) (-551) (-551) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-551)) (-551) (-551) (-551))) (-15 -2666 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-551) (-551) (-551))) (-15 -2667 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-551))) (-15 -2668 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551))) (-15 -2669 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2670 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551))) (-15 -2671 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551))) (-15 -2672 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2673 ((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551)))) (-15 -2674 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551) (-551) (-551) (-226) (-694 (-226)) (-551))) (-15 -2675 ((-1041) (-1165) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551))) (-15 -2676 ((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2677 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2678 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))) (-15 -2679 ((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2680 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))))) (T -757))
-((-2680 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2679 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2678 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2677 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2676 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2675 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-551))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2674 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *6 (-226)) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2673 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-551))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2672 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2671 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2670 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2669 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2668 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2667 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2666 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2665 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551))) (-5 *3 (-551)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2664 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2663 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(-10 -7 (-15 -2663 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2664 ((-1041) (-551) (-694 (-226)) (-226) (-551))) (-15 -2665 ((-1041) (-551) (-551) (-551) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-551)) (-551) (-551) (-551))) (-15 -2666 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-551) (-551) (-551))) (-15 -2667 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551) (-551) (-551))) (-15 -2668 ((-1041) (-551) (-226) (-226) (-694 (-226)) (-551) (-551) (-226) (-551))) (-15 -2669 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2670 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551))) (-15 -2671 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551))) (-15 -2672 ((-1041) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2673 ((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551)))) (-15 -2674 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551) (-551) (-551) (-226) (-694 (-226)) (-551))) (-15 -2675 ((-1041) (-1165) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551))) (-15 -2676 ((-1041) (-1165) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2677 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2678 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))) (-15 -2679 ((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2680 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551) (-694 (-226)) (-694 (-226)) (-551) (-551) (-551))))
-((-2688 (((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-551) (-694 (-226)) (-551)) 63)) (-2687 (((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-112) (-226) (-551) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-551) (-551) (-551) (-551) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2686 (((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-551) (-551) (-694 (-226)) (-694 (-551)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) 58)) (-2685 (((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-551) (-551) (-694 (-226)) (-551)) 51)) (-2684 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2683 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2682 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2681 (((-1041) (-551) (-226) (-226) (-551) (-226) (-112) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) 38)))
-(((-758) (-10 -7 (-15 -2681 ((-1041) (-551) (-226) (-226) (-551) (-226) (-112) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN))))) (-15 -2682 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2683 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 LSFUN2))))) (-15 -2684 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -2685 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-551) (-551) (-694 (-226)) (-551))) (-15 -2686 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-551) (-551) (-694 (-226)) (-694 (-551)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -2687 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-112) (-226) (-551) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-551) (-551) (-551) (-551) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN))))) (-15 -2688 ((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-551) (-694 (-226)) (-551))))) (T -758))
-((-2688 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2687 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-694 (-551))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2686 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-551))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-551)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2685 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2684 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2683 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2682 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-2681 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-551)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
-(-10 -7 (-15 -2681 ((-1041) (-551) (-226) (-226) (-551) (-226) (-112) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN))))) (-15 -2682 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2683 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 LSFUN2))))) (-15 -2684 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -2685 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-551) (-551) (-694 (-226)) (-551))) (-15 -2686 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-551) (-551) (-694 (-226)) (-694 (-551)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -2687 ((-1041) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-551) (-112) (-226) (-551) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-551) (-551) (-551) (-551) (-551) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-551) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN))))) (-15 -2688 ((-1041) (-551) (-551) (-551) (-226) (-694 (-226)) (-551) (-694 (-226)) (-551))))
-((-2698 (((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551)) 47)) (-2697 (((-1041) (-1165) (-1165) (-551) (-551) (-694 (-169 (-226))) (-551) (-694 (-169 (-226))) (-551) (-551) (-694 (-169 (-226))) (-551)) 46)) (-2696 (((-1041) (-551) (-551) (-551) (-694 (-169 (-226))) (-551)) 45)) (-2695 (((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 40)) (-2694 (((-1041) (-1165) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-694 (-226)) (-551)) 39)) (-2693 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-551)) 36)) (-2692 (((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551)) 35)) (-2691 (((-1041) (-551) (-551) (-551) (-551) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-226) (-226) (-551)) 34)) (-2690 (((-1041) (-551) (-551) (-551) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-112) (-226) (-112) (-694 (-551)) (-694 (-226)) (-551)) 33)) (-2689 (((-1041) (-551) (-551) (-551) (-551) (-226) (-112) (-112) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-551)) 32)))
-(((-759) (-10 -7 (-15 -2689 ((-1041) (-551) (-551) (-551) (-551) (-226) (-112) (-112) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-551))) (-15 -2690 ((-1041) (-551) (-551) (-551) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-112) (-226) (-112) (-694 (-551)) (-694 (-226)) (-551))) (-15 -2691 ((-1041) (-551) (-551) (-551) (-551) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-226) (-226) (-551))) (-15 -2692 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551))) (-15 -2693 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-551))) (-15 -2694 ((-1041) (-1165) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-694 (-226)) (-551))) (-15 -2695 ((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2696 ((-1041) (-551) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2697 ((-1041) (-1165) (-1165) (-551) (-551) (-694 (-169 (-226))) (-551) (-694 (-169 (-226))) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2698 ((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551))))) (T -759))
-((-2698 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-169 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2697 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-169 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2696 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-169 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2695 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2694 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2693 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2692 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2691 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-646 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551))) (-5 *7 (-226)) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2690 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-694 (-551))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) (-5 *3 (-551)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2689 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-646 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-551))) (-5 *3 (-551)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-759)))))
-(-10 -7 (-15 -2689 ((-1041) (-551) (-551) (-551) (-551) (-226) (-112) (-112) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-551))) (-15 -2690 ((-1041) (-551) (-551) (-551) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-694 (-551)) (-112) (-226) (-112) (-694 (-551)) (-694 (-226)) (-551))) (-15 -2691 ((-1041) (-551) (-551) (-551) (-551) (-646 (-112)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-226) (-226) (-551))) (-15 -2692 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551))) (-15 -2693 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-551))) (-15 -2694 ((-1041) (-1165) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-694 (-226)) (-551))) (-15 -2695 ((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2696 ((-1041) (-551) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2697 ((-1041) (-1165) (-1165) (-551) (-551) (-694 (-169 (-226))) (-551) (-694 (-169 (-226))) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2698 ((-1041) (-1165) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551))))
-((-2713 (((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551)) 79)) (-2712 (((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551)) 68)) (-2711 (((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393)) 56) (((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) 55)) (-2710 (((-1041) (-551) (-551) (-551) (-226) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551)) 37)) (-2709 (((-1041) (-551) (-551) (-226) (-226) (-551) (-551) (-694 (-226)) (-551)) 33)) (-2708 (((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551) (-551)) 30)) (-2707 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 29)) (-2706 (((-1041) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 28)) (-2705 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 27)) (-2704 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551)) 26)) (-2703 (((-1041) (-551) (-551) (-694 (-226)) (-551)) 25)) (-2702 (((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 24)) (-2701 (((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551)) 23)) (-2700 (((-1041) (-694 (-226)) (-551) (-551) (-551) (-551)) 22)) (-2699 (((-1041) (-551) (-551) (-694 (-226)) (-551)) 21)))
-(((-760) (-10 -7 (-15 -2699 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2700 ((-1041) (-694 (-226)) (-551) (-551) (-551) (-551))) (-15 -2701 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2702 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2703 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2704 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551))) (-15 -2705 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2706 ((-1041) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2707 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2708 ((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551) (-551))) (-15 -2709 ((-1041) (-551) (-551) (-226) (-226) (-551) (-551) (-694 (-226)) (-551))) (-15 -2710 ((-1041) (-551) (-551) (-551) (-226) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2711 ((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -2711 ((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -2712 ((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2713 ((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551))))) (T -760))
-((-2713 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-112)) (-5 *5 (-694 (-169 (-226)))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2712 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2711 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2711 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2710 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-551)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2709 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2708 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2707 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2706 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2705 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2704 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2703 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2702 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2701 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2700 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2699 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2699 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2700 ((-1041) (-694 (-226)) (-551) (-551) (-551) (-551))) (-15 -2701 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2702 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2703 ((-1041) (-551) (-551) (-694 (-226)) (-551))) (-15 -2704 ((-1041) (-551) (-551) (-551) (-551) (-694 (-226)) (-551))) (-15 -2705 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2706 ((-1041) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2707 ((-1041) (-551) (-551) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2708 ((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551) (-551))) (-15 -2709 ((-1041) (-551) (-551) (-226) (-226) (-551) (-551) (-694 (-226)) (-551))) (-15 -2710 ((-1041) (-551) (-551) (-551) (-226) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2711 ((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -2711 ((-1041) (-551) (-551) (-226) (-551) (-551) (-551) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -2712 ((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2713 ((-1041) (-551) (-551) (-551) (-551) (-551) (-112) (-551) (-112) (-551) (-694 (-169 (-226))) (-694 (-169 (-226))) (-551))))
-((-2724 (((-1041) (-551) (-551) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) 64)) (-2723 (((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551)) 60)) (-2722 (((-1041) (-551) (-694 (-226)) (-112) (-226) (-551) (-551) (-551) (-551) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2721 (((-1041) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551)) 37)) (-2720 (((-1041) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-551)) 36)) (-2719 (((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551)) 33)) (-2718 (((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226))) 32)) (-2717 (((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551)) 28)) (-2716 (((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551)) 27)) (-2715 (((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551)) 26)) (-2714 (((-1041) (-551) (-694 (-169 (-226))) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-551)) 22)))
-(((-761) (-10 -7 (-15 -2714 ((-1041) (-551) (-694 (-169 (-226))) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2715 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2716 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2717 ((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551))) (-15 -2718 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226)))) (-15 -2719 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2720 ((-1041) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2721 ((-1041) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551))) (-15 -2722 ((-1041) (-551) (-694 (-226)) (-112) (-226) (-551) (-551) (-551) (-551) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -2723 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551))) (-15 -2724 ((-1041) (-551) (-551) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))) (T -761))
-((-2724 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2723 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2722 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2721 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2720 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2719 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2718 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2717 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2716 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2715 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2714 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-169 (-226)))) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(-10 -7 (-15 -2714 ((-1041) (-551) (-694 (-169 (-226))) (-551) (-551) (-551) (-551) (-694 (-169 (-226))) (-551))) (-15 -2715 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2716 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-551))) (-15 -2717 ((-1041) (-694 (-226)) (-551) (-694 (-226)) (-551) (-551) (-551))) (-15 -2718 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-551)) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226)))) (-15 -2719 ((-1041) (-551) (-551) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2720 ((-1041) (-551) (-551) (-551) (-226) (-551) (-694 (-226)) (-694 (-226)) (-551))) (-15 -2721 ((-1041) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-551)) (-694 (-226)) (-694 (-551)) (-694 (-551)) (-694 (-226)) (-694 (-226)) (-694 (-551)) (-551))) (-15 -2722 ((-1041) (-551) (-694 (-226)) (-112) (-226) (-551) (-551) (-551) (-551) (-226) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -2723 ((-1041) (-551) (-694 (-226)) (-551) (-694 (-226)) (-694 (-551)) (-551) (-694 (-226)) (-551) (-551) (-551) (-551))) (-15 -2724 ((-1041) (-551) (-551) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-694 (-226)) (-551) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))
-((-2728 (((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-551) (-694 (-226))) 29)) (-2727 (((-1041) (-1165) (-551) (-551) (-694 (-226))) 28)) (-2726 (((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-226))) 27)) (-2725 (((-1041) (-551) (-551) (-551) (-694 (-226))) 21)))
-(((-762) (-10 -7 (-15 -2725 ((-1041) (-551) (-551) (-551) (-694 (-226)))) (-15 -2726 ((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-226)))) (-15 -2727 ((-1041) (-1165) (-551) (-551) (-694 (-226)))) (-15 -2728 ((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-551) (-694 (-226)))))) (T -762))
-((-2728 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-2727 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-2726 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-762)))) (-2725 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))))
-(-10 -7 (-15 -2725 ((-1041) (-551) (-551) (-551) (-694 (-226)))) (-15 -2726 ((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-694 (-551)) (-551) (-694 (-226)))) (-15 -2727 ((-1041) (-1165) (-551) (-551) (-694 (-226)))) (-15 -2728 ((-1041) (-1165) (-551) (-551) (-694 (-226)) (-551) (-551) (-694 (-226)))))
-((-2766 (((-1041) (-226) (-226) (-226) (-226) (-551)) 62)) (-2765 (((-1041) (-226) (-226) (-226) (-551)) 61)) (-2764 (((-1041) (-226) (-226) (-226) (-551)) 60)) (-2763 (((-1041) (-226) (-226) (-551)) 59)) (-2762 (((-1041) (-226) (-551)) 58)) (-2761 (((-1041) (-226) (-551)) 57)) (-2760 (((-1041) (-226) (-551)) 56)) (-2759 (((-1041) (-226) (-551)) 55)) (-2758 (((-1041) (-226) (-551)) 54)) (-2757 (((-1041) (-226) (-551)) 53)) (-2756 (((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551)) 52)) (-2755 (((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551)) 51)) (-2754 (((-1041) (-226) (-551)) 50)) (-2753 (((-1041) (-226) (-551)) 49)) (-2752 (((-1041) (-226) (-551)) 48)) (-2751 (((-1041) (-226) (-551)) 47)) (-2750 (((-1041) (-551) (-226) (-169 (-226)) (-551) (-1165) (-551)) 46)) (-2749 (((-1041) (-1165) (-169 (-226)) (-1165) (-551)) 45)) (-2748 (((-1041) (-1165) (-169 (-226)) (-1165) (-551)) 44)) (-2747 (((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551)) 43)) (-2746 (((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551)) 42)) (-2745 (((-1041) (-226) (-551)) 39)) (-2744 (((-1041) (-226) (-551)) 38)) (-2743 (((-1041) (-226) (-551)) 37)) (-2742 (((-1041) (-226) (-551)) 36)) (-2741 (((-1041) (-226) (-551)) 35)) (-2740 (((-1041) (-226) (-551)) 34)) (-2739 (((-1041) (-226) (-551)) 33)) (-2738 (((-1041) (-226) (-551)) 32)) (-2737 (((-1041) (-226) (-551)) 31)) (-2736 (((-1041) (-226) (-551)) 30)) (-2735 (((-1041) (-226) (-226) (-226) (-551)) 29)) (-2734 (((-1041) (-226) (-551)) 28)) (-2733 (((-1041) (-226) (-551)) 27)) (-2732 (((-1041) (-226) (-551)) 26)) (-2731 (((-1041) (-226) (-551)) 25)) (-2730 (((-1041) (-226) (-551)) 24)) (-2729 (((-1041) (-169 (-226)) (-551)) 21)))
-(((-763) (-10 -7 (-15 -2729 ((-1041) (-169 (-226)) (-551))) (-15 -2730 ((-1041) (-226) (-551))) (-15 -2731 ((-1041) (-226) (-551))) (-15 -2732 ((-1041) (-226) (-551))) (-15 -2733 ((-1041) (-226) (-551))) (-15 -2734 ((-1041) (-226) (-551))) (-15 -2735 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2736 ((-1041) (-226) (-551))) (-15 -2737 ((-1041) (-226) (-551))) (-15 -2738 ((-1041) (-226) (-551))) (-15 -2739 ((-1041) (-226) (-551))) (-15 -2740 ((-1041) (-226) (-551))) (-15 -2741 ((-1041) (-226) (-551))) (-15 -2742 ((-1041) (-226) (-551))) (-15 -2743 ((-1041) (-226) (-551))) (-15 -2744 ((-1041) (-226) (-551))) (-15 -2745 ((-1041) (-226) (-551))) (-15 -2746 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2747 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2748 ((-1041) (-1165) (-169 (-226)) (-1165) (-551))) (-15 -2749 ((-1041) (-1165) (-169 (-226)) (-1165) (-551))) (-15 -2750 ((-1041) (-551) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2751 ((-1041) (-226) (-551))) (-15 -2752 ((-1041) (-226) (-551))) (-15 -2753 ((-1041) (-226) (-551))) (-15 -2754 ((-1041) (-226) (-551))) (-15 -2755 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2756 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2757 ((-1041) (-226) (-551))) (-15 -2758 ((-1041) (-226) (-551))) (-15 -2759 ((-1041) (-226) (-551))) (-15 -2760 ((-1041) (-226) (-551))) (-15 -2761 ((-1041) (-226) (-551))) (-15 -2762 ((-1041) (-226) (-551))) (-15 -2763 ((-1041) (-226) (-226) (-551))) (-15 -2764 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2765 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2766 ((-1041) (-226) (-226) (-226) (-226) (-551))))) (T -763))
-((-2766 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2765 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2764 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2763 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2756 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2755 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2750 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-551)) (-5 *5 (-169 (-226))) (-5 *6 (-1165)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2749 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2748 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2747 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2746 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2735 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(-10 -7 (-15 -2729 ((-1041) (-169 (-226)) (-551))) (-15 -2730 ((-1041) (-226) (-551))) (-15 -2731 ((-1041) (-226) (-551))) (-15 -2732 ((-1041) (-226) (-551))) (-15 -2733 ((-1041) (-226) (-551))) (-15 -2734 ((-1041) (-226) (-551))) (-15 -2735 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2736 ((-1041) (-226) (-551))) (-15 -2737 ((-1041) (-226) (-551))) (-15 -2738 ((-1041) (-226) (-551))) (-15 -2739 ((-1041) (-226) (-551))) (-15 -2740 ((-1041) (-226) (-551))) (-15 -2741 ((-1041) (-226) (-551))) (-15 -2742 ((-1041) (-226) (-551))) (-15 -2743 ((-1041) (-226) (-551))) (-15 -2744 ((-1041) (-226) (-551))) (-15 -2745 ((-1041) (-226) (-551))) (-15 -2746 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2747 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2748 ((-1041) (-1165) (-169 (-226)) (-1165) (-551))) (-15 -2749 ((-1041) (-1165) (-169 (-226)) (-1165) (-551))) (-15 -2750 ((-1041) (-551) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2751 ((-1041) (-226) (-551))) (-15 -2752 ((-1041) (-226) (-551))) (-15 -2753 ((-1041) (-226) (-551))) (-15 -2754 ((-1041) (-226) (-551))) (-15 -2755 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2756 ((-1041) (-226) (-169 (-226)) (-551) (-1165) (-551))) (-15 -2757 ((-1041) (-226) (-551))) (-15 -2758 ((-1041) (-226) (-551))) (-15 -2759 ((-1041) (-226) (-551))) (-15 -2760 ((-1041) (-226) (-551))) (-15 -2761 ((-1041) (-226) (-551))) (-15 -2762 ((-1041) (-226) (-551))) (-15 -2763 ((-1041) (-226) (-226) (-551))) (-15 -2764 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2765 ((-1041) (-226) (-226) (-226) (-551))) (-15 -2766 ((-1041) (-226) (-226) (-226) (-226) (-551))))
-((-2772 (((-1278)) 20)) (-2768 (((-1165)) 31)) (-2767 (((-1165)) 30)) (-2770 (((-1109) (-1183) (-694 (-551))) 45) (((-1109) (-1183) (-694 (-226))) 41)) (-2771 (((-112)) 19)) (-2769 (((-1165) (-1165)) 34)))
-(((-764) (-10 -7 (-15 -2767 ((-1165))) (-15 -2768 ((-1165))) (-15 -2769 ((-1165) (-1165))) (-15 -2770 ((-1109) (-1183) (-694 (-226)))) (-15 -2770 ((-1109) (-1183) (-694 (-551)))) (-15 -2771 ((-112))) (-15 -2772 ((-1278))))) (T -764))
-((-2772 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))) (-2771 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-551))) (-5 *2 (-1109)) (-5 *1 (-764)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1109)) (-5 *1 (-764)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-2768 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-2767 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(-10 -7 (-15 -2767 ((-1165))) (-15 -2768 ((-1165))) (-15 -2769 ((-1165) (-1165))) (-15 -2770 ((-1109) (-1183) (-694 (-226)))) (-15 -2770 ((-1109) (-1183) (-694 (-551)))) (-15 -2771 ((-112))) (-15 -2772 ((-1278))))
-((-2774 (($ $ $) 10)) (-2775 (($ $ $ $) 9)) (-2773 (($ $ $) 12)))
-(((-765 |#1|) (-10 -8 (-15 -2773 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1| |#1|))) (-766)) (T -765))
-NIL
-(-10 -8 (-15 -2773 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2588 (($ $ (-925)) 31)) (-2587 (($ $ (-925)) 32)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-2774 (($ $ $) 28)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2775 (($ $ $ $) 29)) (-2773 (($ $ $) 27)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 33)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 30)))
+((-1931 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
+(-13 (-766) (-722 |t#1|) (-10 -8 (-15 -1931 ($ $ (-927)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-1948 (((-1041) (-694 (-226)) (-569) (-112) (-569)) 25)) (-1940 (((-1041) (-694 (-226)) (-569) (-112) (-569)) 24)))
+(((-750) (-10 -7 (-15 -1940 ((-1041) (-694 (-226)) (-569) (-112) (-569))) (-15 -1948 ((-1041) (-694 (-226)) (-569) (-112) (-569))))) (T -750))
+((-1948 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))) (-1940 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))))
+(-10 -7 (-15 -1940 ((-1041) (-694 (-226)) (-569) (-112) (-569))) (-15 -1948 ((-1041) (-694 (-226)) (-569) (-112) (-569))))
+((-1976 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) 43)) (-1967 (((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) 39)) (-1957 (((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) 32)))
+(((-751) (-10 -7 (-15 -1957 ((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -1967 ((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -1976 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))) (T -751))
+((-1976 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-1967 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-1957 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *2 (-1041)) (-5 *1 (-751)))))
+(-10 -7 (-15 -1957 ((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -1967 ((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -1976 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))
+((-2099 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 34)) (-2089 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 33)) (-2080 (((-1041) (-569) (-694 (-226)) (-569)) 32)) (-2068 (((-1041) (-569) (-694 (-226)) (-569)) 31)) (-2059 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 30)) (-2049 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2037 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-2028 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-2017 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2005 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-1995 (((-1041) (-569) (-694 (-226)) (-569)) 22)) (-1986 (((-1041) (-569) (-694 (-226)) (-569)) 21)))
+(((-752) (-10 -7 (-15 -1986 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -1995 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2005 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2017 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2028 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2037 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2049 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2059 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2068 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2080 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2089 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -2099 ((-1041) (-569) (-569) (-694 (-226)) (-569))))) (T -752))
+((-2099 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2089 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2080 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2068 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2059 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2049 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2037 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2028 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2017 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2005 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1995 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1986 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+(-10 -7 (-15 -1986 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -1995 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2005 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2017 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2028 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2037 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2049 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2059 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2068 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2080 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2089 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -2099 ((-1041) (-569) (-569) (-694 (-226)) (-569))))
+((-2216 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2205 (((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569)) 51)) (-2196 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2187 (((-1041) (-226) (-226) (-569) (-569) (-569) (-569)) 46)) (-2177 (((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 45)) (-2167 (((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 44)) (-2158 (((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 43)) (-2147 (((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 42)) (-2138 (((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) 38)) (-2128 (((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) 37)) (-2119 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) 33)) (-2109 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) 32)))
+(((-753) (-10 -7 (-15 -2109 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2119 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2128 ((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2138 ((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2147 ((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2158 ((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2167 ((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2177 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2187 ((-1041) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2196 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -2205 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2216 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))) (T -753))
+((-2216 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2205 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2196 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2187 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2177 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2167 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2158 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2147 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2138 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2128 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2119 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2109 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *2 (-1041)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2109 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2119 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2128 ((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2138 ((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))) (-15 -2147 ((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2158 ((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2167 ((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2177 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2187 ((-1041) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2196 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -2205 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2216 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))
+((-2287 (((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2279 (((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393)) 69) (((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2271 (((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) 57)) (-2262 (((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 50)) (-2254 (((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2246 (((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2235 (((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 42)) (-2225 (((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-754) (-10 -7 (-15 -2225 ((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2235 ((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2246 ((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2254 ((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2262 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2271 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -2279 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -2279 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -2287 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -754))
+((-2287 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2279 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-393)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2279 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2271 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2262 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2254 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2246 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2235 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2225 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
+(-10 -7 (-15 -2225 ((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2235 ((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2246 ((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2254 ((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2262 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2271 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -2279 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -2279 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -2287 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2313 (((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569)) 45)) (-2304 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) 41)) (-2296 (((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 23)))
+(((-755) (-10 -7 (-15 -2296 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2304 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -2313 ((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))) (T -755))
+((-2313 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2304 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2296 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
+(-10 -7 (-15 -2296 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2304 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -2313 ((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))
+((-2401 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569)) 35)) (-2392 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569)) 34)) (-2382 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569)) 33)) (-2372 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2363 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-2356 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569)) 27)) (-2346 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 24)) (-2337 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 23)) (-2330 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 22)) (-2322 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 21)))
+(((-756) (-10 -7 (-15 -2322 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2330 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2337 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2346 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2356 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2363 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2372 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2382 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2392 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -2401 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))) (T -756))
+((-2401 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2392 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2382 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2372 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2363 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2356 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2346 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2337 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2330 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-2322 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
+(-10 -7 (-15 -2322 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2330 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2337 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2346 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2356 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2363 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2372 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2382 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2392 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -2401 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))
+((-1456 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 45)) (-1446 (((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569)) 44)) (-1436 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 43)) (-1426 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 42)) (-1416 (((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569)) 41)) (-1402 (((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 40)) (-1388 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569)) 39)) (-1376 (((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569))) 38)) (-1365 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 35)) (-1353 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569)) 34)) (-1341 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569)) 33)) (-1329 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 32)) (-1317 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569)) 31)) (-1309 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569)) 30)) (-4417 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 29)) (-4406 (((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569)) 28)) (-2421 (((-1041) (-569) (-694 (-226)) (-226) (-569)) 24)) (-2413 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 21)))
+(((-757) (-10 -7 (-15 -2413 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2421 ((-1041) (-569) (-694 (-226)) (-226) (-569))) (-15 -4406 ((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -4417 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1309 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -1317 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -1329 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1341 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -1353 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1365 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1376 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -1388 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -1402 ((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1416 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1426 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1436 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1446 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1456 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))) (T -757))
+((-1456 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1446 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1436 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1426 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1416 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1402 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1388 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1376 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1365 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1353 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1341 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1329 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1317 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1309 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4417 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4406 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2421 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2413 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
+(-10 -7 (-15 -2413 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2421 ((-1041) (-569) (-694 (-226)) (-226) (-569))) (-15 -4406 ((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -4417 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1309 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -1317 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -1329 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1341 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -1353 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1365 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1376 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -1388 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -1402 ((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1416 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1426 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1436 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1446 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1456 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))
+((-1538 (((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569)) 63)) (-1526 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1516 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) 58)) (-1507 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569)) 51)) (-1498 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1489 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1480 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1466 (((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-758) (-10 -7 (-15 -1466 ((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -1480 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -1489 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -1498 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -1507 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -1516 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -1526 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -1538 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))) (T -758))
+((-1538 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1526 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1516 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1507 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1498 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1489 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1480 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-1466 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
+(-10 -7 (-15 -1466 ((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -1480 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -1489 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -1498 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -1507 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -1516 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -1526 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -1538 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))
+((-1650 (((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 47)) (-1639 (((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569)) 46)) (-1629 (((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 45)) (-1618 (((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 40)) (-1606 (((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569)) 39)) (-1594 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-569)) 36)) (-1582 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569)) 35)) (-1571 (((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569)) 34)) (-1560 (((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569)) 33)) (-1548 (((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569)) 32)))
+(((-759) (-10 -7 (-15 -1548 ((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -1560 ((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -1571 ((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -1582 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -1594 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1606 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -1618 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1629 ((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1639 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1650 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -759))
+((-1650 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1639 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1629 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1618 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1606 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1594 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1582 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1571 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1560 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1548 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-759)))))
+(-10 -7 (-15 -1548 ((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -1560 ((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -1571 ((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -1582 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -1594 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1606 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -1618 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1629 ((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1639 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1650 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
+((-1824 (((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 79)) (-1813 (((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 68)) (-1802 (((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393)) 56) (((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) 55)) (-1791 (((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 37)) (-1780 (((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569)) 33)) (-1767 (((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 30)) (-1758 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-1746 (((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-1734 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-1721 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569)) 26)) (-1708 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 25)) (-1695 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-1685 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-1671 (((-1041) (-694 (-226)) (-569) (-569) (-569) (-569)) 22)) (-1660 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 21)))
+(((-760) (-10 -7 (-15 -1660 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1671 ((-1041) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -1685 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1695 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1708 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1721 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1734 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1746 ((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1758 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1767 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1780 ((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -1791 ((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1802 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -1802 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1813 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1824 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -760))
+((-1824 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1813 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1802 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1802 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1791 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1780 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1767 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1758 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1746 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1734 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1721 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1708 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1695 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1685 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1671 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1660 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
+(-10 -7 (-15 -1660 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1671 ((-1041) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -1685 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1695 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1708 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1721 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1734 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1746 ((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1758 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1767 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1780 ((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -1791 ((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1802 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -1802 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1813 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1824 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
+((-3792 (((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) 64)) (-3780 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569)) 60)) (-3766 (((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3754 (((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 37)) (-1889 (((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569)) 36)) (-1880 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 33)) (-1872 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226))) 32)) (-1865 (((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569)) 28)) (-1856 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 27)) (-1846 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 26)) (-1835 (((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 22)))
+(((-761) (-10 -7 (-15 -1835 ((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1846 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1856 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1865 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -1872 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -1880 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1889 ((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3754 ((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -3766 ((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -3780 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -3792 ((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))) (T -761))
+((-3792 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3780 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3766 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3754 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1889 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1880 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1872 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1865 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1856 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1846 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1835 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-761)))))
+(-10 -7 (-15 -1835 ((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1846 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1856 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1865 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -1872 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -1880 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1889 ((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3754 ((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -3766 ((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -3780 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -3792 ((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))
+((-3841 (((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226))) 29)) (-3828 (((-1041) (-1165) (-569) (-569) (-694 (-226))) 28)) (-3816 (((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226))) 27)) (-3804 (((-1041) (-569) (-569) (-569) (-694 (-226))) 21)))
+(((-762) (-10 -7 (-15 -3804 ((-1041) (-569) (-569) (-569) (-694 (-226)))) (-15 -3816 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3828 ((-1041) (-1165) (-569) (-569) (-694 (-226)))) (-15 -3841 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))) (T -762))
+((-3841 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-3828 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-3816 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-762)))) (-3804 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))))
+(-10 -7 (-15 -3804 ((-1041) (-569) (-569) (-569) (-694 (-226)))) (-15 -3816 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3828 ((-1041) (-1165) (-569) (-569) (-694 (-226)))) (-15 -3841 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))
+((-4287 (((-1041) (-226) (-226) (-226) (-226) (-569)) 62)) (-4277 (((-1041) (-226) (-226) (-226) (-569)) 61)) (-4263 (((-1041) (-226) (-226) (-226) (-569)) 60)) (-4251 (((-1041) (-226) (-226) (-569)) 59)) (-4240 (((-1041) (-226) (-569)) 58)) (-4227 (((-1041) (-226) (-569)) 57)) (-4217 (((-1041) (-226) (-569)) 56)) (-4206 (((-1041) (-226) (-569)) 55)) (-4195 (((-1041) (-226) (-569)) 54)) (-4184 (((-1041) (-226) (-569)) 53)) (-4172 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 52)) (-4160 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 51)) (-4150 (((-1041) (-226) (-569)) 50)) (-4136 (((-1041) (-226) (-569)) 49)) (-4125 (((-1041) (-226) (-569)) 48)) (-4114 (((-1041) (-226) (-569)) 47)) (-4100 (((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569)) 46)) (-4088 (((-1041) (-1165) (-170 (-226)) (-1165) (-569)) 45)) (-4078 (((-1041) (-1165) (-170 (-226)) (-1165) (-569)) 44)) (-4066 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 43)) (-4054 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 42)) (-4043 (((-1041) (-226) (-569)) 39)) (-4032 (((-1041) (-226) (-569)) 38)) (-4021 (((-1041) (-226) (-569)) 37)) (-4009 (((-1041) (-226) (-569)) 36)) (-3998 (((-1041) (-226) (-569)) 35)) (-3984 (((-1041) (-226) (-569)) 34)) (-3972 (((-1041) (-226) (-569)) 33)) (-3961 (((-1041) (-226) (-569)) 32)) (-3950 (((-1041) (-226) (-569)) 31)) (-3939 (((-1041) (-226) (-569)) 30)) (-3928 (((-1041) (-226) (-226) (-226) (-569)) 29)) (-3914 (((-1041) (-226) (-569)) 28)) (-3902 (((-1041) (-226) (-569)) 27)) (-3891 (((-1041) (-226) (-569)) 26)) (-3879 (((-1041) (-226) (-569)) 25)) (-3868 (((-1041) (-226) (-569)) 24)) (-3854 (((-1041) (-170 (-226)) (-569)) 21)))
+(((-763) (-10 -7 (-15 -3854 ((-1041) (-170 (-226)) (-569))) (-15 -3868 ((-1041) (-226) (-569))) (-15 -3879 ((-1041) (-226) (-569))) (-15 -3891 ((-1041) (-226) (-569))) (-15 -3902 ((-1041) (-226) (-569))) (-15 -3914 ((-1041) (-226) (-569))) (-15 -3928 ((-1041) (-226) (-226) (-226) (-569))) (-15 -3939 ((-1041) (-226) (-569))) (-15 -3950 ((-1041) (-226) (-569))) (-15 -3961 ((-1041) (-226) (-569))) (-15 -3972 ((-1041) (-226) (-569))) (-15 -3984 ((-1041) (-226) (-569))) (-15 -3998 ((-1041) (-226) (-569))) (-15 -4009 ((-1041) (-226) (-569))) (-15 -4021 ((-1041) (-226) (-569))) (-15 -4032 ((-1041) (-226) (-569))) (-15 -4043 ((-1041) (-226) (-569))) (-15 -4054 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4066 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4078 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -4088 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -4100 ((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4114 ((-1041) (-226) (-569))) (-15 -4125 ((-1041) (-226) (-569))) (-15 -4136 ((-1041) (-226) (-569))) (-15 -4150 ((-1041) (-226) (-569))) (-15 -4160 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4172 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4184 ((-1041) (-226) (-569))) (-15 -4195 ((-1041) (-226) (-569))) (-15 -4206 ((-1041) (-226) (-569))) (-15 -4217 ((-1041) (-226) (-569))) (-15 -4227 ((-1041) (-226) (-569))) (-15 -4240 ((-1041) (-226) (-569))) (-15 -4251 ((-1041) (-226) (-226) (-569))) (-15 -4263 ((-1041) (-226) (-226) (-226) (-569))) (-15 -4277 ((-1041) (-226) (-226) (-226) (-569))) (-15 -4287 ((-1041) (-226) (-226) (-226) (-226) (-569))))) (T -763))
+((-4287 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4277 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4263 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4251 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4195 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4172 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4160 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4100 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1165)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4088 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4078 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4066 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4054 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3928 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(-10 -7 (-15 -3854 ((-1041) (-170 (-226)) (-569))) (-15 -3868 ((-1041) (-226) (-569))) (-15 -3879 ((-1041) (-226) (-569))) (-15 -3891 ((-1041) (-226) (-569))) (-15 -3902 ((-1041) (-226) (-569))) (-15 -3914 ((-1041) (-226) (-569))) (-15 -3928 ((-1041) (-226) (-226) (-226) (-569))) (-15 -3939 ((-1041) (-226) (-569))) (-15 -3950 ((-1041) (-226) (-569))) (-15 -3961 ((-1041) (-226) (-569))) (-15 -3972 ((-1041) (-226) (-569))) (-15 -3984 ((-1041) (-226) (-569))) (-15 -3998 ((-1041) (-226) (-569))) (-15 -4009 ((-1041) (-226) (-569))) (-15 -4021 ((-1041) (-226) (-569))) (-15 -4032 ((-1041) (-226) (-569))) (-15 -4043 ((-1041) (-226) (-569))) (-15 -4054 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4066 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4078 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -4088 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -4100 ((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4114 ((-1041) (-226) (-569))) (-15 -4125 ((-1041) (-226) (-569))) (-15 -4136 ((-1041) (-226) (-569))) (-15 -4150 ((-1041) (-226) (-569))) (-15 -4160 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4172 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4184 ((-1041) (-226) (-569))) (-15 -4195 ((-1041) (-226) (-569))) (-15 -4206 ((-1041) (-226) (-569))) (-15 -4217 ((-1041) (-226) (-569))) (-15 -4227 ((-1041) (-226) (-569))) (-15 -4240 ((-1041) (-226) (-569))) (-15 -4251 ((-1041) (-226) (-226) (-569))) (-15 -4263 ((-1041) (-226) (-226) (-226) (-569))) (-15 -4277 ((-1041) (-226) (-226) (-226) (-569))) (-15 -4287 ((-1041) (-226) (-226) (-226) (-226) (-569))))
+((-4337 (((-1278)) 20)) (-4308 (((-1165)) 31)) (-4300 (((-1165)) 30)) (-4327 (((-1110) (-1183) (-694 (-569))) 45) (((-1110) (-1183) (-694 (-226))) 41)) (-2039 (((-112)) 19)) (-4319 (((-1165) (-1165)) 34)))
+(((-764) (-10 -7 (-15 -4300 ((-1165))) (-15 -4308 ((-1165))) (-15 -4319 ((-1165) (-1165))) (-15 -4327 ((-1110) (-1183) (-694 (-226)))) (-15 -4327 ((-1110) (-1183) (-694 (-569)))) (-15 -2039 ((-112))) (-15 -4337 ((-1278))))) (T -764))
+((-4337 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))) (-2039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-569))) (-5 *2 (-1110)) (-5 *1 (-764)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1110)) (-5 *1 (-764)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-4308 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-4300 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
+(-10 -7 (-15 -4300 ((-1165))) (-15 -4308 ((-1165))) (-15 -4319 ((-1165) (-1165))) (-15 -4327 ((-1110) (-1183) (-694 (-226)))) (-15 -4327 ((-1110) (-1183) (-694 (-569)))) (-15 -2039 ((-112))) (-15 -4337 ((-1278))))
+((-4356 (($ $ $) 10)) (-4365 (($ $ $ $) 9)) (-4347 (($ $ $) 12)))
+(((-765 |#1|) (-10 -8 (-15 -4347 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1| |#1|))) (-766)) (T -765))
+NIL
+(-10 -8 (-15 -4347 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2840 (($ $ (-927)) 31)) (-2829 (($ $ (-927)) 32)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4356 (($ $ $) 28)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-4365 (($ $ $ $) 29)) (-4347 (($ $ $) 27)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
(((-766) (-140)) (T -766))
-((-2775 (*1 *1 *1 *1 *1) (-4 *1 (-766))) (-2774 (*1 *1 *1 *1) (-4 *1 (-766))) (-2773 (*1 *1 *1 *1) (-4 *1 (-766))))
-(-13 (-21) (-725) (-10 -8 (-15 -2775 ($ $ $ $)) (-15 -2774 ($ $ $)) (-15 -2773 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-725) . T) ((-1107) . T))
-((-4396 (((-868) $) NIL) (($ (-551)) 10)))
-(((-767 |#1|) (-10 -8 (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-768)) (T -767))
-NIL
-(-10 -8 (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2585 (((-3 $ #1="failed") $) 43)) (-2588 (($ $ (-925)) 31) (($ $ (-776)) 38)) (-3908 (((-3 $ #1#) $) 41)) (-2591 (((-112) $) 37)) (-2586 (((-3 $ #1#) $) 42)) (-2587 (($ $ (-925)) 32) (($ $ (-776)) 39)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-2774 (($ $ $) 28)) (-4396 (((-868) $) 12) (($ (-551)) 34)) (-3548 (((-776)) 35 T CONST)) (-3680 (((-112) $ $) 9)) (-2775 (($ $ $ $) 29)) (-2773 (($ $ $) 27)) (-3528 (($) 19 T CONST)) (-3085 (($) 36 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 33) (($ $ (-776)) 40)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 30)))
+((-4365 (*1 *1 *1 *1 *1) (-4 *1 (-766))) (-4356 (*1 *1 *1 *1) (-4 *1 (-766))) (-4347 (*1 *1 *1 *1) (-4 *1 (-766))))
+(-13 (-21) (-725) (-10 -8 (-15 -4365 ($ $ $ $)) (-15 -4356 ($ $ $)) (-15 -4347 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-1106) . T))
+((-2388 (((-867) $) NIL) (($ (-569)) 10)))
+(((-767 |#1|) (-10 -8 (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-768)) (T -767))
+NIL
+(-10 -8 (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2808 (((-3 $ "failed") $) 43)) (-2840 (($ $ (-927)) 31) (($ $ (-776)) 38)) (-3351 (((-3 $ "failed") $) 41)) (-2861 (((-112) $) 37)) (-2817 (((-3 $ "failed") $) 42)) (-2829 (($ $ (-927)) 32) (($ $ (-776)) 39)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4356 (($ $ $) 28)) (-2388 (((-867) $) 12) (($ (-569)) 34)) (-3263 (((-776)) 35 T CONST)) (-2040 (((-112) $ $) 9)) (-4365 (($ $ $ $) 29)) (-4347 (($ $ $) 27)) (-1786 (($) 19 T CONST)) (-1796 (($) 36 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 33) (($ $ (-776)) 40)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
(((-768) (-140)) (T -768))
-((-3548 (*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-768)))))
-(-13 (-766) (-727) (-10 -8 (-15 -3548 ((-776)) -4402) (-15 -4396 ($ (-551)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-725) . T) ((-727) . T) ((-766) . T) ((-1107) . T))
-((-2777 (((-646 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 (-169 |#1|)))))) (-694 (-169 (-412 (-551)))) |#1|) 33)) (-2776 (((-646 (-169 |#1|)) (-694 (-169 (-412 (-551)))) |#1|) 23)) (-2788 (((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551)))) (-1183)) 20) (((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551))))) 19)))
-(((-769 |#1|) (-10 -7 (-15 -2788 ((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551)))))) (-15 -2788 ((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551)))) (-1183))) (-15 -2776 ((-646 (-169 |#1|)) (-694 (-169 (-412 (-551)))) |#1|)) (-15 -2777 ((-646 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 (-169 |#1|)))))) (-694 (-169 (-412 (-551)))) |#1|))) (-13 (-367) (-853))) (T -769))
-((-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *2 (-646 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 (-169 *4))))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *2 (-646 (-169 *4))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *4 (-1183)) (-5 *2 (-952 (-169 (-412 (-551))))) (-5 *1 (-769 *5)) (-4 *5 (-13 (-367) (-853))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *2 (-952 (-169 (-412 (-551))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -2788 ((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551)))))) (-15 -2788 ((-952 (-169 (-412 (-551)))) (-694 (-169 (-412 (-551)))) (-1183))) (-15 -2776 ((-646 (-169 |#1|)) (-694 (-169 (-412 (-551)))) |#1|)) (-15 -2777 ((-646 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 (-169 |#1|)))))) (-694 (-169 (-412 (-551)))) |#1|)))
-((-3034 (((-175 (-551)) |#1|) 27)))
-(((-770 |#1|) (-10 -7 (-15 -3034 ((-175 (-551)) |#1|))) (-409)) (T -770))
-((-3034 (*1 *2 *3) (-12 (-5 *2 (-175 (-551))) (-5 *1 (-770 *3)) (-4 *3 (-409)))))
-(-10 -7 (-15 -3034 ((-175 (-551)) |#1|)))
-((-2963 ((|#1| |#1| |#1|) 28)) (-2964 ((|#1| |#1| |#1|) 27)) (-2953 ((|#1| |#1| |#1|) 38)) (-2961 ((|#1| |#1| |#1|) 34)) (-2962 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2969 (((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|) 26)))
-(((-771 |#1| |#2|) (-10 -7 (-15 -2969 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2962 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2953 (|#1| |#1| |#1|))) (-713 |#2|) (-367)) (T -771))
-((-2953 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2961 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2962 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2963 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2964 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2969 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4)))))
-(-10 -7 (-15 -2969 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2962 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2953 (|#1| |#1| |#1|)))
-((-2976 (((-696 (-1231)) $ (-1231)) 26)) (-2977 (((-696 (-555)) $ (-555)) 25)) (-2975 (((-776) $ (-129)) 27)) (-2978 (((-696 (-128)) $ (-128)) 24)) (-2188 (((-696 (-1231)) $) 12)) (-2184 (((-696 (-1229)) $) 8)) (-2186 (((-696 (-1228)) $) 10)) (-2189 (((-696 (-555)) $) 13)) (-2185 (((-696 (-553)) $) 9)) (-2187 (((-696 (-552)) $) 11)) (-2183 (((-776) $ (-129)) 7)) (-2190 (((-696 (-128)) $) 14)) (-2778 (((-112) $) 31)) (-2779 (((-696 $) |#1| (-960)) 32)) (-1878 (($ $) 6)))
-(((-772 |#1|) (-140) (-1107)) (T -772))
-((-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-960)) (-4 *3 (-1107)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(-13 (-581) (-10 -8 (-15 -2779 ((-696 $) |t#1| (-960))) (-15 -2778 ((-112) $))))
-(((-174) . T) ((-532) . T) ((-581) . T) ((-866) . T))
-((-4369 (((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551)))) (-551)) 71)) (-4368 (((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551))))) 69)) (-4207 (((-551)) 85)))
-(((-773 |#1| |#2|) (-10 -7 (-15 -4207 ((-551))) (-15 -4368 ((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551)))))) (-15 -4369 ((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551)))) (-551)))) (-1248 (-551)) (-415 (-551) |#1|)) (T -773))
-((-4369 (*1 *2 *3) (-12 (-5 *3 (-551)) (-4 *4 (-1248 *3)) (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-773 *4 *5)) (-4 *5 (-415 *3 *4)))) (-4368 (*1 *2) (-12 (-4 *3 (-1248 (-551))) (-5 *2 (-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551))))) (-5 *1 (-773 *3 *4)) (-4 *4 (-415 (-551) *3)))) (-4207 (*1 *2) (-12 (-4 *3 (-1248 *2)) (-5 *2 (-551)) (-5 *1 (-773 *3 *4)) (-4 *4 (-415 *2 *3)))))
-(-10 -7 (-15 -4207 ((-551))) (-15 -4368 ((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551)))))) (-15 -4369 ((-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551)) (|:| |basisInv| (-694 (-551)))) (-551))))
-((-2986 (((-112) $ $) NIL)) (-3594 (((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 20) (($ (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-774) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4396 ($ (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4396 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3594 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -774))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4396 ($ (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4396 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3594 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))
-((-2854 (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|))) 18) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183))) 17)) (-4022 (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|))) 20) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183))) 19)))
-(((-775 |#1|) (-10 -7 (-15 -2854 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -2854 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|))))) (-562)) (T -775))
-((-4022 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-775 *4)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-775 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-775 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-775 *5)))))
-(-10 -7 (-15 -2854 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -2854 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-952 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2823 (($ $ $) 10)) (-1410 (((-3 $ "failed") $ $) 15)) (-2780 (($ $ (-551)) 11)) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($ $) NIL)) (-2981 (($ $ $) NIL)) (-2591 (((-112) $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3582 (($ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 6 T CONST)) (-3085 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ $ $) NIL)))
-(((-776) (-13 (-798) (-731) (-10 -8 (-15 -2981 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3300 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -3907 ((-3 $ "failed") $ $)) (-15 -2780 ($ $ (-551))) (-15 -3413 ($ $)) (-6 (-4445 "*"))))) (T -776))
-((-2981 (*1 *1 *1 *1) (-5 *1 (-776))) (-2982 (*1 *1 *1 *1) (-5 *1 (-776))) (-3582 (*1 *1 *1 *1) (-5 *1 (-776))) (-3300 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2162 (-776)) (|:| -3321 (-776)))) (-5 *1 (-776)))) (-3907 (*1 *1 *1 *1) (|partial| -5 *1 (-776))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-776)))) (-3413 (*1 *1 *1) (-5 *1 (-776))))
-(-13 (-798) (-731) (-10 -8 (-15 -2981 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3300 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -3907 ((-3 $ "failed") $ $)) (-15 -2780 ($ $ (-551))) (-15 -3413 ($ $)) (-6 (-4445 "*"))))
+((-3263 (*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768)))))
+(-13 (-766) (-727) (-10 -8 (-15 -3263 ((-776)) -3600) (-15 -2388 ($ (-569)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-727) . T) ((-766) . T) ((-1106) . T))
+((-4387 (((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|) 33)) (-4376 (((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|) 23)) (-3176 (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183)) 20) (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569))))) 19)))
+(((-769 |#1|) (-10 -7 (-15 -3176 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -3176 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183))) (-15 -4376 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -4387 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|))) (-13 (-367) (-853))) (T -769))
+((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 *4))))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1183)) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5)) (-4 *5 (-13 (-367) (-853))))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3176 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -3176 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183))) (-15 -4376 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -4387 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|)))
+((-1879 (((-175 (-569)) |#1|) 27)))
+(((-770 |#1|) (-10 -7 (-15 -1879 ((-175 (-569)) |#1|))) (-409)) (T -770))
+((-1879 (*1 *2 *3) (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409)))))
+(-10 -7 (-15 -1879 ((-175 (-569)) |#1|)))
+((-2429 ((|#1| |#1| |#1|) 28)) (-2437 ((|#1| |#1| |#1|) 27)) (-3570 ((|#1| |#1| |#1|) 38)) (-2411 ((|#1| |#1| |#1|) 34)) (-2420 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2466 (((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|) 26)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -2466 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|))) (-713 |#2|) (-367)) (T -771))
+((-3570 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2411 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2420 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2429 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2437 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4)))))
+(-10 -7 (-15 -2466 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)))
+((-2527 (((-696 (-1231)) $ (-1231)) 26)) (-2538 (((-696 (-554)) $ (-554)) 25)) (-2515 (((-776) $ (-128)) 27)) (-2548 (((-696 (-129)) $ (-129)) 24)) (-3225 (((-696 (-1231)) $) 12)) (-3174 (((-696 (-1229)) $) 8)) (-3196 (((-696 (-1228)) $) 10)) (-3239 (((-696 (-554)) $) 13)) (-3185 (((-696 (-552)) $) 9)) (-3211 (((-696 (-551)) $) 11)) (-3163 (((-776) $ (-128)) 7)) (-3254 (((-696 (-129)) $) 14)) (-3079 (((-112) $) 31)) (-3090 (((-696 $) |#1| (-960)) 32)) (-3026 (($ $) 6)))
+(((-772 |#1|) (-140) (-1106)) (T -772))
+((-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-960)) (-4 *3 (-1106)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(-13 (-581) (-10 -8 (-15 -3090 ((-696 $) |t#1| (-960))) (-15 -3079 ((-112) $))))
+(((-174) . T) ((-532) . T) ((-581) . T) ((-865) . T))
+((-2987 (((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)) 71)) (-2976 (((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) 69)) (-4180 (((-569)) 85)))
+(((-773 |#1| |#2|) (-10 -7 (-15 -4180 ((-569))) (-15 -2976 ((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -2987 ((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)))) (-1249 (-569)) (-414 (-569) |#1|)) (T -773))
+((-2987 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2976 (*1 *2) (-12 (-4 *3 (-1249 (-569))) (-5 *2 (-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3)))) (-4180 (*1 *2) (-12 (-4 *3 (-1249 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 *2 *3)))))
+(-10 -7 (-15 -4180 ((-569))) (-15 -2976 ((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -2987 ((-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569))))
+((-2383 (((-112) $ $) NIL)) (-3043 (((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 20) (($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-774) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2388 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2388 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3043 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -774))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2388 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2388 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3043 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))
+((-3808 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 18) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183))) 17)) (-2888 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 20) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183))) 19)))
+(((-775 |#1|) (-10 -7 (-15 -3808 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3808 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))))) (-561)) (T -775))
+((-2888 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))))
+(-10 -7 (-15 -3808 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3808 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3576 (($ $ $) 10)) (-3798 (((-3 $ "failed") $ $) 15)) (-2979 (($ $ (-569)) 11)) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($ $) NIL)) (-2348 (($ $ $) NIL)) (-2861 (((-112) $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1830 (($ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 6 T CONST)) (-1796 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ $ $) NIL)))
+(((-776) (-13 (-798) (-731) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1830 ($ $ $)) (-15 -2636 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -2979 ($ $ (-569))) (-15 -3295 ($ $)) (-6 (-4445 "*"))))) (T -776))
+((-2348 (*1 *1 *1 *1) (-5 *1 (-776))) (-2339 (*1 *1 *1 *1) (-5 *1 (-776))) (-1830 (*1 *1 *1 *1) (-5 *1 (-776))) (-2636 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4273 (-776)) (|:| -2804 (-776)))) (-5 *1 (-776)))) (-2374 (*1 *1 *1 *1) (|partial| -5 *1 (-776))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))) (-3295 (*1 *1 *1) (-5 *1 (-776))))
+(-13 (-798) (-731) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1830 ($ $ $)) (-15 -2636 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -2979 ($ $ (-569))) (-15 -3295 ($ $)) (-6 (-4445 "*"))))
((|Integer|) (>= |#1| 0))
-((-4022 (((-3 |#2| "failed") |#2| |#2| (-113) (-1183)) 37)))
-(((-777 |#1| |#2|) (-10 -7 (-15 -4022 ((-3 |#2| "failed") |#2| |#2| (-113) (-1183)))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)) (-13 (-29 |#1|) (-1208) (-966))) (T -777))
-((-4022 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-966))))))
-(-10 -7 (-15 -4022 ((-3 |#2| "failed") |#2| |#2| (-113) (-1183))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 7)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)))
-(((-778) (-1107)) (T -778))
-NIL
-(-1107)
-((-4396 (((-778) |#1|) 8)))
-(((-779 |#1|) (-10 -7 (-15 -4396 ((-778) |#1|))) (-1222)) (T -779))
-((-4396 (*1 *2 *3) (-12 (-5 *2 (-778)) (-5 *1 (-779 *3)) (-4 *3 (-1222)))))
-(-10 -7 (-15 -4396 ((-778) |#1|)))
-((-3554 ((|#2| |#4|) 35)))
-(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3554 (|#2| |#4|))) (-457) (-1248 |#1|) (-729 |#1| |#2|) (-1248 |#3|)) (T -780))
-((-3554 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1248 *5)))))
-(-10 -7 (-15 -3554 (|#2| |#4|)))
-((-3908 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2783 (((-1278) (-1165) (-1165) |#4| |#5|) 33)) (-2781 ((|#4| |#4| |#5|) 74)) (-2782 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|) 79)) (-2784 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|) 16)))
-(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2781 (|#4| |#4| |#5|)) (-15 -2782 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -2783 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -2784 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -781))
-((-2784 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2783 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278)) (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1077 *6 *7 *8 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2781 (*1 *2 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1071 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1077 *4 *5 *6 *2)))) (-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3908 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2781 (|#4| |#4| |#5|)) (-15 -2782 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -2783 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -2784 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)))
-((-3595 (((-3 (-1177 (-1177 |#1|)) "failed") |#4|) 53)) (-2785 (((-646 |#4|) |#4|) 24)) (-4378 ((|#4| |#4|) 19)))
-(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2785 ((-646 |#4|) |#4|)) (-15 -3595 ((-3 (-1177 (-1177 |#1|)) "failed") |#4|)) (-15 -4378 (|#4| |#4|))) (-354) (-332 |#1|) (-1248 |#2|) (-1248 |#3|) (-925)) (T -782))
-((-4378 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-332 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1248 *5)) (-14 *6 (-925)))) (-3595 (*1 *2 *3) (|partial| -12 (-4 *4 (-354)) (-4 *5 (-332 *4)) (-4 *6 (-1248 *5)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1248 *6)) (-14 *7 (-925)))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-332 *4)) (-4 *6 (-1248 *5)) (-5 *2 (-646 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1248 *6)) (-14 *7 (-925)))))
-(-10 -7 (-15 -2785 ((-646 |#4|) |#4|)) (-15 -3595 ((-3 (-1177 (-1177 |#1|)) "failed") |#4|)) (-15 -4378 (|#4| |#4|)))
-((-2786 (((-2 (|:| |deter| (-646 (-1177 |#5|))) (|:| |dterm| (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-646 |#1|)) (|:| |nlead| (-646 |#5|))) (-1177 |#5|) (-646 |#1|) (-646 |#5|)) 75)) (-2787 (((-646 (-776)) |#1|) 20)))
-(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2786 ((-2 (|:| |deter| (-646 (-1177 |#5|))) (|:| |dterm| (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-646 |#1|)) (|:| |nlead| (-646 |#5|))) (-1177 |#5|) (-646 |#1|) (-646 |#5|))) (-15 -2787 ((-646 (-776)) |#1|))) (-1248 |#4|) (-798) (-855) (-310) (-956 |#4| |#2| |#3|)) (T -783))
-((-2787 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-646 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *6)) (-4 *7 (-956 *6 *4 *5)))) (-2786 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1248 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) (-4 *10 (-956 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-646 (-1177 *10))) (|:| |dterm| (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| *10))))) (|:| |nfacts| (-646 *6)) (|:| |nlead| (-646 *10)))) (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1177 *10)) (-5 *4 (-646 *6)) (-5 *5 (-646 *10)))))
-(-10 -7 (-15 -2786 ((-2 (|:| |deter| (-646 (-1177 |#5|))) (|:| |dterm| (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-646 |#1|)) (|:| |nlead| (-646 |#5|))) (-1177 |#5|) (-646 |#1|) (-646 |#5|))) (-15 -2787 ((-646 (-776)) |#1|)))
-((-2790 (((-646 (-2 (|:| |outval| |#1|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#1|))))) (-694 (-412 (-551))) |#1|) 31)) (-2789 (((-646 |#1|) (-694 (-412 (-551))) |#1|) 21)) (-2788 (((-952 (-412 (-551))) (-694 (-412 (-551))) (-1183)) 18) (((-952 (-412 (-551))) (-694 (-412 (-551)))) 17)))
-(((-784 |#1|) (-10 -7 (-15 -2788 ((-952 (-412 (-551))) (-694 (-412 (-551))))) (-15 -2788 ((-952 (-412 (-551))) (-694 (-412 (-551))) (-1183))) (-15 -2789 ((-646 |#1|) (-694 (-412 (-551))) |#1|)) (-15 -2790 ((-646 (-2 (|:| |outval| |#1|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#1|))))) (-694 (-412 (-551))) |#1|))) (-13 (-367) (-853))) (T -784))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *2 (-646 (-2 (|:| |outval| *4) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 *4)))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *2 (-646 *4)) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *4 (-1183)) (-5 *2 (-952 (-412 (-551)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *2 (-952 (-412 (-551)))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -2788 ((-952 (-412 (-551))) (-694 (-412 (-551))))) (-15 -2788 ((-952 (-412 (-551))) (-694 (-412 (-551))) (-1183))) (-15 -2789 ((-646 |#1|) (-694 (-412 (-551))) |#1|)) (-15 -2790 ((-646 (-2 (|:| |outval| |#1|) (|:| |outmult| (-551)) (|:| |outvect| (-646 (-694 |#1|))))) (-694 (-412 (-551))) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 36)) (-3503 (((-646 |#2|) $) NIL)) (-3505 (((-1177 $) $ |#2|) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 |#2|)) NIL)) (-4246 (($ $) 30)) (-3604 (((-112) $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4205 (($ $ $) 110 (|has| |#1| (-562)))) (-3586 (((-646 $) $ $) 123 (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-952 (-412 (-551)))) NIL (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183))))) (((-3 $ #3#) (-952 (-551))) NIL (-3978 (-12 (|has| |#1| (-38 (-551))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551)))))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183)))))) (((-3 $ #3#) (-952 |#1|)) NIL (-3978 (-12 (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-38 (-551))))) (-12 (|has| |#1| (-38 (-551))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-997 (-551))))))) (((-3 (-1131 |#1| |#2|) #2#) $) 21)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) ((|#2| $) NIL) (($ (-952 (-412 (-551)))) NIL (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183))))) (($ (-952 (-551))) NIL (-3978 (-12 (|has| |#1| (-38 (-551))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551)))))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183)))))) (($ (-952 |#1|)) NIL (-3978 (-12 (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-38 (-551))))) (-12 (|has| |#1| (-38 (-551))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-997 (-551))))))) (((-1131 |#1| |#2|) $) NIL)) (-4206 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-562)))) (-4409 (($ $) NIL) (($ $ |#2|) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-4144 (((-112) $ $) NIL) (((-112) $ (-646 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3610 (((-112) $) NIL)) (-4202 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 81)) (-3581 (($ $) 136 (|has| |#1| (-457)))) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-3592 (($ $) NIL (|has| |#1| (-562)))) (-3593 (($ $) NIL (|has| |#1| (-562)))) (-3603 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3602 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1779 (($ $ |#1| (-536 |#2|) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| |#1| (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| |#1| (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) 57)) (-2599 (((-776) $) NIL)) (-4145 (((-112) $ $) NIL) (((-112) $ (-646 $)) NIL)) (-3583 (($ $ $ $ $) 107 (|has| |#1| (-562)))) (-3618 ((|#2| $) 22)) (-3506 (($ (-1177 |#1|) |#2|) NIL) (($ (-1177 $) |#2|) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 38) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3597 (($ $ $) 63)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#2|) NIL)) (-3611 (((-112) $) NIL)) (-3241 (((-536 |#2|) $) NIL) (((-776) $ |#2|) NIL) (((-646 (-776)) $ (-646 |#2|)) NIL)) (-3617 (((-776) $) 23)) (-1780 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3504 (((-3 |#2| #4="failed") $) NIL)) (-3578 (($ $) NIL (|has| |#1| (-457)))) (-3579 (($ $) NIL (|has| |#1| (-457)))) (-3606 (((-646 $) $) NIL)) (-3609 (($ $) 39)) (-3580 (($ $) NIL (|has| |#1| (-457)))) (-3607 (((-646 $) $) 43)) (-3608 (($ $) 41)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3596 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3922 (-776))) $ $) 96)) (-3598 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $) 78) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $ |#2|) NIL)) (-3599 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $) NIL) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $ |#2|) NIL)) (-3601 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3600 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3681 (((-1165) $) NIL)) (-3628 (($ $ $) 125 (|has| |#1| (-562)))) (-3614 (((-646 $) $) 32)) (-3244 (((-3 (-646 $) #4#) $) NIL)) (-3243 (((-3 (-646 $) #4#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| |#2|) (|:| -2582 (-776))) #4#) $) NIL)) (-4141 (((-112) $ $) NIL) (((-112) $ (-646 $)) NIL)) (-4136 (($ $ $) NIL)) (-3887 (($ $) 24)) (-4149 (((-112) $ $) NIL)) (-4142 (((-112) $ $) NIL) (((-112) $ (-646 $)) NIL)) (-4137 (($ $ $) NIL)) (-3616 (($ $) 26)) (-3682 (((-1126) $) NIL)) (-3587 (((-2 (|:| -3582 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-562)))) (-3588 (((-2 (|:| -3582 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-562)))) (-1982 (((-112) $) 56)) (-1981 ((|#1| $) 58)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 ((|#1| |#1| $) 133 (|has| |#1| (-457))) (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3589 (((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-562)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-562)))) (-3590 (($ $ |#1|) 129 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-3591 (($ $ |#1|) 128 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-646 |#2|) (-646 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-646 |#2|) (-646 $)) NIL)) (-4207 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-4260 (($ $ |#2|) NIL) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-4398 (((-536 |#2|) $) NIL) (((-776) $ |#2|) 45) (((-646 (-776)) $ (-646 |#2|)) NIL)) (-3615 (($ $) NIL)) (-3613 (($ $) 35)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| |#1| (-619 (-540))) (|has| |#2| (-619 (-540))))) (($ (-952 (-412 (-551)))) NIL (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183))))) (($ (-952 (-551))) NIL (-3978 (-12 (|has| |#1| (-38 (-551))) (|has| |#2| (-619 (-1183))) (-3764 (|has| |#1| (-38 (-412 (-551)))))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#2| (-619 (-1183)))))) (($ (-952 |#1|)) NIL (|has| |#2| (-619 (-1183)))) (((-1165) $) NIL (-12 (|has| |#1| (-1044 (-551))) (|has| |#2| (-619 (-1183))))) (((-952 |#1|) $) NIL (|has| |#2| (-619 (-1183))))) (-3238 ((|#1| $) 132 (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-952 |#1|) $) NIL (|has| |#2| (-619 (-1183)))) (((-1131 |#1| |#2|) $) 18) (($ (-1131 |#1| |#2|)) 19) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) 47) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 13 T CONST)) (-3605 (((-3 (-112) #3#) $ $) NIL)) (-3085 (($) 37 T CONST)) (-3584 (($ $ $ $ (-776)) 105 (|has| |#1| (-562)))) (-3585 (($ $ $ (-776)) 104 (|has| |#1| (-562)))) (-3090 (($ $ |#2|) NIL) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) 75)) (-4289 (($ $ $) 85)) (** (($ $ (-925)) NIL) (($ $ (-776)) 70)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 62) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+((-2888 (((-3 |#2| "failed") |#2| |#2| (-114) (-1183)) 37)))
+(((-777 |#1| |#2|) (-10 -7 (-15 -2888 ((-3 |#2| "failed") |#2| |#2| (-114) (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -777))
+((-2888 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-965))))))
+(-10 -7 (-15 -2888 ((-3 |#2| "failed") |#2| |#2| (-114) (-1183))))
+((-2388 (((-779) |#1|) 8)))
+(((-778 |#1|) (-10 -7 (-15 -2388 ((-779) |#1|))) (-1223)) (T -778))
+((-2388 (*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1223)))))
+(-10 -7 (-15 -2388 ((-779) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 7)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)))
+(((-779) (-1106)) (T -779))
+NIL
+(-1106)
+((-3334 ((|#2| |#4|) 35)))
+(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3334 (|#2| |#4|))) (-457) (-1249 |#1|) (-729 |#1| |#2|) (-1249 |#3|)) (T -780))
+((-3334 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1249 *5)))))
+(-10 -7 (-15 -3334 (|#2| |#4|)))
+((-3351 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3120 (((-1278) (-1165) (-1165) |#4| |#5|) 33)) (-3100 ((|#4| |#4| |#5|) 74)) (-3110 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|) 79)) (-3131 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|) 16)))
+(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3351 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3100 (|#4| |#4| |#5|)) (-15 -3110 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -3120 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -3131 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -781))
+((-3131 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3120 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278)) (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1077 *6 *7 *8 *4)))) (-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3100 (*1 *2 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1071 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1077 *4 *5 *6 *2)))) (-3351 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3351 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3100 (|#4| |#4| |#5|)) (-15 -3110 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -3120 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -3131 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)))
+((-4359 (((-3 (-1179 (-1179 |#1|)) "failed") |#4|) 53)) (-3142 (((-649 |#4|) |#4|) 24)) (-3075 ((|#4| |#4|) 19)))
+(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3142 ((-649 |#4|) |#4|)) (-15 -4359 ((-3 (-1179 (-1179 |#1|)) "failed") |#4|)) (-15 -3075 (|#4| |#4|))) (-353) (-332 |#1|) (-1249 |#2|) (-1249 |#3|) (-927)) (T -782))
+((-3075 (*1 *2 *2) (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1249 *5)) (-14 *6 (-927)))) (-4359 (*1 *2 *3) (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6)) (-14 *7 (-927)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5)) (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6)) (-14 *7 (-927)))))
+(-10 -7 (-15 -3142 ((-649 |#4|) |#4|)) (-15 -4359 ((-3 (-1179 (-1179 |#1|)) "failed") |#4|)) (-15 -3075 (|#4| |#4|)))
+((-3153 (((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|)) 75)) (-3164 (((-649 (-776)) |#1|) 20)))
+(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3153 ((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3164 ((-649 (-776)) |#1|))) (-1249 |#4|) (-798) (-855) (-310) (-955 |#4| |#2| |#3|)) (T -783))
+((-3164 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *6)) (-4 *7 (-955 *6 *4 *5)))) (-3153 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1249 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) (-4 *10 (-955 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-649 (-1179 *10))) (|:| |dterm| (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| *10))))) (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10)))) (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1179 *10)) (-5 *4 (-649 *6)) (-5 *5 (-649 *10)))))
+(-10 -7 (-15 -3153 ((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3164 ((-649 (-776)) |#1|)))
+((-3198 (((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|) 31)) (-3187 (((-649 |#1|) (-694 (-412 (-569))) |#1|) 21)) (-3176 (((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183)) 18) (((-958 (-412 (-569))) (-694 (-412 (-569)))) 17)))
+(((-784 |#1|) (-10 -7 (-15 -3176 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -3176 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183))) (-15 -3187 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -3198 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|))) (-13 (-367) (-853))) (T -784))
+((-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 (-2 (|:| |outval| *4) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *4)))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1183)) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3176 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -3176 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183))) (-15 -3187 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -3198 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 36)) (-3865 (((-649 |#2|) $) NIL)) (-3663 (((-1179 $) $ |#2|) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 |#2|)) NIL)) (-1528 (($ $) 30)) (-2571 (((-112) $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4156 (($ $ $) 110 (|has| |#1| (-561)))) (-3660 (((-649 $) $ $) 123 (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (((-3 $ "failed") (-958 (-569))) NIL (-2718 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (((-3 $ "failed") (-958 |#1|)) NIL (-2718 (-12 (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-998 (-569))))))) (((-3 (-1131 |#1| |#2|) "failed") $) 21)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#2| $) NIL) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (($ (-958 (-569))) NIL (-2718 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (($ (-958 |#1|)) NIL (-2718 (-12 (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-998 (-569))))))) (((-1131 |#1| |#2|) $) NIL)) (-4168 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-561)))) (-1842 (($ $) NIL) (($ $ |#2|) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-1691 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2642 (((-112) $) NIL)) (-4121 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 81)) (-3613 (($ $) 136 (|has| |#1| (-457)))) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-2467 (($ $) NIL (|has| |#1| (-561)))) (-2478 (($ $) NIL (|has| |#1| (-561)))) (-2561 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2550 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1482 (($ $ |#1| (-536 |#2|) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) 57)) (-2933 (((-776) $) NIL)) (-1703 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-3626 (($ $ $ $ $) 107 (|has| |#1| (-561)))) (-2717 ((|#2| $) 22)) (-3851 (($ (-1179 |#1|) |#2|) NIL) (($ (-1179 $) |#2|) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 38) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2497 (($ $ $) 63)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#2|) NIL)) (-2652 (((-112) $) NIL)) (-3304 (((-536 |#2|) $) NIL) (((-776) $ |#2|) NIL) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-2705 (((-776) $) 23)) (-1491 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-4212 (((-3 |#2| "failed") $) NIL)) (-3581 (($ $) NIL (|has| |#1| (-457)))) (-3591 (($ $) NIL (|has| |#1| (-457)))) (-2594 (((-649 $) $) NIL)) (-2631 (($ $) 39)) (-3603 (($ $) NIL (|has| |#1| (-457)))) (-2607 (((-649 $) $) 43)) (-2621 (($ $) 41)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2486 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3508 (-776))) $ $) 96)) (-2506 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $) 78) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $ |#2|) NIL)) (-2517 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $) NIL) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $ |#2|) NIL)) (-2540 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2528 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2050 (((-1165) $) NIL)) (-2809 (($ $ $) 125 (|has| |#1| (-561)))) (-2674 (((-649 $) $) 32)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| |#2|) (|:| -2777 (-776))) "failed") $) NIL)) (-1656 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1603 (($ $ $) NIL)) (-2267 (($ $) 24)) (-1755 (((-112) $ $) NIL)) (-1667 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1614 (($ $ $) NIL)) (-2695 (($ $) 26)) (-3461 (((-1126) $) NIL)) (-3673 (((-2 (|:| -1830 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-561)))) (-3687 (((-2 (|:| -1830 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-561)))) (-1787 (((-112) $) 56)) (-1794 ((|#1| $) 58)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 ((|#1| |#1| $) 133 (|has| |#1| (-457))) (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2439 (((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-561)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-561)))) (-2449 (($ $ |#1|) 129 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-2459 (($ $ |#1|) 128 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-649 |#2|) (-649 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-649 |#2|) (-649 $)) NIL)) (-4180 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3430 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2091 (((-536 |#2|) $) NIL) (((-776) $ |#2|) 45) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-2685 (($ $) NIL)) (-2662 (($ $) 35)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541))))) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (($ (-958 (-569))) NIL (-2718 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1728 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (($ (-958 |#1|)) NIL (|has| |#2| (-619 (-1183)))) (((-1165) $) NIL (-12 (|has| |#1| (-1044 (-569))) (|has| |#2| (-619 (-1183))))) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1183))))) (-3281 ((|#1| $) 132 (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1183)))) (((-1131 |#1| |#2|) $) 18) (($ (-1131 |#1| |#2|)) 19) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) 47) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 13 T CONST)) (-2583 (((-3 (-112) "failed") $ $) NIL)) (-1796 (($) 37 T CONST)) (-3639 (($ $ $ $ (-776)) 105 (|has| |#1| (-561)))) (-3651 (($ $ $ (-776)) 104 (|has| |#1| (-561)))) (-2749 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) 75)) (-2935 (($ $ $) 85)) (** (($ $ (-927)) NIL) (($ $ (-776)) 70)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 62) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
(((-785 |#1| |#2|) (-13 (-1071 |#1| (-536 |#2|) |#2|) (-618 (-1131 |#1| |#2|)) (-1044 (-1131 |#1| |#2|))) (-1055) (-855)) (T -785))
NIL
(-13 (-1071 |#1| (-536 |#2|) |#2|) (-618 (-1131 |#1| |#2|)) (-1044 (-1131 |#1| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 12)) (-4216 (((-1272 |#1|) $ (-776)) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4214 (($ (-1177 |#1|)) NIL)) (-3505 (((-1177 $) $ (-1088)) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1088))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2794 (((-646 $) $ $) 54 (|has| |#1| (-562)))) (-4205 (($ $ $) 50 (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4210 (($ $ (-776)) NIL)) (-4209 (($ $ (-776)) NIL)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-1088) #2#) $) NIL) (((-3 (-1177 |#1|) #2#) $) 10)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-1088) $) NIL) (((-1177 |#1|) $) NIL)) (-4206 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4208 (($ $ $) NIL)) (-4203 (($ $ $) 87 (|has| |#1| (-562)))) (-4202 (((-2 (|:| -4404 |#1|) (|:| -2162 $) (|:| -3321 $)) $ $) 86 (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-776) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1088) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1088) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ $) NIL (|has| |#1| (-562)))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-1157)))) (-3506 (($ (-1177 |#1|) (-1088)) NIL) (($ (-1177 $) (-1088)) NIL)) (-4226 (($ $ (-776)) NIL)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3597 (($ $ $) 27)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1088)) NIL) (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3241 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-1780 (($ (-1 (-776) (-776)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4215 (((-1177 |#1|) $) NIL)) (-3504 (((-3 (-1088) #4="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3596 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3922 (-776))) $ $) 37)) (-2796 (($ $ $) 41)) (-2795 (($ $ $) 47)) (-3598 (((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $) 46)) (-3681 (((-1165) $) NIL)) (-3628 (($ $ $) 56 (|has| |#1| (-562)))) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) NIL)) (-3244 (((-3 (-646 $) #4#) $) NIL)) (-3243 (((-3 (-646 $) #4#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1088)) (|:| -2582 (-776))) #4#) $) NIL)) (-4262 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) NIL (|has| |#1| (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3587 (((-2 (|:| -3582 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-562)))) (-3588 (((-2 (|:| -3582 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-562)))) (-2791 (((-2 (|:| -4206 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-562)))) (-2792 (((-2 (|:| -4206 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-562)))) (-1982 (((-112) $) 13)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-4188 (($ $ (-776) |#1| $) 26)) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3589 (((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-562)))) (-2793 (((-2 (|:| -4206 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-562)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-646 (-1088)) (-646 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-646 (-1088)) (-646 $)) NIL)) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-562))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-562)))) (-4213 (((-3 $ #5="failed") $ (-776)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4207 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-4260 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4398 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1088) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4204 (((-3 $ #5#) $ $) NIL (|has| |#1| (-562))) (((-3 (-412 $) #5#) (-412 $) $) NIL (|has| |#1| (-562)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-1088)) NIL) (((-1177 |#1|) $) 7) (($ (-1177 |#1|)) 8) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 28 T CONST)) (-3085 (($) 32 T CONST)) (-3090 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) 40) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-786 |#1|) (-13 (-1248 |#1|) (-618 (-1177 |#1|)) (-1044 (-1177 |#1|)) (-10 -8 (-15 -4188 ($ $ (-776) |#1| $)) (-15 -3597 ($ $ $)) (-15 -3596 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3922 (-776))) $ $)) (-15 -2796 ($ $ $)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2795 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -2794 ((-646 $) $ $)) (-15 -3628 ($ $ $)) (-15 -3589 ((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3588 ((-2 (|:| -3582 $) (|:| |coef1| $)) $ $)) (-15 -3587 ((-2 (|:| -3582 $) (|:| |coef2| $)) $ $)) (-15 -2793 ((-2 (|:| -4206 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2792 ((-2 (|:| -4206 |#1|) (|:| |coef1| $)) $ $)) (-15 -2791 ((-2 (|:| -4206 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1055)) (T -786))
-((-4188 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-786 *3)) (-4 *3 (-1055)))) (-3597 (*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055)))) (-3596 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-786 *3)) (|:| |polden| *3) (|:| -3922 (-776)))) (-5 *1 (-786 *3)) (-4 *3 (-1055)))) (-2796 (*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055)))) (-3598 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4404 *3) (|:| |gap| (-776)) (|:| -2162 (-786 *3)) (|:| -3321 (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-1055)))) (-2795 (*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055)))) (-2794 (*1 *2 *1 *1) (-12 (-5 *2 (-646 (-786 *3))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-3628 (*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-562)) (-4 *2 (-1055)))) (-3589 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3582 (-786 *3)) (|:| |coef1| (-786 *3)) (|:| |coef2| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-3588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3582 (-786 *3)) (|:| |coef1| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-3587 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3582 (-786 *3)) (|:| |coef2| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-2793 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4206 *3) (|:| |coef1| (-786 *3)) (|:| |coef2| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-2792 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4206 *3) (|:| |coef1| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))) (-2791 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4206 *3) (|:| |coef2| (-786 *3)))) (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))))
-(-13 (-1248 |#1|) (-618 (-1177 |#1|)) (-1044 (-1177 |#1|)) (-10 -8 (-15 -4188 ($ $ (-776) |#1| $)) (-15 -3597 ($ $ $)) (-15 -3596 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3922 (-776))) $ $)) (-15 -2796 ($ $ $)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2795 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -2794 ((-646 $) $ $)) (-15 -3628 ($ $ $)) (-15 -3589 ((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3588 ((-2 (|:| -3582 $) (|:| |coef1| $)) $ $)) (-15 -3587 ((-2 (|:| -3582 $) (|:| |coef2| $)) $ $)) (-15 -2793 ((-2 (|:| -4206 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2792 ((-2 (|:| -4206 |#1|) (|:| |coef1| $)) $ $)) (-15 -2791 ((-2 (|:| -4206 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-4408 (((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)) 13)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -4408 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)))) (-1055) (-1055)) (T -787))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-786 *6)) (-5 *1 (-787 *5 *6)))))
-(-10 -7 (-15 -4408 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|))))
-((-2798 ((|#1| (-776) |#1|) 33 (|has| |#1| (-38 (-412 (-551)))))) (-3222 ((|#1| (-776) |#1|) 23)) (-2797 ((|#1| (-776) |#1|) 35 (|has| |#1| (-38 (-412 (-551)))))))
-(((-788 |#1|) (-10 -7 (-15 -3222 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -2797 (|#1| (-776) |#1|)) (-15 -2798 (|#1| (-776) |#1|))) |%noBranch|)) (-173)) (T -788))
-((-2798 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-173)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-173)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173)))))
-(-10 -7 (-15 -3222 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -2797 (|#1| (-776) |#1|)) (-15 -2798 (|#1| (-776) |#1|))) |%noBranch|))
-((-2986 (((-112) $ $) 7)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) 86)) (-4132 (((-646 $) (-646 |#4|)) 87) (((-646 $) (-646 |#4|) (-112)) 112)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) 102) (((-112) $) 98)) (-4138 ((|#4| |#4| $) 93)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 127)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-4248 (((-3 $ #1#) $) 83)) (-4135 ((|#4| |#4| $) 90)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4133 ((|#4| |#4| $) 88)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) 106)) (-3635 (((-112) |#4| $) 137)) (-3633 (((-112) |#4| $) 134)) (-3636 (((-112) |#4| $) 138) (((-112) $) 135)) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) 105) (((-112) $) 104)) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) 129)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 128)) (-4247 (((-3 |#4| #1#) $) 84)) (-3630 (((-646 $) |#4| $) 130)) (-3632 (((-3 (-112) (-646 $)) |#4| $) 133)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3676 (((-646 $) |#4| $) 126) (((-646 $) (-646 |#4|) $) 125) (((-646 $) (-646 |#4|) (-646 $)) 124) (((-646 $) |#4| (-646 $)) 123)) (-3882 (($ |#4| $) 118) (($ (-646 |#4|) $) 117)) (-4147 (((-646 |#4|) $) 108)) (-4141 (((-112) |#4| $) 100) (((-112) $) 96)) (-4136 ((|#4| |#4| $) 91)) (-4149 (((-112) $ $) 111)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) 101) (((-112) $) 97)) (-4137 ((|#4| |#4| $) 92)) (-3682 (((-1126) $) 11)) (-4250 (((-3 |#4| #1#) $) 85)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4129 (((-3 $ #1#) $ |#4|) 79)) (-4218 (($ $ |#4|) 78) (((-646 $) |#4| $) 116) (((-646 $) |#4| (-646 $)) 115) (((-646 $) (-646 |#4|) $) 114) (((-646 $) (-646 |#4|) (-646 $)) 113)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-4398 (((-776) $) 107)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-4134 (($ $) 89)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-4128 (((-776) $) 77 (|has| |#3| (-372)))) (-3680 (((-112) $ $) 9)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) 99)) (-3627 (((-646 $) |#4| $) 122) (((-646 $) |#4| (-646 $)) 121) (((-646 $) (-646 |#4|) $) 120) (((-646 $) (-646 |#4|) (-646 $)) 119)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) 82)) (-3634 (((-112) |#4| $) 136)) (-4383 (((-112) |#3| $) 81)) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
+((-1324 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 13)))
+(((-786 |#1| |#2|) (-10 -7 (-15 -1324 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1055) (-1055)) (T -786))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
+(-10 -7 (-15 -1324 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 12)) (-4284 (((-1273 |#1|) $ (-776)) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-4258 (($ (-1179 |#1|)) NIL)) (-3663 (((-1179 $) $ (-1088)) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3256 (((-649 $) $ $) 54 (|has| |#1| (-561)))) (-4156 (($ $ $) 50 (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4213 (($ $ (-776)) NIL)) (-4201 (($ $ (-776)) NIL)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL) (((-3 (-1179 |#1|) "failed") $) 10)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL) (((-1179 |#1|) $) NIL)) (-4168 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-4190 (($ $ $) NIL)) (-4133 (($ $ $) 87 (|has| |#1| (-561)))) (-4121 (((-2 (|:| -1406 |#1|) (|:| -4273 $) (|:| -2804 $)) $ $) 86 (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-776) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-3851 (($ (-1179 |#1|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-4352 (($ $ (-776)) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-2497 (($ $ $) 27)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1088)) NIL) (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3304 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1491 (($ (-1 (-776) (-776)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-4270 (((-1179 |#1|) $) NIL)) (-4212 (((-3 (-1088) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2486 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3508 (-776))) $ $) 37)) (-3282 (($ $ $) 41)) (-3268 (($ $ $) 47)) (-2506 (((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $) 46)) (-2050 (((-1165) $) NIL)) (-2809 (($ $ $) 56 (|has| |#1| (-561)))) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1088)) (|:| -2777 (-776))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) NIL (|has| |#1| (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-3673 (((-2 (|:| -1830 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-561)))) (-3687 (((-2 (|:| -1830 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-561)))) (-3213 (((-2 (|:| -4168 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-561)))) (-3227 (((-2 (|:| -4168 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-561)))) (-1787 (((-112) $) 13)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3957 (($ $ (-776) |#1| $) 26)) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2439 (((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-561)))) (-3241 (((-2 (|:| -4168 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-561)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-4247 (((-3 $ "failed") $ (-776)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-4180 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3430 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2091 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-4146 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1088)) NIL) (((-1179 |#1|) $) 7) (($ (-1179 |#1|)) 8) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 28 T CONST)) (-1796 (($) 32 T CONST)) (-2749 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) 40) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-787 |#1|) (-13 (-1249 |#1|) (-618 (-1179 |#1|)) (-1044 (-1179 |#1|)) (-10 -8 (-15 -3957 ($ $ (-776) |#1| $)) (-15 -2497 ($ $ $)) (-15 -2486 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3508 (-776))) $ $)) (-15 -3282 ($ $ $)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -3268 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3256 ((-649 $) $ $)) (-15 -2809 ($ $ $)) (-15 -2439 ((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3687 ((-2 (|:| -1830 $) (|:| |coef1| $)) $ $)) (-15 -3673 ((-2 (|:| -1830 $) (|:| |coef2| $)) $ $)) (-15 -3241 ((-2 (|:| -4168 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3227 ((-2 (|:| -4168 |#1|) (|:| |coef1| $)) $ $)) (-15 -3213 ((-2 (|:| -4168 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1055)) (T -787))
+((-3957 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-2486 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -3508 (-776)))) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-3282 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-2506 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1406 *3) (|:| |gap| (-776)) (|:| -4273 (-787 *3)) (|:| -2804 (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-3268 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-3256 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-2809 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1055)))) (-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1830 (-787 *3)) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3687 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1830 (-787 *3)) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3673 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1830 (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3241 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4168 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3227 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4168 *3) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3213 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4168 *3) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
+(-13 (-1249 |#1|) (-618 (-1179 |#1|)) (-1044 (-1179 |#1|)) (-10 -8 (-15 -3957 ($ $ (-776) |#1| $)) (-15 -2497 ($ $ $)) (-15 -2486 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3508 (-776))) $ $)) (-15 -3282 ($ $ $)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -3268 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3256 ((-649 $) $ $)) (-15 -2809 ($ $ $)) (-15 -2439 ((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3687 ((-2 (|:| -1830 $) (|:| |coef1| $)) $ $)) (-15 -3673 ((-2 (|:| -1830 $) (|:| |coef2| $)) $ $)) (-15 -3241 ((-2 (|:| -4168 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3227 ((-2 (|:| -4168 |#1|) (|:| |coef1| $)) $ $)) (-15 -3213 ((-2 (|:| -4168 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3305 ((|#1| (-776) |#1|) 33 (|has| |#1| (-38 (-412 (-569)))))) (-3089 ((|#1| (-776) |#1|) 23)) (-3293 ((|#1| (-776) |#1|) 35 (|has| |#1| (-38 (-412 (-569)))))))
+(((-788 |#1|) (-10 -7 (-15 -3089 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3293 (|#1| (-776) |#1|)) (-15 -3305 (|#1| (-776) |#1|))) |%noBranch|)) (-173)) (T -788))
+((-3305 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3293 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173)))))
+(-10 -7 (-15 -3089 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3293 (|#1| (-776) |#1|)) (-15 -3305 (|#1| (-776) |#1|))) |%noBranch|))
+((-2383 (((-112) $ $) 7)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) 86)) (-1555 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) 102) (((-112) $) 98)) (-1624 ((|#4| |#4| $) 93)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 127)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3414 (((-3 $ "failed") $) 83)) (-1590 ((|#4| |#4| $) 90)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1567 ((|#4| |#4| $) 88)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) 106)) (-2881 (((-112) |#4| $) 137)) (-2862 (((-112) |#4| $) 134)) (-2892 (((-112) |#4| $) 138) (((-112) $) 135)) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) 105) (((-112) $) 104)) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 128)) (-1702 (((-3 |#4| "failed") $) 84)) (-2830 (((-649 $) |#4| $) 130)) (-2852 (((-3 (-112) (-649 $)) |#4| $) 133)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2018 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3143 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1730 (((-649 |#4|) $) 108)) (-1656 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-1755 (((-112) $ $) 111)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) 101) (((-112) $) 97)) (-1614 ((|#4| |#4| $) 92)) (-3461 (((-1126) $) 11)) (-3401 (((-3 |#4| "failed") $) 85)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1521 (((-3 $ "failed") $ |#4|) 79)) (-4295 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-2091 (((-776) $) 107)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-1577 (($ $) 89)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1512 (((-776) $) 77 (|has| |#3| (-372)))) (-2040 (((-112) $ $) 9)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2800 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) 82)) (-2871 (((-112) |#4| $) 136)) (-1988 (((-112) |#3| $) 81)) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
(((-789 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -789))
NIL
(-13 (-1077 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1107) . T) ((-1217 |#1| |#2| |#3| |#4|) . T) ((-1222) . T))
-((-2801 (((-3 (-382) "failed") (-317 |#1|) (-925)) 62 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-382) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-382) "failed") (-412 (-952 |#1|)) (-925)) 41 (|has| |#1| (-562))) (((-3 (-382) "failed") (-412 (-952 |#1|))) 40 (|has| |#1| (-562))) (((-3 (-382) "failed") (-952 |#1|) (-925)) 31 (|has| |#1| (-1055))) (((-3 (-382) "failed") (-952 |#1|)) 30 (|has| |#1| (-1055)))) (-2799 (((-382) (-317 |#1|) (-925)) 99 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-382) (-317 |#1|)) 94 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-382) (-412 (-952 |#1|)) (-925)) 91 (|has| |#1| (-562))) (((-382) (-412 (-952 |#1|))) 90 (|has| |#1| (-562))) (((-382) (-952 |#1|) (-925)) 86 (|has| |#1| (-1055))) (((-382) (-952 |#1|)) 85 (|has| |#1| (-1055))) (((-382) |#1| (-925)) 76) (((-382) |#1|) 22)) (-2802 (((-3 (-169 (-382)) "failed") (-317 (-169 |#1|)) (-925)) 71 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-169 (-382)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-169 (-382)) "failed") (-317 |#1|) (-925)) 63 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-169 (-382)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|))) (-925)) 46 (|has| |#1| (-562))) (((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|)))) 45 (|has| |#1| (-562))) (((-3 (-169 (-382)) "failed") (-412 (-952 |#1|)) (-925)) 39 (|has| |#1| (-562))) (((-3 (-169 (-382)) "failed") (-412 (-952 |#1|))) 38 (|has| |#1| (-562))) (((-3 (-169 (-382)) "failed") (-952 |#1|) (-925)) 28 (|has| |#1| (-1055))) (((-3 (-169 (-382)) "failed") (-952 |#1|)) 26 (|has| |#1| (-1055))) (((-3 (-169 (-382)) "failed") (-952 (-169 |#1|)) (-925)) 18 (|has| |#1| (-173))) (((-3 (-169 (-382)) "failed") (-952 (-169 |#1|))) 15 (|has| |#1| (-173)))) (-2800 (((-169 (-382)) (-317 (-169 |#1|)) (-925)) 102 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-169 (-382)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-169 (-382)) (-317 |#1|) (-925)) 100 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-169 (-382)) (-317 |#1|)) 98 (-12 (|has| |#1| (-562)) (|has| |#1| (-855)))) (((-169 (-382)) (-412 (-952 (-169 |#1|))) (-925)) 93 (|has| |#1| (-562))) (((-169 (-382)) (-412 (-952 (-169 |#1|)))) 92 (|has| |#1| (-562))) (((-169 (-382)) (-412 (-952 |#1|)) (-925)) 89 (|has| |#1| (-562))) (((-169 (-382)) (-412 (-952 |#1|))) 88 (|has| |#1| (-562))) (((-169 (-382)) (-952 |#1|) (-925)) 84 (|has| |#1| (-1055))) (((-169 (-382)) (-952 |#1|)) 83 (|has| |#1| (-1055))) (((-169 (-382)) (-952 (-169 |#1|)) (-925)) 78 (|has| |#1| (-173))) (((-169 (-382)) (-952 (-169 |#1|))) 77 (|has| |#1| (-173))) (((-169 (-382)) (-169 |#1|) (-925)) 80 (|has| |#1| (-173))) (((-169 (-382)) (-169 |#1|)) 79 (|has| |#1| (-173))) (((-169 (-382)) |#1| (-925)) 27) (((-169 (-382)) |#1|) 25)))
-(((-790 |#1|) (-10 -7 (-15 -2799 ((-382) |#1|)) (-15 -2799 ((-382) |#1| (-925))) (-15 -2800 ((-169 (-382)) |#1|)) (-15 -2800 ((-169 (-382)) |#1| (-925))) (IF (|has| |#1| (-173)) (PROGN (-15 -2800 ((-169 (-382)) (-169 |#1|))) (-15 -2800 ((-169 (-382)) (-169 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-952 (-169 |#1|)))) (-15 -2800 ((-169 (-382)) (-952 (-169 |#1|)) (-925)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2799 ((-382) (-952 |#1|))) (-15 -2799 ((-382) (-952 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-952 |#1|))) (-15 -2800 ((-169 (-382)) (-952 |#1|) (-925)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2799 ((-382) (-412 (-952 |#1|)))) (-15 -2799 ((-382) (-412 (-952 |#1|)) (-925))) (-15 -2800 ((-169 (-382)) (-412 (-952 |#1|)))) (-15 -2800 ((-169 (-382)) (-412 (-952 |#1|)) (-925))) (-15 -2800 ((-169 (-382)) (-412 (-952 (-169 |#1|))))) (-15 -2800 ((-169 (-382)) (-412 (-952 (-169 |#1|))) (-925))) (IF (|has| |#1| (-855)) (PROGN (-15 -2799 ((-382) (-317 |#1|))) (-15 -2799 ((-382) (-317 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-317 |#1|))) (-15 -2800 ((-169 (-382)) (-317 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-317 (-169 |#1|)))) (-15 -2800 ((-169 (-382)) (-317 (-169 |#1|)) (-925)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 (-169 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 (-169 |#1|)) (-925)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-952 |#1|))) (-15 -2801 ((-3 (-382) "failed") (-952 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 |#1|))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 |#1|) (-925)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-412 (-952 |#1|)))) (-15 -2801 ((-3 (-382) "failed") (-412 (-952 |#1|)) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 |#1|)) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|))))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|))) (-925))) (IF (|has| |#1| (-855)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-317 |#1|))) (-15 -2801 ((-3 (-382) "failed") (-317 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 |#1|))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 (-169 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 (-169 |#1|)) (-925)))) |%noBranch|)) |%noBranch|)) (-619 (-382))) (T -790))
-((-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2801 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2801 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-952 (-169 *5)))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-952 (-169 *4)))) (-4 *4 (-562)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2801 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2801 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2801 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2801 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-173)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 (-169 *5)))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 (-169 *4)))) (-4 *4 (-562)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-173)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-925)) (-4 *5 (-173)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-5 *2 (-169 (-382))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-382))))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-169 (-382))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-382))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-5 *2 (-382)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-382)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))))
-(-10 -7 (-15 -2799 ((-382) |#1|)) (-15 -2799 ((-382) |#1| (-925))) (-15 -2800 ((-169 (-382)) |#1|)) (-15 -2800 ((-169 (-382)) |#1| (-925))) (IF (|has| |#1| (-173)) (PROGN (-15 -2800 ((-169 (-382)) (-169 |#1|))) (-15 -2800 ((-169 (-382)) (-169 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-952 (-169 |#1|)))) (-15 -2800 ((-169 (-382)) (-952 (-169 |#1|)) (-925)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2799 ((-382) (-952 |#1|))) (-15 -2799 ((-382) (-952 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-952 |#1|))) (-15 -2800 ((-169 (-382)) (-952 |#1|) (-925)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2799 ((-382) (-412 (-952 |#1|)))) (-15 -2799 ((-382) (-412 (-952 |#1|)) (-925))) (-15 -2800 ((-169 (-382)) (-412 (-952 |#1|)))) (-15 -2800 ((-169 (-382)) (-412 (-952 |#1|)) (-925))) (-15 -2800 ((-169 (-382)) (-412 (-952 (-169 |#1|))))) (-15 -2800 ((-169 (-382)) (-412 (-952 (-169 |#1|))) (-925))) (IF (|has| |#1| (-855)) (PROGN (-15 -2799 ((-382) (-317 |#1|))) (-15 -2799 ((-382) (-317 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-317 |#1|))) (-15 -2800 ((-169 (-382)) (-317 |#1|) (-925))) (-15 -2800 ((-169 (-382)) (-317 (-169 |#1|)))) (-15 -2800 ((-169 (-382)) (-317 (-169 |#1|)) (-925)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 (-169 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 (-169 |#1|)) (-925)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-952 |#1|))) (-15 -2801 ((-3 (-382) "failed") (-952 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 |#1|))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-952 |#1|) (-925)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-412 (-952 |#1|)))) (-15 -2801 ((-3 (-382) "failed") (-412 (-952 |#1|)) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 |#1|)) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|))))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-412 (-952 (-169 |#1|))) (-925))) (IF (|has| |#1| (-855)) (PROGN (-15 -2801 ((-3 (-382) "failed") (-317 |#1|))) (-15 -2801 ((-3 (-382) "failed") (-317 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 |#1|))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 |#1|) (-925))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 (-169 |#1|)))) (-15 -2802 ((-3 (-169 (-382)) "failed") (-317 (-169 |#1|)) (-925)))) |%noBranch|)) |%noBranch|))
-((-2806 (((-925) (-1165)) 92)) (-2808 (((-3 (-382) "failed") (-1165)) 36)) (-2807 (((-382) (-1165)) 34)) (-2804 (((-925) (-1165)) 63)) (-2805 (((-1165) (-925)) 75)) (-2803 (((-1165) (-925)) 62)))
-(((-791) (-10 -7 (-15 -2803 ((-1165) (-925))) (-15 -2804 ((-925) (-1165))) (-15 -2805 ((-1165) (-925))) (-15 -2806 ((-925) (-1165))) (-15 -2807 ((-382) (-1165))) (-15 -2808 ((-3 (-382) "failed") (-1165))))) (T -791))
-((-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-791)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-791)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-925)) (-5 *1 (-791)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1165)) (-5 *1 (-791)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-925)) (-5 *1 (-791)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1165)) (-5 *1 (-791)))))
-(-10 -7 (-15 -2803 ((-1165) (-925))) (-15 -2804 ((-925) (-1165))) (-15 -2805 ((-1165) (-925))) (-15 -2806 ((-925) (-1165))) (-15 -2807 ((-382) (-1165))) (-15 -2808 ((-3 (-382) "failed") (-1165))))
-((-2986 (((-112) $ $) 7)) (-2809 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 16) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 14)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
+((-3317 (((-3 (-383) "failed") (-319 |#1|) (-927)) 62 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-319 |#1|)) 54 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-412 (-958 |#1|)) (-927)) 41 (|has| |#1| (-561))) (((-3 (-383) "failed") (-412 (-958 |#1|))) 40 (|has| |#1| (-561))) (((-3 (-383) "failed") (-958 |#1|) (-927)) 31 (|has| |#1| (-1055))) (((-3 (-383) "failed") (-958 |#1|)) 30 (|has| |#1| (-1055)))) (-3369 (((-383) (-319 |#1|) (-927)) 99 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-319 |#1|)) 94 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-412 (-958 |#1|)) (-927)) 91 (|has| |#1| (-561))) (((-383) (-412 (-958 |#1|))) 90 (|has| |#1| (-561))) (((-383) (-958 |#1|) (-927)) 86 (|has| |#1| (-1055))) (((-383) (-958 |#1|)) 85 (|has| |#1| (-1055))) (((-383) |#1| (-927)) 76) (((-383) |#1|) 22)) (-3328 (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)) 71 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|))) 70 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|) (-927)) 63 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|)) 61 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927)) 46 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|)))) 45 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927)) 39 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|))) 38 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)) 28 (|has| |#1| (-1055))) (((-3 (-170 (-383)) "failed") (-958 |#1|)) 26 (|has| |#1| (-1055))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)) 18 (|has| |#1| (-173))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|))) 15 (|has| |#1| (-173)))) (-3606 (((-170 (-383)) (-319 (-170 |#1|)) (-927)) 102 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 (-170 |#1|))) 101 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|) (-927)) 100 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|)) 98 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927)) 93 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 (-170 |#1|)))) 92 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|)) (-927)) 89 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|))) 88 (|has| |#1| (-561))) (((-170 (-383)) (-958 |#1|) (-927)) 84 (|has| |#1| (-1055))) (((-170 (-383)) (-958 |#1|)) 83 (|has| |#1| (-1055))) (((-170 (-383)) (-958 (-170 |#1|)) (-927)) 78 (|has| |#1| (-173))) (((-170 (-383)) (-958 (-170 |#1|))) 77 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|) (-927)) 80 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|)) 79 (|has| |#1| (-173))) (((-170 (-383)) |#1| (-927)) 27) (((-170 (-383)) |#1|) 25)))
+(((-790 |#1|) (-10 -7 (-15 -3369 ((-383) |#1|)) (-15 -3369 ((-383) |#1| (-927))) (-15 -3606 ((-170 (-383)) |#1|)) (-15 -3606 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3606 ((-170 (-383)) (-170 |#1|))) (-15 -3606 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3606 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3369 ((-383) (-958 |#1|))) (-15 -3369 ((-383) (-958 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-958 |#1|))) (-15 -3606 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3369 ((-383) (-412 (-958 |#1|)))) (-15 -3369 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3606 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3606 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3606 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3606 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3369 ((-383) (-319 |#1|))) (-15 -3369 ((-383) (-319 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-319 |#1|))) (-15 -3606 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3606 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-958 |#1|))) (-15 -3317 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -3317 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-319 |#1|))) (-15 -3317 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|)) (-619 (-383))) (T -790))
+((-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3317 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3317 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3317 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3317 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3317 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3317 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3606 (*1 *2 *3) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) (-3369 (*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))))
+(-10 -7 (-15 -3369 ((-383) |#1|)) (-15 -3369 ((-383) |#1| (-927))) (-15 -3606 ((-170 (-383)) |#1|)) (-15 -3606 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3606 ((-170 (-383)) (-170 |#1|))) (-15 -3606 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3606 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3369 ((-383) (-958 |#1|))) (-15 -3369 ((-383) (-958 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-958 |#1|))) (-15 -3606 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3369 ((-383) (-412 (-958 |#1|)))) (-15 -3369 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3606 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3606 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3606 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3606 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3369 ((-383) (-319 |#1|))) (-15 -3369 ((-383) (-319 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-319 |#1|))) (-15 -3606 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3606 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3606 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-958 |#1|))) (-15 -3317 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -3317 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3317 ((-3 (-383) "failed") (-319 |#1|))) (-15 -3317 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -3328 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|))
+((-3372 (((-927) (-1165)) 92)) (-3399 (((-3 (-383) "failed") (-1165)) 36)) (-3385 (((-383) (-1165)) 34)) (-3350 (((-927) (-1165)) 63)) (-3361 (((-1165) (-927)) 75)) (-3339 (((-1165) (-927)) 62)))
+(((-791) (-10 -7 (-15 -3339 ((-1165) (-927))) (-15 -3350 ((-927) (-1165))) (-15 -3361 ((-1165) (-927))) (-15 -3372 ((-927) (-1165))) (-15 -3385 ((-383) (-1165))) (-15 -3399 ((-3 (-383) "failed") (-1165))))) (T -791))
+((-3399 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
+(-10 -7 (-15 -3339 ((-1165) (-927))) (-15 -3350 ((-927) (-1165))) (-15 -3361 ((-1165) (-927))) (-15 -3372 ((-927) (-1165))) (-15 -3385 ((-383) (-1165))) (-15 -3399 ((-3 (-383) "failed") (-1165))))
+((-2383 (((-112) $ $) 7)) (-3411 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 16) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 14)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-792) (-140)) (T -792))
-((-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-2809 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-2809 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
-(-13 (-1107) (-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2809 ((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226))) (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2809 ((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2812 (((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382))) 55) (((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382))) 52)) (-2813 (((-1278) (-1272 (-382)) (-551) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382))) 61)) (-2811 (((-1278) (-1272 (-382)) (-551) (-382) (-382) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382))) 50)) (-2810 (((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382))) 63) (((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382))) 62)))
-(((-793) (-10 -7 (-15 -2810 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2810 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)))) (-15 -2811 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2812 ((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2812 ((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)))) (-15 -2813 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))))) (T -793))
-((-2813 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2812 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-551)) (-5 *6 (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382)))) (-5 *7 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2812 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-551)) (-5 *6 (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382)))) (-5 *7 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2811 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2810 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(-10 -7 (-15 -2810 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2810 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)))) (-15 -2811 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2812 ((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))) (-15 -2812 ((-1278) (-1272 (-382)) (-551) (-382) (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))) (-382) (-1272 (-382)) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)) (-1272 (-382)))) (-15 -2813 ((-1278) (-1272 (-382)) (-551) (-382) (-382) (-551) (-1 (-1278) (-1272 (-382)) (-1272 (-382)) (-382)))))
-((-2822 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 66)) (-2819 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 42)) (-2821 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 65)) (-2818 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 40)) (-2820 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 64)) (-2817 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551)) 26)) (-2816 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551)) 43)) (-2815 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551)) 41)) (-2814 (((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551)) 39)))
-(((-794) (-10 -7 (-15 -2814 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2815 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2816 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2817 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2818 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2819 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2820 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2821 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2822 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))))) (T -794))
-((-2822 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2821 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2820 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2819 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2818 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2817 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2816 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2815 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))) (-2814 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382)) (-5 *2 (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-551)))))
-(-10 -7 (-15 -2814 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2815 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2816 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551) (-551))) (-15 -2817 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2818 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2819 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2820 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2821 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))) (-15 -2822 ((-2 (|:| -3844 (-382)) (|:| -1714 (-382)) (|:| |totalpts| (-551)) (|:| |success| (-112))) (-1 (-382) (-382)) (-382) (-382) (-382) (-382) (-551) (-551))))
-((-4155 (((-1218 |#1|) |#1| (-226) (-551)) 69)))
-(((-795 |#1|) (-10 -7 (-15 -4155 ((-1218 |#1|) |#1| (-226) (-551)))) (-980)) (T -795))
-((-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-551)) (-5 *2 (-1218 *3)) (-5 *1 (-795 *3)) (-4 *3 (-980)))))
-(-10 -7 (-15 -4155 ((-1218 |#1|) |#1| (-226) (-551))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 25)) (-1410 (((-3 $ "failed") $ $) 27)) (-4174 (($) 24 T CONST)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 23 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4287 (($ $ $) 31) (($ $) 30)) (-4289 (($ $ $) 21)) (* (($ (-925) $) 22) (($ (-776) $) 26) (($ (-551) $) 29)))
+((-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-3411 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-3411 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
+(-13 (-1106) (-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3411 ((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3411 ((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3446 (((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383))) 55) (((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 52)) (-3459 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 61)) (-3435 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 50)) (-3423 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383))) 63) (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 62)))
+(((-793) (-10 -7 (-15 -3423 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3423 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -3435 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3446 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3446 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -3459 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))))) (T -793))
+((-3459 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-3446 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383)))) (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-3446 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383)))) (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-3435 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-3423 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-3423 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))))
+(-10 -7 (-15 -3423 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3423 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -3435 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3446 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -3446 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -3459 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))))
+((-3567 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 66)) (-3527 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 42)) (-3555 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 65)) (-3517 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 40)) (-3540 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 64)) (-3507 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 26)) (-3497 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 43)) (-3486 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 41)) (-3474 (((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 39)))
+(((-794) (-10 -7 (-15 -3474 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3486 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3497 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3507 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3517 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3527 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3540 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3555 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3567 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))) (T -794))
+((-3567 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3555 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3540 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3527 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3517 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3507 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3497 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3486 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))))
+(-10 -7 (-15 -3474 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3486 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3497 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3507 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3517 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3527 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3540 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3555 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3567 ((-2 (|:| -2150 (-383)) (|:| -3534 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))
+((-1821 (((-1218 |#1|) |#1| (-226) (-569)) 69)))
+(((-795 |#1|) (-10 -7 (-15 -1821 ((-1218 |#1|) |#1| (-226) (-569)))) (-980)) (T -795))
+((-1821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1218 *3)) (-5 *1 (-795 *3)) (-4 *3 (-980)))))
+(-10 -7 (-15 -1821 ((-1218 |#1|) |#1| (-226) (-569))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-3863 (($) 24 T CONST)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 23 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2946 (($ $ $) 31) (($ $) 30)) (-2935 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29)))
(((-796) (-140)) (T -796))
NIL
-(-13 (-802) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-855) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 25)) (-4174 (($) 24 T CONST)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 23 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4289 (($ $ $) 21)) (* (($ (-925) $) 22) (($ (-776) $) 26)))
+(-13 (-800) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 25)) (-3863 (($) 24 T CONST)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 23 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2935 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
(((-797) (-140)) (T -797))
NIL
(-13 (-799) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-799) . T) ((-855) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 25)) (-2823 (($ $ $) 28)) (-1410 (((-3 $ "failed") $ $) 27)) (-4174 (($) 24 T CONST)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 23 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4289 (($ $ $) 21)) (* (($ (-925) $) 22) (($ (-776) $) 26)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-799) . T) ((-855) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 25)) (-3576 (($ $ $) 28)) (-3798 (((-3 $ "failed") $ $) 27)) (-3863 (($) 24 T CONST)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 23 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2935 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
(((-798) (-140)) (T -798))
-((-2823 (*1 *1 *1 *1) (-4 *1 (-798))))
-(-13 (-802) (-10 -8 (-15 -2823 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-855) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4289 (($ $ $) 21)) (* (($ (-925) $) 22)))
+((-3576 (*1 *1 *1 *1) (-4 *1 (-798))))
+(-13 (-800) (-10 -8 (-15 -3576 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2935 (($ $ $) 21)) (* (($ (-927) $) 22)))
(((-799) (-140)) (T -799))
NIL
(-13 (-855) (-25))
-(((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-855) . T) ((-1107) . T))
-((-3626 (((-112) $) 42)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL) ((|#2| $) 43)) (-3443 (((-3 (-412 (-551)) "failed") $) 78)) (-3442 (((-112) $) 72)) (-3441 (((-412 (-551)) $) 76)) (-3554 ((|#2| $) 26)) (-4408 (($ (-1 |#2| |#2|) $) 23)) (-2824 (($ $) 58)) (-4420 (((-540) $) 67)) (-3428 (($ $) 21)) (-4396 (((-868) $) 53) (($ (-551)) 40) (($ |#2|) 38) (($ (-412 (-551))) NIL)) (-3548 (((-776)) 10)) (-3825 ((|#2| $) 71)) (-3473 (((-112) $ $) 30)) (-3106 (((-112) $ $) 69)) (-4287 (($ $) 32) (($ $ $) NIL)) (-4289 (($ $ $) 31)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-800 |#1| |#2|) (-10 -8 (-15 -3106 ((-112) |#1| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3825 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-801 |#2|) (-173)) (T -800))
-((-3548 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-800 *3 *4)) (-4 *3 (-801 *4)))))
-(-10 -8 (-15 -3106 ((-112) |#1| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3825 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-3558 (((-776)) 58 (|has| |#1| (-372)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 100 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 97 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 94)) (-3594 (((-551) $) 99 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 96 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 95)) (-3908 (((-3 $ "failed") $) 37)) (-4093 ((|#1| $) 84)) (-3443 (((-3 (-412 (-551)) "failed") $) 71 (|has| |#1| (-550)))) (-3442 (((-112) $) 73 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 72 (|has| |#1| (-550)))) (-3413 (($) 61 (|has| |#1| (-372)))) (-2591 (((-112) $) 35)) (-2829 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3554 ((|#1| $) 76)) (-2952 (($ $ $) 67 (|has| |#1| (-855)))) (-3278 (($ $ $) 66 (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) 86)) (-2198 (((-925) $) 60 (|has| |#1| (-372)))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 70 (|has| |#1| (-367)))) (-2581 (($ (-925)) 59 (|has| |#1| (-372)))) (-2826 ((|#1| $) 81)) (-2827 ((|#1| $) 82)) (-2828 ((|#1| $) 83)) (-3425 ((|#1| $) 77)) (-3426 ((|#1| $) 78)) (-3427 ((|#1| $) 79)) (-2825 ((|#1| $) 80)) (-3682 (((-1126) $) 11)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) 92 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) 90 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) 89 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 88 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 87 (|has| |#1| (-519 (-1183) |#1|)))) (-4249 (($ $ |#1|) 93 (|has| |#1| (-289 |#1| |#1|)))) (-4420 (((-540) $) 68 (|has| |#1| (-619 (-540))))) (-3428 (($ $) 85)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44) (($ (-412 (-551))) 98 (|has| |#1| (-1044 (-412 (-551)))))) (-3123 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3825 ((|#1| $) 74 (|has| |#1| (-1066)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 64 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 63 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 65 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 62 (|has| |#1| (-855)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-801 |#1|) (-140) (-173)) (T -801))
-((-3428 (*1 *1 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-2829 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))) (-2824 (*1 *1 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
-(-13 (-38 |t#1|) (-417 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3428 ($ $)) (-15 -4093 (|t#1| $)) (-15 -2828 (|t#1| $)) (-15 -2827 (|t#1| $)) (-15 -2826 (|t#1| $)) (-15 -2825 (|t#1| $)) (-15 -3427 (|t#1| $)) (-15 -3426 (|t#1| $)) (-15 -3425 (|t#1| $)) (-15 -3554 (|t#1| $)) (-15 -2829 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3825 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2824 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1=(-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-372) |has| |#1| (-372)) ((-342 |#1|) . T) ((-417 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 #1#) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 25)) (-1410 (((-3 $ "failed") $ $) 27)) (-4174 (($) 24 T CONST)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 23 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4289 (($ $ $) 21)) (* (($ (-925) $) 22) (($ (-776) $) 26)))
-(((-802) (-140)) (T -802))
+(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-3863 (($) 24 T CONST)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 23 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2935 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
+(((-800) (-140)) (T -800))
NIL
(-13 (-797) (-131))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-797) . T) ((-799) . T) ((-855) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #1="failed") $) NIL) (((-3 (-1002 |#1|) #1#) $) 35) (((-3 (-551) #1#) $) NIL (-3978 (|has| (-1002 |#1|) (-1044 (-551))) (|has| |#1| (-1044 (-551))))) (((-3 (-412 (-551)) #1#) $) NIL (-3978 (|has| (-1002 |#1|) (-1044 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-3594 ((|#1| $) NIL) (((-1002 |#1|) $) 33) (((-551) $) NIL (-3978 (|has| (-1002 |#1|) (-1044 (-551))) (|has| |#1| (-1044 (-551))))) (((-412 (-551)) $) NIL (-3978 (|has| (-1002 |#1|) (-1044 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-3908 (((-3 $ "failed") $) NIL)) (-4093 ((|#1| $) 16)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL (|has| |#1| (-550)))) (-3442 (((-112) $) NIL (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) NIL (|has| |#1| (-550)))) (-3413 (($) NIL (|has| |#1| (-372)))) (-2591 (((-112) $) NIL)) (-2829 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1002 |#1|) (-1002 |#1|)) 29)) (-3554 ((|#1| $) NIL)) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-2826 ((|#1| $) 22)) (-2827 ((|#1| $) 20)) (-2828 ((|#1| $) 18)) (-3425 ((|#1| $) 26)) (-3426 ((|#1| $) 25)) (-3427 ((|#1| $) 24)) (-2825 ((|#1| $) 23)) (-3682 (((-1126) $) NIL)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-4249 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3428 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-1002 |#1|)) 30) (($ (-412 (-551))) NIL (-3978 (|has| (-1002 |#1|) (-1044 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3825 ((|#1| $) NIL (|has| |#1| (-1066)))) (-3528 (($) 8 T CONST)) (-3085 (($) 12 T CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-803 |#1|) (-13 (-801 |#1|) (-417 (-1002 |#1|)) (-10 -8 (-15 -2829 ($ (-1002 |#1|) (-1002 |#1|))))) (-173)) (T -803))
-((-2829 (*1 *1 *2 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-173)) (-5 *1 (-803 *3)))))
-(-13 (-801 |#1|) (-417 (-1002 |#1|)) (-10 -8 (-15 -2829 ($ (-1002 |#1|) (-1002 |#1|)))))
-((-4408 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|))) (-801 |#2|) (-173) (-801 |#4|) (-173)) (T -804))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-801 *6)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-801 *5)))))
-(-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2830 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-3473 (((-112) $ $) 6)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-855) . T) ((-1106) . T))
+((-2789 (((-112) $) 42)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 43)) (-1740 (((-3 (-412 (-569)) "failed") $) 78)) (-1727 (((-112) $) 72)) (-1715 (((-412 (-569)) $) 76)) (-3334 ((|#2| $) 26)) (-1324 (($ (-1 |#2| |#2|) $) 23)) (-1776 (($ $) 58)) (-1384 (((-541) $) 67)) (-1565 (($ $) 21)) (-2388 (((-867) $) 53) (($ (-569)) 40) (($ |#2|) 38) (($ (-412 (-569))) NIL)) (-3263 (((-776)) 10)) (-3999 ((|#2| $) 71)) (-2853 (((-112) $ $) 30)) (-2872 (((-112) $ $) 69)) (-2946 (($ $) 32) (($ $ $) NIL)) (-2935 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-801 |#1| |#2|) (-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-802 |#2|) (-173)) (T -801))
+((-3263 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4)) (-4 *3 (-802 *4)))))
+(-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3363 (((-776)) 58 (|has| |#1| (-372)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 94)) (-3043 (((-569) $) 99 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 96 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 95)) (-3351 (((-3 $ "failed") $) 37)) (-3728 ((|#1| $) 84)) (-1740 (((-3 (-412 (-569)) "failed") $) 71 (|has| |#1| (-550)))) (-1727 (((-112) $) 73 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 72 (|has| |#1| (-550)))) (-3295 (($) 61 (|has| |#1| (-372)))) (-2861 (((-112) $) 35)) (-3633 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3334 ((|#1| $) 76)) (-2095 (($ $ $) 67 (|has| |#1| (-855)))) (-2406 (($ $ $) 66 (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) 86)) (-3348 (((-927) $) 60 (|has| |#1| (-372)))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 70 (|has| |#1| (-367)))) (-2114 (($ (-927)) 59 (|has| |#1| (-372)))) (-3596 ((|#1| $) 81)) (-3610 ((|#1| $) 82)) (-3621 ((|#1| $) 83)) (-1531 ((|#1| $) 77)) (-1543 ((|#1| $) 78)) (-1554 ((|#1| $) 79)) (-3586 ((|#1| $) 80)) (-3461 (((-1126) $) 11)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) 92 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 90 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 89 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 88 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 87 (|has| |#1| (-519 (-1183) |#1|)))) (-1852 (($ $ |#1|) 93 (|has| |#1| (-289 |#1| |#1|)))) (-1384 (((-541) $) 68 (|has| |#1| (-619 (-541))))) (-1565 (($ $) 85)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 98 (|has| |#1| (-1044 (-412 (-569)))))) (-1488 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3999 ((|#1| $) 74 (|has| |#1| (-1066)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 64 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 63 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 65 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 62 (|has| |#1| (-855)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-802 |#1|) (-140) (-173)) (T -802))
+((-1565 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3633 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1740 (*1 *2 *1) (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1776 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(-13 (-38 |t#1|) (-416 |t#1|) (-342 |t#1|) (-10 -8 (-15 -1565 ($ $)) (-15 -3728 (|t#1| $)) (-15 -3621 (|t#1| $)) (-15 -3610 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -3586 (|t#1| $)) (-15 -1554 (|t#1| $)) (-15 -1543 (|t#1| $)) (-15 -1531 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -3633 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3999 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1776 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-372) |has| |#1| (-372)) ((-342 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-1324 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|))) (-802 |#2|) (-173) (-802 |#4|) (-173)) (T -803))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5)))))
+(-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-1005 |#1|) "failed") $) 35) (((-3 (-569) "failed") $) NIL (-2718 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL (-2718 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3043 ((|#1| $) NIL) (((-1005 |#1|) $) 33) (((-569) $) NIL (-2718 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569))))) (((-412 (-569)) $) NIL (-2718 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3351 (((-3 $ "failed") $) NIL)) (-3728 ((|#1| $) 16)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1727 (((-112) $) NIL (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3295 (($) NIL (|has| |#1| (-372)))) (-2861 (((-112) $) NIL)) (-3633 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1005 |#1|) (-1005 |#1|)) 29)) (-3334 ((|#1| $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-3596 ((|#1| $) 22)) (-3610 ((|#1| $) 20)) (-3621 ((|#1| $) 18)) (-1531 ((|#1| $) 26)) (-1543 ((|#1| $) 25)) (-1554 ((|#1| $) 24)) (-3586 ((|#1| $) 23)) (-3461 (((-1126) $) NIL)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1852 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-1565 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1005 |#1|)) 30) (($ (-412 (-569))) NIL (-2718 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3999 ((|#1| $) NIL (|has| |#1| (-1066)))) (-1786 (($) 8 T CONST)) (-1796 (($) 12 T CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-804 |#1|) (-13 (-802 |#1|) (-416 (-1005 |#1|)) (-10 -8 (-15 -3633 ($ (-1005 |#1|) (-1005 |#1|))))) (-173)) (T -804))
+((-3633 (*1 *1 *2 *2) (-12 (-5 *2 (-1005 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
+(-13 (-802 |#1|) (-416 (-1005 |#1|)) (-10 -8 (-15 -3633 ($ (-1005 |#1|) (-1005 |#1|)))))
+((-2383 (((-112) $ $) 7)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3645 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-2853 (((-112) $ $) 6)))
(((-805) (-140)) (T -805))
-((-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)))))) (-2830 (*1 *2 *3) (-12 (-4 *1 (-805)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1041)))))
-(-13 (-1107) (-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2830 ((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2831 (((-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#3| |#2| (-1183)) 19)))
-(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2831 ((-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#3| |#2| (-1183)))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)) (-13 (-29 |#1|) (-1208) (-966)) (-663 |#2|)) (T -806))
-((-2831 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2200 (-646 *4)))) (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-663 *4)))))
-(-10 -7 (-15 -2831 ((-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#3| |#2| (-1183))))
-((-4022 (((-3 |#2| #1="failed") |#2| (-113) (-296 |#2|) (-646 |#2|)) 28) (((-3 |#2| #1#) (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #2="failed") |#2| (-113) (-1183)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #2#) (-296 |#2|) (-113) (-1183)) 18) (((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 |#2|) (-646 (-113)) (-1183)) 24) (((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 (-296 |#2|)) (-646 (-113)) (-1183)) 26) (((-3 (-646 (-1272 |#2|)) "failed") (-694 |#2|) (-1183)) 37) (((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-694 |#2|) (-1272 |#2|) (-1183)) 35)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-694 |#2|) (-1272 |#2|) (-1183))) (-15 -4022 ((-3 (-646 (-1272 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 (-296 |#2|)) (-646 (-113)) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 |#2|) (-646 (-113)) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #1="failed") (-296 |#2|) (-113) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #1#) |#2| (-113) (-1183))) (-15 -4022 ((-3 |#2| #2="failed") (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|))) (-15 -4022 ((-3 |#2| #2#) |#2| (-113) (-296 |#2|) (-646 |#2|)))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)) (-13 (-29 |#1|) (-1208) (-966))) (T -807))
-((-4022 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-296 *2)) (-5 *5 (-646 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *1 (-807 *6 *2)))) (-4022 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-296 *2)) (-5 *4 (-113)) (-5 *5 (-646 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-966))) (-5 *1 (-807 *6 *2)) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2200 (-646 *3))) *3 #1="failed")) (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-966))))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 *7)) (-5 *4 (-113)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2200 (-646 *7))) *7 #1#)) (-5 *1 (-807 *6 *7)))) (-4022 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-646 *7)) (-5 *4 (-646 (-113))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7))))) (-5 *1 (-807 *6 *7)))) (-4022 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-646 (-296 *7))) (-5 *4 (-646 (-113))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7))))) (-5 *1 (-807 *6 *7)))) (-4022 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183)) (-4 *6 (-13 (-29 *5) (-1208) (-966))) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-1272 *6))) (-5 *1 (-807 *5 *6)))) (-4022 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-966))) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1272 *7)))))
-(-10 -7 (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-694 |#2|) (-1272 |#2|) (-1183))) (-15 -4022 ((-3 (-646 (-1272 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 (-296 |#2|)) (-646 (-113)) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#2|)) (|:| -2200 (-646 (-1272 |#2|)))) "failed") (-646 |#2|) (-646 (-113)) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #1="failed") (-296 |#2|) (-113) (-1183))) (-15 -4022 ((-3 (-2 (|:| |particular| |#2|) (|:| -2200 (-646 |#2|))) |#2| #1#) |#2| (-113) (-1183))) (-15 -4022 ((-3 |#2| #2="failed") (-296 |#2|) (-113) (-296 |#2|) (-646 |#2|))) (-15 -4022 ((-3 |#2| #2#) |#2| (-113) (-296 |#2|) (-646 |#2|))))
-((-2832 (($) 9)) (-2836 (((-3 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2834 (((-646 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-4057 (($ (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))))) 24)) (-2835 (($ (-646 (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))))) 22)) (-2833 (((-1278)) 11)))
-(((-808) (-10 -8 (-15 -2832 ($)) (-15 -2833 ((-1278))) (-15 -2834 ((-646 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2835 ($ (-646 (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))))))) (-15 -4057 ($ (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))))) (-15 -2836 ((-3 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -808))
-((-2836 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))) (-5 *1 (-808)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))))) (-5 *1 (-808)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))))) (-5 *1 (-808)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-808)))) (-2833 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))) (-2832 (*1 *1) (-5 *1 (-808))))
-(-10 -8 (-15 -2832 ($)) (-15 -2833 ((-1278))) (-15 -2834 ((-646 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2835 ($ (-646 (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382)))))))) (-15 -4057 ($ (-2 (|:| -4310 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2264 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))))))) (-15 -2836 ((-3 (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382)) (|:| |expense| (-382)) (|:| |accuracy| (-382)) (|:| |intermediateResults| (-382))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-3911 ((|#2| |#2| (-1183)) 17)) (-2837 ((|#2| |#2| (-1183)) 56)) (-2838 (((-1 |#2| |#2|) (-1183)) 11)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -3911 (|#2| |#2| (-1183))) (-15 -2837 (|#2| |#2| (-1183))) (-15 -2838 ((-1 |#2| |#2|) (-1183)))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)) (-13 (-29 |#1|) (-1208) (-966))) (T -809))
-((-2838 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) (-4 *5 (-13 (-29 *4) (-1208) (-966))))) (-2837 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-966))))) (-3911 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-966))))))
-(-10 -7 (-15 -3911 (|#2| |#2| (-1183))) (-15 -2837 (|#2| |#2| (-1183))) (-15 -2838 ((-1 |#2| |#2|) (-1183))))
-((-4022 (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382) (-382)) 131) (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382)) 132) (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-646 (-382)) (-382)) 134) (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-382)) 136) (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-382)) 137) (((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382))) 139) (((-1041) (-813) (-1069)) 123) (((-1041) (-813)) 124)) (-3089 (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813) (-1069)) 83) (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813)) 85)))
-(((-810) (-10 -7 (-15 -4022 ((-1041) (-813))) (-15 -4022 ((-1041) (-813) (-1069))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382) (-382))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813) (-1069))))) (T -810))
-((-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-810)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382))) (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382))) (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382))) (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810)))))
-(-10 -7 (-15 -4022 ((-1041) (-813))) (-15 -4022 ((-1041) (-813) (-1069))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382))) (-15 -4022 ((-1041) (-1272 (-317 (-382))) (-382) (-382) (-646 (-382)) (-317 (-382)) (-646 (-382)) (-382) (-382))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-813) (-1069))))
-((-2839 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2200 (-646 |#4|))) (-660 |#4|) |#4|) 33)))
-(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2839 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2200 (-646 |#4|))) (-660 |#4|) |#4|))) (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -811))
-((-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *4)) (-4 *4 (-346 *5 *6 *7)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2200 (-646 *4)))) (-5 *1 (-811 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2839 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2200 (-646 |#4|))) (-660 |#4|) |#4|)))
-((-4191 (((-2 (|:| -3705 |#3|) (|:| |rh| (-646 (-412 |#2|)))) |#4| (-646 (-412 |#2|))) 53)) (-2841 (((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4| |#2|) 62) (((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4|) 61) (((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3| |#2|) 20) (((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3|) 21)) (-2842 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2840 ((|#2| |#3| (-646 (-412 |#2|))) 111) (((-3 |#2| "failed") |#3| (-412 |#2|)) 107)))
-(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2840 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2840 (|#2| |#3| (-646 (-412 |#2|)))) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3| |#2|)) (-15 -2842 (|#2| |#3| |#1|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4| |#2|)) (-15 -2842 (|#2| |#4| |#1|)) (-15 -4191 ((-2 (|:| -3705 |#3|) (|:| |rh| (-646 (-412 |#2|)))) |#4| (-646 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-412 (-551)))) (-1248 |#1|) (-663 |#2|) (-663 (-412 |#2|))) (T -812))
-((-4191 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-2 (|:| -3705 *7) (|:| |rh| (-646 (-412 *6))))) (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-646 (-412 *6))) (-4 *7 (-663 *6)) (-4 *3 (-663 (-412 *6))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *2 (-1248 *4)) (-5 *1 (-812 *4 *2 *5 *3)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-663 *2)) (-4 *3 (-663 (-412 *2))))) (-2841 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *4 (-1248 *5)) (-5 *2 (-646 (-2 (|:| -4222 *4) (|:| -3664 *4)))) (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-663 *4)) (-4 *3 (-663 (-412 *4))))) (-2841 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-2 (|:| -4222 *5) (|:| -3664 *5)))) (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-663 *5)) (-4 *3 (-663 (-412 *5))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *2 (-1248 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2)) (-4 *5 (-663 (-412 *2))))) (-2841 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *4 (-1248 *5)) (-5 *2 (-646 (-2 (|:| -4222 *4) (|:| -3664 *4)))) (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-663 *4)) (-4 *6 (-663 (-412 *4))))) (-2841 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-2 (|:| -4222 *5) (|:| -3664 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-663 *5)) (-4 *6 (-663 (-412 *5))))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-412 *2))) (-4 *2 (-1248 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2)) (-4 *6 (-663 (-412 *2))))) (-2840 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1248 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2)) (-4 *6 (-663 *4)))))
-(-10 -7 (-15 -2840 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2840 (|#2| |#3| (-646 (-412 |#2|)))) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#3| |#2|)) (-15 -2842 (|#2| |#3| |#1|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4|)) (-15 -2841 ((-646 (-2 (|:| -4222 |#2|) (|:| -3664 |#2|))) |#4| |#2|)) (-15 -2842 (|#2| |#4| |#1|)) (-15 -4191 ((-2 (|:| -3705 |#3|) (|:| |rh| (-646 (-412 |#2|)))) |#4| (-646 (-412 |#2|)))))
-((-2986 (((-112) $ $) NIL)) (-3594 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-813) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3594 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -813))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3594 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226))) (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))
-((-2850 (((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 |#3|))) |#3| (-1 (-646 |#2|) |#2| (-1177 |#2|)) (-1 (-410 |#2|) |#2|)) 157)) (-2851 (((-646 (-2 (|:| |poly| |#2|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|)) 54)) (-2844 (((-646 (-2 (|:| |deg| (-776)) (|:| -3705 |#2|))) |#3|) 126)) (-2843 ((|#2| |#3|) 45)) (-2845 (((-646 (-2 (|:| -4402 |#1|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|)) 103)) (-2846 ((|#3| |#3| (-412 |#2|)) 74) ((|#3| |#3| |#2|) 100)))
-(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2843 (|#2| |#3|)) (-15 -2844 ((-646 (-2 (|:| |deg| (-776)) (|:| -3705 |#2|))) |#3|)) (-15 -2845 ((-646 (-2 (|:| -4402 |#1|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|))) (-15 -2851 ((-646 (-2 (|:| |poly| |#2|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|))) (-15 -2850 ((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 |#3|))) |#3| (-1 (-646 |#2|) |#2| (-1177 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2846 (|#3| |#3| |#2|)) (-15 -2846 (|#3| |#3| (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-412 (-551)))) (-1248 |#1|) (-663 |#2|) (-663 (-412 |#2|))) (T -814))
-((-2846 (*1 *2 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-663 *5)) (-4 *6 (-663 *3)))) (-2846 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-1248 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-663 *3)) (-4 *5 (-663 (-412 *3))))) (-2850 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-646 *7) *7 (-1177 *7))) (-5 *5 (-1 (-410 *7) *7)) (-4 *7 (-1248 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-5 *2 (-646 (-2 (|:| |frac| (-412 *7)) (|:| -3705 *3)))) (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-663 *7)) (-4 *8 (-663 (-412 *7))))) (-2851 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-2 (|:| |poly| *6) (|:| -3705 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-663 *6)) (-4 *7 (-663 (-412 *6))))) (-2845 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-2 (|:| -4402 *5) (|:| -3705 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-663 *6)) (-4 *7 (-663 (-412 *6))))) (-2844 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-2 (|:| |deg| (-776)) (|:| -3705 *5)))) (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-663 *5)) (-4 *6 (-663 (-412 *5))))) (-2843 (*1 *2 *3) (-12 (-4 *2 (-1248 *4)) (-5 *1 (-814 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2)) (-4 *5 (-663 (-412 *2))))))
-(-10 -7 (-15 -2843 (|#2| |#3|)) (-15 -2844 ((-646 (-2 (|:| |deg| (-776)) (|:| -3705 |#2|))) |#3|)) (-15 -2845 ((-646 (-2 (|:| -4402 |#1|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|))) (-15 -2851 ((-646 (-2 (|:| |poly| |#2|) (|:| -3705 |#3|))) |#3| (-1 (-646 |#1|) |#2|))) (-15 -2850 ((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 |#3|))) |#3| (-1 (-646 |#2|) |#2| (-1177 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2846 (|#3| |#3| |#2|)) (-15 -2846 (|#3| |#3| (-412 |#2|))))
-((-2847 (((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-661 |#2| (-412 |#2|)) (-646 (-412 |#2|))) 149) (((-2 (|:| |particular| (-3 (-412 |#2|) #1="failed")) (|:| -2200 (-646 (-412 |#2|)))) (-661 |#2| (-412 |#2|)) (-412 |#2|)) 148) (((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-660 (-412 |#2|)) (-646 (-412 |#2|))) 143) (((-2 (|:| |particular| (-3 (-412 |#2|) #1#)) (|:| -2200 (-646 (-412 |#2|)))) (-660 (-412 |#2|)) (-412 |#2|)) 141)) (-2848 ((|#2| (-661 |#2| (-412 |#2|))) 89) ((|#2| (-660 (-412 |#2|))) 92)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -2847 ((-2 (|:| |particular| (-3 (-412 |#2|) #1="failed")) (|:| -2200 (-646 (-412 |#2|)))) (-660 (-412 |#2|)) (-412 |#2|))) (-15 -2847 ((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-660 (-412 |#2|)) (-646 (-412 |#2|)))) (-15 -2847 ((-2 (|:| |particular| (-3 (-412 |#2|) #1#)) (|:| -2200 (-646 (-412 |#2|)))) (-661 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -2847 ((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-661 |#2| (-412 |#2|)) (-646 (-412 |#2|)))) (-15 -2848 (|#2| (-660 (-412 |#2|)))) (-15 -2848 (|#2| (-661 |#2| (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))) (-1248 |#1|)) (T -815))
-((-2848 (*1 *2 *3) (-12 (-5 *3 (-661 *2 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-660 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6 (-412 *6))) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-2 (|:| -2200 (-646 (-412 *6))) (|:| -1758 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-646 (-412 *6))))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4)))) (-5 *1 (-815 *5 *6)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-412 *6))) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-2 (|:| -2200 (-646 (-412 *6))) (|:| -1758 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-646 (-412 *6))))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2200 (-646 *4)))) (-5 *1 (-815 *5 *6)))))
-(-10 -7 (-15 -2847 ((-2 (|:| |particular| (-3 (-412 |#2|) #1="failed")) (|:| -2200 (-646 (-412 |#2|)))) (-660 (-412 |#2|)) (-412 |#2|))) (-15 -2847 ((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-660 (-412 |#2|)) (-646 (-412 |#2|)))) (-15 -2847 ((-2 (|:| |particular| (-3 (-412 |#2|) #1#)) (|:| -2200 (-646 (-412 |#2|)))) (-661 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -2847 ((-2 (|:| -2200 (-646 (-412 |#2|))) (|:| -1758 (-694 |#1|))) (-661 |#2| (-412 |#2|)) (-646 (-412 |#2|)))) (-15 -2848 (|#2| (-660 (-412 |#2|)))) (-15 -2848 (|#2| (-661 |#2| (-412 |#2|)))))
-((-2849 (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) |#5| |#4|) 52)))
-(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) |#5| |#4|))) (-367) (-663 |#1|) (-1248 |#1|) (-729 |#1| |#3|) (-663 |#4|)) (T -816))
-((-2849 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *7 (-1248 *5)) (-4 *4 (-729 *5 *7)) (-5 *2 (-2 (|:| -1758 (-694 *6)) (|:| |vec| (-1272 *5)))) (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-663 *5)) (-4 *3 (-663 *4)))))
-(-10 -7 (-15 -2849 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) |#5| |#4|)))
-((-2850 (((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|)) 47)) (-2852 (((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|))) 168 (|has| |#1| (-27))) (((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-410 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-646 (-412 |#2|)) (-660 (-412 |#2|))) 170 (|has| |#1| (-27))) (((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 38) (((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|)) 39) (((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 36) (((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|)) 37)) (-2851 (((-646 (-2 (|:| |poly| |#2|) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|)) 99)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -2850 ((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2851 ((-646 (-2 (|:| |poly| |#2|) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)))) (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))) (-1248 |#1|)) (T -817))
-((-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-661 *5 (-412 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-646 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-660 (-412 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-646 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-2 (|:| |poly| *6) (|:| -3705 (-661 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-661 *6 (-412 *6))))) (-2850 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-5 *2 (-646 (-2 (|:| |frac| (-412 *6)) (|:| -3705 (-661 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-661 *6 (-412 *6))))) (-2852 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *7 (-412 *7))) (-5 *4 (-1 (-646 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *7 (-1248 *6)) (-5 *2 (-646 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-2852 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-412 *7))) (-5 *4 (-1 (-646 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *7 (-1248 *6)) (-5 *2 (-646 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-1 (-646 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5)) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6)))))
-(-10 -7 (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -2850 ((-646 (-2 (|:| |frac| (-412 |#2|)) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2851 ((-646 (-2 (|:| |poly| |#2|) (|:| -3705 (-661 |#2| (-412 |#2|))))) (-661 |#2| (-412 |#2|)) (-1 (-646 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)))) (-15 -2852 ((-646 (-412 |#2|)) (-660 (-412 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)))) (-15 -2852 ((-646 (-412 |#2|)) (-661 |#2| (-412 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|))
-((-2853 (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) (-694 |#2|) (-1272 |#1|)) 110) (((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)) (|:| -3705 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1272 |#1|)) 15)) (-2854 (((-2 (|:| |particular| (-3 (-1272 |#1|) "failed")) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#2|) (-1272 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2200 (-646 |#1|))) |#2| |#1|)) 116)) (-4022 (((-3 (-2 (|:| |particular| (-1272 |#1|)) (|:| -2200 (-694 |#1|))) "failed") (-694 |#1|) (-1272 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -2853 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)) (|:| -3705 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1272 |#1|))) (-15 -2853 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) (-694 |#2|) (-1272 |#1|))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#1|)) (|:| -2200 (-694 |#1|))) "failed") (-694 |#1|) (-1272 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) "failed") |#2| |#1|))) (-15 -2854 ((-2 (|:| |particular| (-3 (-1272 |#1|) "failed")) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#2|) (-1272 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2200 (-646 |#1|))) |#2| |#1|)))) (-367) (-663 |#1|)) (T -818))
-((-2854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2200 (-646 *6))) *7 *6)) (-4 *6 (-367)) (-4 *7 (-663 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1272 *6) "failed")) (|:| -2200 (-646 (-1272 *6))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1272 *6)))) (-4022 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2200 (-646 *6))) "failed") *7 *6)) (-4 *6 (-367)) (-4 *7 (-663 *6)) (-5 *2 (-2 (|:| |particular| (-1272 *6)) (|:| -2200 (-694 *6)))) (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1272 *6)))) (-2853 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-663 *5)) (-5 *2 (-2 (|:| -1758 (-694 *6)) (|:| |vec| (-1272 *5)))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1272 *5)))) (-2853 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| A (-694 *5)) (|:| |eqs| (-646 (-2 (|:| C (-694 *5)) (|:| |g| (-1272 *5)) (|:| -3705 *6) (|:| |rh| *5)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)) (-4 *6 (-663 *5)))))
-(-10 -7 (-15 -2853 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)) (|:| -3705 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1272 |#1|))) (-15 -2853 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#1|))) (-694 |#2|) (-1272 |#1|))) (-15 -4022 ((-3 (-2 (|:| |particular| (-1272 |#1|)) (|:| -2200 (-694 |#1|))) "failed") (-694 |#1|) (-1272 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2200 (-646 |#1|))) "failed") |#2| |#1|))) (-15 -2854 ((-2 (|:| |particular| (-3 (-1272 |#1|) "failed")) (|:| -2200 (-646 (-1272 |#1|)))) (-694 |#2|) (-1272 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2200 (-646 |#1|))) |#2| |#1|))))
-((-2855 (((-694 |#1|) (-646 |#1|) (-776)) 14) (((-694 |#1|) (-646 |#1|)) 15)) (-2856 (((-3 (-1272 |#1|) "failed") |#2| |#1| (-646 |#1|)) 39)) (-3782 (((-3 |#1| "failed") |#2| |#1| (-646 |#1|) (-1 |#1| |#1|)) 46)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2855 ((-694 |#1|) (-646 |#1|))) (-15 -2855 ((-694 |#1|) (-646 |#1|) (-776))) (-15 -2856 ((-3 (-1272 |#1|) "failed") |#2| |#1| (-646 |#1|))) (-15 -3782 ((-3 |#1| "failed") |#2| |#1| (-646 |#1|) (-1 |#1| |#1|)))) (-367) (-663 |#1|)) (T -819))
-((-3782 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-646 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) (-5 *1 (-819 *2 *3)) (-4 *3 (-663 *2)))) (-2856 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-646 *4)) (-4 *4 (-367)) (-5 *2 (-1272 *4)) (-5 *1 (-819 *4 *3)) (-4 *3 (-663 *4)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-663 *5)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5)) (-4 *5 (-663 *4)))))
-(-10 -7 (-15 -2855 ((-694 |#1|) (-646 |#1|))) (-15 -2855 ((-694 |#1|) (-646 |#1|) (-776))) (-15 -2856 ((-3 (-1272 |#1|) "failed") |#2| |#1| (-646 |#1|))) (-15 -3782 ((-3 |#1| "failed") |#2| |#1| (-646 |#1|) (-1 |#1| |#1|))))
-((-2986 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-3626 (((-112) $) NIL (|has| |#2| (-131)))) (-4157 (($ (-925)) NIL (|has| |#2| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) NIL (|has| |#2| (-798)))) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#2| (-372)))) (-4073 (((-551) $) NIL (|has| |#2| (-853)))) (-4237 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1107)))) (-3594 (((-551) $) NIL (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) ((|#2| $) NIL (|has| |#2| (-1107)))) (-2445 (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#2| (-644 (-551))) (|has| |#2| (-1055)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3908 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3413 (($) NIL (|has| |#2| (-372)))) (-1694 ((|#2| $ (-551) |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ (-551)) NIL)) (-3624 (((-112) $) NIL (|has| |#2| (-853)))) (-2134 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (|has| |#2| (-731)))) (-3625 (((-112) $) NIL (|has| |#2| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3026 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2138 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#2| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#2| (-1107)))) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#2| (-372)))) (-3682 (((-1126) $) NIL (|has| |#2| (-1107)))) (-4250 ((|#2| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ (-551) |#2|) NIL) ((|#2| $ (-551)) NIL)) (-4286 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-1575 (($ (-1272 |#2|)) NIL)) (-4361 (((-134)) NIL (|has| |#2| (-367)))) (-4260 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2135 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#2|) $) NIL) (($ (-551)) NIL (-3978 (-12 (|has| |#2| (-1044 (-551))) (|has| |#2| (-1107))) (|has| |#2| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#2| (-1044 (-412 (-551)))) (|has| |#2| (-1107)))) (($ |#2|) NIL (|has| |#2| (-1107))) (((-868) $) NIL (|has| |#2| (-618 (-868))))) (-3548 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-3680 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-2137 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#2| (-853)))) (-3528 (($) NIL (|has| |#2| (-131)) CONST)) (-3085 (($) NIL (|has| |#2| (-731)) CONST)) (-3090 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3473 (((-112) $ $) NIL (|has| |#2| (-1107)))) (-3105 (((-112) $ $) NIL (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3106 (((-112) $ $) 11 (-3978 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-4289 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-925)) NIL (|has| |#2| (-731)))) (* (($ (-551) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-925) $) NIL (|has| |#2| (-25)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-820 |#1| |#2| |#3|) (-239 |#1| |#2|) (-776) (-798) (-1 (-112) (-1272 |#2|) (-1272 |#2|))) (T -820))
+((-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)))))) (-3645 (*1 *2 *3) (-12 (-4 *1 (-805)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1041)))))
+(-13 (-1106) (-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3645 ((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3654 (((-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#3| |#2| (-1183)) 19)))
+(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -3654 ((-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#3| |#2| (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965)) (-661 |#2|)) (T -806))
+((-3654 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3371 (-649 *4)))) (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -3654 ((-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#3| |#2| (-1183))))
+((-2888 (((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)) 28) (((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183)) 18) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183)) 24) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183)) 26) (((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183)) 37) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183)) 35)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183))) (-15 -2888 ((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183))) (-15 -2888 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -2888 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -807))
+((-2888 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-807 *6 *2)))) (-2888 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-5 *1 (-807 *6 *2)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3371 (-649 *3))) *3 "failed")) (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-965))))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3371 (-649 *7))) *7 "failed")) (-5 *1 (-807 *6 *7)))) (-2888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)))) (-2888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)))) (-2888 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183)) (-4 *6 (-13 (-29 *5) (-1208) (-965))) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-1273 *6))) (-5 *1 (-807 *5 *6)))) (-2888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1273 *7)))))
+(-10 -7 (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183))) (-15 -2888 ((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -3371 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183))) (-15 -2888 ((-3 (-2 (|:| |particular| |#2|) (|:| -3371 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183))) (-15 -2888 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -2888 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|))))
+((-3666 (($) 9)) (-3702 (((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2715 (((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-2086 (($ (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) 24)) (-3692 (($ (-649 (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) 22)) (-3680 (((-1278)) 11)))
+(((-808) (-10 -8 (-15 -3666 ($)) (-15 -3680 ((-1278))) (-15 -2715 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -3692 ($ (-649 (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -2086 ($ (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -3702 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -808))
+((-3702 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *1 (-808)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) (-5 *1 (-808)))) (-3692 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-5 *1 (-808)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-808)))) (-3680 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))) (-3666 (*1 *1) (-5 *1 (-808))))
+(-10 -8 (-15 -3666 ($)) (-15 -3680 ((-1278))) (-15 -2715 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -3692 ($ (-649 (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -2086 ($ (-2 (|:| -1963 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2179 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -3702 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-3704 ((|#2| |#2| (-1183)) 17)) (-3718 ((|#2| |#2| (-1183)) 56)) (-3731 (((-1 |#2| |#2|) (-1183)) 11)))
+(((-809 |#1| |#2|) (-10 -7 (-15 -3704 (|#2| |#2| (-1183))) (-15 -3718 (|#2| |#2| (-1183))) (-15 -3731 ((-1 |#2| |#2|) (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -809))
+((-3731 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) (-4 *5 (-13 (-29 *4) (-1208) (-965))))) (-3718 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))) (-3704 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))))
+(-10 -7 (-15 -3704 (|#2| |#2| (-1183))) (-15 -3718 (|#2| |#2| (-1183))) (-15 -3731 ((-1 |#2| |#2|) (-1183))))
+((-2888 (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383)) 131) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383)) 132) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383)) 134) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383)) 136) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383)) 137) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383))) 139) (((-1041) (-813) (-1069)) 123) (((-1041) (-813)) 124)) (-2329 (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069)) 83) (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813)) 85)))
+(((-810) (-10 -7 (-15 -2888 ((-1041) (-813))) (-15 -2888 ((-1041) (-813) (-1069))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069))))) (T -810))
+((-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-810)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810)))))
+(-10 -7 (-15 -2888 ((-1041) (-813))) (-15 -2888 ((-1041) (-813) (-1069))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -2888 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069))))
+((-3624 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3371 (-649 |#4|))) (-658 |#4|) |#4|) 33)))
+(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3624 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3371 (-649 |#4|))) (-658 |#4|) |#4|))) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -811))
+((-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-811 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3624 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3371 (-649 |#4|))) (-658 |#4|) |#4|)))
+((-3994 (((-2 (|:| -4289 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))) 53)) (-3648 (((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4| |#2|) 62) (((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4|) 61) (((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3| |#2|) 20) (((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3|) 21)) (-3657 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3636 ((|#2| |#3| (-649 (-412 |#2|))) 111) (((-3 |#2| "failed") |#3| (-412 |#2|)) 107)))
+(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -3636 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3| |#2|)) (-15 -3657 (|#2| |#3| |#1|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4| |#2|)) (-15 -3657 (|#2| |#4| |#1|)) (-15 -3994 ((-2 (|:| -4289 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-412 (-569)))) (-1249 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -812))
+((-3994 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-2 (|:| -4289 *7) (|:| |rh| (-649 (-412 *6))))) (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6))) (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6))))) (-3657 (*1 *2 *3 *4) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *5 *3)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-661 *2)) (-4 *3 (-661 (-412 *2))))) (-3648 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2132 *4) (|:| -3387 *4)))) (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4)) (-4 *3 (-661 (-412 *4))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2132 *5) (|:| -3387 *5)))) (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 (-412 *5))))) (-3657 (*1 *2 *3 *4) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))) (-3648 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2132 *4) (|:| -3387 *4)))) (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4)) (-4 *6 (-661 (-412 *4))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2132 *5) (|:| -3387 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-3636 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1249 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 (-412 *2))))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 *4)))))
+(-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -3636 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#3| |#2|)) (-15 -3657 (|#2| |#3| |#1|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4|)) (-15 -3648 ((-649 (-2 (|:| -2132 |#2|) (|:| -3387 |#2|))) |#4| |#2|)) (-15 -3657 (|#2| |#4| |#1|)) (-15 -3994 ((-2 (|:| -4289 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|)))))
+((-2383 (((-112) $ $) NIL)) (-3043 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-813) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3043 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -813))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3043 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))
+((-3758 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|)) 157)) (-3769 (((-649 (-2 (|:| |poly| |#2|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 54)) (-3684 (((-649 (-2 (|:| |deg| (-776)) (|:| -4289 |#2|))) |#3|) 126)) (-3669 ((|#2| |#3|) 45)) (-3695 (((-649 (-2 (|:| -3600 |#1|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 103)) (-3707 ((|#3| |#3| (-412 |#2|)) 74) ((|#3| |#3| |#2|) 100)))
+(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3669 (|#2| |#3|)) (-15 -3684 ((-649 (-2 (|:| |deg| (-776)) (|:| -4289 |#2|))) |#3|)) (-15 -3695 ((-649 (-2 (|:| -3600 |#1|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3769 ((-649 (-2 (|:| |poly| |#2|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3758 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3707 (|#3| |#3| |#2|)) (-15 -3707 (|#3| |#3| (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-412 (-569)))) (-1249 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -814))
+((-3707 (*1 *2 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))) (-3707 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-1249 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-412 *3))))) (-3758 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-649 *7) *7 (-1179 *7))) (-5 *5 (-1 (-423 *7) *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4289 *3)))) (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-412 *7))))) (-3769 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4289 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -3600 *5) (|:| -4289 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4289 *5)))) (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-3669 (*1 *2 *3) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-814 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))))
+(-10 -7 (-15 -3669 (|#2| |#3|)) (-15 -3684 ((-649 (-2 (|:| |deg| (-776)) (|:| -4289 |#2|))) |#3|)) (-15 -3695 ((-649 (-2 (|:| -3600 |#1|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3769 ((-649 (-2 (|:| |poly| |#2|) (|:| -4289 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3758 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3707 (|#3| |#3| |#2|)) (-15 -3707 (|#3| |#3| (-412 |#2|))))
+((-3721 (((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|))) 149) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|)) 148) (((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|))) 143) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|)) 141)) (-3734 ((|#2| (-659 |#2| (-412 |#2|))) 89) ((|#2| (-658 (-412 |#2|))) 92)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3721 ((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3721 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3721 ((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3734 (|#2| (-658 (-412 |#2|)))) (-15 -3734 (|#2| (-659 |#2| (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -815))
+((-3734 (*1 *2 *3) (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| -3371 (-649 (-412 *6))) (|:| -4368 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-815 *5 *6)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| -3371 (-649 (-412 *6))) (|:| -4368 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-815 *5 *6)))))
+(-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3721 ((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3721 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -3371 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3721 ((-2 (|:| -3371 (-649 (-412 |#2|))) (|:| -4368 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3734 (|#2| (-658 (-412 |#2|)))) (-15 -3734 (|#2| (-659 |#2| (-412 |#2|)))))
+((-3745 (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|) 52)))
+(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3745 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|))) (-367) (-661 |#1|) (-1249 |#1|) (-729 |#1| |#3|) (-661 |#4|)) (T -816))
+((-3745 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *7 (-1249 *5)) (-4 *4 (-729 *5 *7)) (-5 *2 (-2 (|:| -4368 (-694 *6)) (|:| |vec| (-1273 *5)))) (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -3745 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|)))
+((-3758 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 47)) (-3783 (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|))) 168 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|))) 170 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 38) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 39) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 36) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 37)) (-3769 (((-649 (-2 (|:| |poly| |#2|) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 99)))
+(((-817 |#1| |#2|) (-10 -7 (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3758 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3769 ((-649 (-2 (|:| |poly| |#2|) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -817))
+((-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4289 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4289 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
+(-10 -7 (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3758 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3769 ((-649 (-2 (|:| |poly| |#2|) (|:| -4289 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3783 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3783 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|))
+((-3795 (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|)) 110) (((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4289 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|)) 15)) (-3808 (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3371 (-649 |#1|))) |#2| |#1|)) 116)) (-2888 (((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -3371 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -3795 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4289 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|))) (-15 -3795 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -3371 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3808 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3371 (-649 |#1|))) |#2| |#1|)))) (-367) (-661 |#1|)) (T -818))
+((-3808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3371 (-649 *6))) *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *6) "failed")) (|:| -3371 (-649 (-1273 *6))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1273 *6)))) (-2888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3371 (-649 *6))) "failed") *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-1273 *6)) (|:| -3371 (-694 *6)))) (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *6)))) (-3795 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-661 *5)) (-5 *2 (-2 (|:| -4368 (-694 *6)) (|:| |vec| (-1273 *5)))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *5)))) (-3795 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| A (-694 *5)) (|:| |eqs| (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)) (|:| -4289 *6) (|:| |rh| *5)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *6 (-661 *5)))))
+(-10 -7 (-15 -3795 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4289 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|))) (-15 -3795 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|))) (-15 -2888 ((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -3371 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3371 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3808 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -3371 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3371 (-649 |#1|))) |#2| |#1|))))
+((-3820 (((-694 |#1|) (-649 |#1|) (-776)) 14) (((-694 |#1|) (-649 |#1|)) 15)) (-3831 (((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|)) 39)) (-1709 (((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)) 46)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -3820 ((-694 |#1|) (-649 |#1|))) (-15 -3820 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3831 ((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1709 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -819))
+((-1709 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2)))) (-3831 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1273 *4)) (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4)))))
+(-10 -7 (-15 -3820 ((-694 |#1|) (-649 |#1|))) (-15 -3820 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3831 ((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1709 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2789 (((-112) $) NIL (|has| |#2| (-131)))) (-1833 (($ (-927)) NIL (|has| |#2| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) NIL (|has| |#2| (-798)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#2| (-372)))) (-2211 (((-569) $) NIL (|has| |#2| (-853)))) (-3861 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1106)))) (-3043 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) NIL (|has| |#2| (-1106)))) (-4091 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-3351 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3295 (($) NIL (|has| |#2| (-372)))) (-3074 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ (-569)) NIL)) (-2769 (((-112) $) NIL (|has| |#2| (-853)))) (-2796 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (|has| |#2| (-731)))) (-2778 (((-112) $) NIL (|has| |#2| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2912 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#2| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#2| (-372)))) (-3461 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3401 ((|#2| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3523 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3751 (($ (-1273 |#2|)) NIL)) (-2905 (((-134)) NIL (|has| |#2| (-367)))) (-3430 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3469 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#2|) $) NIL) (($ (-569)) NIL (-2718 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) NIL (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3263 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-2040 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3996 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#2| (-853)))) (-1786 (($) NIL (|has| |#2| (-131)) CONST)) (-1796 (($) NIL (|has| |#2| (-731)) CONST)) (-2749 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2853 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2893 (((-112) $ $) NIL (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2872 (((-112) $ $) 11 (-2718 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-2935 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-820 |#1| |#2| |#3|) (-239 |#1| |#2|) (-776) (-798) (-1 (-112) (-1273 |#2|) (-1273 |#2|))) (T -820))
NIL
(-239 |#1| |#2|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1595 (((-646 (-776)) $) NIL) (((-646 (-776)) $ (-1183)) NIL)) (-1629 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-3503 (((-646 (-823 (-1183))) $) NIL)) (-3505 (((-1177 $) $ (-823 (-1183))) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-823 (-1183)))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1591 (($ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-823 (-1183)) #2#) $) NIL) (((-3 (-1183) #2#) $) NIL) (((-3 (-1131 |#1| (-1183)) #2#) $) NIL)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-823 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4206 (($ $ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-536 (-823 (-1183))) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#1|) (-823 (-1183))) NIL) (($ (-1177 $) (-823 (-1183))) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-646 (-823 (-1183))) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-823 (-1183))) NIL)) (-3241 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-646 (-776)) $ (-646 (-823 (-1183)))) NIL)) (-1780 (($ (-1 (-536 (-823 (-1183))) (-536 (-823 (-1183)))) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-1630 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3504 (((-3 (-823 (-1183)) #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-1593 (((-823 (-1183)) $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-1594 (((-112) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-823 (-1183))) (|:| -2582 (-776))) #3#) $) NIL)) (-1592 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-823 (-1183)) |#1|) NIL) (($ $ (-646 (-823 (-1183))) (-646 |#1|)) NIL) (($ $ (-823 (-1183)) $) NIL) (($ $ (-646 (-823 (-1183))) (-646 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-646 (-1183)) (-646 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-234)))) (-4207 (($ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-4260 (($ $ (-823 (-1183))) NIL) (($ $ (-646 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-646 (-823 (-1183))) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1596 (((-646 (-1183)) $) NIL)) (-4398 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-646 (-776)) $ (-646 (-823 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-823 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-646 (-823 (-1183))) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-823 (-1183))) NIL) (($ $ (-646 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-646 (-823 (-1183))) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3195 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1183)) NIL)) (-2341 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-3865 (((-649 (-823 (-1183))) $) NIL)) (-3663 (((-1179 $) $ (-823 (-1183))) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-823 (-1183)))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3173 (($ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-823 (-1183)) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL) (((-3 (-1131 |#1| (-1183)) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-823 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4168 (($ $ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-536 (-823 (-1183))) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#1|) (-823 (-1183))) NIL) (($ (-1179 $) (-823 (-1183))) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-823 (-1183))) NIL)) (-3304 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-649 (-776)) $ (-649 (-823 (-1183)))) NIL)) (-1491 (($ (-1 (-536 (-823 (-1183))) (-536 (-823 (-1183)))) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-4212 (((-3 (-823 (-1183)) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2443 (((-823 (-1183)) $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-3184 (((-112) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-823 (-1183))) (|:| -2777 (-776))) "failed") $) NIL)) (-1476 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-823 (-1183)) |#1|) NIL) (($ $ (-649 (-823 (-1183))) (-649 |#1|)) NIL) (($ $ (-823 (-1183)) $) NIL) (($ $ (-649 (-823 (-1183))) (-649 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4180 (($ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-3430 (($ $ (-823 (-1183))) NIL) (($ $ (-649 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3210 (((-649 (-1183)) $) NIL)) (-2091 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-649 (-776)) $ (-649 (-823 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-823 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-823 (-1183))) NIL) (($ $ (-649 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-821 |#1|) (-13 (-255 |#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) (-1044 (-1131 |#1| (-1183)))) (-1055)) (T -821))
NIL
(-13 (-255 |#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) (-1044 (-1131 |#1| (-1183))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-367)))) (-2251 (($ $) NIL (|has| |#2| (-367)))) (-2249 (((-112) $) NIL (|has| |#2| (-367)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#2| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-367)))) (-1763 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL (|has| |#2| (-367)))) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#2| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#2| (-367)))) (-4173 (((-112) $) NIL (|has| |#2| (-367)))) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL (|has| |#2| (-367)))) (-2079 (($ (-646 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 20 (|has| |#2| (-367)))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#2| (-367)))) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#2| (-367)))) (-1762 (((-776) $) NIL (|has| |#2| (-367)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-367)))) (-4260 (($ $ (-776)) NIL) (($ $) 13)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-412 (-551))) NIL (|has| |#2| (-367))) (($ $) NIL (|has| |#2| (-367)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-367)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) 15 (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL) (($ $ (-551)) 18 (|has| |#2| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-412 (-551)) $) NIL (|has| |#2| (-367))) (($ $ (-412 (-551))) NIL (|has| |#2| (-367)))))
-(((-822 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) (-1107) (-906 |#1|) |#1|) (T -822))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-367)))) (-2586 (($ $) NIL (|has| |#2| (-367)))) (-2564 (((-112) $) NIL (|has| |#2| (-367)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#2| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-367)))) (-4420 (((-112) $ $) NIL (|has| |#2| (-367)))) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL (|has| |#2| (-367)))) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#2| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-3848 (((-112) $) NIL (|has| |#2| (-367)))) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1798 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 20 (|has| |#2| (-367)))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#2| (-367)))) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-4409 (((-776) $) NIL (|has| |#2| (-367)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-367)))) (-3430 (($ $ (-776)) NIL) (($ $) 13)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-412 (-569))) NIL (|has| |#2| (-367))) (($ $) NIL (|has| |#2| (-367)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-367)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) 15 (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ (-569)) 18 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) NIL (|has| |#2| (-367))) (($ $ (-412 (-569))) NIL (|has| |#2| (-367)))))
+(((-822 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) (-1106) (-906 |#1|) |#1|) (T -822))
NIL
(-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-1629 (((-776) $) NIL)) (-4281 ((|#1| $) 10)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-4221 (((-776) $) 11)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-1630 (($ |#1| (-776)) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4260 (($ $) NIL) (($ $ (-776)) NIL)) (-4396 (((-868) $) NIL) (($ |#1|) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
+((-2383 (((-112) $ $) NIL)) (-2341 (((-776) $) NIL)) (-2599 ((|#1| $) 10)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-4315 (((-776) $) 11)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2350 (($ |#1| (-776)) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3430 (($ $) NIL) (($ $ (-776)) NIL)) (-2388 (((-867) $) NIL) (($ |#1|) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
(((-823 |#1|) (-268 |#1|) (-855)) (T -823))
NIL
(-268 |#1|)
-((-2986 (((-112) $ $) NIL)) (-4384 (((-646 |#1|) $) 38)) (-3558 (((-776) $) NIL)) (-4174 (($) NIL T CONST)) (-4389 (((-3 $ #1="failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-4248 (($ $) 42)) (-3908 (((-3 $ "failed") $) NIL)) (-1928 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2591 (((-112) $) NIL)) (-2462 ((|#1| $ (-551)) NIL)) (-2463 (((-776) $ (-551)) NIL)) (-4386 (($ $) 54)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-2454 (($ (-1 |#1| |#1|) $) NIL)) (-2455 (($ (-1 (-776) (-776)) $) NIL)) (-4390 (((-3 $ #1#) $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2857 (((-112) $ $) 51)) (-4283 (((-776) $) 34)) (-3681 (((-1165) $) NIL)) (-1929 (($ $ $) NIL)) (-1930 (($ $ $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 ((|#1| $) 41)) (-1964 (((-646 (-2 (|:| |gen| |#1|) (|:| -4393 (-776)))) $) NIL)) (-3300 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL)) (-2983 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4396 (((-868) $) NIL) (($ |#1|) NIL)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 20 T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 53)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-824 |#1|) (-13 (-390 |#1|) (-851) (-10 -8 (-15 -4250 (|#1| $)) (-15 -4248 ($ $)) (-15 -4386 ($ $)) (-15 -2857 ((-112) $ $)) (-15 -4390 ((-3 $ "failed") $ |#1|)) (-15 -4389 ((-3 $ "failed") $ |#1|)) (-15 -2983 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4283 ((-776) $)) (-15 -4384 ((-646 |#1|) $)))) (-855)) (T -824))
-((-4250 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-4390 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-4389 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2983 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
-(-13 (-390 |#1|) (-851) (-10 -8 (-15 -4250 (|#1| $)) (-15 -4248 ($ $)) (-15 -4386 ($ $)) (-15 -2857 ((-112) $ $)) (-15 -4390 ((-3 $ "failed") $ |#1|)) (-15 -4389 ((-3 $ "failed") $ |#1|)) (-15 -2983 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4283 ((-776) $)) (-15 -4384 ((-646 |#1|) $))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4073 (((-551) $) 59)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-3624 (((-112) $) 57)) (-2591 (((-112) $) 35)) (-3625 (((-112) $) 58)) (-2952 (($ $ $) 56)) (-3278 (($ $ $) 55)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ $) 48)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3825 (($ $) 60)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 53)) (-2985 (((-112) $ $) 52)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 54)) (-3106 (((-112) $ $) 51)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-2383 (((-112) $ $) NIL)) (-2996 (((-649 |#1|) $) 38)) (-3363 (((-776) $) NIL)) (-3863 (($) NIL T CONST)) (-2030 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-3414 (($ $) 42)) (-3351 (((-3 $ "failed") $) NIL)) (-3588 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2861 (((-112) $) NIL)) (-4199 ((|#1| $ (-569)) NIL)) (-4209 (((-776) $ (-569)) NIL)) (-2008 (($ $) 54)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4129 (($ (-1 (-776) (-776)) $) NIL)) (-2041 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3844 (((-112) $ $) 51)) (-3747 (((-776) $) 34)) (-2050 (((-1165) $) NIL)) (-3598 (($ $ $) NIL)) (-2370 (($ $ $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 ((|#1| $) 41)) (-2671 (((-649 (-2 (|:| |gen| |#1|) (|:| -4367 (-776)))) $) NIL)) (-2636 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2364 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2388 (((-867) $) NIL) (($ |#1|) NIL)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 20 T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 53)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-824 |#1|) (-13 (-390 |#1|) (-851) (-10 -8 (-15 -3401 (|#1| $)) (-15 -3414 ($ $)) (-15 -2008 ($ $)) (-15 -3844 ((-112) $ $)) (-15 -2041 ((-3 $ "failed") $ |#1|)) (-15 -2030 ((-3 $ "failed") $ |#1|)) (-15 -2364 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3747 ((-776) $)) (-15 -2996 ((-649 |#1|) $)))) (-855)) (T -824))
+((-3401 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-3844 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-2041 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2030 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2364 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
+(-13 (-390 |#1|) (-851) (-10 -8 (-15 -3401 (|#1| $)) (-15 -3414 ($ $)) (-15 -2008 ($ $)) (-15 -3844 ((-112) $ $)) (-15 -2041 ((-3 $ "failed") $ |#1|)) (-15 -2030 ((-3 $ "failed") $ |#1|)) (-15 -2364 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3747 ((-776) $)) (-15 -2996 ((-649 |#1|) $))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2211 (((-569) $) 59)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2769 (((-112) $) 57)) (-2861 (((-112) $) 35)) (-2778 (((-112) $) 58)) (-2095 (($ $ $) 56)) (-2406 (($ $ $) 55)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ $) 48)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-3999 (($ $) 60)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 53)) (-2882 (((-112) $ $) 52)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 54)) (-2872 (((-112) $ $) 51)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-825) (-140)) (T -825))
NIL
-(-13 (-562) (-853))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-853) . T) ((-855) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2918 (((-1278) (-828) $ (-112)) 9) (((-1278) (-828) $) 8) (((-1165) $ (-112)) 7) (((-1165) $) 6)))
-(((-826) (-140)) (T -826))
-((-2918 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-826)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1278)))) (-2918 (*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-828)) (-5 *2 (-1278)))) (-2918 (*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1165)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1165)))))
-(-13 (-10 -8 (-15 -2918 ((-1165) $)) (-15 -2918 ((-1165) $ (-112))) (-15 -2918 ((-1278) (-828) $)) (-15 -2918 ((-1278) (-828) $ (-112)))))
-((-2858 (($ (-1126)) 7)) (-2862 (((-112) $ (-1165) (-1126)) 15)) (-2861 (((-828) $) 12)) (-2860 (((-828) $) 11)) (-2859 (((-1278) $) 9)) (-2863 (((-112) $ (-1126)) 16)))
-(((-827) (-10 -8 (-15 -2858 ($ (-1126))) (-15 -2859 ((-1278) $)) (-15 -2860 ((-828) $)) (-15 -2861 ((-828) $)) (-15 -2862 ((-112) $ (-1165) (-1126))) (-15 -2863 ((-112) $ (-1126))))) (T -827))
-((-2863 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2862 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-827)))))
-(-10 -8 (-15 -2858 ($ (-1126))) (-15 -2859 ((-1278) $)) (-15 -2860 ((-828) $)) (-15 -2861 ((-828) $)) (-15 -2862 ((-112) $ (-1165) (-1126))) (-15 -2863 ((-112) $ (-1126))))
-((-2867 (((-1278) $ (-829)) 12)) (-2884 (((-1278) $ (-1183)) 32)) (-2886 (((-1278) $ (-1165) (-1165)) 34)) (-2885 (((-1278) $ (-1165)) 33)) (-2874 (((-1278) $) 19)) (-2882 (((-1278) $ (-551)) 28)) (-2883 (((-1278) $ (-226)) 30)) (-2873 (((-1278) $) 18)) (-2881 (((-1278) $) 26)) (-2880 (((-1278) $) 25)) (-2878 (((-1278) $) 23)) (-2879 (((-1278) $) 24)) (-2877 (((-1278) $) 22)) (-2876 (((-1278) $) 21)) (-2875 (((-1278) $) 20)) (-2871 (((-1278) $) 16)) (-2872 (((-1278) $) 17)) (-2870 (((-1278) $) 15)) (-2869 (((-1278) $) 14)) (-2868 (((-1278) $) 13)) (-2865 (($ (-1165) (-829)) 9)) (-2864 (($ (-1165) (-1165) (-829)) 8)) (-2903 (((-1183) $) 51)) (-2906 (((-1183) $) 55)) (-2905 (((-2 (|:| |cd| (-1165)) (|:| -3991 (-1165))) $) 54)) (-2904 (((-1165) $) 52)) (-2893 (((-1278) $) 41)) (-2901 (((-551) $) 49)) (-2902 (((-226) $) 50)) (-2892 (((-1278) $) 40)) (-2900 (((-1278) $) 48)) (-2899 (((-1278) $) 47)) (-2897 (((-1278) $) 45)) (-2898 (((-1278) $) 46)) (-2896 (((-1278) $) 44)) (-2895 (((-1278) $) 43)) (-2894 (((-1278) $) 42)) (-2890 (((-1278) $) 38)) (-2891 (((-1278) $) 39)) (-2889 (((-1278) $) 37)) (-2888 (((-1278) $) 36)) (-2887 (((-1278) $) 35)) (-2866 (((-1278) $) 11)))
-(((-828) (-10 -8 (-15 -2864 ($ (-1165) (-1165) (-829))) (-15 -2865 ($ (-1165) (-829))) (-15 -2866 ((-1278) $)) (-15 -2867 ((-1278) $ (-829))) (-15 -2868 ((-1278) $)) (-15 -2869 ((-1278) $)) (-15 -2870 ((-1278) $)) (-15 -2871 ((-1278) $)) (-15 -2872 ((-1278) $)) (-15 -2873 ((-1278) $)) (-15 -2874 ((-1278) $)) (-15 -2875 ((-1278) $)) (-15 -2876 ((-1278) $)) (-15 -2877 ((-1278) $)) (-15 -2878 ((-1278) $)) (-15 -2879 ((-1278) $)) (-15 -2880 ((-1278) $)) (-15 -2881 ((-1278) $)) (-15 -2882 ((-1278) $ (-551))) (-15 -2883 ((-1278) $ (-226))) (-15 -2884 ((-1278) $ (-1183))) (-15 -2885 ((-1278) $ (-1165))) (-15 -2886 ((-1278) $ (-1165) (-1165))) (-15 -2887 ((-1278) $)) (-15 -2888 ((-1278) $)) (-15 -2889 ((-1278) $)) (-15 -2890 ((-1278) $)) (-15 -2891 ((-1278) $)) (-15 -2892 ((-1278) $)) (-15 -2893 ((-1278) $)) (-15 -2894 ((-1278) $)) (-15 -2895 ((-1278) $)) (-15 -2896 ((-1278) $)) (-15 -2897 ((-1278) $)) (-15 -2898 ((-1278) $)) (-15 -2899 ((-1278) $)) (-15 -2900 ((-1278) $)) (-15 -2901 ((-551) $)) (-15 -2902 ((-226) $)) (-15 -2903 ((-1183) $)) (-15 -2904 ((-1165) $)) (-15 -2905 ((-2 (|:| |cd| (-1165)) (|:| -3991 (-1165))) $)) (-15 -2906 ((-1183) $)))) (T -828))
-((-2906 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-828)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3991 (-1165)))) (-5 *1 (-828)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-828)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-828)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-828)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-828)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2885 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2883 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1278)) (-5 *1 (-828)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))) (-2865 (*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-829)) (-5 *1 (-828)))) (-2864 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(-10 -8 (-15 -2864 ($ (-1165) (-1165) (-829))) (-15 -2865 ($ (-1165) (-829))) (-15 -2866 ((-1278) $)) (-15 -2867 ((-1278) $ (-829))) (-15 -2868 ((-1278) $)) (-15 -2869 ((-1278) $)) (-15 -2870 ((-1278) $)) (-15 -2871 ((-1278) $)) (-15 -2872 ((-1278) $)) (-15 -2873 ((-1278) $)) (-15 -2874 ((-1278) $)) (-15 -2875 ((-1278) $)) (-15 -2876 ((-1278) $)) (-15 -2877 ((-1278) $)) (-15 -2878 ((-1278) $)) (-15 -2879 ((-1278) $)) (-15 -2880 ((-1278) $)) (-15 -2881 ((-1278) $)) (-15 -2882 ((-1278) $ (-551))) (-15 -2883 ((-1278) $ (-226))) (-15 -2884 ((-1278) $ (-1183))) (-15 -2885 ((-1278) $ (-1165))) (-15 -2886 ((-1278) $ (-1165) (-1165))) (-15 -2887 ((-1278) $)) (-15 -2888 ((-1278) $)) (-15 -2889 ((-1278) $)) (-15 -2890 ((-1278) $)) (-15 -2891 ((-1278) $)) (-15 -2892 ((-1278) $)) (-15 -2893 ((-1278) $)) (-15 -2894 ((-1278) $)) (-15 -2895 ((-1278) $)) (-15 -2896 ((-1278) $)) (-15 -2897 ((-1278) $)) (-15 -2898 ((-1278) $)) (-15 -2899 ((-1278) $)) (-15 -2900 ((-1278) $)) (-15 -2901 ((-551) $)) (-15 -2902 ((-226) $)) (-15 -2903 ((-1183) $)) (-15 -2904 ((-1165) $)) (-15 -2905 ((-2 (|:| |cd| (-1165)) (|:| -3991 (-1165))) $)) (-15 -2906 ((-1183) $)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 13)) (-3680 (((-112) $ $) NIL)) (-2909 (($) 16)) (-2910 (($) 14)) (-2908 (($) 17)) (-2907 (($) 15)) (-3473 (((-112) $ $) 9)))
-(((-829) (-13 (-1107) (-10 -8 (-15 -2910 ($)) (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ($))))) (T -829))
-((-2910 (*1 *1) (-5 *1 (-829))) (-2909 (*1 *1) (-5 *1 (-829))) (-2908 (*1 *1) (-5 *1 (-829))) (-2907 (*1 *1) (-5 *1 (-829))))
-(-13 (-1107) (-10 -8 (-15 -2910 ($)) (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ($))))
-((-2986 (((-112) $ $) NIL)) (-2911 (($ (-831) (-646 (-1183))) 32)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2913 (((-831) $) 33)) (-2912 (((-646 (-1183)) $) 34)) (-4396 (((-868) $) 31)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-830) (-13 (-1107) (-10 -8 (-15 -2913 ((-831) $)) (-15 -2912 ((-646 (-1183)) $)) (-15 -2911 ($ (-831) (-646 (-1183))))))) (T -830))
-((-2913 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-830)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-831)) (-5 *3 (-646 (-1183))) (-5 *1 (-830)))))
-(-13 (-1107) (-10 -8 (-15 -2913 ((-831) $)) (-15 -2912 ((-646 (-1183)) $)) (-15 -2911 ($ (-831) (-646 (-1183))))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 23) (($ (-1183)) 19)) (-3680 (((-112) $ $) NIL)) (-2915 (((-112) $) 10)) (-2916 (((-112) $) 9)) (-2914 (((-112) $) 11)) (-2917 (((-112) $) 8)) (-3473 (((-112) $ $) 21)))
-(((-831) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-1183))) (-15 -2917 ((-112) $)) (-15 -2916 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -2914 ((-112) $))))) (T -831))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-831)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-1183))) (-15 -2917 ((-112) $)) (-15 -2916 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -2914 ((-112) $))))
-((-2918 (((-1278) (-828) (-317 |#1|) (-112)) 23) (((-1278) (-828) (-317 |#1|)) 89) (((-1165) (-317 |#1|) (-112)) 88) (((-1165) (-317 |#1|)) 87)))
-(((-832 |#1|) (-10 -7 (-15 -2918 ((-1165) (-317 |#1|))) (-15 -2918 ((-1165) (-317 |#1|) (-112))) (-15 -2918 ((-1278) (-828) (-317 |#1|))) (-15 -2918 ((-1278) (-828) (-317 |#1|) (-112)))) (-13 (-826) (-1055))) (T -832))
-((-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-828)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-826) (-1055))) (-5 *2 (-1278)) (-5 *1 (-832 *6)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-828)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-826) (-1055))) (-5 *2 (-1278)) (-5 *1 (-832 *5)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1055))) (-5 *2 (-1165)) (-5 *1 (-832 *5)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-826) (-1055))) (-5 *2 (-1165)) (-5 *1 (-832 *4)))))
-(-10 -7 (-15 -2918 ((-1165) (-317 |#1|))) (-15 -2918 ((-1165) (-317 |#1|) (-112))) (-15 -2918 ((-1278) (-828) (-317 |#1|))) (-15 -2918 ((-1278) (-828) (-317 |#1|) (-112))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2919 ((|#1| $) 10)) (-2920 (($ |#1|) 9)) (-2591 (((-112) $) NIL)) (-3312 (($ |#2| (-776)) NIL)) (-3241 (((-776) $) NIL)) (-3612 ((|#2| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4260 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-4398 (((-776) $) NIL)) (-4396 (((-868) $) 17) (($ (-551)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-4127 ((|#2| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-833 |#1| |#2|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -2920 ($ |#1|)) (-15 -2919 (|#1| $)))) (-713 |#2|) (-1055)) (T -833))
-((-2920 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-833 *2 *3)) (-4 *2 (-713 *3)))) (-2919 (*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1055)))))
-(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -2920 ($ |#1|)) (-15 -2919 (|#1| $))))
-((-2928 (((-314) (-1165) (-1165)) 12)) (-2927 (((-112) (-1165) (-1165)) 34)) (-2926 (((-112) (-1165)) 33)) (-2923 (((-51) (-1165)) 25)) (-2922 (((-51) (-1165)) 23)) (-2921 (((-51) (-828)) 17)) (-2925 (((-646 (-1165)) (-1165)) 28)) (-2924 (((-646 (-1165))) 27)))
-(((-834) (-10 -7 (-15 -2921 ((-51) (-828))) (-15 -2922 ((-51) (-1165))) (-15 -2923 ((-51) (-1165))) (-15 -2924 ((-646 (-1165)))) (-15 -2925 ((-646 (-1165)) (-1165))) (-15 -2926 ((-112) (-1165))) (-15 -2927 ((-112) (-1165) (-1165))) (-15 -2928 ((-314) (-1165) (-1165))))) (T -834))
-((-2928 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-834)))) (-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-2925 (*1 *2 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))) (-2924 (*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-834)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-834)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-834)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-51)) (-5 *1 (-834)))))
-(-10 -7 (-15 -2921 ((-51) (-828))) (-15 -2922 ((-51) (-1165))) (-15 -2923 ((-51) (-1165))) (-15 -2924 ((-646 (-1165)))) (-15 -2925 ((-646 (-1165)) (-1165))) (-15 -2926 ((-112) (-1165))) (-15 -2927 ((-112) (-1165) (-1165))) (-15 -2928 ((-314) (-1165) (-1165))))
-((-2986 (((-112) $ $) 19)) (-3672 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3674 (($ $ $) 73)) (-3673 (((-112) $ $) 74)) (-1312 (((-112) $ (-776)) 8)) (-3677 (($ (-646 |#1|)) 69) (($) 68)) (-1688 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2544 (($ $) 63)) (-1443 (($ $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) 65)) (-4169 (((-112) $ (-776)) 9)) (-2952 ((|#1| $) 79)) (-3277 (($ $ $) 82)) (-3959 (($ $ $) 81)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3278 ((|#1| $) 80)) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22)) (-3676 (($ $ $) 70)) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3682 (((-1126) $) 21)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2543 (((-646 (-2 (|:| -2264 |#1|) (|:| -2135 (-776)))) $) 62)) (-3675 (($ $ |#1|) 72) (($ $ $) 71)) (-1573 (($) 50) (($ (-646 |#1|)) 49)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 51)) (-4396 (((-868) $) 18)) (-3678 (($ (-646 |#1|)) 67) (($) 66)) (-3680 (((-112) $ $) 23)) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20)) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(-13 (-561) (-853))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3859 (($ (-1126)) 7)) (-3907 (((-112) $ (-1165) (-1126)) 15)) (-3895 (((-827) $) 12)) (-3883 (((-827) $) 11)) (-3871 (((-1278) $) 9)) (-3920 (((-112) $ (-1126)) 16)))
+(((-826) (-10 -8 (-15 -3859 ($ (-1126))) (-15 -3871 ((-1278) $)) (-15 -3883 ((-827) $)) (-15 -3895 ((-827) $)) (-15 -3907 ((-112) $ (-1165) (-1126))) (-15 -3920 ((-112) $ (-1126))))) (T -826))
+((-3920 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3907 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-826)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-826)))))
+(-10 -8 (-15 -3859 ($ (-1126))) (-15 -3871 ((-1278) $)) (-15 -3883 ((-827) $)) (-15 -3895 ((-827) $)) (-15 -3907 ((-112) $ (-1165) (-1126))) (-15 -3920 ((-112) $ (-1126))))
+((-3965 (((-1278) $ (-828)) 12)) (-4165 (((-1278) $ (-1183)) 32)) (-4187 (((-1278) $ (-1165) (-1165)) 34)) (-4177 (((-1278) $ (-1165)) 33)) (-4046 (((-1278) $) 19)) (-4143 (((-1278) $ (-569)) 28)) (-4153 (((-1278) $ (-226)) 30)) (-4035 (((-1278) $) 18)) (-4130 (((-1278) $) 26)) (-4118 (((-1278) $) 25)) (-4093 (((-1278) $) 23)) (-4105 (((-1278) $) 24)) (-4081 (((-1278) $) 22)) (-4070 (((-1278) $) 21)) (-4058 (((-1278) $) 20)) (-4012 (((-1278) $) 16)) (-4024 (((-1278) $) 17)) (-4001 (((-1278) $) 15)) (-3990 (((-1278) $) 14)) (-3977 (((-1278) $) 13)) (-3942 (($ (-1165) (-828)) 9)) (-3931 (($ (-1165) (-1165) (-828)) 8)) (-3049 (((-1183) $) 51)) (-3082 (((-1183) $) 55)) (-3071 (((-2 (|:| |cd| (-1165)) (|:| -3458 (-1165))) $) 54)) (-3062 (((-1165) $) 52)) (-4266 (((-1278) $) 41)) (-3027 (((-569) $) 49)) (-3036 (((-226) $) 50)) (-4254 (((-1278) $) 40)) (-3015 (((-1278) $) 48)) (-3002 (((-1278) $) 47)) (-2984 (((-1278) $) 45)) (-2992 (((-1278) $) 46)) (-2972 (((-1278) $) 44)) (-2962 (((-1278) $) 43)) (-4281 (((-1278) $) 42)) (-4230 (((-1278) $) 38)) (-4244 (((-1278) $) 39)) (-4220 (((-1278) $) 37)) (-4210 (((-1278) $) 36)) (-4198 (((-1278) $) 35)) (-3953 (((-1278) $) 11)))
+(((-827) (-10 -8 (-15 -3931 ($ (-1165) (-1165) (-828))) (-15 -3942 ($ (-1165) (-828))) (-15 -3953 ((-1278) $)) (-15 -3965 ((-1278) $ (-828))) (-15 -3977 ((-1278) $)) (-15 -3990 ((-1278) $)) (-15 -4001 ((-1278) $)) (-15 -4012 ((-1278) $)) (-15 -4024 ((-1278) $)) (-15 -4035 ((-1278) $)) (-15 -4046 ((-1278) $)) (-15 -4058 ((-1278) $)) (-15 -4070 ((-1278) $)) (-15 -4081 ((-1278) $)) (-15 -4093 ((-1278) $)) (-15 -4105 ((-1278) $)) (-15 -4118 ((-1278) $)) (-15 -4130 ((-1278) $)) (-15 -4143 ((-1278) $ (-569))) (-15 -4153 ((-1278) $ (-226))) (-15 -4165 ((-1278) $ (-1183))) (-15 -4177 ((-1278) $ (-1165))) (-15 -4187 ((-1278) $ (-1165) (-1165))) (-15 -4198 ((-1278) $)) (-15 -4210 ((-1278) $)) (-15 -4220 ((-1278) $)) (-15 -4230 ((-1278) $)) (-15 -4244 ((-1278) $)) (-15 -4254 ((-1278) $)) (-15 -4266 ((-1278) $)) (-15 -4281 ((-1278) $)) (-15 -2962 ((-1278) $)) (-15 -2972 ((-1278) $)) (-15 -2984 ((-1278) $)) (-15 -2992 ((-1278) $)) (-15 -3002 ((-1278) $)) (-15 -3015 ((-1278) $)) (-15 -3027 ((-569) $)) (-15 -3036 ((-226) $)) (-15 -3049 ((-1183) $)) (-15 -3062 ((-1165) $)) (-15 -3071 ((-2 (|:| |cd| (-1165)) (|:| -3458 (-1165))) $)) (-15 -3082 ((-1183) $)))) (T -827))
+((-3082 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3458 (-1165)))) (-5 *1 (-827)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-827)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4187 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4165 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4143 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3965 (*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3942 (*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))) (-3931 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(-10 -8 (-15 -3931 ($ (-1165) (-1165) (-828))) (-15 -3942 ($ (-1165) (-828))) (-15 -3953 ((-1278) $)) (-15 -3965 ((-1278) $ (-828))) (-15 -3977 ((-1278) $)) (-15 -3990 ((-1278) $)) (-15 -4001 ((-1278) $)) (-15 -4012 ((-1278) $)) (-15 -4024 ((-1278) $)) (-15 -4035 ((-1278) $)) (-15 -4046 ((-1278) $)) (-15 -4058 ((-1278) $)) (-15 -4070 ((-1278) $)) (-15 -4081 ((-1278) $)) (-15 -4093 ((-1278) $)) (-15 -4105 ((-1278) $)) (-15 -4118 ((-1278) $)) (-15 -4130 ((-1278) $)) (-15 -4143 ((-1278) $ (-569))) (-15 -4153 ((-1278) $ (-226))) (-15 -4165 ((-1278) $ (-1183))) (-15 -4177 ((-1278) $ (-1165))) (-15 -4187 ((-1278) $ (-1165) (-1165))) (-15 -4198 ((-1278) $)) (-15 -4210 ((-1278) $)) (-15 -4220 ((-1278) $)) (-15 -4230 ((-1278) $)) (-15 -4244 ((-1278) $)) (-15 -4254 ((-1278) $)) (-15 -4266 ((-1278) $)) (-15 -4281 ((-1278) $)) (-15 -2962 ((-1278) $)) (-15 -2972 ((-1278) $)) (-15 -2984 ((-1278) $)) (-15 -2992 ((-1278) $)) (-15 -3002 ((-1278) $)) (-15 -3015 ((-1278) $)) (-15 -3027 ((-569) $)) (-15 -3036 ((-226) $)) (-15 -3049 ((-1183) $)) (-15 -3062 ((-1165) $)) (-15 -3071 ((-2 (|:| |cd| (-1165)) (|:| -3458 (-1165))) $)) (-15 -3082 ((-1183) $)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 13)) (-2040 (((-112) $ $) NIL)) (-3113 (($) 16)) (-3124 (($) 14)) (-3104 (($) 17)) (-3093 (($) 15)) (-2853 (((-112) $ $) 9)))
+(((-828) (-13 (-1106) (-10 -8 (-15 -3124 ($)) (-15 -3113 ($)) (-15 -3104 ($)) (-15 -3093 ($))))) (T -828))
+((-3124 (*1 *1) (-5 *1 (-828))) (-3113 (*1 *1) (-5 *1 (-828))) (-3104 (*1 *1) (-5 *1 (-828))) (-3093 (*1 *1) (-5 *1 (-828))))
+(-13 (-1106) (-10 -8 (-15 -3124 ($)) (-15 -3113 ($)) (-15 -3104 ($)) (-15 -3093 ($))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 23) (($ (-1183)) 19)) (-2040 (((-112) $ $) NIL)) (-3179 (((-112) $) 10)) (-3190 (((-112) $) 9)) (-3169 (((-112) $) 11)) (-3203 (((-112) $) 8)) (-2853 (((-112) $ $) 21)))
+(((-829) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-1183))) (-15 -3203 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -3169 ((-112) $))))) (T -829))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-829)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-1183))) (-15 -3203 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -3169 ((-112) $))))
+((-2383 (((-112) $ $) NIL)) (-3134 (($ (-829) (-649 (-1183))) 32)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3158 (((-829) $) 33)) (-3146 (((-649 (-1183)) $) 34)) (-2388 (((-867) $) 31)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-830) (-13 (-1106) (-10 -8 (-15 -3158 ((-829) $)) (-15 -3146 ((-649 (-1183)) $)) (-15 -3134 ($ (-829) (-649 (-1183))))))) (T -830))
+((-3158 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-830)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1183))) (-5 *1 (-830)))))
+(-13 (-1106) (-10 -8 (-15 -3158 ((-829) $)) (-15 -3146 ((-649 (-1183)) $)) (-15 -3134 ($ (-829) (-649 (-1183))))))
+((-3218 (((-1278) (-827) (-319 |#1|) (-112)) 23) (((-1278) (-827) (-319 |#1|)) 89) (((-1165) (-319 |#1|) (-112)) 88) (((-1165) (-319 |#1|)) 87)))
+(((-831 |#1|) (-10 -7 (-15 -3218 ((-1165) (-319 |#1|))) (-15 -3218 ((-1165) (-319 |#1|) (-112))) (-15 -3218 ((-1278) (-827) (-319 |#1|))) (-15 -3218 ((-1278) (-827) (-319 |#1|) (-112)))) (-13 (-833) (-1055))) (T -831))
+((-3218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *6)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *5)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1055))) (-5 *2 (-1165)) (-5 *1 (-831 *5)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1055))) (-5 *2 (-1165)) (-5 *1 (-831 *4)))))
+(-10 -7 (-15 -3218 ((-1165) (-319 |#1|))) (-15 -3218 ((-1165) (-319 |#1|) (-112))) (-15 -3218 ((-1278) (-827) (-319 |#1|))) (-15 -3218 ((-1278) (-827) (-319 |#1|) (-112))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3231 ((|#1| $) 10)) (-3818 (($ |#1|) 9)) (-2861 (((-112) $) NIL)) (-3838 (($ |#2| (-776)) NIL)) (-3304 (((-776) $) NIL)) (-1820 ((|#2| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3430 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2091 (((-776) $) NIL)) (-2388 (((-867) $) 17) (($ (-569)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-1503 ((|#2| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-832 |#1| |#2|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3818 ($ |#1|)) (-15 -3231 (|#1| $)))) (-713 |#2|) (-1055)) (T -832))
+((-3818 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))) (-3231 (*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1055)))))
+(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3818 ($ |#1|)) (-15 -3231 (|#1| $))))
+((-3218 (((-1278) (-827) $ (-112)) 9) (((-1278) (-827) $) 8) (((-1165) $ (-112)) 7) (((-1165) $) 6)))
+(((-833) (-140)) (T -833))
+((-3218 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1278)))) (-3218 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1278)))) (-3218 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1165)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1165)))))
+(-13 (-10 -8 (-15 -3218 ((-1165) $)) (-15 -3218 ((-1165) $ (-112))) (-15 -3218 ((-1278) (-827) $)) (-15 -3218 ((-1278) (-827) $ (-112)))))
+((-3332 (((-315) (-1165) (-1165)) 12)) (-3321 (((-112) (-1165) (-1165)) 34)) (-3310 (((-112) (-1165)) 33)) (-3273 (((-52) (-1165)) 25)) (-3261 (((-52) (-1165)) 23)) (-3248 (((-52) (-827)) 17)) (-3298 (((-649 (-1165)) (-1165)) 28)) (-3286 (((-649 (-1165))) 27)))
+(((-834) (-10 -7 (-15 -3248 ((-52) (-827))) (-15 -3261 ((-52) (-1165))) (-15 -3273 ((-52) (-1165))) (-15 -3286 ((-649 (-1165)))) (-15 -3298 ((-649 (-1165)) (-1165))) (-15 -3310 ((-112) (-1165))) (-15 -3321 ((-112) (-1165) (-1165))) (-15 -3332 ((-315) (-1165) (-1165))))) (T -834))
+((-3332 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-834)))) (-3321 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3298 (*1 *2 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))) (-3286 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(-10 -7 (-15 -3248 ((-52) (-827))) (-15 -3261 ((-52) (-1165))) (-15 -3273 ((-52) (-1165))) (-15 -3286 ((-649 (-1165)))) (-15 -3298 ((-649 (-1165)) (-1165))) (-15 -3310 ((-112) (-1165))) (-15 -3321 ((-112) (-1165) (-1165))) (-15 -3332 ((-315) (-1165) (-1165))))
+((-2383 (((-112) $ $) 19)) (-3893 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1996 (($ $ $) 73)) (-1987 (((-112) $ $) 74)) (-1610 (((-112) $ (-776)) 8)) (-4250 (($ (-649 |#1|)) 69) (($) 68)) (-1816 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-3686 (($ $) 63)) (-3437 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ |#1| $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) 65)) (-3799 (((-112) $ (-776)) 9)) (-2095 ((|#1| $) 79)) (-3644 (($ $ $) 82)) (-3719 (($ $ $) 81)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-2406 ((|#1| $) 80)) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22)) (-2018 (($ $ $) 70)) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3461 (((-1126) $) 21)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3672 (((-649 (-2 (|:| -2179 |#1|) (|:| -3469 (-776)))) $) 62)) (-2006 (($ $ |#1|) 72) (($ $ $) 71)) (-3054 (($) 50) (($ (-649 |#1|)) 49)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 51)) (-2388 (((-867) $) 18)) (-3776 (($ (-649 |#1|)) 67) (($) 66)) (-2040 (((-112) $ $) 23)) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20)) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-835 |#1|) (-140) (-855)) (T -835))
-((-2952 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))))
-(-13 (-742 |t#1|) (-974 |t#1|) (-10 -8 (-15 -2952 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-700 |#1|) . T) ((-742 |#1|) . T) ((-974 |#1|) . T) ((-1105 |#1|) . T) ((-1107) . T) ((-1222) . T))
-((-2931 (((-1278) (-1126) (-1126)) 48)) (-2930 (((-1278) (-827) (-51)) 45)) (-2929 (((-51) (-827)) 16)))
-(((-836) (-10 -7 (-15 -2929 ((-51) (-827))) (-15 -2930 ((-1278) (-827) (-51))) (-15 -2931 ((-1278) (-1126) (-1126))))) (T -836))
-((-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-51)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-51)) (-5 *1 (-836)))))
-(-10 -7 (-15 -2929 ((-51) (-827))) (-15 -2930 ((-1278) (-827) (-51))) (-15 -2931 ((-1278) (-1126) (-1126))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL (|has| |#1| (-21)))) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4073 (((-551) $) NIL (|has| |#1| (-853)))) (-4174 (($) NIL (|has| |#1| (-21)) CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 15)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 9)) (-3908 (((-3 $ "failed") $) 42 (|has| |#1| (-853)))) (-3443 (((-3 (-412 (-551)) "failed") $) 52 (|has| |#1| (-550)))) (-3442 (((-112) $) 46 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 49 (|has| |#1| (-550)))) (-3624 (((-112) $) NIL (|has| |#1| (-853)))) (-2591 (((-112) $) NIL (|has| |#1| (-853)))) (-3625 (((-112) $) NIL (|has| |#1| (-853)))) (-2952 (($ $ $) NIL (|has| |#1| (-853)))) (-3278 (($ $ $) NIL (|has| |#1| (-853)))) (-3681 (((-1165) $) NIL)) (-2932 (($) 13)) (-2945 (((-112) $) 12)) (-3682 (((-1126) $) NIL)) (-2946 (((-112) $) 11)) (-4396 (((-868) $) 18) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) 8) (($ (-551)) NIL (-3978 (|has| |#1| (-853)) (|has| |#1| (-1044 (-551)))))) (-3548 (((-776)) 36 (|has| |#1| (-853)) CONST)) (-3680 (((-112) $ $) 54)) (-3825 (($ $) NIL (|has| |#1| (-853)))) (-3528 (($) 23 (|has| |#1| (-21)) CONST)) (-3085 (($) 33 (|has| |#1| (-853)) CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3473 (((-112) $ $) 21)) (-3105 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3106 (((-112) $ $) 45 (|has| |#1| (-853)))) (-4287 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4289 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-925)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 39 (|has| |#1| (-853))) (($ (-551) $) 27 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-925) $) NIL (|has| |#1| (-21)))))
-(((-837 |#1|) (-13 (-1107) (-417 |#1|) (-10 -8 (-15 -2932 ($)) (-15 -2946 ((-112) $)) (-15 -2945 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|))) (-1107)) (T -837))
-((-2932 (*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1107)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1107)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1107)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-837 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-837 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))))
-(-13 (-1107) (-417 |#1|) (-10 -8 (-15 -2932 ($)) (-15 -2946 ((-112) $)) (-15 -2945 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|)))
-((-4408 (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|)) 12) (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|)) 13)))
-(((-838 |#1| |#2|) (-10 -7 (-15 -4408 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4408 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|)))) (-1107) (-1107)) (T -838))
-((-4408 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *1 (-838 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-837 *6)) (-5 *1 (-838 *5 *6)))))
-(-10 -7 (-15 -4408 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4408 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3594 ((|#1| $) NIL) (((-113) $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2934 ((|#1| (-113) |#1|) NIL)) (-2591 (((-112) $) NIL)) (-2933 (($ |#1| (-365 (-113))) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-2935 (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (($ $ (-1 |#1| |#1|)) NIL)) (-4249 ((|#1| $ |#1|) NIL)) (-2937 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2938 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ (-113) (-551)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-839 |#1|) (-13 (-1055) (-1044 |#1|) (-1044 (-113)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2938 ($ $)) (-15 -2938 ($ $ $)) (-15 -2937 (|#1| |#1|))) |%noBranch|) (-15 -2936 ($ $ (-1 |#1| |#1|))) (-15 -2935 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-551))) (-15 ** ($ $ (-551))) (-15 -2934 (|#1| (-113) |#1|)) (-15 -2933 ($ |#1| (-365 (-113)))))) (-1055)) (T -839))
-((-2938 (*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-2937 (*1 *2 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-839 *3)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-839 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-551)) (-5 *1 (-839 *4)) (-4 *4 (-1055)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-839 *3)) (-4 *3 (-1055)))) (-2934 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-839 *2)) (-4 *2 (-1055)))) (-2933 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-113))) (-5 *1 (-839 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-1044 |#1|) (-1044 (-113)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2938 ($ $)) (-15 -2938 ($ $ $)) (-15 -2937 (|#1| |#1|))) |%noBranch|) (-15 -2936 ($ $ (-1 |#1| |#1|))) (-15 -2935 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-551))) (-15 ** ($ $ (-551))) (-15 -2934 (|#1| (-113) |#1|)) (-15 -2933 ($ |#1| (-365 (-113))))))
-((-3053 (((-112) $ |#2|) 14)) (-4396 (((-868) $) 11)))
-(((-840 |#1| |#2|) (-10 -8 (-15 -3053 ((-112) |#1| |#2|)) (-15 -4396 ((-868) |#1|))) (-841 |#2|) (-1107)) (T -840))
-NIL
-(-10 -8 (-15 -3053 ((-112) |#1| |#2|)) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3991 ((|#1| $) 16)) (-3681 (((-1165) $) 10)) (-3053 (((-112) $ |#1|) 14)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2939 (((-55) $) 15)) (-3473 (((-112) $ $) 6)))
-(((-841 |#1|) (-140) (-1107)) (T -841))
-((-3991 (*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1107)))) (-2939 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1107)) (-5 *2 (-55)))) (-3053 (*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(-13 (-1107) (-10 -8 (-15 -3991 (|t#1| $)) (-15 -2939 ((-55) $)) (-15 -3053 ((-112) $ |t#1|))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2940 (((-215 (-507)) (-1165)) 9)))
-(((-842) (-10 -7 (-15 -2940 ((-215 (-507)) (-1165))))) (T -842))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
-(-10 -7 (-15 -2940 ((-215 (-507)) (-1165))))
-((-2986 (((-112) $ $) NIL)) (-3758 (((-1121) $) 10)) (-3991 (((-511) $) 9)) (-3681 (((-1165) $) NIL)) (-3053 (((-112) $ (-511)) NIL)) (-3682 (((-1126) $) NIL)) (-3971 (($ (-511) (-1121)) 8)) (-4396 (((-868) $) 25)) (-3680 (((-112) $ $) NIL)) (-2939 (((-55) $) 20)) (-3473 (((-112) $ $) 12)))
-(((-843) (-13 (-841 (-511)) (-10 -8 (-15 -3758 ((-1121) $)) (-15 -3971 ($ (-511) (-1121)))))) (T -843))
-((-3758 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-843)))) (-3971 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1121)) (-5 *1 (-843)))))
-(-13 (-841 (-511)) (-10 -8 (-15 -3758 ((-1121) $)) (-15 -3971 ($ (-511) (-1121)))))
-((-2986 (((-112) $ $) 7)) (-2941 (((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 15) (((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 14)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 17) (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 16)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-2095 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))))
+(-13 (-741 |t#1|) (-974 |t#1|) (-10 -8 (-15 -2095 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-700 |#1|) . T) ((-741 |#1|) . T) ((-974 |#1|) . T) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
+((-3365 (((-1278) (-1126) (-1126)) 48)) (-3353 (((-1278) (-826) (-52)) 45)) (-3343 (((-52) (-826)) 16)))
+(((-836) (-10 -7 (-15 -3343 ((-52) (-826))) (-15 -3353 ((-1278) (-826) (-52))) (-15 -3365 ((-1278) (-1126) (-1126))))) (T -836))
+((-3365 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
+(-10 -7 (-15 -3343 ((-52) (-826))) (-15 -3353 ((-1278) (-826) (-52))) (-15 -3365 ((-1278) (-1126) (-1126))))
+((-1324 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)) 12) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 13)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -1324 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1324 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)))) (-1106) (-1106)) (T -837))
+((-1324 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-837 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))))
+(-10 -7 (-15 -1324 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1324 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL (|has| |#1| (-21)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2211 (((-569) $) NIL (|has| |#1| (-853)))) (-3863 (($) NIL (|has| |#1| (-21)) CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 15)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 9)) (-3351 (((-3 $ "failed") $) 42 (|has| |#1| (-853)))) (-1740 (((-3 (-412 (-569)) "failed") $) 52 (|has| |#1| (-550)))) (-1727 (((-112) $) 46 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 49 (|has| |#1| (-550)))) (-2769 (((-112) $) NIL (|has| |#1| (-853)))) (-2861 (((-112) $) NIL (|has| |#1| (-853)))) (-2778 (((-112) $) NIL (|has| |#1| (-853)))) (-2095 (($ $ $) NIL (|has| |#1| (-853)))) (-2406 (($ $ $) NIL (|has| |#1| (-853)))) (-2050 (((-1165) $) NIL)) (-4419 (($) 13)) (-3510 (((-112) $) 12)) (-3461 (((-1126) $) NIL)) (-3520 (((-112) $) 11)) (-2388 (((-867) $) 18) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2718 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))))) (-3263 (((-776)) 36 (|has| |#1| (-853)) CONST)) (-2040 (((-112) $ $) 54)) (-3999 (($ $) NIL (|has| |#1| (-853)))) (-1786 (($) 23 (|has| |#1| (-21)) CONST)) (-1796 (($) 33 (|has| |#1| (-853)) CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2853 (((-112) $ $) 21)) (-2893 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2872 (((-112) $ $) 45 (|has| |#1| (-853)))) (-2946 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-2935 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 39 (|has| |#1| (-853))) (($ (-569) $) 27 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
+(((-838 |#1|) (-13 (-1106) (-416 |#1|) (-10 -8 (-15 -4419 ($)) (-15 -3520 ((-112) $)) (-15 -3510 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1106)) (T -838))
+((-4419 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1106)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1740 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))))
+(-13 (-1106) (-416 |#1|) (-10 -8 (-15 -4419 ($)) (-15 -3520 ((-112) $)) (-15 -3510 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+((-2016 (((-112) $ |#2|) 14)) (-2388 (((-867) $) 11)))
+(((-839 |#1| |#2|) (-10 -8 (-15 -2016 ((-112) |#1| |#2|)) (-15 -2388 ((-867) |#1|))) (-840 |#2|) (-1106)) (T -839))
+NIL
+(-10 -8 (-15 -2016 ((-112) |#1| |#2|)) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-3458 ((|#1| $) 16)) (-2050 (((-1165) $) 10)) (-2016 (((-112) $ |#1|) 14)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3450 (((-55) $) 15)) (-2853 (((-112) $ $) 6)))
+(((-840 |#1|) (-140) (-1106)) (T -840))
+((-3458 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1106)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-55)))) (-2016 (*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(-13 (-1106) (-10 -8 (-15 -3458 (|t#1| $)) (-15 -3450 ((-55) $)) (-15 -2016 ((-112) $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-114) $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3391 ((|#1| (-114) |#1|) NIL)) (-2861 (((-112) $) NIL)) (-3377 (($ |#1| (-365 (-114))) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3403 (($ $ (-1 |#1| |#1|)) NIL)) (-3416 (($ $ (-1 |#1| |#1|)) NIL)) (-1852 ((|#1| $ |#1|) NIL)) (-3428 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-841 |#1|) (-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -3439 ($ $)) (-15 -3439 ($ $ $)) (-15 -3428 (|#1| |#1|))) |%noBranch|) (-15 -3416 ($ $ (-1 |#1| |#1|))) (-15 -3403 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -3391 (|#1| (-114) |#1|)) (-15 -3377 ($ |#1| (-365 (-114)))))) (-1055)) (T -841))
+((-3439 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-3439 (*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-3428 (*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1055)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1055)))) (-3391 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1055)))) (-3377 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
+(-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -3439 ($ $)) (-15 -3439 ($ $ $)) (-15 -3428 (|#1| |#1|))) |%noBranch|) (-15 -3416 ($ $ (-1 |#1| |#1|))) (-15 -3403 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -3391 (|#1| (-114) |#1|)) (-15 -3377 ($ |#1| (-365 (-114))))))
+((-3464 (((-215 (-507)) (-1165)) 9)))
+(((-842) (-10 -7 (-15 -3464 ((-215 (-507)) (-1165))))) (T -842))
+((-3464 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
+(-10 -7 (-15 -3464 ((-215 (-507)) (-1165))))
+((-2383 (((-112) $ $) NIL)) (-4311 (((-1124) $) 10)) (-3458 (((-511) $) 9)) (-2050 (((-1165) $) NIL)) (-2016 (((-112) $ (-511)) NIL)) (-3461 (((-1126) $) NIL)) (-3709 (($ (-511) (-1124)) 8)) (-2388 (((-867) $) 25)) (-2040 (((-112) $ $) NIL)) (-3450 (((-55) $) 20)) (-2853 (((-112) $ $) 12)))
+(((-843) (-13 (-840 (-511)) (-10 -8 (-15 -4311 ((-1124) $)) (-15 -3709 ($ (-511) (-1124)))))) (T -843))
+((-4311 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-843)))) (-3709 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-843)))))
+(-13 (-840 (-511)) (-10 -8 (-15 -4311 ((-1124) $)) (-15 -3709 ($ (-511) (-1124)))))
+((-2383 (((-112) $ $) 7)) (-3477 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 15) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 17) (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 16)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-844) (-140)) (T -844))
-((-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)))))) (-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)))))) (-2941 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) (-5 *2 (-1041)))) (-2941 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (-5 *2 (-1041)))))
-(-13 (-1107) (-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -2941 ((-1041) (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -2941 ((-1041) (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2942 (((-1041) (-646 (-317 (-382))) (-646 (-382))) 169) (((-1041) (-317 (-382)) (-646 (-382))) 167) (((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-847 (-382)))) 165) (((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-317 (-382))) (-646 (-847 (-382)))) 163) (((-1041) (-846)) 128) (((-1041) (-846) (-1069)) 127)) (-3089 (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846) (-1069)) 88) (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846)) 90)) (-2943 (((-1041) (-646 (-317 (-382))) (-646 (-382))) 170) (((-1041) (-846)) 153)))
-(((-845) (-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846) (-1069))) (-15 -2942 ((-1041) (-846) (-1069))) (-15 -2942 ((-1041) (-846))) (-15 -2943 ((-1041) (-846))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-317 (-382))) (-646 (-847 (-382))))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-847 (-382))))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)))) (-15 -2942 ((-1041) (-646 (-317 (-382))) (-646 (-382)))) (-15 -2943 ((-1041) (-646 (-317 (-382))) (-646 (-382)))))) (T -845))
-((-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-317 (-382)))) (-5 *4 (-646 (-382))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-317 (-382)))) (-5 *4 (-646 (-382))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-382))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-382))) (-5 *5 (-646 (-847 (-382)))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-646 (-382))) (-5 *5 (-646 (-847 (-382)))) (-5 *6 (-646 (-317 (-382)))) (-5 *3 (-317 (-382))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-845)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-845)))))
-(-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-846) (-1069))) (-15 -2942 ((-1041) (-846) (-1069))) (-15 -2942 ((-1041) (-846))) (-15 -2943 ((-1041) (-846))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-317 (-382))) (-646 (-847 (-382))))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)) (-646 (-847 (-382))) (-646 (-847 (-382))))) (-15 -2942 ((-1041) (-317 (-382)) (-646 (-382)))) (-15 -2942 ((-1041) (-646 (-317 (-382))) (-646 (-382)))) (-15 -2943 ((-1041) (-646 (-317 (-382))) (-646 (-382)))))
-((-2986 (((-112) $ $) NIL)) (-3594 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) $) 21)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 20) (($ (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) 14) (($ (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))))) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-846) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))))) (-15 -4396 ($ (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -4396 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))) (-15 -3594 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) $))))) (T -846))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (-5 *1 (-846)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))) (-5 *1 (-846)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))))) (-5 *1 (-846)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226))))))) (-5 *1 (-846)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226))))))) (-15 -4396 ($ (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) (-15 -4396 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))) (-15 -3594 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226))) (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226)))) (|:| |ub| (-646 (-847 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL (|has| |#1| (-21)))) (-2944 (((-1126) $) 31)) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4073 (((-551) $) NIL (|has| |#1| (-853)))) (-4174 (($) NIL (|has| |#1| (-21)) CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 18)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 9)) (-3908 (((-3 $ "failed") $) 58 (|has| |#1| (-853)))) (-3443 (((-3 (-412 (-551)) "failed") $) 65 (|has| |#1| (-550)))) (-3442 (((-112) $) 60 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 63 (|has| |#1| (-550)))) (-3624 (((-112) $) NIL (|has| |#1| (-853)))) (-2948 (($) 14)) (-2591 (((-112) $) NIL (|has| |#1| (-853)))) (-3625 (((-112) $) NIL (|has| |#1| (-853)))) (-2947 (($) 16)) (-2952 (($ $ $) NIL (|has| |#1| (-853)))) (-3278 (($ $ $) NIL (|has| |#1| (-853)))) (-3681 (((-1165) $) NIL)) (-2945 (((-112) $) 12)) (-3682 (((-1126) $) NIL)) (-2946 (((-112) $) 11)) (-4396 (((-868) $) 24) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) 8) (($ (-551)) NIL (-3978 (|has| |#1| (-853)) (|has| |#1| (-1044 (-551)))))) (-3548 (((-776)) 51 (|has| |#1| (-853)) CONST)) (-3680 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| |#1| (-853)))) (-3528 (($) 37 (|has| |#1| (-21)) CONST)) (-3085 (($) 48 (|has| |#1| (-853)) CONST)) (-2984 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3473 (((-112) $ $) 35)) (-3105 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3106 (((-112) $ $) 59 (|has| |#1| (-853)))) (-4287 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4289 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-925)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 55 (|has| |#1| (-853))) (($ (-551) $) 42 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-925) $) NIL (|has| |#1| (-21)))))
-(((-847 |#1|) (-13 (-1107) (-417 |#1|) (-10 -8 (-15 -2948 ($)) (-15 -2947 ($)) (-15 -2946 ((-112) $)) (-15 -2945 ((-112) $)) (-15 -2944 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|))) (-1107)) (T -847))
-((-2948 (*1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-1107)))) (-2947 (*1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-1107)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-847 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-847 *3)) (-4 *3 (-550)) (-4 *3 (-1107)))))
-(-13 (-1107) (-417 |#1|) (-10 -8 (-15 -2948 ($)) (-15 -2947 ($)) (-15 -2946 ((-112) $)) (-15 -2945 ((-112) $)) (-15 -2944 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|)))
-((-4408 (((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|) (-847 |#2|) (-847 |#2|)) 13) (((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|)) 14)))
-(((-848 |#1| |#2|) (-10 -7 (-15 -4408 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|))) (-15 -4408 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|) (-847 |#2|) (-847 |#2|)))) (-1107) (-1107)) (T -848))
-((-4408 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-847 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *1 (-848 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-847 *6)) (-5 *1 (-848 *5 *6)))))
-(-10 -7 (-15 -4408 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|))) (-15 -4408 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|) (-847 |#2|) (-847 |#2|))))
-((-2986 (((-112) $ $) 7)) (-3558 (((-776)) 23)) (-3413 (($) 26)) (-2952 (($ $ $) 14) (($) 22 T CONST)) (-3278 (($ $ $) 15) (($) 21 T CONST)) (-2198 (((-925) $) 25)) (-3681 (((-1165) $) 10)) (-2581 (($ (-925)) 24)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)))
+((-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)))))) (-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)))))) (-3477 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) (-5 *2 (-1041)))) (-3477 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-1041)))))
+(-13 (-1106) (-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -3477 ((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -3477 ((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2837 (((-1041) (-649 (-319 (-383))) (-649 (-383))) 169) (((-1041) (-319 (-383)) (-649 (-383))) 167) (((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383)))) 165) (((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383)))) 163) (((-1041) (-846)) 128) (((-1041) (-846) (-1069)) 127)) (-2329 (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069)) 88) (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846)) 90)) (-3489 (((-1041) (-649 (-319 (-383))) (-649 (-383))) 170) (((-1041) (-846)) 153)))
+(((-845) (-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069))) (-15 -2837 ((-1041) (-846) (-1069))) (-15 -2837 ((-1041) (-846))) (-15 -3489 ((-1041) (-846))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)))) (-15 -2837 ((-1041) (-649 (-319 (-383))) (-649 (-383)))) (-15 -3489 ((-1041) (-649 (-319 (-383))) (-649 (-383)))))) (T -845))
+((-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-845)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-845)))))
+(-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069))) (-15 -2837 ((-1041) (-846) (-1069))) (-15 -2837 ((-1041) (-846))) (-15 -3489 ((-1041) (-846))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2837 ((-1041) (-319 (-383)) (-649 (-383)))) (-15 -2837 ((-1041) (-649 (-319 (-383))) (-649 (-383)))) (-15 -3489 ((-1041) (-649 (-319 (-383))) (-649 (-383)))))
+((-2383 (((-112) $ $) NIL)) (-3043 (((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) $) 21)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 20) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14) (($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))))) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-846) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -2388 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2388 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))))) (-15 -3043 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) $))))) (T -846))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-846)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))) (-5 *1 (-846)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))))) (-5 *1 (-846)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226))))))) (-5 *1 (-846)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -2388 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) (-15 -2388 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))))) (-15 -3043 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))) $))))
+((-1324 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)) 13) (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -1324 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1324 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)))) (-1106) (-1106)) (T -847))
+((-1324 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-847 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
+(-10 -7 (-15 -1324 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1324 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL (|has| |#1| (-21)))) (-3500 (((-1126) $) 31)) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2211 (((-569) $) NIL (|has| |#1| (-853)))) (-3863 (($) NIL (|has| |#1| (-21)) CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 18)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 9)) (-3351 (((-3 $ "failed") $) 58 (|has| |#1| (-853)))) (-1740 (((-3 (-412 (-569)) "failed") $) 65 (|has| |#1| (-550)))) (-1727 (((-112) $) 60 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 63 (|has| |#1| (-550)))) (-2769 (((-112) $) NIL (|has| |#1| (-853)))) (-1950 (($) 14)) (-2861 (((-112) $) NIL (|has| |#1| (-853)))) (-2778 (((-112) $) NIL (|has| |#1| (-853)))) (-1959 (($) 16)) (-2095 (($ $ $) NIL (|has| |#1| (-853)))) (-2406 (($ $ $) NIL (|has| |#1| (-853)))) (-2050 (((-1165) $) NIL)) (-3510 (((-112) $) 12)) (-3461 (((-1126) $) NIL)) (-3520 (((-112) $) 11)) (-2388 (((-867) $) 24) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2718 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))))) (-3263 (((-776)) 51 (|has| |#1| (-853)) CONST)) (-2040 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-853)))) (-1786 (($) 37 (|has| |#1| (-21)) CONST)) (-1796 (($) 48 (|has| |#1| (-853)) CONST)) (-2904 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2853 (((-112) $ $) 35)) (-2893 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2872 (((-112) $ $) 59 (|has| |#1| (-853)))) (-2946 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-2935 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 55 (|has| |#1| (-853))) (($ (-569) $) 42 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
+(((-848 |#1|) (-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1950 ($)) (-15 -1959 ($)) (-15 -3520 ((-112) $)) (-15 -3510 ((-112) $)) (-15 -3500 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1106)) (T -848))
+((-1950 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))) (-1959 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1740 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))))
+(-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1950 ($)) (-15 -1959 ($)) (-15 -3520 ((-112) $)) (-15 -3510 ((-112) $)) (-15 -3500 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+((-2383 (((-112) $ $) 7)) (-3363 (((-776)) 23)) (-3295 (($) 26)) (-2095 (($ $ $) 14) (($) 22 T CONST)) (-2406 (($ $ $) 15) (($) 21 T CONST)) (-3348 (((-927) $) 25)) (-2050 (((-1165) $) 10)) (-2114 (($ (-927)) 24)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)))
(((-849) (-140)) (T -849))
-((-2952 (*1 *1) (-4 *1 (-849))) (-3278 (*1 *1) (-4 *1 (-849))))
-(-13 (-855) (-372) (-10 -8 (-15 -2952 ($) -4402) (-15 -3278 ($) -4402)))
-(((-102) . T) ((-618 (-868)) . T) ((-372) . T) ((-855) . T) ((-1107) . T))
-((-2950 (((-112) (-1272 |#2|) (-1272 |#2|)) 23)) (-2951 (((-112) (-1272 |#2|) (-1272 |#2|)) 24)) (-2949 (((-112) (-1272 |#2|) (-1272 |#2|)) 20)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -2949 ((-112) (-1272 |#2|) (-1272 |#2|))) (-15 -2950 ((-112) (-1272 |#2|) (-1272 |#2|))) (-15 -2951 ((-112) (-1272 |#2|) (-1272 |#2|)))) (-776) (-797)) (T -850))
-((-2951 (*1 *2 *3 *3) (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-2949 (*1 *2 *3 *3) (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
-(-10 -7 (-15 -2949 ((-112) (-1272 |#2|) (-1272 |#2|))) (-15 -2950 ((-112) (-1272 |#2|) (-1272 |#2|))) (-15 -2951 ((-112) (-1272 |#2|) (-1272 |#2|))))
-((-2986 (((-112) $ $) 7)) (-4174 (($) 24 T CONST)) (-3908 (((-3 $ "failed") $) 27)) (-2591 (((-112) $) 25)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3085 (($) 23 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (** (($ $ (-925)) 22) (($ $ (-776)) 26)) (* (($ $ $) 21)))
+((-2095 (*1 *1) (-4 *1 (-849))) (-2406 (*1 *1) (-4 *1 (-849))))
+(-13 (-855) (-372) (-10 -8 (-15 -2095 ($) -3600) (-15 -2406 ($) -3600)))
+(((-102) . T) ((-618 (-867)) . T) ((-372) . T) ((-855) . T) ((-1106) . T))
+((-3545 (((-112) (-1273 |#2|) (-1273 |#2|)) 23)) (-3558 (((-112) (-1273 |#2|) (-1273 |#2|)) 24)) (-3531 (((-112) (-1273 |#2|) (-1273 |#2|)) 20)))
+(((-850 |#1| |#2|) (-10 -7 (-15 -3531 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -3545 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -3558 ((-112) (-1273 |#2|) (-1273 |#2|)))) (-776) (-797)) (T -850))
+((-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-3545 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-3531 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(-10 -7 (-15 -3531 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -3545 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -3558 ((-112) (-1273 |#2|) (-1273 |#2|))))
+((-2383 (((-112) $ $) 7)) (-3863 (($) 24 T CONST)) (-3351 (((-3 $ "failed") $) 27)) (-2861 (((-112) $) 25)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1796 (($) 23 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (** (($ $ (-927)) 22) (($ $ (-776)) 26)) (* (($ $ $) 21)))
(((-851) (-140)) (T -851))
NIL
(-13 (-862) (-731))
-(((-102) . T) ((-618 (-868)) . T) ((-731) . T) ((-862) . T) ((-855) . T) ((-1118) . T) ((-1107) . T))
-((-4073 (((-551) $) 21)) (-3624 (((-112) $) 10)) (-3625 (((-112) $) 12)) (-3825 (($ $) 23)))
-(((-852 |#1|) (-10 -8 (-15 -3825 (|#1| |#1|)) (-15 -4073 ((-551) |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -3624 ((-112) |#1|))) (-853)) (T -852))
+(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-862) . T) ((-855) . T) ((-1118) . T) ((-1106) . T))
+((-2211 (((-569) $) 21)) (-2769 (((-112) $) 10)) (-2778 (((-112) $) 12)) (-3999 (($ $) 23)))
+(((-852 |#1|) (-10 -8 (-15 -3999 (|#1| |#1|)) (-15 -2211 ((-569) |#1|)) (-15 -2778 ((-112) |#1|)) (-15 -2769 ((-112) |#1|))) (-853)) (T -852))
NIL
-(-10 -8 (-15 -3825 (|#1| |#1|)) (-15 -4073 ((-551) |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -3624 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 25)) (-1410 (((-3 $ "failed") $ $) 27)) (-4073 (((-551) $) 37)) (-4174 (($) 24 T CONST)) (-3908 (((-3 $ "failed") $) 42)) (-3624 (((-112) $) 39)) (-2591 (((-112) $) 44)) (-3625 (((-112) $) 38)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 46)) (-3548 (((-776)) 47 T CONST)) (-3680 (((-112) $ $) 9)) (-3825 (($ $) 36)) (-3528 (($) 23 T CONST)) (-3085 (($) 45 T CONST)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (-4287 (($ $ $) 31) (($ $) 30)) (-4289 (($ $ $) 21)) (** (($ $ (-776)) 43) (($ $ (-925)) 40)) (* (($ (-925) $) 22) (($ (-776) $) 26) (($ (-551) $) 29) (($ $ $) 41)))
+(-10 -8 (-15 -3999 (|#1| |#1|)) (-15 -2211 ((-569) |#1|)) (-15 -2778 ((-112) |#1|)) (-15 -2769 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-2211 (((-569) $) 37)) (-3863 (($) 24 T CONST)) (-3351 (((-3 $ "failed") $) 42)) (-2769 (((-112) $) 39)) (-2861 (((-112) $) 44)) (-2778 (((-112) $) 38)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 46)) (-3263 (((-776)) 47 T CONST)) (-2040 (((-112) $ $) 9)) (-3999 (($ $) 36)) (-1786 (($) 23 T CONST)) (-1796 (($) 45 T CONST)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (-2946 (($ $ $) 31) (($ $) 30)) (-2935 (($ $ $) 21)) (** (($ $ (-776)) 43) (($ $ (-927)) 40)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29) (($ $ $) 41)))
(((-853) (-140)) (T -853))
-((-3624 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-551)))) (-3825 (*1 *1 *1) (-4 *1 (-853))))
-(-13 (-796) (-1055) (-731) (-10 -8 (-15 -3624 ((-112) $)) (-15 -3625 ((-112) $)) (-15 -4073 ((-551) $)) (-15 -3825 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-855) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2952 (($ $ $) 12)) (-3278 (($ $ $) 11)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 15)) (-2985 (((-112) $ $) 13)) (-3105 (((-112) $ $) 16)))
-(((-854 |#1|) (-10 -8 (-15 -2952 (|#1| |#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3105 ((-112) |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|))) (-855)) (T -854))
-NIL
-(-10 -8 (-15 -2952 (|#1| |#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3105 ((-112) |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569)))) (-3999 (*1 *1 *1) (-4 *1 (-853))))
+(-13 (-796) (-1055) (-731) (-10 -8 (-15 -2769 ((-112) $)) (-15 -2778 ((-112) $)) (-15 -2211 ((-569) $)) (-15 -3999 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2095 (($ $ $) 12)) (-2406 (($ $ $) 11)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 15)) (-2882 (((-112) $ $) 13)) (-2893 (((-112) $ $) 16)))
+(((-854 |#1|) (-10 -8 (-15 -2095 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|)) (-15 -2893 ((-112) |#1| |#1|)) (-15 -2904 ((-112) |#1| |#1|)) (-15 -2882 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|))) (-855)) (T -854))
+NIL
+(-10 -8 (-15 -2095 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|)) (-15 -2893 ((-112) |#1| |#1|)) (-15 -2904 ((-112) |#1| |#1|)) (-15 -2882 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)))
(((-855) (-140)) (T -855))
-((-3106 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-3105 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-3278 (*1 *1 *1 *1) (-4 *1 (-855))) (-2952 (*1 *1 *1 *1) (-4 *1 (-855))))
-(-13 (-1107) (-10 -8 (-15 -3106 ((-112) $ $)) (-15 -2985 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -3105 ((-112) $ $)) (-15 -3278 ($ $ $)) (-15 -2952 ($ $ $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2957 (($ $ $) 49)) (-2958 (($ $ $) 48)) (-2959 (($ $ $) 46)) (-2955 (($ $ $) 55)) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 50)) (-2956 (((-3 $ "failed") $ $) 53)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#2| #1#) $) 29)) (-3944 (($ $) 39)) (-2963 (($ $ $) 43)) (-2964 (($ $ $) 42)) (-2953 (($ $ $) 51)) (-2961 (($ $ $) 57)) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 45)) (-2962 (((-3 $ "failed") $ $) 52)) (-3907 (((-3 $ "failed") $ |#2|) 32)) (-3238 ((|#2| $) 36)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL) (($ |#2|) 13)) (-4267 (((-646 |#2|) $) 21)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-856 |#1| |#2|) (-10 -8 (-15 -2953 (|#1| |#1| |#1|)) (-15 -2954 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -2956 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2958 (|#1| |#1| |#1|)) (-15 -2959 (|#1| |#1| |#1|)) (-15 -2960 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2962 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4267 ((-646 |#2|) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4396 ((-868) |#1|))) (-857 |#2|) (-1055)) (T -856))
-NIL
-(-10 -8 (-15 -2953 (|#1| |#1| |#1|)) (-15 -2954 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -2956 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2958 (|#1| |#1| |#1|)) (-15 -2959 (|#1| |#1| |#1|)) (-15 -2960 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2590 |#1|)) |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2962 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4267 ((-646 |#2|) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-2957 (($ $ $) 50 (|has| |#1| (-367)))) (-2958 (($ $ $) 51 (|has| |#1| (-367)))) (-2959 (($ $ $) 53 (|has| |#1| (-367)))) (-2955 (($ $ $) 48 (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 47 (|has| |#1| (-367)))) (-2956 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 52 (|has| |#1| (-367)))) (-3595 (((-3 (-551) #1="failed") $) 80 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 77 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 74)) (-3594 (((-551) $) 79 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 76 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 75)) (-4409 (($ $) 69)) (-3908 (((-3 $ "failed") $) 37)) (-3944 (($ $) 60 (|has| |#1| (-457)))) (-2591 (((-112) $) 35)) (-3312 (($ |#1| (-776)) 67)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 62 (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63 (|has| |#1| (-562)))) (-3241 (((-776) $) 71)) (-2963 (($ $ $) 57 (|has| |#1| (-367)))) (-2964 (($ $ $) 58 (|has| |#1| (-367)))) (-2953 (($ $ $) 46 (|has| |#1| (-367)))) (-2961 (($ $ $) 55 (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 54 (|has| |#1| (-367)))) (-2962 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 59 (|has| |#1| (-367)))) (-3612 ((|#1| $) 70)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-562)))) (-4398 (((-776) $) 72)) (-3238 ((|#1| $) 61 (|has| |#1| (-457)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 78 (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) 73)) (-4267 (((-646 |#1|) $) 66)) (-4127 ((|#1| $ (-776)) 68)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2966 ((|#1| $ |#1| |#1|) 65)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+((-2872 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2882 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2893 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2406 (*1 *1 *1 *1) (-4 *1 (-855))) (-2095 (*1 *1 *1 *1) (-4 *1 (-855))))
+(-13 (-1106) (-10 -8 (-15 -2872 ((-112) $ $)) (-15 -2882 ((-112) $ $)) (-15 -2904 ((-112) $ $)) (-15 -2893 ((-112) $ $)) (-15 -2406 ($ $ $)) (-15 -2095 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2371 (($ $ $) 49)) (-2381 (($ $ $) 48)) (-2391 (($ $ $) 46)) (-3589 (($ $ $) 55)) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 50)) (-3601 (((-3 $ "failed") $ $) 53)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3556 (($ $) 39)) (-2429 (($ $ $) 43)) (-2437 (($ $ $) 42)) (-3570 (($ $ $) 51)) (-2411 (($ $ $) 57)) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 45)) (-2420 (((-3 $ "failed") $ $) 52)) (-2374 (((-3 $ "failed") $ |#2|) 32)) (-3281 ((|#2| $) 36)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#2|) 13)) (-3346 (((-649 |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-856 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| |#1| |#1|)) (-15 -3579 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3601 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2371 (|#1| |#1| |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -2399 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3346 ((-649 |#2|) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2388 ((-867) |#1|))) (-857 |#2|) (-1055)) (T -856))
+NIL
+(-10 -8 (-15 -3570 (|#1| |#1| |#1|)) (-15 -3579 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3601 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2371 (|#1| |#1| |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -2399 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2290 |#1|)) |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3346 ((-649 |#2|) |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2371 (($ $ $) 50 (|has| |#1| (-367)))) (-2381 (($ $ $) 51 (|has| |#1| (-367)))) (-2391 (($ $ $) 53 (|has| |#1| (-367)))) (-3589 (($ $ $) 48 (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 47 (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 52 (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3043 (((-569) $) 79 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 75)) (-1842 (($ $) 69)) (-3351 (((-3 $ "failed") $) 37)) (-3556 (($ $) 60 (|has| |#1| (-457)))) (-2861 (((-112) $) 35)) (-3838 (($ |#1| (-776)) 67)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 62 (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63 (|has| |#1| (-561)))) (-3304 (((-776) $) 71)) (-2429 (($ $ $) 57 (|has| |#1| (-367)))) (-2437 (($ $ $) 58 (|has| |#1| (-367)))) (-3570 (($ $ $) 46 (|has| |#1| (-367)))) (-2411 (($ $ $) 55 (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 54 (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 59 (|has| |#1| (-367)))) (-1820 ((|#1| $) 70)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-2091 (((-776) $) 72)) (-3281 ((|#1| $) 61 (|has| |#1| (-457)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 73)) (-3346 (((-649 |#1|) $) 66)) (-1503 ((|#1| $ (-776)) 68)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3341 ((|#1| $ |#1| |#1|) 65)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
(((-857 |#1|) (-140) (-1055)) (T -857))
-((-4398 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-4409 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-646 *3)))) (-2966 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))) (-2967 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-2969 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3)))) (-2964 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2963 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2962 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2961 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2960 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1))) (-4 *1 (-857 *3)))) (-2959 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2970 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3)))) (-2958 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2957 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2956 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2955 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2954 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1))) (-4 *1 (-857 *3)))) (-2953 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-417 |t#1|) (-10 -8 (-15 -4398 ((-776) $)) (-15 -3241 ((-776) $)) (-15 -3612 (|t#1| $)) (-15 -4409 ($ $)) (-15 -4127 (|t#1| $ (-776))) (-15 -3312 ($ |t#1| (-776))) (-15 -4267 ((-646 |t#1|) $)) (-15 -2966 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -3907 ((-3 $ "failed") $ |t#1|)) (-15 -2967 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2968 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3238 (|t#1| $)) (-15 -3944 ($ $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -2969 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ((-3 $ "failed") $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $)) (-15 -2959 ($ $ $)) (-15 -2970 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -2958 ($ $ $)) (-15 -2957 ($ $ $)) (-15 -2956 ((-3 $ "failed") $ $)) (-15 -2955 ($ $ $)) (-15 -2954 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $)) (-15 -2953 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #1=(-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-417 |#1|) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #1#) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2965 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2970 (((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-367)))) (-2968 (((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-562)))) (-2969 (((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-367)))) (-2966 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-858 |#1| |#2|) (-10 -7 (-15 -2965 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2966 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -2967 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2968 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -2969 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2970 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1055) (-857 |#1|)) (T -858))
-((-2970 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2969 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2968 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2967 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2966 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055)) (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))) (-2965 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055)) (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
-(-10 -7 (-15 -2965 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2966 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -2967 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2968 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -2969 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2970 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-2957 (($ $ $) NIL (|has| |#1| (-367)))) (-2958 (($ $ $) NIL (|has| |#1| (-367)))) (-2959 (($ $ $) NIL (|has| |#1| (-367)))) (-2955 (($ $ $) NIL (|has| |#1| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2956 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 34 (|has| |#1| (-367)))) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-3974 (((-868) $ (-868)) NIL)) (-2591 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) NIL)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 30 (|has| |#1| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 28 (|has| |#1| (-562)))) (-3241 (((-776) $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-367)))) (-2964 (($ $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ $) NIL (|has| |#1| (-367)))) (-2961 (($ $ $) NIL (|has| |#1| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-2962 (((-3 $ #1#) $ $) NIL (|has| |#1| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 32 (|has| |#1| (-367)))) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-562)))) (-4398 (((-776) $) NIL)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-1044 (-412 (-551))))) (($ |#1|) NIL)) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2966 ((|#1| $ |#1| |#1|) 15)) (-3528 (($) NIL T CONST)) (-3085 (($) 23 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) 19) (($ $ (-776)) 24)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-859 |#1| |#2| |#3|) (-13 (-857 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-868))))) (-1055) (-99 |#1|) (-1 |#1| |#1|)) (T -859))
-((-3974 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-857 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-868)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-2957 (($ $ $) NIL (|has| |#2| (-367)))) (-2958 (($ $ $) NIL (|has| |#2| (-367)))) (-2959 (($ $ $) NIL (|has| |#2| (-367)))) (-2955 (($ $ $) NIL (|has| |#2| (-367)))) (-2954 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#2| (-367)))) (-2956 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-367)))) (-2970 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-367)))) (-3595 (((-3 (-551) #2="failed") $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 |#2| #2#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) ((|#2| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#2| (-457)))) (-2591 (((-112) $) NIL)) (-3312 (($ |#2| (-776)) 17)) (-2968 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-562)))) (-2967 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-562)))) (-3241 (((-776) $) NIL)) (-2963 (($ $ $) NIL (|has| |#2| (-367)))) (-2964 (($ $ $) NIL (|has| |#2| (-367)))) (-2953 (($ $ $) NIL (|has| |#2| (-367)))) (-2961 (($ $ $) NIL (|has| |#2| (-367)))) (-2960 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#2| (-367)))) (-2962 (((-3 $ #1#) $ $) NIL (|has| |#2| (-367)))) (-2969 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-367)))) (-3612 ((|#2| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-562)))) (-4398 (((-776) $) NIL)) (-3238 ((|#2| $) NIL (|has| |#2| (-457)))) (-4396 (((-868) $) 24) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#2| (-1044 (-412 (-551))))) (($ |#2|) NIL) (($ (-1269 |#1|)) 19)) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-776)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2966 ((|#2| $ |#2| |#2|) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) 13 T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+((-2091 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-649 *3)))) (-3341 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-2448 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3)))) (-2456 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-2466 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3)))) (-2437 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2420 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2411 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2399 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1))) (-4 *1 (-857 *3)))) (-2391 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2476 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3)))) (-2381 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2371 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3601 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3579 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1))) (-4 *1 (-857 *3)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(-13 (-1055) (-111 |t#1| |t#1|) (-416 |t#1|) (-10 -8 (-15 -2091 ((-776) $)) (-15 -3304 ((-776) $)) (-15 -1820 (|t#1| $)) (-15 -1842 ($ $)) (-15 -1503 (|t#1| $ (-776))) (-15 -3838 ($ |t#1| (-776))) (-15 -3346 ((-649 |t#1|) $)) (-15 -3341 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -2374 ((-3 $ "failed") $ |t#1|)) (-15 -2448 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2456 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3281 (|t#1| $)) (-15 -3556 ($ $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -2466 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2437 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2420 ((-3 $ "failed") $ $)) (-15 -2411 ($ $ $)) (-15 -2399 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $)) (-15 -2391 ($ $ $)) (-15 -2476 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2381 ($ $ $)) (-15 -2371 ($ $ $)) (-15 -3601 ((-3 $ "failed") $ $)) (-15 -3589 ($ $ $)) (-15 -3579 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $)) (-15 -3570 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3183 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2476 (((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-367)))) (-2456 (((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-561)))) (-2466 (((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-367)))) (-3341 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3341 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2448 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2456 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -2466 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2476 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1055) (-857 |#1|)) (T -858))
+((-2476 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2466 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2456 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2448 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3341 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055)) (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))) (-3183 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055)) (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
+(-10 -7 (-15 -3183 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3341 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2448 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2456 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -2466 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2476 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2371 (($ $ $) NIL (|has| |#1| (-367)))) (-2381 (($ $ $) NIL (|has| |#1| (-367)))) (-2391 (($ $ $) NIL (|has| |#1| (-367)))) (-3589 (($ $ $) NIL (|has| |#1| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-3601 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 34 (|has| |#1| (-367)))) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-2557 (((-867) $ (-867)) NIL)) (-2861 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) NIL)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 30 (|has| |#1| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 28 (|has| |#1| (-561)))) (-3304 (((-776) $) NIL)) (-2429 (($ $ $) NIL (|has| |#1| (-367)))) (-2437 (($ $ $) NIL (|has| |#1| (-367)))) (-3570 (($ $ $) NIL (|has| |#1| (-367)))) (-2411 (($ $ $) NIL (|has| |#1| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2420 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 32 (|has| |#1| (-367)))) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-2091 (((-776) $) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3341 ((|#1| $ |#1| |#1|) 15)) (-1786 (($) NIL T CONST)) (-1796 (($) 23 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) 19) (($ $ (-776)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-859 |#1| |#2| |#3|) (-13 (-857 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-867))))) (-1055) (-99 |#1|) (-1 |#1| |#1|)) (T -859))
+((-2557 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-857 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-867)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-2371 (($ $ $) NIL (|has| |#2| (-367)))) (-2381 (($ $ $) NIL (|has| |#2| (-367)))) (-2391 (($ $ $) NIL (|has| |#2| (-367)))) (-3589 (($ $ $) NIL (|has| |#2| (-367)))) (-3579 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#2| (-367)))) (-3601 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-2476 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-367)))) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#2| (-457)))) (-2861 (((-112) $) NIL)) (-3838 (($ |#2| (-776)) 17)) (-2456 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-561)))) (-2448 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-561)))) (-3304 (((-776) $) NIL)) (-2429 (($ $ $) NIL (|has| |#2| (-367)))) (-2437 (($ $ $) NIL (|has| |#2| (-367)))) (-3570 (($ $ $) NIL (|has| |#2| (-367)))) (-2411 (($ $ $) NIL (|has| |#2| (-367)))) (-2399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#2| (-367)))) (-2420 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-2466 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-367)))) (-1820 ((|#2| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-2091 (((-776) $) NIL)) (-3281 ((|#2| $) NIL (|has| |#2| (-457)))) (-2388 (((-867) $) 24) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (($ (-1269 |#1|)) 19)) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-776)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3341 ((|#2| $ |#2| |#2|) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) 13 T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
(((-860 |#1| |#2| |#3| |#4|) (-13 (-857 |#2|) (-621 (-1269 |#1|))) (-1183) (-1055) (-99 |#2|) (-1 |#2| |#2|)) (T -860))
NIL
(-13 (-857 |#2|) (-621 (-1269 |#1|)))
-((-2973 ((|#1| (-776) |#1|) 48 (|has| |#1| (-38 (-412 (-551)))))) (-2972 ((|#1| (-776) (-776) |#1|) 39) ((|#1| (-776) |#1|) 27)) (-2971 ((|#1| (-776) |#1|) 43)) (-3221 ((|#1| (-776) |#1|) 41)) (-3220 ((|#1| (-776) |#1|) 40)))
-(((-861 |#1|) (-10 -7 (-15 -3220 (|#1| (-776) |#1|)) (-15 -3221 (|#1| (-776) |#1|)) (-15 -2971 (|#1| (-776) |#1|)) (-15 -2972 (|#1| (-776) |#1|)) (-15 -2972 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -2973 (|#1| (-776) |#1|)) |%noBranch|)) (-173)) (T -861))
-((-2973 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-173)))) (-2972 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2972 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2971 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3220 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
-(-10 -7 (-15 -3220 (|#1| (-776) |#1|)) (-15 -3221 (|#1| (-776) |#1|)) (-15 -2971 (|#1| (-776) |#1|)) (-15 -2972 (|#1| (-776) |#1|)) (-15 -2972 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -2973 (|#1| (-776) |#1|)) |%noBranch|))
-((-2986 (((-112) $ $) 7)) (-2952 (($ $ $) 14)) (-3278 (($ $ $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2984 (((-112) $ $) 17)) (-2985 (((-112) $ $) 18)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 16)) (-3106 (((-112) $ $) 19)) (** (($ $ (-925)) 22)) (* (($ $ $) 21)))
+((-2504 ((|#1| (-776) |#1|) 48 (|has| |#1| (-38 (-412 (-569)))))) (-2495 ((|#1| (-776) (-776) |#1|) 39) ((|#1| (-776) |#1|) 27)) (-2484 ((|#1| (-776) |#1|) 43)) (-3078 ((|#1| (-776) |#1|) 41)) (-3069 ((|#1| (-776) |#1|) 40)))
+(((-861 |#1|) (-10 -7 (-15 -3069 (|#1| (-776) |#1|)) (-15 -3078 (|#1| (-776) |#1|)) (-15 -2484 (|#1| (-776) |#1|)) (-15 -2495 (|#1| (-776) |#1|)) (-15 -2495 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2504 (|#1| (-776) |#1|)) |%noBranch|)) (-173)) (T -861))
+((-2504 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-2495 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2495 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2484 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3078 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+(-10 -7 (-15 -3069 (|#1| (-776) |#1|)) (-15 -3078 (|#1| (-776) |#1|)) (-15 -2484 (|#1| (-776) |#1|)) (-15 -2495 (|#1| (-776) |#1|)) (-15 -2495 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2504 (|#1| (-776) |#1|)) |%noBranch|))
+((-2383 (((-112) $ $) 7)) (-2095 (($ $ $) 14)) (-2406 (($ $ $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2904 (((-112) $ $) 17)) (-2882 (((-112) $ $) 18)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 16)) (-2872 (((-112) $ $) 19)) (** (($ $ (-927)) 22)) (* (($ $ $) 21)))
(((-862) (-140)) (T -862))
NIL
(-13 (-855) (-1118))
-(((-102) . T) ((-618 (-868)) . T) ((-855) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3844 (((-551) $) 14)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 20) (($ (-551)) 13)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 9)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 11)))
-(((-863) (-13 (-855) (-10 -8 (-15 -4396 ($ (-551))) (-15 -3844 ((-551) $))))) (T -863))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-863)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-863)))))
-(-13 (-855) (-10 -8 (-15 -4396 ($ (-551))) (-15 -3844 ((-551) $))))
-((-2974 (((-1278) (-646 (-51))) 23)) (-3901 (((-1278) (-1165) (-868)) 13) (((-1278) (-868)) 8) (((-1278) (-1165)) 10)))
-(((-864) (-10 -7 (-15 -3901 ((-1278) (-1165))) (-15 -3901 ((-1278) (-868))) (-15 -3901 ((-1278) (-1165) (-868))) (-15 -2974 ((-1278) (-646 (-51)))))) (T -864))
-((-2974 (*1 *2 *3) (-12 (-5 *3 (-646 (-51))) (-5 *2 (-1278)) (-5 *1 (-864)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-868)) (-5 *2 (-1278)) (-5 *1 (-864)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-864)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-864)))))
-(-10 -7 (-15 -3901 ((-1278) (-1165))) (-15 -3901 ((-1278) (-868))) (-15 -3901 ((-1278) (-1165) (-868))) (-15 -2974 ((-1278) (-646 (-51)))))
-((-2976 (((-696 (-1231)) $ (-1231)) 15)) (-2977 (((-696 (-555)) $ (-555)) 12)) (-2975 (((-776) $ (-129)) 30)))
-(((-865 |#1|) (-10 -8 (-15 -2975 ((-776) |#1| (-129))) (-15 -2976 ((-696 (-1231)) |#1| (-1231))) (-15 -2977 ((-696 (-555)) |#1| (-555)))) (-866)) (T -865))
-NIL
-(-10 -8 (-15 -2975 ((-776) |#1| (-129))) (-15 -2976 ((-696 (-1231)) |#1| (-1231))) (-15 -2977 ((-696 (-555)) |#1| (-555))))
-((-2976 (((-696 (-1231)) $ (-1231)) 8)) (-2977 (((-696 (-555)) $ (-555)) 9)) (-2975 (((-776) $ (-129)) 7)) (-2978 (((-696 (-128)) $ (-128)) 10)) (-1878 (($ $) 6)))
-(((-866) (-140)) (T -866))
-((-2978 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-128))) (-5 *3 (-128)))) (-2977 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-555))) (-5 *3 (-555)))) (-2976 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))) (-2975 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-776)))))
-(-13 (-174) (-10 -8 (-15 -2978 ((-696 (-128)) $ (-128))) (-15 -2977 ((-696 (-555)) $ (-555))) (-15 -2976 ((-696 (-1231)) $ (-1231))) (-15 -2975 ((-776) $ (-129)))))
+(((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2150 (((-569) $) 14)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 20) (($ (-569)) 13)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 9)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 11)))
+(((-863) (-13 (-855) (-10 -8 (-15 -2388 ($ (-569))) (-15 -2150 ((-569) $))))) (T -863))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863)))))
+(-13 (-855) (-10 -8 (-15 -2388 ($ (-569))) (-15 -2150 ((-569) $))))
+((-2527 (((-696 (-1231)) $ (-1231)) 15)) (-2538 (((-696 (-554)) $ (-554)) 12)) (-2515 (((-776) $ (-128)) 30)))
+(((-864 |#1|) (-10 -8 (-15 -2515 ((-776) |#1| (-128))) (-15 -2527 ((-696 (-1231)) |#1| (-1231))) (-15 -2538 ((-696 (-554)) |#1| (-554)))) (-865)) (T -864))
+NIL
+(-10 -8 (-15 -2515 ((-776) |#1| (-128))) (-15 -2527 ((-696 (-1231)) |#1| (-1231))) (-15 -2538 ((-696 (-554)) |#1| (-554))))
+((-2527 (((-696 (-1231)) $ (-1231)) 8)) (-2538 (((-696 (-554)) $ (-554)) 9)) (-2515 (((-776) $ (-128)) 7)) (-2548 (((-696 (-129)) $ (-129)) 10)) (-3026 (($ $) 6)))
+(((-865) (-140)) (T -865))
+((-2548 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))) (-2538 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))) (-2527 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))) (-2515 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(-13 (-174) (-10 -8 (-15 -2548 ((-696 (-129)) $ (-129))) (-15 -2538 ((-696 (-554)) $ (-554))) (-15 -2527 ((-696 (-1231)) $ (-1231))) (-15 -2515 ((-776) $ (-128)))))
(((-174) . T))
-((-2976 (((-696 (-1231)) $ (-1231)) NIL)) (-2977 (((-696 (-555)) $ (-555)) NIL)) (-2975 (((-776) $ (-129)) NIL)) (-2978 (((-696 (-128)) $ (-128)) 22)) (-2980 (($ (-393)) 12) (($ (-1165)) 14)) (-2979 (((-112) $) 19)) (-4396 (((-868) $) 26)) (-1878 (($ $) 23)))
-(((-867) (-13 (-866) (-618 (-868)) (-10 -8 (-15 -2980 ($ (-393))) (-15 -2980 ($ (-1165))) (-15 -2979 ((-112) $))))) (T -867))
-((-2980 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-867)))) (-2980 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
-(-13 (-866) (-618 (-868)) (-10 -8 (-15 -2980 ($ (-393))) (-15 -2980 ($ (-1165))) (-15 -2979 ((-112) $))))
-((-2986 (((-112) $ $) NIL) (($ $ $) 85)) (-3007 (($ $ $) 125)) (-3022 (((-551) $) 31) (((-551)) 36)) (-3017 (($ (-551)) 53)) (-3014 (($ $ $) 54) (($ (-646 $)) 84)) (-2998 (($ $ (-646 $)) 82)) (-3019 (((-551) $) 34)) (-3001 (($ $ $) 73)) (-3973 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3020 (((-551) $) 33)) (-3002 (($ $ $) 72)) (-3984 (($ $) 114)) (-3005 (($ $ $) 129)) (-2988 (($ (-646 $)) 61)) (-3989 (($ $ (-646 $)) 79)) (-3016 (($ (-551) (-551)) 55)) (-3029 (($ $) 126) (($ $ $) 127)) (-3559 (($ $ (-551)) 43) (($ $) 46)) (-2982 (($ $ $) 97)) (-3003 (($ $ $) 132)) (-2997 (($ $) 115)) (-2981 (($ $ $) 98)) (-2993 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3258 (((-1278) $) 10)) (-2996 (($ $) 118) (($ $ (-776)) 122)) (-2999 (($ $ $) 75)) (-3000 (($ $ $) 74)) (-3013 (($ $ (-646 $)) 110)) (-3011 (($ $ $) 113)) (-2990 (($ (-646 $)) 59)) (-2991 (($ $) 70) (($ (-646 $)) 71)) (-2994 (($ $ $) 123)) (-2995 (($ $) 116)) (-3006 (($ $ $) 128)) (-3974 (($ (-551)) 21) (($ (-1183)) 23) (($ (-1165)) 30) (($ (-226)) 25)) (-3273 (($ $ $) 101)) (-3764 (($ $) 102)) (-3024 (((-1278) (-1165)) 15)) (-3025 (($ (-1165)) 14)) (-3546 (($ (-646 (-646 $))) 58)) (-3560 (($ $ (-551)) 42) (($ $) 45)) (-3681 (((-1165) $) NIL)) (-3009 (($ $ $) 131)) (-3911 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3010 (((-112) $) 108)) (-3012 (($ $ (-646 $)) 111) (($ $ $ $) 112)) (-3018 (($ (-551)) 39)) (-3021 (((-551) $) 32) (((-551)) 35)) (-3015 (($ $ $) 40) (($ (-646 $)) 83)) (-3682 (((-1126) $) NIL)) (-3907 (($ $ $) 99)) (-4014 (($) 13)) (-4249 (($ $ (-646 $)) 109)) (-3023 (((-1165) (-1165)) 8)) (-4286 (($ $) 117) (($ $ (-776)) 121)) (-2983 (($ $ $) 96)) (-4260 (($ $ (-776)) 139)) (-2989 (($ (-646 $)) 60)) (-4396 (((-868) $) 19)) (-4222 (($ $ (-551)) 41) (($ $) 44)) (-2992 (($ $) 68) (($ (-646 $)) 69)) (-3678 (($ $) 66) (($ (-646 $)) 67)) (-3008 (($ $) 124)) (-2987 (($ (-646 $)) 65)) (-3523 (($ $ $) 105)) (-3680 (((-112) $ $) NIL)) (-3004 (($ $ $) 130)) (-3274 (($ $ $) 100)) (-4187 (($ $ $) 103) (($ $) 104)) (-2984 (($ $ $) 89)) (-2985 (($ $ $) 87)) (-3473 (((-112) $ $) 16) (($ $ $) 17)) (-3105 (($ $ $) 88)) (-3106 (($ $ $) 86)) (-4399 (($ $ $) 94)) (-4287 (($ $ $) 91) (($ $) 92)) (-4289 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-868) (-13 (-1107) (-10 -8 (-15 -3258 ((-1278) $)) (-15 -3025 ($ (-1165))) (-15 -3024 ((-1278) (-1165))) (-15 -3974 ($ (-551))) (-15 -3974 ($ (-1183))) (-15 -3974 ($ (-1165))) (-15 -3974 ($ (-226))) (-15 -4014 ($)) (-15 -3023 ((-1165) (-1165))) (-15 -3022 ((-551) $)) (-15 -3021 ((-551) $)) (-15 -3022 ((-551))) (-15 -3021 ((-551))) (-15 -3020 ((-551) $)) (-15 -3019 ((-551) $)) (-15 -3018 ($ (-551))) (-15 -3017 ($ (-551))) (-15 -3016 ($ (-551) (-551))) (-15 -3560 ($ $ (-551))) (-15 -3559 ($ $ (-551))) (-15 -4222 ($ $ (-551))) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -4222 ($ $)) (-15 -3015 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3015 ($ (-646 $))) (-15 -3014 ($ (-646 $))) (-15 -3013 ($ $ (-646 $))) (-15 -3012 ($ $ (-646 $))) (-15 -3012 ($ $ $ $)) (-15 -3011 ($ $ $)) (-15 -3010 ((-112) $)) (-15 -4249 ($ $ (-646 $))) (-15 -3984 ($ $)) (-15 -3009 ($ $ $)) (-15 -3008 ($ $)) (-15 -3546 ($ (-646 (-646 $)))) (-15 -3007 ($ $ $)) (-15 -3029 ($ $)) (-15 -3029 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3003 ($ $ $)) (-15 -4260 ($ $ (-776))) (-15 -3523 ($ $ $)) (-15 -3002 ($ $ $)) (-15 -3001 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -2999 ($ $ $)) (-15 -3989 ($ $ (-646 $))) (-15 -2998 ($ $ (-646 $))) (-15 -2997 ($ $)) (-15 -4286 ($ $)) (-15 -4286 ($ $ (-776))) (-15 -2996 ($ $)) (-15 -2996 ($ $ (-776))) (-15 -2995 ($ $)) (-15 -2994 ($ $ $)) (-15 -3973 ($ $)) (-15 -3973 ($ $ $)) (-15 -3973 ($ $ $ $)) (-15 -2993 ($ $)) (-15 -2993 ($ $ $)) (-15 -2993 ($ $ $ $)) (-15 -3911 ($ $)) (-15 -3911 ($ $ $)) (-15 -3911 ($ $ $ $)) (-15 -3678 ($ $)) (-15 -3678 ($ (-646 $))) (-15 -2992 ($ $)) (-15 -2992 ($ (-646 $))) (-15 -2991 ($ $)) (-15 -2991 ($ (-646 $))) (-15 -2990 ($ (-646 $))) (-15 -2989 ($ (-646 $))) (-15 -2988 ($ (-646 $))) (-15 -2987 ($ (-646 $))) (-15 -3473 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -3105 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -4287 ($ $)) (-15 * ($ $ $)) (-15 -4399 ($ $ $)) (-15 ** ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3907 ($ $ $)) (-15 -3274 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -3764 ($ $)) (-15 -4187 ($ $ $)) (-15 -4187 ($ $))))) (T -868))
-((-3258 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-868)))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-868)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-868)))) (-4014 (*1 *1) (-5 *1 (-868))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3022 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3021 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3016 (*1 *1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3559 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))) (-3560 (*1 *1 *1) (-5 *1 (-868))) (-3559 (*1 *1 *1) (-5 *1 (-868))) (-4222 (*1 *1 *1) (-5 *1 (-868))) (-3015 (*1 *1 *1 *1) (-5 *1 (-868))) (-3014 (*1 *1 *1 *1) (-5 *1 (-868))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3012 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3011 (*1 *1 *1 *1) (-5 *1 (-868))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3984 (*1 *1 *1) (-5 *1 (-868))) (-3009 (*1 *1 *1 *1) (-5 *1 (-868))) (-3008 (*1 *1 *1) (-5 *1 (-868))) (-3546 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-868)))) (-5 *1 (-868)))) (-3007 (*1 *1 *1 *1) (-5 *1 (-868))) (-3029 (*1 *1 *1) (-5 *1 (-868))) (-3029 (*1 *1 *1 *1) (-5 *1 (-868))) (-3006 (*1 *1 *1 *1) (-5 *1 (-868))) (-3005 (*1 *1 *1 *1) (-5 *1 (-868))) (-3004 (*1 *1 *1 *1) (-5 *1 (-868))) (-3003 (*1 *1 *1 *1) (-5 *1 (-868))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868)))) (-3523 (*1 *1 *1 *1) (-5 *1 (-868))) (-3002 (*1 *1 *1 *1) (-5 *1 (-868))) (-3001 (*1 *1 *1 *1) (-5 *1 (-868))) (-3000 (*1 *1 *1 *1) (-5 *1 (-868))) (-2999 (*1 *1 *1 *1) (-5 *1 (-868))) (-3989 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2997 (*1 *1 *1) (-5 *1 (-868))) (-4286 (*1 *1 *1) (-5 *1 (-868))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868)))) (-2996 (*1 *1 *1) (-5 *1 (-868))) (-2996 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868)))) (-2995 (*1 *1 *1) (-5 *1 (-868))) (-2994 (*1 *1 *1 *1) (-5 *1 (-868))) (-3973 (*1 *1 *1) (-5 *1 (-868))) (-3973 (*1 *1 *1 *1) (-5 *1 (-868))) (-3973 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-2993 (*1 *1 *1) (-5 *1 (-868))) (-2993 (*1 *1 *1 *1) (-5 *1 (-868))) (-2993 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3911 (*1 *1 *1) (-5 *1 (-868))) (-3911 (*1 *1 *1 *1) (-5 *1 (-868))) (-3911 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3678 (*1 *1 *1) (-5 *1 (-868))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2992 (*1 *1 *1) (-5 *1 (-868))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2991 (*1 *1 *1) (-5 *1 (-868))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2989 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))) (-3473 (*1 *1 *1 *1) (-5 *1 (-868))) (-2986 (*1 *1 *1 *1) (-5 *1 (-868))) (-3106 (*1 *1 *1 *1) (-5 *1 (-868))) (-2985 (*1 *1 *1 *1) (-5 *1 (-868))) (-3105 (*1 *1 *1 *1) (-5 *1 (-868))) (-2984 (*1 *1 *1 *1) (-5 *1 (-868))) (-4289 (*1 *1 *1 *1) (-5 *1 (-868))) (-4287 (*1 *1 *1 *1) (-5 *1 (-868))) (-4287 (*1 *1 *1) (-5 *1 (-868))) (* (*1 *1 *1 *1) (-5 *1 (-868))) (-4399 (*1 *1 *1 *1) (-5 *1 (-868))) (** (*1 *1 *1 *1) (-5 *1 (-868))) (-2983 (*1 *1 *1 *1) (-5 *1 (-868))) (-2982 (*1 *1 *1 *1) (-5 *1 (-868))) (-2981 (*1 *1 *1 *1) (-5 *1 (-868))) (-3907 (*1 *1 *1 *1) (-5 *1 (-868))) (-3274 (*1 *1 *1 *1) (-5 *1 (-868))) (-3273 (*1 *1 *1 *1) (-5 *1 (-868))) (-3764 (*1 *1 *1) (-5 *1 (-868))) (-4187 (*1 *1 *1 *1) (-5 *1 (-868))) (-4187 (*1 *1 *1) (-5 *1 (-868))))
-(-13 (-1107) (-10 -8 (-15 -3258 ((-1278) $)) (-15 -3025 ($ (-1165))) (-15 -3024 ((-1278) (-1165))) (-15 -3974 ($ (-551))) (-15 -3974 ($ (-1183))) (-15 -3974 ($ (-1165))) (-15 -3974 ($ (-226))) (-15 -4014 ($)) (-15 -3023 ((-1165) (-1165))) (-15 -3022 ((-551) $)) (-15 -3021 ((-551) $)) (-15 -3022 ((-551))) (-15 -3021 ((-551))) (-15 -3020 ((-551) $)) (-15 -3019 ((-551) $)) (-15 -3018 ($ (-551))) (-15 -3017 ($ (-551))) (-15 -3016 ($ (-551) (-551))) (-15 -3560 ($ $ (-551))) (-15 -3559 ($ $ (-551))) (-15 -4222 ($ $ (-551))) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -4222 ($ $)) (-15 -3015 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3015 ($ (-646 $))) (-15 -3014 ($ (-646 $))) (-15 -3013 ($ $ (-646 $))) (-15 -3012 ($ $ (-646 $))) (-15 -3012 ($ $ $ $)) (-15 -3011 ($ $ $)) (-15 -3010 ((-112) $)) (-15 -4249 ($ $ (-646 $))) (-15 -3984 ($ $)) (-15 -3009 ($ $ $)) (-15 -3008 ($ $)) (-15 -3546 ($ (-646 (-646 $)))) (-15 -3007 ($ $ $)) (-15 -3029 ($ $)) (-15 -3029 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3003 ($ $ $)) (-15 -4260 ($ $ (-776))) (-15 -3523 ($ $ $)) (-15 -3002 ($ $ $)) (-15 -3001 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -2999 ($ $ $)) (-15 -3989 ($ $ (-646 $))) (-15 -2998 ($ $ (-646 $))) (-15 -2997 ($ $)) (-15 -4286 ($ $)) (-15 -4286 ($ $ (-776))) (-15 -2996 ($ $)) (-15 -2996 ($ $ (-776))) (-15 -2995 ($ $)) (-15 -2994 ($ $ $)) (-15 -3973 ($ $)) (-15 -3973 ($ $ $)) (-15 -3973 ($ $ $ $)) (-15 -2993 ($ $)) (-15 -2993 ($ $ $)) (-15 -2993 ($ $ $ $)) (-15 -3911 ($ $)) (-15 -3911 ($ $ $)) (-15 -3911 ($ $ $ $)) (-15 -3678 ($ $)) (-15 -3678 ($ (-646 $))) (-15 -2992 ($ $)) (-15 -2992 ($ (-646 $))) (-15 -2991 ($ $)) (-15 -2991 ($ (-646 $))) (-15 -2990 ($ (-646 $))) (-15 -2989 ($ (-646 $))) (-15 -2988 ($ (-646 $))) (-15 -2987 ($ (-646 $))) (-15 -3473 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -3105 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -4289 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -4287 ($ $)) (-15 * ($ $ $)) (-15 -4399 ($ $ $)) (-15 ** ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3907 ($ $ $)) (-15 -3274 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -3764 ($ $)) (-15 -4187 ($ $ $)) (-15 -4187 ($ $))))
-((-2986 (((-112) $ $) NIL)) (-4281 (((-3 $ "failed") (-1183)) 39)) (-3558 (((-776)) 32)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) 29)) (-3681 (((-1165) $) 46)) (-2581 (($ (-925)) 28)) (-3682 (((-1126) $) NIL)) (-4420 (((-1183) $) 13) (((-540) $) 19) (((-896 (-382)) $) 26) (((-896 (-551)) $) 22)) (-4396 (((-868) $) 16)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 43)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 41)))
-(((-869 |#1|) (-13 (-849) (-619 (-1183)) (-619 (-540)) (-619 (-896 (-382))) (-619 (-896 (-551))) (-10 -8 (-15 -4281 ((-3 $ "failed") (-1183))))) (-646 (-1183))) (T -869))
-((-4281 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-646 *2)))))
-(-13 (-849) (-619 (-1183)) (-619 (-540)) (-619 (-896 (-382))) (-619 (-896 (-551))) (-10 -8 (-15 -4281 ((-3 $ "failed") (-1183)))))
-((-2986 (((-112) $ $) NIL)) (-3991 (((-511) $) 9)) (-3026 (((-646 (-444)) $) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 21)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 16)))
-(((-870) (-13 (-1107) (-10 -8 (-15 -3991 ((-511) $)) (-15 -3026 ((-646 (-444)) $))))) (T -870))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-646 (-444))) (-5 *1 (-870)))))
-(-13 (-1107) (-10 -8 (-15 -3991 ((-511) $)) (-15 -3026 ((-646 (-444)) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-952 |#1|)) NIL) (((-952 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-3548 (((-776)) NIL T CONST)) (-4373 (((-1278) (-776)) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-871 |#1| |#2| |#3| |#4|) (-13 (-1055) (-495 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4399 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4373 ((-1278) (-776))))) (-1055) (-646 (-1183)) (-646 (-776)) (-776)) (T -871))
-((-4399 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1055)) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-776))) (-14 *5 (-776)))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7)) (-4 *4 (-1055)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 *3)) (-14 *7 *3))))
-(-13 (-1055) (-495 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4399 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4373 ((-1278) (-776)))))
-((-3027 (((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|) 43)) (-3028 (((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|) 34)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3028 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -3027 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) (-367) (-1265 |#1|) (-1248 |#1|)) (T -872))
-((-3027 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1265 *5)) (-4 *6 (-1248 *5)))) (-3028 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1265 *5)) (-4 *6 (-1248 *5)))))
-(-10 -7 (-15 -3028 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -3027 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|)))
-((-3028 (((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|)) 30) (((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) 28)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3028 ((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|))) (-15 -3028 ((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|)))) (-367) (-1183) |#1|) (T -873))
-((-3028 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1262 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1241 *6 *5))) (-5 *1 (-873 *5 *6 *7)))) (-3028 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1262 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1241 *6 *5))) (-5 *1 (-873 *5 *6 *7)))))
-(-10 -7 (-15 -3028 ((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|))) (-15 -3028 ((-3 (-412 (-1241 |#2| |#1|)) "failed") (-776) (-776) (-1262 |#1| |#2| |#3|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $ (-551)) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3029 (($ (-1177 (-551)) (-551)) NIL)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3030 (($ $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4221 (((-776) $) NIL)) (-2591 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-3032 (((-551)) NIL)) (-3031 (((-551) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4218 (($ $ (-551)) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3033 (((-1160 (-551)) $) NIL)) (-3310 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-551) $ (-551)) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL)))
-(((-874 |#1|) (-875 |#1|) (-551)) (T -874))
-NIL
-(-875 |#1|)
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-3456 (($ $ (-551)) 68)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-3029 (($ (-1177 (-551)) (-551)) 67)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-3030 (($ $) 70)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4221 (((-776) $) 75)) (-2591 (((-112) $) 35)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-3032 (((-551)) 72)) (-3031 (((-551) $) 71)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-4218 (($ $ (-551)) 74)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-3033 (((-1160 (-551)) $) 76)) (-3310 (($ $) 73)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-4219 (((-551) $ (-551)) 69)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-875 |#1|) (-140) (-551)) (T -875))
-((-3033 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1160 (-551))))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-776)))) (-4218 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))) (-3310 (*1 *1 *1) (-4 *1 (-875 *2))) (-3032 (*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))) (-3030 (*1 *1 *1) (-4 *1 (-875 *2))) (-4219 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))) (-3029 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *3 (-551)) (-4 *1 (-875 *4)))))
-(-13 (-310) (-147) (-10 -8 (-15 -3033 ((-1160 (-551)) $)) (-15 -4221 ((-776) $)) (-15 -4218 ($ $ (-551))) (-15 -3310 ($ $)) (-15 -3032 ((-551))) (-15 -3031 ((-551) $)) (-15 -3030 ($ $)) (-15 -4219 ((-551) $ (-551))) (-15 -3456 ($ $ (-551))) (-15 -3029 ($ (-1177 (-551)) (-551)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-874 |#1|) $) NIL (|has| (-874 |#1|) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-874 |#1|) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-874 |#1|) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-874 |#1|) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-874 |#1|) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| (-874 |#1|) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| (-874 |#1|) (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| (-874 |#1|) (-1044 (-551))))) (-3594 (((-874 |#1|) $) NIL) (((-1183) $) NIL (|has| (-874 |#1|) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-874 |#1|) (-1044 (-551)))) (((-551) $) NIL (|has| (-874 |#1|) (-1044 (-551))))) (-4180 (($ $) NIL) (($ (-551) $) NIL)) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-874 |#1|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-874 |#1|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-874 |#1|))) (|:| |vec| (-1272 (-874 |#1|)))) (-694 $) (-1272 $)) NIL) (((-694 (-874 |#1|)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-874 |#1|) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| (-874 |#1|) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-874 |#1|) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-874 |#1|) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-874 |#1|) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| (-874 |#1|) (-1157)))) (-3625 (((-112) $) NIL (|has| (-874 |#1|) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-874 |#1|) (-855)))) (-3278 (($ $ $) NIL (|has| (-874 |#1|) (-855)))) (-4408 (($ (-1 (-874 |#1|) (-874 |#1|)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-874 |#1|) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-874 |#1|) (-310)))) (-3552 (((-874 |#1|) $) NIL (|has| (-874 |#1|) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-874 |#1|) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-874 |#1|) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-874 |#1|)) (-646 (-874 |#1|))) NIL (|has| (-874 |#1|) (-312 (-874 |#1|)))) (($ $ (-874 |#1|) (-874 |#1|)) NIL (|has| (-874 |#1|) (-312 (-874 |#1|)))) (($ $ (-296 (-874 |#1|))) NIL (|has| (-874 |#1|) (-312 (-874 |#1|)))) (($ $ (-646 (-296 (-874 |#1|)))) NIL (|has| (-874 |#1|) (-312 (-874 |#1|)))) (($ $ (-646 (-1183)) (-646 (-874 |#1|))) NIL (|has| (-874 |#1|) (-519 (-1183) (-874 |#1|)))) (($ $ (-1183) (-874 |#1|)) NIL (|has| (-874 |#1|) (-519 (-1183) (-874 |#1|))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-874 |#1|)) NIL (|has| (-874 |#1|) (-289 (-874 |#1|) (-874 |#1|))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| (-874 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-874 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-1 (-874 |#1|) (-874 |#1|)) (-776)) NIL) (($ $ (-1 (-874 |#1|) (-874 |#1|))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-874 |#1|) $) NIL)) (-4420 (((-896 (-551)) $) NIL (|has| (-874 |#1|) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-874 |#1|) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-874 |#1|) (-619 (-540)))) (((-382) $) NIL (|has| (-874 |#1|) (-1026))) (((-226) $) NIL (|has| (-874 |#1|) (-1026)))) (-3034 (((-175 (-412 (-551))) $) NIL)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-874 |#1|) (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL) (($ (-874 |#1|)) NIL) (($ (-1183)) NIL (|has| (-874 |#1|) (-1044 (-1183))))) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-874 |#1|) (-916))) (|has| (-874 |#1|) (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 (((-874 |#1|) $) NIL (|has| (-874 |#1|) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-412 (-551)) $ (-551)) NIL)) (-3825 (($ $) NIL (|has| (-874 |#1|) (-825)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $) NIL (|has| (-874 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-874 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-874 |#1|) (-906 (-1183)))) (($ $ (-1 (-874 |#1|) (-874 |#1|)) (-776)) NIL) (($ $ (-1 (-874 |#1|) (-874 |#1|))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-874 |#1|) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-874 |#1|) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-874 |#1|) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-874 |#1|) (-855)))) (-4399 (($ $ $) NIL) (($ (-874 |#1|) (-874 |#1|)) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-874 |#1|) $) NIL) (($ $ (-874 |#1|)) NIL)))
-(((-876 |#1|) (-13 (-997 (-874 |#1|)) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $)))) (-551)) (T -876))
-((-4219 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-551)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-876 *3)) (-14 *3 (-551)))) (-4180 (*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-551)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-876 *3)) (-14 *3 *2))))
-(-13 (-997 (-874 |#1|)) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 ((|#2| $) NIL (|has| |#2| (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| |#2| (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (|has| |#2| (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551))))) (-3594 ((|#2| $) NIL) (((-1183) $) NIL (|has| |#2| (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-551)))) (((-551) $) NIL (|has| |#2| (-1044 (-551))))) (-4180 (($ $) 35) (($ (-551) $) 38)) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) 64)) (-3413 (($) NIL (|has| |#2| (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) NIL (|has| |#2| (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| |#2| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| |#2| (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 ((|#2| $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#2| (-1157)))) (-3625 (((-112) $) NIL (|has| |#2| (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| |#2| (-855)))) (-3278 (($ $ $) NIL (|has| |#2| (-855)))) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 60)) (-3887 (($) NIL (|has| |#2| (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| |#2| (-310)))) (-3552 ((|#2| $) NIL (|has| |#2| (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 |#2|) (-646 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-312 |#2|))) (($ $ (-296 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ (-646 (-296 |#2|))) NIL (|has| |#2| (-312 |#2|))) (($ $ (-646 (-1183)) (-646 |#2|)) NIL (|has| |#2| (-519 (-1183) |#2|))) (($ $ (-1183) |#2|) NIL (|has| |#2| (-519 (-1183) |#2|)))) (-1762 (((-776) $) NIL)) (-4249 (($ $ |#2|) NIL (|has| |#2| (-289 |#2| |#2|)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3414 (($ $) NIL)) (-3416 ((|#2| $) NIL)) (-4420 (((-896 (-551)) $) NIL (|has| |#2| (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| |#2| (-619 (-896 (-382))))) (((-540) $) NIL (|has| |#2| (-619 (-540)))) (((-382) $) NIL (|has| |#2| (-1026))) (((-226) $) NIL (|has| |#2| (-1026)))) (-3034 (((-175 (-412 (-551))) $) 78)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4396 (((-868) $) 108) (($ (-551)) 20) (($ $) NIL) (($ (-412 (-551))) 25) (($ |#2|) 19) (($ (-1183)) NIL (|has| |#2| (-1044 (-1183))))) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-3553 ((|#2| $) NIL (|has| |#2| (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-412 (-551)) $ (-551)) 71)) (-3825 (($ $) NIL (|has| |#2| (-825)))) (-3528 (($) 15 T CONST)) (-3085 (($) 17 T CONST)) (-3090 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2984 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-855)))) (-3473 (((-112) $ $) 46)) (-3105 (((-112) $ $) NIL (|has| |#2| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#2| (-855)))) (-4399 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4287 (($ $) 50) (($ $ $) 52)) (-4289 (($ $ $) 48)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) 61)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 53) (($ $ $) 55) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-877 |#1| |#2|) (-13 (-997 |#2|) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $)))) (-551) (-875 |#1|)) (T -877))
-((-4219 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-412 (-551))) (-5 *1 (-877 *4 *5)) (-5 *3 (-551)) (-4 *5 (-875 *4)))) (-3034 (*1 *2 *1) (-12 (-14 *3 (-551)) (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-877 *3 *4)) (-4 *4 (-875 *3)))) (-4180 (*1 *1 *1) (-12 (-14 *2 (-551)) (-5 *1 (-877 *2 *3)) (-4 *3 (-875 *2)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-875 *3)))))
-(-13 (-997 |#2|) (-10 -8 (-15 -4219 ((-412 (-551)) $ (-551))) (-15 -3034 ((-175 (-412 (-551))) $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $))))
-((-2986 (((-112) $ $) NIL (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107))))) (-4245 ((|#2| $) 12)) (-3035 (($ |#1| |#2|) 9)) (-3681 (((-1165) $) NIL (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107))))) (-3682 (((-1126) $) NIL (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#1| $) 11)) (-3971 (($ |#1| |#2|) 10)) (-4396 (((-868) $) 18 (-3978 (-12 (|has| |#1| (-618 (-868))) (|has| |#2| (-618 (-868)))) (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107)))))) (-3680 (((-112) $ $) NIL (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107))))) (-3473 (((-112) $ $) 23 (-12 (|has| |#1| (-1107)) (|has| |#2| (-1107))))))
-(((-878 |#1| |#2|) (-13 (-1222) (-10 -8 (IF (|has| |#1| (-618 (-868))) (IF (|has| |#2| (-618 (-868))) (-6 (-618 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1107)) (IF (|has| |#2| (-1107)) (-6 (-1107)) |%noBranch|) |%noBranch|) (-15 -3035 ($ |#1| |#2|)) (-15 -3971 ($ |#1| |#2|)) (-15 -4250 (|#1| $)) (-15 -4245 (|#2| $)))) (-1222) (-1222)) (T -878))
-((-3035 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1222)) (-4 *3 (-1222)))) (-3971 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1222)) (-4 *3 (-1222)))) (-4250 (*1 *2 *1) (-12 (-4 *2 (-1222)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1222)))) (-4245 (*1 *2 *1) (-12 (-4 *2 (-1222)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1222)))))
-(-13 (-1222) (-10 -8 (IF (|has| |#1| (-618 (-868))) (IF (|has| |#2| (-618 (-868))) (-6 (-618 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1107)) (IF (|has| |#2| (-1107)) (-6 (-1107)) |%noBranch|) |%noBranch|) (-15 -3035 ($ |#1| |#2|)) (-15 -3971 ($ |#1| |#2|)) (-15 -4250 (|#1| $)) (-15 -4245 (|#2| $))))
-((-2986 (((-112) $ $) NIL)) (-3376 (((-551) $) 16)) (-3037 (($ (-157)) 13)) (-3036 (($ (-157)) 14)) (-3681 (((-1165) $) NIL)) (-3375 (((-157) $) 15)) (-3682 (((-1126) $) NIL)) (-3039 (($ (-157)) 11)) (-3040 (($ (-157)) 10)) (-4396 (((-868) $) 24) (($ (-157)) 17)) (-3038 (($ (-157)) 12)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-879) (-13 (-1107) (-10 -8 (-15 -3040 ($ (-157))) (-15 -3039 ($ (-157))) (-15 -3038 ($ (-157))) (-15 -3037 ($ (-157))) (-15 -3036 ($ (-157))) (-15 -3375 ((-157) $)) (-15 -3376 ((-551) $)) (-15 -4396 ($ (-157)))))) (T -879))
-((-3040 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-879)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(-13 (-1107) (-10 -8 (-15 -3040 ($ (-157))) (-15 -3039 ($ (-157))) (-15 -3038 ($ (-157))) (-15 -3037 ($ (-157))) (-15 -3036 ($ (-157))) (-15 -3375 ((-157) $)) (-15 -3376 ((-551) $)) (-15 -4396 ($ (-157)))))
-((-4396 (((-317 (-551)) (-412 (-952 (-48)))) 23) (((-317 (-551)) (-952 (-48))) 18)))
-(((-880) (-10 -7 (-15 -4396 ((-317 (-551)) (-952 (-48)))) (-15 -4396 ((-317 (-551)) (-412 (-952 (-48))))))) (T -880))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 (-48)))) (-5 *2 (-317 (-551))) (-5 *1 (-880)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-551))) (-5 *1 (-880)))))
-(-10 -7 (-15 -4396 ((-317 (-551)) (-952 (-48)))) (-15 -4396 ((-317 (-551)) (-412 (-952 (-48))))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-4015 (((-112) $ (|[\|\|]| (-511))) 9) (((-112) $ (|[\|\|]| (-1165))) 13)) (-3680 (((-112) $ $) NIL)) (-4021 (((-511) $) 10) (((-1165) $) 14)) (-3473 (((-112) $ $) 15)))
-(((-881) (-13 (-1089) (-1268) (-10 -8 (-15 -4015 ((-112) $ (|[\|\|]| (-511)))) (-15 -4021 ((-511) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1165)))) (-15 -4021 ((-1165) $))))) (T -881))
-((-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881)))))
-(-13 (-1089) (-1268) (-10 -8 (-15 -4015 ((-112) $ (|[\|\|]| (-511)))) (-15 -4021 ((-511) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1165)))) (-15 -4021 ((-1165) $))))
-((-4408 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -4408 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1222) (-1222)) (T -882))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))))
-(-10 -7 (-15 -4408 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
-((-3813 (($ |#1| |#1|) 8)) (-3043 ((|#1| $ (-776)) 15)))
-(((-883 |#1|) (-10 -8 (-15 -3813 ($ |#1| |#1|)) (-15 -3043 (|#1| $ (-776)))) (-1222)) (T -883))
-((-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1222)))) (-3813 (*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1222)))))
-(-10 -8 (-15 -3813 ($ |#1| |#1|)) (-15 -3043 (|#1| $ (-776))))
-((-4408 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -4408 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1222) (-1222)) (T -884))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
-(-10 -7 (-15 -4408 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
-((-3813 (($ |#1| |#1| |#1|) 8)) (-3043 ((|#1| $ (-776)) 15)))
-(((-885 |#1|) (-10 -8 (-15 -3813 ($ |#1| |#1| |#1|)) (-15 -3043 (|#1| $ (-776)))) (-1222)) (T -885))
-((-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1222)))) (-3813 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1222)))))
-(-10 -8 (-15 -3813 ($ |#1| |#1| |#1|)) (-15 -3043 (|#1| $ (-776))))
-((-3041 (((-646 (-1188)) (-1165)) 9)))
-(((-886) (-10 -7 (-15 -3041 ((-646 (-1188)) (-1165))))) (T -886))
-((-3041 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-1188))) (-5 *1 (-886)))))
-(-10 -7 (-15 -3041 ((-646 (-1188)) (-1165))))
-((-4408 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -4408 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1222) (-1222)) (T -887))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -4408 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-3042 (($ |#1| |#1| |#1|) 8)) (-3043 ((|#1| $ (-776)) 15)))
-(((-888 |#1|) (-10 -8 (-15 -3042 ($ |#1| |#1| |#1|)) (-15 -3043 (|#1| $ (-776)))) (-1222)) (T -888))
-((-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1222)))) (-3042 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1222)))))
-(-10 -8 (-15 -3042 ($ |#1| |#1| |#1|)) (-15 -3043 (|#1| $ (-776))))
-((-3047 (((-1160 (-646 (-551))) (-646 (-551)) (-1160 (-646 (-551)))) 48)) (-3046 (((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551))) 44)) (-3048 (((-1160 (-646 (-551))) (-646 (-551))) 58) (((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551))) 56)) (-3049 (((-1160 (-646 (-551))) (-551)) 59)) (-3044 (((-1160 (-646 (-551))) (-551) (-551)) 34) (((-1160 (-646 (-551))) (-551)) 23) (((-1160 (-646 (-551))) (-551) (-551) (-551)) 19)) (-3045 (((-1160 (-646 (-551))) (-1160 (-646 (-551)))) 42)) (-3428 (((-646 (-551)) (-646 (-551))) 41)))
-(((-889) (-10 -7 (-15 -3044 ((-1160 (-646 (-551))) (-551) (-551) (-551))) (-15 -3044 ((-1160 (-646 (-551))) (-551))) (-15 -3044 ((-1160 (-646 (-551))) (-551) (-551))) (-15 -3428 ((-646 (-551)) (-646 (-551)))) (-15 -3045 ((-1160 (-646 (-551))) (-1160 (-646 (-551))))) (-15 -3046 ((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551)))) (-15 -3047 ((-1160 (-646 (-551))) (-646 (-551)) (-1160 (-646 (-551))))) (-15 -3048 ((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551)))) (-15 -3048 ((-1160 (-646 (-551))) (-646 (-551)))) (-15 -3049 ((-1160 (-646 (-551))) (-551))))) (T -889))
-((-3049 (*1 *2 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551))))) (-3048 (*1 *2 *3 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551))))) (-3047 (*1 *2 *3 *2) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *3 (-646 (-551))) (-5 *1 (-889)))) (-3046 (*1 *2 *3 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551))))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-889)))) (-3044 (*1 *2 *3 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))) (-3044 (*1 *2 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))) (-3044 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))))
-(-10 -7 (-15 -3044 ((-1160 (-646 (-551))) (-551) (-551) (-551))) (-15 -3044 ((-1160 (-646 (-551))) (-551))) (-15 -3044 ((-1160 (-646 (-551))) (-551) (-551))) (-15 -3428 ((-646 (-551)) (-646 (-551)))) (-15 -3045 ((-1160 (-646 (-551))) (-1160 (-646 (-551))))) (-15 -3046 ((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551)))) (-15 -3047 ((-1160 (-646 (-551))) (-646 (-551)) (-1160 (-646 (-551))))) (-15 -3048 ((-1160 (-646 (-551))) (-646 (-551)) (-646 (-551)))) (-15 -3048 ((-1160 (-646 (-551))) (-646 (-551)))) (-15 -3049 ((-1160 (-646 (-551))) (-551))))
-((-4420 (((-896 (-382)) $) 9 (|has| |#1| (-619 (-896 (-382))))) (((-896 (-551)) $) 8 (|has| |#1| (-619 (-896 (-551)))))))
-(((-890 |#1|) (-140) (-1222)) (T -890))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-619 (-896 (-551)))) (-6 (-619 (-896 (-551)))) |%noBranch|) (IF (|has| |t#1| (-619 (-896 (-382)))) (-6 (-619 (-896 (-382)))) |%noBranch|)))
-(((-619 (-896 (-382))) |has| |#1| (-619 (-896 (-382)))) ((-619 (-896 (-551))) |has| |#1| (-619 (-896 (-551)))))
-((-2986 (((-112) $ $) NIL)) (-4064 (($) 14)) (-3052 (($ (-894 |#1| |#2|) (-894 |#1| |#3|)) 28)) (-3050 (((-894 |#1| |#3|) $) 16)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3060 (((-112) $) 22)) (-3059 (($) 19)) (-4396 (((-868) $) 31)) (-3680 (((-112) $ $) NIL)) (-3051 (((-894 |#1| |#2|) $) 15)) (-3473 (((-112) $ $) 26)))
-(((-891 |#1| |#2| |#3|) (-13 (-1107) (-10 -8 (-15 -3060 ((-112) $)) (-15 -3059 ($)) (-15 -4064 ($)) (-15 -3052 ($ (-894 |#1| |#2|) (-894 |#1| |#3|))) (-15 -3051 ((-894 |#1| |#2|) $)) (-15 -3050 ((-894 |#1| |#3|) $)))) (-1107) (-1107) (-671 |#2|)) (T -891))
-((-3060 (*1 *2 *1) (-12 (-4 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1107)) (-4 *5 (-671 *4)))) (-3059 (*1 *1) (-12 (-4 *3 (-1107)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1107)) (-4 *4 (-671 *3)))) (-4064 (*1 *1) (-12 (-4 *3 (-1107)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1107)) (-4 *4 (-671 *3)))) (-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-894 *4 *5)) (-5 *3 (-894 *4 *6)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))) (-3051 (*1 *2 *1) (-12 (-4 *4 (-1107)) (-5 *2 (-894 *3 *4)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1107)) (-4 *5 (-671 *4)))) (-3050 (*1 *2 *1) (-12 (-4 *4 (-1107)) (-5 *2 (-894 *3 *5)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1107)) (-4 *5 (-671 *4)))))
-(-13 (-1107) (-10 -8 (-15 -3060 ((-112) $)) (-15 -3059 ($)) (-15 -4064 ($)) (-15 -3052 ($ (-894 |#1| |#2|) (-894 |#1| |#3|))) (-15 -3051 ((-894 |#1| |#2|) $)) (-15 -3050 ((-894 |#1| |#3|) $))))
-((-2986 (((-112) $ $) 7)) (-3217 (((-894 |#1| $) $ (-896 |#1|) (-894 |#1| $)) 14)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-892 |#1|) (-140) (-1107)) (T -892))
-((-3217 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-894 *4 *1)) (-5 *3 (-896 *4)) (-4 *1 (-892 *4)) (-4 *4 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -3217 ((-894 |t#1| $) $ (-896 |t#1|) (-894 |t#1| $)))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-3053 (((-112) (-646 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3054 (((-894 |#1| |#2|) |#2| |#3|) 45 (-12 (-3764 (|has| |#2| (-1044 (-1183)))) (-3764 (|has| |#2| (-1055))))) (((-646 (-296 (-952 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1055)) (-3764 (|has| |#2| (-1044 (-1183)))))) (((-646 (-296 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1044 (-1183)))) (((-891 |#1| |#2| (-646 |#2|)) (-646 |#2|) |#3|) 21)))
-(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -3053 ((-112) |#2| |#3|)) (-15 -3053 ((-112) (-646 |#2|) |#3|)) (-15 -3054 ((-891 |#1| |#2| (-646 |#2|)) (-646 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -3054 ((-646 (-296 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -3054 ((-646 (-296 (-952 |#2|))) |#2| |#3|)) (-15 -3054 ((-894 |#1| |#2|) |#2| |#3|))))) (-1107) (-892 |#1|) (-619 (-896 |#1|))) (T -893))
-((-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-5 *2 (-894 *5 *3)) (-5 *1 (-893 *5 *3 *4)) (-3764 (-4 *3 (-1044 (-1183)))) (-3764 (-4 *3 (-1055))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-896 *5))))) (-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-5 *2 (-646 (-296 (-952 *3)))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1055)) (-3764 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-896 *5))))) (-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-5 *2 (-646 (-296 *3))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-896 *5))))) (-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-646 *6))) (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-646 *6)) (-4 *4 (-619 (-896 *5))))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-896 *5))))) (-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5)) (-4 *4 (-619 (-896 *5))))))
-(-10 -7 (-15 -3053 ((-112) |#2| |#3|)) (-15 -3053 ((-112) (-646 |#2|) |#3|)) (-15 -3054 ((-891 |#1| |#2| (-646 |#2|)) (-646 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -3054 ((-646 (-296 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -3054 ((-646 (-296 (-952 |#2|))) |#2| |#3|)) (-15 -3054 ((-894 |#1| |#2|) |#2| |#3|)))))
-((-2986 (((-112) $ $) NIL)) (-3672 (($ $ $) 40)) (-3080 (((-3 (-112) "failed") $ (-896 |#1|)) 37)) (-4064 (($) 12)) (-3681 (((-1165) $) NIL)) (-3056 (($ (-896 |#1|) |#2| $) 20)) (-3682 (((-1126) $) NIL)) (-3058 (((-3 |#2| "failed") (-896 |#1|) $) 51)) (-3060 (((-112) $) 15)) (-3059 (($) 13)) (-3696 (((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|))) $) 25)) (-3971 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|)))) 23)) (-4396 (((-868) $) 45)) (-3680 (((-112) $ $) NIL)) (-3055 (($ (-896 |#1|) |#2| $ |#2|) 49)) (-3057 (($ (-896 |#1|) |#2| $) 48)) (-3473 (((-112) $ $) 42)))
-(((-894 |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -3060 ((-112) $)) (-15 -3059 ($)) (-15 -4064 ($)) (-15 -3672 ($ $ $)) (-15 -3058 ((-3 |#2| "failed") (-896 |#1|) $)) (-15 -3057 ($ (-896 |#1|) |#2| $)) (-15 -3056 ($ (-896 |#1|) |#2| $)) (-15 -3055 ($ (-896 |#1|) |#2| $ |#2|)) (-15 -3696 ((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|))) $)) (-15 -3971 ($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|))))) (-15 -3080 ((-3 (-112) "failed") $ (-896 |#1|))))) (-1107) (-1107)) (T -894))
-((-3060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-3059 (*1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-4064 (*1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-3672 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-3058 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-4 *2 (-1107)) (-5 *1 (-894 *4 *2)))) (-3057 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))) (-3056 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))) (-3055 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 *4)))) (-5 *1 (-894 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 *4)))) (-4 *4 (-1107)) (-5 *1 (-894 *3 *4)) (-4 *3 (-1107)))) (-3080 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -3060 ((-112) $)) (-15 -3059 ($)) (-15 -4064 ($)) (-15 -3672 ($ $ $)) (-15 -3058 ((-3 |#2| "failed") (-896 |#1|) $)) (-15 -3057 ($ (-896 |#1|) |#2| $)) (-15 -3056 ($ (-896 |#1|) |#2| $)) (-15 -3055 ($ (-896 |#1|) |#2| $ |#2|)) (-15 -3696 ((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|))) $)) (-15 -3971 ($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 |#2|))))) (-15 -3080 ((-3 (-112) "failed") $ (-896 |#1|)))))
-((-4408 (((-894 |#1| |#3|) (-1 |#3| |#2|) (-894 |#1| |#2|)) 22)))
-(((-895 |#1| |#2| |#3|) (-10 -7 (-15 -4408 ((-894 |#1| |#3|) (-1 |#3| |#2|) (-894 |#1| |#2|)))) (-1107) (-1107) (-1107)) (T -895))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-894 *5 *6)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-894 *5 *7)) (-5 *1 (-895 *5 *6 *7)))))
-(-10 -7 (-15 -4408 ((-894 |#1| |#3|) (-1 |#3| |#2|) (-894 |#1| |#2|))))
-((-2986 (((-112) $ $) NIL)) (-3068 (($ $ (-646 (-51))) 74)) (-3503 (((-646 $) $) 138)) (-3065 (((-2 (|:| |var| (-646 (-1183))) (|:| |pred| (-51))) $) 30)) (-3699 (((-112) $) 35)) (-3066 (($ $ (-646 (-1183)) (-51)) 31)) (-3069 (($ $ (-646 (-51))) 73)) (-3595 (((-3 |#1| #1="failed") $) 71) (((-3 (-1183) #1#) $) 162)) (-3594 ((|#1| $) 68) (((-1183) $) NIL)) (-3063 (($ $) 126)) (-3075 (((-112) $) 55)) (-3070 (((-646 (-51)) $) 50)) (-3067 (($ (-1183) (-112) (-112) (-112)) 75)) (-3061 (((-3 (-646 $) "failed") (-646 $)) 82)) (-3072 (((-112) $) 58)) (-3073 (((-112) $) 57)) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) "failed") $) 41)) (-3078 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3246 (((-3 (-2 (|:| |val| $) (|:| -2582 $)) "failed") $) 97)) (-3243 (((-3 (-646 $) "failed") $) 40)) (-3079 (((-3 (-646 $) "failed") $ (-113)) 124) (((-3 (-2 (|:| -2920 (-113)) (|:| |arg| (-646 $))) "failed") $) 107)) (-3077 (((-3 (-646 $) "failed") $) 42)) (-3245 (((-3 (-2 (|:| |val| $) (|:| -2582 (-776))) "failed") $) 45)) (-3076 (((-112) $) 34)) (-3682 (((-1126) $) NIL)) (-3064 (((-112) $) 28)) (-3071 (((-112) $) 52)) (-3062 (((-646 (-51)) $) 130)) (-3074 (((-112) $) 56)) (-4249 (($ (-113) (-646 $)) 104)) (-3765 (((-776) $) 33)) (-3842 (($ $) 72)) (-4420 (($ (-646 $)) 69)) (-4403 (((-112) $) 32)) (-4396 (((-868) $) 63) (($ |#1|) 23) (($ (-1183)) 76)) (-3680 (((-112) $ $) NIL)) (-3081 (($ $ (-51)) 129)) (-3528 (($) 103 T CONST)) (-3085 (($) 83 T CONST)) (-3473 (((-112) $ $) 93)) (-4399 (($ $ $) 117)) (-4289 (($ $ $) 121)) (** (($ $ (-776)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-896 |#1|) (-13 (-1107) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 0 ($) -4402) (-15 1 ($) -4402) (-15 -3243 ((-3 (-646 $) "failed") $)) (-15 -3244 ((-3 (-646 $) "failed") $)) (-15 -3079 ((-3 (-646 $) "failed") $ (-113))) (-15 -3079 ((-3 (-2 (|:| -2920 (-113)) (|:| |arg| (-646 $))) "failed") $)) (-15 -3245 ((-3 (-2 (|:| |val| $) (|:| -2582 (-776))) "failed") $)) (-15 -3078 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3077 ((-3 (-646 $) "failed") $)) (-15 -3246 ((-3 (-2 (|:| |val| $) (|:| -2582 $)) "failed") $)) (-15 -4249 ($ (-113) (-646 $))) (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -4399 ($ $ $)) (-15 -3765 ((-776) $)) (-15 -4420 ($ (-646 $))) (-15 -3842 ($ $)) (-15 -3076 ((-112) $)) (-15 -3075 ((-112) $)) (-15 -3699 ((-112) $)) (-15 -4403 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -3073 ((-112) $)) (-15 -3072 ((-112) $)) (-15 -3071 ((-112) $)) (-15 -3070 ((-646 (-51)) $)) (-15 -3069 ($ $ (-646 (-51)))) (-15 -3068 ($ $ (-646 (-51)))) (-15 -3067 ($ (-1183) (-112) (-112) (-112))) (-15 -3066 ($ $ (-646 (-1183)) (-51))) (-15 -3065 ((-2 (|:| |var| (-646 (-1183))) (|:| |pred| (-51))) $)) (-15 -3064 ((-112) $)) (-15 -3063 ($ $)) (-15 -3081 ($ $ (-51))) (-15 -3062 ((-646 (-51)) $)) (-15 -3503 ((-646 $) $)) (-15 -3061 ((-3 (-646 $) "failed") (-646 $))))) (-1107)) (T -896))
-((-3528 (*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-3085 (*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-3243 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3244 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3079 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-646 (-896 *4))) (-5 *1 (-896 *4)) (-4 *4 (-1107)))) (-3079 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2920 (-113)) (|:| |arg| (-646 (-896 *3))))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3245 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-896 *3)) (|:| -2582 (-776)))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3078 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-896 *3)) (|:| |den| (-896 *3)))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3077 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3246 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-896 *3)) (|:| -2582 (-896 *3)))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 (-896 *4))) (-5 *1 (-896 *4)) (-4 *4 (-1107)))) (-4289 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-4399 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3842 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3068 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3067 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-896 *4)) (-4 *4 (-1107)))) (-3066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-51)) (-5 *1 (-896 *4)) (-4 *4 (-1107)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-646 (-1183))) (|:| |pred| (-51)))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))) (-3061 (*1 *2 *2) (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(-13 (-1107) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 (-3528) ($) -4402) (-15 (-3085) ($) -4402) (-15 -3243 ((-3 (-646 $) "failed") $)) (-15 -3244 ((-3 (-646 $) "failed") $)) (-15 -3079 ((-3 (-646 $) "failed") $ (-113))) (-15 -3079 ((-3 (-2 (|:| -2920 (-113)) (|:| |arg| (-646 $))) "failed") $)) (-15 -3245 ((-3 (-2 (|:| |val| $) (|:| -2582 (-776))) "failed") $)) (-15 -3078 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3077 ((-3 (-646 $) "failed") $)) (-15 -3246 ((-3 (-2 (|:| |val| $) (|:| -2582 $)) "failed") $)) (-15 -4249 ($ (-113) (-646 $))) (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -4399 ($ $ $)) (-15 -3765 ((-776) $)) (-15 -4420 ($ (-646 $))) (-15 -3842 ($ $)) (-15 -3076 ((-112) $)) (-15 -3075 ((-112) $)) (-15 -3699 ((-112) $)) (-15 -4403 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -3073 ((-112) $)) (-15 -3072 ((-112) $)) (-15 -3071 ((-112) $)) (-15 -3070 ((-646 (-51)) $)) (-15 -3069 ($ $ (-646 (-51)))) (-15 -3068 ($ $ (-646 (-51)))) (-15 -3067 ($ (-1183) (-112) (-112) (-112))) (-15 -3066 ($ $ (-646 (-1183)) (-51))) (-15 -3065 ((-2 (|:| |var| (-646 (-1183))) (|:| |pred| (-51))) $)) (-15 -3064 ((-112) $)) (-15 -3063 ($ $)) (-15 -3081 ($ $ (-51))) (-15 -3062 ((-646 (-51)) $)) (-15 -3503 ((-646 $) $)) (-15 -3061 ((-3 (-646 $) "failed") (-646 $)))))
-((-3647 (((-896 |#1|) (-896 |#1|) (-646 (-1183)) (-1 (-112) (-646 |#2|))) 32) (((-896 |#1|) (-896 |#1|) (-646 (-1 (-112) |#2|))) 46) (((-896 |#1|) (-896 |#1|) (-1 (-112) |#2|)) 35)) (-3080 (((-112) (-646 |#2|) (-896 |#1|)) 42) (((-112) |#2| (-896 |#1|)) 36)) (-3972 (((-1 (-112) |#2|) (-896 |#1|)) 16)) (-3082 (((-646 |#2|) (-896 |#1|)) 24)) (-3081 (((-896 |#1|) (-896 |#1|) |#2|) 20)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -3647 ((-896 |#1|) (-896 |#1|) (-1 (-112) |#2|))) (-15 -3647 ((-896 |#1|) (-896 |#1|) (-646 (-1 (-112) |#2|)))) (-15 -3647 ((-896 |#1|) (-896 |#1|) (-646 (-1183)) (-1 (-112) (-646 |#2|)))) (-15 -3972 ((-1 (-112) |#2|) (-896 |#1|))) (-15 -3080 ((-112) |#2| (-896 |#1|))) (-15 -3080 ((-112) (-646 |#2|) (-896 |#1|))) (-15 -3081 ((-896 |#1|) (-896 |#1|) |#2|)) (-15 -3082 ((-646 |#2|) (-896 |#1|)))) (-1107) (-1222)) (T -897))
-((-3082 (*1 *2 *3) (-12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-646 *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1222)))) (-3081 (*1 *2 *2 *3) (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1222)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-1222)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3)) (-4 *3 (-1222)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1222)))) (-3647 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-896 *5)) (-5 *3 (-646 (-1183))) (-5 *4 (-1 (-112) (-646 *6))) (-4 *5 (-1107)) (-4 *6 (-1222)) (-5 *1 (-897 *5 *6)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *2 (-896 *4)) (-5 *3 (-646 (-1 (-112) *5))) (-4 *4 (-1107)) (-4 *5 (-1222)) (-5 *1 (-897 *4 *5)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *2 (-896 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1107)) (-4 *5 (-1222)) (-5 *1 (-897 *4 *5)))))
-(-10 -7 (-15 -3647 ((-896 |#1|) (-896 |#1|) (-1 (-112) |#2|))) (-15 -3647 ((-896 |#1|) (-896 |#1|) (-646 (-1 (-112) |#2|)))) (-15 -3647 ((-896 |#1|) (-896 |#1|) (-646 (-1183)) (-1 (-112) (-646 |#2|)))) (-15 -3972 ((-1 (-112) |#2|) (-896 |#1|))) (-15 -3080 ((-112) |#2| (-896 |#1|))) (-15 -3080 ((-112) (-646 |#2|) (-896 |#1|))) (-15 -3081 ((-896 |#1|) (-896 |#1|) |#2|)) (-15 -3082 ((-646 |#2|) (-896 |#1|))))
-((-4408 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 19)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -4408 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1107) (-1107)) (T -898))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-896 *6)) (-5 *1 (-898 *5 *6)))))
-(-10 -7 (-15 -4408 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|))))
-((-2986 (((-112) $ $) NIL)) (-4384 (((-646 |#1|) $) 19)) (-3083 (((-112) $) 49)) (-3595 (((-3 (-677 |#1|) "failed") $) 56)) (-3594 (((-677 |#1|) $) 54)) (-4248 (($ $) 23)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-4283 (((-776) $) 61)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-677 |#1|) $) 21)) (-4396 (((-868) $) 47) (($ (-677 |#1|)) 26) (((-824 |#1|) $) 36) (($ |#1|) 25)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 9 T CONST)) (-3084 (((-646 (-677 |#1|)) $) 28)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 12)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 67)))
-(((-899 |#1|) (-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 1 ($) -4402) (-15 -4396 ((-824 |#1|) $)) (-15 -4396 ($ |#1|)) (-15 -4250 ((-677 |#1|) $)) (-15 -4283 ((-776) $)) (-15 -3084 ((-646 (-677 |#1|)) $)) (-15 -4248 ($ $)) (-15 -3083 ((-112) $)) (-15 -4384 ((-646 |#1|) $)))) (-855)) (T -899))
-((-3085 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-4396 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-646 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 (-3085) ($) -4402) (-15 -4396 ((-824 |#1|) $)) (-15 -4396 ($ |#1|)) (-15 -4250 ((-677 |#1|) $)) (-15 -4283 ((-776) $)) (-15 -3084 ((-646 (-677 |#1|)) $)) (-15 -4248 ($ $)) (-15 -3083 ((-112) $)) (-15 -4384 ((-646 |#1|) $))))
-((-3915 ((|#1| |#1| |#1|) 19)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -3915 (|#1| |#1| |#1|))) (-1248 |#2|) (-1055)) (T -900))
-((-3915 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -3915 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3089 (((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3086 (((-1041) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 14)) (-3473 (((-112) $ $) 6)))
+((-2527 (((-696 (-1231)) $ (-1231)) NIL)) (-2538 (((-696 (-554)) $ (-554)) NIL)) (-2515 (((-776) $ (-128)) NIL)) (-2548 (((-696 (-129)) $ (-129)) 22)) (-2569 (($ (-393)) 12) (($ (-1165)) 14)) (-2559 (((-112) $) 19)) (-2388 (((-867) $) 26)) (-3026 (($ $) 23)))
+(((-866) (-13 (-865) (-618 (-867)) (-10 -8 (-15 -2569 ($ (-393))) (-15 -2569 ($ (-1165))) (-15 -2559 ((-112) $))))) (T -866))
+((-2569 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-866)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
+(-13 (-865) (-618 (-867)) (-10 -8 (-15 -2569 ($ (-393))) (-15 -2569 ($ (-1165))) (-15 -2559 ((-112) $))))
+((-2383 (((-112) $ $) NIL) (($ $ $) 85)) (-2787 (($ $ $) 125)) (-3374 (((-569) $) 31) (((-569)) 36)) (-2850 (($ (-569)) 53)) (-2818 (($ $ $) 54) (($ (-649 $)) 84)) (-2704 (($ $ (-649 $)) 82)) (-2869 (((-569) $) 34)) (-3457 (($ $ $) 73)) (-3167 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2879 (((-569) $) 33)) (-2738 (($ $ $) 72)) (-3279 (($ $) 114)) (-2767 (($ $ $) 129)) (-2592 (($ (-649 $)) 61)) (-3760 (($ $ (-649 $)) 79)) (-2838 (($ (-569) (-569)) 55)) (-2943 (($ $) 126) (($ $ $) 127)) (-4386 (($ $ (-569)) 43) (($ $) 46)) (-2339 (($ $ $) 97)) (-2748 (($ $ $) 132)) (-2693 (($ $) 115)) (-2348 (($ $ $) 98)) (-2650 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2839 (((-1278) $) 10)) (-2683 (($ $) 118) (($ $ (-776)) 122)) (-2716 (($ $ $) 75)) (-2728 (($ $ $) 74)) (-4291 (($ $ (-649 $)) 110)) (-2798 (($ $ $) 113)) (-2619 (($ (-649 $)) 59)) (-2629 (($ $) 70) (($ (-649 $)) 71)) (-2661 (($ $ $) 123)) (-2672 (($ $) 116)) (-2776 (($ $ $) 128)) (-2557 (($ (-569)) 21) (($ (-1183)) 23) (($ (-1165)) 30) (($ (-226)) 25)) (-1752 (($ $ $) 101)) (-1728 (($ $) 102)) (-2901 (((-1278) (-1165)) 15)) (-1751 (($ (-1165)) 14)) (-2375 (($ (-649 (-649 $))) 58)) (-4375 (($ $ (-569)) 42) (($ $) 45)) (-2050 (((-1165) $) NIL)) (-1472 (($ $ $) 131)) (-3704 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2529 (((-112) $) 108)) (-2807 (($ $ (-649 $)) 111) (($ $ $ $) 112)) (-2860 (($ (-569)) 39)) (-1399 (((-569) $) 32) (((-569)) 35)) (-2828 (($ $ $) 40) (($ (-649 $)) 83)) (-3461 (((-1126) $) NIL)) (-2374 (($ $ $) 99)) (-2825 (($) 13)) (-1852 (($ $ (-649 $)) 109)) (-2890 (((-1165) (-1165)) 8)) (-3523 (($ $) 117) (($ $ (-776)) 121)) (-2364 (($ $ $) 96)) (-3430 (($ $ (-776)) 139)) (-2605 (($ (-649 $)) 60)) (-2388 (((-867) $) 19)) (-2132 (($ $ (-569)) 41) (($ $) 44)) (-2640 (($ $) 68) (($ (-649 $)) 69)) (-3776 (($ $) 66) (($ (-649 $)) 67)) (-4176 (($ $) 124)) (-2581 (($ (-649 $)) 65)) (-3038 (($ $ $) 105)) (-2040 (((-112) $ $) NIL)) (-2758 (($ $ $) 130)) (-1739 (($ $ $) 100)) (-3533 (($ $ $) 103) (($ $) 104)) (-2904 (($ $ $) 89)) (-2882 (($ $ $) 87)) (-2853 (((-112) $ $) 16) (($ $ $) 17)) (-2893 (($ $ $) 88)) (-2872 (($ $ $) 86)) (-2956 (($ $ $) 94)) (-2946 (($ $ $) 91) (($ $) 92)) (-2935 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-867) (-13 (-1106) (-10 -8 (-15 -2839 ((-1278) $)) (-15 -1751 ($ (-1165))) (-15 -2901 ((-1278) (-1165))) (-15 -2557 ($ (-569))) (-15 -2557 ($ (-1183))) (-15 -2557 ($ (-1165))) (-15 -2557 ($ (-226))) (-15 -2825 ($)) (-15 -2890 ((-1165) (-1165))) (-15 -3374 ((-569) $)) (-15 -1399 ((-569) $)) (-15 -3374 ((-569))) (-15 -1399 ((-569))) (-15 -2879 ((-569) $)) (-15 -2869 ((-569) $)) (-15 -2860 ($ (-569))) (-15 -2850 ($ (-569))) (-15 -2838 ($ (-569) (-569))) (-15 -4375 ($ $ (-569))) (-15 -4386 ($ $ (-569))) (-15 -2132 ($ $ (-569))) (-15 -4375 ($ $)) (-15 -4386 ($ $)) (-15 -2132 ($ $)) (-15 -2828 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2828 ($ (-649 $))) (-15 -2818 ($ (-649 $))) (-15 -4291 ($ $ (-649 $))) (-15 -2807 ($ $ (-649 $))) (-15 -2807 ($ $ $ $)) (-15 -2798 ($ $ $)) (-15 -2529 ((-112) $)) (-15 -1852 ($ $ (-649 $))) (-15 -3279 ($ $)) (-15 -1472 ($ $ $)) (-15 -4176 ($ $)) (-15 -2375 ($ (-649 (-649 $)))) (-15 -2787 ($ $ $)) (-15 -2943 ($ $)) (-15 -2943 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -2758 ($ $ $)) (-15 -2748 ($ $ $)) (-15 -3430 ($ $ (-776))) (-15 -3038 ($ $ $)) (-15 -2738 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -2728 ($ $ $)) (-15 -2716 ($ $ $)) (-15 -3760 ($ $ (-649 $))) (-15 -2704 ($ $ (-649 $))) (-15 -2693 ($ $)) (-15 -3523 ($ $)) (-15 -3523 ($ $ (-776))) (-15 -2683 ($ $)) (-15 -2683 ($ $ (-776))) (-15 -2672 ($ $)) (-15 -2661 ($ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ $ $)) (-15 -3167 ($ $ $ $)) (-15 -2650 ($ $)) (-15 -2650 ($ $ $)) (-15 -2650 ($ $ $ $)) (-15 -3704 ($ $)) (-15 -3704 ($ $ $)) (-15 -3704 ($ $ $ $)) (-15 -3776 ($ $)) (-15 -3776 ($ (-649 $))) (-15 -2640 ($ $)) (-15 -2640 ($ (-649 $))) (-15 -2629 ($ $)) (-15 -2629 ($ (-649 $))) (-15 -2619 ($ (-649 $))) (-15 -2605 ($ (-649 $))) (-15 -2592 ($ (-649 $))) (-15 -2581 ($ (-649 $))) (-15 -2853 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2946 ($ $)) (-15 * ($ $ $)) (-15 -2956 ($ $ $)) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2348 ($ $ $)) (-15 -2374 ($ $ $)) (-15 -1739 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -1728 ($ $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ $))))) (T -867))
+((-2839 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-867)))) (-1751 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-867)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-867)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867)))) (-2825 (*1 *1) (-5 *1 (-867))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3374 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1399 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2838 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4386 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4375 (*1 *1 *1) (-5 *1 (-867))) (-4386 (*1 *1 *1) (-5 *1 (-867))) (-2132 (*1 *1 *1) (-5 *1 (-867))) (-2828 (*1 *1 *1 *1) (-5 *1 (-867))) (-2818 (*1 *1 *1 *1) (-5 *1 (-867))) (-2828 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2818 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2807 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2807 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-2798 (*1 *1 *1 *1) (-5 *1 (-867))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3279 (*1 *1 *1) (-5 *1 (-867))) (-1472 (*1 *1 *1 *1) (-5 *1 (-867))) (-4176 (*1 *1 *1) (-5 *1 (-867))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867)))) (-2787 (*1 *1 *1 *1) (-5 *1 (-867))) (-2943 (*1 *1 *1) (-5 *1 (-867))) (-2943 (*1 *1 *1 *1) (-5 *1 (-867))) (-2776 (*1 *1 *1 *1) (-5 *1 (-867))) (-2767 (*1 *1 *1 *1) (-5 *1 (-867))) (-2758 (*1 *1 *1 *1) (-5 *1 (-867))) (-2748 (*1 *1 *1 *1) (-5 *1 (-867))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-3038 (*1 *1 *1 *1) (-5 *1 (-867))) (-2738 (*1 *1 *1 *1) (-5 *1 (-867))) (-3457 (*1 *1 *1 *1) (-5 *1 (-867))) (-2728 (*1 *1 *1 *1) (-5 *1 (-867))) (-2716 (*1 *1 *1 *1) (-5 *1 (-867))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2693 (*1 *1 *1) (-5 *1 (-867))) (-3523 (*1 *1 *1) (-5 *1 (-867))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-2683 (*1 *1 *1) (-5 *1 (-867))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-2672 (*1 *1 *1) (-5 *1 (-867))) (-2661 (*1 *1 *1 *1) (-5 *1 (-867))) (-3167 (*1 *1 *1) (-5 *1 (-867))) (-3167 (*1 *1 *1 *1) (-5 *1 (-867))) (-3167 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-2650 (*1 *1 *1) (-5 *1 (-867))) (-2650 (*1 *1 *1 *1) (-5 *1 (-867))) (-2650 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3704 (*1 *1 *1) (-5 *1 (-867))) (-3704 (*1 *1 *1 *1) (-5 *1 (-867))) (-3704 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3776 (*1 *1 *1) (-5 *1 (-867))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2640 (*1 *1 *1) (-5 *1 (-867))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2629 (*1 *1 *1) (-5 *1 (-867))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2853 (*1 *1 *1 *1) (-5 *1 (-867))) (-2383 (*1 *1 *1 *1) (-5 *1 (-867))) (-2872 (*1 *1 *1 *1) (-5 *1 (-867))) (-2882 (*1 *1 *1 *1) (-5 *1 (-867))) (-2893 (*1 *1 *1 *1) (-5 *1 (-867))) (-2904 (*1 *1 *1 *1) (-5 *1 (-867))) (-2935 (*1 *1 *1 *1) (-5 *1 (-867))) (-2946 (*1 *1 *1 *1) (-5 *1 (-867))) (-2946 (*1 *1 *1) (-5 *1 (-867))) (* (*1 *1 *1 *1) (-5 *1 (-867))) (-2956 (*1 *1 *1 *1) (-5 *1 (-867))) (** (*1 *1 *1 *1) (-5 *1 (-867))) (-2364 (*1 *1 *1 *1) (-5 *1 (-867))) (-2339 (*1 *1 *1 *1) (-5 *1 (-867))) (-2348 (*1 *1 *1 *1) (-5 *1 (-867))) (-2374 (*1 *1 *1 *1) (-5 *1 (-867))) (-1739 (*1 *1 *1 *1) (-5 *1 (-867))) (-1752 (*1 *1 *1 *1) (-5 *1 (-867))) (-1728 (*1 *1 *1) (-5 *1 (-867))) (-3533 (*1 *1 *1 *1) (-5 *1 (-867))) (-3533 (*1 *1 *1) (-5 *1 (-867))))
+(-13 (-1106) (-10 -8 (-15 -2839 ((-1278) $)) (-15 -1751 ($ (-1165))) (-15 -2901 ((-1278) (-1165))) (-15 -2557 ($ (-569))) (-15 -2557 ($ (-1183))) (-15 -2557 ($ (-1165))) (-15 -2557 ($ (-226))) (-15 -2825 ($)) (-15 -2890 ((-1165) (-1165))) (-15 -3374 ((-569) $)) (-15 -1399 ((-569) $)) (-15 -3374 ((-569))) (-15 -1399 ((-569))) (-15 -2879 ((-569) $)) (-15 -2869 ((-569) $)) (-15 -2860 ($ (-569))) (-15 -2850 ($ (-569))) (-15 -2838 ($ (-569) (-569))) (-15 -4375 ($ $ (-569))) (-15 -4386 ($ $ (-569))) (-15 -2132 ($ $ (-569))) (-15 -4375 ($ $)) (-15 -4386 ($ $)) (-15 -2132 ($ $)) (-15 -2828 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2828 ($ (-649 $))) (-15 -2818 ($ (-649 $))) (-15 -4291 ($ $ (-649 $))) (-15 -2807 ($ $ (-649 $))) (-15 -2807 ($ $ $ $)) (-15 -2798 ($ $ $)) (-15 -2529 ((-112) $)) (-15 -1852 ($ $ (-649 $))) (-15 -3279 ($ $)) (-15 -1472 ($ $ $)) (-15 -4176 ($ $)) (-15 -2375 ($ (-649 (-649 $)))) (-15 -2787 ($ $ $)) (-15 -2943 ($ $)) (-15 -2943 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -2758 ($ $ $)) (-15 -2748 ($ $ $)) (-15 -3430 ($ $ (-776))) (-15 -3038 ($ $ $)) (-15 -2738 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -2728 ($ $ $)) (-15 -2716 ($ $ $)) (-15 -3760 ($ $ (-649 $))) (-15 -2704 ($ $ (-649 $))) (-15 -2693 ($ $)) (-15 -3523 ($ $)) (-15 -3523 ($ $ (-776))) (-15 -2683 ($ $)) (-15 -2683 ($ $ (-776))) (-15 -2672 ($ $)) (-15 -2661 ($ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ $ $)) (-15 -3167 ($ $ $ $)) (-15 -2650 ($ $)) (-15 -2650 ($ $ $)) (-15 -2650 ($ $ $ $)) (-15 -3704 ($ $)) (-15 -3704 ($ $ $)) (-15 -3704 ($ $ $ $)) (-15 -3776 ($ $)) (-15 -3776 ($ (-649 $))) (-15 -2640 ($ $)) (-15 -2640 ($ (-649 $))) (-15 -2629 ($ $)) (-15 -2629 ($ (-649 $))) (-15 -2619 ($ (-649 $))) (-15 -2605 ($ (-649 $))) (-15 -2592 ($ (-649 $))) (-15 -2581 ($ (-649 $))) (-15 -2853 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2946 ($ $)) (-15 * ($ $ $)) (-15 -2956 ($ $ $)) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2348 ($ $ $)) (-15 -2374 ($ $ $)) (-15 -1739 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -1728 ($ $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ $))))
+((-4389 (((-1278) (-649 (-52))) 23)) (-1832 (((-1278) (-1165) (-867)) 13) (((-1278) (-867)) 8) (((-1278) (-1165)) 10)))
+(((-868) (-10 -7 (-15 -1832 ((-1278) (-1165))) (-15 -1832 ((-1278) (-867))) (-15 -1832 ((-1278) (-1165) (-867))) (-15 -4389 ((-1278) (-649 (-52)))))) (T -868))
+((-4389 (*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868)))))
+(-10 -7 (-15 -1832 ((-1278) (-1165))) (-15 -1832 ((-1278) (-867))) (-15 -1832 ((-1278) (-1165) (-867))) (-15 -4389 ((-1278) (-649 (-52)))))
+((-2383 (((-112) $ $) NIL)) (-2599 (((-3 $ "failed") (-1183)) 39)) (-3363 (((-776)) 32)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) 29)) (-2050 (((-1165) $) 46)) (-2114 (($ (-927)) 28)) (-3461 (((-1126) $) NIL)) (-1384 (((-1183) $) 13) (((-541) $) 19) (((-898 (-383)) $) 26) (((-898 (-569)) $) 22)) (-2388 (((-867) $) 16)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 43)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 41)))
+(((-869 |#1|) (-13 (-849) (-619 (-1183)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2599 ((-3 $ "failed") (-1183))))) (-649 (-1183))) (T -869))
+((-2599 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2)))))
+(-13 (-849) (-619 (-1183)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2599 ((-3 $ "failed") (-1183)))))
+((-2383 (((-112) $ $) NIL)) (-3458 (((-511) $) 9)) (-2912 (((-649 (-444)) $) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 21)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 16)))
+(((-870) (-13 (-1106) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2912 ((-649 (-444)) $))))) (T -870))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
+(-13 (-1106) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2912 ((-649 (-444)) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-958 |#1|)) NIL) (((-958 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-3263 (((-776)) NIL T CONST)) (-3021 (((-1278) (-776)) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-871 |#1| |#2| |#3| |#4|) (-13 (-1055) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3021 ((-1278) (-776))))) (-1055) (-649 (-1183)) (-649 (-776)) (-776)) (T -871))
+((-2956 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-776))) (-14 *5 (-776)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7)) (-4 *4 (-1055)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 *3)) (-14 *7 *3))))
+(-13 (-1055) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3021 ((-1278) (-776)))))
+((-2921 (((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|) 43)) (-2932 (((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|) 34)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -2921 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) (-367) (-1264 |#1|) (-1249 |#1|)) (T -872))
+((-2921 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))) (-2932 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))))
+(-10 -7 (-15 -2932 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -2921 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|)))
+((-2932 (((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|)) 30) (((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) 28)))
+(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (-15 -2932 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|)))) (-367) (-1183) |#1|) (T -873))
+((-2932 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5))) (-5 *1 (-873 *5 *6 *7)))) (-2932 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5))) (-5 *1 (-873 *5 *6 *7)))))
+(-10 -7 (-15 -2932 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (-15 -2932 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3714 (($ $ (-569)) 68)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-2943 (($ (-1179 (-569)) (-569)) 67)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-1845 (($ $) 70)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-4315 (((-776) $) 75)) (-2861 (((-112) $) 35)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1864 (((-569)) 72)) (-1855 (((-569) $) 71)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-4295 (($ $ (-569)) 74)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-1871 (((-1163 (-569)) $) 76)) (-2745 (($ $) 73)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-3006 (((-569) $ (-569)) 69)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-874 |#1|) (-140) (-569)) (T -874))
+((-1871 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1163 (-569))))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776)))) (-4295 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-2745 (*1 *1 *1) (-4 *1 (-874 *2))) (-1864 (*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-1845 (*1 *1 *1) (-4 *1 (-874 *2))) (-3006 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-2943 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
+(-13 (-310) (-147) (-10 -8 (-15 -1871 ((-1163 (-569)) $)) (-15 -4315 ((-776) $)) (-15 -4295 ($ $ (-569))) (-15 -2745 ($ $)) (-15 -1864 ((-569))) (-15 -1855 ((-569) $)) (-15 -1845 ($ $)) (-15 -3006 ((-569) $ (-569))) (-15 -3714 ($ $ (-569))) (-15 -2943 ($ (-1179 (-569)) (-569)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $ (-569)) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2943 (($ (-1179 (-569)) (-569)) NIL)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-1845 (($ $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-4315 (((-776) $) NIL)) (-2861 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1864 (((-569)) NIL)) (-1855 (((-569) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4295 (($ $ (-569)) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1871 (((-1163 (-569)) $) NIL)) (-2745 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-569) $ (-569)) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-875 |#1|) (-874 |#1|) (-569)) (T -875))
+NIL
+(-874 |#1|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-875 |#1|) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-875 |#1|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-569))))) (-3043 (((-875 |#1|) $) NIL) (((-1183) $) NIL (|has| (-875 |#1|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-875 |#1|) (-1044 (-569)))) (((-569) $) NIL (|has| (-875 |#1|) (-1044 (-569))))) (-3899 (($ $) NIL) (($ (-569) $) NIL)) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-875 |#1|))) (|:| |vec| (-1273 (-875 |#1|)))) (-694 $) (-1273 $)) NIL) (((-694 (-875 |#1|)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-875 |#1|) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-875 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-875 |#1|) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-875 |#1|) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| (-875 |#1|) (-1158)))) (-2778 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-2406 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-1324 (($ (-1 (-875 |#1|) (-875 |#1|)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-875 |#1|) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-875 |#1|) (-310)))) (-3312 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-875 |#1|)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-875 |#1|) (-875 |#1|)) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-297 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-297 (-875 |#1|)))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-1183)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-519 (-1183) (-875 |#1|)))) (($ $ (-1183) (-875 |#1|)) NIL (|has| (-875 |#1|) (-519 (-1183) (-875 |#1|))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-875 |#1|)) NIL (|has| (-875 |#1|) (-289 (-875 |#1|) (-875 |#1|))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-875 |#1|) $) NIL)) (-1384 (((-898 (-569)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-875 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-875 |#1|) (-1028))) (((-226) $) NIL (|has| (-875 |#1|) (-1028)))) (-1879 (((-175 (-412 (-569))) $) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-875 |#1|)) NIL) (($ (-1183)) NIL (|has| (-875 |#1|) (-1044 (-1183))))) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))) (|has| (-875 |#1|) (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-412 (-569)) $ (-569)) NIL)) (-3999 (($ $) NIL (|has| (-875 |#1|) (-825)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2956 (($ $ $) NIL) (($ (-875 |#1|) (-875 |#1|)) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-875 |#1|) $) NIL) (($ $ (-875 |#1|)) NIL)))
+(((-876 |#1|) (-13 (-998 (-875 |#1|)) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $)))) (-569)) (T -876))
+((-3006 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569)))) (-3899 (*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569)))) (-3899 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2))))
+(-13 (-998 (-875 |#1|)) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 ((|#2| $) NIL (|has| |#2| (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| |#2| (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| |#2| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569))))) (-3043 ((|#2| $) NIL) (((-1183) $) NIL (|has| |#2| (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-569)))) (((-569) $) NIL (|has| |#2| (-1044 (-569))))) (-3899 (($ $) 35) (($ (-569) $) 38)) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) 64)) (-3295 (($) NIL (|has| |#2| (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) NIL (|has| |#2| (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#2| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#2| (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 ((|#2| $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#2| (-1158)))) (-2778 (((-112) $) NIL (|has| |#2| (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| |#2| (-855)))) (-2406 (($ $ $) NIL (|has| |#2| (-855)))) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 60)) (-2267 (($) NIL (|has| |#2| (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| |#2| (-310)))) (-3312 ((|#2| $) NIL (|has| |#2| (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 |#2|) (-649 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-312 |#2|))) (($ $ (-297 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-297 |#2|))) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-1183)) (-649 |#2|)) NIL (|has| |#2| (-519 (-1183) |#2|))) (($ $ (-1183) |#2|) NIL (|has| |#2| (-519 (-1183) |#2|)))) (-4409 (((-776) $) NIL)) (-1852 (($ $ |#2|) NIL (|has| |#2| (-289 |#2| |#2|)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1440 (($ $) NIL)) (-4390 ((|#2| $) NIL)) (-1384 (((-898 (-569)) $) NIL (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#2| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#2| (-619 (-541)))) (((-383) $) NIL (|has| |#2| (-1028))) (((-226) $) NIL (|has| |#2| (-1028)))) (-1879 (((-175 (-412 (-569))) $) 78)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-2388 (((-867) $) 108) (($ (-569)) 20) (($ $) NIL) (($ (-412 (-569))) 25) (($ |#2|) 19) (($ (-1183)) NIL (|has| |#2| (-1044 (-1183))))) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-3323 ((|#2| $) NIL (|has| |#2| (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-412 (-569)) $ (-569)) 71)) (-3999 (($ $) NIL (|has| |#2| (-825)))) (-1786 (($) 15 T CONST)) (-1796 (($) 17 T CONST)) (-2749 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2904 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2853 (((-112) $ $) 46)) (-2893 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2956 (($ $ $) 24) (($ |#2| |#2|) 65)) (-2946 (($ $) 50) (($ $ $) 52)) (-2935 (($ $ $) 48)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 53) (($ $ $) 55) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-877 |#1| |#2|) (-13 (-998 |#2|) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $)))) (-569) (-874 |#1|)) (T -877))
+((-3006 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5)) (-5 *3 (-569)) (-4 *5 (-874 *4)))) (-1879 (*1 *2 *1) (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))) (-3899 (*1 *1 *1) (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2)))) (-3899 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
+(-13 (-998 |#2|) (-10 -8 (-15 -3006 ((-412 (-569)) $ (-569))) (-15 -1879 ((-175 (-412 (-569))) $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $))))
+((-2383 (((-112) $ $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-2487 ((|#2| $) 12)) (-2143 (($ |#1| |#2|) 9)) (-2050 (((-1165) $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-3461 (((-1126) $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#1| $) 11)) (-3709 (($ |#1| |#2|) 10)) (-2388 (((-867) $) 18 (-2718 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))))) (-2040 (((-112) $ $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-2853 (((-112) $ $) 23 (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))))
+(((-878 |#1| |#2|) (-13 (-1223) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1106)) (IF (|has| |#2| (-1106)) (-6 (-1106)) |%noBranch|) |%noBranch|) (-15 -2143 ($ |#1| |#2|)) (-15 -3709 ($ |#1| |#2|)) (-15 -3401 (|#1| $)) (-15 -2487 (|#2| $)))) (-1223) (-1223)) (T -878))
+((-2143 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))) (-3709 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-1223)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1223)))) (-2487 (*1 *2 *1) (-12 (-4 *2 (-1223)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1223)))))
+(-13 (-1223) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1106)) (IF (|has| |#2| (-1106)) (-6 (-1106)) |%noBranch|) |%noBranch|) (-15 -2143 ($ |#1| |#2|)) (-15 -3709 ($ |#1| |#2|)) (-15 -3401 (|#1| $)) (-15 -2487 (|#2| $))))
+((-2383 (((-112) $ $) NIL)) (-2221 (((-569) $) 16)) (-1897 (($ (-157)) 13)) (-1888 (($ (-157)) 14)) (-2050 (((-1165) $) NIL)) (-2210 (((-157) $) 15)) (-3461 (((-1126) $) NIL)) (-2358 (($ (-157)) 11)) (-1904 (($ (-157)) 10)) (-2388 (((-867) $) 24) (($ (-157)) 17)) (-4140 (($ (-157)) 12)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-879) (-13 (-1106) (-10 -8 (-15 -1904 ($ (-157))) (-15 -2358 ($ (-157))) (-15 -4140 ($ (-157))) (-15 -1897 ($ (-157))) (-15 -1888 ($ (-157))) (-15 -2210 ((-157) $)) (-15 -2221 ((-569) $)) (-15 -2388 ($ (-157)))))) (T -879))
+((-1904 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2358 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1897 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(-13 (-1106) (-10 -8 (-15 -1904 ($ (-157))) (-15 -2358 ($ (-157))) (-15 -4140 ($ (-157))) (-15 -1897 ($ (-157))) (-15 -1888 ($ (-157))) (-15 -2210 ((-157) $)) (-15 -2221 ((-569) $)) (-15 -2388 ($ (-157)))))
+((-2388 (((-319 (-569)) (-412 (-958 (-48)))) 23) (((-319 (-569)) (-958 (-48))) 18)))
+(((-880) (-10 -7 (-15 -2388 ((-319 (-569)) (-958 (-48)))) (-15 -2388 ((-319 (-569)) (-412 (-958 (-48))))))) (T -880))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))))
+(-10 -7 (-15 -2388 ((-319 (-569)) (-958 (-48)))) (-15 -2388 ((-319 (-569)) (-412 (-958 (-48))))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1775 (((-112) $ (|[\|\|]| (-511))) 9) (((-112) $ (|[\|\|]| (-1165))) 13)) (-2040 (((-112) $ $) NIL)) (-3922 (((-511) $) 10) (((-1165) $) 14)) (-2853 (((-112) $ $) 15)))
+(((-881) (-13 (-1089) (-1268) (-10 -8 (-15 -1775 ((-112) $ (|[\|\|]| (-511)))) (-15 -3922 ((-511) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3922 ((-1165) $))))) (T -881))
+((-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881)))))
+(-13 (-1089) (-1268) (-10 -8 (-15 -1775 ((-112) $ (|[\|\|]| (-511)))) (-15 -3922 ((-511) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3922 ((-1165) $))))
+((-1324 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -1324 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1223) (-1223)) (T -882))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))))
+(-10 -7 (-15 -1324 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
+((-3880 (($ |#1| |#1|) 8)) (-1930 ((|#1| $ (-776)) 15)))
+(((-883 |#1|) (-10 -8 (-15 -3880 ($ |#1| |#1|)) (-15 -1930 (|#1| $ (-776)))) (-1223)) (T -883))
+((-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1223)))) (-3880 (*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1223)))))
+(-10 -8 (-15 -3880 ($ |#1| |#1|)) (-15 -1930 (|#1| $ (-776))))
+((-1324 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -1324 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1223) (-1223)) (T -884))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
+(-10 -7 (-15 -1324 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
+((-3880 (($ |#1| |#1| |#1|) 8)) (-1930 ((|#1| $ (-776)) 15)))
+(((-885 |#1|) (-10 -8 (-15 -3880 ($ |#1| |#1| |#1|)) (-15 -1930 (|#1| $ (-776)))) (-1223)) (T -885))
+((-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1223)))) (-3880 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1223)))))
+(-10 -8 (-15 -3880 ($ |#1| |#1| |#1|)) (-15 -1930 (|#1| $ (-776))))
+((-1913 (((-649 (-1188)) (-1165)) 9)))
+(((-886) (-10 -7 (-15 -1913 ((-649 (-1188)) (-1165))))) (T -886))
+((-1913 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-886)))))
+(-10 -7 (-15 -1913 ((-649 (-1188)) (-1165))))
+((-1324 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -1324 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1223) (-1223)) (T -887))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
+(-10 -7 (-15 -1324 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
+((-1922 (($ |#1| |#1| |#1|) 8)) (-1930 ((|#1| $ (-776)) 15)))
+(((-888 |#1|) (-10 -8 (-15 -1922 ($ |#1| |#1| |#1|)) (-15 -1930 (|#1| $ (-776)))) (-1223)) (T -888))
+((-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1223)))) (-1922 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
+(-10 -8 (-15 -1922 ($ |#1| |#1| |#1|)) (-15 -1930 (|#1| $ (-776))))
+((-1966 (((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569)))) 48)) (-1956 (((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569))) 44)) (-1975 (((-1163 (-649 (-569))) (-649 (-569))) 58) (((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569))) 56)) (-1985 (((-1163 (-649 (-569))) (-569)) 59)) (-1939 (((-1163 (-649 (-569))) (-569) (-569)) 34) (((-1163 (-649 (-569))) (-569)) 23) (((-1163 (-649 (-569))) (-569) (-569) (-569)) 19)) (-1947 (((-1163 (-649 (-569))) (-1163 (-649 (-569)))) 42)) (-1565 (((-649 (-569)) (-649 (-569))) 41)))
+(((-889) (-10 -7 (-15 -1939 ((-1163 (-649 (-569))) (-569) (-569) (-569))) (-15 -1939 ((-1163 (-649 (-569))) (-569))) (-15 -1939 ((-1163 (-649 (-569))) (-569) (-569))) (-15 -1565 ((-649 (-569)) (-649 (-569)))) (-15 -1947 ((-1163 (-649 (-569))) (-1163 (-649 (-569))))) (-15 -1956 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1966 ((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569))))) (-15 -1975 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1975 ((-1163 (-649 (-569))) (-649 (-569)))) (-15 -1985 ((-1163 (-649 (-569))) (-569))))) (T -889))
+((-1985 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-1975 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-1975 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-1966 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *3 (-649 (-569))) (-5 *1 (-889)))) (-1956 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889)))) (-1939 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-1939 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(-10 -7 (-15 -1939 ((-1163 (-649 (-569))) (-569) (-569) (-569))) (-15 -1939 ((-1163 (-649 (-569))) (-569))) (-15 -1939 ((-1163 (-649 (-569))) (-569) (-569))) (-15 -1565 ((-649 (-569)) (-649 (-569)))) (-15 -1947 ((-1163 (-649 (-569))) (-1163 (-649 (-569))))) (-15 -1956 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1966 ((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569))))) (-15 -1975 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1975 ((-1163 (-649 (-569))) (-649 (-569)))) (-15 -1985 ((-1163 (-649 (-569))) (-569))))
+((-1384 (((-898 (-383)) $) 9 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 8 (|has| |#1| (-619 (-898 (-569)))))))
+(((-890 |#1|) (-140) (-1223)) (T -890))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|)))
+(((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
+((-2383 (((-112) $ $) NIL)) (-4275 (($) 14)) (-2004 (($ (-895 |#1| |#2|) (-895 |#1| |#3|)) 28)) (-3987 (((-895 |#1| |#3|) $) 16)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2079 (((-112) $) 22)) (-2457 (($) 19)) (-2388 (((-867) $) 31)) (-2040 (((-112) $ $) NIL)) (-1994 (((-895 |#1| |#2|) $) 15)) (-2853 (((-112) $ $) 26)))
+(((-891 |#1| |#2| |#3|) (-13 (-1106) (-10 -8 (-15 -2079 ((-112) $)) (-15 -2457 ($)) (-15 -4275 ($)) (-15 -2004 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -1994 ((-895 |#1| |#2|) $)) (-15 -3987 ((-895 |#1| |#3|) $)))) (-1106) (-1106) (-671 |#2|)) (T -891))
+((-2079 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))) (-2457 (*1 *1) (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106)) (-4 *4 (-671 *3)))) (-4275 (*1 *1) (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106)) (-4 *4 (-671 *3)))) (-2004 (*1 *1 *2 *3) (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))) (-1994 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))) (-3987 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
+(-13 (-1106) (-10 -8 (-15 -2079 ((-112) $)) (-15 -2457 ($)) (-15 -4275 ($)) (-15 -2004 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -1994 ((-895 |#1| |#2|) $)) (-15 -3987 ((-895 |#1| |#3|) $))))
+((-2383 (((-112) $ $) 7)) (-3032 (((-895 |#1| $) $ (-898 |#1|) (-895 |#1| $)) 14)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-892 |#1|) (-140) (-1106)) (T -892))
+((-3032 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4)) (-4 *4 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -3032 ((-895 |t#1| $) $ (-898 |t#1|) (-895 |t#1| $)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2016 (((-112) (-649 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2027 (((-895 |#1| |#2|) |#2| |#3|) 45 (-12 (-1728 (|has| |#2| (-1044 (-1183)))) (-1728 (|has| |#2| (-1055))))) (((-649 (-297 (-958 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1055)) (-1728 (|has| |#2| (-1044 (-1183)))))) (((-649 (-297 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1044 (-1183)))) (((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|) 21)))
+(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-112) |#2| |#3|)) (-15 -2016 ((-112) (-649 |#2|) |#3|)) (-15 -2027 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2027 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -2027 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -2027 ((-895 |#1| |#2|) |#2| |#3|))))) (-1106) (-892 |#1|) (-619 (-898 |#1|))) (T -893))
+((-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4)) (-1728 (-4 *3 (-1044 (-1183)))) (-1728 (-4 *3 (-1055))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 (-958 *3)))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1055)) (-1728 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6))) (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))) (-2016 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
+(-10 -7 (-15 -2016 ((-112) |#2| |#3|)) (-15 -2016 ((-112) (-649 |#2|) |#3|)) (-15 -2027 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2027 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -2027 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -2027 ((-895 |#1| |#2|) |#2| |#3|)))))
+((-1324 (((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)) 22)))
+(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -1324 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)))) (-1106) (-1106) (-1106)) (T -894))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-895 *5 *7)) (-5 *1 (-894 *5 *6 *7)))))
+(-10 -7 (-15 -1324 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|))))
+((-2383 (((-112) $ $) NIL)) (-3893 (($ $ $) 40)) (-2261 (((-3 (-112) "failed") $ (-898 |#1|)) 37)) (-4275 (($) 12)) (-2050 (((-1165) $) NIL)) (-2048 (($ (-898 |#1|) |#2| $) 20)) (-3461 (((-1126) $) NIL)) (-2069 (((-3 |#2| "failed") (-898 |#1|) $) 51)) (-2079 (((-112) $) 15)) (-2457 (($) 13)) (-3789 (((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|))) $) 25)) (-3709 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|)))) 23)) (-2388 (((-867) $) 45)) (-2040 (((-112) $ $) NIL)) (-2038 (($ (-898 |#1|) |#2| $ |#2|) 49)) (-2058 (($ (-898 |#1|) |#2| $) 48)) (-2853 (((-112) $ $) 42)))
+(((-895 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -2079 ((-112) $)) (-15 -2457 ($)) (-15 -4275 ($)) (-15 -3893 ($ $ $)) (-15 -2069 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -2058 ($ (-898 |#1|) |#2| $)) (-15 -2048 ($ (-898 |#1|) |#2| $)) (-15 -2038 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3789 ((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|))) $)) (-15 -3709 ($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|))))) (-15 -2261 ((-3 (-112) "failed") $ (-898 |#1|))))) (-1106) (-1106)) (T -895))
+((-2079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2457 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-4275 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3893 (*1 *1 *1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-2069 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-4 *2 (-1106)) (-5 *1 (-895 *4 *2)))) (-2058 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-2048 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-2038 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 *4)))) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 *4)))) (-4 *4 (-1106)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)))) (-2261 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -2079 ((-112) $)) (-15 -2457 ($)) (-15 -4275 ($)) (-15 -3893 ($ $ $)) (-15 -2069 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -2058 ($ (-898 |#1|) |#2| $)) (-15 -2048 ($ (-898 |#1|) |#2| $)) (-15 -2038 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3789 ((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|))) $)) (-15 -3709 ($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 |#2|))))) (-15 -2261 ((-3 (-112) "failed") $ (-898 |#1|)))))
+((-4245 (((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|))) 32) (((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|))) 46) (((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|)) 35)) (-2261 (((-112) (-649 |#2|) (-898 |#1|)) 42) (((-112) |#2| (-898 |#1|)) 36)) (-3618 (((-1 (-112) |#2|) (-898 |#1|)) 16)) (-2278 (((-649 |#2|) (-898 |#1|)) 24)) (-2270 (((-898 |#1|) (-898 |#1|) |#2|) 20)))
+(((-896 |#1| |#2|) (-10 -7 (-15 -4245 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4245 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4245 ((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|)))) (-15 -3618 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -2261 ((-112) |#2| (-898 |#1|))) (-15 -2261 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -2270 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -2278 ((-649 |#2|) (-898 |#1|)))) (-1106) (-1223)) (T -896))
+((-2278 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-649 *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1223)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3)) (-4 *3 (-1223)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))) (-4245 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1183))) (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-896 *5 *6)))) (-4245 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1106)) (-4 *5 (-1223)) (-5 *1 (-896 *4 *5)))) (-4245 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1106)) (-4 *5 (-1223)) (-5 *1 (-896 *4 *5)))))
+(-10 -7 (-15 -4245 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4245 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4245 ((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|)))) (-15 -3618 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -2261 ((-112) |#2| (-898 |#1|))) (-15 -2261 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -2270 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -2278 ((-649 |#2|) (-898 |#1|))))
+((-1324 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 19)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -1324 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1106) (-1106)) (T -897))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))))
+(-10 -7 (-15 -1324 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2157 (($ $ (-649 (-52))) 74)) (-3865 (((-649 $) $) 138)) (-2127 (((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $) 30)) (-2139 (((-112) $) 35)) (-2137 (($ $ (-649 (-1183)) (-52)) 31)) (-2166 (($ $ (-649 (-52))) 73)) (-4359 (((-3 |#1| "failed") $) 71) (((-3 (-1183) "failed") $) 162)) (-3043 ((|#1| $) 68) (((-1183) $) NIL)) (-2108 (($ $) 126)) (-2224 (((-112) $) 55)) (-2176 (((-649 (-52)) $) 50)) (-2148 (($ (-1183) (-112) (-112) (-112)) 75)) (-2088 (((-3 (-649 $) "failed") (-649 $)) 82)) (-2195 (((-112) $) 58)) (-2204 (((-112) $) 57)) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) 41)) (-1338 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3360 (((-3 (-2 (|:| |val| $) (|:| -2777 $)) "failed") $) 97)) (-3327 (((-3 (-649 $) "failed") $) 40)) (-2253 (((-3 (-649 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3818 (-114)) (|:| |arg| (-649 $))) "failed") $) 107)) (-2245 (((-3 (-649 $) "failed") $) 42)) (-3349 (((-3 (-2 (|:| |val| $) (|:| -2777 (-776))) "failed") $) 45)) (-2234 (((-112) $) 34)) (-3461 (((-1126) $) NIL)) (-2118 (((-112) $) 28)) (-2186 (((-112) $) 52)) (-2098 (((-649 (-52)) $) 130)) (-2215 (((-112) $) 56)) (-1852 (($ (-114) (-649 $)) 104)) (-2723 (((-776) $) 33)) (-3885 (($ $) 72)) (-1384 (($ (-649 $)) 69)) (-2121 (((-112) $) 32)) (-2388 (((-867) $) 63) (($ |#1|) 23) (($ (-1183)) 76)) (-2040 (((-112) $ $) NIL)) (-2270 (($ $ (-52)) 129)) (-1786 (($) 103 T CONST)) (-1796 (($) 83 T CONST)) (-2853 (((-112) $ $) 93)) (-2956 (($ $ $) 117)) (-2935 (($ $ $) 121)) (** (($ $ (-776)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-898 |#1|) (-13 (-1106) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 0 ($) -3600) (-15 1 ($) -3600) (-15 -3327 ((-3 (-649 $) "failed") $)) (-15 -3338 ((-3 (-649 $) "failed") $)) (-15 -2253 ((-3 (-649 $) "failed") $ (-114))) (-15 -2253 ((-3 (-2 (|:| -3818 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |val| $) (|:| -2777 (-776))) "failed") $)) (-15 -1338 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2245 ((-3 (-649 $) "failed") $)) (-15 -3360 ((-3 (-2 (|:| |val| $) (|:| -2777 $)) "failed") $)) (-15 -1852 ($ (-114) (-649 $))) (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2723 ((-776) $)) (-15 -1384 ($ (-649 $))) (-15 -3885 ($ $)) (-15 -2234 ((-112) $)) (-15 -2224 ((-112) $)) (-15 -2139 ((-112) $)) (-15 -2121 ((-112) $)) (-15 -2215 ((-112) $)) (-15 -2204 ((-112) $)) (-15 -2195 ((-112) $)) (-15 -2186 ((-112) $)) (-15 -2176 ((-649 (-52)) $)) (-15 -2166 ($ $ (-649 (-52)))) (-15 -2157 ($ $ (-649 (-52)))) (-15 -2148 ($ (-1183) (-112) (-112) (-112))) (-15 -2137 ($ $ (-649 (-1183)) (-52))) (-15 -2127 ((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $)) (-15 -2118 ((-112) $)) (-15 -2108 ($ $)) (-15 -2270 ($ $ (-52))) (-15 -2098 ((-649 (-52)) $)) (-15 -3865 ((-649 $) $)) (-15 -2088 ((-3 (-649 $) "failed") (-649 $))))) (-1106)) (T -898))
+((-1786 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-1796 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-3327 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3338 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2253 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3818 (-114)) (|:| |arg| (-649 (-898 *3))))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3349 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -2777 (-776)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1338 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2245 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3360 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -2777 (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1852 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-2935 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2956 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2148 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-2137 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-52)) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2270 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2088 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(-13 (-1106) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 (-1786) ($) -3600) (-15 (-1796) ($) -3600) (-15 -3327 ((-3 (-649 $) "failed") $)) (-15 -3338 ((-3 (-649 $) "failed") $)) (-15 -2253 ((-3 (-649 $) "failed") $ (-114))) (-15 -2253 ((-3 (-2 (|:| -3818 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |val| $) (|:| -2777 (-776))) "failed") $)) (-15 -1338 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2245 ((-3 (-649 $) "failed") $)) (-15 -3360 ((-3 (-2 (|:| |val| $) (|:| -2777 $)) "failed") $)) (-15 -1852 ($ (-114) (-649 $))) (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2723 ((-776) $)) (-15 -1384 ($ (-649 $))) (-15 -3885 ($ $)) (-15 -2234 ((-112) $)) (-15 -2224 ((-112) $)) (-15 -2139 ((-112) $)) (-15 -2121 ((-112) $)) (-15 -2215 ((-112) $)) (-15 -2204 ((-112) $)) (-15 -2195 ((-112) $)) (-15 -2186 ((-112) $)) (-15 -2176 ((-649 (-52)) $)) (-15 -2166 ($ $ (-649 (-52)))) (-15 -2157 ($ $ (-649 (-52)))) (-15 -2148 ($ (-1183) (-112) (-112) (-112))) (-15 -2137 ($ $ (-649 (-1183)) (-52))) (-15 -2127 ((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $)) (-15 -2118 ((-112) $)) (-15 -2108 ($ $)) (-15 -2270 ($ $ (-52))) (-15 -2098 ((-649 (-52)) $)) (-15 -3865 ((-649 $) $)) (-15 -2088 ((-3 (-649 $) "failed") (-649 $)))))
+((-2383 (((-112) $ $) NIL)) (-2996 (((-649 |#1|) $) 19)) (-2286 (((-112) $) 49)) (-4359 (((-3 (-677 |#1|) "failed") $) 56)) (-3043 (((-677 |#1|) $) 54)) (-3414 (($ $) 23)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-3747 (((-776) $) 61)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-677 |#1|) $) 21)) (-2388 (((-867) $) 47) (($ (-677 |#1|)) 26) (((-824 |#1|) $) 36) (($ |#1|) 25)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 9 T CONST)) (-2295 (((-649 (-677 |#1|)) $) 28)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 12)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 67)))
+(((-899 |#1|) (-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 1 ($) -3600) (-15 -2388 ((-824 |#1|) $)) (-15 -2388 ($ |#1|)) (-15 -3401 ((-677 |#1|) $)) (-15 -3747 ((-776) $)) (-15 -2295 ((-649 (-677 |#1|)) $)) (-15 -3414 ($ $)) (-15 -2286 ((-112) $)) (-15 -2996 ((-649 |#1|) $)))) (-855)) (T -899))
+((-1796 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-2388 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 (-1796) ($) -3600) (-15 -2388 ((-824 |#1|) $)) (-15 -2388 ($ |#1|)) (-15 -3401 ((-677 |#1|) $)) (-15 -3747 ((-776) $)) (-15 -2295 ((-649 (-677 |#1|)) $)) (-15 -3414 ($ $)) (-15 -2286 ((-112) $)) (-15 -2996 ((-649 |#1|) $))))
+((-3424 ((|#1| |#1| |#1|) 19)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -3424 (|#1| |#1| |#1|))) (-1249 |#2|) (-1055)) (T -900))
+((-3424 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -3424 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2329 (((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2303 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 14)) (-2853 (((-112) $ $) 6)))
(((-901) (-140)) (T -901))
-((-3089 (*1 *2 *3 *4) (-12 (-4 *1 (-901)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165)))))) (-3086 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *3 (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-1041)))))
-(-13 (-1107) (-10 -7 (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3086 ((-1041) (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-3088 ((|#1| |#1| (-776)) 29)) (-3087 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3877 (((-3 (-2 (|:| -3560 |#1|) (|:| -3559 |#1|)) "failed") |#1| (-776) (-776)) 32) (((-646 |#1|) |#1|) 39)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -3877 ((-646 |#1|) |#1|)) (-15 -3877 ((-3 (-2 (|:| -3560 |#1|) (|:| -3559 |#1|)) "failed") |#1| (-776) (-776))) (-15 -3087 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3088 (|#1| |#1| (-776)))) (-1248 |#2|) (-367)) (T -902))
-((-3088 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1248 *4)))) (-3087 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1248 *3)))) (-3877 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3560 *3) (|:| -3559 *3))) (-5 *1 (-902 *3 *5)) (-4 *3 (-1248 *5)))) (-3877 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -3877 ((-646 |#1|) |#1|)) (-15 -3877 ((-3 (-2 (|:| -3560 |#1|) (|:| -3559 |#1|)) "failed") |#1| (-776) (-776))) (-15 -3087 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3088 (|#1| |#1| (-776))))
-((-4022 (((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165)) 106) (((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165) (-226)) 102) (((-1041) (-904) (-1069)) 94) (((-1041) (-904)) 95)) (-3089 (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904) (-1069)) 65) (((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904)) 67)))
-(((-903) (-10 -7 (-15 -4022 ((-1041) (-904))) (-15 -4022 ((-1041) (-904) (-1069))) (-15 -4022 ((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165) (-226))) (-15 -4022 ((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904) (-1069))))) (T -903))
-((-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-903)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165))))) (-5 *1 (-903)))) (-4022 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-776)) (-5 *6 (-646 (-646 (-317 *3)))) (-5 *7 (-1165)) (-5 *5 (-646 (-317 (-382)))) (-5 *3 (-382)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-4022 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-776)) (-5 *6 (-646 (-646 (-317 *3)))) (-5 *7 (-1165)) (-5 *8 (-226)) (-5 *5 (-646 (-317 (-382)))) (-5 *3 (-382)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903)))))
-(-10 -7 (-15 -4022 ((-1041) (-904))) (-15 -4022 ((-1041) (-904) (-1069))) (-15 -4022 ((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165) (-226))) (-15 -4022 ((-1041) (-382) (-382) (-382) (-382) (-776) (-776) (-646 (-317 (-382))) (-646 (-646 (-317 (-382)))) (-1165))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904))) (-15 -3089 ((-2 (|:| -3089 (-382)) (|:| -3991 (-1165)) (|:| |explanations| (-646 (-1165)))) (-904) (-1069))))
-((-2986 (((-112) $ $) NIL)) (-3594 (((-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $) 19)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 21) (($ (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 18)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-904) (-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3594 ((-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))) (T -904))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ($ (-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3594 ((-2 (|:| |pde| (-646 (-317 (-226)))) (|:| |constraints| (-646 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))
-((-4260 (($ $ |#2|) NIL) (($ $ (-646 |#2|)) 10) (($ $ |#2| (-776)) 15) (($ $ (-646 |#2|) (-646 (-776))) 18)) (-3090 (($ $ |#2|) 19) (($ $ (-646 |#2|)) 21) (($ $ |#2| (-776)) 22) (($ $ (-646 |#2|) (-646 (-776))) 24)))
-(((-905 |#1| |#2|) (-10 -8 (-15 -3090 (|#1| |#1| (-646 |#2|) (-646 (-776)))) (-15 -3090 (|#1| |#1| |#2| (-776))) (-15 -3090 (|#1| |#1| (-646 |#2|))) (-15 -3090 (|#1| |#1| |#2|)) (-15 -4260 (|#1| |#1| (-646 |#2|) (-646 (-776)))) (-15 -4260 (|#1| |#1| |#2| (-776))) (-15 -4260 (|#1| |#1| (-646 |#2|))) (-15 -4260 (|#1| |#1| |#2|))) (-906 |#2|) (-1107)) (T -905))
-NIL
-(-10 -8 (-15 -3090 (|#1| |#1| (-646 |#2|) (-646 (-776)))) (-15 -3090 (|#1| |#1| |#2| (-776))) (-15 -3090 (|#1| |#1| (-646 |#2|))) (-15 -3090 (|#1| |#1| |#2|)) (-15 -4260 (|#1| |#1| (-646 |#2|) (-646 (-776)))) (-15 -4260 (|#1| |#1| |#2| (-776))) (-15 -4260 (|#1| |#1| (-646 |#2|))) (-15 -4260 (|#1| |#1| |#2|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4260 (($ $ |#1|) 46) (($ $ (-646 |#1|)) 45) (($ $ |#1| (-776)) 44) (($ $ (-646 |#1|) (-646 (-776))) 43)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ |#1|) 42) (($ $ (-646 |#1|)) 41) (($ $ |#1| (-776)) 40) (($ $ (-646 |#1|) (-646 (-776))) 39)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-906 |#1|) (-140) (-1107)) (T -906))
-((-4260 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1107)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1107)))) (-4260 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1107)))) (-4260 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1107)))) (-3090 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1107)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1107)))) (-3090 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1107)))) (-3090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1107)))))
-(-13 (-1055) (-10 -8 (-15 -4260 ($ $ |t#1|)) (-15 -4260 ($ $ (-646 |t#1|))) (-15 -4260 ($ $ |t#1| (-776))) (-15 -4260 ($ $ (-646 |t#1|) (-646 (-776)))) (-15 -3090 ($ $ |t#1|)) (-15 -3090 ($ $ (-646 |t#1|))) (-15 -3090 ($ $ |t#1| (-776))) (-15 -3090 ($ $ (-646 |t#1|) (-646 (-776))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) 26)) (-1312 (((-112) $ (-776)) NIL)) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ $ $) NIL (|has| $ (-6 -4444)))) (-1392 (($ $ $) NIL (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ #2="left" $) NIL (|has| $ (-6 -4444))) (($ $ #3="right" $) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3559 (($ $) 25)) (-3091 (($ |#1|) 12) (($ $ $) 17)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3560 (($ $) 23)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) 20)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1209 |#1|) $) 9) (((-868) $) 29 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 21 (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-907 |#1|) (-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3091 ($ |#1|)) (-15 -3091 ($ $ $)))) (-1107)) (T -907))
-((-3091 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1107)))) (-3091 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1107)))))
-(-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3091 ($ |#1|)) (-15 -3091 ($ $ $))))
-((-2986 (((-112) $ $) NIL)) (-3328 (((-646 $) (-646 $)) 103)) (-4073 (((-551) $) 84)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-4221 (((-776) $) 81)) (-3111 (((-1103 |#1|) $ |#1|) 72)) (-2591 (((-112) $) NIL)) (-3094 (((-112) $) 88)) (-3096 (((-776) $) 85)) (-3107 (((-1103 |#1|) $) 61)) (-2952 (($ $ $) NIL (-3978 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-3278 (($ $ $) NIL (-3978 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-3100 (((-2 (|:| |preimage| (-646 |#1|)) (|:| |image| (-646 |#1|))) $) 56)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 131)) (-3682 (((-1126) $) NIL)) (-3093 (((-1103 |#1|) $) 139 (|has| |#1| (-372)))) (-3095 (((-112) $) 82)) (-4217 ((|#1| $ |#1|) 70)) (-4249 ((|#1| $ |#1|) 133)) (-4398 (((-776) $) 63)) (-3102 (($ (-646 (-646 |#1|))) 118)) (-3097 (((-977) $) 76)) (-3103 (($ (-646 |#1|)) 33)) (-3428 (($ $ $) NIL)) (-2774 (($ $ $) NIL)) (-3099 (($ (-646 (-646 |#1|))) 58)) (-3098 (($ (-646 (-646 |#1|))) 123)) (-3092 (($ (-646 |#1|)) 135)) (-4396 (((-868) $) 117) (($ (-646 (-646 |#1|))) 91) (($ (-646 |#1|)) 92)) (-3680 (((-112) $ $) NIL)) (-3085 (($) 24 T CONST)) (-2984 (((-112) $ $) NIL (-3978 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-3473 (((-112) $ $) 68)) (-3105 (((-112) $ $) NIL (-3978 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-3106 (((-112) $ $) 90)) (-4399 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ $ $) 34)))
-(((-908 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -3100 ((-2 (|:| |preimage| (-646 |#1|)) (|:| |image| (-646 |#1|))) $)) (-15 -3099 ($ (-646 (-646 |#1|)))) (-15 -4396 ($ (-646 (-646 |#1|)))) (-15 -4396 ($ (-646 |#1|))) (-15 -3098 ($ (-646 (-646 |#1|)))) (-15 -4398 ((-776) $)) (-15 -3107 ((-1103 |#1|) $)) (-15 -3097 ((-977) $)) (-15 -4221 ((-776) $)) (-15 -3096 ((-776) $)) (-15 -4073 ((-551) $)) (-15 -3095 ((-112) $)) (-15 -3094 ((-112) $)) (-15 -3328 ((-646 $) (-646 $))) (IF (|has| |#1| (-372)) (-15 -3093 ((-1103 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -3092 ($ (-646 |#1|))) (IF (|has| |#1| (-372)) (-15 -3092 ($ (-646 |#1|))) |%noBranch|)))) (-1107)) (T -908))
-((-3100 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-646 *3)) (|:| |image| (-646 *3)))) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3099 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-908 *3)))) (-3098 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3328 (*1 *2 *2) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1107)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-908 *3)) (-4 *3 (-372)) (-4 *3 (-1107)))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-908 *3)))))
-(-13 (-910 |#1|) (-10 -8 (-15 -3100 ((-2 (|:| |preimage| (-646 |#1|)) (|:| |image| (-646 |#1|))) $)) (-15 -3099 ($ (-646 (-646 |#1|)))) (-15 -4396 ($ (-646 (-646 |#1|)))) (-15 -4396 ($ (-646 |#1|))) (-15 -3098 ($ (-646 (-646 |#1|)))) (-15 -4398 ((-776) $)) (-15 -3107 ((-1103 |#1|) $)) (-15 -3097 ((-977) $)) (-15 -4221 ((-776) $)) (-15 -3096 ((-776) $)) (-15 -4073 ((-551) $)) (-15 -3095 ((-112) $)) (-15 -3094 ((-112) $)) (-15 -3328 ((-646 $) (-646 $))) (IF (|has| |#1| (-372)) (-15 -3093 ((-1103 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -3092 ($ (-646 |#1|))) (IF (|has| |#1| (-372)) (-15 -3092 ($ (-646 |#1|))) |%noBranch|))))
-((-3101 ((|#2| (-1148 |#1| |#2|)) 50)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -3101 (|#2| (-1148 |#1| |#2|)))) (-925) (-13 (-1055) (-10 -7 (-6 (-4445 "*"))))) (T -909))
-((-3101 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-925)) (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4445 "*"))))) (-5 *1 (-909 *4 *2)))))
-(-10 -7 (-15 -3101 (|#2| (-1148 |#1| |#2|))))
-((-2986 (((-112) $ $) 7)) (-4174 (($) 19 T CONST)) (-3908 (((-3 $ "failed") $) 16)) (-3111 (((-1103 |#1|) $ |#1|) 33)) (-2591 (((-112) $) 18)) (-2952 (($ $ $) 31 (-3978 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3278 (($ $ $) 30 (-3978 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 25)) (-3682 (((-1126) $) 11)) (-4217 ((|#1| $ |#1|) 35)) (-4249 ((|#1| $ |#1|) 34)) (-3102 (($ (-646 (-646 |#1|))) 36)) (-3103 (($ (-646 |#1|)) 37)) (-3428 (($ $ $) 22)) (-2774 (($ $ $) 21)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3085 (($) 20 T CONST)) (-2984 (((-112) $ $) 28 (-3978 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2985 (((-112) $ $) 27 (-3978 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 29 (-3978 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3106 (((-112) $ $) 32)) (-4399 (($ $ $) 24)) (** (($ $ (-925)) 14) (($ $ (-776)) 17) (($ $ (-551)) 23)) (* (($ $ $) 15)))
-(((-910 |#1|) (-140) (-1107)) (T -910))
-((-3103 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-910 *3)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-4 *1 (-910 *3)))) (-4217 (*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1107)))) (-4249 (*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1107)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1107)) (-5 *2 (-1103 *3)))) (-3106 (*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(-13 (-478) (-10 -8 (-15 -3103 ($ (-646 |t#1|))) (-15 -3102 ($ (-646 (-646 |t#1|)))) (-15 -4217 (|t#1| $ |t#1|)) (-15 -4249 (|t#1| $ |t#1|)) (-15 -3111 ((-1103 |t#1|) $ |t#1|)) (-15 -3106 ((-112) $ $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-855)) |%noBranch|)))
-(((-102) . T) ((-618 (-868)) . T) ((-478) . T) ((-731) . T) ((-855) -3978 (|has| |#1| (-855)) (|has| |#1| (-372))) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3113 (((-646 (-646 (-776))) $) 164)) (-3109 (((-646 (-776)) (-908 |#1|) $) 192)) (-3108 (((-646 (-776)) (-908 |#1|) $) 193)) (-3114 (((-646 (-908 |#1|)) $) 153)) (-3413 (((-908 |#1|) $ (-551)) 158) (((-908 |#1|) $) 159)) (-3112 (($ (-646 (-908 |#1|))) 166)) (-4221 (((-776) $) 160)) (-3110 (((-1103 (-1103 |#1|)) $) 190)) (-3111 (((-1103 |#1|) $ |#1|) 181) (((-1103 (-1103 |#1|)) $ (-1103 |#1|)) 201) (((-1103 (-646 |#1|)) $ (-646 |#1|)) 204)) (-3107 (((-1103 |#1|) $) 156)) (-3684 (((-112) (-908 |#1|) $) 141)) (-3681 (((-1165) $) NIL)) (-3104 (((-1278) $) 146) (((-1278) $ (-551) (-551)) 205)) (-3682 (((-1126) $) NIL)) (-3116 (((-646 (-908 |#1|)) $) 147)) (-4249 (((-908 |#1|) $ (-776)) 154)) (-4398 (((-776) $) 161)) (-4396 (((-868) $) 178) (((-646 (-908 |#1|)) $) 28) (($ (-646 (-908 |#1|))) 165)) (-3680 (((-112) $ $) NIL)) (-3115 (((-646 |#1|) $) 163)) (-3473 (((-112) $ $) 198)) (-3105 (((-112) $ $) 196)) (-3106 (((-112) $ $) 195)))
-(((-911 |#1|) (-13 (-1107) (-10 -8 (-15 -4396 ((-646 (-908 |#1|)) $)) (-15 -3116 ((-646 (-908 |#1|)) $)) (-15 -4249 ((-908 |#1|) $ (-776))) (-15 -3413 ((-908 |#1|) $ (-551))) (-15 -3413 ((-908 |#1|) $)) (-15 -4221 ((-776) $)) (-15 -4398 ((-776) $)) (-15 -3115 ((-646 |#1|) $)) (-15 -3114 ((-646 (-908 |#1|)) $)) (-15 -3113 ((-646 (-646 (-776))) $)) (-15 -4396 ($ (-646 (-908 |#1|)))) (-15 -3112 ($ (-646 (-908 |#1|)))) (-15 -3111 ((-1103 |#1|) $ |#1|)) (-15 -3110 ((-1103 (-1103 |#1|)) $)) (-15 -3111 ((-1103 (-1103 |#1|)) $ (-1103 |#1|))) (-15 -3111 ((-1103 (-646 |#1|)) $ (-646 |#1|))) (-15 -3684 ((-112) (-908 |#1|) $)) (-15 -3109 ((-646 (-776)) (-908 |#1|) $)) (-15 -3108 ((-646 (-776)) (-908 |#1|) $)) (-15 -3107 ((-1103 |#1|) $)) (-15 -3106 ((-112) $ $)) (-15 -3105 ((-112) $ $)) (-15 -3104 ((-1278) $)) (-15 -3104 ((-1278) $ (-551) (-551))))) (-1107)) (T -911))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-908 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1107)))) (-3413 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-908 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1107)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-908 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-776)))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-646 (-908 *3))) (-4 *3 (-1107)) (-5 *1 (-911 *3)))) (-3112 (*1 *1 *2) (-12 (-5 *2 (-646 (-908 *3))) (-4 *3 (-1107)) (-5 *1 (-911 *3)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1103 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *4 (-1107)) (-5 *2 (-1103 (-1103 *4))) (-5 *1 (-911 *4)) (-5 *3 (-1103 *4)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *4 (-1107)) (-5 *2 (-1103 (-646 *4))) (-5 *1 (-911 *4)) (-5 *3 (-646 *4)))) (-3684 (*1 *2 *3 *1) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-911 *4)))) (-3109 (*1 *2 *3 *1) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-646 (-776))) (-5 *1 (-911 *4)))) (-3108 (*1 *2 *3 *1) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-646 (-776))) (-5 *1 (-911 *4)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3106 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3105 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))) (-3104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-911 *4)) (-4 *4 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -4396 ((-646 (-908 |#1|)) $)) (-15 -3116 ((-646 (-908 |#1|)) $)) (-15 -4249 ((-908 |#1|) $ (-776))) (-15 -3413 ((-908 |#1|) $ (-551))) (-15 -3413 ((-908 |#1|) $)) (-15 -4221 ((-776) $)) (-15 -4398 ((-776) $)) (-15 -3115 ((-646 |#1|) $)) (-15 -3114 ((-646 (-908 |#1|)) $)) (-15 -3113 ((-646 (-646 (-776))) $)) (-15 -4396 ($ (-646 (-908 |#1|)))) (-15 -3112 ($ (-646 (-908 |#1|)))) (-15 -3111 ((-1103 |#1|) $ |#1|)) (-15 -3110 ((-1103 (-1103 |#1|)) $)) (-15 -3111 ((-1103 (-1103 |#1|)) $ (-1103 |#1|))) (-15 -3111 ((-1103 (-646 |#1|)) $ (-646 |#1|))) (-15 -3684 ((-112) (-908 |#1|) $)) (-15 -3109 ((-646 (-776)) (-908 |#1|) $)) (-15 -3108 ((-646 (-776)) (-908 |#1|) $)) (-15 -3107 ((-1103 |#1|) $)) (-15 -3106 ((-112) $ $)) (-15 -3105 ((-112) $ $)) (-15 -3104 ((-1278) $)) (-15 -3104 ((-1278) $ (-551) (-551)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-4382 (((-112) $) NIL)) (-4379 (((-776)) NIL)) (-3772 (($ $ (-925)) NIL (|has| $ (-372))) (($ $) NIL)) (-1853 (((-1195 (-925) (-776)) (-551)) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 $ "failed") $) NIL)) (-3594 (($ $) NIL)) (-1977 (($ (-1272 $)) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-3254 (($) NIL)) (-1858 (((-112) $) NIL)) (-1951 (($ $) NIL) (($ $ (-776)) NIL)) (-4173 (((-112) $) NIL)) (-4221 (((-837 (-925)) $) NIL) (((-925) $) NIL)) (-2591 (((-112) $) NIL)) (-2201 (($) NIL (|has| $ (-372)))) (-2199 (((-112) $) NIL (|has| $ (-372)))) (-3554 (($ $ (-925)) NIL (|has| $ (-372))) (($ $) NIL)) (-3886 (((-3 $ "failed") $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2202 (((-1177 $) $ (-925)) NIL (|has| $ (-372))) (((-1177 $) $) NIL)) (-2198 (((-925) $) NIL)) (-1782 (((-1177 $) $) NIL (|has| $ (-372)))) (-1781 (((-3 (-1177 $) "failed") $ $) NIL (|has| $ (-372))) (((-1177 $) $) NIL (|has| $ (-372)))) (-1783 (($ $ (-1177 $)) NIL (|has| $ (-372)))) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-2581 (($ (-925)) NIL)) (-4381 (((-112) $) NIL)) (-3682 (((-1126) $) NIL)) (-2590 (($) NIL (|has| $ (-372)))) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL)) (-4182 (((-410 $) $) NIL)) (-4380 (((-925)) NIL) (((-837 (-925))) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-1952 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-4361 (((-134)) NIL)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-4398 (((-925) $) NIL) (((-837 (-925)) $) NIL)) (-3623 (((-1177 $)) NIL)) (-1852 (($) NIL)) (-1784 (($) NIL (|has| $ (-372)))) (-3662 (((-694 $) (-1272 $)) NIL) (((-1272 $) $) NIL)) (-4420 (((-551) $) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL)) (-3123 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $) (-925)) NIL) (((-1272 $)) NIL)) (-2250 (((-112) $ $) NIL)) (-4383 (((-112) $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-4378 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-912 |#1|) (-13 (-354) (-332 $) (-619 (-551))) (-925)) (T -912))
-NIL
-(-13 (-354) (-332 $) (-619 (-551)))
-((-3118 (((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|)) 159)) (-3121 ((|#1|) 97)) (-3120 (((-410 (-1177 |#4|)) (-1177 |#4|)) 168)) (-3122 (((-410 (-1177 |#4|)) (-646 |#3|) (-1177 |#4|)) 84)) (-3119 (((-410 (-1177 |#4|)) (-1177 |#4|)) 178)) (-3117 (((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|) |#3|) 113)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3118 ((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|))) (-15 -3119 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -3120 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -3121 (|#1|)) (-15 -3117 ((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|) |#3|)) (-15 -3122 ((-410 (-1177 |#4|)) (-646 |#3|) (-1177 |#4|)))) (-916) (-798) (-855) (-956 |#1| |#2| |#3|)) (T -913))
-((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *7)) (-4 *7 (-855)) (-4 *5 (-916)) (-4 *6 (-798)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-410 (-1177 *8))) (-5 *1 (-913 *5 *6 *7 *8)) (-5 *4 (-1177 *8)))) (-3117 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-646 (-1177 *7))) (-5 *3 (-1177 *7)) (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-798)) (-4 *4 (-855)) (-5 *1 (-913 *5 *6 *4 *7)))) (-3121 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-916)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-3119 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1177 *7)))) (-3118 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 *7))) (-5 *3 (-1177 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-913 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3118 ((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|))) (-15 -3119 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -3120 ((-410 (-1177 |#4|)) (-1177 |#4|))) (-15 -3121 (|#1|)) (-15 -3117 ((-3 (-646 (-1177 |#4|)) "failed") (-646 (-1177 |#4|)) (-1177 |#4|) |#3|)) (-15 -3122 ((-410 (-1177 |#4|)) (-646 |#3|) (-1177 |#4|))))
-((-3118 (((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|)) 41)) (-3121 ((|#1|) 75)) (-3120 (((-410 (-1177 |#2|)) (-1177 |#2|)) 124)) (-3122 (((-410 (-1177 |#2|)) (-1177 |#2|)) 108)) (-3119 (((-410 (-1177 |#2|)) (-1177 |#2|)) 135)))
-(((-914 |#1| |#2|) (-10 -7 (-15 -3118 ((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|))) (-15 -3119 ((-410 (-1177 |#2|)) (-1177 |#2|))) (-15 -3120 ((-410 (-1177 |#2|)) (-1177 |#2|))) (-15 -3121 (|#1|)) (-15 -3122 ((-410 (-1177 |#2|)) (-1177 |#2|)))) (-916) (-1248 |#1|)) (T -914))
-((-3122 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))) (-3121 (*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1248 *2)))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))) (-3119 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))) (-3118 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 *5))) (-5 *3 (-1177 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5)))))
-(-10 -7 (-15 -3118 ((-3 (-646 (-1177 |#2|)) "failed") (-646 (-1177 |#2|)) (-1177 |#2|))) (-15 -3119 ((-410 (-1177 |#2|)) (-1177 |#2|))) (-15 -3120 ((-410 (-1177 |#2|)) (-1177 |#2|))) (-15 -3121 (|#1|)) (-15 -3122 ((-410 (-1177 |#2|)) (-1177 |#2|))))
-((-3125 (((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $)) 42)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 18)) (-3123 (((-3 $ "failed") $) 36)))
-(((-915 |#1|) (-10 -8 (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)))) (-916)) (T -915))
-NIL
-(-10 -8 (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 66)) (-4224 (($ $) 57)) (-4419 (((-410 $) $) 58)) (-3125 (((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $)) 63)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-4173 (((-112) $) 59)) (-2591 (((-112) $) 35)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3126 (((-410 (-1177 $)) (-1177 $)) 64)) (-3127 (((-410 (-1177 $)) (-1177 $)) 65)) (-4182 (((-410 $) $) 56)) (-3907 (((-3 $ "failed") $ $) 48)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) 62 (|has| $ (-145)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3123 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-916) (-140)) (T -916))
-((-3129 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-916)))) (-3128 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))) (-3127 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))) (-3126 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))) (-3125 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-646 (-1177 *1))) (-5 *3 (-1177 *1)) (-4 *1 (-916)))) (-3124 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-916)) (-5 *2 (-1272 *1)))) (-3123 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-916)))))
-(-13 (-1227) (-10 -8 (-15 -3128 ((-410 (-1177 $)) (-1177 $))) (-15 -3127 ((-410 (-1177 $)) (-1177 $))) (-15 -3126 ((-410 (-1177 $)) (-1177 $))) (-15 -3129 ((-1177 $) (-1177 $) (-1177 $))) (-15 -3125 ((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $))) (IF (|has| $ (-145)) (PROGN (-15 -3124 ((-3 (-1272 $) "failed") (-694 $))) (-15 -3123 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-3131 (((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#5|)) "failed") (-337 |#2| |#3| |#4| |#5|)) 77)) (-3130 (((-112) (-337 |#2| |#3| |#4| |#5|)) 17)) (-4221 (((-3 (-776) "failed") (-337 |#2| |#3| |#4| |#5|)) 15)))
-(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4221 ((-3 (-776) "failed") (-337 |#2| |#3| |#4| |#5|))) (-15 -3130 ((-112) (-337 |#2| |#3| |#4| |#5|))) (-15 -3131 ((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#5|)) "failed") (-337 |#2| |#3| |#4| |#5|)))) (-13 (-562) (-1044 (-551))) (-426 |#1|) (-1248 |#2|) (-1248 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -917))
-((-3131 (*1 *2 *3) (|partial| -12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-2 (|:| -4221 (-776)) (|:| -2564 *8))) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-4221 (*1 *2 *3) (|partial| -12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4221 ((-3 (-776) "failed") (-337 |#2| |#3| |#4| |#5|))) (-15 -3130 ((-112) (-337 |#2| |#3| |#4| |#5|))) (-15 -3131 ((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#5|)) "failed") (-337 |#2| |#3| |#4| |#5|))))
-((-3131 (((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#3|)) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|)) 64)) (-3130 (((-112) (-337 (-412 (-551)) |#1| |#2| |#3|)) 16)) (-4221 (((-3 (-776) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|)) 14)))
-(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -4221 ((-3 (-776) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|))) (-15 -3130 ((-112) (-337 (-412 (-551)) |#1| |#2| |#3|))) (-15 -3131 ((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#3|)) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|)))) (-1248 (-412 (-551))) (-1248 (-412 |#1|)) (-346 (-412 (-551)) |#1| |#2|)) (T -918))
-((-3131 (*1 *2 *3) (|partial| -12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6)) (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 (-412 (-551)) *4 *5)) (-5 *2 (-2 (|:| -4221 (-776)) (|:| -2564 *6))) (-5 *1 (-918 *4 *5 *6)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6)) (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 (-412 (-551)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6)))) (-4221 (*1 *2 *3) (|partial| -12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6)) (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 (-412 (-551)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6)))))
-(-10 -7 (-15 -4221 ((-3 (-776) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|))) (-15 -3130 ((-112) (-337 (-412 (-551)) |#1| |#2| |#3|))) (-15 -3131 ((-3 (-2 (|:| -4221 (-776)) (|:| -2564 |#3|)) "failed") (-337 (-412 (-551)) |#1| |#2| |#3|))))
-((-3136 ((|#2| |#2|) 26)) (-3134 (((-551) (-646 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551))))) 15)) (-3132 (((-925) (-551)) 38)) (-3135 (((-551) |#2|) 45)) (-3133 (((-551) |#2|) 21) (((-2 (|:| |den| (-551)) (|:| |gcdnum| (-551))) |#1|) 20)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -3132 ((-925) (-551))) (-15 -3133 ((-2 (|:| |den| (-551)) (|:| |gcdnum| (-551))) |#1|)) (-15 -3133 ((-551) |#2|)) (-15 -3134 ((-551) (-646 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551)))))) (-15 -3135 ((-551) |#2|)) (-15 -3136 (|#2| |#2|))) (-1248 (-412 (-551))) (-1248 (-412 |#1|))) (T -919))
-((-3136 (*1 *2 *2) (-12 (-4 *3 (-1248 (-412 (-551)))) (-5 *1 (-919 *3 *2)) (-4 *2 (-1248 (-412 *3))))) (-3135 (*1 *2 *3) (-12 (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1248 (-412 *4))))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551))))) (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1248 (-412 *4))))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1248 (-412 *4))))) (-3133 (*1 *2 *3) (-12 (-4 *3 (-1248 (-412 (-551)))) (-5 *2 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551)))) (-5 *1 (-919 *3 *4)) (-4 *4 (-1248 (-412 *3))))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-551)) (-4 *4 (-1248 (-412 *3))) (-5 *2 (-925)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1248 (-412 *4))))))
-(-10 -7 (-15 -3132 ((-925) (-551))) (-15 -3133 ((-2 (|:| |den| (-551)) (|:| |gcdnum| (-551))) |#1|)) (-15 -3133 ((-551) |#2|)) (-15 -3134 ((-551) (-646 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551)))))) (-15 -3135 ((-551) |#2|)) (-15 -3136 (|#2| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 ((|#1| $) 100)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-2982 (($ $ $) NIL)) (-3908 (((-3 $ "failed") $) 94)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3144 (($ |#1| (-410 |#1|)) 92)) (-3138 (((-1177 |#1|) |#1| |#1|) 53)) (-3137 (($ $) 61)) (-2591 (((-112) $) NIL)) (-3139 (((-551) $) 97)) (-3140 (($ $ (-551)) 99)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3141 ((|#1| $) 96)) (-3142 (((-410 |#1|) $) 95)) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3143 (($ $) 50)) (-4396 (((-868) $) 124) (($ (-551)) 73) (($ $) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 41) (((-412 |#1|) $) 78) (($ (-412 (-410 |#1|))) 86)) (-3548 (((-776)) 71 T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) 26 T CONST)) (-3085 (($) 15 T CONST)) (-3473 (((-112) $ $) 87)) (-4399 (($ $ $) NIL)) (-4287 (($ $) 108) (($ $ $) NIL)) (-4289 (($ $ $) 49)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 110) (($ $ $) 48) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-920 |#1|) (-13 (-367) (-38 |#1|) (-10 -8 (-15 -4396 ((-412 |#1|) $)) (-15 -4396 ($ (-412 (-410 |#1|)))) (-15 -3143 ($ $)) (-15 -3142 ((-410 |#1|) $)) (-15 -3141 (|#1| $)) (-15 -3140 ($ $ (-551))) (-15 -3139 ((-551) $)) (-15 -3138 ((-1177 |#1|) |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3144 ($ |#1| (-410 |#1|))) (-15 -3551 (|#1| $)))) (-310)) (T -920))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-412 (-410 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) (-3143 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3141 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3138 (*1 *2 *3 *3) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-3144 (*1 *1 *2 *3) (-12 (-5 *3 (-410 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) (-3551 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(-13 (-367) (-38 |#1|) (-10 -8 (-15 -4396 ((-412 |#1|) $)) (-15 -4396 ($ (-412 (-410 |#1|)))) (-15 -3143 ($ $)) (-15 -3142 ((-410 |#1|) $)) (-15 -3141 (|#1| $)) (-15 -3140 ($ $ (-551))) (-15 -3139 ((-551) $)) (-15 -3138 ((-1177 |#1|) |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3144 ($ |#1| (-410 |#1|))) (-15 -3551 (|#1| $))))
-((-3144 (((-51) (-952 |#1|) (-410 (-952 |#1|)) (-1183)) 17) (((-51) (-412 (-952 |#1|)) (-1183)) 18)))
-(((-921 |#1|) (-10 -7 (-15 -3144 ((-51) (-412 (-952 |#1|)) (-1183))) (-15 -3144 ((-51) (-952 |#1|) (-410 (-952 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -921))
-((-3144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-410 (-952 *6))) (-5 *5 (-1183)) (-5 *3 (-952 *6)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-51)) (-5 *1 (-921 *6)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-51)) (-5 *1 (-921 *5)))))
-(-10 -7 (-15 -3144 ((-51) (-412 (-952 |#1|)) (-1183))) (-15 -3144 ((-51) (-952 |#1|) (-410 (-952 |#1|)) (-1183))))
-((-3145 ((|#4| (-646 |#4|)) 149) (((-1177 |#4|) (-1177 |#4|) (-1177 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-3582 (((-1177 |#4|) (-646 (-1177 |#4|))) 142) (((-1177 |#4|) (-1177 |#4|) (-1177 |#4|)) 63) ((|#4| (-646 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
-(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3582 (|#4| |#4| |#4|)) (-15 -3582 (|#4| (-646 |#4|))) (-15 -3582 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3582 ((-1177 |#4|) (-646 (-1177 |#4|)))) (-15 -3145 (|#4| |#4| |#4|)) (-15 -3145 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3145 (|#4| (-646 |#4|)))) (-798) (-855) (-310) (-956 |#3| |#1| |#2|)) (T -922))
-((-3145 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-3145 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-646 (-1177 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-1177 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3582 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-3582 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))))
-(-10 -7 (-15 -3582 (|#4| |#4| |#4|)) (-15 -3582 (|#4| (-646 |#4|))) (-15 -3582 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3582 ((-1177 |#4|) (-646 (-1177 |#4|)))) (-15 -3145 (|#4| |#4| |#4|)) (-15 -3145 ((-1177 |#4|) (-1177 |#4|) (-1177 |#4|))) (-15 -3145 (|#4| (-646 |#4|))))
-((-3158 (((-911 (-551)) (-977)) 38) (((-911 (-551)) (-646 (-551))) 35)) (-3146 (((-911 (-551)) (-646 (-551))) 70) (((-911 (-551)) (-925)) 71)) (-3157 (((-911 (-551))) 39)) (-3155 (((-911 (-551))) 55) (((-911 (-551)) (-646 (-551))) 54)) (-3154 (((-911 (-551))) 53) (((-911 (-551)) (-646 (-551))) 52)) (-3153 (((-911 (-551))) 51) (((-911 (-551)) (-646 (-551))) 50)) (-3152 (((-911 (-551))) 49) (((-911 (-551)) (-646 (-551))) 48)) (-3151 (((-911 (-551))) 47) (((-911 (-551)) (-646 (-551))) 46)) (-3156 (((-911 (-551))) 57) (((-911 (-551)) (-646 (-551))) 56)) (-3150 (((-911 (-551)) (-646 (-551))) 75) (((-911 (-551)) (-925)) 77)) (-3149 (((-911 (-551)) (-646 (-551))) 72) (((-911 (-551)) (-925)) 73)) (-3147 (((-911 (-551)) (-646 (-551))) 68) (((-911 (-551)) (-925)) 69)) (-3148 (((-911 (-551)) (-646 (-925))) 60)))
-(((-923) (-10 -7 (-15 -3146 ((-911 (-551)) (-925))) (-15 -3146 ((-911 (-551)) (-646 (-551)))) (-15 -3147 ((-911 (-551)) (-925))) (-15 -3147 ((-911 (-551)) (-646 (-551)))) (-15 -3148 ((-911 (-551)) (-646 (-925)))) (-15 -3149 ((-911 (-551)) (-925))) (-15 -3149 ((-911 (-551)) (-646 (-551)))) (-15 -3150 ((-911 (-551)) (-925))) (-15 -3150 ((-911 (-551)) (-646 (-551)))) (-15 -3151 ((-911 (-551)) (-646 (-551)))) (-15 -3151 ((-911 (-551)))) (-15 -3152 ((-911 (-551)) (-646 (-551)))) (-15 -3152 ((-911 (-551)))) (-15 -3153 ((-911 (-551)) (-646 (-551)))) (-15 -3153 ((-911 (-551)))) (-15 -3154 ((-911 (-551)) (-646 (-551)))) (-15 -3154 ((-911 (-551)))) (-15 -3155 ((-911 (-551)) (-646 (-551)))) (-15 -3155 ((-911 (-551)))) (-15 -3156 ((-911 (-551)) (-646 (-551)))) (-15 -3156 ((-911 (-551)))) (-15 -3157 ((-911 (-551)))) (-15 -3158 ((-911 (-551)) (-646 (-551)))) (-15 -3158 ((-911 (-551)) (-977))))) (T -923))
-((-3158 (*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3157 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3156 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3155 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3154 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3153 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3152 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3151 (*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-646 (-925))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(-10 -7 (-15 -3146 ((-911 (-551)) (-925))) (-15 -3146 ((-911 (-551)) (-646 (-551)))) (-15 -3147 ((-911 (-551)) (-925))) (-15 -3147 ((-911 (-551)) (-646 (-551)))) (-15 -3148 ((-911 (-551)) (-646 (-925)))) (-15 -3149 ((-911 (-551)) (-925))) (-15 -3149 ((-911 (-551)) (-646 (-551)))) (-15 -3150 ((-911 (-551)) (-925))) (-15 -3150 ((-911 (-551)) (-646 (-551)))) (-15 -3151 ((-911 (-551)) (-646 (-551)))) (-15 -3151 ((-911 (-551)))) (-15 -3152 ((-911 (-551)) (-646 (-551)))) (-15 -3152 ((-911 (-551)))) (-15 -3153 ((-911 (-551)) (-646 (-551)))) (-15 -3153 ((-911 (-551)))) (-15 -3154 ((-911 (-551)) (-646 (-551)))) (-15 -3154 ((-911 (-551)))) (-15 -3155 ((-911 (-551)) (-646 (-551)))) (-15 -3155 ((-911 (-551)))) (-15 -3156 ((-911 (-551)) (-646 (-551)))) (-15 -3156 ((-911 (-551)))) (-15 -3157 ((-911 (-551)))) (-15 -3158 ((-911 (-551)) (-646 (-551)))) (-15 -3158 ((-911 (-551)) (-977))))
-((-3160 (((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183))) 14)) (-3159 (((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183))) 13)))
-(((-924 |#1|) (-10 -7 (-15 -3159 ((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -3160 ((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183))))) (-457)) (T -924))
-((-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-952 *4))) (-5 *3 (-646 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))) (-3159 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-952 *4))) (-5 *3 (-646 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))))
-(-10 -7 (-15 -3159 ((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -3160 ((-646 (-952 |#1|)) (-646 (-952 |#1|)) (-646 (-1183)))))
-((-2986 (((-112) $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3582 (($ $ $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3085 (($) NIL T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ $ $) NIL)))
-(((-925) (-13 (-799) (-731) (-10 -8 (-15 -3582 ($ $ $)) (-6 (-4445 "*"))))) (T -925))
-((-3582 (*1 *1 *1 *1) (-5 *1 (-925))))
-(-13 (-799) (-731) (-10 -8 (-15 -3582 ($ $ $)) (-6 (-4445 "*"))))
+((-2329 (*1 *2 *3 *4) (-12 (-4 *1 (-901)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165)))))) (-2303 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-1041)))))
+(-13 (-1106) (-10 -7 (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -2303 ((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2321 ((|#1| |#1| (-776)) 29)) (-2312 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3101 (((-3 (-2 (|:| -4375 |#1|) (|:| -4386 |#1|)) "failed") |#1| (-776) (-776)) 32) (((-649 |#1|) |#1|) 39)))
+(((-902 |#1| |#2|) (-10 -7 (-15 -3101 ((-649 |#1|) |#1|)) (-15 -3101 ((-3 (-2 (|:| -4375 |#1|) (|:| -4386 |#1|)) "failed") |#1| (-776) (-776))) (-15 -2312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2321 (|#1| |#1| (-776)))) (-1249 |#2|) (-367)) (T -902))
+((-2321 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1249 *4)))) (-2312 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1249 *3)))) (-3101 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -4375 *3) (|:| -4386 *3))) (-5 *1 (-902 *3 *5)) (-4 *3 (-1249 *5)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3101 ((-649 |#1|) |#1|)) (-15 -3101 ((-3 (-2 (|:| -4375 |#1|) (|:| -4386 |#1|)) "failed") |#1| (-776) (-776))) (-15 -2312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2321 (|#1| |#1| (-776))))
+((-2888 (((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165)) 106) (((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226)) 102) (((-1041) (-904) (-1069)) 94) (((-1041) (-904)) 95)) (-2329 (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069)) 65) (((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904)) 67)))
+(((-903) (-10 -7 (-15 -2888 ((-1041) (-904))) (-15 -2888 ((-1041) (-904) (-1069))) (-15 -2888 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226))) (-15 -2888 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069))))) (T -903))
+((-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-903)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-903)))) (-2888 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2888 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165)) (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903)))))
+(-10 -7 (-15 -2888 ((-1041) (-904))) (-15 -2888 ((-1041) (-904) (-1069))) (-15 -2888 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226))) (-15 -2888 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904))) (-15 -2329 ((-2 (|:| -2329 (-383)) (|:| -3458 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069))))
+((-2383 (((-112) $ $) NIL)) (-3043 (((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $) 19)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 21) (($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 18)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-904) (-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3043 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))) (T -904))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3043 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))
+((-3430 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) 10) (($ $ |#2| (-776)) 15) (($ $ (-649 |#2|) (-649 (-776))) 18)) (-2749 (($ $ |#2|) 19) (($ $ (-649 |#2|)) 21) (($ $ |#2| (-776)) 22) (($ $ (-649 |#2|) (-649 (-776))) 24)))
+(((-905 |#1| |#2|) (-10 -8 (-15 -2749 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2749 (|#1| |#1| |#2| (-776))) (-15 -2749 (|#1| |#1| (-649 |#2|))) (-15 -2749 (|#1| |#1| |#2|)) (-15 -3430 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3430 (|#1| |#1| |#2| (-776))) (-15 -3430 (|#1| |#1| (-649 |#2|))) (-15 -3430 (|#1| |#1| |#2|))) (-906 |#2|) (-1106)) (T -905))
+NIL
+(-10 -8 (-15 -2749 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2749 (|#1| |#1| |#2| (-776))) (-15 -2749 (|#1| |#1| (-649 |#2|))) (-15 -2749 (|#1| |#1| |#2|)) (-15 -3430 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3430 (|#1| |#1| |#2| (-776))) (-15 -3430 (|#1| |#1| (-649 |#2|))) (-15 -3430 (|#1| |#1| |#2|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3430 (($ $ |#1|) 46) (($ $ (-649 |#1|)) 45) (($ $ |#1| (-776)) 44) (($ $ (-649 |#1|) (-649 (-776))) 43)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ |#1|) 42) (($ $ (-649 |#1|)) 41) (($ $ |#1| (-776)) 40) (($ $ (-649 |#1|) (-649 (-776))) 39)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-906 |#1|) (-140) (-1106)) (T -906))
+((-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1106)))) (-2749 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106)))) (-2749 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-2749 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1106)))))
+(-13 (-1055) (-10 -8 (-15 -3430 ($ $ |t#1|)) (-15 -3430 ($ $ (-649 |t#1|))) (-15 -3430 ($ $ |t#1| (-776))) (-15 -3430 ($ $ (-649 |t#1|) (-649 (-776)))) (-15 -2749 ($ $ |t#1|)) (-15 -2749 ($ $ (-649 |t#1|))) (-15 -2749 ($ $ |t#1| (-776))) (-15 -2749 ($ $ (-649 |t#1|) (-649 (-776))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) 26)) (-1610 (((-112) $ (-776)) NIL)) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-1410 (($ $ $) NIL (|has| $ (-6 -4444)))) (-1421 (($ $ $) NIL (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) (($ $ "left" $) NIL (|has| $ (-6 -4444))) (($ $ "right" $) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4386 (($ $) 25)) (-3779 (($ |#1|) 12) (($ $ $) 17)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-4375 (($ $) 23)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) 20)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1209 |#1|) $) 9) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 21 (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-907 |#1|) (-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3779 ($ |#1|)) (-15 -3779 ($ $ $)))) (-1106)) (T -907))
+((-3779 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))) (-3779 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))))
+(-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3779 ($ |#1|)) (-15 -3779 ($ $ $))))
+((-4397 ((|#2| (-1148 |#1| |#2|)) 50)))
+(((-908 |#1| |#2|) (-10 -7 (-15 -4397 (|#2| (-1148 |#1| |#2|)))) (-927) (-13 (-1055) (-10 -7 (-6 (-4445 "*"))))) (T -908))
+((-4397 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-927)) (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4445 "*"))))) (-5 *1 (-908 *4 *2)))))
+(-10 -7 (-15 -4397 (|#2| (-1148 |#1| |#2|))))
+((-2383 (((-112) $ $) 7)) (-3863 (($) 19 T CONST)) (-3351 (((-3 $ "failed") $) 16)) (-1366 (((-1108 |#1|) $ |#1|) 33)) (-2861 (((-112) $) 18)) (-2095 (($ $ $) 31 (-2718 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2406 (($ $ $) 30 (-2718 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 25)) (-3461 (((-1126) $) 11)) (-1679 ((|#1| $ |#1|) 35)) (-1852 ((|#1| $ |#1|) 34)) (-4405 (($ (-649 (-649 |#1|))) 36)) (-4416 (($ (-649 |#1|)) 37)) (-1565 (($ $ $) 22)) (-4356 (($ $ $) 21)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1796 (($) 20 T CONST)) (-2904 (((-112) $ $) 28 (-2718 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2882 (((-112) $ $) 27 (-2718 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 29 (-2718 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2872 (((-112) $ $) 32)) (-2956 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
+(((-909 |#1|) (-140) (-1106)) (T -909))
+((-4416 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-909 *3)))) (-4405 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-4 *1 (-909 *3)))) (-1679 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106)))) (-1852 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106)))) (-1366 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-1108 *3)))) (-2872 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(-13 (-478) (-10 -8 (-15 -4416 ($ (-649 |t#1|))) (-15 -4405 ($ (-649 (-649 |t#1|)))) (-15 -1679 (|t#1| $ |t#1|)) (-15 -1852 (|t#1| $ |t#1|)) (-15 -1366 ((-1108 |t#1|) $ |t#1|)) (-15 -2872 ((-112) $ $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-855)) |%noBranch|)))
+(((-102) . T) ((-618 (-867)) . T) ((-478) . T) ((-731) . T) ((-855) -2718 (|has| |#1| (-855)) (|has| |#1| (-372))) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-1390 (((-649 (-649 (-776))) $) 164)) (-1342 (((-649 (-776)) (-911 |#1|) $) 192)) (-1328 (((-649 (-776)) (-911 |#1|) $) 193)) (-1403 (((-649 (-911 |#1|)) $) 153)) (-3295 (((-911 |#1|) $ (-569)) 158) (((-911 |#1|) $) 159)) (-1378 (($ (-649 (-911 |#1|))) 166)) (-4315 (((-776) $) 160)) (-1354 (((-1108 (-1108 |#1|)) $) 190)) (-1366 (((-1108 |#1|) $ |#1|) 181) (((-1108 (-1108 |#1|)) $ (-1108 |#1|)) 201) (((-1108 (-649 |#1|)) $ (-649 |#1|)) 204)) (-1318 (((-1108 |#1|) $) 156)) (-2060 (((-112) (-911 |#1|) $) 141)) (-2050 (((-1165) $) NIL)) (-1308 (((-1278) $) 146) (((-1278) $ (-569) (-569)) 205)) (-3461 (((-1126) $) NIL)) (-1415 (((-649 (-911 |#1|)) $) 147)) (-1852 (((-911 |#1|) $ (-776)) 154)) (-2091 (((-776) $) 161)) (-2388 (((-867) $) 178) (((-649 (-911 |#1|)) $) 28) (($ (-649 (-911 |#1|))) 165)) (-2040 (((-112) $ $) NIL)) (-4344 (((-649 |#1|) $) 163)) (-2853 (((-112) $ $) 198)) (-2893 (((-112) $ $) 196)) (-2872 (((-112) $ $) 195)))
+(((-910 |#1|) (-13 (-1106) (-10 -8 (-15 -2388 ((-649 (-911 |#1|)) $)) (-15 -1415 ((-649 (-911 |#1|)) $)) (-15 -1852 ((-911 |#1|) $ (-776))) (-15 -3295 ((-911 |#1|) $ (-569))) (-15 -3295 ((-911 |#1|) $)) (-15 -4315 ((-776) $)) (-15 -2091 ((-776) $)) (-15 -4344 ((-649 |#1|) $)) (-15 -1403 ((-649 (-911 |#1|)) $)) (-15 -1390 ((-649 (-649 (-776))) $)) (-15 -2388 ($ (-649 (-911 |#1|)))) (-15 -1378 ($ (-649 (-911 |#1|)))) (-15 -1366 ((-1108 |#1|) $ |#1|)) (-15 -1354 ((-1108 (-1108 |#1|)) $)) (-15 -1366 ((-1108 (-1108 |#1|)) $ (-1108 |#1|))) (-15 -1366 ((-1108 (-649 |#1|)) $ (-649 |#1|))) (-15 -2060 ((-112) (-911 |#1|) $)) (-15 -1342 ((-649 (-776)) (-911 |#1|) $)) (-15 -1328 ((-649 (-776)) (-911 |#1|) $)) (-15 -1318 ((-1108 |#1|) $)) (-15 -2872 ((-112) $ $)) (-15 -2893 ((-112) $ $)) (-15 -1308 ((-1278) $)) (-15 -1308 ((-1278) $ (-569) (-569))))) (-1106)) (T -910))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))) (-3295 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))) (-1366 (*1 *2 *1 *3) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1108 (-1108 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1366 (*1 *2 *1 *3) (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-1108 *4))) (-5 *1 (-910 *4)) (-5 *3 (-1108 *4)))) (-1366 (*1 *2 *1 *3) (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-649 *4))) (-5 *1 (-910 *4)) (-5 *3 (-649 *4)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-910 *4)))) (-1342 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-1328 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2872 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2893 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1308 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -2388 ((-649 (-911 |#1|)) $)) (-15 -1415 ((-649 (-911 |#1|)) $)) (-15 -1852 ((-911 |#1|) $ (-776))) (-15 -3295 ((-911 |#1|) $ (-569))) (-15 -3295 ((-911 |#1|) $)) (-15 -4315 ((-776) $)) (-15 -2091 ((-776) $)) (-15 -4344 ((-649 |#1|) $)) (-15 -1403 ((-649 (-911 |#1|)) $)) (-15 -1390 ((-649 (-649 (-776))) $)) (-15 -2388 ($ (-649 (-911 |#1|)))) (-15 -1378 ($ (-649 (-911 |#1|)))) (-15 -1366 ((-1108 |#1|) $ |#1|)) (-15 -1354 ((-1108 (-1108 |#1|)) $)) (-15 -1366 ((-1108 (-1108 |#1|)) $ (-1108 |#1|))) (-15 -1366 ((-1108 (-649 |#1|)) $ (-649 |#1|))) (-15 -2060 ((-112) (-911 |#1|) $)) (-15 -1342 ((-649 (-776)) (-911 |#1|) $)) (-15 -1328 ((-649 (-776)) (-911 |#1|) $)) (-15 -1318 ((-1108 |#1|) $)) (-15 -2872 ((-112) $ $)) (-15 -2893 ((-112) $ $)) (-15 -1308 ((-1278) $)) (-15 -1308 ((-1278) $ (-569) (-569)))))
+((-2383 (((-112) $ $) NIL)) (-3246 (((-649 $) (-649 $)) 103)) (-2211 (((-569) $) 84)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-4315 (((-776) $) 81)) (-1366 (((-1108 |#1|) $ |#1|) 72)) (-2861 (((-112) $) NIL)) (-2355 (((-112) $) 88)) (-4346 (((-776) $) 85)) (-1318 (((-1108 |#1|) $) 61)) (-2095 (($ $ $) NIL (-2718 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2406 (($ $ $) NIL (-2718 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-4385 (((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $) 56)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 131)) (-3461 (((-1126) $) NIL)) (-2347 (((-1108 |#1|) $) 139 (|has| |#1| (-372)))) (-4336 (((-112) $) 82)) (-1679 ((|#1| $ |#1|) 70)) (-1852 ((|#1| $ |#1|) 133)) (-2091 (((-776) $) 63)) (-4405 (($ (-649 (-649 |#1|))) 118)) (-4355 (((-977) $) 76)) (-4416 (($ (-649 |#1|)) 33)) (-1565 (($ $ $) NIL)) (-4356 (($ $ $) NIL)) (-4374 (($ (-649 (-649 |#1|))) 58)) (-4363 (($ (-649 (-649 |#1|))) 123)) (-2338 (($ (-649 |#1|)) 135)) (-2388 (((-867) $) 117) (($ (-649 (-649 |#1|))) 91) (($ (-649 |#1|)) 92)) (-2040 (((-112) $ $) NIL)) (-1796 (($) 24 T CONST)) (-2904 (((-112) $ $) NIL (-2718 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2853 (((-112) $ $) 68)) (-2893 (((-112) $ $) NIL (-2718 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2872 (((-112) $ $) 90)) (-2956 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 34)))
+(((-911 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -4385 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4374 ($ (-649 (-649 |#1|)))) (-15 -2388 ($ (-649 (-649 |#1|)))) (-15 -2388 ($ (-649 |#1|))) (-15 -4363 ($ (-649 (-649 |#1|)))) (-15 -2091 ((-776) $)) (-15 -1318 ((-1108 |#1|) $)) (-15 -4355 ((-977) $)) (-15 -4315 ((-776) $)) (-15 -4346 ((-776) $)) (-15 -2211 ((-569) $)) (-15 -4336 ((-112) $)) (-15 -2355 ((-112) $)) (-15 -3246 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -2347 ((-1108 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -2338 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -2338 ($ (-649 |#1|))) |%noBranch|)))) (-1106)) (T -911))
+((-4385 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-4363 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-4346 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372)) (-4 *3 (-1106)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
+(-13 (-909 |#1|) (-10 -8 (-15 -4385 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4374 ($ (-649 (-649 |#1|)))) (-15 -2388 ($ (-649 (-649 |#1|)))) (-15 -2388 ($ (-649 |#1|))) (-15 -4363 ($ (-649 (-649 |#1|)))) (-15 -2091 ((-776) $)) (-15 -1318 ((-1108 |#1|) $)) (-15 -4355 ((-977) $)) (-15 -4315 ((-776) $)) (-15 -4346 ((-776) $)) (-15 -2211 ((-569) $)) (-15 -4336 ((-112) $)) (-15 -2355 ((-112) $)) (-15 -3246 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -2347 ((-1108 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -2338 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -2338 ($ (-649 |#1|))) |%noBranch|))))
+((-1435 (((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|)) 159)) (-1467 ((|#1|) 97)) (-1457 (((-423 (-1179 |#4|)) (-1179 |#4|)) 168)) (-1479 (((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|)) 84)) (-1445 (((-423 (-1179 |#4|)) (-1179 |#4|)) 178)) (-1425 (((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|) 113)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1435 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|))) (-15 -1445 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -1457 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -1467 (|#1|)) (-15 -1425 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|)) (-15 -1479 ((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|)))) (-915) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -912))
+((-1479 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1179 *8))) (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1179 *8)))) (-1425 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7)) (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))) (-1467 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-1457 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-1435 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1435 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|))) (-15 -1445 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -1457 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -1467 (|#1|)) (-15 -1425 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|)) (-15 -1479 ((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|))))
+((-1435 (((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)) 41)) (-1467 ((|#1|) 75)) (-1457 (((-423 (-1179 |#2|)) (-1179 |#2|)) 124)) (-1479 (((-423 (-1179 |#2|)) (-1179 |#2|)) 108)) (-1445 (((-423 (-1179 |#2|)) (-1179 |#2|)) 135)))
+(((-913 |#1| |#2|) (-10 -7 (-15 -1435 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))) (-15 -1445 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -1457 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -1467 (|#1|)) (-15 -1479 ((-423 (-1179 |#2|)) (-1179 |#2|)))) (-915) (-1249 |#1|)) (T -913))
+((-1479 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-1467 (*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1249 *2)))) (-1457 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-1435 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
+(-10 -7 (-15 -1435 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))) (-15 -1445 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -1457 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -1467 (|#1|)) (-15 -1479 ((-423 (-1179 |#2|)) (-1179 |#2|))))
+((-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 42)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 18)) (-1488 (((-3 $ "failed") $) 36)))
+(((-914 |#1|) (-10 -8 (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)))) (-915)) (T -914))
+NIL
+(-10 -8 (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 66)) (-4332 (($ $) 57)) (-2207 (((-423 $) $) 58)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 63)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-3848 (((-112) $) 59)) (-2861 (((-112) $) 35)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-1515 (((-423 (-1179 $)) (-1179 $)) 64)) (-1525 (((-423 (-1179 $)) (-1179 $)) 65)) (-3699 (((-423 $) $) 56)) (-2374 (((-3 $ "failed") $ $) 48)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 62 (|has| $ (-145)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-1488 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-915) (-140)) (T -915))
+((-1547 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-915)))) (-1537 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-1525 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-1515 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-1506 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *1))) (-5 *3 (-1179 *1)) (-4 *1 (-915)))) (-1497 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915)) (-5 *2 (-1273 *1)))) (-1488 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
+(-13 (-1227) (-10 -8 (-15 -1537 ((-423 (-1179 $)) (-1179 $))) (-15 -1525 ((-423 (-1179 $)) (-1179 $))) (-15 -1515 ((-423 (-1179 $)) (-1179 $))) (-15 -1547 ((-1179 $) (-1179 $) (-1179 $))) (-15 -1506 ((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $))) (IF (|has| $ (-145)) (PROGN (-15 -1497 ((-3 (-1273 $) "failed") (-694 $))) (-15 -1488 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-1978 (((-112) $) NIL)) (-3085 (((-776)) NIL)) (-3057 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-4068 (((-1196 (-927) (-776)) (-569)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 $ "failed") $) NIL)) (-3043 (($ $) NIL)) (-2806 (($ (-1273 $)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3445 (($) NIL)) (-4127 (((-112) $) NIL)) (-2525 (($ $) NIL) (($ $ (-776)) NIL)) (-3848 (((-112) $) NIL)) (-4315 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2861 (((-112) $) NIL)) (-3384 (($) NIL (|has| $ (-372)))) (-3359 (((-112) $) NIL (|has| $ (-372)))) (-3334 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3177 (((-3 $ "failed") $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3397 (((-1179 $) $ (-927)) NIL (|has| $ (-372))) (((-1179 $) $) NIL)) (-3348 (((-927) $) NIL)) (-1509 (((-1179 $) $) NIL (|has| $ (-372)))) (-1500 (((-3 (-1179 $) "failed") $ $) NIL (|has| $ (-372))) (((-1179 $) $) NIL (|has| $ (-372)))) (-1518 (($ $ (-1179 $)) NIL (|has| $ (-372)))) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL T CONST)) (-2114 (($ (-927)) NIL)) (-1969 (((-112) $) NIL)) (-3461 (((-1126) $) NIL)) (-2290 (($) NIL (|has| $ (-372)))) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL)) (-3699 (((-423 $) $) NIL)) (-3096 (((-927)) NIL) (((-838 (-927))) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2536 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2905 (((-134)) NIL)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-2091 (((-927) $) NIL) (((-838 (-927)) $) NIL)) (-2760 (((-1179 $)) NIL)) (-4056 (($) NIL)) (-1529 (($) NIL (|has| $ (-372)))) (-1949 (((-694 $) (-1273 $)) NIL) (((-1273 $) $) NIL)) (-1384 (((-569) $) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL)) (-1488 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $) (-927)) NIL) (((-1273 $)) NIL)) (-2574 (((-112) $ $) NIL)) (-1988 (((-112) $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-3075 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-916 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -916))
+NIL
+(-13 (-353) (-332 $) (-619 (-569)))
+((-1570 (((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)) 77)) (-1559 (((-112) (-340 |#2| |#3| |#4| |#5|)) 17)) (-4315 (((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|)) 15)))
+(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4315 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -1559 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -1570 ((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)))) (-13 (-561) (-1044 (-569))) (-435 |#1|) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -917))
+((-1570 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-2 (|:| -4315 (-776)) (|:| -2785 *8))) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-4315 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4315 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -1559 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -1570 ((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|))))
+((-1570 (((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 64)) (-1559 (((-112) (-340 (-412 (-569)) |#1| |#2| |#3|)) 16)) (-4315 (((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 14)))
+(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -4315 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -1559 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -1570 ((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)))) (-1249 (-412 (-569))) (-1249 (-412 |#1|)) (-346 (-412 (-569)) |#1| |#2|)) (T -918))
+((-1570 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-2 (|:| -4315 (-776)) (|:| -2785 *6))) (-5 *1 (-918 *4 *5 *6)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6)))) (-4315 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6)))))
+(-10 -7 (-15 -4315 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -1559 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -1570 ((-3 (-2 (|:| -4315 (-776)) (|:| -2785 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))))
+((-1628 ((|#2| |#2|) 26)) (-1607 (((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) 15)) (-1581 (((-927) (-569)) 38)) (-1617 (((-569) |#2|) 45)) (-1595 (((-569) |#2|) 21) (((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|) 20)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -1581 ((-927) (-569))) (-15 -1595 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -1595 ((-569) |#2|)) (-15 -1607 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -1617 ((-569) |#2|)) (-15 -1628 (|#2| |#2|))) (-1249 (-412 (-569))) (-1249 (-412 |#1|))) (T -919))
+((-1628 (*1 *2 *2) (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *1 (-919 *3 *2)) (-4 *2 (-1249 (-412 *3))))) (-1617 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-1595 (*1 *2 *3) (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))) (-5 *1 (-919 *3 *4)) (-4 *4 (-1249 (-412 *3))))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1249 (-412 *3))) (-5 *2 (-927)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))))
+(-10 -7 (-15 -1581 ((-927) (-569))) (-15 -1595 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -1595 ((-569) |#2|)) (-15 -1607 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -1617 ((-569) |#2|)) (-15 -1628 (|#2| |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 ((|#1| $) 100)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-2339 (($ $ $) NIL)) (-3351 (((-3 $ "failed") $) 94)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-1720 (($ |#1| (-423 |#1|)) 92)) (-1648 (((-1179 |#1|) |#1| |#1|) 53)) (-1638 (($ $) 61)) (-2861 (((-112) $) NIL)) (-1659 (((-569) $) 97)) (-1670 (($ $ (-569)) 99)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1684 ((|#1| $) 96)) (-1694 (((-423 |#1|) $) 95)) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) 93)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-1707 (($ $) 50)) (-2388 (((-867) $) 124) (($ (-569)) 73) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 41) (((-412 |#1|) $) 78) (($ (-412 (-423 |#1|))) 86)) (-3263 (((-776)) 71 T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) 26 T CONST)) (-1796 (($) 15 T CONST)) (-2853 (((-112) $ $) 87)) (-2956 (($ $ $) NIL)) (-2946 (($ $) 108) (($ $ $) NIL)) (-2935 (($ $ $) 49)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 48) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-920 |#1|) (-13 (-367) (-38 |#1|) (-10 -8 (-15 -2388 ((-412 |#1|) $)) (-15 -2388 ($ (-412 (-423 |#1|)))) (-15 -1707 ($ $)) (-15 -1694 ((-423 |#1|) $)) (-15 -1684 (|#1| $)) (-15 -1670 ($ $ (-569))) (-15 -1659 ((-569) $)) (-15 -1648 ((-1179 |#1|) |#1| |#1|)) (-15 -1638 ($ $)) (-15 -1720 ($ |#1| (-423 |#1|))) (-15 -3300 (|#1| $)))) (-310)) (T -920))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1684 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1670 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1648 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1720 (*1 *1 *2 *3) (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) (-3300 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(-13 (-367) (-38 |#1|) (-10 -8 (-15 -2388 ((-412 |#1|) $)) (-15 -2388 ($ (-412 (-423 |#1|)))) (-15 -1707 ($ $)) (-15 -1694 ((-423 |#1|) $)) (-15 -1684 (|#1| $)) (-15 -1670 ($ $ (-569))) (-15 -1659 ((-569) $)) (-15 -1648 ((-1179 |#1|) |#1| |#1|)) (-15 -1638 ($ $)) (-15 -1720 ($ |#1| (-423 |#1|))) (-15 -3300 (|#1| $))))
+((-1720 (((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183)) 17) (((-52) (-412 (-958 |#1|)) (-1183)) 18)))
+(((-921 |#1|) (-10 -7 (-15 -1720 ((-52) (-412 (-958 |#1|)) (-1183))) (-15 -1720 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -921))
+((-1720 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1183)) (-5 *3 (-958 *6)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5)))))
+(-10 -7 (-15 -1720 ((-52) (-412 (-958 |#1|)) (-1183))) (-15 -1720 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183))))
+((-1733 ((|#4| (-649 |#4|)) 149) (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1830 (((-1179 |#4|) (-649 (-1179 |#4|))) 142) (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 63) ((|#4| (-649 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
+(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1830 (|#4| |#4| |#4|)) (-15 -1830 (|#4| (-649 |#4|))) (-15 -1830 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1830 ((-1179 |#4|) (-649 (-1179 |#4|)))) (-15 -1733 (|#4| |#4| |#4|)) (-15 -1733 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1733 (|#4| (-649 |#4|)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -922))
+((-1733 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1733 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-649 (-1179 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-1179 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1830 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1830 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))))
+(-10 -7 (-15 -1830 (|#4| |#4| |#4|)) (-15 -1830 (|#4| (-649 |#4|))) (-15 -1830 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1830 ((-1179 |#4|) (-649 (-1179 |#4|)))) (-15 -1733 (|#4| |#4| |#4|)) (-15 -1733 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1733 (|#4| (-649 |#4|))))
+((-3716 (((-910 (-569)) (-977)) 38) (((-910 (-569)) (-649 (-569))) 35)) (-1745 (((-910 (-569)) (-649 (-569))) 70) (((-910 (-569)) (-927)) 71)) (-3701 (((-910 (-569))) 39)) (-3679 (((-910 (-569))) 55) (((-910 (-569)) (-649 (-569))) 54)) (-3665 (((-910 (-569))) 53) (((-910 (-569)) (-649 (-569))) 52)) (-1823 (((-910 (-569))) 51) (((-910 (-569)) (-649 (-569))) 50)) (-1811 (((-910 (-569))) 49) (((-910 (-569)) (-649 (-569))) 48)) (-1801 (((-910 (-569))) 47) (((-910 (-569)) (-649 (-569))) 46)) (-3691 (((-910 (-569))) 57) (((-910 (-569)) (-649 (-569))) 56)) (-1790 (((-910 (-569)) (-649 (-569))) 75) (((-910 (-569)) (-927)) 77)) (-1779 (((-910 (-569)) (-649 (-569))) 72) (((-910 (-569)) (-927)) 73)) (-1757 (((-910 (-569)) (-649 (-569))) 68) (((-910 (-569)) (-927)) 69)) (-1768 (((-910 (-569)) (-649 (-927))) 60)))
+(((-923) (-10 -7 (-15 -1745 ((-910 (-569)) (-927))) (-15 -1745 ((-910 (-569)) (-649 (-569)))) (-15 -1757 ((-910 (-569)) (-927))) (-15 -1757 ((-910 (-569)) (-649 (-569)))) (-15 -1768 ((-910 (-569)) (-649 (-927)))) (-15 -1779 ((-910 (-569)) (-927))) (-15 -1779 ((-910 (-569)) (-649 (-569)))) (-15 -1790 ((-910 (-569)) (-927))) (-15 -1790 ((-910 (-569)) (-649 (-569)))) (-15 -1801 ((-910 (-569)) (-649 (-569)))) (-15 -1801 ((-910 (-569)))) (-15 -1811 ((-910 (-569)) (-649 (-569)))) (-15 -1811 ((-910 (-569)))) (-15 -1823 ((-910 (-569)) (-649 (-569)))) (-15 -1823 ((-910 (-569)))) (-15 -3665 ((-910 (-569)) (-649 (-569)))) (-15 -3665 ((-910 (-569)))) (-15 -3679 ((-910 (-569)) (-649 (-569)))) (-15 -3679 ((-910 (-569)))) (-15 -3691 ((-910 (-569)) (-649 (-569)))) (-15 -3691 ((-910 (-569)))) (-15 -3701 ((-910 (-569)))) (-15 -3716 ((-910 (-569)) (-649 (-569)))) (-15 -3716 ((-910 (-569)) (-977))))) (T -923))
+((-3716 (*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3701 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3691 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3679 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3665 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1823 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1811 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1801 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(-10 -7 (-15 -1745 ((-910 (-569)) (-927))) (-15 -1745 ((-910 (-569)) (-649 (-569)))) (-15 -1757 ((-910 (-569)) (-927))) (-15 -1757 ((-910 (-569)) (-649 (-569)))) (-15 -1768 ((-910 (-569)) (-649 (-927)))) (-15 -1779 ((-910 (-569)) (-927))) (-15 -1779 ((-910 (-569)) (-649 (-569)))) (-15 -1790 ((-910 (-569)) (-927))) (-15 -1790 ((-910 (-569)) (-649 (-569)))) (-15 -1801 ((-910 (-569)) (-649 (-569)))) (-15 -1801 ((-910 (-569)))) (-15 -1811 ((-910 (-569)) (-649 (-569)))) (-15 -1811 ((-910 (-569)))) (-15 -1823 ((-910 (-569)) (-649 (-569)))) (-15 -1823 ((-910 (-569)))) (-15 -3665 ((-910 (-569)) (-649 (-569)))) (-15 -3665 ((-910 (-569)))) (-15 -3679 ((-910 (-569)) (-649 (-569)))) (-15 -3679 ((-910 (-569)))) (-15 -3691 ((-910 (-569)) (-649 (-569)))) (-15 -3691 ((-910 (-569)))) (-15 -3701 ((-910 (-569)))) (-15 -3716 ((-910 (-569)) (-649 (-569)))) (-15 -3716 ((-910 (-569)) (-977))))
+((-3742 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))) 14)) (-3730 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))) 13)))
+(((-924 |#1|) (-10 -7 (-15 -3730 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3742 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))))) (-457)) (T -924))
+((-3742 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))) (-3730 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))))
+(-10 -7 (-15 -3730 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3742 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))))
+((-2388 (((-319 |#1|) (-482)) 16)))
+(((-925 |#1|) (-10 -7 (-15 -2388 ((-319 |#1|) (-482)))) (-561)) (T -925))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4)) (-4 *4 (-561)))))
+(-10 -7 (-15 -2388 ((-319 |#1|) (-482))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-2861 (((-112) $) 35)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-926) (-140)) (T -926))
+((-3765 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1406 (-649 *1)) (|:| -2290 *1))) (-5 *3 (-649 *1)))) (-3753 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
+(-13 (-457) (-10 -8 (-15 -3765 ((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $))) (-15 -3753 ((-3 (-649 $) "failed") (-649 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1830 (($ $ $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1796 (($) NIL T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ $ $) NIL)))
+(((-927) (-13 (-799) (-731) (-10 -8 (-15 -1830 ($ $ $)) (-6 (-4445 "*"))))) (T -927))
+((-1830 (*1 *1 *1 *1) (-5 *1 (-927))))
+(-13 (-799) (-731) (-10 -8 (-15 -1830 ($ $ $)) (-6 (-4445 "*"))))
((|NonNegativeInteger|) (> |#1| 0))
-((-4396 (((-317 |#1|) (-482)) 16)))
-(((-926 |#1|) (-10 -7 (-15 -4396 ((-317 |#1|) (-482)))) (-562)) (T -926))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-317 *4)) (-5 *1 (-926 *4)) (-4 *4 (-562)))))
-(-10 -7 (-15 -4396 ((-317 |#1|) (-482))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-2591 (((-112) $) 35)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-927) (-140)) (T -927))
-((-3162 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -4404 (-646 *1)) (|:| -2590 *1))) (-5 *3 (-646 *1)))) (-3161 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-646 *1)) (-4 *1 (-927)))))
-(-13 (-457) (-10 -8 (-15 -3162 ((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $))) (-15 -3161 ((-3 (-646 $) "failed") (-646 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-3527 (((-1177 |#2|) (-646 |#2|) (-646 |#2|)) 17) (((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-646 |#2|) (-646 |#2|)) 13)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3527 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-646 |#2|) (-646 |#2|))) (-15 -3527 ((-1177 |#2|) (-646 |#2|) (-646 |#2|)))) (-1183) (-367)) (T -928))
-((-3527 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *5)) (-4 *5 (-367)) (-5 *2 (-1177 *5)) (-5 *1 (-928 *4 *5)) (-14 *4 (-1183)))) (-3527 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-646 *5)) (-14 *4 (-1183)) (-4 *5 (-367)) (-5 *1 (-928 *4 *5)))))
-(-10 -7 (-15 -3527 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-646 |#2|) (-646 |#2|))) (-15 -3527 ((-1177 |#2|) (-646 |#2|) (-646 |#2|))))
-((-3163 ((|#2| (-646 |#1|) (-646 |#1|)) 29)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3163 (|#2| (-646 |#1|) (-646 |#1|)))) (-367) (-1248 |#1|)) (T -929))
-((-3163 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-367)) (-4 *2 (-1248 *4)) (-5 *1 (-929 *4 *2)))))
-(-10 -7 (-15 -3163 (|#2| (-646 |#1|) (-646 |#1|))))
-((-3165 (((-551) (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165)) 177)) (-3184 ((|#4| |#4|) 196)) (-3169 (((-646 (-412 (-952 |#1|))) (-646 (-1183))) 149)) (-3183 (((-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-646 (-646 |#4|)) (-776) (-776) (-551)) 88)) (-3173 (((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-646 |#4|)) 69)) (-3182 (((-694 |#4|) (-694 |#4|) (-646 |#4|)) 65)) (-3166 (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165)) 189)) (-3164 (((-551) (-694 |#4|) (-925) (-1165)) 169) (((-551) (-694 |#4|) (-646 (-1183)) (-925) (-1165)) 168) (((-551) (-694 |#4|) (-646 |#4|) (-925) (-1165)) 167) (((-551) (-694 |#4|) (-1165)) 157) (((-551) (-694 |#4|) (-646 (-1183)) (-1165)) 156) (((-551) (-694 |#4|) (-646 |#4|) (-1165)) 155) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-925)) 154) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183)) (-925)) 153) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|) (-925)) 152) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|)) 151) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183))) 150) (((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|)) 146)) (-3170 ((|#4| (-952 |#1|)) 80)) (-3180 (((-112) (-646 |#4|) (-646 (-646 |#4|))) 193)) (-3179 (((-646 (-646 (-551))) (-551) (-551)) 162)) (-3178 (((-646 (-646 |#4|)) (-646 (-646 |#4|))) 107)) (-3177 (((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|))))) 102)) (-3176 (((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|))))) 101)) (-3185 (((-112) (-646 (-952 |#1|))) 19) (((-112) (-646 |#4|)) 15)) (-3171 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-646 |#4|)) (|:| |n0| (-646 |#4|))) (-646 |#4|) (-646 |#4|)) 84)) (-3175 (((-646 |#4|) |#4|) 57)) (-3168 (((-646 (-412 (-952 |#1|))) (-646 |#4|)) 145) (((-694 (-412 (-952 |#1|))) (-694 |#4|)) 66) (((-412 (-952 |#1|)) |#4|) 142)) (-3167 (((-2 (|:| |rgl| (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))))) (|:| |rgsz| (-551))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-776) (-1165) (-551)) 113)) (-3172 (((-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))) (-694 |#4|) (-776)) 100)) (-3181 (((-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) (-694 |#4|) (-776)) 124)) (-3174 (((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| -1758 (-694 (-412 (-952 |#1|)))) (|:| |vec| (-646 (-412 (-952 |#1|)))) (|:| -3531 (-776)) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) 56)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183)))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|) (-925))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183)) (-925))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-925))) (-15 -3164 ((-551) (-694 |#4|) (-646 |#4|) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 (-1183)) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 |#4|) (-925) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 (-1183)) (-925) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-925) (-1165))) (-15 -3165 ((-551) (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165))) (-15 -3166 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165))) (-15 -3167 ((-2 (|:| |rgl| (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))))) (|:| |rgsz| (-551))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-776) (-1165) (-551))) (-15 -3168 ((-412 (-952 |#1|)) |#4|)) (-15 -3168 ((-694 (-412 (-952 |#1|))) (-694 |#4|))) (-15 -3168 ((-646 (-412 (-952 |#1|))) (-646 |#4|))) (-15 -3169 ((-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3170 (|#4| (-952 |#1|))) (-15 -3171 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-646 |#4|)) (|:| |n0| (-646 |#4|))) (-646 |#4|) (-646 |#4|))) (-15 -3172 ((-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))) (-694 |#4|) (-776))) (-15 -3173 ((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-646 |#4|))) (-15 -3174 ((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| -1758 (-694 (-412 (-952 |#1|)))) (|:| |vec| (-646 (-412 (-952 |#1|)))) (|:| -3531 (-776)) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (-15 -3175 ((-646 |#4|) |#4|)) (-15 -3176 ((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))))) (-15 -3177 ((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))))) (-15 -3178 ((-646 (-646 |#4|)) (-646 (-646 |#4|)))) (-15 -3179 ((-646 (-646 (-551))) (-551) (-551))) (-15 -3180 ((-112) (-646 |#4|) (-646 (-646 |#4|)))) (-15 -3181 ((-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) (-694 |#4|) (-776))) (-15 -3182 ((-694 |#4|) (-694 |#4|) (-646 |#4|))) (-15 -3183 ((-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-646 (-646 |#4|)) (-776) (-776) (-551))) (-15 -3184 (|#4| |#4|)) (-15 -3185 ((-112) (-646 |#4|))) (-15 -3185 ((-112) (-646 (-952 |#1|))))) (-13 (-310) (-147)) (-13 (-855) (-619 (-1183))) (-798) (-956 |#1| |#3| |#2|)) (T -930))
-((-3185 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4)))) (-3183 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) (-5 *4 (-694 *12)) (-5 *5 (-646 (-412 (-952 *9)))) (-5 *6 (-646 (-646 *12))) (-5 *7 (-776)) (-5 *8 (-551)) (-4 *9 (-13 (-310) (-147))) (-4 *12 (-956 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1183)))) (-4 *11 (-798)) (-5 *2 (-2 (|:| |eqzro| (-646 *12)) (|:| |neqzro| (-646 *12)) (|:| |wcond| (-646 (-952 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *9)))) (|:| -2200 (-646 (-1272 (-412 (-952 *9))))))))) (-5 *1 (-930 *9 *10 *11 *12)))) (-3182 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *7)) (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-646 (-2 (|:| |det| *8) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-646 *8))) (-5 *3 (-646 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3179 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 (-646 (-551)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-551)) (-4 *7 (-956 *4 *6 *5)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-646 (-646 *6))) (-4 *6 (-956 *3 *5 *4)) (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| *7) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| *7) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1758 (-694 (-412 (-952 *4)))) (|:| |vec| (-646 (-412 (-952 *4)))) (|:| -3531 (-776)) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-2 (|:| |partsol| (-1272 (-412 (-952 *4)))) (|:| -2200 (-646 (-1272 (-412 (-952 *4))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3173 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1272 (-412 (-952 *4)))) (|:| -2200 (-646 (-1272 (-412 (-952 *4))))))) (-5 *3 (-646 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-956 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| *8) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 *8))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))) (-3171 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-4 *7 (-956 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-646 *7)) (|:| |n0| (-646 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-956 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-694 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-412 (-952 *4))) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-3167 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-694 *11)) (-5 *4 (-646 (-412 (-952 *8)))) (-5 *5 (-776)) (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-956 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1183)))) (-4 *10 (-798)) (-5 *2 (-2 (|:| |rgl| (-646 (-2 (|:| |eqzro| (-646 *11)) (|:| |neqzro| (-646 *11)) (|:| |wcond| (-646 (-952 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *8)))) (|:| -2200 (-646 (-1272 (-412 (-952 *8)))))))))) (|:| |rgsz| (-551)))) (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-551)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *7)) (|:| |neqzro| (-646 *7)) (|:| |wcond| (-646 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *4)))) (|:| -2200 (-646 (-1272 (-412 (-952 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8)) (|:| |wcond| (-646 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *5)))) (|:| -2200 (-646 (-1272 (-412 (-952 *5)))))))))) (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-956 *5 *7 *6)) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-925)) (-5 *5 (-1165)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-646 (-1183))) (-5 *5 (-925)) (-5 *6 (-1165)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *7 *8 *9 *10)))) (-3164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-646 *10)) (-5 *5 (-925)) (-5 *6 (-1165)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *7 *8 *9 *10)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 (-1183))) (-5 *5 (-1165)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 *9)) (-5 *5 (-1165)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-925)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8)) (|:| |wcond| (-646 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *5)))) (|:| -2200 (-646 (-1272 (-412 (-952 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 (-1183))) (-5 *5 (-925)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *9)) (|:| |neqzro| (-646 *9)) (|:| |wcond| (-646 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *6)))) (|:| -2200 (-646 (-1272 (-412 (-952 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *5 (-925)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *9)) (|:| |neqzro| (-646 *9)) (|:| |wcond| (-646 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *6)))) (|:| -2200 (-646 (-1272 (-412 (-952 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-646 *9)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *7)) (|:| |neqzro| (-646 *7)) (|:| |wcond| (-646 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *4)))) (|:| -2200 (-646 (-1272 (-412 (-952 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-646 (-1183))) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8)) (|:| |wcond| (-646 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *5)))) (|:| -2200 (-646 (-1272 (-412 (-952 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-646 (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8)) (|:| |wcond| (-646 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 *5)))) (|:| -2200 (-646 (-1272 (-412 (-952 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-646 *8)))))
-(-10 -7 (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183)))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 |#4|) (-925))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-646 (-1183)) (-925))) (-15 -3164 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-694 |#4|) (-925))) (-15 -3164 ((-551) (-694 |#4|) (-646 |#4|) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 (-1183)) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 |#4|) (-925) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-646 (-1183)) (-925) (-1165))) (-15 -3164 ((-551) (-694 |#4|) (-925) (-1165))) (-15 -3165 ((-551) (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165))) (-15 -3166 ((-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|))))))))) (-1165))) (-15 -3167 ((-2 (|:| |rgl| (-646 (-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))))) (|:| |rgsz| (-551))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-776) (-1165) (-551))) (-15 -3168 ((-412 (-952 |#1|)) |#4|)) (-15 -3168 ((-694 (-412 (-952 |#1|))) (-694 |#4|))) (-15 -3168 ((-646 (-412 (-952 |#1|))) (-646 |#4|))) (-15 -3169 ((-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3170 (|#4| (-952 |#1|))) (-15 -3171 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-646 |#4|)) (|:| |n0| (-646 |#4|))) (-646 |#4|) (-646 |#4|))) (-15 -3172 ((-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))) (-694 |#4|) (-776))) (-15 -3173 ((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-646 |#4|))) (-15 -3174 ((-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))) (-2 (|:| -1758 (-694 (-412 (-952 |#1|)))) (|:| |vec| (-646 (-412 (-952 |#1|)))) (|:| -3531 (-776)) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (-15 -3175 ((-646 |#4|) |#4|)) (-15 -3176 ((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))))) (-15 -3177 ((-776) (-646 (-2 (|:| -3531 (-776)) (|:| |eqns| (-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))) (|:| |fgb| (-646 |#4|)))))) (-15 -3178 ((-646 (-646 |#4|)) (-646 (-646 |#4|)))) (-15 -3179 ((-646 (-646 (-551))) (-551) (-551))) (-15 -3180 ((-112) (-646 |#4|) (-646 (-646 |#4|)))) (-15 -3181 ((-646 (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551))))) (-694 |#4|) (-776))) (-15 -3182 ((-694 |#4|) (-694 |#4|) (-646 |#4|))) (-15 -3183 ((-2 (|:| |eqzro| (-646 |#4|)) (|:| |neqzro| (-646 |#4|)) (|:| |wcond| (-646 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1272 (-412 (-952 |#1|)))) (|:| -2200 (-646 (-1272 (-412 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))) (-694 |#4|) (-646 (-412 (-952 |#1|))) (-646 (-646 |#4|)) (-776) (-776) (-551))) (-15 -3184 (|#4| |#4|)) (-15 -3185 ((-112) (-646 |#4|))) (-15 -3185 ((-112) (-646 (-952 |#1|)))))
-((-4324 (($ $ (-1095 (-226))) 124) (($ $ (-1095 (-226)) (-1095 (-226))) 125)) (-3315 (((-1095 (-226)) $) 73)) (-3316 (((-1095 (-226)) $) 72)) (-3209 (((-1095 (-226)) $) 74)) (-3190 (((-551) (-551)) 66)) (-3194 (((-551) (-551)) 61)) (-3192 (((-551) (-551)) 64)) (-3188 (((-112) (-112)) 68)) (-3191 (((-551)) 65)) (-3556 (($ $ (-1095 (-226))) 128) (($ $) 129)) (-3211 (($ (-1 (-949 (-226)) (-226)) (-1095 (-226))) 143) (($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226))) 144)) (-3197 (($ (-1 (-226) (-226)) (-1095 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-3210 (($ (-1 (-226) (-226)) (-1095 (-226))) 139) (($ (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226))) 140) (($ (-646 (-1 (-226) (-226))) (-1095 (-226))) 148) (($ (-646 (-1 (-226) (-226))) (-1095 (-226)) (-1095 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226))) 142) (($ $ (-1095 (-226))) 130)) (-3196 (((-112) $) 69)) (-3187 (((-551)) 70)) (-3195 (((-551)) 59)) (-3193 (((-551)) 62)) (-3317 (((-646 (-646 (-949 (-226)))) $) 35)) (-3186 (((-112) (-112)) 71)) (-4396 (((-868) $) 169)) (-3189 (((-112)) 67)))
-(((-931) (-13 (-961) (-10 -8 (-15 -3210 ($ (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-646 (-1 (-226) (-226))) (-1095 (-226)))) (-15 -3210 ($ (-646 (-1 (-226) (-226))) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3197 ($ (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3197 ($ (-1 (-226) (-226)))) (-15 -3210 ($ $ (-1095 (-226)))) (-15 -3196 ((-112) $)) (-15 -4324 ($ $ (-1095 (-226)))) (-15 -4324 ($ $ (-1095 (-226)) (-1095 (-226)))) (-15 -3556 ($ $ (-1095 (-226)))) (-15 -3556 ($ $)) (-15 -3209 ((-1095 (-226)) $)) (-15 -3195 ((-551))) (-15 -3194 ((-551) (-551))) (-15 -3193 ((-551))) (-15 -3192 ((-551) (-551))) (-15 -3191 ((-551))) (-15 -3190 ((-551) (-551))) (-15 -3189 ((-112))) (-15 -3188 ((-112) (-112))) (-15 -3187 ((-551))) (-15 -3186 ((-112) (-112)))))) (T -931))
-((-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-646 (-1 (-226) (-226)))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-646 (-1 (-226) (-226)))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3211 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3197 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-931)))) (-3210 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-931)))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931)))) (-4324 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931)))) (-3556 (*1 *1 *1) (-5 *1 (-931))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931)))) (-3195 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3193 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3191 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3189 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))) (-3187 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))))
-(-13 (-961) (-10 -8 (-15 -3210 ($ (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-646 (-1 (-226) (-226))) (-1095 (-226)))) (-15 -3210 ($ (-646 (-1 (-226) (-226))) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3197 ($ (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3197 ($ (-1 (-226) (-226)))) (-15 -3210 ($ $ (-1095 (-226)))) (-15 -3196 ((-112) $)) (-15 -4324 ($ $ (-1095 (-226)))) (-15 -4324 ($ $ (-1095 (-226)) (-1095 (-226)))) (-15 -3556 ($ $ (-1095 (-226)))) (-15 -3556 ($ $)) (-15 -3209 ((-1095 (-226)) $)) (-15 -3195 ((-551))) (-15 -3194 ((-551) (-551))) (-15 -3193 ((-551))) (-15 -3192 ((-551) (-551))) (-15 -3191 ((-551))) (-15 -3190 ((-551) (-551))) (-15 -3189 ((-112))) (-15 -3188 ((-112) (-112))) (-15 -3187 ((-551))) (-15 -3186 ((-112) (-112)))))
-((-3197 (((-931) |#1| (-1183)) 17) (((-931) |#1| (-1183) (-1095 (-226))) 21)) (-3210 (((-931) |#1| |#1| (-1183) (-1095 (-226))) 19) (((-931) |#1| (-1183) (-1095 (-226))) 15)))
-(((-932 |#1|) (-10 -7 (-15 -3210 ((-931) |#1| (-1183) (-1095 (-226)))) (-15 -3210 ((-931) |#1| |#1| (-1183) (-1095 (-226)))) (-15 -3197 ((-931) |#1| (-1183) (-1095 (-226)))) (-15 -3197 ((-931) |#1| (-1183)))) (-619 (-540))) (T -932))
-((-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-931)) (-5 *1 (-932 *3)) (-4 *3 (-619 (-540))))) (-3197 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3)) (-4 *3 (-619 (-540))))) (-3210 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3)) (-4 *3 (-619 (-540))))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3)) (-4 *3 (-619 (-540))))))
-(-10 -7 (-15 -3210 ((-931) |#1| (-1183) (-1095 (-226)))) (-15 -3210 ((-931) |#1| |#1| (-1183) (-1095 (-226)))) (-15 -3197 ((-931) |#1| (-1183) (-1095 (-226)))) (-15 -3197 ((-931) |#1| (-1183))))
-((-4324 (($ $ (-1095 (-226)) (-1095 (-226)) (-1095 (-226))) 123)) (-3314 (((-1095 (-226)) $) 64)) (-3315 (((-1095 (-226)) $) 63)) (-3316 (((-1095 (-226)) $) 62)) (-3208 (((-646 (-646 (-226))) $) 69)) (-3209 (((-1095 (-226)) $) 65)) (-3202 (((-551) (-551)) 57)) (-3206 (((-551) (-551)) 52)) (-3204 (((-551) (-551)) 55)) (-3200 (((-112) (-112)) 59)) (-3203 (((-551)) 56)) (-3556 (($ $ (-1095 (-226))) 126) (($ $) 127)) (-3211 (($ (-1 (-949 (-226)) (-226)) (-1095 (-226))) 133) (($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226))) 134)) (-3210 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226))) 137) (($ $ (-1095 (-226))) 129)) (-3199 (((-551)) 60)) (-3207 (((-551)) 50)) (-3205 (((-551)) 53)) (-3317 (((-646 (-646 (-949 (-226)))) $) 153)) (-3198 (((-112) (-112)) 61)) (-4396 (((-868) $) 151)) (-3201 (((-112)) 58)))
-(((-933) (-13 (-980) (-10 -8 (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ $ (-1095 (-226)))) (-15 -4324 ($ $ (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3556 ($ $ (-1095 (-226)))) (-15 -3556 ($ $)) (-15 -3209 ((-1095 (-226)) $)) (-15 -3208 ((-646 (-646 (-226))) $)) (-15 -3207 ((-551))) (-15 -3206 ((-551) (-551))) (-15 -3205 ((-551))) (-15 -3204 ((-551) (-551))) (-15 -3203 ((-551))) (-15 -3202 ((-551) (-551))) (-15 -3201 ((-112))) (-15 -3200 ((-112) (-112))) (-15 -3199 ((-551))) (-15 -3198 ((-112) (-112)))))) (T -933))
-((-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933)))) (-3211 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933)))) (-3210 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933)))) (-3210 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933)))) (-3210 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933)))) (-4324 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933)))) (-3556 (*1 *1 *1) (-5 *1 (-933))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-226)))) (-5 *1 (-933)))) (-3207 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3206 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3205 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3203 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3202 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3201 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-3199 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(-13 (-980) (-10 -8 (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)))) (-15 -3211 ($ (-1 (-949 (-226)) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)))) (-15 -3210 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3210 ($ $ (-1095 (-226)))) (-15 -4324 ($ $ (-1095 (-226)) (-1095 (-226)) (-1095 (-226)))) (-15 -3556 ($ $ (-1095 (-226)))) (-15 -3556 ($ $)) (-15 -3209 ((-1095 (-226)) $)) (-15 -3208 ((-646 (-646 (-226))) $)) (-15 -3207 ((-551))) (-15 -3206 ((-551) (-551))) (-15 -3205 ((-551))) (-15 -3204 ((-551) (-551))) (-15 -3203 ((-551))) (-15 -3202 ((-551) (-551))) (-15 -3201 ((-112))) (-15 -3200 ((-112) (-112))) (-15 -3199 ((-551))) (-15 -3198 ((-112) (-112)))))
-((-3212 (((-646 (-1095 (-226))) (-646 (-646 (-949 (-226))))) 34)))
-(((-934) (-10 -7 (-15 -3212 ((-646 (-1095 (-226))) (-646 (-646 (-949 (-226)))))))) (T -934))
-((-3212 (*1 *2 *3) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-646 (-1095 (-226)))) (-5 *1 (-934)))))
-(-10 -7 (-15 -3212 ((-646 (-1095 (-226))) (-646 (-646 (-949 (-226)))))))
-((-3214 (((-317 (-551)) (-1183)) 16)) (-3215 (((-317 (-551)) (-1183)) 14)) (-4402 (((-317 (-551)) (-1183)) 12)) (-3213 (((-317 (-551)) (-1183) (-511)) 19)))
-(((-935) (-10 -7 (-15 -3213 ((-317 (-551)) (-1183) (-511))) (-15 -4402 ((-317 (-551)) (-1183))) (-15 -3214 ((-317 (-551)) (-1183))) (-15 -3215 ((-317 (-551)) (-1183))))) (T -935))
-((-3215 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-317 (-551))) (-5 *1 (-935)))))
-(-10 -7 (-15 -3213 ((-317 (-551)) (-1183) (-511))) (-15 -4402 ((-317 (-551)) (-1183))) (-15 -3214 ((-317 (-551)) (-1183))) (-15 -3215 ((-317 (-551)) (-1183))))
-((-3214 ((|#2| |#2|) 28)) (-3215 ((|#2| |#2|) 29)) (-4402 ((|#2| |#2|) 27)) (-3213 ((|#2| |#2| (-511)) 26)))
-(((-936 |#1| |#2|) (-10 -7 (-15 -3213 (|#2| |#2| (-511))) (-15 -4402 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -3215 (|#2| |#2|))) (-1107) (-426 |#1|)) (T -936))
-((-3215 (*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3)))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3)))) (-4402 (*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3)))) (-3213 (*1 *2 *2 *3) (-12 (-5 *3 (-511)) (-4 *4 (-1107)) (-5 *1 (-936 *4 *2)) (-4 *2 (-426 *4)))))
-(-10 -7 (-15 -3213 (|#2| |#2| (-511))) (-15 -4402 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)))
-((-3217 (((-894 |#1| |#3|) |#2| (-896 |#1|) (-894 |#1| |#3|)) 25)) (-3216 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3216 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3217 ((-894 |#1| |#3|) |#2| (-896 |#1|) (-894 |#1| |#3|)))) (-1107) (-892 |#1|) (-13 (-1107) (-1044 |#2|))) (T -937))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *6)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-13 (-1107) (-1044 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1107) (-1044 *5))) (-4 *5 (-892 *4)) (-4 *4 (-1107)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-937 *4 *5 *6)))))
-(-10 -7 (-15 -3216 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3217 ((-894 |#1| |#3|) |#2| (-896 |#1|) (-894 |#1| |#3|))))
-((-3217 (((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)) 30)))
-(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)))) (-1107) (-13 (-562) (-892 |#1|)) (-13 (-426 |#2|) (-619 (-896 |#1|)) (-892 |#1|) (-1044 (-616 $)))) (T -938))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107)) (-4 *3 (-13 (-426 *6) (-619 *4) (-892 *5) (-1044 (-616 $)))) (-5 *4 (-896 *5)) (-4 *6 (-13 (-562) (-892 *5))) (-5 *1 (-938 *5 *6 *3)))))
-(-10 -7 (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))))
-((-3217 (((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|)) 13)))
-(((-939 |#1|) (-10 -7 (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|)))) (-550)) (T -939))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 (-551) *3)) (-5 *4 (-896 (-551))) (-4 *3 (-550)) (-5 *1 (-939 *3)))))
-(-10 -7 (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))))
-((-3217 (((-894 |#1| |#2|) (-616 |#2|) (-896 |#1|) (-894 |#1| |#2|)) 57)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -3217 ((-894 |#1| |#2|) (-616 |#2|) (-896 |#1|) (-894 |#1| |#2|)))) (-1107) (-13 (-1107) (-1044 (-616 $)) (-619 (-896 |#1|)) (-892 |#1|))) (T -940))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *6)) (-5 *3 (-616 *6)) (-4 *5 (-1107)) (-4 *6 (-13 (-1107) (-1044 (-616 $)) (-619 *4) (-892 *5))) (-5 *4 (-896 *5)) (-5 *1 (-940 *5 *6)))))
-(-10 -7 (-15 -3217 ((-894 |#1| |#2|) (-616 |#2|) (-896 |#1|) (-894 |#1| |#2|))))
-((-3217 (((-891 |#1| |#2| |#3|) |#3| (-896 |#1|) (-891 |#1| |#2| |#3|)) 17)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-891 |#1| |#2| |#3|) |#3| (-896 |#1|) (-891 |#1| |#2| |#3|)))) (-1107) (-892 |#1|) (-671 |#2|)) (T -941))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3)))))
-(-10 -7 (-15 -3217 ((-891 |#1| |#2| |#3|) |#3| (-896 |#1|) (-891 |#1| |#2| |#3|))))
-((-3217 (((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|)) 17 (|has| |#3| (-892 |#1|))) (((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|) (-1 (-894 |#1| |#5|) |#3| (-896 |#1|) (-894 |#1| |#5|))) 16)))
-(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3217 ((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|) (-1 (-894 |#1| |#5|) |#3| (-896 |#1|) (-894 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3217 ((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|))) |%noBranch|)) (-1107) (-798) (-855) (-13 (-1055) (-892 |#1|)) (-13 (-956 |#4| |#2| |#3|) (-619 (-896 |#1|)))) (T -942))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107)) (-4 *3 (-13 (-956 *8 *6 *7) (-619 *4))) (-5 *4 (-896 *5)) (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1055) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) (-3217 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-894 *6 *3) *8 (-896 *6) (-894 *6 *3))) (-4 *8 (-855)) (-5 *2 (-894 *6 *3)) (-5 *4 (-896 *6)) (-4 *6 (-1107)) (-4 *3 (-13 (-956 *9 *7 *8) (-619 *4))) (-4 *7 (-798)) (-4 *9 (-13 (-1055) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3217 ((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|) (-1 (-894 |#1| |#5|) |#3| (-896 |#1|) (-894 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3217 ((-894 |#1| |#5|) |#5| (-896 |#1|) (-894 |#1| |#5|))) |%noBranch|))
-((-3647 (((-317 (-551)) (-1183) (-646 (-1 (-112) |#1|))) 18) (((-317 (-551)) (-1183) (-1 (-112) |#1|)) 15)))
-(((-943 |#1|) (-10 -7 (-15 -3647 ((-317 (-551)) (-1183) (-1 (-112) |#1|))) (-15 -3647 ((-317 (-551)) (-1183) (-646 (-1 (-112) |#1|))))) (-1222)) (T -943))
-((-3647 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-646 (-1 (-112) *5))) (-4 *5 (-1222)) (-5 *2 (-317 (-551))) (-5 *1 (-943 *5)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1222)) (-5 *2 (-317 (-551))) (-5 *1 (-943 *5)))))
-(-10 -7 (-15 -3647 ((-317 (-551)) (-1183) (-1 (-112) |#1|))) (-15 -3647 ((-317 (-551)) (-1183) (-646 (-1 (-112) |#1|)))))
-((-3647 ((|#2| |#2| (-646 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -3647 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3647 (|#2| |#2| (-646 (-1 (-112) |#3|))))) (-1107) (-426 |#1|) (-1222)) (T -944))
-((-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-1 (-112) *5))) (-4 *5 (-1222)) (-4 *4 (-1107)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-426 *4)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1222)) (-4 *4 (-1107)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-426 *4)))))
-(-10 -7 (-15 -3647 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3647 (|#2| |#2| (-646 (-1 (-112) |#3|)))))
-((-3217 (((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)) 25)))
-(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)))) (-1107) (-13 (-562) (-892 |#1|) (-619 (-896 |#1|))) (-997 |#2|)) (T -945))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107)) (-4 *3 (-997 *6)) (-4 *6 (-13 (-562) (-892 *5) (-619 *4))) (-5 *4 (-896 *5)) (-5 *1 (-945 *5 *6 *3)))))
-(-10 -7 (-15 -3217 ((-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))))
-((-3217 (((-894 |#1| (-1183)) (-1183) (-896 |#1|) (-894 |#1| (-1183))) 18)))
-(((-946 |#1|) (-10 -7 (-15 -3217 ((-894 |#1| (-1183)) (-1183) (-896 |#1|) (-894 |#1| (-1183))))) (-1107)) (T -946))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-5 *1 (-946 *5)))))
-(-10 -7 (-15 -3217 ((-894 |#1| (-1183)) (-1183) (-896 |#1|) (-894 |#1| (-1183)))))
-((-3218 (((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))) 34)) (-3217 (((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-1 |#3| (-646 |#3|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))) 33)))
-(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-1 |#3| (-646 |#3|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)))) (-15 -3218 ((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|))))) (-1107) (-1055) (-13 (-1055) (-619 (-896 |#1|)) (-1044 |#2|))) (T -947))
-((-3218 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 (-896 *6))) (-5 *5 (-1 (-894 *6 *8) *8 (-896 *6) (-894 *6 *8))) (-4 *6 (-1107)) (-4 *8 (-13 (-1055) (-619 (-896 *6)) (-1044 *7))) (-5 *2 (-894 *6 *8)) (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))) (-3217 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-646 (-896 *7))) (-5 *5 (-1 *9 (-646 *9))) (-5 *6 (-1 (-894 *7 *9) *9 (-896 *7) (-894 *7 *9))) (-4 *7 (-1107)) (-4 *9 (-13 (-1055) (-619 (-896 *7)) (-1044 *8))) (-5 *2 (-894 *7 *9)) (-5 *3 (-646 *9)) (-4 *8 (-1055)) (-5 *1 (-947 *7 *8 *9)))))
-(-10 -7 (-15 -3217 ((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-1 |#3| (-646 |#3|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)))) (-15 -3218 ((-894 |#1| |#3|) (-646 |#3|) (-646 (-896 |#1|)) (-894 |#1| |#3|) (-1 (-894 |#1| |#3|) |#3| (-896 |#1|) (-894 |#1| |#3|)))))
-((-3226 (((-1177 (-412 (-551))) (-551)) 81)) (-3225 (((-1177 (-551)) (-551)) 84)) (-3776 (((-1177 (-551)) (-551)) 78)) (-3224 (((-551) (-1177 (-551))) 74)) (-3223 (((-1177 (-412 (-551))) (-551)) 65)) (-3222 (((-1177 (-551)) (-551)) 49)) (-3221 (((-1177 (-551)) (-551)) 86)) (-3220 (((-1177 (-551)) (-551)) 85)) (-3219 (((-1177 (-412 (-551))) (-551)) 67)))
-(((-948) (-10 -7 (-15 -3219 ((-1177 (-412 (-551))) (-551))) (-15 -3220 ((-1177 (-551)) (-551))) (-15 -3221 ((-1177 (-551)) (-551))) (-15 -3222 ((-1177 (-551)) (-551))) (-15 -3223 ((-1177 (-412 (-551))) (-551))) (-15 -3224 ((-551) (-1177 (-551)))) (-15 -3776 ((-1177 (-551)) (-551))) (-15 -3225 ((-1177 (-551)) (-551))) (-15 -3226 ((-1177 (-412 (-551))) (-551))))) (T -948))
-((-3226 (*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3225 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3776 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1177 (-551))) (-5 *2 (-551)) (-5 *1 (-948)))) (-3223 (*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3221 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(-10 -7 (-15 -3219 ((-1177 (-412 (-551))) (-551))) (-15 -3220 ((-1177 (-551)) (-551))) (-15 -3221 ((-1177 (-551)) (-551))) (-15 -3222 ((-1177 (-551)) (-551))) (-15 -3223 ((-1177 (-412 (-551))) (-551))) (-15 -3224 ((-551) (-1177 (-551)))) (-15 -3776 ((-1177 (-551)) (-551))) (-15 -3225 ((-1177 (-551)) (-551))) (-15 -3226 ((-1177 (-412 (-551))) (-551))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776)) NIL (|has| |#1| (-23)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-4156 (($ (-646 |#1|)) 9)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4285 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4282 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-4166 (((-112) $ (-776)) NIL)) (-4283 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-4218 (($ $ (-646 |#1|)) 25)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) 18) (($ $ (-1239 (-551))) NIL)) (-4286 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-4361 (((-925) $) 13)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4284 (($ $ $) 23)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540)))) (($ (-646 |#1|)) 14)) (-3971 (($ (-646 |#1|)) NIL)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4287 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4289 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-551) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-4407 (((-776) $) 11 (|has| $ (-6 -4443)))))
+((-3777 ((|#2| (-649 |#1|) (-649 |#1|)) 29)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3777 (|#2| (-649 |#1|) (-649 |#1|)))) (-367) (-1249 |#1|)) (T -928))
+((-3777 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1249 *4)) (-5 *1 (-928 *4 *2)))))
+(-10 -7 (-15 -3777 (|#2| (-649 |#1|) (-649 |#1|))))
+((-3084 (((-1179 |#2|) (-649 |#2|) (-649 |#2|)) 17) (((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|)) 13)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3084 ((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3084 ((-1179 |#2|) (-649 |#2|) (-649 |#2|)))) (-1183) (-367)) (T -929))
+((-3084 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1179 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-1183)))) (-3084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1246 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1183)) (-4 *5 (-367)) (-5 *1 (-929 *4 *5)))))
+(-10 -7 (-15 -3084 ((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3084 ((-1179 |#2|) (-649 |#2|) (-649 |#2|))))
+((-3803 (((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165)) 177)) (-4031 ((|#4| |#4|) 196)) (-3853 (((-649 (-412 (-958 |#1|))) (-649 (-1183))) 149)) (-4020 (((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569)) 88)) (-3903 (((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|)) 69)) (-4008 (((-694 |#4|) (-694 |#4|) (-649 |#4|)) 65)) (-3815 (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165)) 189)) (-3791 (((-569) (-694 |#4|) (-927) (-1165)) 169) (((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165)) 168) (((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165)) 167) (((-569) (-694 |#4|) (-1165)) 157) (((-569) (-694 |#4|) (-649 (-1183)) (-1165)) 156) (((-569) (-694 |#4|) (-649 |#4|) (-1165)) 155) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927)) 154) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927)) 153) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927)) 152) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|)) 151) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183))) 150) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|)) 146)) (-3867 ((|#4| (-958 |#1|)) 80)) (-3985 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 193)) (-3973 (((-649 (-649 (-569))) (-569) (-569)) 162)) (-3960 (((-649 (-649 |#4|)) (-649 (-649 |#4|))) 107)) (-3949 (((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 102)) (-3938 (((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 101)) (-4042 (((-112) (-649 (-958 |#1|))) 19) (((-112) (-649 |#4|)) 15)) (-3878 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|)) 84)) (-3927 (((-649 |#4|) |#4|) 57)) (-3840 (((-649 (-412 (-958 |#1|))) (-649 |#4|)) 145) (((-694 (-412 (-958 |#1|))) (-694 |#4|)) 66) (((-412 (-958 |#1|)) |#4|) 142)) (-3827 (((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569)) 113)) (-3890 (((-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776)) 100)) (-3997 (((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776)) 124)) (-3915 (((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -4368 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3904 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) 56)))
+(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -3791 ((-569) (-694 |#4|) (-649 |#4|) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 (-1183)) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-927) (-1165))) (-15 -3803 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3815 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3827 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569))) (-15 -3840 ((-412 (-958 |#1|)) |#4|)) (-15 -3840 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3840 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -3853 ((-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -3867 (|#4| (-958 |#1|))) (-15 -3878 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -3890 ((-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -3903 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3915 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -4368 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3904 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3927 ((-649 |#4|) |#4|)) (-15 -3938 ((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -3949 ((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -3960 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3973 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3985 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -3997 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -4008 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -4020 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -4031 (|#4| |#4|)) (-15 -4042 ((-112) (-649 |#4|))) (-15 -4042 ((-112) (-649 (-958 |#1|))))) (-13 (-310) (-147)) (-13 (-855) (-619 (-1183))) (-798) (-955 |#1| |#3| |#2|)) (T -930))
+((-4042 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) (-4031 (*1 *2 *2) (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))) (-4020 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9)))) (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569)) (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1183)))) (-4 *11 (-798)) (-5 *2 (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12)) (|:| |wcond| (-649 (-958 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *9)))) (|:| -3371 (-649 (-1273 (-412 (-958 *9))))))))) (-5 *1 (-930 *9 *10 *11 *12)))) (-4008 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3973 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4)) (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4368 (-694 (-412 (-958 *4)))) (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3904 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -3371 (-649 (-1273 (-412 (-958 *4))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3903 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -3371 (-649 (-1273 (-412 (-958 *4))))))) (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *8))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))) (-3878 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3840 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3827 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8)))) (-5 *5 (-776)) (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1183)))) (-4 *10 (-798)) (-5 *2 (-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11)) (|:| |wcond| (-649 (-958 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *8)))) (|:| -3371 (-649 (-1273 (-412 (-958 *8)))))))))) (|:| |rgsz| (-569)))) (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -3371 (-649 (-1273 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -3371 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6)) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1183))) (-5 *5 (-927)) (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927)) (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -3371 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *6)))) (|:| -3371 (-649 (-1273 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *6)))) (|:| -3371 (-649 (-1273 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -3371 (-649 (-1273 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1183))) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -3371 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -3371 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+(-10 -7 (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927))) (-15 -3791 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -3791 ((-569) (-694 |#4|) (-649 |#4|) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 (-1183)) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165))) (-15 -3791 ((-569) (-694 |#4|) (-927) (-1165))) (-15 -3803 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3815 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3827 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569))) (-15 -3840 ((-412 (-958 |#1|)) |#4|)) (-15 -3840 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3840 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -3853 ((-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -3867 (|#4| (-958 |#1|))) (-15 -3878 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -3890 ((-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -3903 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3915 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -4368 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3904 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3927 ((-649 |#4|) |#4|)) (-15 -3938 ((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -3949 ((-776) (-649 (-2 (|:| -3904 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -3960 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3973 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3985 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -3997 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -4008 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -4020 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -3371 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -4031 (|#4| |#4|)) (-15 -4042 ((-112) (-649 |#4|))) (-15 -4042 ((-112) (-649 (-958 |#1|)))))
+((-4171 (((-933) |#1| (-1183)) 17) (((-933) |#1| (-1183) (-1100 (-226))) 21)) (-4318 (((-933) |#1| |#1| (-1183) (-1100 (-226))) 19) (((-933) |#1| (-1183) (-1100 (-226))) 15)))
+(((-931 |#1|) (-10 -7 (-15 -4318 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4318 ((-933) |#1| |#1| (-1183) (-1100 (-226)))) (-15 -4171 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4171 ((-933) |#1| (-1183)))) (-619 (-541))) (T -931))
+((-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-4171 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-4318 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -4318 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4318 ((-933) |#1| |#1| (-1183) (-1100 (-226)))) (-15 -4171 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4171 ((-933) |#1| (-1183))))
+((-2541 (($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 123)) (-3052 (((-1100 (-226)) $) 64)) (-3039 (((-1100 (-226)) $) 63)) (-3028 (((-1100 (-226)) $) 62)) (-4299 (((-649 (-649 (-226))) $) 69)) (-4309 (((-1100 (-226)) $) 65)) (-4226 (((-569) (-569)) 57)) (-4276 (((-569) (-569)) 52)) (-4249 (((-569) (-569)) 55)) (-4205 (((-112) (-112)) 59)) (-4239 (((-569)) 56)) (-3355 (($ $ (-1100 (-226))) 126) (($ $) 127)) (-2999 (($ (-1 (-949 (-226)) (-226)) (-1100 (-226))) 133) (($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 134)) (-4318 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 137) (($ $ (-1100 (-226))) 129)) (-4194 (((-569)) 60)) (-4288 (((-569)) 50)) (-4262 (((-569)) 53)) (-2764 (((-649 (-649 (-949 (-226)))) $) 153)) (-4183 (((-112) (-112)) 61)) (-2388 (((-867) $) 151)) (-4216 (((-112)) 58)))
+(((-932) (-13 (-980) (-10 -8 (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ $ (-1100 (-226)))) (-15 -2541 ($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3355 ($ $ (-1100 (-226)))) (-15 -3355 ($ $)) (-15 -4309 ((-1100 (-226)) $)) (-15 -4299 ((-649 (-649 (-226))) $)) (-15 -4288 ((-569))) (-15 -4276 ((-569) (-569))) (-15 -4262 ((-569))) (-15 -4249 ((-569) (-569))) (-15 -4239 ((-569))) (-15 -4226 ((-569) (-569))) (-15 -4216 ((-112))) (-15 -4205 ((-112) (-112))) (-15 -4194 ((-569))) (-15 -4183 ((-112) (-112)))))) (T -932))
+((-2999 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-2999 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-4318 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-4318 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-2541 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-3355 (*1 *1 *1) (-5 *1 (-932))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))) (-4288 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4262 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4239 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4216 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-4205 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-4194 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(-13 (-980) (-10 -8 (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ $ (-1100 (-226)))) (-15 -2541 ($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3355 ($ $ (-1100 (-226)))) (-15 -3355 ($ $)) (-15 -4309 ((-1100 (-226)) $)) (-15 -4299 ((-649 (-649 (-226))) $)) (-15 -4288 ((-569))) (-15 -4276 ((-569) (-569))) (-15 -4262 ((-569))) (-15 -4249 ((-569) (-569))) (-15 -4239 ((-569))) (-15 -4226 ((-569) (-569))) (-15 -4216 ((-112))) (-15 -4205 ((-112) (-112))) (-15 -4194 ((-569))) (-15 -4183 ((-112) (-112)))))
+((-2541 (($ $ (-1100 (-226))) 124) (($ $ (-1100 (-226)) (-1100 (-226))) 125)) (-3039 (((-1100 (-226)) $) 73)) (-3028 (((-1100 (-226)) $) 72)) (-4309 (((-1100 (-226)) $) 74)) (-4087 (((-569) (-569)) 66)) (-4137 (((-569) (-569)) 61)) (-4112 (((-569) (-569)) 64)) (-4065 (((-112) (-112)) 68)) (-4099 (((-569)) 65)) (-3355 (($ $ (-1100 (-226))) 128) (($ $) 129)) (-2999 (($ (-1 (-949 (-226)) (-226)) (-1100 (-226))) 143) (($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 144)) (-4171 (($ (-1 (-226) (-226)) (-1100 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-4318 (($ (-1 (-226) (-226)) (-1100 (-226))) 139) (($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226))) 140) (($ (-649 (-1 (-226) (-226))) (-1100 (-226))) 148) (($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 142) (($ $ (-1100 (-226))) 130)) (-4159 (((-112) $) 69)) (-4053 (((-569)) 70)) (-4149 (((-569)) 59)) (-4124 (((-569)) 62)) (-2764 (((-649 (-649 (-949 (-226)))) $) 35)) (-2739 (((-112) (-112)) 71)) (-2388 (((-867) $) 169)) (-4077 (((-112)) 67)))
+(((-933) (-13 (-961) (-10 -8 (-15 -4318 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)))) (-15 -4318 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4171 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4171 ($ (-1 (-226) (-226)))) (-15 -4318 ($ $ (-1100 (-226)))) (-15 -4159 ((-112) $)) (-15 -2541 ($ $ (-1100 (-226)))) (-15 -2541 ($ $ (-1100 (-226)) (-1100 (-226)))) (-15 -3355 ($ $ (-1100 (-226)))) (-15 -3355 ($ $)) (-15 -4309 ((-1100 (-226)) $)) (-15 -4149 ((-569))) (-15 -4137 ((-569) (-569))) (-15 -4124 ((-569))) (-15 -4112 ((-569) (-569))) (-15 -4099 ((-569))) (-15 -4087 ((-569) (-569))) (-15 -4077 ((-112))) (-15 -4065 ((-112) (-112))) (-15 -4053 ((-569))) (-15 -2739 ((-112) (-112)))))) (T -933))
+((-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-2999 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-2999 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2541 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-2541 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-3355 (*1 *1 *1) (-5 *1 (-933))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-4149 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4124 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4112 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4099 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4077 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-4053 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(-13 (-961) (-10 -8 (-15 -4318 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)))) (-15 -4318 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4318 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2999 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4171 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4171 ($ (-1 (-226) (-226)))) (-15 -4318 ($ $ (-1100 (-226)))) (-15 -4159 ((-112) $)) (-15 -2541 ($ $ (-1100 (-226)))) (-15 -2541 ($ $ (-1100 (-226)) (-1100 (-226)))) (-15 -3355 ($ $ (-1100 (-226)))) (-15 -3355 ($ $)) (-15 -4309 ((-1100 (-226)) $)) (-15 -4149 ((-569))) (-15 -4137 ((-569) (-569))) (-15 -4124 ((-569))) (-15 -4112 ((-569) (-569))) (-15 -4099 ((-569))) (-15 -4087 ((-569) (-569))) (-15 -4077 ((-112))) (-15 -4065 ((-112) (-112))) (-15 -4053 ((-569))) (-15 -2739 ((-112) (-112)))))
+((-3012 (((-649 (-1100 (-226))) (-649 (-649 (-949 (-226))))) 34)))
+(((-934) (-10 -7 (-15 -3012 ((-649 (-1100 (-226))) (-649 (-649 (-949 (-226)))))))) (T -934))
+((-3012 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-1100 (-226)))) (-5 *1 (-934)))))
+(-10 -7 (-15 -3012 ((-649 (-1100 (-226))) (-649 (-649 (-949 (-226)))))))
+((-3460 ((|#2| |#2|) 28)) (-4166 ((|#2| |#2|) 29)) (-3600 ((|#2| |#2|) 27)) (-3548 ((|#2| |#2| (-511)) 26)))
+(((-935 |#1| |#2|) (-10 -7 (-15 -3548 (|#2| |#2| (-511))) (-15 -3600 (|#2| |#2|)) (-15 -3460 (|#2| |#2|)) (-15 -4166 (|#2| |#2|))) (-1106) (-435 |#1|)) (T -935))
+((-4166 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3548 (*1 *2 *2 *3) (-12 (-5 *3 (-511)) (-4 *4 (-1106)) (-5 *1 (-935 *4 *2)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -3548 (|#2| |#2| (-511))) (-15 -3600 (|#2| |#2|)) (-15 -3460 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)))
+((-3460 (((-319 (-569)) (-1183)) 16)) (-4166 (((-319 (-569)) (-1183)) 14)) (-3600 (((-319 (-569)) (-1183)) 12)) (-3548 (((-319 (-569)) (-1183) (-511)) 19)))
+(((-936) (-10 -7 (-15 -3548 ((-319 (-569)) (-1183) (-511))) (-15 -3600 ((-319 (-569)) (-1183))) (-15 -3460 ((-319 (-569)) (-1183))) (-15 -4166 ((-319 (-569)) (-1183))))) (T -936))
+((-4166 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
+(-10 -7 (-15 -3548 ((-319 (-569)) (-1183) (-511))) (-15 -3600 ((-319 (-569)) (-1183))) (-15 -3460 ((-319 (-569)) (-1183))) (-15 -4166 ((-319 (-569)) (-1183))))
+((-3032 (((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)) 25)) (-3024 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3024 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3032 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-892 |#1|) (-13 (-1106) (-1044 |#2|))) (T -937))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-13 (-1106) (-1044 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1106) (-1044 *5))) (-4 *5 (-892 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-937 *4 *5 *6)))))
+(-10 -7 (-15 -3024 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3032 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|))))
+((-3032 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 30)))
+(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-13 (-561) (-892 |#1|)) (-13 (-435 |#2|) (-619 (-898 |#1|)) (-892 |#1|) (-1044 (-617 $)))) (T -938))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1044 (-617 $)))) (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5))) (-5 *1 (-938 *5 *6 *3)))))
+(-10 -7 (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
+((-3032 (((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)) 13)))
+(((-939 |#1|) (-10 -7 (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)))) (-550)) (T -939))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550)) (-5 *1 (-939 *3)))))
+(-10 -7 (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))))
+((-3032 (((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)) 57)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -3032 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)))) (-1106) (-13 (-1106) (-1044 (-617 $)) (-619 (-898 |#1|)) (-892 |#1|))) (T -940))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1106)) (-4 *6 (-13 (-1106) (-1044 (-617 $)) (-619 *4) (-892 *5))) (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6)))))
+(-10 -7 (-15 -3032 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|))))
+((-3032 (((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)) 17)))
+(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)))) (-1106) (-892 |#1|) (-671 |#2|)) (T -941))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3)))))
+(-10 -7 (-15 -3032 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|))))
+((-3032 (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|)) 17 (|has| |#3| (-892 |#1|))) (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|))) 16)))
+(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3032 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3032 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|)) (-1106) (-798) (-855) (-13 (-1055) (-892 |#1|)) (-13 (-955 |#4| |#2| |#3|) (-619 (-898 |#1|)))) (T -942))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5)) (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1055) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) (-3032 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3))) (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6)) (-4 *6 (-1106)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4))) (-4 *7 (-798)) (-4 *9 (-13 (-1055) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3032 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3032 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|))
+((-4245 ((|#2| |#2| (-649 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4245 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4245 (|#2| |#2| (-649 (-1 (-112) |#3|))))) (-1106) (-435 |#1|) (-1223)) (T -943))
+((-4245 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-4 *4 (-1106)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) (-4245 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1223)) (-4 *4 (-1106)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -4245 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4245 (|#2| |#2| (-649 (-1 (-112) |#3|)))))
+((-4245 (((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|))) 18) (((-319 (-569)) (-1183) (-1 (-112) |#1|)) 15)))
+(((-944 |#1|) (-10 -7 (-15 -4245 ((-319 (-569)) (-1183) (-1 (-112) |#1|))) (-15 -4245 ((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|))))) (-1223)) (T -944))
+((-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1223)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))))
+(-10 -7 (-15 -4245 ((-319 (-569)) (-1183) (-1 (-112) |#1|))) (-15 -4245 ((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|)))))
+((-3032 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 25)))
+(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-13 (-561) (-892 |#1|) (-619 (-898 |#1|))) (-998 |#2|)) (T -945))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-998 *6)) (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5)) (-5 *1 (-945 *5 *6 *3)))))
+(-10 -7 (-15 -3032 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
+((-3032 (((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183))) 18)))
+(((-946 |#1|) (-10 -7 (-15 -3032 ((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183))))) (-1106)) (T -946))
+((-3032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *1 (-946 *5)))))
+(-10 -7 (-15 -3032 ((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183)))))
+((-3044 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 34)) (-3032 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 33)))
+(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -3044 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))) (-1106) (-1055) (-13 (-1055) (-619 (-898 |#1|)) (-1044 |#2|))) (T -947))
+((-3044 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6))) (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1106)) (-4 *8 (-13 (-1055) (-619 (-898 *6)) (-1044 *7))) (-5 *2 (-895 *6 *8)) (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))) (-3032 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9))) (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1106)) (-4 *9 (-13 (-1055) (-619 (-898 *7)) (-1044 *8))) (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1055)) (-5 *1 (-947 *7 *8 *9)))))
+(-10 -7 (-15 -3032 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -3044 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))))
+((-3130 (((-1179 (-412 (-569))) (-569)) 81)) (-3119 (((-1179 (-569)) (-569)) 84)) (-1640 (((-1179 (-569)) (-569)) 78)) (-3109 (((-569) (-1179 (-569))) 74)) (-3099 (((-1179 (-412 (-569))) (-569)) 65)) (-3089 (((-1179 (-569)) (-569)) 49)) (-3078 (((-1179 (-569)) (-569)) 86)) (-3069 (((-1179 (-569)) (-569)) 85)) (-3056 (((-1179 (-412 (-569))) (-569)) 67)))
+(((-948) (-10 -7 (-15 -3056 ((-1179 (-412 (-569))) (-569))) (-15 -3069 ((-1179 (-569)) (-569))) (-15 -3078 ((-1179 (-569)) (-569))) (-15 -3089 ((-1179 (-569)) (-569))) (-15 -3099 ((-1179 (-412 (-569))) (-569))) (-15 -3109 ((-569) (-1179 (-569)))) (-15 -1640 ((-1179 (-569)) (-569))) (-15 -3119 ((-1179 (-569)) (-569))) (-15 -3130 ((-1179 (-412 (-569))) (-569))))) (T -948))
+((-3130 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3078 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3069 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(-10 -7 (-15 -3056 ((-1179 (-412 (-569))) (-569))) (-15 -3069 ((-1179 (-569)) (-569))) (-15 -3078 ((-1179 (-569)) (-569))) (-15 -3089 ((-1179 (-569)) (-569))) (-15 -3099 ((-1179 (-412 (-569))) (-569))) (-15 -3109 ((-569) (-1179 (-569)))) (-15 -1640 ((-1179 (-569)) (-569))) (-15 -3119 ((-1179 (-569)) (-569))) (-15 -3130 ((-1179 (-412 (-569))) (-569))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776)) NIL (|has| |#1| (-23)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2025 (($ (-649 |#1|)) 9)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1344 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3503 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1902 (((-112) $ (-776)) NIL)) (-3747 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-4295 (($ $ (-649 |#1|)) 25)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 18) (($ $ (-1240 (-569))) NIL)) (-3523 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-2905 (((-927) $) 13)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3513 (($ $ $) 23)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 14)) (-3709 (($ (-649 |#1|)) NIL)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2946 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2935 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2394 (((-776) $) 11 (|has| $ (-6 -4443)))))
(((-949 |#1|) (-986 |#1|) (-1055)) (T -949))
NIL
(-986 |#1|)
-((-3229 (((-486 |#1| |#2|) (-952 |#2|)) 22)) (-3232 (((-248 |#1| |#2|) (-952 |#2|)) 35)) (-3230 (((-952 |#2|) (-486 |#1| |#2|)) 27)) (-3228 (((-248 |#1| |#2|) (-486 |#1| |#2|)) 57)) (-3231 (((-952 |#2|) (-248 |#1| |#2|)) 32)) (-3227 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 48)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -3227 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3228 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3229 ((-486 |#1| |#2|) (-952 |#2|))) (-15 -3230 ((-952 |#2|) (-486 |#1| |#2|))) (-15 -3231 ((-952 |#2|) (-248 |#1| |#2|))) (-15 -3232 ((-248 |#1| |#2|) (-952 |#2|)))) (-646 (-1183)) (-1055)) (T -950))
-((-3232 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-646 (-1183))))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055)) (-5 *2 (-952 *5)) (-5 *1 (-950 *4 *5)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055)) (-5 *2 (-952 *5)) (-5 *1 (-950 *4 *5)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-646 (-1183))))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(-10 -7 (-15 -3227 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3228 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3229 ((-486 |#1| |#2|) (-952 |#2|))) (-15 -3230 ((-952 |#2|) (-486 |#1| |#2|))) (-15 -3231 ((-952 |#2|) (-248 |#1| |#2|))) (-15 -3232 ((-248 |#1| |#2|) (-952 |#2|))))
-((-3233 (((-646 |#2|) |#2| |#2|) 10)) (-3236 (((-776) (-646 |#1|)) 48 (|has| |#1| (-853)))) (-3234 (((-646 |#2|) |#2|) 11)) (-3237 (((-776) (-646 |#1|) (-551) (-551)) 52 (|has| |#1| (-853)))) (-3235 ((|#1| |#2|) 38 (|has| |#1| (-853)))))
-(((-951 |#1| |#2|) (-10 -7 (-15 -3233 ((-646 |#2|) |#2| |#2|)) (-15 -3234 ((-646 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3235 (|#1| |#2|)) (-15 -3236 ((-776) (-646 |#1|))) (-15 -3237 ((-776) (-646 |#1|) (-551) (-551)))) |%noBranch|)) (-367) (-1248 |#1|)) (T -951))
-((-3237 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-551)) (-4 *5 (-853)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1248 *5)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *4 *5)) (-4 *5 (-1248 *4)))) (-3235 (*1 *2 *3) (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1248 *2)))) (-3234 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1248 *4)))) (-3233 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -3233 ((-646 |#2|) |#2| |#2|)) (-15 -3234 ((-646 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3235 (|#1| |#2|)) (-15 -3236 ((-776) (-646 |#1|))) (-15 -3237 ((-776) (-646 |#1|) (-551) (-551)))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1183)) $) 16)) (-3505 (((-1177 $) $ (-1183)) 21) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1183))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) 8) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-1183) #2#) $) NIL)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-1183) $) NIL)) (-4206 (($ $ $ (-1183)) NIL (|has| |#1| (-173)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-536 (-1183)) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1183) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1183) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#1|) (-1183)) NIL) (($ (-1177 $) (-1183)) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1183)) NIL)) (-3241 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-646 (-776)) $ (-646 (-1183))) NIL)) (-1780 (($ (-1 (-536 (-1183)) (-536 (-1183))) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3504 (((-3 (-1183) #3="failed") $) 19)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1183)) (|:| -2582 (-776))) #3#) $) NIL)) (-4262 (($ $ (-1183)) 29 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1183) |#1|) NIL) (($ $ (-646 (-1183)) (-646 |#1|)) NIL) (($ $ (-1183) $) NIL) (($ $ (-646 (-1183)) (-646 $)) NIL)) (-4207 (($ $ (-1183)) NIL (|has| |#1| (-173)))) (-4260 (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-4398 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-646 (-776)) $ (-646 (-1183))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1183) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1183) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1183) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 25) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-1183)) 27) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-952 |#1|) (-13 (-956 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1183))) |%noBranch|))) (-1055)) (T -952))
-((-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)))))
-(-13 (-956 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1183))) |%noBranch|)))
-((-4408 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 19)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -4408 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1055) (-1055)) (T -953))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-952 *6)) (-5 *1 (-953 *5 *6)))))
-(-10 -7 (-15 -4408 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|))))
-((-3505 (((-1241 |#1| (-952 |#2|)) (-952 |#2|) (-1269 |#1|)) 18)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -3505 ((-1241 |#1| (-952 |#2|)) (-952 |#2|) (-1269 |#1|)))) (-1183) (-1055)) (T -954))
-((-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-5 *2 (-1241 *5 (-952 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-952 *6)))))
-(-10 -7 (-15 -3505 ((-1241 |#1| (-952 |#2|)) (-952 |#2|) (-1269 |#1|))))
-((-3240 (((-776) $) 88) (((-776) $ (-646 |#4|)) 93)) (-4224 (($ $) 203)) (-4419 (((-410 $) $) 195)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 141)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL) (((-3 (-551) #2#) $) NIL) (((-3 |#4| #2#) $) 74)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL) (((-551) $) NIL) ((|#4| $) 73)) (-4206 (($ $ $ |#4|) 95)) (-2445 (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 131) (((-694 |#2|) (-694 $)) 121)) (-3944 (($ $) 210) (($ $ |#4|) 213)) (-3239 (((-646 $) $) 77)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 229) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 222)) (-3242 (((-646 $) $) 34)) (-3312 (($ |#2| |#3|) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-646 |#4|) (-646 (-776))) 71)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#4|) 192)) (-3244 (((-3 (-646 $) "failed") $) 52)) (-3243 (((-3 (-646 $) "failed") $) 39)) (-3245 (((-3 (-2 (|:| |var| |#4|) (|:| -2582 (-776))) "failed") $) 57)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 134)) (-3126 (((-410 (-1177 $)) (-1177 $)) 147)) (-3127 (((-410 (-1177 $)) (-1177 $)) 145)) (-4182 (((-410 $) $) 165)) (-4217 (($ $ (-646 (-296 $))) 24) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-646 |#4|) (-646 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-646 |#4|) (-646 $)) NIL)) (-4207 (($ $ |#4|) 97)) (-4420 (((-896 (-382)) $) 243) (((-896 (-551)) $) 236) (((-540) $) 251)) (-3238 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 184)) (-4127 ((|#2| $ |#3|) NIL) (($ $ |#4| (-776)) 62) (($ $ (-646 |#4|) (-646 (-776))) 69)) (-3123 (((-3 $ #1#) $) 186)) (-3680 (((-112) $ $) 216)))
-(((-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3123 ((-3 |#1| #1="failed") |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) #1#) (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3124 ((-3 (-1272 |#1|) #1#) (-694 |#1|))) (-15 -3944 (|#1| |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -4207 (|#1| |#1| |#4|)) (-15 -4206 (|#1| |#1| |#1| |#4|)) (-15 -3239 ((-646 |#1|) |#1|)) (-15 -3240 ((-776) |#1| (-646 |#4|))) (-15 -3240 ((-776) |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| |#4|) (|:| -2582 (-776))) "failed") |#1|)) (-15 -3244 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3243 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3312 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -3312 (|#1| |#1| |#4| (-776))) (-15 -4212 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3242 ((-646 |#1|) |#1|)) (-15 -4127 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -4127 (|#1| |#1| |#4| (-776))) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -3595 ((-3 |#4| #2="failed") |#1|)) (-15 -3594 (|#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#4| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -3312 (|#1| |#2| |#3|)) (-15 -4127 (|#2| |#1| |#3|)) (-15 -3595 ((-3 (-551) #2#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #2#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #2#) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|))) (-956 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -955))
-NIL
-(-10 -8 (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3123 ((-3 |#1| #1="failed") |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) #1#) (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3124 ((-3 (-1272 |#1|) #1#) (-694 |#1|))) (-15 -3944 (|#1| |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -4207 (|#1| |#1| |#4|)) (-15 -4206 (|#1| |#1| |#1| |#4|)) (-15 -3239 ((-646 |#1|) |#1|)) (-15 -3240 ((-776) |#1| (-646 |#4|))) (-15 -3240 ((-776) |#1|)) (-15 -3245 ((-3 (-2 (|:| |var| |#4|) (|:| -2582 (-776))) "failed") |#1|)) (-15 -3244 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3243 ((-3 (-646 |#1|) "failed") |#1|)) (-15 -3312 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -3312 (|#1| |#1| |#4| (-776))) (-15 -4212 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3242 ((-646 |#1|) |#1|)) (-15 -4127 (|#1| |#1| (-646 |#4|) (-646 (-776)))) (-15 -4127 (|#1| |#1| |#4| (-776))) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -3595 ((-3 |#4| #2="failed") |#1|)) (-15 -3594 (|#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#4| |#1|)) (-15 -4217 (|#1| |#1| (-646 |#4|) (-646 |#2|))) (-15 -4217 (|#1| |#1| |#4| |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -3312 (|#1| |#2| |#3|)) (-15 -4127 (|#2| |#1| |#3|)) (-15 -3595 ((-3 (-551) #2#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #2#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #2#) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3680 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 |#3|) $) 112)) (-3505 (((-1177 $) $ |#3|) 127) (((-1177 |#1|) $) 126)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2251 (($ $) 90 (|has| |#1| (-562)))) (-2249 (((-112) $) 92 (|has| |#1| (-562)))) (-3240 (((-776) $) 114) (((-776) $ (-646 |#3|)) 113)) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 102 (|has| |#1| (-916)))) (-4224 (($ $) 100 (|has| |#1| (-457)))) (-4419 (((-410 $) $) 99 (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 105 (|has| |#1| (-916)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| #2="failed") $) 166) (((-3 (-412 (-551)) #2#) $) 163 (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) 161 (|has| |#1| (-1044 (-551)))) (((-3 |#3| #2#) $) 138)) (-3594 ((|#1| $) 165) (((-412 (-551)) $) 164 (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) 162 (|has| |#1| (-1044 (-551)))) ((|#3| $) 139)) (-4206 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-4409 (($ $) 156)) (-2445 (((-694 (-551)) (-694 $)) 136 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 135 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3908 (((-3 $ "failed") $) 37)) (-3944 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-3239 (((-646 $) $) 111)) (-4173 (((-112) $) 98 (|has| |#1| (-916)))) (-1779 (($ $ |#1| |#2| $) 174)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 86 (-12 (|has| |#3| (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 85 (-12 (|has| |#3| (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-2591 (((-112) $) 35)) (-2599 (((-776) $) 171)) (-3506 (($ (-1177 |#1|) |#3|) 119) (($ (-1177 $) |#3|) 118)) (-3242 (((-646 $) $) 128)) (-4387 (((-112) $) 154)) (-3312 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-646 |#3|) (-646 (-776))) 120)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#3|) 122)) (-3241 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-646 (-776)) $ (-646 |#3|)) 123)) (-1780 (($ (-1 |#2| |#2|) $) 173)) (-4408 (($ (-1 |#1| |#1|) $) 153)) (-3504 (((-3 |#3| "failed") $) 125)) (-3313 (($ $) 151)) (-3612 ((|#1| $) 150)) (-2079 (($ (-646 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3681 (((-1165) $) 10)) (-3244 (((-3 (-646 $) "failed") $) 116)) (-3243 (((-3 (-646 $) "failed") $) 117)) (-3245 (((-3 (-2 (|:| |var| |#3|) (|:| -2582 (-776))) "failed") $) 115)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 168)) (-1981 ((|#1| $) 169)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 97 (|has| |#1| (-457)))) (-3582 (($ (-646 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 104 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 103 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 101 (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) 147) (($ $ (-296 $)) 146) (($ $ $ $) 145) (($ $ (-646 $) (-646 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-646 |#3|) (-646 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-646 |#3|) (-646 $)) 140)) (-4207 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4260 (($ $ |#3|) 46) (($ $ (-646 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-646 |#3|) (-646 (-776))) 43)) (-4398 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-646 (-776)) $ (-646 |#3|)) 131)) (-4420 (((-896 (-382)) $) 84 (-12 (|has| |#3| (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) 83 (-12 (|has| |#3| (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) 82 (-12 (|has| |#3| (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 106 (-3274 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-562))) (($ (-412 (-551))) 80 (-3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))))) (-4267 (((-646 |#1|) $) 170)) (-4127 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-646 |#3|) (-646 (-776))) 129)) (-3123 (((-3 $ "failed") $) 81 (-3978 (-3274 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 32 T CONST)) (-1778 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 91 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ |#3|) 42) (($ $ (-646 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-646 |#3|) (-646 (-776))) 39)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 160 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 159 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-956 |#1| |#2| |#3|) (-140) (-1055) (-798) (-855)) (T -956))
-((-3944 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4398 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4398 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 (-776))))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 (-776))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-3242 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3505 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1177 *1)) (-4 *1 (-956 *4 *5 *3)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1177 *3)))) (-3504 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3241 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3241 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 (-776))))) (-4212 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-956 *4 *5 *3)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 (-776))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-3506 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1055)) (-4 *1 (-956 *4 *5 *3)) (-4 *5 (-798)) (-4 *3 (-855)))) (-3506 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)))) (-3243 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3244 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3245 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -2582 (-776)))))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3240 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *5)))) (-3239 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5)))) (-4206 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4207 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-3944 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-4224 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4419 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-410 *1)) (-4 *1 (-956 *3 *4 *5)))))
-(-13 (-906 |t#3|) (-329 |t#1| |t#2|) (-312 $) (-519 |t#3| |t#1|) (-519 |t#3| $) (-1044 |t#3|) (-381 |t#1|) (-10 -8 (-15 -4398 ((-776) $ |t#3|)) (-15 -4398 ((-646 (-776)) $ (-646 |t#3|))) (-15 -4127 ($ $ |t#3| (-776))) (-15 -4127 ($ $ (-646 |t#3|) (-646 (-776)))) (-15 -3242 ((-646 $) $)) (-15 -3505 ((-1177 $) $ |t#3|)) (-15 -3505 ((-1177 |t#1|) $)) (-15 -3504 ((-3 |t#3| "failed") $)) (-15 -3241 ((-776) $ |t#3|)) (-15 -3241 ((-646 (-776)) $ (-646 |t#3|))) (-15 -4212 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |t#3|)) (-15 -3312 ($ $ |t#3| (-776))) (-15 -3312 ($ $ (-646 |t#3|) (-646 (-776)))) (-15 -3506 ($ (-1177 |t#1|) |t#3|)) (-15 -3506 ($ (-1177 $) |t#3|)) (-15 -3243 ((-3 (-646 $) "failed") $)) (-15 -3244 ((-3 (-646 $) "failed") $)) (-15 -3245 ((-3 (-2 (|:| |var| |t#3|) (|:| -2582 (-776))) "failed") $)) (-15 -3240 ((-776) $)) (-15 -3240 ((-776) $ (-646 |t#3|))) (-15 -3503 ((-646 |t#3|) $)) (-15 -3239 ((-646 $) $)) (IF (|has| |t#1| (-619 (-540))) (IF (|has| |t#3| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-896 (-551)))) (IF (|has| |t#3| (-619 (-896 (-551)))) (-6 (-619 (-896 (-551)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-896 (-382)))) (IF (|has| |t#3| (-619 (-896 (-382)))) (-6 (-619 (-896 (-382)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-551))) (IF (|has| |t#3| (-892 (-551))) (-6 (-892 (-551))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-382))) (IF (|has| |t#3| (-892 (-382))) (-6 (-892 (-382))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4206 ($ $ $ |t#3|)) (-15 -4207 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-6 (-457)) (-15 -3238 ($ $ |t#3|)) (-15 -3944 ($ $)) (-15 -3944 ($ $ |t#3|)) (-15 -4419 ((-410 $) $)) (-15 -4224 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#3| (-619 (-540)))) ((-619 (-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#3| (-619 (-896 (-382))))) ((-619 (-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#3| (-619 (-896 (-551))))) ((-293) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-916)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-562) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#3| (-892 (-382)))) ((-892 (-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#3| (-892 (-551)))) ((-916) |has| |#1| (-916)) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) |has| |#1| (-916)))
-((-3503 (((-646 |#2|) |#5|) 40)) (-3505 (((-1177 |#5|) |#5| |#2| (-1177 |#5|)) 23) (((-412 (-1177 |#5|)) |#5| |#2|) 16)) (-3506 ((|#5| (-412 (-1177 |#5|)) |#2|) 30)) (-3504 (((-3 |#2| "failed") |#5|) 71)) (-3244 (((-3 (-646 |#5|) "failed") |#5|) 65)) (-3246 (((-3 (-2 (|:| |val| |#5|) (|:| -2582 (-551))) "failed") |#5|) 53)) (-3243 (((-3 (-646 |#5|) "failed") |#5|) 67)) (-3245 (((-3 (-2 (|:| |var| |#2|) (|:| -2582 (-551))) "failed") |#5|) 57)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3503 ((-646 |#2|) |#5|)) (-15 -3504 ((-3 |#2| "failed") |#5|)) (-15 -3505 ((-412 (-1177 |#5|)) |#5| |#2|)) (-15 -3506 (|#5| (-412 (-1177 |#5|)) |#2|)) (-15 -3505 ((-1177 |#5|) |#5| |#2| (-1177 |#5|))) (-15 -3243 ((-3 (-646 |#5|) "failed") |#5|)) (-15 -3244 ((-3 (-646 |#5|) "failed") |#5|)) (-15 -3245 ((-3 (-2 (|:| |var| |#2|) (|:| -2582 (-551))) "failed") |#5|)) (-15 -3246 ((-3 (-2 (|:| |val| |#5|) (|:| -2582 (-551))) "failed") |#5|))) (-798) (-855) (-1055) (-956 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -4396 ($ |#4|)) (-15 -3417 (|#4| $)) (-15 -3416 (|#4| $))))) (T -957))
-((-3246 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2582 (-551)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))) (-3245 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2582 (-551)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))) (-3244 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-646 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))) (-3243 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-646 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))) (-3505 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))) (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-5 *1 (-957 *5 *4 *6 *7 *3)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1177 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *2 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))) (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4)))) (-3505 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-412 (-1177 *3))) (-5 *1 (-957 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))) (-3504 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-956 *5 *4 *2)) (-4 *2 (-855)) (-5 *1 (-957 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *6)) (-15 -3417 (*6 $)) (-15 -3416 (*6 $))))))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-646 *5)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(-10 -7 (-15 -3503 ((-646 |#2|) |#5|)) (-15 -3504 ((-3 |#2| "failed") |#5|)) (-15 -3505 ((-412 (-1177 |#5|)) |#5| |#2|)) (-15 -3506 (|#5| (-412 (-1177 |#5|)) |#2|)) (-15 -3505 ((-1177 |#5|) |#5| |#2| (-1177 |#5|))) (-15 -3243 ((-3 (-646 |#5|) "failed") |#5|)) (-15 -3244 ((-3 (-646 |#5|) "failed") |#5|)) (-15 -3245 ((-3 (-2 (|:| |var| |#2|) (|:| -2582 (-551))) "failed") |#5|)) (-15 -3246 ((-3 (-2 (|:| |val| |#5|) (|:| -2582 (-551))) "failed") |#5|)))
-((-4408 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-958 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4408 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-798) (-855) (-1055) (-956 |#3| |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (T -958))
-((-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *6 (-798)) (-4 *2 (-13 (-1107) (-10 -8 (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7)))))
-(-10 -7 (-15 -4408 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3247 (((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#3| (-776)) 49)) (-3248 (((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) (-412 (-551)) (-776)) 44)) (-3250 (((-2 (|:| -2582 (-776)) (|:| -4404 |#4|) (|:| |radicand| (-646 |#4|))) |#4| (-776)) 65)) (-3249 (((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#5| (-776)) 74 (|has| |#3| (-457)))))
-(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -3248 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) (-412 (-551)) (-776))) (IF (|has| |#3| (-457)) (-15 -3249 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3250 ((-2 (|:| -2582 (-776)) (|:| -4404 |#4|) (|:| |radicand| (-646 |#4|))) |#4| (-776)))) (-798) (-855) (-562) (-956 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -4396 ($ |#4|)) (-15 -3417 (|#4| $)) (-15 -3416 (|#4| $))))) (T -959))
-((-3250 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562)) (-4 *3 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| (-646 *3)))) (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -4396 ($ *3)) (-15 -3417 (*3 $)) (-15 -3416 (*3 $))))))) (-3249 (*1 *2 *3 *4) (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| *3))) (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) (-4 *3 (-13 (-367) (-10 -8 (-15 -4396 ($ *8)) (-15 -3417 (*8 $)) (-15 -3416 (*8 $))))))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-551))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *9) (|:| |radicand| *9))) (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) (-4 *9 (-13 (-367) (-10 -8 (-15 -4396 ($ *8)) (-15 -3417 (*8 $)) (-15 -3416 (*8 $))))))) (-3247 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-562)) (-4 *7 (-956 *3 *5 *6)) (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *8) (|:| |radicand| *8))) (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(-10 -7 (-15 -3247 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -3248 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) (-412 (-551)) (-776))) (IF (|has| |#3| (-457)) (-15 -3249 ((-2 (|:| -2582 (-776)) (|:| -4404 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3250 ((-2 (|:| -2582 (-776)) (|:| -4404 |#4|) (|:| |radicand| (-646 |#4|))) |#4| (-776))))
-((-2986 (((-112) $ $) NIL)) (-3251 (($ (-1126)) 8)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 15) (((-1126) $) 12)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 11)))
-(((-960) (-13 (-1107) (-618 (-1126)) (-10 -8 (-15 -3251 ($ (-1126)))))) (T -960))
-((-3251 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
-(-13 (-1107) (-618 (-1126)) (-10 -8 (-15 -3251 ($ (-1126)))))
-((-3315 (((-1095 (-226)) $) 8)) (-3316 (((-1095 (-226)) $) 9)) (-3317 (((-646 (-646 (-949 (-226)))) $) 10)) (-4396 (((-868) $) 6)))
+((-3165 (((-486 |#1| |#2|) (-958 |#2|)) 22)) (-3197 (((-248 |#1| |#2|) (-958 |#2|)) 35)) (-3175 (((-958 |#2|) (-486 |#1| |#2|)) 27)) (-3152 (((-248 |#1| |#2|) (-486 |#1| |#2|)) 57)) (-3186 (((-958 |#2|) (-248 |#1| |#2|)) 32)) (-3141 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 48)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3141 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3152 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3165 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -3175 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3186 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -3197 ((-248 |#1| |#2|) (-958 |#2|)))) (-649 (-1183)) (-1055)) (T -950))
+((-3197 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(-10 -7 (-15 -3141 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3152 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3165 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -3175 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3186 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -3197 ((-248 |#1| |#2|) (-958 |#2|))))
+((-3212 (((-649 |#2|) |#2| |#2|) 10)) (-3255 (((-776) (-649 |#1|)) 48 (|has| |#1| (-853)))) (-3226 (((-649 |#2|) |#2|) 11)) (-3267 (((-776) (-649 |#1|) (-569) (-569)) 52 (|has| |#1| (-853)))) (-3240 ((|#1| |#2|) 38 (|has| |#1| (-853)))))
+(((-951 |#1| |#2|) (-10 -7 (-15 -3212 ((-649 |#2|) |#2| |#2|)) (-15 -3226 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3240 (|#1| |#2|)) (-15 -3255 ((-776) (-649 |#1|))) (-15 -3267 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|)) (-367) (-1249 |#1|)) (T -951))
+((-3267 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1249 *5)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *4 *5)) (-4 *5 (-1249 *4)))) (-3240 (*1 *2 *3) (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1249 *2)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1249 *4)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3212 ((-649 |#2|) |#2| |#2|)) (-15 -3226 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3240 (|#1| |#2|)) (-15 -3255 ((-776) (-649 |#1|))) (-15 -3267 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|))
+((-1324 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 19)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -1324 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1055) (-1055)) (T -952))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6)))))
+(-10 -7 (-15 -1324 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|))))
+((-3663 (((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|)) 18)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -3663 ((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|)))) (-1183) (-1055)) (T -953))
+((-3663 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-5 *2 (-1246 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6)))))
+(-10 -7 (-15 -3663 ((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|))))
+((-3292 (((-776) $) 88) (((-776) $ (-649 |#4|)) 93)) (-4332 (($ $) 203)) (-2207 (((-423 $) $) 195)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 141)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) 73)) (-4168 (($ $ $ |#4|) 95)) (-4091 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 131) (((-694 |#2|) (-694 $)) 121)) (-3556 (($ $) 210) (($ $ |#4|) 213)) (-1829 (((-649 $) $) 77)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 229) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 222)) (-3316 (((-649 $) $) 34)) (-3838 (($ |#2| |#3|) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) 71)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#4|) 192)) (-3338 (((-3 (-649 $) "failed") $) 52)) (-3327 (((-3 (-649 $) "failed") $) 39)) (-3349 (((-3 (-2 (|:| |var| |#4|) (|:| -2777 (-776))) "failed") $) 57)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 134)) (-1515 (((-423 (-1179 $)) (-1179 $)) 147)) (-1525 (((-423 (-1179 $)) (-1179 $)) 145)) (-3699 (((-423 $) $) 165)) (-1679 (($ $ (-649 (-297 $))) 24) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL)) (-4180 (($ $ |#4|) 97)) (-1384 (((-898 (-383)) $) 243) (((-898 (-569)) $) 236) (((-541) $) 251)) (-3281 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 184)) (-1503 ((|#2| $ |#3|) NIL) (($ $ |#4| (-776)) 62) (($ $ (-649 |#4|) (-649 (-776))) 69)) (-1488 (((-3 $ "failed") $) 186)) (-2040 (((-112) $ $) 216)))
+(((-954 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1497 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -3556 (|#1| |#1| |#4|)) (-15 -3281 (|#1| |#1| |#4|)) (-15 -4180 (|#1| |#1| |#4|)) (-15 -4168 (|#1| |#1| |#1| |#4|)) (-15 -1829 ((-649 |#1|) |#1|)) (-15 -3292 ((-776) |#1| (-649 |#4|))) (-15 -3292 ((-776) |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| |#4|) (|:| -2777 (-776))) "failed") |#1|)) (-15 -3338 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3327 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3838 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3838 (|#1| |#1| |#4| (-776))) (-15 -4234 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -3316 ((-649 |#1|) |#1|)) (-15 -1503 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -1503 (|#1| |#1| |#4| (-776))) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -3043 (|#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#4| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3838 (|#1| |#2| |#3|)) (-15 -1503 (|#2| |#1| |#3|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|))) (-955 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -954))
+NIL
+(-10 -8 (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1497 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -3556 (|#1| |#1| |#4|)) (-15 -3281 (|#1| |#1| |#4|)) (-15 -4180 (|#1| |#1| |#4|)) (-15 -4168 (|#1| |#1| |#1| |#4|)) (-15 -1829 ((-649 |#1|) |#1|)) (-15 -3292 ((-776) |#1| (-649 |#4|))) (-15 -3292 ((-776) |#1|)) (-15 -3349 ((-3 (-2 (|:| |var| |#4|) (|:| -2777 (-776))) "failed") |#1|)) (-15 -3338 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3327 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3838 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3838 (|#1| |#1| |#4| (-776))) (-15 -4234 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -3316 ((-649 |#1|) |#1|)) (-15 -1503 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -1503 (|#1| |#1| |#4| (-776))) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -3043 (|#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#4| |#1|)) (-15 -1679 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1679 (|#1| |#1| |#4| |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3838 (|#1| |#2| |#3|)) (-15 -1503 (|#2| |#1| |#3|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 |#3|) $) 112)) (-3663 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2586 (($ $) 90 (|has| |#1| (-561)))) (-2564 (((-112) $) 92 (|has| |#1| (-561)))) (-3292 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-4332 (($ $) 100 (|has| |#1| (-457)))) (-2207 (((-423 $) $) 99 (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138)) (-3043 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139)) (-4168 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1842 (($ $) 156)) (-4091 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3351 (((-3 $ "failed") $) 37)) (-3556 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1829 (((-649 $) $) 111)) (-3848 (((-112) $) 98 (|has| |#1| (-915)))) (-1482 (($ $ |#1| |#2| $) 174)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2861 (((-112) $) 35)) (-2933 (((-776) $) 171)) (-3851 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-3316 (((-649 $) $) 128)) (-2019 (((-112) $) 154)) (-3838 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#3|) 122)) (-3304 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-1491 (($ (-1 |#2| |#2|) $) 173)) (-1324 (($ (-1 |#1| |#1|) $) 153)) (-4212 (((-3 |#3| "failed") $) 125)) (-1808 (($ $) 151)) (-1820 ((|#1| $) 150)) (-1798 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-2050 (((-1165) $) 10)) (-3338 (((-3 (-649 $) "failed") $) 116)) (-3327 (((-3 (-649 $) "failed") $) 117)) (-3349 (((-3 (-2 (|:| |var| |#3|) (|:| -2777 (-776))) "failed") $) 115)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 168)) (-1794 ((|#1| $) 169)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1830 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-4180 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3430 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-2091 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-1384 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1739 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-561))) (($ (-412 (-569))) 80 (-2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-3346 (((-649 |#1|) $) 170)) (-1503 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-1488 (((-3 $ "failed") $) 81 (-2718 (-1739 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 32 T CONST)) (-1471 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-955 |#1| |#2| |#3|) (-140) (-1055) (-798) (-855)) (T -955))
+((-3556 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2091 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2091 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-1503 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-1503 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3663 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1179 *3)))) (-4212 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3304 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3304 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-4234 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-955 *4 *5 *3)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1055)) (-4 *1 (-955 *4 *5 *3)) (-4 *5 (-798)) (-4 *3 (-855)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)))) (-3327 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3338 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3349 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -2777 (-776)))))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1829 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-4168 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4180 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3281 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2207 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5)))))
+(-13 (-906 |t#3|) (-329 |t#1| |t#2|) (-312 $) (-519 |t#3| |t#1|) (-519 |t#3| $) (-1044 |t#3|) (-381 |t#1|) (-10 -8 (-15 -2091 ((-776) $ |t#3|)) (-15 -2091 ((-649 (-776)) $ (-649 |t#3|))) (-15 -1503 ($ $ |t#3| (-776))) (-15 -1503 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -3316 ((-649 $) $)) (-15 -3663 ((-1179 $) $ |t#3|)) (-15 -3663 ((-1179 |t#1|) $)) (-15 -4212 ((-3 |t#3| "failed") $)) (-15 -3304 ((-776) $ |t#3|)) (-15 -3304 ((-649 (-776)) $ (-649 |t#3|))) (-15 -4234 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |t#3|)) (-15 -3838 ($ $ |t#3| (-776))) (-15 -3838 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -3851 ($ (-1179 |t#1|) |t#3|)) (-15 -3851 ($ (-1179 $) |t#3|)) (-15 -3327 ((-3 (-649 $) "failed") $)) (-15 -3338 ((-3 (-649 $) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |var| |t#3|) (|:| -2777 (-776))) "failed") $)) (-15 -3292 ((-776) $)) (-15 -3292 ((-776) $ (-649 |t#3|))) (-15 -3865 ((-649 |t#3|) $)) (-15 -1829 ((-649 $) $)) (IF (|has| |t#1| (-619 (-541))) (IF (|has| |t#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-569)))) (IF (|has| |t#3| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (IF (|has| |t#3| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-569))) (IF (|has| |t#3| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (IF (|has| |t#3| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4168 ($ $ $ |t#3|)) (-15 -4180 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-6 (-457)) (-15 -3281 ($ $ |t#3|)) (-15 -3556 ($ $)) (-15 -3556 ($ $ |t#3|)) (-15 -2207 ((-423 $) $)) (-15 -4332 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-293) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
+((-3865 (((-649 |#2|) |#5|) 40)) (-3663 (((-1179 |#5|) |#5| |#2| (-1179 |#5|)) 23) (((-412 (-1179 |#5|)) |#5| |#2|) 16)) (-3851 ((|#5| (-412 (-1179 |#5|)) |#2|) 30)) (-4212 (((-3 |#2| "failed") |#5|) 71)) (-3338 (((-3 (-649 |#5|) "failed") |#5|) 65)) (-3360 (((-3 (-2 (|:| |val| |#5|) (|:| -2777 (-569))) "failed") |#5|) 53)) (-3327 (((-3 (-649 |#5|) "failed") |#5|) 67)) (-3349 (((-3 (-2 (|:| |var| |#2|) (|:| -2777 (-569))) "failed") |#5|) 57)))
+(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3865 ((-649 |#2|) |#5|)) (-15 -4212 ((-3 |#2| "failed") |#5|)) (-15 -3663 ((-412 (-1179 |#5|)) |#5| |#2|)) (-15 -3851 (|#5| (-412 (-1179 |#5|)) |#2|)) (-15 -3663 ((-1179 |#5|) |#5| |#2| (-1179 |#5|))) (-15 -3327 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -3338 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -3349 ((-3 (-2 (|:| |var| |#2|) (|:| -2777 (-569))) "failed") |#5|)) (-15 -3360 ((-3 (-2 (|:| |val| |#5|) (|:| -2777 (-569))) "failed") |#5|))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -2388 ($ |#4|)) (-15 -4378 (|#4| $)) (-15 -4390 (|#4| $))))) (T -956))
+((-3360 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2777 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))) (-3349 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2777 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))) (-3338 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))) (-3327 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))) (-3663 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))) (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-5 *1 (-956 *5 *4 *6 *7 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1179 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *2 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))) (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4)))) (-3663 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1179 *3))) (-5 *1 (-956 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))) (-4212 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-955 *5 *4 *2)) (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *6)) (-15 -4378 (*6 $)) (-15 -4390 (*6 $))))))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))))
+(-10 -7 (-15 -3865 ((-649 |#2|) |#5|)) (-15 -4212 ((-3 |#2| "failed") |#5|)) (-15 -3663 ((-412 (-1179 |#5|)) |#5| |#2|)) (-15 -3851 (|#5| (-412 (-1179 |#5|)) |#2|)) (-15 -3663 ((-1179 |#5|) |#5| |#2| (-1179 |#5|))) (-15 -3327 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -3338 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -3349 ((-3 (-2 (|:| |var| |#2|) (|:| -2777 (-569))) "failed") |#5|)) (-15 -3360 ((-3 (-2 (|:| |val| |#5|) (|:| -2777 (-569))) "failed") |#5|)))
+((-1324 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1324 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (T -957))
+((-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *6 (-798)) (-4 *2 (-13 (-1106) (-10 -8 (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7)))))
+(-10 -7 (-15 -1324 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1183)) $) 16)) (-3663 (((-1179 $) $ (-1183)) 21) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1183))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 8) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1183) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1183) $) NIL)) (-4168 (($ $ $ (-1183)) NIL (|has| |#1| (-173)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-536 (-1183)) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1183) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1183) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#1|) (-1183)) NIL) (($ (-1179 $) (-1183)) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1183)) NIL)) (-3304 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-649 (-776)) $ (-649 (-1183))) NIL)) (-1491 (($ (-1 (-536 (-1183)) (-536 (-1183))) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-4212 (((-3 (-1183) "failed") $) 19)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1183)) (|:| -2777 (-776))) "failed") $) NIL)) (-3313 (($ $ (-1183)) 29 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1183) |#1|) NIL) (($ $ (-649 (-1183)) (-649 |#1|)) NIL) (($ $ (-1183) $) NIL) (($ $ (-649 (-1183)) (-649 $)) NIL)) (-4180 (($ $ (-1183)) NIL (|has| |#1| (-173)))) (-3430 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2091 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-649 (-776)) $ (-649 (-1183))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1183) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1183) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1183) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 25) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1183)) 27) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-958 |#1|) (-13 (-955 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1183))) |%noBranch|))) (-1055)) (T -958))
+((-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))))
+(-13 (-955 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1183))) |%noBranch|)))
+((-3373 (((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#3| (-776)) 49)) (-3386 (((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776)) 44)) (-3410 (((-2 (|:| -2777 (-776)) (|:| -1406 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)) 65)) (-3398 (((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#5| (-776)) 74 (|has| |#3| (-457)))))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3373 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -3386 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3398 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3410 ((-2 (|:| -2777 (-776)) (|:| -1406 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -2388 ($ |#4|)) (-15 -4378 (|#4| $)) (-15 -4390 (|#4| $))))) (T -959))
+((-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *3 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| (-649 *3)))) (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -2388 ($ *3)) (-15 -4378 (*3 $)) (-15 -4390 (*3 $))))))) (-3398 (*1 *2 *3 *4) (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| *3))) (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) (-4 *3 (-13 (-367) (-10 -8 (-15 -2388 ($ *8)) (-15 -4378 (*8 $)) (-15 -4390 (*8 $))))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *9) (|:| |radicand| *9))) (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) (-4 *9 (-13 (-367) (-10 -8 (-15 -2388 ($ *8)) (-15 -4378 (*8 $)) (-15 -4390 (*8 $))))))) (-3373 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561)) (-4 *7 (-955 *3 *5 *6)) (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *8) (|:| |radicand| *8))) (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))))
+(-10 -7 (-15 -3373 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -3386 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3398 ((-2 (|:| -2777 (-776)) (|:| -1406 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3410 ((-2 (|:| -2777 (-776)) (|:| -1406 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776))))
+((-2383 (((-112) $ $) NIL)) (-3539 (($ (-1126)) 8)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 15) (((-1126) $) 12)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 11)))
+(((-960) (-13 (-1106) (-618 (-1126)) (-10 -8 (-15 -3539 ($ (-1126)))))) (T -960))
+((-3539 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
+(-13 (-1106) (-618 (-1126)) (-10 -8 (-15 -3539 ($ (-1126)))))
+((-3039 (((-1100 (-226)) $) 8)) (-3028 (((-1100 (-226)) $) 9)) (-2764 (((-649 (-649 (-949 (-226)))) $) 10)) (-2388 (((-867) $) 6)))
(((-961) (-140)) (T -961))
-((-3317 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-646 (-646 (-949 (-226))))))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1095 (-226))))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1095 (-226))))))
-(-13 (-618 (-868)) (-10 -8 (-15 -3317 ((-646 (-646 (-949 (-226)))) $)) (-15 -3316 ((-1095 (-226)) $)) (-15 -3315 ((-1095 (-226)) $))))
-(((-618 (-868)) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 78 (|has| |#1| (-562)))) (-2251 (($ $) 79 (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 34)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) 31)) (-3908 (((-3 $ "failed") $) 42)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-1779 (($ $ |#1| |#2| $) 62)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) 17)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| |#2|) NIL)) (-3241 ((|#2| $) 24)) (-1780 (($ (-1 |#2| |#2|) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3313 (($ $) 28)) (-3612 ((|#1| $) 26)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) 51)) (-1981 ((|#1| $) NIL)) (-4188 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-562))))) (-3907 (((-3 $ "failed") $ $) 91 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-562)))) (-4398 ((|#2| $) 22)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) 46) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 41) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ |#2|) 37)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) 15 T CONST)) (-1778 (($ $ $ (-776)) 74 (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) 84 (|has| |#1| (-562)))) (-3528 (($) 27 T CONST)) (-3085 (($) 12 T CONST)) (-3473 (((-112) $ $) 83)) (-4399 (($ $ |#1|) 92 (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) 69) (($ $ (-776)) 67)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-962 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-131)) (-15 -4188 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055) (-797)) (T -962))
-((-4188 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-962 *3 *2)) (-4 *2 (-131)) (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-131)) (-15 -4188 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
-((-3252 (((-3 (-694 |#1|) "failed") |#2| (-925)) 18)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -3252 ((-3 (-694 |#1|) "failed") |#2| (-925)))) (-562) (-663 |#1|)) (T -963))
-((-3252 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-925)) (-4 *5 (-562)) (-5 *2 (-694 *5)) (-5 *1 (-963 *5 *3)) (-4 *3 (-663 *5)))))
-(-10 -7 (-15 -3252 ((-3 (-694 |#1|) "failed") |#2| (-925))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) 19 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 18 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 16)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) |#1|) 15)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) 11 (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) 20 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) 17) (($ $ (-1239 (-551))) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) 21)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 14)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4407 (((-776) $) 8 (|has| $ (-6 -4443)))))
-(((-964 |#1|) (-19 |#1|) (-1222)) (T -964))
+((-2764 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226))))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226))))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2764 ((-649 (-649 (-949 (-226)))) $)) (-15 -3028 ((-1100 (-226)) $)) (-15 -3039 ((-1100 (-226)) $))))
+(((-618 (-867)) . T))
+((-3422 (((-3 (-694 |#1|) "failed") |#2| (-927)) 18)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -3422 ((-3 (-694 |#1|) "failed") |#2| (-927)))) (-561) (-661 |#1|)) (T -962))
+((-3422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5)) (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
+(-10 -7 (-15 -3422 ((-3 (-694 |#1|) "failed") |#2| (-927))))
+((-3535 (((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 16)) (-3485 ((|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 18)) (-1324 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 13)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -3535 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1324 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1223) (-1223)) (T -963))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-963 *5 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5)))))
+(-10 -7 (-15 -3535 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1324 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) 19 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 18 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 16)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) |#1|) 15)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) 11 (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) 20 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 17) (($ $ (-1240 (-569))) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) 21)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 14)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2394 (((-776) $) 8 (|has| $ (-6 -4443)))))
+(((-964 |#1|) (-19 |#1|) (-1223)) (T -964))
NIL
(-19 |#1|)
-((-4291 (((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 16)) (-4292 ((|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 18)) (-4408 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 13)))
-(((-965 |#1| |#2|) (-10 -7 (-15 -4291 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -4408 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1222) (-1222)) (T -965))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-964 *6)) (-5 *1 (-965 *5 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-965 *5 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-5 *2 (-964 *5)) (-5 *1 (-965 *6 *5)))))
-(-10 -7 (-15 -4291 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -4408 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|))))
-((-3253 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)))
-(((-966) (-140)) (T -966))
-((-3253 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-966)))) (-3253 (*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1183)))))
-(-13 (-10 -8 (-15 -3253 ($ $ (-1183))) (-15 -3253 ($ $ (-1098 $)))))
-((-3254 (((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183)) (-1183)) 30) (((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183))) 31) (((-2 (|:| |coef1| (-551)) (|:| |coef2| (-551)) (|:| |prim| (-1177 |#1|))) (-952 |#1|) (-1183) (-952 |#1|) (-1183)) 49)))
-(((-967 |#1|) (-10 -7 (-15 -3254 ((-2 (|:| |coef1| (-551)) (|:| |coef2| (-551)) (|:| |prim| (-1177 |#1|))) (-952 |#1|) (-1183) (-952 |#1|) (-1183))) (-15 -3254 ((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -3254 ((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183)) (-1183)))) (-13 (-367) (-147))) (T -967))
-((-3254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183))) (-5 *5 (-1183)) (-4 *6 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 *6))) (|:| |prim| (-1177 *6)))) (-5 *1 (-967 *6)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183))) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 *5))) (|:| |prim| (-1177 *5)))) (-5 *1 (-967 *5)))) (-3254 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| |coef1| (-551)) (|:| |coef2| (-551)) (|:| |prim| (-1177 *5)))) (-5 *1 (-967 *5)))))
-(-10 -7 (-15 -3254 ((-2 (|:| |coef1| (-551)) (|:| |coef2| (-551)) (|:| |prim| (-1177 |#1|))) (-952 |#1|) (-1183) (-952 |#1|) (-1183))) (-15 -3254 ((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183)))) (-15 -3254 ((-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 |#1|))) (|:| |prim| (-1177 |#1|))) (-646 (-952 |#1|)) (-646 (-1183)) (-1183))))
-((-3257 (((-646 |#1|) |#1| |#1|) 47)) (-4173 (((-112) |#1|) 44)) (-3256 ((|#1| |#1|) 80)) (-3255 ((|#1| |#1|) 79)))
-(((-968 |#1|) (-10 -7 (-15 -4173 ((-112) |#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3256 (|#1| |#1|)) (-15 -3257 ((-646 |#1|) |#1| |#1|))) (-550)) (T -968))
-((-3257 (*1 *2 *3 *3) (-12 (-5 *2 (-646 *3)) (-5 *1 (-968 *3)) (-4 *3 (-550)))) (-3256 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-550)))) (-3255 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-550)))) (-4173 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -4173 ((-112) |#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3256 (|#1| |#1|)) (-15 -3257 ((-646 |#1|) |#1| |#1|)))
-((-3258 (((-1278) (-868)) 9)))
-(((-969) (-10 -7 (-15 -3258 ((-1278) (-868))))) (T -969))
-((-3258 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-969)))))
-(-10 -7 (-15 -3258 ((-1278) (-868))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-2823 (($ $ $) 65 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (-1410 (((-3 $ "failed") $ $) 52 (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3558 (((-776)) 36 (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3259 ((|#2| $) 22)) (-3260 ((|#1| $) 21)) (-4174 (($) NIL (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-3908 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3413 (($) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2591 (((-112) $) NIL (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-2952 (($ $ $) NIL (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3278 (($ $ $) NIL (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3261 (($ |#1| |#2|) 20)) (-2198 (((-925) $) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 39 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2581 (($ (-925)) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3682 (((-1126) $) NIL)) (-3428 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2774 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-4396 (((-868) $) 14)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 42 (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-3085 (($) 25 (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) CONST)) (-2984 (((-112) $ $) NIL (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2985 (((-112) $ $) NIL (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3473 (((-112) $ $) 19)) (-3105 (((-112) $ $) NIL (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3106 (((-112) $ $) 69 (-3978 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-4399 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-4287 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4289 (($ $ $) 45 (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (** (($ $ (-551)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-776)) 32 (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))) (($ $ (-925)) NIL (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (* (($ (-551) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-776) $) 48 (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ (-925) $) NIL (-3978 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ $ $) 28 (-3978 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))))
-(((-970 |#1| |#2|) (-13 (-1107) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3261 ($ |#1| |#2|)) (-15 -3260 (|#1| $)) (-15 -3259 (|#2| $)))) (-1107) (-1107)) (T -970))
-((-3261 (*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-3260 (*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1107)))) (-3259 (*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1107)))))
-(-13 (-1107) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3261 ($ |#1| |#2|)) (-15 -3260 (|#1| $)) (-15 -3259 (|#2| $))))
-((-3844 (((-1109) $) 12)) (-3262 (($ (-511) (-1109)) 14)) (-3991 (((-511) $) 9)) (-4396 (((-868) $) 24)))
-(((-971) (-13 (-618 (-868)) (-10 -8 (-15 -3991 ((-511) $)) (-15 -3844 ((-1109) $)) (-15 -3262 ($ (-511) (-1109)))))) (T -971))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-971)))) (-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1109)) (-5 *1 (-971)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -3991 ((-511) $)) (-15 -3844 ((-1109) $)) (-15 -3262 ($ (-511) (-1109)))))
-((-2986 (((-112) $ $) NIL)) (-3276 (($) NIL T CONST)) (-3273 (($ $ $) 30)) (-3764 (($ $) 24)) (-3681 (((-1165) $) NIL)) (-3270 (((-696 |#1|) $) 36)) (-3267 (((-696 (-878 $ $)) $) 55)) (-3269 (((-696 $) $) 45)) (-3266 (((-696 (-878 $ $)) $) 56)) (-3265 (((-696 (-878 $ $)) $) 57)) (-3268 (((-696 (-878 $ $)) $) 54)) (-3272 (($ $ $) 31)) (-3682 (((-1126) $) NIL)) (-3275 (($) NIL T CONST)) (-3271 (($ $ $) 32)) (-3263 (($ $ $) 29)) (-3264 (($ $ $) 27)) (-4396 (((-868) $) 59) (($ |#1|) 12)) (-3680 (((-112) $ $) NIL)) (-3274 (($ $ $) 28)) (-3473 (((-112) $ $) NIL)))
-(((-972 |#1|) (-13 (-973) (-621 |#1|) (-10 -8 (-15 -3270 ((-696 |#1|) $)) (-15 -3269 ((-696 $) $)) (-15 -3268 ((-696 (-878 $ $)) $)) (-15 -3267 ((-696 (-878 $ $)) $)) (-15 -3266 ((-696 (-878 $ $)) $)) (-15 -3265 ((-696 (-878 $ $)) $)) (-15 -3264 ($ $ $)) (-15 -3263 ($ $ $)))) (-1107)) (T -972))
-((-3270 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))) (-3264 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1107)))) (-3263 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1107)))))
-(-13 (-973) (-621 |#1|) (-10 -8 (-15 -3270 ((-696 |#1|) $)) (-15 -3269 ((-696 $) $)) (-15 -3268 ((-696 (-878 $ $)) $)) (-15 -3267 ((-696 (-878 $ $)) $)) (-15 -3266 ((-696 (-878 $ $)) $)) (-15 -3265 ((-696 (-878 $ $)) $)) (-15 -3264 ($ $ $)) (-15 -3263 ($ $ $))))
-((-2986 (((-112) $ $) 7)) (-3276 (($) 20 T CONST)) (-3273 (($ $ $) 16)) (-3764 (($ $) 18)) (-3681 (((-1165) $) 10)) (-3272 (($ $ $) 15)) (-3682 (((-1126) $) 11)) (-3275 (($) 19 T CONST)) (-3271 (($ $ $) 14)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3274 (($ $ $) 17)) (-3473 (((-112) $ $) 6)))
+((-3434 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)))
+(((-965) (-140)) (T -965))
+((-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-965)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1183)))))
+(-13 (-10 -8 (-15 -3434 ($ $ (-1183))) (-15 -3434 ($ $ (-1098 $)))))
+((-3445 (((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183)) 30) (((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183))) 31) (((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183)) 49)))
+(((-966 |#1|) (-10 -7 (-15 -3445 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183))) (-15 -3445 ((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3445 ((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183)))) (-13 (-367) (-147))) (T -966))
+((-3445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-5 *5 (-1183)) (-4 *6 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 *6))) (|:| |prim| (-1179 *6)))) (-5 *1 (-966 *6)))) (-3445 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 *5))) (|:| |prim| (-1179 *5)))) (-5 *1 (-966 *5)))) (-3445 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 *5)))) (-5 *1 (-966 *5)))))
+(-10 -7 (-15 -3445 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183))) (-15 -3445 ((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -3445 ((-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183))))
+((-3484 (((-649 |#1|) |#1| |#1|) 47)) (-3848 (((-112) |#1|) 44)) (-3471 ((|#1| |#1|) 80)) (-3456 ((|#1| |#1|) 79)))
+(((-967 |#1|) (-10 -7 (-15 -3848 ((-112) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3484 ((-649 |#1|) |#1| |#1|))) (-550)) (T -967))
+((-3484 (*1 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))) (-3471 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-3456 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -3848 ((-112) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3484 ((-649 |#1|) |#1| |#1|)))
+((-2839 (((-1278) (-867)) 9)))
+(((-968) (-10 -7 (-15 -2839 ((-1278) (-867))))) (T -968))
+((-2839 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-968)))))
+(-10 -7 (-15 -2839 ((-1278) (-867))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 78 (|has| |#1| (-561)))) (-2586 (($ $) 79 (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 34)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) 31)) (-3351 (((-3 $ "failed") $) 42)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-1482 (($ $ |#1| |#2| $) 62)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) 17)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| |#2|) NIL)) (-3304 ((|#2| $) 24)) (-1491 (($ (-1 |#2| |#2|) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1808 (($ $) 28)) (-1820 ((|#1| $) 26)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) 51)) (-1794 ((|#1| $) NIL)) (-3957 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-561))))) (-2374 (((-3 $ "failed") $ $) 91 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-561)))) (-2091 ((|#2| $) 22)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) 46) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 41) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ |#2|) 37)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) 15 T CONST)) (-1471 (($ $ $ (-776)) 74 (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) 84 (|has| |#1| (-561)))) (-1786 (($) 27 T CONST)) (-1796 (($) 12 T CONST)) (-2853 (((-112) $ $) 83)) (-2956 (($ $ |#1|) 92 (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) 69) (($ $ (-776)) 67)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-969 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -3957 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055) (-797)) (T -969))
+((-3957 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *2 (-797)))))
+(-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -3957 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3576 (($ $ $) 65 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (-3798 (((-3 $ "failed") $ $) 52 (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3363 (((-776)) 36 (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3496 ((|#2| $) 22)) (-3506 ((|#1| $) 21)) (-3863 (($) NIL (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-3351 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3295 (($) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2861 (((-112) $) NIL (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-2095 (($ $ $) NIL (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2406 (($ $ $) NIL (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3516 (($ |#1| |#2|) 20)) (-3348 (((-927) $) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 39 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2114 (($ (-927)) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3461 (((-1126) $) NIL)) (-1565 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-4356 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2388 (((-867) $) 14)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 42 (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-1796 (($) 25 (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) CONST)) (-2904 (((-112) $ $) NIL (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2882 (((-112) $ $) NIL (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2853 (((-112) $ $) 19)) (-2893 (((-112) $ $) NIL (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2872 (((-112) $ $) 69 (-2718 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2956 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2946 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2935 (($ $ $) 45 (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (** (($ $ (-569)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-776)) 32 (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))) (($ $ (-927)) NIL (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (* (($ (-569) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-776) $) 48 (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ (-927) $) NIL (-2718 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ $ $) 28 (-2718 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))))
+(((-970 |#1| |#2|) (-13 (-1106) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3516 ($ |#1| |#2|)) (-15 -3506 (|#1| $)) (-15 -3496 (|#2| $)))) (-1106) (-1106)) (T -970))
+((-3516 (*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3506 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1106)))) (-3496 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1106)))))
+(-13 (-1106) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3516 ($ |#1| |#2|)) (-15 -3506 (|#1| $)) (-15 -3496 (|#2| $))))
+((-2150 (((-1110) $) 12)) (-3017 (($ (-511) (-1110)) 14)) (-3458 (((-511) $) 9)) (-2388 (((-867) $) 24)))
+(((-971) (-13 (-618 (-867)) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2150 ((-1110) $)) (-15 -3017 ($ (-511) (-1110)))))) (T -971))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-971)))) (-3017 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-971)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3458 ((-511) $)) (-15 -2150 ((-1110) $)) (-15 -3017 ($ (-511) (-1110)))))
+((-2383 (((-112) $ $) NIL)) (-2919 (($) NIL T CONST)) (-1752 (($ $ $) 30)) (-1728 (($ $) 24)) (-2050 (((-1165) $) NIL)) (-3609 (((-696 |#1|) $) 36)) (-3575 (((-696 (-878 $ $)) $) 55)) (-3595 (((-696 $) $) 45)) (-3565 (((-696 (-878 $ $)) $) 56)) (-3554 (((-696 (-878 $ $)) $) 57)) (-3585 (((-696 (-878 $ $)) $) 54)) (-3631 (($ $ $) 31)) (-3461 (((-1126) $) NIL)) (-1840 (($) NIL T CONST)) (-3620 (($ $ $) 32)) (-3526 (($ $ $) 29)) (-3538 (($ $ $) 27)) (-2388 (((-867) $) 59) (($ |#1|) 12)) (-2040 (((-112) $ $) NIL)) (-1739 (($ $ $) 28)) (-2853 (((-112) $ $) NIL)))
+(((-972 |#1|) (-13 (-973) (-621 |#1|) (-10 -8 (-15 -3609 ((-696 |#1|) $)) (-15 -3595 ((-696 $) $)) (-15 -3585 ((-696 (-878 $ $)) $)) (-15 -3575 ((-696 (-878 $ $)) $)) (-15 -3565 ((-696 (-878 $ $)) $)) (-15 -3554 ((-696 (-878 $ $)) $)) (-15 -3538 ($ $ $)) (-15 -3526 ($ $ $)))) (-1106)) (T -972))
+((-3609 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3538 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))) (-3526 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
+(-13 (-973) (-621 |#1|) (-10 -8 (-15 -3609 ((-696 |#1|) $)) (-15 -3595 ((-696 $) $)) (-15 -3585 ((-696 (-878 $ $)) $)) (-15 -3575 ((-696 (-878 $ $)) $)) (-15 -3565 ((-696 (-878 $ $)) $)) (-15 -3554 ((-696 (-878 $ $)) $)) (-15 -3538 ($ $ $)) (-15 -3526 ($ $ $))))
+((-2383 (((-112) $ $) 7)) (-2919 (($) 20 T CONST)) (-1752 (($ $ $) 16)) (-1728 (($ $) 18)) (-2050 (((-1165) $) 10)) (-3631 (($ $ $) 15)) (-3461 (((-1126) $) 11)) (-1840 (($) 19 T CONST)) (-3620 (($ $ $) 14)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1739 (($ $ $) 17)) (-2853 (((-112) $ $) 6)))
(((-973) (-140)) (T -973))
-((-3276 (*1 *1) (-4 *1 (-973))) (-3275 (*1 *1) (-4 *1 (-973))) (-3764 (*1 *1 *1) (-4 *1 (-973))) (-3274 (*1 *1 *1 *1) (-4 *1 (-973))) (-3273 (*1 *1 *1 *1) (-4 *1 (-973))) (-3272 (*1 *1 *1 *1) (-4 *1 (-973))) (-3271 (*1 *1 *1 *1) (-4 *1 (-973))))
-(-13 (-1107) (-10 -8 (-15 -3276 ($) -4402) (-15 -3275 ($) -4402) (-15 -3764 ($ $)) (-15 -3274 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -3272 ($ $ $)) (-15 -3271 ($ $ $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3277 (($ $ $) 44)) (-3959 (($ $ $) 45)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3278 ((|#1| $) 46)) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+((-2919 (*1 *1) (-4 *1 (-973))) (-1840 (*1 *1) (-4 *1 (-973))) (-1728 (*1 *1 *1) (-4 *1 (-973))) (-1739 (*1 *1 *1 *1) (-4 *1 (-973))) (-1752 (*1 *1 *1 *1) (-4 *1 (-973))) (-3631 (*1 *1 *1 *1) (-4 *1 (-973))) (-3620 (*1 *1 *1 *1) (-4 *1 (-973))))
+(-13 (-1106) (-10 -8 (-15 -2919 ($) -3600) (-15 -1840 ($) -3600) (-15 -1728 ($ $)) (-15 -1739 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -3631 ($ $ $)) (-15 -3620 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-3644 (($ $ $) 44)) (-3719 (($ $ $) 45)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-2406 ((|#1| $) 46)) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-974 |#1|) (-140) (-855)) (T -974))
-((-3278 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-3277 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -3278 (|t#1| $)) (-15 -3959 ($ $ $)) (-15 -3277 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-3290 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|) 105)) (-4205 ((|#2| |#2| |#2|) 103)) (-3291 (((-2 (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|) 107)) (-3292 (((-2 (|:| |coef1| |#2|) (|:| -3582 |#2|)) |#2| |#2|) 109)) (-3299 (((-2 (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|) 131 (|has| |#1| (-457)))) (-3306 (((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|) 56)) (-3280 (((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|) 80)) (-3281 (((-2 (|:| |coef1| |#2|) (|:| -4206 |#1|)) |#2| |#2|) 82)) (-3289 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3284 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 89)) (-3294 (((-2 (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|) 121)) (-3287 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 92)) (-3296 (((-646 (-776)) |#2| |#2|) 102)) (-3304 ((|#1| |#2| |#2|) 50)) (-3298 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|) 129 (|has| |#1| (-457)))) (-3297 ((|#1| |#2| |#2|) 127 (|has| |#1| (-457)))) (-3305 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|) 54)) (-3279 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|) 79)) (-4206 ((|#1| |#2| |#2|) 76)) (-4202 (((-2 (|:| -4404 |#1|) (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|) 41)) (-3303 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3288 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3628 ((|#2| |#2| |#2|) 93)) (-3283 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 87)) (-3282 ((|#2| |#2| |#2| (-776)) 85)) (-3582 ((|#2| |#2| |#2|) 135 (|has| |#1| (-457)))) (-3907 (((-1272 |#2|) (-1272 |#2|) |#1|) 22)) (-3300 (((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|) 46)) (-3293 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|) 119)) (-4207 ((|#1| |#2|) 116)) (-3286 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 91)) (-3285 ((|#2| |#2| |#2| (-776)) 90)) (-3295 (((-646 |#2|) |#2| |#2|) 99)) (-3302 ((|#2| |#2| |#1| |#1| (-776)) 62)) (-3301 ((|#1| |#1| |#1| (-776)) 61)) (* (((-1272 |#2|) |#1| (-1272 |#2|)) 17)))
-(((-975 |#1| |#2|) (-10 -7 (-15 -4206 (|#1| |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef1| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3282 (|#2| |#2| |#2| (-776))) (-15 -3283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3284 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3285 (|#2| |#2| |#2| (-776))) (-15 -3286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3287 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3628 (|#2| |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4205 (|#2| |#2| |#2|)) (-15 -3290 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -3292 ((-2 (|:| |coef1| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -4207 (|#1| |#2|)) (-15 -3293 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|)) (-15 -3294 ((-2 (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|)) (-15 -3295 ((-646 |#2|) |#2| |#2|)) (-15 -3296 ((-646 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -3297 (|#1| |#2| |#2|)) (-15 -3298 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|)) (-15 -3299 ((-2 (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|)) (-15 -3582 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1272 |#2|) |#1| (-1272 |#2|))) (-15 -3907 ((-1272 |#2|) (-1272 |#2|) |#1|)) (-15 -4202 ((-2 (|:| -4404 |#1|) (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|)) (-15 -3300 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|)) (-15 -3301 (|#1| |#1| |#1| (-776))) (-15 -3302 (|#2| |#2| |#1| |#1| (-776))) (-15 -3303 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3304 (|#1| |#2| |#2|)) (-15 -3305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3306 ((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|))) (-562) (-1248 |#1|)) (T -975))
-((-3306 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4206 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4206 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3304 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))) (-3303 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))) (-3302 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))) (-3301 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *2 (-562)) (-5 *1 (-975 *2 *4)) (-4 *4 (-1248 *2)))) (-3300 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-4202 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -4404 *4) (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3907 (*1 *2 *2 *3) (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-562)) (-5 *1 (-975 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-562)) (-5 *1 (-975 *3 *4)))) (-3582 (*1 *2 *2 *2) (-12 (-4 *3 (-457)) (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3297 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3298 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3297 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3297 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))) (-3296 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 (-776))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3294 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4207 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3293 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4207 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-4207 (*1 *2 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3582 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3582 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3290 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3582 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-4205 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3288 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3628 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))) (-3286 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))) (-3285 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-562)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1248 *4)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))) (-3283 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))) (-3282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-562)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1248 *4)))) (-3281 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4206 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4206 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4206 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))) (-4206 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))))
-(-10 -7 (-15 -4206 (|#1| |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef1| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3282 (|#2| |#2| |#2| (-776))) (-15 -3283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3284 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3285 (|#2| |#2| |#2| (-776))) (-15 -3286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3287 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3628 (|#2| |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4205 (|#2| |#2| |#2|)) (-15 -3290 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -3292 ((-2 (|:| |coef1| |#2|) (|:| -3582 |#2|)) |#2| |#2|)) (-15 -4207 (|#1| |#2|)) (-15 -3293 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|)) (-15 -3294 ((-2 (|:| |coef2| |#2|) (|:| -4207 |#1|)) |#2|)) (-15 -3295 ((-646 |#2|) |#2| |#2|)) (-15 -3296 ((-646 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -3297 (|#1| |#2| |#2|)) (-15 -3298 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|)) (-15 -3299 ((-2 (|:| |coef2| |#2|) (|:| -3297 |#1|)) |#2| |#2|)) (-15 -3582 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1272 |#2|) |#1| (-1272 |#2|))) (-15 -3907 ((-1272 |#2|) (-1272 |#2|) |#1|)) (-15 -4202 ((-2 (|:| -4404 |#1|) (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|)) (-15 -3300 ((-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) |#2| |#2|)) (-15 -3301 (|#1| |#1| |#1| (-776))) (-15 -3302 (|#2| |#2| |#1| |#1| (-776))) (-15 -3303 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3304 (|#1| |#2| |#2|)) (-15 -3305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)) (-15 -3306 ((-2 (|:| |coef2| |#2|) (|:| -4206 |#1|)) |#2| |#2|)))
-((-2986 (((-112) $ $) NIL)) (-3757 (((-1223) $) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 10)) (-4396 (((-868) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-976) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))) (T -976))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-976)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) 39)) (-4174 (($) NIL T CONST)) (-3308 (((-646 (-646 (-551))) (-646 (-551))) 48)) (-3307 (((-551) $) 72)) (-3309 (($ (-646 (-551))) 18)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4420 (((-646 (-551)) $) 13)) (-3428 (($ $) 52)) (-4396 (((-868) $) 68) (((-646 (-551)) $) 11)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 8 T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 26)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 25)) (-4289 (($ $ $) 28)) (* (($ (-925) $) NIL) (($ (-776) $) 37)))
-(((-977) (-13 (-802) (-619 (-646 (-551))) (-618 (-646 (-551))) (-10 -8 (-15 -3309 ($ (-646 (-551)))) (-15 -3308 ((-646 (-646 (-551))) (-646 (-551)))) (-15 -3307 ((-551) $)) (-15 -3428 ($ $))))) (T -977))
-((-3309 (*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-977)))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-646 (-646 (-551)))) (-5 *1 (-977)) (-5 *3 (-646 (-551))))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-977)))) (-3428 (*1 *1 *1) (-5 *1 (-977))))
-(-13 (-802) (-619 (-646 (-551))) (-618 (-646 (-551))) (-10 -8 (-15 -3309 ($ (-646 (-551)))) (-15 -3308 ((-646 (-646 (-551))) (-646 (-551)))) (-15 -3307 ((-551) $)) (-15 -3428 ($ $))))
-((-4399 (($ $ |#2|) 31)) (-4287 (($ $) 23) (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-412 (-551)) $) 27) (($ $ (-412 (-551))) 29)))
-(((-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4399 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|))) (-979 |#2| |#3| |#4|) (-1055) (-797) (-855)) (T -978))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-412 (-551)))) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 -4399 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-925) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 |#3|) $) 86)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-3311 (((-112) $) 85)) (-2591 (((-112) $) 35)) (-4387 (((-112) $) 74)) (-3312 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-646 |#3|) (-646 |#2|)) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4398 ((|#2| $) 76)) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4127 ((|#1| $ |#2|) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
+((-2406 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-3719 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -2406 (|t#1| $)) (-15 -3719 ($ $ $)) (-15 -3644 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2521 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|) 105)) (-4156 ((|#2| |#2| |#2|) 103)) (-2533 (((-2 (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|) 107)) (-2544 (((-2 (|:| |coef1| |#2|) (|:| -1830 |#2|)) |#2| |#2|) 109)) (-2625 (((-2 (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|) 131 (|has| |#1| (-457)))) (-2699 (((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|) 56)) (-2425 (((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|) 80)) (-2433 (((-2 (|:| |coef1| |#2|) (|:| -4168 |#1|)) |#2| |#2|) 82)) (-2510 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2462 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 89)) (-2565 (((-2 (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|) 121)) (-2490 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 92)) (-2587 (((-649 (-776)) |#2| |#2|) 102)) (-2678 ((|#1| |#2| |#2|) 50)) (-2614 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|) 129 (|has| |#1| (-457)))) (-2600 ((|#1| |#2| |#2|) 127 (|has| |#1| (-457)))) (-2689 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|) 54)) (-2417 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|) 79)) (-4168 ((|#1| |#2| |#2|) 76)) (-4121 (((-2 (|:| -1406 |#1|) (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|) 41)) (-2667 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2501 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2809 ((|#2| |#2| |#2|) 93)) (-2453 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 87)) (-2442 ((|#2| |#2| |#2| (-776)) 85)) (-1830 ((|#2| |#2| |#2|) 135 (|has| |#1| (-457)))) (-2374 (((-1273 |#2|) (-1273 |#2|) |#1|) 22)) (-2636 (((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|) 46)) (-2554 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|) 119)) (-4180 ((|#1| |#2|) 116)) (-2481 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 91)) (-2473 ((|#2| |#2| |#2| (-776)) 90)) (-2575 (((-649 |#2|) |#2| |#2|) 99)) (-2656 ((|#2| |#2| |#1| |#1| (-776)) 62)) (-2646 ((|#1| |#1| |#1| (-776)) 61)) (* (((-1273 |#2|) |#1| (-1273 |#2|)) 17)))
+(((-975 |#1| |#2|) (-10 -7 (-15 -4168 (|#1| |#2| |#2|)) (-15 -2417 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2425 ((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2433 ((-2 (|:| |coef1| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2442 (|#2| |#2| |#2| (-776))) (-15 -2453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2462 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2473 (|#2| |#2| |#2| (-776))) (-15 -2481 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2490 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2809 (|#2| |#2| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2510 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -2521 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -2533 ((-2 (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -2544 ((-2 (|:| |coef1| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -4180 (|#1| |#2|)) (-15 -2554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|)) (-15 -2565 ((-2 (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|)) (-15 -2575 ((-649 |#2|) |#2| |#2|)) (-15 -2587 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2600 (|#1| |#2| |#2|)) (-15 -2614 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|)) (-15 -2625 ((-2 (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|)) (-15 -1830 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1273 |#2|) |#1| (-1273 |#2|))) (-15 -2374 ((-1273 |#2|) (-1273 |#2|) |#1|)) (-15 -4121 ((-2 (|:| -1406 |#1|) (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|)) (-15 -2636 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|)) (-15 -2646 (|#1| |#1| |#1| (-776))) (-15 -2656 (|#2| |#2| |#1| |#1| (-776))) (-15 -2667 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2678 (|#1| |#2| |#2|)) (-15 -2689 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2699 ((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|))) (-561) (-1249 |#1|)) (T -975))
+((-2699 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4168 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2689 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4168 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2678 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-2667 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2656 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2646 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-975 *2 *4)) (-4 *4 (-1249 *2)))) (-2636 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4121 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -1406 *4) (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561)) (-5 *1 (-975 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561)) (-5 *1 (-975 *3 *4)))) (-1830 (*1 *2 *2 *2) (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2625 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2600 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2614 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2600 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-2587 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2575 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2565 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4180 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2554 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4180 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4180 (*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-2544 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1830 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2533 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1830 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2521 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1830 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4156 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2510 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2501 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2809 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2490 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-2481 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-2473 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1249 *4)))) (-2462 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-2453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-2442 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1249 *4)))) (-2433 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4168 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2425 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4168 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2417 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4168 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4168 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))))
+(-10 -7 (-15 -4168 (|#1| |#2| |#2|)) (-15 -2417 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2425 ((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2433 ((-2 (|:| |coef1| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2442 (|#2| |#2| |#2| (-776))) (-15 -2453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2462 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2473 (|#2| |#2| |#2| (-776))) (-15 -2481 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2490 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2809 (|#2| |#2| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2510 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -2521 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -2533 ((-2 (|:| |coef2| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -2544 ((-2 (|:| |coef1| |#2|) (|:| -1830 |#2|)) |#2| |#2|)) (-15 -4180 (|#1| |#2|)) (-15 -2554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|)) (-15 -2565 ((-2 (|:| |coef2| |#2|) (|:| -4180 |#1|)) |#2|)) (-15 -2575 ((-649 |#2|) |#2| |#2|)) (-15 -2587 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2600 (|#1| |#2| |#2|)) (-15 -2614 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|)) (-15 -2625 ((-2 (|:| |coef2| |#2|) (|:| -2600 |#1|)) |#2| |#2|)) (-15 -1830 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1273 |#2|) |#1| (-1273 |#2|))) (-15 -2374 ((-1273 |#2|) (-1273 |#2|) |#1|)) (-15 -4121 ((-2 (|:| -1406 |#1|) (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|)) (-15 -2636 ((-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) |#2| |#2|)) (-15 -2646 (|#1| |#1| |#1| (-776))) (-15 -2656 (|#2| |#2| |#1| |#1| (-776))) (-15 -2667 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2678 (|#1| |#2| |#2|)) (-15 -2689 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)) (-15 -2699 ((-2 (|:| |coef2| |#2|) (|:| -4168 |#1|)) |#2| |#2|)))
+((-2383 (((-112) $ $) NIL)) (-3778 (((-1222) $) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 10)) (-2388 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-976) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))) (T -976))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-976)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) 39)) (-3863 (($) NIL T CONST)) (-2722 (((-649 (-649 (-569))) (-649 (-569))) 48)) (-2710 (((-569) $) 72)) (-2734 (($ (-649 (-569))) 18)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1384 (((-649 (-569)) $) 13)) (-1565 (($ $) 52)) (-2388 (((-867) $) 68) (((-649 (-569)) $) 11)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 8 T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 26)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 25)) (-2935 (($ $ $) 28)) (* (($ (-927) $) NIL) (($ (-776) $) 37)))
+(((-977) (-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -2734 ($ (-649 (-569)))) (-15 -2722 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -2710 ((-569) $)) (-15 -1565 ($ $))))) (T -977))
+((-2734 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-977)))) (-2722 (*1 *2 *3) (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-977)) (-5 *3 (-649 (-569))))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-977)))) (-1565 (*1 *1 *1) (-5 *1 (-977))))
+(-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -2734 ($ (-649 (-569)))) (-15 -2722 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -2710 ((-569) $)) (-15 -1565 ($ $))))
+((-2956 (($ $ |#2|) 31)) (-2946 (($ $) 23) (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) 29)))
+(((-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2956 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-979 |#2| |#3| |#4|) (-1055) (-797) (-855)) (T -978))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2956 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 |#3|) $) 86)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2755 (((-112) $) 85)) (-2861 (((-112) $) 35)) (-2019 (((-112) $) 74)) (-3838 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-649 |#3|) (-649 |#2|)) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2091 ((|#2| $) 76)) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-1503 ((|#1| $ |#2|) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
(((-979 |#1| |#2| |#3|) (-140) (-1055) (-797) (-855)) (T -979))
-((-3612 (*1 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *2 (-797)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797)) (-4 *2 (-855)))) (-3312 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 *5)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-646 *5)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3312 ($ $ |t#3| |t#2|)) (-15 -3312 ($ $ (-646 |t#3|) (-646 |t#2|))) (-15 -3313 ($ $)) (-15 -3612 (|t#1| $)) (-15 -4398 (|t#2| $)) (-15 -3503 ((-646 |t#3|) $)) (-15 -3311 ((-112) $)) (-15 -3310 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-293) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-3314 (((-1095 (-226)) $) 8)) (-3315 (((-1095 (-226)) $) 9)) (-3316 (((-1095 (-226)) $) 10)) (-3317 (((-646 (-646 (-949 (-226)))) $) 11)) (-4396 (((-868) $) 6)))
+((-1820 (*1 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *2 (-797)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797)) (-4 *2 (-855)))) (-3838 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3838 ($ $ |t#3| |t#2|)) (-15 -3838 ($ $ (-649 |t#3|) (-649 |t#2|))) (-15 -1808 ($ $)) (-15 -1820 (|t#1| $)) (-15 -2091 (|t#2| $)) (-15 -3865 ((-649 |t#3|) $)) (-15 -2755 ((-112) $)) (-15 -2745 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3052 (((-1100 (-226)) $) 8)) (-3039 (((-1100 (-226)) $) 9)) (-3028 (((-1100 (-226)) $) 10)) (-2764 (((-649 (-649 (-949 (-226)))) $) 11)) (-2388 (((-867) $) 6)))
(((-980) (-140)) (T -980))
-((-3317 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-646 (-646 (-949 (-226))))))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))))
-(-13 (-618 (-868)) (-10 -8 (-15 -3317 ((-646 (-646 (-949 (-226)))) $)) (-15 -3316 ((-1095 (-226)) $)) (-15 -3315 ((-1095 (-226)) $)) (-15 -3314 ((-1095 (-226)) $))))
-(((-618 (-868)) . T))
-((-3503 (((-646 |#4|) $) 23)) (-3327 (((-112) $) 55)) (-3318 (((-112) $) 54)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#4|) 42)) (-3323 (((-112) $) 56)) (-3325 (((-112) $ $) 62)) (-3324 (((-112) $ $) 65)) (-3326 (((-112) $) 60)) (-3319 (((-646 |#5|) (-646 |#5|) $) 98)) (-3320 (((-646 |#5|) (-646 |#5|) $) 95)) (-3321 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3333 (((-646 |#4|) $) 27)) (-3332 (((-112) |#4| $) 34)) (-3322 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3329 (($ $ |#4|) 39)) (-3331 (($ $ |#4|) 38)) (-3330 (($ $ |#4|) 40)) (-3473 (((-112) $ $) 46)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3318 ((-112) |#1|)) (-15 -3319 ((-646 |#5|) (-646 |#5|) |#1|)) (-15 -3320 ((-646 |#5|) (-646 |#5|) |#1|)) (-15 -3321 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3322 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -3324 ((-112) |#1| |#1|)) (-15 -3325 ((-112) |#1| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3328 ((-2 (|:| |under| |#1|) (|:| -3552 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3329 (|#1| |#1| |#4|)) (-15 -3330 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3332 ((-112) |#4| |#1|)) (-15 -3333 ((-646 |#4|) |#1|)) (-15 -3503 ((-646 |#4|) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-982 |#2| |#3| |#4| |#5|) (-1055) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -981))
-NIL
-(-10 -8 (-15 -3318 ((-112) |#1|)) (-15 -3319 ((-646 |#5|) (-646 |#5|) |#1|)) (-15 -3320 ((-646 |#5|) (-646 |#5|) |#1|)) (-15 -3321 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3322 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -3324 ((-112) |#1| |#1|)) (-15 -3325 ((-112) |#1| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3328 ((-2 (|:| |under| |#1|) (|:| -3552 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3329 (|#1| |#1| |#4|)) (-15 -3330 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3332 ((-112) |#4| |#1|)) (-15 -3333 ((-646 |#4|) |#1|)) (-15 -3503 ((-646 |#4|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443)))) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443)))) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-3682 (((-1126) $) 11)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-3680 (((-112) $ $) 9)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
+((-2764 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2764 ((-649 (-649 (-949 (-226)))) $)) (-15 -3028 ((-1100 (-226)) $)) (-15 -3039 ((-1100 (-226)) $)) (-15 -3052 ((-1100 (-226)) $))))
+(((-618 (-867)) . T))
+((-3865 (((-649 |#4|) $) 23)) (-2866 (((-112) $) 55)) (-2773 (((-112) $) 54)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#4|) 42)) (-2824 (((-112) $) 56)) (-2845 (((-112) $ $) 62)) (-2834 (((-112) $ $) 65)) (-2857 (((-112) $) 60)) (-2783 (((-649 |#5|) (-649 |#5|) $) 98)) (-2794 (((-649 |#5|) (-649 |#5|) $) 95)) (-2804 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2917 (((-649 |#4|) $) 27)) (-2908 (((-112) |#4| $) 34)) (-2813 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2876 (($ $ |#4|) 39)) (-2898 (($ $ |#4|) 38)) (-2887 (($ $ |#4|) 40)) (-2853 (((-112) $ $) 46)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2773 ((-112) |#1|)) (-15 -2783 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2794 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2804 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2813 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2824 ((-112) |#1|)) (-15 -2834 ((-112) |#1| |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -2866 ((-112) |#1|)) (-15 -3246 ((-2 (|:| |under| |#1|) (|:| -3312 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2876 (|#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -2908 ((-112) |#4| |#1|)) (-15 -2917 ((-649 |#4|) |#1|)) (-15 -3865 ((-649 |#4|) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-982 |#2| |#3| |#4| |#5|) (-1055) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -981))
+NIL
+(-10 -8 (-15 -2773 ((-112) |#1|)) (-15 -2783 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2794 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2804 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2813 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2824 ((-112) |#1|)) (-15 -2834 ((-112) |#1| |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -2866 ((-112) |#1|)) (-15 -3246 ((-2 (|:| |under| |#1|) (|:| -3312 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2876 (|#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -2908 ((-112) |#4| |#1|)) (-15 -2917 ((-649 |#4|) |#1|)) (-15 -3865 ((-649 |#4|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443)))) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443)))) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-3461 (((-1126) $) 11)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-2040 (((-112) $ $) 9)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
(((-982 |#1| |#2| |#3| |#4|) (-140) (-1055) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -982))
-((-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5)))) (-3332 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-3331 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-3330 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-3329 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-3328 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3552 *1) (|:| |upper| *1))) (-4 *1 (-982 *4 *5 *3 *6)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3325 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3324 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3322 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3321 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3320 (*1 *2 *2 *1) (-12 (-5 *2 (-646 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)))) (-3319 (*1 *2 *2 *1) (-12 (-5 *2 (-646 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(-13 (-1107) (-151 |t#4|) (-618 (-646 |t#4|)) (-10 -8 (-6 -4443) (-15 -3595 ((-3 $ "failed") (-646 |t#4|))) (-15 -3594 ($ (-646 |t#4|))) (-15 -3618 (|t#3| $)) (-15 -3503 ((-646 |t#3|) $)) (-15 -3333 ((-646 |t#3|) $)) (-15 -3332 ((-112) |t#3| $)) (-15 -3331 ($ $ |t#3|)) (-15 -3330 ($ $ |t#3|)) (-15 -3329 ($ $ |t#3|)) (-15 -3328 ((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |t#3|)) (-15 -3327 ((-112) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -3326 ((-112) $)) (-15 -3325 ((-112) $ $)) (-15 -3324 ((-112) $ $)) (-15 -3323 ((-112) $)) (-15 -3322 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3321 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3320 ((-646 |t#4|) (-646 |t#4|) $)) (-15 -3319 ((-646 |t#4|) (-646 |t#4|) $)) (-15 -3318 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-1107) . T) ((-1222) . T))
-((-3335 (((-646 |#4|) |#4| |#4|) 136)) (-3358 (((-646 |#4|) (-646 |#4|) (-112)) 125 (|has| |#1| (-457))) (((-646 |#4|) (-646 |#4|)) 126 (|has| |#1| (-457)))) (-3345 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|)) 44)) (-3344 (((-112) |#4|) 43)) (-3357 (((-646 |#4|) |#4|) 121 (|has| |#1| (-457)))) (-3340 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-1 (-112) |#4|) (-646 |#4|)) 24)) (-3341 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|)) 30)) (-3342 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|)) 31)) (-3353 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3766 (-646 |#4|))) "failed") (-646 |#4|)) 90)) (-3355 (((-646 |#4|) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3356 (((-646 |#4|) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3334 (((-646 |#4|) (-646 |#4|)) 128)) (-3350 (((-646 |#4|) (-646 |#4|) (-646 |#4|) (-112)) 59) (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 61)) (-3351 ((|#4| |#4| (-646 |#4|)) 60)) (-3359 (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 132 (|has| |#1| (-457)))) (-3361 (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 135 (|has| |#1| (-457)))) (-3360 (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 134 (|has| |#1| (-457)))) (-3336 (((-646 |#4|) (-646 |#4|) (-646 |#4|) (-1 (-646 |#4|) (-646 |#4|))) 105) (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 107) (((-646 |#4|) (-646 |#4|) |#4|) 140) (((-646 |#4|) |#4| |#4|) 137) (((-646 |#4|) (-646 |#4|)) 106)) (-3364 (((-646 |#4|) (-646 |#4|) (-646 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-3343 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|)) 52)) (-3339 (((-112) (-646 |#4|)) 79)) (-3338 (((-112) (-646 |#4|) (-646 (-646 |#4|))) 67)) (-3347 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|)) 37)) (-3346 (((-112) |#4|) 36)) (-3363 (((-646 |#4|) (-646 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-3362 (((-646 |#4|) (-646 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-3352 (((-646 |#4|) (-646 |#4|)) 83)) (-3354 (((-646 |#4|) (-646 |#4|)) 97)) (-3337 (((-112) (-646 |#4|) (-646 |#4|)) 65)) (-3349 (((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|)) 50)) (-3348 (((-112) |#4|) 45)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 ((-646 |#4|) (-646 |#4|))) (-15 -3336 ((-646 |#4|) |#4| |#4|)) (-15 -3334 ((-646 |#4|) (-646 |#4|))) (-15 -3335 ((-646 |#4|) |#4| |#4|)) (-15 -3336 ((-646 |#4|) (-646 |#4|) |#4|)) (-15 -3336 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3336 ((-646 |#4|) (-646 |#4|) (-646 |#4|) (-1 (-646 |#4|) (-646 |#4|)))) (-15 -3337 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3338 ((-112) (-646 |#4|) (-646 (-646 |#4|)))) (-15 -3339 ((-112) (-646 |#4|))) (-15 -3340 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-1 (-112) |#4|) (-646 |#4|))) (-15 -3341 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|))) (-15 -3342 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|))) (-15 -3343 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3344 ((-112) |#4|)) (-15 -3345 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3346 ((-112) |#4|)) (-15 -3347 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3348 ((-112) |#4|)) (-15 -3349 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3350 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3350 ((-646 |#4|) (-646 |#4|) (-646 |#4|) (-112))) (-15 -3351 (|#4| |#4| (-646 |#4|))) (-15 -3352 ((-646 |#4|) (-646 |#4|))) (-15 -3353 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3766 (-646 |#4|))) "failed") (-646 |#4|))) (-15 -3354 ((-646 |#4|) (-646 |#4|))) (-15 -3355 ((-646 |#4|) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3356 ((-646 |#4|) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3357 ((-646 |#4|) |#4|)) (-15 -3358 ((-646 |#4|) (-646 |#4|))) (-15 -3358 ((-646 |#4|) (-646 |#4|) (-112))) (-15 -3359 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3360 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3361 ((-646 |#4|) (-646 |#4|) (-646 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -3362 ((-646 |#4|) (-646 |#4|))) (-15 -3363 ((-646 |#4|) (-646 |#4|))) (-15 -3364 ((-646 |#4|) (-646 |#4|) (-646 |#4|)))) |%noBranch|) |%noBranch|)) (-562) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -983))
-((-3364 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3361 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3360 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3359 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3358 (*1 *2 *2 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3357 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3356 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-983 *5 *6 *7 *8)))) (-3355 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-646 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3353 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3766 (-646 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3352 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3351 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))) (-3350 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-646 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3350 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3349 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-646 *8))) (-5 *3 (-646 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8)))) (-3337 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3336 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-646 *7) (-646 *7))) (-5 *2 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3336 (*1 *2 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3)))) (-3335 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3336 ((-646 |#4|) (-646 |#4|))) (-15 -3336 ((-646 |#4|) |#4| |#4|)) (-15 -3334 ((-646 |#4|) (-646 |#4|))) (-15 -3335 ((-646 |#4|) |#4| |#4|)) (-15 -3336 ((-646 |#4|) (-646 |#4|) |#4|)) (-15 -3336 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3336 ((-646 |#4|) (-646 |#4|) (-646 |#4|) (-1 (-646 |#4|) (-646 |#4|)))) (-15 -3337 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3338 ((-112) (-646 |#4|) (-646 (-646 |#4|)))) (-15 -3339 ((-112) (-646 |#4|))) (-15 -3340 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-1 (-112) |#4|) (-646 |#4|))) (-15 -3341 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|))) (-15 -3342 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 (-1 (-112) |#4|)) (-646 |#4|))) (-15 -3343 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3344 ((-112) |#4|)) (-15 -3345 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3346 ((-112) |#4|)) (-15 -3347 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3348 ((-112) |#4|)) (-15 -3349 ((-2 (|:| |goodPols| (-646 |#4|)) (|:| |badPols| (-646 |#4|))) (-646 |#4|))) (-15 -3350 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3350 ((-646 |#4|) (-646 |#4|) (-646 |#4|) (-112))) (-15 -3351 (|#4| |#4| (-646 |#4|))) (-15 -3352 ((-646 |#4|) (-646 |#4|))) (-15 -3353 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3766 (-646 |#4|))) "failed") (-646 |#4|))) (-15 -3354 ((-646 |#4|) (-646 |#4|))) (-15 -3355 ((-646 |#4|) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3356 ((-646 |#4|) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3357 ((-646 |#4|) |#4|)) (-15 -3358 ((-646 |#4|) (-646 |#4|))) (-15 -3358 ((-646 |#4|) (-646 |#4|) (-112))) (-15 -3359 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3360 ((-646 |#4|) (-646 |#4|) (-646 |#4|))) (-15 -3361 ((-646 |#4|) (-646 |#4|) (-646 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -3362 ((-646 |#4|) (-646 |#4|))) (-15 -3363 ((-646 |#4|) (-646 |#4|))) (-15 -3364 ((-646 |#4|) (-646 |#4|) (-646 |#4|)))) |%noBranch|) |%noBranch|))
-((-3365 (((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3367 (((-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|)) 44)) (-3366 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-984 |#1|) (-10 -7 (-15 -3365 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3366 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3367 ((-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|)))) (-367)) (T -984))
-((-3367 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-646 (-2 (|:| C (-694 *5)) (|:| |g| (-1272 *5))))) (-5 *1 (-984 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)))) (-3366 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-984 *5)))) (-3365 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
-(-10 -7 (-15 -3365 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3366 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3367 ((-646 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1272 |#1|)))) (-694 |#1|) (-1272 |#1|))))
-((-4419 (((-410 |#4|) |#4|) 56)))
-(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4419 ((-410 |#4|) |#4|))) (-855) (-798) (-457) (-956 |#3| |#2| |#1|)) (T -985))
-((-4419 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-410 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -4419 ((-410 |#4|) |#4|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-4288 (($ (-776)) 113 (|has| |#1| (-23)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-3861 (((-551) (-1 (-112) |#1|) $) 98) (((-551) |#1| $) 97 (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) 96 (|has| |#1| (-1107)))) (-4156 (($ (-646 |#1|)) 119)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4285 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4282 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-4166 (((-112) $ (-776)) 10)) (-4283 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-4218 (($ $ (-646 |#1|)) 117)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-4286 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-4361 (((-925) $) 118)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-4284 (($ $ $) 105)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540)))) (($ (-646 |#1|)) 120)) (-3971 (($ (-646 |#1|)) 71)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 84 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) 86 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 83 (|has| |#1| (-855)))) (-4287 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4289 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-551) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+((-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-2908 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-2898 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-2887 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-2876 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-3246 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3312 *1) (|:| |upper| *1))) (-4 *1 (-982 *4 *5 *3 *6)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2845 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2834 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2813 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2804 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2794 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)))) (-2783 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))))
+(-13 (-1106) (-151 |t#4|) (-618 (-649 |t#4|)) (-10 -8 (-6 -4443) (-15 -4359 ((-3 $ "failed") (-649 |t#4|))) (-15 -3043 ($ (-649 |t#4|))) (-15 -2717 (|t#3| $)) (-15 -3865 ((-649 |t#3|) $)) (-15 -2917 ((-649 |t#3|) $)) (-15 -2908 ((-112) |t#3| $)) (-15 -2898 ($ $ |t#3|)) (-15 -2887 ($ $ |t#3|)) (-15 -2876 ($ $ |t#3|)) (-15 -3246 ((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |t#3|)) (-15 -2866 ((-112) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -2857 ((-112) $)) (-15 -2845 ((-112) $ $)) (-15 -2834 ((-112) $ $)) (-15 -2824 ((-112) $)) (-15 -2813 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2804 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2794 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2783 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2773 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-1106) . T) ((-1223) . T))
+((-2939 (((-649 |#4|) |#4| |#4|) 136)) (-2044 (((-649 |#4|) (-649 |#4|) (-112)) 125 (|has| |#1| (-457))) (((-649 |#4|) (-649 |#4|)) 126 (|has| |#1| (-457)))) (-1919 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 44)) (-1910 (((-112) |#4|) 43)) (-2033 (((-649 |#4|) |#4|) 121 (|has| |#1| (-457)))) (-1876 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|)) 24)) (-1885 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 30)) (-1893 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 31)) (-1991 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|)) 90)) (-2012 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2023 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2928 (((-649 |#4|) (-649 |#4|)) 128)) (-1962 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112)) 59) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 61)) (-1972 ((|#4| |#4| (-649 |#4|)) 60)) (-2054 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 132 (|has| |#1| (-457)))) (-2075 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 135 (|has| |#1| (-457)))) (-2064 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 134 (|has| |#1| (-457)))) (-2950 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|))) 105) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 107) (((-649 |#4|) (-649 |#4|) |#4|) 140) (((-649 |#4|) |#4| |#4|) 137) (((-649 |#4|) (-649 |#4|)) 106)) (-2105 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1901 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 52)) (-2980 (((-112) (-649 |#4|)) 79)) (-2968 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 67)) (-1936 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 37)) (-1928 (((-112) |#4|) 36)) (-2094 (((-649 |#4|) (-649 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-2085 (((-649 |#4|) (-649 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1982 (((-649 |#4|) (-649 |#4|)) 83)) (-2000 (((-649 |#4|) (-649 |#4|)) 97)) (-2959 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-1953 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 50)) (-1944 (((-112) |#4|) 45)))
+(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2950 ((-649 |#4|) (-649 |#4|))) (-15 -2950 ((-649 |#4|) |#4| |#4|)) (-15 -2928 ((-649 |#4|) (-649 |#4|))) (-15 -2939 ((-649 |#4|) |#4| |#4|)) (-15 -2950 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -2950 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2950 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -2959 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2968 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2980 ((-112) (-649 |#4|))) (-15 -1876 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -1885 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -1893 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -1901 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1910 ((-112) |#4|)) (-15 -1919 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1928 ((-112) |#4|)) (-15 -1936 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1944 ((-112) |#4|)) (-15 -1953 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1962 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1962 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -1972 (|#4| |#4| (-649 |#4|))) (-15 -1982 ((-649 |#4|) (-649 |#4|))) (-15 -1991 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2000 ((-649 |#4|) (-649 |#4|))) (-15 -2012 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2023 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2033 ((-649 |#4|) |#4|)) (-15 -2044 ((-649 |#4|) (-649 |#4|))) (-15 -2044 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2054 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2064 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2075 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -2085 ((-649 |#4|) (-649 |#4|))) (-15 -2094 ((-649 |#4|) (-649 |#4|))) (-15 -2105 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|)) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -983))
+((-2105 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2094 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2054 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2044 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2023 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-983 *5 *6 *7 *8)))) (-2012 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1991 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3201 (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1972 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))) (-1962 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1953 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-1936 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1928 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-1919 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1910 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-1901 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8)))) (-2959 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-2950 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-2950 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2950 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3)))) (-2939 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2950 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2950 ((-649 |#4|) (-649 |#4|))) (-15 -2950 ((-649 |#4|) |#4| |#4|)) (-15 -2928 ((-649 |#4|) (-649 |#4|))) (-15 -2939 ((-649 |#4|) |#4| |#4|)) (-15 -2950 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -2950 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2950 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -2959 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2968 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2980 ((-112) (-649 |#4|))) (-15 -1876 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -1885 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -1893 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -1901 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1910 ((-112) |#4|)) (-15 -1919 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1928 ((-112) |#4|)) (-15 -1936 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1944 ((-112) |#4|)) (-15 -1953 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1962 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1962 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -1972 (|#4| |#4| (-649 |#4|))) (-15 -1982 ((-649 |#4|) (-649 |#4|))) (-15 -1991 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2000 ((-649 |#4|) (-649 |#4|))) (-15 -2012 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2023 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2033 ((-649 |#4|) |#4|)) (-15 -2044 ((-649 |#4|) (-649 |#4|))) (-15 -2044 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2054 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2064 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2075 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -2085 ((-649 |#4|) (-649 |#4|))) (-15 -2094 ((-649 |#4|) (-649 |#4|))) (-15 -2105 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|))
+((-2115 (((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2134 (((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)) 44)) (-2124 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-984 |#1|) (-10 -7 (-15 -2115 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2124 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2134 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)))) (-367)) (T -984))
+((-2134 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5))))) (-5 *1 (-984 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)))) (-2124 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-984 *5)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
+(-10 -7 (-15 -2115 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2124 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2134 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))))
+((-2207 (((-423 |#4|) |#4|) 56)))
+(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-423 |#4|) |#4|))) (-855) (-798) (-457) (-955 |#3| |#2| |#1|)) (T -985))
+((-2207 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -2207 ((-423 |#4|) |#4|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3357 (($ (-776)) 113 (|has| |#1| (-23)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-3975 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2025 (($ (-649 |#1|)) 119)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1344 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3503 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-1902 (((-112) $ (-776)) 10)) (-3747 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-4295 (($ $ (-649 |#1|)) 117)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-3523 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-2905 (((-927) $) 118)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3513 (($ $ $) 105)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 120)) (-3709 (($ (-649 |#1|)) 71)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2946 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2935 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-986 |#1|) (-140) (-1055)) (T -986))
-((-4156 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-925)))) (-4284 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055)))))
-(-13 (-1271 |t#1|) (-623 (-646 |t#1|)) (-10 -8 (-15 -4156 ($ (-646 |t#1|))) (-15 -4361 ((-925) $)) (-15 -4284 ($ $ $)) (-15 -4218 ($ $ (-646 |t#1|)))))
-(((-34) . T) ((-102) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-623 (-646 |#1|)) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-376 |#1|) . T) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1107) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-1222) . T) ((-1271 |#1|) . T))
-((-4408 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 17)))
-(((-987 |#1| |#2|) (-10 -7 (-15 -4408 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1055) (-1055)) (T -987))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6)))))
-(-10 -7 (-15 -4408 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
-((-3370 ((|#1| (-949 |#1|)) 14)) (-3369 ((|#1| (-949 |#1|)) 13)) (-3368 ((|#1| (-949 |#1|)) 12)) (-3372 ((|#1| (-949 |#1|)) 16)) (-3376 ((|#1| (-949 |#1|)) 24)) (-3371 ((|#1| (-949 |#1|)) 15)) (-3373 ((|#1| (-949 |#1|)) 17)) (-3375 ((|#1| (-949 |#1|)) 23)) (-3374 ((|#1| (-949 |#1|)) 22)))
-(((-988 |#1|) (-10 -7 (-15 -3368 (|#1| (-949 |#1|))) (-15 -3369 (|#1| (-949 |#1|))) (-15 -3370 (|#1| (-949 |#1|))) (-15 -3371 (|#1| (-949 |#1|))) (-15 -3372 (|#1| (-949 |#1|))) (-15 -3373 (|#1| (-949 |#1|))) (-15 -3374 (|#1| (-949 |#1|))) (-15 -3375 (|#1| (-949 |#1|))) (-15 -3376 (|#1| (-949 |#1|)))) (-1055)) (T -988))
-((-3376 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(-10 -7 (-15 -3368 (|#1| (-949 |#1|))) (-15 -3369 (|#1| (-949 |#1|))) (-15 -3370 (|#1| (-949 |#1|))) (-15 -3371 (|#1| (-949 |#1|))) (-15 -3372 (|#1| (-949 |#1|))) (-15 -3373 (|#1| (-949 |#1|))) (-15 -3374 (|#1| (-949 |#1|))) (-15 -3375 (|#1| (-949 |#1|))) (-15 -3376 (|#1| (-949 |#1|))))
-((-3394 (((-3 |#1| "failed") |#1|) 18)) (-3382 (((-3 |#1| "failed") |#1|) 6)) (-3392 (((-3 |#1| "failed") |#1|) 16)) (-3380 (((-3 |#1| "failed") |#1|) 4)) (-3396 (((-3 |#1| "failed") |#1|) 20)) (-3384 (((-3 |#1| "failed") |#1|) 8)) (-3377 (((-3 |#1| "failed") |#1| (-776)) 1)) (-3379 (((-3 |#1| "failed") |#1|) 3)) (-3378 (((-3 |#1| "failed") |#1|) 2)) (-3397 (((-3 |#1| "failed") |#1|) 21)) (-3385 (((-3 |#1| "failed") |#1|) 9)) (-3395 (((-3 |#1| "failed") |#1|) 19)) (-3383 (((-3 |#1| "failed") |#1|) 7)) (-3393 (((-3 |#1| "failed") |#1|) 17)) (-3381 (((-3 |#1| "failed") |#1|) 5)) (-3400 (((-3 |#1| "failed") |#1|) 24)) (-3388 (((-3 |#1| "failed") |#1|) 12)) (-3398 (((-3 |#1| "failed") |#1|) 22)) (-3386 (((-3 |#1| "failed") |#1|) 10)) (-3402 (((-3 |#1| "failed") |#1|) 26)) (-3390 (((-3 |#1| "failed") |#1|) 14)) (-3403 (((-3 |#1| "failed") |#1|) 27)) (-3391 (((-3 |#1| "failed") |#1|) 15)) (-3401 (((-3 |#1| "failed") |#1|) 25)) (-3389 (((-3 |#1| "failed") |#1|) 13)) (-3399 (((-3 |#1| "failed") |#1|) 23)) (-3387 (((-3 |#1| "failed") |#1|) 11)))
+((-2025 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-927)))) (-3513 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055)))))
+(-13 (-1271 |t#1|) (-623 (-649 |t#1|)) (-10 -8 (-15 -2025 ($ (-649 |t#1|))) (-15 -2905 ((-927) $)) (-15 -3513 ($ $ $)) (-15 -4295 ($ $ (-649 |t#1|)))))
+(((-34) . T) ((-102) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-623 (-649 |#1|)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T) ((-1271 |#1|) . T))
+((-1324 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 17)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -1324 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1055) (-1055)) (T -987))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6)))))
+(-10 -7 (-15 -1324 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
+((-2163 ((|#1| (-949 |#1|)) 14)) (-2154 ((|#1| (-949 |#1|)) 13)) (-2144 ((|#1| (-949 |#1|)) 12)) (-2183 ((|#1| (-949 |#1|)) 16)) (-2221 ((|#1| (-949 |#1|)) 24)) (-2172 ((|#1| (-949 |#1|)) 15)) (-2192 ((|#1| (-949 |#1|)) 17)) (-2210 ((|#1| (-949 |#1|)) 23)) (-2201 ((|#1| (-949 |#1|)) 22)))
+(((-988 |#1|) (-10 -7 (-15 -2144 (|#1| (-949 |#1|))) (-15 -2154 (|#1| (-949 |#1|))) (-15 -2163 (|#1| (-949 |#1|))) (-15 -2172 (|#1| (-949 |#1|))) (-15 -2183 (|#1| (-949 |#1|))) (-15 -2192 (|#1| (-949 |#1|))) (-15 -2201 (|#1| (-949 |#1|))) (-15 -2210 (|#1| (-949 |#1|))) (-15 -2221 (|#1| (-949 |#1|)))) (-1055)) (T -988))
+((-2221 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(-10 -7 (-15 -2144 (|#1| (-949 |#1|))) (-15 -2154 (|#1| (-949 |#1|))) (-15 -2163 (|#1| (-949 |#1|))) (-15 -2172 (|#1| (-949 |#1|))) (-15 -2183 (|#1| (-949 |#1|))) (-15 -2192 (|#1| (-949 |#1|))) (-15 -2201 (|#1| (-949 |#1|))) (-15 -2210 (|#1| (-949 |#1|))) (-15 -2221 (|#1| (-949 |#1|))))
+((-2378 (((-3 |#1| "failed") |#1|) 18)) (-2275 (((-3 |#1| "failed") |#1|) 6)) (-2361 (((-3 |#1| "failed") |#1|) 16)) (-2258 (((-3 |#1| "failed") |#1|) 4)) (-4370 (((-3 |#1| "failed") |#1|) 20)) (-2292 (((-3 |#1| "failed") |#1|) 8)) (-2231 (((-3 |#1| "failed") |#1| (-776)) 1)) (-2250 (((-3 |#1| "failed") |#1|) 3)) (-2242 (((-3 |#1| "failed") |#1|) 2)) (-4381 (((-3 |#1| "failed") |#1|) 21)) (-2300 (((-3 |#1| "failed") |#1|) 9)) (-2387 (((-3 |#1| "failed") |#1|) 19)) (-2283 (((-3 |#1| "failed") |#1|) 7)) (-2368 (((-3 |#1| "failed") |#1|) 17)) (-2266 (((-3 |#1| "failed") |#1|) 5)) (-4411 (((-3 |#1| "failed") |#1|) 24)) (-2326 (((-3 |#1| "failed") |#1|) 12)) (-4393 (((-3 |#1| "failed") |#1|) 22)) (-2308 (((-3 |#1| "failed") |#1|) 10)) (-1314 (((-3 |#1| "failed") |#1|) 26)) (-2343 (((-3 |#1| "failed") |#1|) 14)) (-1323 (((-3 |#1| "failed") |#1|) 27)) (-2352 (((-3 |#1| "failed") |#1|) 15)) (-4422 (((-3 |#1| "failed") |#1|) 25)) (-2333 (((-3 |#1| "failed") |#1|) 13)) (-4400 (((-3 |#1| "failed") |#1|) 23)) (-2317 (((-3 |#1| "failed") |#1|) 11)))
(((-989 |#1|) (-140) (-1208)) (T -989))
-((-3403 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3402 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3401 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3400 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3399 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3398 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3397 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3396 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3395 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3394 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3393 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3391 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3390 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3389 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3388 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3386 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3385 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3377 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -7 (-15 -3377 ((-3 |t#1| "failed") |t#1| (-776))) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)) (-15 -3385 ((-3 |t#1| "failed") |t#1|)) (-15 -3386 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)) (-15 -3388 ((-3 |t#1| "failed") |t#1|)) (-15 -3389 ((-3 |t#1| "failed") |t#1|)) (-15 -3390 ((-3 |t#1| "failed") |t#1|)) (-15 -3391 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -3393 ((-3 |t#1| "failed") |t#1|)) (-15 -3394 ((-3 |t#1| "failed") |t#1|)) (-15 -3395 ((-3 |t#1| "failed") |t#1|)) (-15 -3396 ((-3 |t#1| "failed") |t#1|)) (-15 -3397 ((-3 |t#1| "failed") |t#1|)) (-15 -3398 ((-3 |t#1| "failed") |t#1|)) (-15 -3399 ((-3 |t#1| "failed") |t#1|)) (-15 -3400 ((-3 |t#1| "failed") |t#1|)) (-15 -3401 ((-3 |t#1| "failed") |t#1|)) (-15 -3402 ((-3 |t#1| "failed") |t#1|)) (-15 -3403 ((-3 |t#1| "failed") |t#1|))))
-((-3405 ((|#4| |#4| (-646 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3404 ((|#4| |#4| (-646 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4408 ((|#4| (-1 |#4| (-952 |#1|)) |#4|) 31)))
-(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3404 (|#4| |#4| |#3|)) (-15 -3404 (|#4| |#4| (-646 |#3|))) (-15 -3405 (|#4| |#4| |#3|)) (-15 -3405 (|#4| |#4| (-646 |#3|))) (-15 -4408 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) (-1055) (-798) (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))) (-956 (-952 |#1|) |#2| |#3|)) (T -990))
-((-4408 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1055)) (-4 *2 (-956 (-952 *4) *5 *6)) (-4 *5 (-798)) (-4 *6 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1="failed") (-1183)))))) (-5 *1 (-990 *4 *5 *6 *2)))) (-3405 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-956 (-952 *4) *5 *6)))) (-3405 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-956 (-952 *4) *5 *3)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *3 (-646 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-956 (-952 *4) *5 *6)))) (-3404 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-956 (-952 *4) *5 *3)))))
-(-10 -7 (-15 -3404 (|#4| |#4| |#3|)) (-15 -3404 (|#4| |#4| (-646 |#3|))) (-15 -3405 (|#4| |#4| |#3|)) (-15 -3405 (|#4| |#4| (-646 |#3|))) (-15 -4408 (|#4| (-1 |#4| (-952 |#1|)) |#4|)))
-((-3406 ((|#2| |#3|) 35)) (-4369 (((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 79)) (-4368 (((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 100)))
-(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -3406 (|#2| |#3|))) (-354) (-1248 |#1|) (-1248 |#2|) (-729 |#2| |#3|)) (T -991))
-((-3406 (*1 *2 *3) (-12 (-4 *3 (-1248 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-991 *4 *2 *3 *5)) (-4 *4 (-354)) (-4 *5 (-729 *2 *3)))) (-4369 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 *3)) (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) (-4368 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| -2200 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5)))))
-(-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -3406 (|#2| |#3|)))
-((-2986 (((-112) $ $) NIL)) (-3843 (((-3 (-112) #1="failed") $) 71)) (-4099 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-3410 (($ $ (-3 (-112) #1#)) 72)) (-3411 (($ (-646 |#4|) |#4|) 25)) (-3681 (((-1165) $) NIL)) (-3407 (($ $) 69)) (-3682 (((-1126) $) NIL)) (-3845 (((-112) $) 70)) (-4014 (($) 30)) (-3408 ((|#4| $) 74)) (-3409 (((-646 |#4|) $) 73)) (-4396 (((-868) $) 68)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-992 |#1| |#2| |#3| |#4|) (-13 (-1107) (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -3411 ($ (-646 |#4|) |#4|)) (-15 -3843 ((-3 (-112) #1="failed") $)) (-15 -3410 ($ $ (-3 (-112) #1#))) (-15 -3845 ((-112) $)) (-15 -3409 ((-646 |#4|) $)) (-15 -3408 (|#4| $)) (-15 -3407 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -4099 ($ $)) |%noBranch|) |%noBranch|))) (-457) (-855) (-798) (-956 |#1| |#3| |#2|)) (T -992))
-((-4014 (*1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-3411 (*1 *1 *2 *3) (-12 (-5 *2 (-646 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-992 *4 *5 *6 *3)))) (-3843 (*1 *2 *1) (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3845 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3409 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-646 *6)) (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))) (-3407 (*1 *1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-4099 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))))
-(-13 (-1107) (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -3411 ($ (-646 |#4|) |#4|)) (-15 -3843 ((-3 (-112) #1="failed") $)) (-15 -3410 ($ $ (-3 (-112) #1#))) (-15 -3845 ((-112) $)) (-15 -3409 ((-646 |#4|) $)) (-15 -3408 (|#4| $)) (-15 -3407 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -4099 ($ $)) |%noBranch|) |%noBranch|)))
-((-3412 (((-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551)))) (-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551))))) 82)))
-(((-993 |#1| |#2|) (-10 -7 (-15 -3412 ((-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551)))) (-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551))))))) (-646 (-1183)) (-776)) (T -993))
-((-3412 (*1 *2 *2) (-12 (-5 *2 (-992 (-412 (-551)) (-869 *3) (-240 *4 (-776)) (-248 *3 (-412 (-551))))) (-14 *3 (-646 (-1183))) (-14 *4 (-776)) (-5 *1 (-993 *3 *4)))))
-(-10 -7 (-15 -3412 ((-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551)))) (-992 (-412 (-551)) (-869 |#1|) (-240 |#2| (-776)) (-248 |#1| (-412 (-551)))))))
-((-3709 (((-112) |#5| |#5|) 44)) (-3712 (((-112) |#5| |#5|) 59)) (-3717 (((-112) |#5| (-646 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3713 (((-112) (-646 |#4|) (-646 |#4|)) 65)) (-3719 (((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) 70)) (-3708 (((-1278)) 32)) (-3707 (((-1278) (-1165) (-1165) (-1165)) 28)) (-3718 (((-646 |#5|) (-646 |#5|)) 100)) (-3720 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) 92)) (-3721 (((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112)) 122)) (-3711 (((-112) |#5| |#5|) 53)) (-3716 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3714 (((-112) (-646 |#4|) (-646 |#4|)) 64)) (-3715 (((-112) (-646 |#4|) (-646 |#4|)) 66)) (-4149 (((-112) (-646 |#4|) (-646 |#4|)) 67)) (-3722 (((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3710 (((-646 |#5|) (-646 |#5|)) 49)))
-(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1278) (-1165) (-1165) (-1165))) (-15 -3708 ((-1278))) (-15 -3709 ((-112) |#5| |#5|)) (-15 -3710 ((-646 |#5|) (-646 |#5|))) (-15 -3711 ((-112) |#5| |#5|)) (-15 -3712 ((-112) |#5| |#5|)) (-15 -3713 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3714 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3715 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -4149 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3716 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3717 ((-112) |#5| |#5|)) (-15 -3717 ((-112) |#5| (-646 |#5|))) (-15 -3718 ((-646 |#5|) (-646 |#5|))) (-15 -3719 ((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3720 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-15 -3721 ((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3722 ((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -994))
-((-3722 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *4) (|:| |ineq| (-646 *9)))) (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-646 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-3721 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-646 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *10) (|:| |ineq| (-646 *9))))) (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-646 *9)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-646 (-2 (|:| |val| (-646 *6)) (|:| -1718 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8 *3)))) (-3717 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3716 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-4149 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3712 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3711 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-3709 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3708 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3707 ((-1278) (-1165) (-1165) (-1165))) (-15 -3708 ((-1278))) (-15 -3709 ((-112) |#5| |#5|)) (-15 -3710 ((-646 |#5|) (-646 |#5|))) (-15 -3711 ((-112) |#5| |#5|)) (-15 -3712 ((-112) |#5| |#5|)) (-15 -3713 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3714 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3715 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -4149 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3716 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3717 ((-112) |#5| |#5|)) (-15 -3717 ((-112) |#5| (-646 |#5|))) (-15 -3718 ((-646 |#5|) (-646 |#5|))) (-15 -3719 ((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3720 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-15 -3721 ((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3722 ((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-4281 (((-1183) $) 15)) (-3844 (((-1165) $) 16)) (-3664 (($ (-1183) (-1165)) 14)) (-4396 (((-868) $) 13)))
-(((-995) (-13 (-618 (-868)) (-10 -8 (-15 -3664 ($ (-1183) (-1165))) (-15 -4281 ((-1183) $)) (-15 -3844 ((-1165) $))))) (T -995))
-((-3664 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -3664 ($ (-1183) (-1165))) (-15 -4281 ((-1183) $)) (-15 -3844 ((-1165) $))))
-((-3595 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1183) #1#) $) 66) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 (-551) #1#) $) 96)) (-3594 ((|#2| $) NIL) (((-1183) $) 61) (((-412 (-551)) $) NIL) (((-551) $) 93)) (-2445 (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 115) (((-694 |#2|) (-694 $)) 28)) (-3413 (($) 99)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 76) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 85)) (-3415 (($ $) 10)) (-3886 (((-3 $ "failed") $) 20)) (-4408 (($ (-1 |#2| |#2|) $) 22)) (-3887 (($) 16)) (-3550 (($ $) 55)) (-4260 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3414 (($ $) 12)) (-4420 (((-896 (-551)) $) 71) (((-896 (-382)) $) 80) (((-540) $) 40) (((-382) $) 44) (((-226) $) 48)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) 91) (($ |#2|) NIL) (($ (-1183)) 58)) (-3548 (((-776)) 31)) (-3106 (((-112) $ $) 51)))
-(((-996 |#1| |#2|) (-10 -8 (-15 -3106 ((-112) |#1| |#1|)) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4396 (|#1| (-1183))) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -3413 (|#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| |#1|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-997 |#2|) (-562)) (T -996))
-((-3548 (*1 *2) (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4)))))
-(-10 -8 (-15 -3106 ((-112) |#1| |#1|)) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4396 (|#1| (-1183))) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -3413 (|#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -3217 ((-894 (-551) |#1|) |#1| (-896 (-551)) (-894 (-551) |#1|))) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -2445 ((-694 |#2|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| |#1|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3551 ((|#1| $) 147 (|has| |#1| (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 138 (|has| |#1| (-916)))) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 141 (|has| |#1| (-916)))) (-1763 (((-112) $ $) 65)) (-4073 (((-551) $) 128 (|has| |#1| (-825)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| #2="failed") $) 185) (((-3 (-1183) #2#) $) 136 (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) 119 (|has| |#1| (-1044 (-551)))) (((-3 (-551) #2#) $) 117 (|has| |#1| (-1044 (-551))))) (-3594 ((|#1| $) 186) (((-1183) $) 137 (|has| |#1| (-1044 (-1183)))) (((-412 (-551)) $) 120 (|has| |#1| (-1044 (-551)))) (((-551) $) 118 (|has| |#1| (-1044 (-551))))) (-2982 (($ $ $) 61)) (-2445 (((-694 (-551)) (-694 $)) 160 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 159 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 158) (((-694 |#1|) (-694 $)) 157)) (-3908 (((-3 $ "failed") $) 37)) (-3413 (($) 145 (|has| |#1| (-550)))) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-3624 (((-112) $) 130 (|has| |#1| (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 154 (|has| |#1| (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 153 (|has| |#1| (-892 (-382))))) (-2591 (((-112) $) 35)) (-3415 (($ $) 149)) (-3417 ((|#1| $) 151)) (-3886 (((-3 $ "failed") $) 116 (|has| |#1| (-1157)))) (-3625 (((-112) $) 129 (|has| |#1| (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) 58)) (-2952 (($ $ $) 126 (|has| |#1| (-855)))) (-3278 (($ $ $) 125 (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) 177)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3887 (($) 115 (|has| |#1| (-1157)) CONST)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3550 (($ $) 146 (|has| |#1| (-310)))) (-3552 ((|#1| $) 143 (|has| |#1| (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 140 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 139 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) 183 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) 181 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) 180 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 179 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 178 (|has| |#1| (-519 (-1183) |#1|)))) (-1762 (((-776) $) 64)) (-4249 (($ $ |#1|) 184 (|has| |#1| (-289 |#1| |#1|)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-4260 (($ $) 176 (|has| |#1| (-234))) (($ $ (-776)) 174 (|has| |#1| (-234))) (($ $ (-1183)) 172 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 171 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 170 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 169 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3414 (($ $) 148)) (-3416 ((|#1| $) 150)) (-4420 (((-896 (-551)) $) 156 (|has| |#1| (-619 (-896 (-551))))) (((-896 (-382)) $) 155 (|has| |#1| (-619 (-896 (-382))))) (((-540) $) 133 (|has| |#1| (-619 (-540)))) (((-382) $) 132 (|has| |#1| (-1026))) (((-226) $) 131 (|has| |#1| (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 142 (-3274 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ |#1|) 189) (($ (-1183)) 135 (|has| |#1| (-1044 (-1183))))) (-3123 (((-3 $ "failed") $) 134 (-3978 (|has| |#1| (-145)) (-3274 (|has| $ (-145)) (|has| |#1| (-916)))))) (-3548 (((-776)) 32 T CONST)) (-3553 ((|#1| $) 144 (|has| |#1| (-550)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3825 (($ $) 127 (|has| |#1| (-825)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $) 175 (|has| |#1| (-234))) (($ $ (-776)) 173 (|has| |#1| (-234))) (($ $ (-1183)) 168 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 167 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 166 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 165 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2984 (((-112) $ $) 123 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 122 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 124 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 121 (|has| |#1| (-855)))) (-4399 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
-(((-997 |#1|) (-140) (-562)) (T -997))
-((-4399 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-310)))) (-3550 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-310)))) (-3413 (*1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-550)) (-4 *2 (-562)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-550)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-550)))))
-(-13 (-367) (-38 |t#1|) (-1044 |t#1|) (-342 |t#1|) (-232 |t#1|) (-381 |t#1|) (-890 |t#1|) (-405 |t#1|) (-10 -8 (-15 -4399 ($ |t#1| |t#1|)) (-15 -3417 (|t#1| $)) (-15 -3416 (|t#1| $)) (-15 -3415 ($ $)) (-15 -3414 ($ $)) (IF (|has| |t#1| (-1157)) (-6 (-1157)) |%noBranch|) (IF (|has| |t#1| (-1044 (-551))) (PROGN (-6 (-1044 (-551))) (-6 (-1044 (-412 (-551))))) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-1026)) (-6 (-1026)) |%noBranch|) (IF (|has| |t#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1044 (-1183))) (-6 (-1044 (-1183))) |%noBranch|) (IF (|has| |t#1| (-310)) (PROGN (-15 -3551 (|t#1| $)) (-15 -3550 ($ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3413 ($)) (-15 -3553 (|t#1| $)) (-15 -3552 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 #2=(-1183)) |has| |#1| (-1044 (-1183))) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-619 (-226)) |has| |#1| (-1026)) ((-619 (-382)) |has| |#1| (-1026)) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-619 (-896 (-382))) |has| |#1| (-619 (-896 (-382)))) ((-619 (-896 (-551))) |has| |#1| (-619 (-896 (-551)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) . T) ((-310) . T) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-457) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-796) |has| |#1| (-825)) ((-797) |has| |#1| (-825)) ((-799) |has| |#1| (-825)) ((-802) |has| |#1| (-825)) ((-825) |has| |#1| (-825)) ((-853) |has| |#1| (-825)) ((-855) -3978 (|has| |#1| (-855)) (|has| |#1| (-825))) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-382)) |has| |#1| (-892 (-382))) ((-892 (-551)) |has| |#1| (-892 (-551))) ((-890 |#1|) . T) ((-916) |has| |#1| (-916)) ((-927) . T) ((-1026) |has| |#1| (-1026)) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-551))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 #2#) |has| |#1| (-1044 (-1183))) ((-1044 |#1|) . T) ((-1057 #1#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| |#1| (-1157)) ((-1222) . T) ((-1227) . T))
-((-4408 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#2| |#1|) |#3|))) (-562) (-562) (-997 |#1|) (-997 |#2|)) (T -998))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-4 *2 (-997 *6)) (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-997 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3418 (($ (-1148 |#1| |#2|)) 11)) (-3546 (((-1148 |#1| |#2|) $) 12)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4249 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL)))
-(((-999 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3418 ($ (-1148 |#1| |#2|))) (-15 -3546 ((-1148 |#1| |#2|) $)) (-15 -4249 (|#2| $ (-240 |#1| |#2|))))) (-925) (-367)) (T -999))
-((-3418 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-925)) (-4 *4 (-367)) (-5 *1 (-999 *3 *4)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-925)) (-4 *4 (-367)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-925)) (-4 *2 (-367)) (-5 *1 (-999 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3418 ($ (-1148 |#1| |#2|))) (-15 -3546 ((-1148 |#1| |#2|) $)) (-15 -4249 (|#2| $ (-240 |#1| |#2|)))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 9)) (-4396 (((-868) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1000) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $))))) (T -1000))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-3421 (($ $) 47)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-4283 (((-776) $) 46)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-3420 ((|#1| $) 45)) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3423 ((|#1| |#1| $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-3422 ((|#1| $) 48)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-3419 ((|#1| $) 44)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1001 |#1|) (-140) (-1222)) (T -1001))
-((-3423 (*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))) (-3421 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -3423 (|t#1| |t#1| $)) (-15 -3422 (|t#1| $)) (-15 -3421 ($ $)) (-15 -4283 ((-776) $)) (-15 -3420 (|t#1| $)) (-15 -3419 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4093 ((|#1| $) 12)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL (|has| |#1| (-550)))) (-3442 (((-112) $) NIL (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) NIL (|has| |#1| (-550)))) (-3424 (($ |#1| |#1| |#1| |#1|) 16)) (-2591 (((-112) $) NIL)) (-3554 ((|#1| $) NIL)) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-3425 ((|#1| $) 15)) (-3426 ((|#1| $) 14)) (-3427 ((|#1| $) 13)) (-3682 (((-1126) $) NIL)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-4249 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-4260 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3428 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551))))))) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3825 ((|#1| $) NIL (|has| |#1| (-1066)))) (-3528 (($) 8 T CONST)) (-3085 (($) 10 T CONST)) (-3090 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-367))) (($ (-412 (-551)) $) NIL (|has| |#1| (-367)))))
-(((-1002 |#1|) (-1004 |#1|) (-173)) (T -1002))
-NIL
-(-1004 |#1|)
-((-3626 (((-112) $) 43)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#2| #1#) $) 46)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL) ((|#2| $) 44)) (-3443 (((-3 (-412 (-551)) "failed") $) 78)) (-3442 (((-112) $) 72)) (-3441 (((-412 (-551)) $) 76)) (-2591 (((-112) $) 42)) (-3554 ((|#2| $) 22)) (-4408 (($ (-1 |#2| |#2|) $) 19)) (-2824 (($ $) 58)) (-4260 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-4420 (((-540) $) 67)) (-3428 (($ $) 17)) (-4396 (((-868) $) 53) (($ (-551)) 39) (($ |#2|) 37) (($ (-412 (-551))) NIL)) (-3548 (((-776)) 10)) (-3825 ((|#2| $) 71)) (-3473 (((-112) $ $) 26)) (-3106 (((-112) $ $) 69)) (-4287 (($ $) 30) (($ $ $) 29)) (-4289 (($ $ $) 27)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL)))
-(((-1003 |#1| |#2|) (-10 -8 (-15 -4396 (|#1| (-412 (-551)))) (-15 -3106 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 * (|#1| |#1| (-412 (-551)))) (-15 -2824 (|#1| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3825 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -2591 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-1004 |#2|) (-173)) (T -1003))
-((-3548 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1003 *3 *4)) (-4 *3 (-1004 *4)))))
-(-10 -8 (-15 -4396 (|#1| (-412 (-551)))) (-15 -3106 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-551)) |#1|)) (-15 * (|#1| |#1| (-412 (-551)))) (-15 -2824 (|#1| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)) (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3825 (|#2| |#1|)) (-15 -3554 (|#2| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -4408 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1|)) (-15 -3595 ((-3 |#2| #1="failed") |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -2591 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3626 ((-112) |#1|)) (-15 * (|#1| (-925) |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3595 (((-3 (-551) #1="failed") $) 127 (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 125 (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) 122)) (-3594 (((-551) $) 126 (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) 124 (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) 123)) (-2445 (((-694 (-551)) (-694 $)) 97 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 96 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 95) (((-694 |#1|) (-694 $)) 94)) (-3908 (((-3 $ "failed") $) 37)) (-4093 ((|#1| $) 87)) (-3443 (((-3 (-412 (-551)) "failed") $) 83 (|has| |#1| (-550)))) (-3442 (((-112) $) 85 (|has| |#1| (-550)))) (-3441 (((-412 (-551)) $) 84 (|has| |#1| (-550)))) (-3424 (($ |#1| |#1| |#1| |#1|) 88)) (-2591 (((-112) $) 35)) (-3554 ((|#1| $) 89)) (-2952 (($ $ $) 76 (|has| |#1| (-855)))) (-3278 (($ $ $) 75 (|has| |#1| (-855)))) (-4408 (($ (-1 |#1| |#1|) $) 98)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 80 (|has| |#1| (-367)))) (-3425 ((|#1| $) 90)) (-3426 ((|#1| $) 91)) (-3427 ((|#1| $) 92)) (-3682 (((-1126) $) 11)) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) 104 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-312 |#1|))) (($ $ (-296 |#1|)) 102 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-296 |#1|))) 101 (|has| |#1| (-312 |#1|))) (($ $ (-646 (-1183)) (-646 |#1|)) 100 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 99 (|has| |#1| (-519 (-1183) |#1|)))) (-4249 (($ $ |#1|) 105 (|has| |#1| (-289 |#1| |#1|)))) (-4260 (($ $) 121 (|has| |#1| (-234))) (($ $ (-776)) 119 (|has| |#1| (-234))) (($ $ (-1183)) 117 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 116 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 115 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 114 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-4420 (((-540) $) 81 (|has| |#1| (-619 (-540))))) (-3428 (($ $) 93)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 44) (($ (-412 (-551))) 70 (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551))))))) (-3123 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3825 ((|#1| $) 86 (|has| |#1| (-1066)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $) 120 (|has| |#1| (-234))) (($ $ (-776)) 118 (|has| |#1| (-234))) (($ $ (-1183)) 113 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 112 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 111 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 110 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2984 (((-112) $ $) 73 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 72 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 74 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 71 (|has| |#1| (-855)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 79 (|has| |#1| (-367)))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-412 (-551))) 78 (|has| |#1| (-367))) (($ (-412 (-551)) $) 77 (|has| |#1| (-367)))))
-(((-1004 |#1|) (-140) (-173)) (T -1004))
-((-3428 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3424 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551))))))
-(-13 (-38 |t#1|) (-417 |t#1|) (-232 |t#1|) (-342 |t#1|) (-381 |t#1|) (-10 -8 (-15 -3428 ($ $)) (-15 -3427 (|t#1| $)) (-15 -3426 (|t#1| $)) (-15 -3425 (|t#1| $)) (-15 -3554 (|t#1| $)) (-15 -3424 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4093 (|t#1| $)) (IF (|has| |t#1| (-293)) (-6 (-293)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3825 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3442 ((-112) $)) (-15 -3441 ((-412 (-551)) $)) (-15 -3443 ((-3 (-412 (-551)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-367)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-367)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-367))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-367)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -3978 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 #1#) |has| |#1| (-367)) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-367)) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-367)) ((-645 |#1|) . T) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-367)) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1057 #1#) |has| |#1| (-367)) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1062 #1#) |has| |#1| (-367)) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-4408 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|))) (-1004 |#2|) (-173) (-1004 |#4|) (-173)) (T -1005))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1004 *6)) (-5 *1 (-1005 *4 *5 *2 *6)) (-4 *4 (-1004 *5)))))
-(-10 -7 (-15 -4408 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-3421 (($ $) 23)) (-3429 (($ (-646 |#1|)) 33)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-4283 (((-776) $) 26)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) 28)) (-4057 (($ |#1| $) 17)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-3420 ((|#1| $) 27)) (-1373 ((|#1| $) 22)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3423 ((|#1| |#1| $) 16)) (-3845 (((-112) $) 18)) (-4014 (($) NIL)) (-3422 ((|#1| $) 21)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) NIL)) (-3419 ((|#1| $) 30)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1006 |#1|) (-13 (-1001 |#1|) (-10 -8 (-15 -3429 ($ (-646 |#1|))))) (-1107)) (T -1006))
-((-3429 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-1006 *3)))))
-(-13 (-1001 |#1|) (-10 -8 (-15 -3429 ($ (-646 |#1|)))))
-((-3456 (($ $) 12)) (-3430 (($ $ (-551)) 13)))
-(((-1007 |#1|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-551)))) (-1008)) (T -1007))
-NIL
-(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-551))))
-((-3456 (($ $) 6)) (-3430 (($ $ (-551)) 7)) (** (($ $ (-412 (-551))) 8)))
+((-1323 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1314 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4422 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4411 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4400 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4393 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4381 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4370 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2387 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2378 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2368 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2361 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2352 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2343 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2333 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2326 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2317 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2300 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2292 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2283 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2275 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2266 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2258 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2250 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2242 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2231 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(-13 (-10 -7 (-15 -2231 ((-3 |t#1| "failed") |t#1| (-776))) (-15 -2242 ((-3 |t#1| "failed") |t#1|)) (-15 -2250 ((-3 |t#1| "failed") |t#1|)) (-15 -2258 ((-3 |t#1| "failed") |t#1|)) (-15 -2266 ((-3 |t#1| "failed") |t#1|)) (-15 -2275 ((-3 |t#1| "failed") |t#1|)) (-15 -2283 ((-3 |t#1| "failed") |t#1|)) (-15 -2292 ((-3 |t#1| "failed") |t#1|)) (-15 -2300 ((-3 |t#1| "failed") |t#1|)) (-15 -2308 ((-3 |t#1| "failed") |t#1|)) (-15 -2317 ((-3 |t#1| "failed") |t#1|)) (-15 -2326 ((-3 |t#1| "failed") |t#1|)) (-15 -2333 ((-3 |t#1| "failed") |t#1|)) (-15 -2343 ((-3 |t#1| "failed") |t#1|)) (-15 -2352 ((-3 |t#1| "failed") |t#1|)) (-15 -2361 ((-3 |t#1| "failed") |t#1|)) (-15 -2368 ((-3 |t#1| "failed") |t#1|)) (-15 -2378 ((-3 |t#1| "failed") |t#1|)) (-15 -2387 ((-3 |t#1| "failed") |t#1|)) (-15 -4370 ((-3 |t#1| "failed") |t#1|)) (-15 -4381 ((-3 |t#1| "failed") |t#1|)) (-15 -4393 ((-3 |t#1| "failed") |t#1|)) (-15 -4400 ((-3 |t#1| "failed") |t#1|)) (-15 -4411 ((-3 |t#1| "failed") |t#1|)) (-15 -4422 ((-3 |t#1| "failed") |t#1|)) (-15 -1314 ((-3 |t#1| "failed") |t#1|)) (-15 -1323 ((-3 |t#1| "failed") |t#1|))))
+((-1349 ((|#4| |#4| (-649 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1334 ((|#4| |#4| (-649 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1324 ((|#4| (-1 |#4| (-958 |#1|)) |#4|) 31)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1334 (|#4| |#4| |#3|)) (-15 -1334 (|#4| |#4| (-649 |#3|))) (-15 -1349 (|#4| |#4| |#3|)) (-15 -1349 (|#4| |#4| (-649 |#3|))) (-15 -1324 (|#4| (-1 |#4| (-958 |#1|)) |#4|))) (-1055) (-798) (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183))))) (-955 (-958 |#1|) |#2| |#3|)) (T -990))
+((-1324 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1055)) (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *6 *2)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-1349 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) (-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-1334 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)) (-15 -2599 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))))
+(-10 -7 (-15 -1334 (|#4| |#4| |#3|)) (-15 -1334 (|#4| |#4| (-649 |#3|))) (-15 -1349 (|#4| |#4| |#3|)) (-15 -1349 (|#4| |#4| (-649 |#3|))) (-15 -1324 (|#4| (-1 |#4| (-958 |#1|)) |#4|)))
+((-1360 ((|#2| |#3|) 35)) (-2987 (((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 79)) (-2976 (((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 100)))
+(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1360 (|#2| |#3|))) (-353) (-1249 |#1|) (-1249 |#2|) (-729 |#2| |#3|)) (T -991))
+((-1360 (*1 *2 *3) (-12 (-4 *3 (-1249 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-991 *4 *2 *3 *5)) (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3)) (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) (-2976 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -3371 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5)))))
+(-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1360 (|#2| |#3|)))
+((-1430 (((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))) 82)))
+(((-992 |#1| |#2|) (-10 -7 (-15 -1430 ((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))))) (-649 (-1183)) (-776)) (T -992))
+((-1430 (*1 *2 *2) (-12 (-5 *2 (-993 (-412 (-569)) (-869 *3) (-241 *4 (-776)) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-992 *3 *4)))))
+(-10 -7 (-15 -1430 ((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))))))
+((-2383 (((-112) $ $) NIL)) (-2469 (((-3 (-112) "failed") $) 71)) (-2353 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1409 (($ $ (-3 (-112) "failed")) 72)) (-1420 (($ (-649 |#4|) |#4|) 25)) (-2050 (((-1165) $) NIL)) (-1372 (($ $) 69)) (-3461 (((-1126) $) NIL)) (-4196 (((-112) $) 70)) (-2825 (($) 30)) (-1383 ((|#4| $) 74)) (-1396 (((-649 |#4|) $) 73)) (-2388 (((-867) $) 68)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-993 |#1| |#2| |#3| |#4|) (-13 (-1106) (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1420 ($ (-649 |#4|) |#4|)) (-15 -2469 ((-3 (-112) "failed") $)) (-15 -1409 ($ $ (-3 (-112) "failed"))) (-15 -4196 ((-112) $)) (-15 -1396 ((-649 |#4|) $)) (-15 -1383 (|#4| $)) (-15 -1372 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2353 ($ $)) |%noBranch|) |%noBranch|))) (-457) (-855) (-798) (-955 |#1| |#3| |#2|)) (T -993))
+((-2825 (*1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-1420 (*1 *1 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-993 *4 *5 *6 *3)))) (-2469 (*1 *2 *1) (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1409 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-4196 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1383 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-993 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))) (-1372 (*1 *1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-2353 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
+(-13 (-1106) (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1420 ($ (-649 |#4|) |#4|)) (-15 -2469 ((-3 (-112) "failed") $)) (-15 -1409 ($ $ (-3 (-112) "failed"))) (-15 -4196 ((-112) $)) (-15 -1396 ((-649 |#4|) $)) (-15 -1383 (|#4| $)) (-15 -1372 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2353 ($ $)) |%noBranch|) |%noBranch|)))
+((-2217 (((-112) |#5| |#5|) 44)) (-2247 (((-112) |#5| |#5|) 59)) (-2288 (((-112) |#5| (-649 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2255 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2305 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) 70)) (-2206 (((-1278)) 32)) (-2197 (((-1278) (-1165) (-1165) (-1165)) 28)) (-2297 (((-649 |#5|) (-649 |#5|)) 100)) (-2314 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) 92)) (-2323 (((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 122)) (-2236 (((-112) |#5| |#5|) 53)) (-2280 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2263 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2272 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-1755 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-2331 (((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2226 (((-649 |#5|) (-649 |#5|)) 49)))
+(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1278) (-1165) (-1165) (-1165))) (-15 -2206 ((-1278))) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2226 ((-649 |#5|) (-649 |#5|))) (-15 -2236 ((-112) |#5| |#5|)) (-15 -2247 ((-112) |#5| |#5|)) (-15 -2255 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2263 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2272 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1755 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2280 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2288 ((-112) |#5| |#5|)) (-15 -2288 ((-112) |#5| (-649 |#5|))) (-15 -2297 ((-649 |#5|) (-649 |#5|))) (-15 -2305 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2314 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-15 -2323 ((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2331 ((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -994))
+((-2331 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -4289 (-649 *9)) (|:| -3550 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-2323 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4289 (-649 *9)) (|:| -3550 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3550 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2305 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8 *3)))) (-2288 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2280 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-1755 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2272 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2263 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2255 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2247 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2236 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2206 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2197 ((-1278) (-1165) (-1165) (-1165))) (-15 -2206 ((-1278))) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2226 ((-649 |#5|) (-649 |#5|))) (-15 -2236 ((-112) |#5| |#5|)) (-15 -2247 ((-112) |#5| |#5|)) (-15 -2255 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2263 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2272 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1755 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2280 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2288 ((-112) |#5| |#5|)) (-15 -2288 ((-112) |#5| (-649 |#5|))) (-15 -2297 ((-649 |#5|) (-649 |#5|))) (-15 -2305 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2314 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-15 -2323 ((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2331 ((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2599 (((-1183) $) 15)) (-2150 (((-1165) $) 16)) (-3387 (($ (-1183) (-1165)) 14)) (-2388 (((-867) $) 13)))
+(((-995) (-13 (-618 (-867)) (-10 -8 (-15 -3387 ($ (-1183) (-1165))) (-15 -2599 ((-1183) $)) (-15 -2150 ((-1165) $))))) (T -995))
+((-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3387 ($ (-1183) (-1165))) (-15 -2599 ((-1183) $)) (-15 -2150 ((-1165) $))))
+((-1324 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#2| |#1|) |#3|))) (-561) (-561) (-998 |#1|) (-998 |#2|)) (T -996))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-998 *6)) (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-998 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#2| |#1|) |#3|)))
+((-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-1183) "failed") $) 66) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) 96)) (-3043 ((|#2| $) NIL) (((-1183) $) 61) (((-412 (-569)) $) NIL) (((-569) $) 93)) (-4091 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 115) (((-694 |#2|) (-694 $)) 28)) (-3295 (($) 99)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 76) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 85)) (-1450 (($ $) 10)) (-3177 (((-3 $ "failed") $) 20)) (-1324 (($ (-1 |#2| |#2|) $) 22)) (-2267 (($) 16)) (-3288 (($ $) 55)) (-3430 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1440 (($ $) 12)) (-1384 (((-898 (-569)) $) 71) (((-898 (-383)) $) 80) (((-541) $) 40) (((-383) $) 44) (((-226) $) 48)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 91) (($ |#2|) NIL) (($ (-1183)) 58)) (-3263 (((-776)) 31)) (-2872 (((-112) $ $) 51)))
+(((-997 |#1| |#2|) (-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -2388 (|#1| (-1183))) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -3295 (|#1|)) (-15 -3288 (|#1| |#1|)) (-15 -1440 (|#1| |#1|)) (-15 -1450 (|#1| |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| |#1|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-998 |#2|) (-561)) (T -997))
+((-3263 (*1 *2) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-997 *3 *4)) (-4 *3 (-998 *4)))))
+(-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -2388 (|#1| (-1183))) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -3295 (|#1|)) (-15 -3288 (|#1| |#1|)) (-15 -1440 (|#1| |#1|)) (-15 -1450 (|#1| |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3032 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -4091 ((-694 |#2|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| |#1|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3300 ((|#1| $) 147 (|has| |#1| (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 138 (|has| |#1| (-915)))) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 141 (|has| |#1| (-915)))) (-4420 (((-112) $ $) 65)) (-2211 (((-569) $) 128 (|has| |#1| (-825)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 185) (((-3 (-1183) "failed") $) 136 (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 119 (|has| |#1| (-1044 (-569)))) (((-3 (-569) "failed") $) 117 (|has| |#1| (-1044 (-569))))) (-3043 ((|#1| $) 186) (((-1183) $) 137 (|has| |#1| (-1044 (-1183)))) (((-412 (-569)) $) 120 (|has| |#1| (-1044 (-569)))) (((-569) $) 118 (|has| |#1| (-1044 (-569))))) (-2339 (($ $ $) 61)) (-4091 (((-694 (-569)) (-694 $)) 160 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 159 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 158) (((-694 |#1|) (-694 $)) 157)) (-3351 (((-3 $ "failed") $) 37)) (-3295 (($) 145 (|has| |#1| (-550)))) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-2769 (((-112) $) 130 (|has| |#1| (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 154 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 153 (|has| |#1| (-892 (-383))))) (-2861 (((-112) $) 35)) (-1450 (($ $) 149)) (-4378 ((|#1| $) 151)) (-3177 (((-3 $ "failed") $) 116 (|has| |#1| (-1158)))) (-2778 (((-112) $) 129 (|has| |#1| (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2095 (($ $ $) 126 (|has| |#1| (-855)))) (-2406 (($ $ $) 125 (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) 177)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-2267 (($) 115 (|has| |#1| (-1158)) CONST)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3288 (($ $) 146 (|has| |#1| (-310)))) (-3312 ((|#1| $) 143 (|has| |#1| (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 140 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 139 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) 183 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 181 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 180 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 179 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 178 (|has| |#1| (-519 (-1183) |#1|)))) (-4409 (((-776) $) 64)) (-1852 (($ $ |#1|) 184 (|has| |#1| (-289 |#1| |#1|)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-3430 (($ $) 176 (|has| |#1| (-234))) (($ $ (-776)) 174 (|has| |#1| (-234))) (($ $ (-1183)) 172 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 171 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 170 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 169 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1440 (($ $) 148)) (-4390 ((|#1| $) 150)) (-1384 (((-898 (-569)) $) 156 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 155 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 133 (|has| |#1| (-619 (-541)))) (((-383) $) 132 (|has| |#1| (-1028))) (((-226) $) 131 (|has| |#1| (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 142 (-1739 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 189) (($ (-1183)) 135 (|has| |#1| (-1044 (-1183))))) (-1488 (((-3 $ "failed") $) 134 (-2718 (|has| |#1| (-145)) (-1739 (|has| $ (-145)) (|has| |#1| (-915)))))) (-3263 (((-776)) 32 T CONST)) (-3323 ((|#1| $) 144 (|has| |#1| (-550)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-3999 (($ $) 127 (|has| |#1| (-825)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $) 175 (|has| |#1| (-234))) (($ $ (-776)) 173 (|has| |#1| (-234))) (($ $ (-1183)) 168 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 167 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 166 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 165 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2904 (((-112) $ $) 123 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 122 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 124 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 121 (|has| |#1| (-855)))) (-2956 (($ $ $) 73) (($ |#1| |#1|) 152)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+(((-998 |#1|) (-140) (-561)) (T -998))
+((-2956 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-1450 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-1440 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3288 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3295 (*1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-550)) (-4 *2 (-561)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550)))))
+(-13 (-367) (-38 |t#1|) (-1044 |t#1|) (-342 |t#1|) (-232 |t#1|) (-381 |t#1|) (-890 |t#1|) (-405 |t#1|) (-10 -8 (-15 -2956 ($ |t#1| |t#1|)) (-15 -4378 (|t#1| $)) (-15 -4390 (|t#1| $)) (-15 -1450 ($ $)) (-15 -1440 ($ $)) (IF (|has| |t#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |t#1| (-1044 (-569))) (PROGN (-6 (-1044 (-569))) (-6 (-1044 (-412 (-569))))) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1044 (-1183))) (-6 (-1044 (-1183))) |%noBranch|) (IF (|has| |t#1| (-310)) (PROGN (-15 -3300 (|t#1| $)) (-15 -3288 ($ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3295 ($)) (-15 -3323 (|t#1| $)) (-15 -3312 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 #1=(-1183)) |has| |#1| (-1044 (-1183))) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) |has| |#1| (-1028)) ((-619 (-383)) |has| |#1| (-1028)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) . T) ((-310) . T) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-457) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-796) |has| |#1| (-825)) ((-797) |has| |#1| (-825)) ((-799) |has| |#1| (-825)) ((-800) |has| |#1| (-825)) ((-825) |has| |#1| (-825)) ((-853) |has| |#1| (-825)) ((-855) -2718 (|has| |#1| (-855)) (|has| |#1| (-825))) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) |has| |#1| (-915)) ((-926) . T) ((-1028) |has| |#1| (-1028)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-569))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #1#) |has| |#1| (-1044 (-1183))) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-1158)) ((-1223) . T) ((-1227) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-1462 (($ (-1148 |#1| |#2|)) 11)) (-2375 (((-1148 |#1| |#2|) $) 12)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1852 ((|#2| $ (-241 |#1| |#2|)) 16)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL)))
+(((-999 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1462 ($ (-1148 |#1| |#2|))) (-15 -2375 ((-1148 |#1| |#2|) $)) (-15 -1852 (|#2| $ (-241 |#1| |#2|))))) (-927) (-367)) (T -999))
+((-1462 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)) (-5 *1 (-999 *3 *4)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367)) (-5 *1 (-999 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1462 ($ (-1148 |#1| |#2|))) (-15 -2375 ((-1148 |#1| |#2|) $)) (-15 -1852 (|#2| $ (-241 |#1| |#2|)))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 9)) (-2388 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1000) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $))))) (T -1000))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-1493 (($ $) 47)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-3747 (((-776) $) 46)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1484 ((|#1| $) 45)) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1511 ((|#1| |#1| $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1502 ((|#1| $) 48)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-1474 ((|#1| $) 44)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1001 |#1|) (-140) (-1223)) (T -1001))
+((-1511 (*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -1511 (|t#1| |t#1| $)) (-15 -1502 (|t#1| $)) (-15 -1493 ($ $)) (-15 -3747 ((-776) $)) (-15 -1484 (|t#1| $)) (-15 -1474 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2789 (((-112) $) 43)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 44)) (-1740 (((-3 (-412 (-569)) "failed") $) 78)) (-1727 (((-112) $) 72)) (-1715 (((-412 (-569)) $) 76)) (-2861 (((-112) $) 42)) (-3334 ((|#2| $) 22)) (-1324 (($ (-1 |#2| |#2|) $) 19)) (-1776 (($ $) 58)) (-3430 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1384 (((-541) $) 67)) (-1565 (($ $) 17)) (-2388 (((-867) $) 53) (($ (-569)) 39) (($ |#2|) 37) (($ (-412 (-569))) NIL)) (-3263 (((-776)) 10)) (-3999 ((|#2| $) 71)) (-2853 (((-112) $ $) 26)) (-2872 (((-112) $ $) 69)) (-2946 (($ $) 30) (($ $ $) 29)) (-2935 (($ $ $) 27)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-1002 |#1| |#2|) (-10 -8 (-15 -2388 (|#1| (-412 (-569)))) (-15 -2872 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1776 (|#1| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2861 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-1003 |#2|) (-173)) (T -1002))
+((-3263 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1002 *3 *4)) (-4 *3 (-1003 *4)))))
+(-10 -8 (-15 -2388 (|#1| (-412 (-569)))) (-15 -2872 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1776 (|#1| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2861 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -2789 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-4359 (((-3 (-569) "failed") $) 127 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 125 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 122)) (-3043 (((-569) $) 126 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 124 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 123)) (-4091 (((-694 (-569)) (-694 $)) 97 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 96 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 95) (((-694 |#1|) (-694 $)) 94)) (-3351 (((-3 $ "failed") $) 37)) (-3728 ((|#1| $) 87)) (-1740 (((-3 (-412 (-569)) "failed") $) 83 (|has| |#1| (-550)))) (-1727 (((-112) $) 85 (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) 84 (|has| |#1| (-550)))) (-1520 (($ |#1| |#1| |#1| |#1|) 88)) (-2861 (((-112) $) 35)) (-3334 ((|#1| $) 89)) (-2095 (($ $ $) 76 (|has| |#1| (-855)))) (-2406 (($ $ $) 75 (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) 98)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 80 (|has| |#1| (-367)))) (-1531 ((|#1| $) 90)) (-1543 ((|#1| $) 91)) (-1554 ((|#1| $) 92)) (-3461 (((-1126) $) 11)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) 104 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 102 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 101 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 100 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 99 (|has| |#1| (-519 (-1183) |#1|)))) (-1852 (($ $ |#1|) 105 (|has| |#1| (-289 |#1| |#1|)))) (-3430 (($ $) 121 (|has| |#1| (-234))) (($ $ (-776)) 119 (|has| |#1| (-234))) (($ $ (-1183)) 117 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 116 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 115 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 114 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1384 (((-541) $) 81 (|has| |#1| (-619 (-541))))) (-1565 (($ $) 93)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 70 (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-1488 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3999 ((|#1| $) 86 (|has| |#1| (-1066)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $) 120 (|has| |#1| (-234))) (($ $ (-776)) 118 (|has| |#1| (-234))) (($ $ (-1183)) 113 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 112 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 111 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 110 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2904 (((-112) $ $) 73 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 72 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 74 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 71 (|has| |#1| (-855)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 79 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-412 (-569))) 78 (|has| |#1| (-367))) (($ (-412 (-569)) $) 77 (|has| |#1| (-367)))))
+(((-1003 |#1|) (-140) (-173)) (T -1003))
+((-1565 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-1520 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1740 (*1 *2 *1) (|partial| -12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
+(-13 (-38 |t#1|) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-381 |t#1|) (-10 -8 (-15 -1565 ($ $)) (-15 -1554 (|t#1| $)) (-15 -1543 (|t#1| $)) (-15 -1531 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -1520 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3728 (|t#1| $)) (IF (|has| |t#1| (-293)) (-6 (-293)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3999 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1727 ((-112) $)) (-15 -1715 ((-412 (-569)) $)) (-15 -1740 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-367)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-367)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-367)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2718 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 #0#) |has| |#1| (-367)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-367)) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-367)) ((-645 |#1|) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-367)) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-367)) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1062 #0#) |has| |#1| (-367)) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-1324 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|))) (-1003 |#2|) (-173) (-1003 |#4|) (-173)) (T -1004))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1003 *6)) (-5 *1 (-1004 *4 *5 *2 *6)) (-4 *4 (-1003 *5)))))
+(-10 -7 (-15 -1324 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3728 ((|#1| $) 12)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1727 (((-112) $) NIL (|has| |#1| (-550)))) (-1715 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-1520 (($ |#1| |#1| |#1| |#1|) 16)) (-2861 (((-112) $) NIL)) (-3334 ((|#1| $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-1531 ((|#1| $) 15)) (-1543 ((|#1| $) 14)) (-1554 ((|#1| $) 13)) (-3461 (((-1126) $) NIL)) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1852 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3430 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-1565 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-3999 ((|#1| $) NIL (|has| |#1| (-1066)))) (-1786 (($) 8 T CONST)) (-1796 (($) 10 T CONST)) (-2749 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-367)))))
+(((-1005 |#1|) (-1003 |#1|) (-173)) (T -1005))
+NIL
+(-1003 |#1|)
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-1493 (($ $) 23)) (-1576 (($ (-649 |#1|)) 33)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-3747 (((-776) $) 26)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) 28)) (-2086 (($ |#1| $) 17)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1484 ((|#1| $) 27)) (-3493 ((|#1| $) 22)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1511 ((|#1| |#1| $) 16)) (-4196 (((-112) $) 18)) (-2825 (($) NIL)) (-1502 ((|#1| $) 21)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) NIL)) (-1474 ((|#1| $) 30)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1006 |#1|) (-13 (-1001 |#1|) (-10 -8 (-15 -1576 ($ (-649 |#1|))))) (-1106)) (T -1006))
+((-1576 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1006 *3)))))
+(-13 (-1001 |#1|) (-10 -8 (-15 -1576 ($ (-649 |#1|)))))
+((-3714 (($ $) 12)) (-1589 (($ $ (-569)) 13)))
+(((-1007 |#1|) (-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -1589 (|#1| |#1| (-569)))) (-1008)) (T -1007))
+NIL
+(-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -1589 (|#1| |#1| (-569))))
+((-3714 (($ $) 6)) (-1589 (($ $ (-569)) 7)) (** (($ $ (-412 (-569))) 8)))
(((-1008) (-140)) (T -1008))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-551))))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-551)))) (-3456 (*1 *1 *1) (-4 *1 (-1008))))
-(-13 (-10 -8 (-15 -3456 ($ $)) (-15 -3430 ($ $ (-551))) (-15 ** ($ $ (-412 (-551))))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1825 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-2251 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2249 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1967 (((-694 (-412 |#2|)) (-1272 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3772 (((-412 |#2|) $) NIL)) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| (-412 |#2|) (-354)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4419 (((-410 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1763 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3558 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-1839 (((-112)) NIL)) (-1838 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| (-412 |#2|) (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-3 (-412 |#2|) #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| (-412 |#2|) (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-551))))) (((-412 |#2|) $) NIL)) (-1977 (($ (-1272 (-412 |#2|)) (-1272 $)) NIL) (($ (-1272 (-412 |#2|))) 81) (($ (-1272 |#2|) |#2|) NIL)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-354)))) (-2982 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1966 (((-694 (-412 |#2|)) $ (-1272 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-412 |#2|) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-412 |#2|))) (|:| |vec| (-1272 (-412 |#2|)))) (-694 $) (-1272 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-1830 (((-1272 $) (-1272 $)) NIL)) (-4292 (($ |#3|) 75) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3908 (((-3 $ "failed") $) NIL)) (-1817 (((-646 (-646 |#1|))) NIL (|has| |#1| (-372)))) (-1842 (((-112) |#1| |#1|) NIL)) (-3531 (((-925)) NIL)) (-3413 (($) NIL (|has| (-412 |#2|) (-372)))) (-1837 (((-112)) NIL)) (-1836 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2981 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| (-412 |#2|) (-367)))) (-3944 (($ $) NIL)) (-3254 (($) NIL (|has| (-412 |#2|) (-354)))) (-1858 (((-112) $) NIL (|has| (-412 |#2|) (-354)))) (-1951 (($ $ (-776)) NIL (|has| (-412 |#2|) (-354))) (($ $) NIL (|has| (-412 |#2|) (-354)))) (-4173 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-4221 (((-925) $) NIL (|has| (-412 |#2|) (-354))) (((-837 (-925)) $) NIL (|has| (-412 |#2|) (-354)))) (-2591 (((-112) $) NIL)) (-3819 (((-776)) NIL)) (-1831 (((-1272 $) (-1272 $)) NIL)) (-3554 (((-412 |#2|) $) NIL)) (-1818 (((-646 (-952 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3886 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2202 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2198 (((-925) $) NIL (|has| (-412 |#2|) (-372)))) (-3499 ((|#3| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3681 (((-1165) $) NIL)) (-1826 (((-694 (-412 |#2|))) 57)) (-1828 (((-694 (-412 |#2|))) 56)) (-2824 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-1823 (($ (-1272 |#2|) |#2|) 82)) (-1827 (((-694 (-412 |#2|))) 55)) (-1829 (((-694 (-412 |#2|))) 54)) (-1822 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1824 (((-2 (|:| |num| (-1272 |#2|)) (|:| |den| |#2|)) $) 88)) (-1835 (((-1272 $)) 51)) (-4368 (((-1272 $)) 50)) (-1834 (((-112) $) NIL)) (-1833 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3887 (($) NIL (|has| (-412 |#2|) (-354)) CONST)) (-2581 (($ (-925)) NIL (|has| (-412 |#2|) (-372)))) (-1820 (((-3 |#2| #3="failed")) 70)) (-3682 (((-1126) $) NIL)) (-1844 (((-776)) NIL)) (-2590 (($) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| (-412 |#2|) (-367)))) (-3582 (($ (-646 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| (-412 |#2|) (-354)))) (-4182 (((-410 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3907 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1762 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-4249 ((|#1| $ |#1| |#1|) NIL)) (-1821 (((-3 |#2| #3#)) 68)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4207 (((-412 |#2|) (-1272 $)) NIL) (((-412 |#2|)) 47)) (-1952 (((-776) $) NIL (|has| (-412 |#2|) (-354))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-354)))) (-4260 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-2589 (((-694 (-412 |#2|)) (-1272 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-3623 ((|#3|) 58)) (-1852 (($) NIL (|has| (-412 |#2|) (-354)))) (-3662 (((-1272 (-412 |#2|)) $ (-1272 $)) NIL) (((-694 (-412 |#2|)) (-1272 $) (-1272 $)) NIL) (((-1272 (-412 |#2|)) $) 83) (((-694 (-412 |#2|)) (-1272 $)) NIL)) (-4420 (((-1272 (-412 |#2|)) $) NIL) (($ (-1272 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-354)))) (-1832 (((-1272 $) (-1272 $)) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-551))) NIL (-3978 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1044 (-412 (-551)))))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3123 (($ $) NIL (|has| (-412 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-2788 ((|#3| $) NIL)) (-3548 (((-776)) NIL T CONST)) (-1841 (((-112)) 65)) (-1840 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) NIL)) (-2250 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-1819 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1843 (((-112)) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354)))) (($ $) NIL (-3978 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-354))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-551)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-551))) NIL (|has| (-412 |#2|) (-367)))))
-(((-1009 |#1| |#2| |#3| |#4| |#5|) (-346 |#1| |#2| |#3|) (-1227) (-1248 |#1|) (-1248 (-412 |#2|)) (-412 |#2|) (-776)) (T -1009))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-569))))) (-1589 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-569)))) (-3714 (*1 *1 *1) (-4 *1 (-1008))))
+(-13 (-10 -8 (-15 -3714 ($ $)) (-15 -1589 ($ $ (-569))) (-15 ** ($ $ (-412 (-569))))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3733 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-2586 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2564 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-2702 (((-694 (-412 |#2|)) (-1273 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3057 (((-412 |#2|) $) NIL)) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2207 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4420 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3363 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-3906 (((-112)) NIL)) (-3894 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2806 (($ (-1273 (-412 |#2|)) (-1273 $)) NIL) (($ (-1273 (-412 |#2|))) 81) (($ (-1273 |#2|) |#2|) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2339 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2692 (((-694 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-3794 (((-1273 $) (-1273 $)) NIL)) (-3485 (($ |#3|) 75) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3351 (((-3 $ "failed") $) NIL)) (-3635 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-3941 (((-112) |#1| |#1|) NIL)) (-3904 (((-927)) NIL)) (-3295 (($) NIL (|has| (-412 |#2|) (-372)))) (-3881 (((-112)) NIL)) (-3870 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2348 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-3556 (($ $) NIL)) (-3445 (($) NIL (|has| (-412 |#2|) (-353)))) (-4127 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-2525 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-3848 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-4315 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2861 (((-112) $) NIL)) (-3951 (((-776)) NIL)) (-3807 (((-1273 $) (-1273 $)) NIL)) (-3334 (((-412 |#2|) $) NIL)) (-3647 (((-649 (-958 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3177 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3397 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-3348 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3472 ((|#3| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2050 (((-1165) $) NIL)) (-3743 (((-694 (-412 |#2|))) 57)) (-3768 (((-694 (-412 |#2|))) 56)) (-1776 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3705 (($ (-1273 |#2|) |#2|) 82)) (-3756 (((-694 (-412 |#2|))) 55)) (-3782 (((-694 (-412 |#2|))) 54)) (-3694 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3720 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 88)) (-3857 (((-1273 $)) 51)) (-2976 (((-1273 $)) 50)) (-3843 (((-112) $) NIL)) (-3830 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2267 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2114 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3668 (((-3 |#2| "failed")) 70)) (-3461 (((-1126) $) NIL)) (-3964 (((-776)) NIL)) (-2290 (($) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-412 |#2|) (-367)))) (-1830 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3699 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2374 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-4409 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1852 ((|#1| $ |#1| |#1|) NIL)) (-3683 (((-3 |#2| "failed")) 68)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4180 (((-412 |#2|) (-1273 $)) NIL) (((-412 |#2|)) 47)) (-2536 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3430 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2851 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-2760 ((|#3|) 58)) (-4056 (($) NIL (|has| (-412 |#2|) (-353)))) (-1949 (((-1273 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 |#2|)) $) 83) (((-694 (-412 |#2|)) (-1273 $)) NIL)) (-1384 (((-1273 (-412 |#2|)) $) NIL) (($ (-1273 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3819 (((-1273 $) (-1273 $)) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2718 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-1488 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-3176 ((|#3| $) NIL)) (-3263 (((-776)) NIL T CONST)) (-3930 (((-112)) 65)) (-3918 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) NIL)) (-2574 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3656 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3952 (((-112)) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2718 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
+(((-1009 |#1| |#2| |#3| |#4| |#5|) (-346 |#1| |#2| |#3|) (-1227) (-1249 |#1|) (-1249 (-412 |#2|)) (-412 |#2|) (-776)) (T -1009))
NIL
(-346 |#1| |#2| |#3|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3436 (((-646 (-551)) $) 73)) (-3432 (($ (-646 (-551))) 81)) (-3551 (((-551) $) 48 (|has| (-551) (-310)))) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL (|has| (-551) (-825)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #2="failed") $) 60) (((-3 (-1183) #2#) $) NIL (|has| (-551) (-1044 (-1183)))) (((-3 (-412 (-551)) #2#) $) 57 (|has| (-551) (-1044 (-551)))) (((-3 (-551) #2#) $) 60 (|has| (-551) (-1044 (-551))))) (-3594 (((-551) $) NIL) (((-1183) $) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) NIL (|has| (-551) (-1044 (-551)))) (((-551) $) NIL (|has| (-551) (-1044 (-551))))) (-2982 (($ $ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| (-551) (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3413 (($) NIL (|has| (-551) (-550)))) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3434 (((-646 (-551)) $) 79)) (-3624 (((-112) $) NIL (|has| (-551) (-825)))) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (|has| (-551) (-892 (-551)))) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (|has| (-551) (-892 (-382))))) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL)) (-3417 (((-551) $) 45)) (-3886 (((-3 $ "failed") $) NIL (|has| (-551) (-1157)))) (-3625 (((-112) $) NIL (|has| (-551) (-825)))) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-551) (-855)))) (-4408 (($ (-1 (-551) (-551)) $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL)) (-3887 (($) NIL (|has| (-551) (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3550 (($ $) NIL (|has| (-551) (-310))) (((-412 (-551)) $) 50)) (-3435 (((-1160 (-551)) $) 78)) (-3431 (($ (-646 (-551)) (-646 (-551))) 82)) (-3552 (((-551) $) 64 (|has| (-551) (-550)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| (-551) (-916)))) (-4182 (((-410 $) $) NIL)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-4217 (($ $ (-646 (-551)) (-646 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-551) (-551)) NIL (|has| (-551) (-312 (-551)))) (($ $ (-296 (-551))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-296 (-551)))) NIL (|has| (-551) (-312 (-551)))) (($ $ (-646 (-1183)) (-646 (-551))) NIL (|has| (-551) (-519 (-1183) (-551)))) (($ $ (-1183) (-551)) NIL (|has| (-551) (-519 (-1183) (-551))))) (-1762 (((-776) $) NIL)) (-4249 (($ $ (-551)) NIL (|has| (-551) (-289 (-551) (-551))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $) 15 (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-3414 (($ $) NIL)) (-3416 (((-551) $) 47)) (-3433 (((-646 (-551)) $) 80)) (-4420 (((-896 (-551)) $) NIL (|has| (-551) (-619 (-896 (-551))))) (((-896 (-382)) $) NIL (|has| (-551) (-619 (-896 (-382))))) (((-540) $) NIL (|has| (-551) (-619 (-540)))) (((-382) $) NIL (|has| (-551) (-1026))) (((-226) $) NIL (|has| (-551) (-1026)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-551) (-916))))) (-4396 (((-868) $) 107) (($ (-551)) 51) (($ $) NIL) (($ (-412 (-551))) 27) (($ (-551)) 51) (($ (-1183)) NIL (|has| (-551) (-1044 (-1183)))) (((-412 (-551)) $) 25)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-551) (-916))) (|has| (-551) (-145))))) (-3548 (((-776)) 13 T CONST)) (-3553 (((-551) $) 62 (|has| (-551) (-550)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3825 (($ $) NIL (|has| (-551) (-825)))) (-3528 (($) 14 T CONST)) (-3085 (($) 17 T CONST)) (-3090 (($ $) NIL (|has| (-551) (-234))) (($ $ (-776)) NIL (|has| (-551) (-234))) (($ $ (-1183)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| (-551) (-906 (-1183)))) (($ $ (-1 (-551) (-551)) (-776)) NIL) (($ $ (-1 (-551) (-551))) NIL)) (-2984 (((-112) $ $) NIL (|has| (-551) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3473 (((-112) $ $) 21)) (-3105 (((-112) $ $) NIL (|has| (-551) (-855)))) (-3106 (((-112) $ $) 40 (|has| (-551) (-855)))) (-4399 (($ $ $) 36) (($ (-551) (-551)) 38)) (-4287 (($ $) 23) (($ $ $) 30)) (-4289 (($ $ $) 28)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 32) (($ $ $) 34) (($ $ (-412 (-551))) NIL) (($ (-412 (-551)) $) NIL) (($ (-551) $) 32) (($ $ (-551)) NIL)))
-(((-1010 |#1|) (-13 (-997 (-551)) (-618 (-412 (-551))) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -3436 ((-646 (-551)) $)) (-15 -3435 ((-1160 (-551)) $)) (-15 -3434 ((-646 (-551)) $)) (-15 -3433 ((-646 (-551)) $)) (-15 -3432 ($ (-646 (-551)))) (-15 -3431 ($ (-646 (-551)) (-646 (-551)))))) (-551)) (T -1010))
-((-3550 (*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3436 (*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))) (-3431 (*1 *1 *2 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(-13 (-997 (-551)) (-618 (-412 (-551))) (-10 -8 (-15 -3550 ((-412 (-551)) $)) (-15 -3436 ((-646 (-551)) $)) (-15 -3435 ((-1160 (-551)) $)) (-15 -3434 ((-646 (-551)) $)) (-15 -3433 ((-646 (-551)) $)) (-15 -3432 ($ (-646 (-551)))) (-15 -3431 ($ (-646 (-551)) (-646 (-551))))))
-((-3437 (((-51) (-412 (-551)) (-551)) 9)))
-(((-1011) (-10 -7 (-15 -3437 ((-51) (-412 (-551)) (-551))))) (T -1011))
-((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-551))) (-5 *4 (-551)) (-5 *2 (-51)) (-5 *1 (-1011)))))
-(-10 -7 (-15 -3437 ((-51) (-412 (-551)) (-551))))
-((-3558 (((-551)) 23)) (-3440 (((-551)) 28)) (-3439 (((-1278) (-551)) 26)) (-3438 (((-551) (-551)) 29) (((-551)) 22)))
-(((-1012) (-10 -7 (-15 -3438 ((-551))) (-15 -3558 ((-551))) (-15 -3438 ((-551) (-551))) (-15 -3439 ((-1278) (-551))) (-15 -3440 ((-551))))) (T -1012))
-((-3440 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1012)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))) (-3558 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))) (-3438 (*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))))
-(-10 -7 (-15 -3438 ((-551))) (-15 -3558 ((-551))) (-15 -3438 ((-551) (-551))) (-15 -3439 ((-1278) (-551))) (-15 -3440 ((-551))))
-((-4183 (((-410 |#1|) |#1|) 43)) (-4182 (((-410 |#1|) |#1|) 41)))
-(((-1013 |#1|) (-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1|))) (-1248 (-412 (-551)))) (T -1013))
-((-4183 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1248 (-412 (-551)))))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1248 (-412 (-551)))))))
-(-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1|)))
-((-3443 (((-3 (-412 (-551)) "failed") |#1|) 15)) (-3442 (((-112) |#1|) 14)) (-3441 (((-412 (-551)) |#1|) 10)))
-(((-1014 |#1|) (-10 -7 (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|))) (-1044 (-412 (-551)))) (T -1014))
-((-3443 (*1 *2 *3) (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-551)))))) (-3441 (*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
-(-10 -7 (-15 -3441 ((-412 (-551)) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -3443 ((-3 (-412 (-551)) "failed") |#1|)))
-((-4237 ((|#2| $ "value" |#2|) 12)) (-4249 ((|#2| $ "value") 10)) (-3447 (((-112) $ $) 18)))
-(((-1015 |#1| |#2|) (-10 -8 (-15 -4237 (|#2| |#1| "value" |#2|)) (-15 -3447 ((-112) |#1| |#1|)) (-15 -4249 (|#2| |#1| "value"))) (-1016 |#2|) (-1222)) (T -1015))
-NIL
-(-10 -8 (-15 -4237 (|#2| |#1| "value" |#2|)) (-15 -3447 ((-112) |#1| |#1|)) (-15 -4249 (|#2| |#1| "value")))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4174 (($) 7 T CONST)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ "value") 48)) (-3448 (((-551) $ $) 45)) (-4083 (((-112) $) 47)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1016 |#1|) (-140) (-1222)) (T -1016))
-((-3963 (*1 *2 *1) (-12 (-4 *3 (-1222)) (-5 *2 (-646 *1)) (-4 *1 (-1016 *3)))) (-3450 (*1 *2 *1) (-12 (-4 *3 (-1222)) (-5 *2 (-646 *1)) (-4 *1 (-1016 *3)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1222)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1222)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-646 *3)))) (-3448 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-551)))) (-3447 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-3446 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *1)) (|has| *1 (-6 -4444)) (-4 *1 (-1016 *3)) (-4 *3 (-1222)))) (-4237 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1222)))) (-3444 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1222)))))
-(-13 (-494 |t#1|) (-10 -8 (-15 -3963 ((-646 $) $)) (-15 -3450 ((-646 $) $)) (-15 -3968 ((-112) $)) (-15 -3844 (|t#1| $)) (-15 -4249 (|t#1| $ "value")) (-15 -4083 ((-112) $)) (-15 -3449 ((-646 |t#1|) $)) (-15 -3448 ((-551) $ $)) (IF (|has| |t#1| (-1107)) (PROGN (-15 -3447 ((-112) $ $)) (-15 -3446 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3445 ($ $ (-646 $))) (-15 -4237 (|t#1| $ "value" |t#1|)) (-15 -3444 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-3456 (($ $) 9) (($ $ (-925)) 49) (($ (-412 (-551))) 13) (($ (-551)) 15)) (-3621 (((-3 $ "failed") (-1177 $) (-925) (-868)) 24) (((-3 $ "failed") (-1177 $) (-925)) 32)) (-3430 (($ $ (-551)) 58)) (-3548 (((-776)) 18)) (-3622 (((-646 $) (-1177 $)) NIL) (((-646 $) (-1177 (-412 (-551)))) 63) (((-646 $) (-1177 (-551))) 68) (((-646 $) (-952 $)) 72) (((-646 $) (-952 (-412 (-551)))) 76) (((-646 $) (-952 (-551))) 80)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL) (($ $ (-412 (-551))) 53)))
-(((-1017 |#1|) (-10 -8 (-15 -3456 (|#1| (-551))) (-15 -3456 (|#1| (-412 (-551)))) (-15 -3456 (|#1| |#1| (-925))) (-15 -3622 ((-646 |#1|) (-952 (-551)))) (-15 -3622 ((-646 |#1|) (-952 (-412 (-551))))) (-15 -3622 ((-646 |#1|) (-952 |#1|))) (-15 -3622 ((-646 |#1|) (-1177 (-551)))) (-15 -3622 ((-646 |#1|) (-1177 (-412 (-551))))) (-15 -3622 ((-646 |#1|) (-1177 |#1|))) (-15 -3621 ((-3 |#1| "failed") (-1177 |#1|) (-925))) (-15 -3621 ((-3 |#1| "failed") (-1177 |#1|) (-925) (-868))) (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -3430 (|#1| |#1| (-551))) (-15 -3456 (|#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -3548 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925)))) (-1018)) (T -1017))
-((-3548 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018)))))
-(-10 -8 (-15 -3456 (|#1| (-551))) (-15 -3456 (|#1| (-412 (-551)))) (-15 -3456 (|#1| |#1| (-925))) (-15 -3622 ((-646 |#1|) (-952 (-551)))) (-15 -3622 ((-646 |#1|) (-952 (-412 (-551))))) (-15 -3622 ((-646 |#1|) (-952 |#1|))) (-15 -3622 ((-646 |#1|) (-1177 (-551)))) (-15 -3622 ((-646 |#1|) (-1177 (-412 (-551))))) (-15 -3622 ((-646 |#1|) (-1177 |#1|))) (-15 -3621 ((-3 |#1| "failed") (-1177 |#1|) (-925))) (-15 -3621 ((-3 |#1| "failed") (-1177 |#1|) (-925) (-868))) (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -3430 (|#1| |#1| (-551))) (-15 -3456 (|#1| |#1|)) (-15 ** (|#1| |#1| (-551))) (-15 -3548 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 102)) (-2251 (($ $) 103)) (-2249 (((-112) $) 105)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 122)) (-4419 (((-410 $) $) 123)) (-3456 (($ $) 86) (($ $ (-925)) 72) (($ (-412 (-551))) 71) (($ (-551)) 70)) (-1763 (((-112) $ $) 113)) (-4073 (((-551) $) 139)) (-4174 (($) 18 T CONST)) (-3621 (((-3 $ "failed") (-1177 $) (-925) (-868)) 80) (((-3 $ "failed") (-1177 $) (-925)) 79)) (-3595 (((-3 (-551) #1="failed") $) 99 (|has| (-412 (-551)) (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 97 (|has| (-412 (-551)) (-1044 (-412 (-551))))) (((-3 (-412 (-551)) #1#) $) 94)) (-3594 (((-551) $) 98 (|has| (-412 (-551)) (-1044 (-551)))) (((-412 (-551)) $) 96 (|has| (-412 (-551)) (-1044 (-412 (-551))))) (((-412 (-551)) $) 95)) (-3452 (($ $ (-868)) 69)) (-3451 (($ $ (-868)) 68)) (-2982 (($ $ $) 117)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 116)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 111)) (-4173 (((-112) $) 124)) (-3624 (((-112) $) 137)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 85)) (-3625 (((-112) $) 138)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 120)) (-2952 (($ $ $) 136)) (-3278 (($ $ $) 135)) (-3453 (((-3 (-1177 $) "failed") $) 81)) (-3455 (((-3 (-868) "failed") $) 83)) (-3454 (((-3 (-1177 $) "failed") $) 82)) (-2079 (($ (-646 $)) 109) (($ $ $) 108)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 125)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 110)) (-3582 (($ (-646 $)) 107) (($ $ $) 106)) (-4182 (((-410 $) $) 121)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 118)) (-3907 (((-3 $ "failed") $ $) 101)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 112)) (-1762 (((-776) $) 114)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 115)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 129) (($ $) 100) (($ (-412 (-551))) 93) (($ (-551)) 92) (($ (-412 (-551))) 89)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 104)) (-4219 (((-412 (-551)) $ $) 67)) (-3622 (((-646 $) (-1177 $)) 78) (((-646 $) (-1177 (-412 (-551)))) 77) (((-646 $) (-1177 (-551))) 76) (((-646 $) (-952 $)) 75) (((-646 $) (-952 (-412 (-551)))) 74) (((-646 $) (-952 (-551))) 73)) (-3825 (($ $) 140)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 133)) (-2985 (((-112) $ $) 132)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 134)) (-3106 (((-112) $ $) 131)) (-4399 (($ $ $) 130)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 126) (($ $ (-412 (-551))) 84)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ (-412 (-551)) $) 128) (($ $ (-412 (-551))) 127) (($ (-551) $) 91) (($ $ (-551)) 90) (($ (-412 (-551)) $) 88) (($ $ (-412 (-551))) 87)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-1655 (((-649 (-569)) $) 73)) (-1613 (($ (-649 (-569))) 81)) (-3300 (((-569) $) 48 (|has| (-569) (-310)))) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL (|has| (-569) (-825)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) 60) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 57 (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) 60 (|has| (-569) (-1044 (-569))))) (-3043 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2339 (($ $ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3295 (($) NIL (|has| (-569) (-550)))) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-1634 (((-649 (-569)) $) 79)) (-2769 (((-112) $) NIL (|has| (-569) (-825)))) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL)) (-4378 (((-569) $) 45)) (-3177 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-2778 (((-112) $) NIL (|has| (-569) (-825)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-569) (-855)))) (-1324 (($ (-1 (-569) (-569)) $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL)) (-2267 (($) NIL (|has| (-569) (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3288 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) 50)) (-1644 (((-1163 (-569)) $) 78)) (-1602 (($ (-649 (-569)) (-649 (-569))) 82)) (-3312 (((-569) $) 64 (|has| (-569) (-550)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3699 (((-423 $) $) NIL)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1679 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-4409 (((-776) $) NIL)) (-1852 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $) 15 (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1440 (($ $) NIL)) (-4390 (((-569) $) 47)) (-1623 (((-649 (-569)) $) 80)) (-1384 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-2388 (((-867) $) 107) (($ (-569)) 51) (($ $) NIL) (($ (-412 (-569))) 27) (($ (-569)) 51) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) 25)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3263 (((-776)) 13 T CONST)) (-3323 (((-569) $) 62 (|has| (-569) (-550)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3999 (($ $) NIL (|has| (-569) (-825)))) (-1786 (($) 14 T CONST)) (-1796 (($) 17 T CONST)) (-2749 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2904 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2853 (((-112) $ $) 21)) (-2893 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2872 (((-112) $ $) 40 (|has| (-569) (-855)))) (-2956 (($ $ $) 36) (($ (-569) (-569)) 38)) (-2946 (($ $) 23) (($ $ $) 30)) (-2935 (($ $ $) 28)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ $ $) 34) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) 32) (($ $ (-569)) NIL)))
+(((-1010 |#1|) (-13 (-998 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -1655 ((-649 (-569)) $)) (-15 -1644 ((-1163 (-569)) $)) (-15 -1634 ((-649 (-569)) $)) (-15 -1623 ((-649 (-569)) $)) (-15 -1613 ($ (-649 (-569)))) (-15 -1602 ($ (-649 (-569)) (-649 (-569)))))) (-569)) (T -1010))
+((-3288 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1602 (*1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
+(-13 (-998 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3288 ((-412 (-569)) $)) (-15 -1655 ((-649 (-569)) $)) (-15 -1644 ((-1163 (-569)) $)) (-15 -1634 ((-649 (-569)) $)) (-15 -1623 ((-649 (-569)) $)) (-15 -1613 ($ (-649 (-569)))) (-15 -1602 ($ (-649 (-569)) (-649 (-569))))))
+((-1665 (((-52) (-412 (-569)) (-569)) 9)))
+(((-1011) (-10 -7 (-15 -1665 ((-52) (-412 (-569)) (-569))))) (T -1011))
+((-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52)) (-5 *1 (-1011)))))
+(-10 -7 (-15 -1665 ((-52) (-412 (-569)) (-569))))
+((-3363 (((-569)) 23)) (-1701 (((-569)) 28)) (-1690 (((-1278) (-569)) 26)) (-1677 (((-569) (-569)) 29) (((-569)) 22)))
+(((-1012) (-10 -7 (-15 -1677 ((-569))) (-15 -3363 ((-569))) (-15 -1677 ((-569) (-569))) (-15 -1690 ((-1278) (-569))) (-15 -1701 ((-569))))) (T -1012))
+((-1701 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1012)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-3363 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-1677 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
+(-10 -7 (-15 -1677 ((-569))) (-15 -3363 ((-569))) (-15 -1677 ((-569) (-569))) (-15 -1690 ((-1278) (-569))) (-15 -1701 ((-569))))
+((-3924 (((-423 |#1|) |#1|) 43)) (-3699 (((-423 |#1|) |#1|) 41)))
+(((-1013 |#1|) (-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1|))) (-1249 (-412 (-569)))) (T -1013))
+((-3924 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1249 (-412 (-569)))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1249 (-412 (-569)))))))
+(-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1|)))
+((-1740 (((-3 (-412 (-569)) "failed") |#1|) 15)) (-1727 (((-112) |#1|) 14)) (-1715 (((-412 (-569)) |#1|) 10)))
+(((-1014 |#1|) (-10 -7 (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|))) (-1044 (-412 (-569)))) (T -1014))
+((-1740 (*1 *2 *3) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-569)))))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
+(-10 -7 (-15 -1715 ((-412 (-569)) |#1|)) (-15 -1727 ((-112) |#1|)) (-15 -1740 ((-3 (-412 (-569)) "failed") |#1|)))
+((-3861 ((|#2| $ "value" |#2|) 12)) (-1852 ((|#2| $ "value") 10)) (-1785 (((-112) $ $) 18)))
+(((-1015 |#1| |#2|) (-10 -8 (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1852 (|#2| |#1| "value"))) (-1016 |#2|) (-1223)) (T -1015))
+NIL
+(-10 -8 (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1852 (|#2| |#1| "value")))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-3863 (($) 7 T CONST)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48)) (-1797 (((-569) $ $) 45)) (-2284 (((-112) $) 47)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1016 |#1|) (-140) (-1223)) (T -1016))
+((-2492 (*1 *2 *1) (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))) (-1807 (*1 *2 *1) (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-1797 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))) (-1785 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1774 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1763 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4444)) (-4 *1 (-1016 *3)) (-4 *3 (-1223)))) (-3861 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-1753 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))))
+(-13 (-494 |t#1|) (-10 -8 (-15 -2492 ((-649 $) $)) (-15 -1807 ((-649 $) $)) (-15 -2546 ((-112) $)) (-15 -2150 (|t#1| $)) (-15 -1852 (|t#1| $ "value")) (-15 -2284 ((-112) $)) (-15 -2238 ((-649 |t#1|) $)) (-15 -1797 ((-569) $ $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -1785 ((-112) $ $)) (-15 -1774 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -1763 ($ $ (-649 $))) (-15 -3861 (|t#1| $ "value" |t#1|)) (-15 -1753 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3714 (($ $) 9) (($ $ (-927)) 49) (($ (-412 (-569))) 13) (($ (-569)) 15)) (-2740 (((-3 $ "failed") (-1179 $) (-927) (-867)) 24) (((-3 $ "failed") (-1179 $) (-927)) 32)) (-1589 (($ $ (-569)) 58)) (-3263 (((-776)) 18)) (-2751 (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 (-412 (-569)))) 63) (((-649 $) (-1179 (-569))) 68) (((-649 $) (-958 $)) 72) (((-649 $) (-958 (-412 (-569)))) 76) (((-649 $) (-958 (-569))) 80)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 53)))
+(((-1017 |#1|) (-10 -8 (-15 -3714 (|#1| (-569))) (-15 -3714 (|#1| (-412 (-569)))) (-15 -3714 (|#1| |#1| (-927))) (-15 -2751 ((-649 |#1|) (-958 (-569)))) (-15 -2751 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2751 ((-649 |#1|) (-958 |#1|))) (-15 -2751 ((-649 |#1|) (-1179 (-569)))) (-15 -2751 ((-649 |#1|) (-1179 (-412 (-569))))) (-15 -2751 ((-649 |#1|) (-1179 |#1|))) (-15 -2740 ((-3 |#1| "failed") (-1179 |#1|) (-927))) (-15 -2740 ((-3 |#1| "failed") (-1179 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -1589 (|#1| |#1| (-569))) (-15 -3714 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3263 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-1018)) (T -1017))
+((-3263 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018)))))
+(-10 -8 (-15 -3714 (|#1| (-569))) (-15 -3714 (|#1| (-412 (-569)))) (-15 -3714 (|#1| |#1| (-927))) (-15 -2751 ((-649 |#1|) (-958 (-569)))) (-15 -2751 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2751 ((-649 |#1|) (-958 |#1|))) (-15 -2751 ((-649 |#1|) (-1179 (-569)))) (-15 -2751 ((-649 |#1|) (-1179 (-412 (-569))))) (-15 -2751 ((-649 |#1|) (-1179 |#1|))) (-15 -2740 ((-3 |#1| "failed") (-1179 |#1|) (-927))) (-15 -2740 ((-3 |#1| "failed") (-1179 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -1589 (|#1| |#1| (-569))) (-15 -3714 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3263 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 102)) (-2586 (($ $) 103)) (-2564 (((-112) $) 105)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 122)) (-2207 (((-423 $) $) 123)) (-3714 (($ $) 86) (($ $ (-927)) 72) (($ (-412 (-569))) 71) (($ (-569)) 70)) (-4420 (((-112) $ $) 113)) (-2211 (((-569) $) 139)) (-3863 (($) 18 T CONST)) (-2740 (((-3 $ "failed") (-1179 $) (-927) (-867)) 80) (((-3 $ "failed") (-1179 $) (-927)) 79)) (-4359 (((-3 (-569) "failed") $) 99 (|has| (-412 (-569)) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) 94)) (-3043 (((-569) $) 98 (|has| (-412 (-569)) (-1044 (-569)))) (((-412 (-569)) $) 96 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-412 (-569)) $) 95)) (-1831 (($ $ (-867)) 69)) (-1819 (($ $ (-867)) 68)) (-2339 (($ $ $) 117)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 116)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 111)) (-3848 (((-112) $) 124)) (-2769 (((-112) $) 137)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 85)) (-2778 (((-112) $) 138)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 120)) (-2095 (($ $ $) 136)) (-2406 (($ $ $) 135)) (-1841 (((-3 (-1179 $) "failed") $) 81)) (-1861 (((-3 (-867) "failed") $) 83)) (-1851 (((-3 (-1179 $) "failed") $) 82)) (-1798 (($ (-649 $)) 109) (($ $ $) 108)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 125)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 110)) (-1830 (($ (-649 $)) 107) (($ $ $) 106)) (-3699 (((-423 $) $) 121)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 118)) (-2374 (((-3 $ "failed") $ $) 101)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 112)) (-4409 (((-776) $) 114)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 115)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 129) (($ $) 100) (($ (-412 (-569))) 93) (($ (-569)) 92) (($ (-412 (-569))) 89)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 104)) (-3006 (((-412 (-569)) $ $) 67)) (-2751 (((-649 $) (-1179 $)) 78) (((-649 $) (-1179 (-412 (-569)))) 77) (((-649 $) (-1179 (-569))) 76) (((-649 $) (-958 $)) 75) (((-649 $) (-958 (-412 (-569)))) 74) (((-649 $) (-958 (-569))) 73)) (-3999 (($ $) 140)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 133)) (-2882 (((-112) $ $) 132)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 134)) (-2872 (((-112) $ $) 131)) (-2956 (($ $ $) 130)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126) (($ $ (-412 (-569))) 84)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 128) (($ $ (-412 (-569))) 127) (($ (-569) $) 91) (($ $ (-569)) 90) (($ (-412 (-569)) $) 88) (($ $ (-412 (-569))) 87)))
(((-1018) (-140)) (T -1018))
-((-3456 (*1 *1 *1) (-4 *1 (-1018))) (-3455 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-868)))) (-3454 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177 *1)) (-4 *1 (-1018)))) (-3453 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177 *1)) (-4 *1 (-1018)))) (-3621 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1177 *1)) (-5 *3 (-925)) (-5 *4 (-868)) (-4 *1 (-1018)))) (-3621 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1177 *1)) (-5 *3 (-925)) (-4 *1 (-1018)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-1018)) (-5 *2 (-646 *1)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1177 (-412 (-551)))) (-5 *2 (-646 *1)) (-4 *1 (-1018)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1177 (-551))) (-5 *2 (-646 *1)) (-4 *1 (-1018)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1018)) (-5 *2 (-646 *1)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *2 (-646 *1)) (-4 *1 (-1018)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-952 (-551))) (-5 *2 (-646 *1)) (-4 *1 (-1018)))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-925)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-4 *1 (-1018)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1018)))) (-3452 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-868)))) (-3451 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-868)))) (-4219 (*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-551))))))
-(-13 (-147) (-853) (-173) (-367) (-417 (-412 (-551))) (-38 (-551)) (-38 (-412 (-551))) (-1008) (-10 -8 (-15 -3455 ((-3 (-868) "failed") $)) (-15 -3454 ((-3 (-1177 $) "failed") $)) (-15 -3453 ((-3 (-1177 $) "failed") $)) (-15 -3621 ((-3 $ "failed") (-1177 $) (-925) (-868))) (-15 -3621 ((-3 $ "failed") (-1177 $) (-925))) (-15 -3622 ((-646 $) (-1177 $))) (-15 -3622 ((-646 $) (-1177 (-412 (-551))))) (-15 -3622 ((-646 $) (-1177 (-551)))) (-15 -3622 ((-646 $) (-952 $))) (-15 -3622 ((-646 $) (-952 (-412 (-551))))) (-15 -3622 ((-646 $) (-952 (-551)))) (-15 -3456 ($ $ (-925))) (-15 -3456 ($ $)) (-15 -3456 ($ (-412 (-551)))) (-15 -3456 ($ (-551))) (-15 -3452 ($ $ (-868))) (-15 -3451 ($ $ (-868))) (-15 -4219 ((-412 (-551)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 #2=(-551)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-417 (-412 (-551))) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 #2#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 #2#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 #2#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-853) . T) ((-855) . T) ((-927) . T) ((-1008) . T) ((-1044 (-412 (-551))) . T) ((-1044 (-551)) |has| (-412 (-551)) (-1044 (-551))) ((-1057 #1#) . T) ((-1057 #2#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 #2#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-3457 (((-2 (|:| |ans| |#2|) (|:| -3559 |#2|) (|:| |sol?| (-112))) (-551) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -3457 ((-2 (|:| |ans| |#2|) (|:| -3559 |#2|) (|:| |sol?| (-112))) (-551) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-27) (-426 |#1|))) (T -1019))
-((-3457 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-646 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-426 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-551)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3559 *4) (|:| |sol?| (-112)))) (-5 *1 (-1019 *8 *4)))))
-(-10 -7 (-15 -3457 ((-2 (|:| |ans| |#2|) (|:| -3559 |#2|) (|:| |sol?| (-112))) (-551) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3458 (((-3 (-646 |#2|) "failed") (-551) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1020 |#1| |#2|) (-10 -7 (-15 -3458 ((-3 (-646 |#2|) "failed") (-551) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))) (-13 (-1208) (-27) (-426 |#1|))) (T -1020))
-((-3458 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-646 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-426 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-551)) (-5 *2 (-646 *4)) (-5 *1 (-1020 *8 *4)))))
-(-10 -7 (-15 -3458 ((-3 (-646 |#2|) "failed") (-551) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-646 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-646 |#2|)) (-1 (-3 (-2 (|:| -2328 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3461 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3705 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-551)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-551) (-1 |#2| |#2|)) 38)) (-3459 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 69)) (-3460 (((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|)) 74)))
-(((-1021 |#1| |#2|) (-10 -7 (-15 -3459 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3460 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -3461 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3705 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-551)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-551) (-1 |#2| |#2|)))) (-13 (-367) (-147) (-1044 (-551))) (-1248 |#1|)) (T -1021))
-((-3461 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1248 *6)) (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-551)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3705 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1021 *6 *3)))) (-3460 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))) (-3459 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3515 *6))) (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -3459 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3460 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -3461 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3705 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-551)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-551) (-1 |#2| |#2|))))
-((-3462 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 22)) (-3463 (((-3 (-646 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 34)))
-(((-1022 |#1| |#2|) (-10 -7 (-15 -3462 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3463 ((-3 (-646 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-551))) (-1248 |#1|)) (T -1022))
-((-3463 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4)) (-5 *2 (-646 (-412 *5))) (-5 *1 (-1022 *4 *5)) (-5 *3 (-412 *5)))) (-3462 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-551)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3515 *6))) (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -3462 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3515 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3463 ((-3 (-646 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))))
-((-3464 (((-1 |#1|) (-646 (-2 (|:| -3844 |#1|) (|:| -1629 (-551))))) 37)) (-3522 (((-1 |#1|) (-1103 |#1|)) 44)) (-3465 (((-1 |#1|) (-1272 |#1|) (-1272 (-551)) (-551)) 34)))
-(((-1023 |#1|) (-10 -7 (-15 -3522 ((-1 |#1|) (-1103 |#1|))) (-15 -3464 ((-1 |#1|) (-646 (-2 (|:| -3844 |#1|) (|:| -1629 (-551)))))) (-15 -3465 ((-1 |#1|) (-1272 |#1|) (-1272 (-551)) (-551)))) (-1107)) (T -1023))
-((-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1272 *6)) (-5 *4 (-1272 (-551))) (-5 *5 (-551)) (-4 *6 (-1107)) (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -3844 *4) (|:| -1629 (-551))))) (-4 *4 (-1107)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-1103 *4)) (-4 *4 (-1107)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
-(-10 -7 (-15 -3522 ((-1 |#1|) (-1103 |#1|))) (-15 -3464 ((-1 |#1|) (-646 (-2 (|:| -3844 |#1|) (|:| -1629 (-551)))))) (-15 -3465 ((-1 |#1|) (-1272 |#1|) (-1272 (-551)) (-551))))
-((-4221 (((-776) (-337 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4221 ((-776) (-337 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-367) (-1248 |#1|) (-1248 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-13 (-372) (-367))) (T -1024))
-((-4221 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-337 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) (-4 *7 (-1248 *6)) (-4 *4 (-1248 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1024 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -4221 ((-776) (-337 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2986 (((-112) $ $) NIL)) (-3466 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 11)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1025) (-13 (-1089) (-10 -8 (-15 -3466 ((-1141) $)) (-15 -3671 ((-1141) $))))) (T -1025))
-((-3466 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
-(-13 (-1089) (-10 -8 (-15 -3466 ((-1141) $)) (-15 -3671 ((-1141) $))))
-((-4420 (((-226) $) 6) (((-382) $) 9)))
-(((-1026) (-140)) (T -1026))
-NIL
-(-13 (-619 (-226)) (-619 (-382)))
-(((-619 (-226)) . T) ((-619 (-382)) . T))
-((-3556 (((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) 32) (((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551))) 29)) (-3469 (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551))) 34) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551))) 30) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) 33) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|) 28)) (-3468 (((-646 (-412 (-551))) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) 20)) (-3467 (((-412 (-551)) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) 17)))
-(((-1027 |#1|) (-10 -7 (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|)) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551)))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3467 ((-412 (-551)) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3468 ((-646 (-412 (-551))) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))))) (-1248 (-551))) (T -1027))
-((-3468 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *2 (-646 (-412 (-551)))) (-5 *1 (-1027 *4)) (-4 *4 (-1248 (-551))))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) (-5 *2 (-412 (-551))) (-5 *1 (-1027 *4)) (-4 *4 (-1248 (-551))))) (-3556 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))))) (-3556 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) (-5 *4 (-412 (-551))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *5) (|:| -3559 *5)))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))) (-5 *4 (-2 (|:| -3560 *5) (|:| -3559 *5))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))) (-5 *4 (-412 (-551))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))) (-5 *4 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))))))
-(-10 -7 (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|)) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551)))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3467 ((-412 (-551)) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3468 ((-646 (-412 (-551))) (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))))
-((-3556 (((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) 35) (((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551))) 32)) (-3469 (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551))) 30) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551))) 26) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) 28) (((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|) 24)))
-(((-1028 |#1|) (-10 -7 (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|)) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551)))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))) (-1248 (-412 (-551)))) (T -1028))
-((-3556 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551)))))) (-3556 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) (-5 *4 (-412 (-551))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 *4)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *5) (|:| -3559 *5)))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 *5)) (-5 *4 (-2 (|:| -3560 *5) (|:| -3559 *5))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *4) (|:| -3559 *4)))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 *4)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551)))) (-5 *4 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551)))))))
-(-10 -7 (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1|)) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-412 (-551)))) (-15 -3469 ((-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-412 (-551)))) (-15 -3556 ((-3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) "failed") |#1| (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))) (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))))
-((-4022 (((-646 (-382)) (-952 (-551)) (-382)) 28) (((-646 (-382)) (-952 (-412 (-551))) (-382)) 27)) (-4417 (((-646 (-646 (-382))) (-646 (-952 (-551))) (-646 (-1183)) (-382)) 37)))
-(((-1029) (-10 -7 (-15 -4022 ((-646 (-382)) (-952 (-412 (-551))) (-382))) (-15 -4022 ((-646 (-382)) (-952 (-551)) (-382))) (-15 -4417 ((-646 (-646 (-382))) (-646 (-952 (-551))) (-646 (-1183)) (-382))))) (T -1029))
-((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-646 (-1183))) (-5 *2 (-646 (-646 (-382)))) (-5 *1 (-1029)) (-5 *5 (-382)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-551))) (-5 *2 (-646 (-382))) (-5 *1 (-1029)) (-5 *4 (-382)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *2 (-646 (-382))) (-5 *1 (-1029)) (-5 *4 (-382)))))
-(-10 -7 (-15 -4022 ((-646 (-382)) (-952 (-412 (-551))) (-382))) (-15 -4022 ((-646 (-382)) (-952 (-551)) (-382))) (-15 -4417 ((-646 (-646 (-382))) (-646 (-952 (-551))) (-646 (-1183)) (-382))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 75)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-3456 (($ $) NIL) (($ $ (-925)) NIL) (($ (-412 (-551))) NIL) (($ (-551)) NIL)) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) 70)) (-4174 (($) NIL T CONST)) (-3621 (((-3 $ #1="failed") (-1177 $) (-925) (-868)) NIL) (((-3 $ #1#) (-1177 $) (-925)) 55)) (-3595 (((-3 (-412 (-551)) #2="failed") $) NIL (|has| (-412 (-551)) (-1044 (-412 (-551))))) (((-3 (-412 (-551)) #2#) $) NIL) (((-3 |#1| #2#) $) 116) (((-3 (-551) #2#) $) NIL (-3978 (|has| (-412 (-551)) (-1044 (-551))) (|has| |#1| (-1044 (-551)))))) (-3594 (((-412 (-551)) $) 17 (|has| (-412 (-551)) (-1044 (-412 (-551))))) (((-412 (-551)) $) 17) ((|#1| $) 117) (((-551) $) NIL (-3978 (|has| (-412 (-551)) (-1044 (-551))) (|has| |#1| (-1044 (-551)))))) (-3452 (($ $ (-868)) 47)) (-3451 (($ $ (-868)) 48)) (-2982 (($ $ $) NIL)) (-3620 (((-412 (-551)) $ $) 21)) (-3908 (((-3 $ "failed") $) 88)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-3624 (((-112) $) 66)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL)) (-3625 (((-112) $) 69)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3453 (((-3 (-1177 $) #1#) $) 83)) (-3455 (((-3 (-868) #1#) $) 82)) (-3454 (((-3 (-1177 $) #1#) $) 80)) (-3470 (((-3 (-1067 $ (-1177 $)) "failed") $) 78)) (-2079 (($ (-646 $)) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 89)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ (-646 $)) NIL) (($ $ $) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4396 (((-868) $) 87) (($ (-551)) NIL) (($ (-412 (-551))) NIL) (($ $) 63) (($ (-412 (-551))) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL) (($ |#1|) 119)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-4219 (((-412 (-551)) $ $) 27)) (-3622 (((-646 $) (-1177 $)) 61) (((-646 $) (-1177 (-412 (-551)))) NIL) (((-646 $) (-1177 (-551))) NIL) (((-646 $) (-952 $)) NIL) (((-646 $) (-952 (-412 (-551)))) NIL) (((-646 $) (-952 (-551))) NIL)) (-3471 (($ (-1067 $ (-1177 $)) (-868)) 46)) (-3825 (($ $) 22)) (-3528 (($) 32 T CONST)) (-3085 (($) 39 T CONST)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 76)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 24)) (-4399 (($ $ $) 37)) (-4287 (($ $) 38) (($ $ $) 74)) (-4289 (($ $ $) 112)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL) (($ $ (-412 (-551))) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 98) (($ $ $) 104) (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL) (($ (-551) $) 98) (($ $ (-551)) NIL) (($ (-412 (-551)) $) NIL) (($ $ (-412 (-551))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1030 |#1|) (-13 (-1018) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3471 ($ (-1067 $ (-1177 $)) (-868))) (-15 -3470 ((-3 (-1067 $ (-1177 $)) "failed") $)) (-15 -3620 ((-412 (-551)) $ $)))) (-13 (-853) (-367) (-1026))) (T -1030))
-((-3471 (*1 *1 *2 *3) (-12 (-5 *2 (-1067 (-1030 *4) (-1177 (-1030 *4)))) (-5 *3 (-868)) (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1026))))) (-3470 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1177 (-1030 *3)))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1026))))) (-3620 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1026))))))
-(-13 (-1018) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3471 ($ (-1067 $ (-1177 $)) (-868))) (-15 -3470 ((-3 (-1067 $ (-1177 $)) "failed") $)) (-15 -3620 ((-412 (-551)) $ $))))
-((-3472 (((-2 (|:| -3705 |#2|) (|:| -2920 (-646 |#1|))) |#2| (-646 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| |#1|)) (-15 -3472 ((-2 (|:| -3705 |#2|) (|:| -2920 (-646 |#1|))) |#2| (-646 |#1|)))) (-367) (-663 |#1|)) (T -1031))
-((-3472 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -3705 *3) (|:| -2920 (-646 *5)))) (-5 *1 (-1031 *5 *3)) (-5 *4 (-646 *5)) (-4 *3 (-663 *5)))) (-3472 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-663 *3)))))
-(-10 -7 (-15 -3472 (|#2| |#2| |#1|)) (-15 -3472 ((-2 (|:| -3705 |#2|) (|:| -2920 (-646 |#1|))) |#2| (-646 |#1|))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3474 ((|#1| $ |#1|) 14)) (-4237 ((|#1| $ |#1|) 12)) (-3476 (($ |#1|) 10)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4249 ((|#1| $) 11)) (-3475 ((|#1| $) 13)) (-4396 (((-868) $) 21 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3473 (((-112) $ $) 9)))
-(((-1032 |#1|) (-13 (-1222) (-10 -8 (-15 -3476 ($ |#1|)) (-15 -4249 (|#1| $)) (-15 -4237 (|#1| $ |#1|)) (-15 -3475 (|#1| $)) (-15 -3474 (|#1| $ |#1|)) (-15 -3473 ((-112) $ $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|))) (-1222)) (T -1032))
-((-3476 (*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))) (-4249 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))) (-4237 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))) (-3475 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))) (-3474 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))) (-3473 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1222)))))
-(-13 (-1222) (-10 -8 (-15 -3476 ($ |#1|)) (-15 -4249 (|#1| $)) (-15 -4237 (|#1| $ |#1|)) (-15 -3475 (|#1| $)) (-15 -3474 (|#1| $ |#1|)) (-15 -3473 ((-112) $ $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) NIL)) (-4132 (((-646 $) (-646 |#4|)) 118) (((-646 $) (-646 |#4|) (-112)) 119) (((-646 $) (-646 |#4|) (-112) (-112)) 117) (((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3503 (((-646 |#3|) $) NIL)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4138 ((|#4| |#4| $) NIL)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 112)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 66)) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) 29 (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3319 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) NIL)) (-3594 (($ (-646 |#4|)) NIL)) (-4248 (((-3 $ #1#) $) 45)) (-4135 ((|#4| |#4| $) 69)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3848 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4133 ((|#4| |#4| $) NIL)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) NIL)) (-3635 (((-112) |#4| $) NIL)) (-3633 (((-112) |#4| $) NIL)) (-3636 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3880 (((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112)) 133)) (-2134 (((-646 |#4|) $) 18 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3618 ((|#3| $) 38)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#4|) $) 19 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2138 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 23)) (-3333 (((-646 |#3|) $) NIL)) (-3332 (((-112) |#3| $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) NIL)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 110)) (-4247 (((-3 |#4| #1#) $) 42)) (-3630 (((-646 $) |#4| $) 93)) (-3632 (((-3 (-112) (-646 $)) |#4| $) NIL)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3676 (((-646 $) |#4| $) 115) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) 116) (((-646 $) |#4| (-646 $)) NIL)) (-3881 (((-646 $) (-646 |#4|) (-112) (-112) (-112)) 128)) (-3882 (($ |#4| $) 82) (($ (-646 |#4|) $) 83) (((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4147 (((-646 |#4|) $) NIL)) (-4141 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-4149 (((-112) $ $) NIL)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4137 ((|#4| |#4| $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-3 |#4| #1#) $) 40)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4129 (((-3 $ #1#) $ |#4|) 59)) (-4218 (($ $ |#4|) NIL) (((-646 $) |#4| $) 95) (((-646 $) |#4| (-646 $)) NIL) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) 89)) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 14)) (-4398 (((-776) $) NIL)) (-2135 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) 13)) (-4420 (((-540) $) NIL (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 22)) (-3329 (($ $ |#3|) 52)) (-3331 (($ $ |#3|) 54)) (-4134 (($ $) NIL)) (-3330 (($ $ |#3|) NIL)) (-4396 (((-868) $) 35) (((-646 |#4|) $) 46)) (-4128 (((-776) $) NIL (|has| |#3| (-372)))) (-3680 (((-112) $ $) NIL)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) NIL)) (-3627 (((-646 $) |#4| $) 92) (((-646 $) |#4| (-646 $)) NIL) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) NIL)) (-3634 (((-112) |#4| $) NIL)) (-4383 (((-112) |#3| $) 65)) (-3473 (((-112) $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1033 |#1| |#2| |#3| |#4|) (-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3882 ((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112))) (-15 -3881 ((-646 $) (-646 |#4|) (-112) (-112) (-112))) (-15 -3880 ((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1033))
-((-3882 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-4132 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-4132 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-3881 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-3880 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-646 *8)) (|:| |towers| (-646 (-1033 *5 *6 *7 *8))))) (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-646 *8)))))
-(-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3882 ((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112))) (-15 -3881 ((-646 $) (-646 |#4|) (-112) (-112) (-112))) (-15 -3880 ((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112)))))
-((-3477 (((-646 (-2 (|:| |radval| (-317 (-551))) (|:| |radmult| (-551)) (|:| |radvect| (-646 (-694 (-317 (-551))))))) (-694 (-412 (-952 (-551))))) 67)) (-3478 (((-646 (-694 (-317 (-551)))) (-317 (-551)) (-694 (-412 (-952 (-551))))) 52)) (-3479 (((-646 (-317 (-551))) (-694 (-412 (-952 (-551))))) 45)) (-3483 (((-646 (-694 (-317 (-551)))) (-694 (-412 (-952 (-551))))) 87)) (-3481 (((-694 (-317 (-551))) (-694 (-317 (-551)))) 38)) (-3482 (((-646 (-694 (-317 (-551)))) (-646 (-694 (-317 (-551))))) 76)) (-3480 (((-3 (-694 (-317 (-551))) "failed") (-694 (-412 (-952 (-551))))) 84)))
-(((-1034) (-10 -7 (-15 -3477 ((-646 (-2 (|:| |radval| (-317 (-551))) (|:| |radmult| (-551)) (|:| |radvect| (-646 (-694 (-317 (-551))))))) (-694 (-412 (-952 (-551)))))) (-15 -3478 ((-646 (-694 (-317 (-551)))) (-317 (-551)) (-694 (-412 (-952 (-551)))))) (-15 -3479 ((-646 (-317 (-551))) (-694 (-412 (-952 (-551)))))) (-15 -3480 ((-3 (-694 (-317 (-551))) "failed") (-694 (-412 (-952 (-551)))))) (-15 -3481 ((-694 (-317 (-551))) (-694 (-317 (-551))))) (-15 -3482 ((-646 (-694 (-317 (-551)))) (-646 (-694 (-317 (-551)))))) (-15 -3483 ((-646 (-694 (-317 (-551)))) (-694 (-412 (-952 (-551)))))))) (T -1034))
-((-3483 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-694 (-317 (-551))))) (-5 *1 (-1034)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-646 (-694 (-317 (-551))))) (-5 *1 (-1034)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-694 (-317 (-551)))) (-5 *1 (-1034)))) (-3480 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-694 (-317 (-551)))) (-5 *1 (-1034)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-317 (-551)))) (-5 *1 (-1034)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-694 (-317 (-551))))) (-5 *1 (-1034)) (-5 *3 (-317 (-551))))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-2 (|:| |radval| (-317 (-551))) (|:| |radmult| (-551)) (|:| |radvect| (-646 (-694 (-317 (-551)))))))) (-5 *1 (-1034)))))
-(-10 -7 (-15 -3477 ((-646 (-2 (|:| |radval| (-317 (-551))) (|:| |radmult| (-551)) (|:| |radvect| (-646 (-694 (-317 (-551))))))) (-694 (-412 (-952 (-551)))))) (-15 -3478 ((-646 (-694 (-317 (-551)))) (-317 (-551)) (-694 (-412 (-952 (-551)))))) (-15 -3479 ((-646 (-317 (-551))) (-694 (-412 (-952 (-551)))))) (-15 -3480 ((-3 (-694 (-317 (-551))) "failed") (-694 (-412 (-952 (-551)))))) (-15 -3481 ((-694 (-317 (-551))) (-694 (-317 (-551))))) (-15 -3482 ((-646 (-694 (-317 (-551)))) (-646 (-694 (-317 (-551)))))) (-15 -3483 ((-646 (-694 (-317 (-551)))) (-694 (-412 (-952 (-551)))))))
-((-3487 (((-646 (-694 |#1|)) (-646 (-694 |#1|))) 73) (((-694 |#1|) (-694 |#1|)) 72) (((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-646 (-694 |#1|))) 71) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 68)) (-3486 (((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925)) 66) (((-694 |#1|) (-694 |#1|) (-925)) 65)) (-3488 (((-646 (-694 (-551))) (-646 (-646 (-551)))) 84) (((-646 (-694 (-551))) (-646 (-908 (-551))) (-551)) 83) (((-694 (-551)) (-646 (-551))) 80) (((-694 (-551)) (-908 (-551)) (-551)) 78)) (-3485 (((-694 (-952 |#1|)) (-776)) 98)) (-3484 (((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925)) 52 (|has| |#1| (-6 (-4445 "*")))) (((-694 |#1|) (-694 |#1|) (-925)) 50 (|has| |#1| (-6 (-4445 "*"))))))
-(((-1035 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -3484 ((-694 |#1|) (-694 |#1|) (-925))) |%noBranch|) (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -3484 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925))) |%noBranch|) (-15 -3485 ((-694 (-952 |#1|)) (-776))) (-15 -3486 ((-694 |#1|) (-694 |#1|) (-925))) (-15 -3486 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925))) (-15 -3487 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3487 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3487 ((-694 |#1|) (-694 |#1|))) (-15 -3487 ((-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3488 ((-694 (-551)) (-908 (-551)) (-551))) (-15 -3488 ((-694 (-551)) (-646 (-551)))) (-15 -3488 ((-646 (-694 (-551))) (-646 (-908 (-551))) (-551))) (-15 -3488 ((-646 (-694 (-551))) (-646 (-646 (-551)))))) (-1055)) (T -1035))
-((-3488 (*1 *2 *3) (-12 (-5 *3 (-646 (-646 (-551)))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-1035 *4)) (-4 *4 (-1055)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-908 (-551)))) (-5 *4 (-551)) (-5 *2 (-646 (-694 *4))) (-5 *1 (-1035 *5)) (-4 *5 (-1055)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1035 *4)) (-4 *4 (-1055)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-908 (-551))) (-5 *4 (-551)) (-5 *2 (-694 *4)) (-5 *1 (-1035 *5)) (-4 *5 (-1055)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-646 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1035 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1035 *3)))) (-3487 (*1 *2 *2 *2) (-12 (-5 *2 (-646 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1035 *3)))) (-3487 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1035 *3)))) (-3486 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-694 *4))) (-5 *3 (-925)) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))) (-3486 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-925)) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-694 (-952 *4))) (-5 *1 (-1035 *4)) (-4 *4 (-1055)))) (-3484 (*1 *2 *2 *3) (-12 (-5 *2 (-646 (-694 *4))) (-5 *3 (-925)) (|has| *4 (-6 (-4445 "*"))) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))) (-3484 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-925)) (|has| *4 (-6 (-4445 "*"))) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -3484 ((-694 |#1|) (-694 |#1|) (-925))) |%noBranch|) (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -3484 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925))) |%noBranch|) (-15 -3485 ((-694 (-952 |#1|)) (-776))) (-15 -3486 ((-694 |#1|) (-694 |#1|) (-925))) (-15 -3486 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-925))) (-15 -3487 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3487 ((-646 (-694 |#1|)) (-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3487 ((-694 |#1|) (-694 |#1|))) (-15 -3487 ((-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3488 ((-694 (-551)) (-908 (-551)) (-551))) (-15 -3488 ((-694 (-551)) (-646 (-551)))) (-15 -3488 ((-646 (-694 (-551))) (-646 (-908 (-551))) (-551))) (-15 -3488 ((-646 (-694 (-551))) (-646 (-646 (-551))))))
-((-3492 (((-694 |#1|) (-646 (-694 |#1|)) (-1272 |#1|)) 71 (|has| |#1| (-310)))) (-3860 (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 (-1272 |#1|))) 111 (|has| |#1| (-367))) (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 |#1|)) 118 (|has| |#1| (-367)))) (-3496 (((-1272 |#1|) (-646 (-1272 |#1|)) (-551)) 136 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3495 (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-925)) 124 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112)) 123 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|))) 122 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112) (-551) (-551)) 121 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3494 (((-112) (-646 (-694 |#1|))) 104 (|has| |#1| (-367))) (((-112) (-646 (-694 |#1|)) (-551)) 107 (|has| |#1| (-367)))) (-3491 (((-1272 (-1272 |#1|)) (-646 (-694 |#1|)) (-1272 |#1|)) 68 (|has| |#1| (-310)))) (-3490 (((-694 |#1|) (-646 (-694 |#1|)) (-694 |#1|)) 48)) (-3489 (((-694 |#1|) (-1272 (-1272 |#1|))) 41)) (-3493 (((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-551)) 95 (|has| |#1| (-367))) (((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|))) 94 (|has| |#1| (-367))) (((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-112) (-551)) 102 (|has| |#1| (-367)))))
-(((-1036 |#1|) (-10 -7 (-15 -3489 ((-694 |#1|) (-1272 (-1272 |#1|)))) (-15 -3490 ((-694 |#1|) (-646 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -3491 ((-1272 (-1272 |#1|)) (-646 (-694 |#1|)) (-1272 |#1|))) (-15 -3492 ((-694 |#1|) (-646 (-694 |#1|)) (-1272 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-112) (-551))) (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-551))) (-15 -3494 ((-112) (-646 (-694 |#1|)) (-551))) (-15 -3494 ((-112) (-646 (-694 |#1|)))) (-15 -3860 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 |#1|))) (-15 -3860 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 (-1272 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112) (-551) (-551))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-925))) (-15 -3496 ((-1272 |#1|) (-646 (-1272 |#1|)) (-551)))) |%noBranch|) |%noBranch|)) (-1055)) (T -1036))
-((-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-1272 *5))) (-5 *4 (-551)) (-5 *2 (-1272 *5)) (-5 *1 (-1036 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))) (-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-646 (-694 *5))))) (-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-646 (-694 *5))))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055)) (-5 *2 (-646 (-646 (-694 *4)))) (-5 *1 (-1036 *4)) (-5 *3 (-646 (-694 *4))))) (-3495 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-551)) (-4 *6 (-367)) (-4 *6 (-372)) (-4 *6 (-1055)) (-5 *2 (-646 (-646 (-694 *6)))) (-5 *1 (-1036 *6)) (-5 *3 (-646 (-694 *6))))) (-3860 (*1 *2 *3 *4) (-12 (-5 *4 (-1272 (-1272 *5))) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-646 (-694 *5))))) (-3860 (*1 *2 *3 *4) (-12 (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-646 (-694 *5))))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-646 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-1036 *4)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-551)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-112)) (-5 *1 (-1036 *5)))) (-3493 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-551)) (-5 *2 (-694 *5)) (-5 *1 (-1036 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1036 *4)) (-4 *4 (-367)) (-4 *4 (-1055)))) (-3493 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-646 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-551)) (-5 *2 (-694 *6)) (-5 *1 (-1036 *6)) (-4 *6 (-367)) (-4 *6 (-1055)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-1272 *5)) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1036 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-1272 (-1272 *5))) (-5 *1 (-1036 *5)) (-5 *4 (-1272 *5)))) (-3490 (*1 *2 *3 *2) (-12 (-5 *3 (-646 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1036 *4)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1272 (-1272 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4)) (-5 *1 (-1036 *4)))))
-(-10 -7 (-15 -3489 ((-694 |#1|) (-1272 (-1272 |#1|)))) (-15 -3490 ((-694 |#1|) (-646 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -3491 ((-1272 (-1272 |#1|)) (-646 (-694 |#1|)) (-1272 |#1|))) (-15 -3492 ((-694 |#1|) (-646 (-694 |#1|)) (-1272 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-112) (-551))) (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3493 ((-694 |#1|) (-646 (-694 |#1|)) (-646 (-694 |#1|)) (-551))) (-15 -3494 ((-112) (-646 (-694 |#1|)) (-551))) (-15 -3494 ((-112) (-646 (-694 |#1|)))) (-15 -3860 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 |#1|))) (-15 -3860 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-1272 (-1272 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112) (-551) (-551))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-112))) (-15 -3495 ((-646 (-646 (-694 |#1|))) (-646 (-694 |#1|)) (-925))) (-15 -3496 ((-1272 |#1|) (-646 (-1272 |#1|)) (-551)))) |%noBranch|) |%noBranch|))
-((-3497 ((|#1| (-925) |#1|) 18)))
-(((-1037 |#1|) (-10 -7 (-15 -3497 (|#1| (-925) |#1|))) (-13 (-1107) (-10 -8 (-15 -4289 ($ $ $))))) (T -1037))
-((-3497 (*1 *2 *3 *2) (-12 (-5 *3 (-925)) (-5 *1 (-1037 *2)) (-4 *2 (-13 (-1107) (-10 -8 (-15 -4289 ($ $ $))))))))
-(-10 -7 (-15 -3497 (|#1| (-925) |#1|)))
-((-3498 ((|#1| |#1| (-925)) 18)))
-(((-1038 |#1|) (-10 -7 (-15 -3498 (|#1| |#1| (-925)))) (-13 (-1107) (-10 -8 (-15 * ($ $ $))))) (T -1038))
-((-3498 (*1 *2 *2 *3) (-12 (-5 *3 (-925)) (-5 *1 (-1038 *2)) (-4 *2 (-13 (-1107) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3498 (|#1| |#1| (-925))))
-((-4396 ((|#1| (-314)) 11) (((-1278) |#1|) 9)))
-(((-1039 |#1|) (-10 -7 (-15 -4396 ((-1278) |#1|)) (-15 -4396 (|#1| (-314)))) (-1222)) (T -1039))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-314)) (-5 *1 (-1039 *2)) (-4 *2 (-1222)))) (-4396 (*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1222)))))
-(-10 -7 (-15 -4396 ((-1278) |#1|)) (-15 -4396 (|#1| (-314))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-4292 (($ |#4|) 25)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-3499 ((|#4| $) 27)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 46) (($ (-551)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3548 (((-776)) 43 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 21 T CONST)) (-3085 (($) 23 T CONST)) (-3473 (((-112) $ $) 40)) (-4287 (($ $) 31) (($ $ $) NIL)) (-4289 (($ $ $) 29)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1040 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -4292 ($ |#4|)) (-15 -4396 ($ |#4|)) (-15 -3499 (|#4| $)))) (-367) (-798) (-855) (-956 |#1| |#2| |#3|) (-646 |#4|)) (T -1040))
-((-4292 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-646 *2)))) (-4396 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-646 *2)))) (-3499 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-646 *2)))))
-(-13 (-173) (-38 |#1|) (-10 -8 (-15 -4292 ($ |#4|)) (-15 -4396 ($ |#4|)) (-15 -3499 (|#4| $))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-2390 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-3501 (((-112) (-112)) 43)) (-3500 (((-112) (-112)) 42)) (-4237 (((-51) $ (-1183) (-51)) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 (-51) #1="failed") (-1183) $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-3847 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-51) #1#) (-1183) $) NIL)) (-3848 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-1694 (((-51) $ (-1183) (-51)) NIL (|has| $ (-6 -4444)))) (-3535 (((-51) $ (-1183)) NIL)) (-2134 (((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3026 (((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2393 (((-1183) $) NIL (|has| (-1183) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-2834 (((-646 (-1183)) $) 37)) (-2400 (((-112) (-1183) $) NIL)) (-1372 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL)) (-4057 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL)) (-2395 (((-646 (-1183)) $) NIL)) (-2396 (((-112) (-1183) $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-4250 (((-51) $) NIL (|has| (-1183) (-855)))) (-1444 (((-3 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) "failed") (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL)) (-2391 (($ $ (-51)) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-296 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-51)) (-646 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-296 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-646 (-296 (-51)))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2397 (((-646 (-51)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 (((-51) $ (-1183)) 39) (((-51) $ (-1183) (-51)) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-776) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107)))) (((-776) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-4396 (((-868) $) 41 (-3978 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-618 (-868))) (|has| (-51) (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1041) (-13 (-1199 (-1183) (-51)) (-10 -7 (-15 -3501 ((-112) (-112))) (-15 -3500 ((-112) (-112))) (-6 -4443)))) (T -1041))
-((-3501 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(-13 (-1199 (-1183) (-51)) (-10 -7 (-15 -3501 ((-112) (-112))) (-15 -3500 ((-112) (-112))) (-6 -4443)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 9)) (-4396 (((-868) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1042) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $))))) (T -1042))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $))))
-((-3594 ((|#2| $) 10)))
-(((-1043 |#1| |#2|) (-10 -8 (-15 -3594 (|#2| |#1|))) (-1044 |#2|) (-1222)) (T -1043))
-NIL
-(-10 -8 (-15 -3594 (|#2| |#1|)))
-((-3595 (((-3 |#1| "failed") $) 9)) (-3594 ((|#1| $) 8)) (-4396 (($ |#1|) 6)))
-(((-1044 |#1|) (-140) (-1222)) (T -1044))
-((-3595 (*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1222)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1222)))))
-(-13 (-621 |t#1|) (-10 -8 (-15 -3595 ((-3 |t#1| "failed") $)) (-15 -3594 (|t#1| $))))
+((-3714 (*1 *1 *1) (-4 *1 (-1018))) (-1861 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-1851 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))) (-1841 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))) (-2740 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-5 *4 (-867)) (-4 *1 (-1018)))) (-2740 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-4 *1 (-1018)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1179 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-927)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1018)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1018)))) (-1831 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-1819 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-569))))))
+(-13 (-147) (-853) (-173) (-367) (-416 (-412 (-569))) (-38 (-569)) (-38 (-412 (-569))) (-1008) (-10 -8 (-15 -1861 ((-3 (-867) "failed") $)) (-15 -1851 ((-3 (-1179 $) "failed") $)) (-15 -1841 ((-3 (-1179 $) "failed") $)) (-15 -2740 ((-3 $ "failed") (-1179 $) (-927) (-867))) (-15 -2740 ((-3 $ "failed") (-1179 $) (-927))) (-15 -2751 ((-649 $) (-1179 $))) (-15 -2751 ((-649 $) (-1179 (-412 (-569))))) (-15 -2751 ((-649 $) (-1179 (-569)))) (-15 -2751 ((-649 $) (-958 $))) (-15 -2751 ((-649 $) (-958 (-412 (-569))))) (-15 -2751 ((-649 $) (-958 (-569)))) (-15 -3714 ($ $ (-927))) (-15 -3714 ($ $)) (-15 -3714 ($ (-412 (-569)))) (-15 -3714 ($ (-569))) (-15 -1831 ($ $ (-867))) (-15 -1819 ($ $ (-867))) (-15 -3006 ((-412 (-569)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 #1=(-569)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-416 (-412 (-569))) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-926) . T) ((-1008) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) |has| (-412 (-569)) (-1044 (-569))) ((-1057 #0#) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-3708 (((-2 (|:| |ans| |#2|) (|:| -4386 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1019 |#1| |#2|) (-10 -7 (-15 -3708 ((-2 (|:| |ans| |#2|) (|:| -4386 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-27) (-435 |#1|))) (T -1019))
+((-3708 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4386 *4) (|:| |sol?| (-112)))) (-5 *1 (-1019 *8 *4)))))
+(-10 -7 (-15 -3708 ((-2 (|:| |ans| |#2|) (|:| -4386 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3723 (((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1020 |#1| |#2|) (-10 -7 (-15 -3723 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-27) (-435 |#1|))) (T -1020))
+((-3723 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-649 *4)) (-5 *1 (-1020 *8 *4)))))
+(-10 -7 (-15 -3723 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2209 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3759 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4289 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)) 38)) (-3736 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 69)) (-3746 (((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|)) 74)))
+(((-1021 |#1| |#2|) (-10 -7 (-15 -3736 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3746 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -3759 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4289 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -1021))
+((-3759 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-569)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4289 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1021 *6 *3)))) (-3746 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))) (-3736 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3566 *6))) (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -3736 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3746 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -3759 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4289 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|))))
+((-3771 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 22)) (-3785 (((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 34)))
+(((-1022 |#1| |#2|) (-10 -7 (-15 -3771 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3785 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -1022))
+((-3785 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1022 *4 *5)) (-5 *3 (-412 *5)))) (-3771 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3566 *6))) (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -3771 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3566 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3785 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))))
+((-3797 (((-1 |#1|) (-649 (-2 (|:| -2150 |#1|) (|:| -2341 (-569))))) 37)) (-4351 (((-1 |#1|) (-1108 |#1|)) 44)) (-3810 (((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569)) 34)))
+(((-1023 |#1|) (-10 -7 (-15 -4351 ((-1 |#1|) (-1108 |#1|))) (-15 -3797 ((-1 |#1|) (-649 (-2 (|:| -2150 |#1|) (|:| -2341 (-569)))))) (-15 -3810 ((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569)))) (-1106)) (T -1023))
+((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1273 *6)) (-5 *4 (-1273 (-569))) (-5 *5 (-569)) (-4 *6 (-1106)) (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -2150 *4) (|:| -2341 (-569))))) (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-1108 *4)) (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
+(-10 -7 (-15 -4351 ((-1 |#1|) (-1108 |#1|))) (-15 -3797 ((-1 |#1|) (-649 (-2 (|:| -2150 |#1|) (|:| -2341 (-569)))))) (-15 -3810 ((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569))))
+((-4315 (((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4315 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-13 (-372) (-367))) (T -1024))
+((-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-4 *4 (-1249 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1024 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4315 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2383 (((-112) $ $) NIL)) (-3642 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 11)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1025) (-13 (-1089) (-10 -8 (-15 -3642 ((-1141) $)) (-15 -3473 ((-1141) $))))) (T -1025))
+((-3642 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
+(-13 (-1089) (-10 -8 (-15 -3642 ((-1141) $)) (-15 -3473 ((-1141) $))))
+((-3355 (((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) 32) (((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569))) 29)) (-3846 (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569))) 34) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569))) 30) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) 33) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|) 28)) (-3833 (((-649 (-412 (-569))) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) 20)) (-3822 (((-412 (-569)) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) 17)))
+(((-1026 |#1|) (-10 -7 (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|)) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3822 ((-412 (-569)) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3833 ((-649 (-412 (-569))) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))))) (-1249 (-569))) (T -1026))
+((-3833 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) (-5 *2 (-412 (-569))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))) (-3355 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))) (-3355 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4375 *5) (|:| -4386 *5)))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4375 *5) (|:| -4386 *5))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-412 (-569))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))))
+(-10 -7 (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|)) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3822 ((-412 (-569)) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3833 ((-649 (-412 (-569))) (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))))
+((-3355 (((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) 35) (((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569))) 32)) (-3846 (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569))) 30) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569))) 26) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) 28) (((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|) 24)))
+(((-1027 |#1|) (-10 -7 (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|)) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))) (-1249 (-412 (-569)))) (T -1027))
+((-3355 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))))) (-3355 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4375 *5) (|:| -4386 *5)))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *5)) (-5 *4 (-2 (|:| -4375 *5) (|:| -4386 *5))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4375 *4) (|:| -4386 *4)))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))) (-5 *4 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))))))
+(-10 -7 (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1|)) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -3846 ((-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-412 (-569)))) (-15 -3355 ((-3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) "failed") |#1| (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))) (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))))
+((-1384 (((-226) $) 6) (((-383) $) 9)))
+(((-1028) (-140)) (T -1028))
+NIL
+(-13 (-619 (-226)) (-619 (-383)))
+(((-619 (-226)) . T) ((-619 (-383)) . T))
+((-2888 (((-649 (-383)) (-958 (-569)) (-383)) 28) (((-649 (-383)) (-958 (-412 (-569))) (-383)) 27)) (-2189 (((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383)) 37)))
+(((-1029) (-10 -7 (-15 -2888 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -2888 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2189 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383))))) (T -1029))
+((-2189 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1029)) (-5 *5 (-383)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1029)) (-5 *4 (-383)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383))) (-5 *1 (-1029)) (-5 *4 (-383)))))
+(-10 -7 (-15 -2888 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -2888 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2189 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 75)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-3714 (($ $) NIL) (($ $ (-927)) NIL) (($ (-412 (-569))) NIL) (($ (-569)) NIL)) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) 70)) (-3863 (($) NIL T CONST)) (-2740 (((-3 $ "failed") (-1179 $) (-927) (-867)) NIL) (((-3 $ "failed") (-1179 $) (-927)) 55)) (-4359 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-569) "failed") $) NIL (-2718 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))))) (-3043 (((-412 (-569)) $) 17 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-412 (-569)) $) 17) ((|#1| $) 117) (((-569) $) NIL (-2718 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))))) (-1831 (($ $ (-867)) 47)) (-1819 (($ $ (-867)) 48)) (-2339 (($ $ $) NIL)) (-2729 (((-412 (-569)) $ $) 21)) (-3351 (((-3 $ "failed") $) 88)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-2769 (((-112) $) 66)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL)) (-2778 (((-112) $) 69)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-1841 (((-3 (-1179 $) "failed") $) 83)) (-1861 (((-3 (-867) "failed") $) 82)) (-1851 (((-3 (-1179 $) "failed") $) 80)) (-3860 (((-3 (-1067 $ (-1179 $)) "failed") $) 78)) (-1798 (($ (-649 $)) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 89)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-2388 (((-867) $) 87) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) 63) (($ (-412 (-569))) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 119)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-3006 (((-412 (-569)) $ $) 27)) (-2751 (((-649 $) (-1179 $)) 61) (((-649 $) (-1179 (-412 (-569)))) NIL) (((-649 $) (-1179 (-569))) NIL) (((-649 $) (-958 $)) NIL) (((-649 $) (-958 (-412 (-569)))) NIL) (((-649 $) (-958 (-569))) NIL)) (-3873 (($ (-1067 $ (-1179 $)) (-867)) 46)) (-3999 (($ $) 22)) (-1786 (($) 32 T CONST)) (-1796 (($) 39 T CONST)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 76)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 24)) (-2956 (($ $ $) 37)) (-2946 (($ $) 38) (($ $ $) 74)) (-2935 (($ $ $) 112)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 98) (($ $ $) 104) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ (-569) $) 98) (($ $ (-569)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1030 |#1|) (-13 (-1018) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -3873 ($ (-1067 $ (-1179 $)) (-867))) (-15 -3860 ((-3 (-1067 $ (-1179 $)) "failed") $)) (-15 -2729 ((-412 (-569)) $ $)))) (-13 (-853) (-367) (-1028))) (T -1030))
+((-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1067 (-1030 *4) (-1179 (-1030 *4)))) (-5 *3 (-867)) (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1028))))) (-3860 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1179 (-1030 *3)))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))) (-2729 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))))
+(-13 (-1018) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -3873 ($ (-1067 $ (-1179 $)) (-867))) (-15 -3860 ((-3 (-1067 $ (-1179 $)) "failed") $)) (-15 -2729 ((-412 (-569)) $ $))))
+((-3884 (((-2 (|:| -4289 |#2|) (|:| -3818 (-649 |#1|))) |#2| (-649 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1031 |#1| |#2|) (-10 -7 (-15 -3884 (|#2| |#2| |#1|)) (-15 -3884 ((-2 (|:| -4289 |#2|) (|:| -3818 (-649 |#1|))) |#2| (-649 |#1|)))) (-367) (-661 |#1|)) (T -1031))
+((-3884 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4289 *3) (|:| -3818 (-649 *5)))) (-5 *1 (-1031 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))) (-3884 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-661 *3)))))
+(-10 -7 (-15 -3884 (|#2| |#2| |#1|)) (-15 -3884 ((-2 (|:| -4289 |#2|) (|:| -3818 (-649 |#1|))) |#2| (-649 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3897 ((|#1| $ |#1|) 14)) (-3861 ((|#1| $ |#1|) 12)) (-3921 (($ |#1|) 10)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1852 ((|#1| $) 11)) (-3909 ((|#1| $) 13)) (-2388 (((-867) $) 21 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2853 (((-112) $ $) 9)))
+(((-1032 |#1|) (-13 (-1223) (-10 -8 (-15 -3921 ($ |#1|)) (-15 -1852 (|#1| $)) (-15 -3861 (|#1| $ |#1|)) (-15 -3909 (|#1| $)) (-15 -3897 (|#1| $ |#1|)) (-15 -2853 ((-112) $ $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1032))
+((-3921 (*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-1852 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3909 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3897 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-2853 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1223)))))
+(-13 (-1223) (-10 -8 (-15 -3921 ($ |#1|)) (-15 -1852 (|#1| $)) (-15 -3861 (|#1| $ |#1|)) (-15 -3909 (|#1| $)) (-15 -3897 (|#1| $ |#1|)) (-15 -2853 ((-112) $ $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1555 (((-649 $) (-649 |#4|)) 118) (((-649 $) (-649 |#4|) (-112)) 119) (((-649 $) (-649 |#4|) (-112) (-112)) 117) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3865 (((-649 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1624 ((|#4| |#4| $) NIL)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 112)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 66)) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) 29 (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2783 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3043 (($ (-649 |#4|)) NIL)) (-3414 (((-3 $ "failed") $) 45)) (-1590 ((|#4| |#4| $) 69)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1678 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1567 ((|#4| |#4| $) NIL)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) NIL)) (-2881 (((-112) |#4| $) NIL)) (-2862 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3121 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 133)) (-2796 (((-649 |#4|) $) 18 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2717 ((|#3| $) 38)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#4|) $) 19 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3065 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 23)) (-2917 (((-649 |#3|) $) NIL)) (-2908 (((-112) |#3| $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 110)) (-1702 (((-3 |#4| "failed") $) 42)) (-2830 (((-649 $) |#4| $) 93)) (-2852 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2018 (((-649 $) |#4| $) 115) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 116) (((-649 $) |#4| (-649 $)) NIL)) (-3132 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 128)) (-3143 (($ |#4| $) 82) (($ (-649 |#4|) $) 83) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1730 (((-649 |#4|) $) NIL)) (-1656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-1755 (((-112) $ $) NIL)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1614 ((|#4| |#4| $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-3 |#4| "failed") $) 40)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1521 (((-3 $ "failed") $ |#4|) 59)) (-4295 (($ $ |#4|) NIL) (((-649 $) |#4| $) 95) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 89)) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 14)) (-2091 (((-776) $) NIL)) (-3469 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) 13)) (-1384 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 22)) (-2876 (($ $ |#3|) 52)) (-2898 (($ $ |#3|) 54)) (-1577 (($ $) NIL)) (-2887 (($ $ |#3|) NIL)) (-2388 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1512 (((-776) $) NIL (|has| |#3| (-372)))) (-2040 (((-112) $ $) NIL)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2800 (((-649 $) |#4| $) 92) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) NIL)) (-2871 (((-112) |#4| $) NIL)) (-1988 (((-112) |#3| $) 65)) (-2853 (((-112) $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1033 |#1| |#2| |#3| |#4|) (-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3143 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -3132 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -3121 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1033))
+((-3143 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-1555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-1555 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-3121 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1033 *5 *6 *7 *8))))) (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3143 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -3132 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -3121 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
+((-4048 (((-649 (-694 |#1|)) (-649 (-694 |#1|))) 73) (((-694 |#1|) (-694 |#1|)) 72) (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 71) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 68)) (-4037 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 66) (((-694 |#1|) (-694 |#1|) (-927)) 65)) (-4060 (((-649 (-694 (-569))) (-649 (-649 (-569)))) 84) (((-649 (-694 (-569))) (-649 (-911 (-569))) (-569)) 83) (((-694 (-569)) (-649 (-569))) 80) (((-694 (-569)) (-911 (-569)) (-569)) 78)) (-4026 (((-694 (-958 |#1|)) (-776)) 98)) (-4014 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 52 (|has| |#1| (-6 (-4445 "*")))) (((-694 |#1|) (-694 |#1|) (-927)) 50 (|has| |#1| (-6 (-4445 "*"))))))
+(((-1034 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -4014 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -4014 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -4026 ((-694 (-958 |#1|)) (-776))) (-15 -4037 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -4037 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -4048 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4048 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4048 ((-694 |#1|) (-694 |#1|))) (-15 -4048 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4060 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -4060 ((-694 (-569)) (-649 (-569)))) (-15 -4060 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -4060 ((-649 (-694 (-569))) (-649 (-649 (-569)))))) (-1055)) (T -1034))
+((-4060 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569)) (-5 *2 (-649 (-694 *4))) (-5 *1 (-1034 *5)) (-4 *5 (-1055)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4)) (-5 *1 (-1034 *5)) (-4 *5 (-1055)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-4048 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-4048 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-4037 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-4037 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (|has| *4 (-6 (-4445 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4445 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -4014 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4445 "*"))) (-15 -4014 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -4026 ((-694 (-958 |#1|)) (-776))) (-15 -4037 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -4037 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -4048 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4048 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4048 ((-694 |#1|) (-694 |#1|))) (-15 -4048 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4060 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -4060 ((-694 (-569)) (-649 (-569)))) (-15 -4060 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -4060 ((-649 (-694 (-569))) (-649 (-649 (-569))))))
+((-4107 (((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)) 71 (|has| |#1| (-310)))) (-4310 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))) 111 (|has| |#1| (-367))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|)) 118 (|has| |#1| (-367)))) (-4155 (((-1273 |#1|) (-649 (-1273 |#1|)) (-569)) 136 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-4145 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927)) 124 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112)) 123 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|))) 122 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569)) 121 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-4132 (((-112) (-649 (-694 |#1|))) 104 (|has| |#1| (-367))) (((-112) (-649 (-694 |#1|)) (-569)) 107 (|has| |#1| (-367)))) (-4095 (((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|)) 68 (|has| |#1| (-310)))) (-4083 (((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|)) 48)) (-4072 (((-694 |#1|) (-1273 (-1273 |#1|))) 41)) (-4120 (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569)) 95 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 94 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569)) 102 (|has| |#1| (-367)))))
+(((-1035 |#1|) (-10 -7 (-15 -4072 ((-694 |#1|) (-1273 (-1273 |#1|)))) (-15 -4083 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -4095 ((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -4107 ((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -4132 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -4132 ((-112) (-649 (-694 |#1|)))) (-15 -4310 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -4310 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -4155 ((-1273 |#1|) (-649 (-1273 |#1|)) (-569)))) |%noBranch|) |%noBranch|)) (-1055)) (T -1035))
+((-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1273 *5))) (-5 *4 (-569)) (-5 *2 (-1273 *5)) (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055)) (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-649 (-694 *4))))) (-4145 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372)) (-4 *6 (-1055)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1035 *6)) (-5 *3 (-649 (-694 *6))))) (-4310 (*1 *2 *3 *4) (-12 (-5 *4 (-1273 (-1273 *5))) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-4310 (*1 *2 *3 *4) (-12 (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *4)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *5)))) (-4120 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))) (-4120 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4)) (-4 *4 (-367)) (-4 *4 (-1055)))) (-4120 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569)) (-5 *2 (-694 *6)) (-5 *1 (-1035 *6)) (-4 *6 (-367)) (-4 *6 (-1055)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1273 *5)) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-1273 (-1273 *5))) (-5 *1 (-1035 *5)) (-5 *4 (-1273 *5)))) (-4083 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-1273 (-1273 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4)))))
+(-10 -7 (-15 -4072 ((-694 |#1|) (-1273 (-1273 |#1|)))) (-15 -4083 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -4095 ((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -4107 ((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -4120 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -4132 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -4132 ((-112) (-649 (-694 |#1|)))) (-15 -4310 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -4310 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -4145 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -4155 ((-1273 |#1|) (-649 (-1273 |#1|)) (-569)))) |%noBranch|) |%noBranch|))
+((-2582 ((|#1| (-927) |#1|) 18)))
+(((-1036 |#1|) (-10 -7 (-15 -2582 (|#1| (-927) |#1|))) (-13 (-1106) (-10 -8 (-15 -2935 ($ $ $))))) (T -1036))
+((-2582 (*1 *2 *3 *2) (-12 (-5 *3 (-927)) (-5 *1 (-1036 *2)) (-4 *2 (-13 (-1106) (-10 -8 (-15 -2935 ($ $ $))))))))
+(-10 -7 (-15 -2582 (|#1| (-927) |#1|)))
+((-3933 (((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569))))) 67)) (-3944 (((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569))))) 52)) (-3955 (((-649 (-319 (-569))) (-694 (-412 (-958 (-569))))) 45)) (-4003 (((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569))))) 87)) (-3979 (((-694 (-319 (-569))) (-694 (-319 (-569)))) 38)) (-3992 (((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569))))) 76)) (-3967 (((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569))))) 84)))
+(((-1037) (-10 -7 (-15 -3933 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -3944 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -3955 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -3967 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -3979 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -3992 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -4003 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))) (T -1037))
+((-4003 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))) (-3967 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569)))) (-5 *1 (-1037)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *4 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)) (-5 *3 (-319 (-569))))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569)))))))) (-5 *1 (-1037)))))
+(-10 -7 (-15 -3933 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -3944 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -3955 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -3967 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -3979 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -3992 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -4003 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))
+((-4167 ((|#1| |#1| (-927)) 18)))
+(((-1038 |#1|) (-10 -7 (-15 -4167 (|#1| |#1| (-927)))) (-13 (-1106) (-10 -8 (-15 * ($ $ $))))) (T -1038))
+((-4167 (*1 *2 *2 *3) (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2)) (-4 *2 (-13 (-1106) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -4167 (|#1| |#1| (-927))))
+((-2388 ((|#1| (-315)) 11) (((-1278) |#1|) 9)))
+(((-1039 |#1|) (-10 -7 (-15 -2388 ((-1278) |#1|)) (-15 -2388 (|#1| (-315)))) (-1223)) (T -1039))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1039 *2)) (-4 *2 (-1223)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1223)))))
+(-10 -7 (-15 -2388 ((-1278) |#1|)) (-15 -2388 (|#1| (-315))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3485 (($ |#4|) 25)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-3472 ((|#4| $) 27)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 46) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3263 (((-776)) 43 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 21 T CONST)) (-1796 (($) 23 T CONST)) (-2853 (((-112) $ $) 40)) (-2946 (($ $) 31) (($ $ $) NIL)) (-2935 (($ $ $) 29)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1040 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -3485 ($ |#4|)) (-15 -2388 ($ |#4|)) (-15 -3472 (|#4| $)))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|) (-649 |#4|)) (T -1040))
+((-3485 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-2388 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2)))))
+(-13 (-173) (-38 |#1|) (-10 -8 (-15 -3485 ($ |#4|)) (-15 -2388 ($ |#4|)) (-15 -3472 (|#4| $))))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-1699 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-4189 (((-112) (-112)) 43)) (-4179 (((-112) (-112)) 42)) (-3861 (((-52) $ (-1183) (-52)) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 (-52) "failed") (-1183) $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-4218 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-52) "failed") (-1183) $) NIL)) (-1678 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3074 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4444)))) (-3007 (((-52) $ (-1183)) NIL)) (-2796 (((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-1183) $) NIL (|has| (-1183) (-855)))) (-2912 (((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1738 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-2715 (((-649 (-1183)) $) 37)) (-1795 (((-112) (-1183) $) NIL)) (-3481 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL)) (-2086 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL)) (-1762 (((-649 (-1183)) $) NIL)) (-1773 (((-112) (-1183) $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-3401 (((-52) $) NIL (|has| (-1183) (-855)))) (-4316 (((-3 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) "failed") (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL)) (-1713 (($ $ (-52)) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1784 (((-649 (-52)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 (((-52) $ (-1183)) 39) (((-52) $ (-1183) (-52)) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-2388 (((-867) $) 41 (-2718 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1041) (-13 (-1199 (-1183) (-52)) (-10 -7 (-15 -4189 ((-112) (-112))) (-15 -4179 ((-112) (-112))) (-6 -4443)))) (T -1041))
+((-4189 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
+(-13 (-1199 (-1183) (-52)) (-10 -7 (-15 -4189 ((-112) (-112))) (-15 -4179 ((-112) (-112))) (-6 -4443)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 9)) (-2388 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1042) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $))))) (T -1042))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $))))
+((-3043 ((|#2| $) 10)))
+(((-1043 |#1| |#2|) (-10 -8 (-15 -3043 (|#2| |#1|))) (-1044 |#2|) (-1223)) (T -1043))
+NIL
+(-10 -8 (-15 -3043 (|#2| |#1|)))
+((-4359 (((-3 |#1| "failed") $) 9)) (-3043 ((|#1| $) 8)) (-2388 (($ |#1|) 6)))
+(((-1044 |#1|) (-140) (-1223)) (T -1044))
+((-4359 (*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1223)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1223)))))
+(-13 (-621 |t#1|) (-10 -8 (-15 -4359 ((-3 |t#1| "failed") $)) (-15 -3043 (|t#1| $))))
(((-621 |#1|) . T))
-((-3502 (((-646 (-646 (-296 (-412 (-952 |#2|))))) (-646 (-952 |#2|)) (-646 (-1183))) 38)))
-(((-1045 |#1| |#2|) (-10 -7 (-15 -3502 ((-646 (-646 (-296 (-412 (-952 |#2|))))) (-646 (-952 |#2|)) (-646 (-1183))))) (-562) (-13 (-562) (-1044 |#1|))) (T -1045))
-((-3502 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183))) (-4 *6 (-13 (-562) (-1044 *5))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *6)))))) (-5 *1 (-1045 *5 *6)))))
-(-10 -7 (-15 -3502 ((-646 (-646 (-296 (-412 (-952 |#2|))))) (-646 (-952 |#2|)) (-646 (-1183)))))
-((-3503 (((-646 (-1183)) (-412 (-952 |#1|))) 17)) (-3505 (((-412 (-1177 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183)) 24)) (-3506 (((-412 (-952 |#1|)) (-412 (-1177 (-412 (-952 |#1|)))) (-1183)) 26)) (-3504 (((-3 (-1183) "failed") (-412 (-952 |#1|))) 20)) (-4217 (((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-296 (-412 (-952 |#1|))))) 32) (((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|)))) 33) (((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-1183)) (-646 (-412 (-952 |#1|)))) 28) (((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|))) 29)) (-4396 (((-412 (-952 |#1|)) |#1|) 11)))
-(((-1046 |#1|) (-10 -7 (-15 -3503 ((-646 (-1183)) (-412 (-952 |#1|)))) (-15 -3504 ((-3 (-1183) "failed") (-412 (-952 |#1|)))) (-15 -3505 ((-412 (-1177 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183))) (-15 -3506 ((-412 (-952 |#1|)) (-412 (-1177 (-412 (-952 |#1|)))) (-1183))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-1183)) (-646 (-412 (-952 |#1|))))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -4396 ((-412 (-952 |#1|)) |#1|))) (-562)) (T -1046))
-((-4396 (*1 *2 *3) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-1046 *3)) (-4 *3 (-562)))) (-4217 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-296 (-412 (-952 *4))))) (-5 *2 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *1 (-1046 *4)))) (-4217 (*1 *2 *2 *3) (-12 (-5 *3 (-296 (-412 (-952 *4)))) (-5 *2 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *1 (-1046 *4)))) (-4217 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-646 (-1183))) (-5 *4 (-646 (-412 (-952 *5)))) (-5 *2 (-412 (-952 *5))) (-4 *5 (-562)) (-5 *1 (-1046 *5)))) (-4217 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-412 (-952 *4))) (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-1046 *4)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1177 (-412 (-952 *5))))) (-5 *4 (-1183)) (-5 *2 (-412 (-952 *5))) (-5 *1 (-1046 *5)) (-4 *5 (-562)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-412 (-1177 (-412 (-952 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-412 (-952 *5))))) (-3504 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-1183)) (-5 *1 (-1046 *4)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-646 (-1183))) (-5 *1 (-1046 *4)))))
-(-10 -7 (-15 -3503 ((-646 (-1183)) (-412 (-952 |#1|)))) (-15 -3504 ((-3 (-1183) "failed") (-412 (-952 |#1|)))) (-15 -3505 ((-412 (-1177 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183))) (-15 -3506 ((-412 (-952 |#1|)) (-412 (-1177 (-412 (-952 |#1|)))) (-1183))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-1183)) (-646 (-412 (-952 |#1|))))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-296 (-412 (-952 |#1|))))) (-15 -4217 ((-412 (-952 |#1|)) (-412 (-952 |#1|)) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -4396 ((-412 (-952 |#1|)) |#1|)))
-((-3507 (((-382)) 17)) (-3522 (((-1 (-382)) (-382) (-382)) 22)) (-3515 (((-1 (-382)) (-776)) 50)) (-3508 (((-382)) 37)) (-3511 (((-1 (-382)) (-382) (-382)) 38)) (-3509 (((-382)) 29)) (-3512 (((-1 (-382)) (-382)) 30)) (-3510 (((-382) (-776)) 45)) (-3513 (((-1 (-382)) (-776)) 46)) (-3514 (((-1 (-382)) (-776) (-776)) 49)) (-3826 (((-1 (-382)) (-776) (-776)) 47)))
-(((-1047) (-10 -7 (-15 -3507 ((-382))) (-15 -3508 ((-382))) (-15 -3509 ((-382))) (-15 -3510 ((-382) (-776))) (-15 -3522 ((-1 (-382)) (-382) (-382))) (-15 -3511 ((-1 (-382)) (-382) (-382))) (-15 -3512 ((-1 (-382)) (-382))) (-15 -3513 ((-1 (-382)) (-776))) (-15 -3826 ((-1 (-382)) (-776) (-776))) (-15 -3514 ((-1 (-382)) (-776) (-776))) (-15 -3515 ((-1 (-382)) (-776))))) (T -1047))
-((-3515 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))) (-3514 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))) (-3826 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))) (-3512 (*1 *2 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382)))) (-3511 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382)))) (-3522 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-382)) (-5 *1 (-1047)))) (-3509 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))) (-3508 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))) (-3507 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))))
-(-10 -7 (-15 -3507 ((-382))) (-15 -3508 ((-382))) (-15 -3509 ((-382))) (-15 -3510 ((-382) (-776))) (-15 -3522 ((-1 (-382)) (-382) (-382))) (-15 -3511 ((-1 (-382)) (-382) (-382))) (-15 -3512 ((-1 (-382)) (-382))) (-15 -3513 ((-1 (-382)) (-776))) (-15 -3826 ((-1 (-382)) (-776) (-776))) (-15 -3514 ((-1 (-382)) (-776) (-776))) (-15 -3515 ((-1 (-382)) (-776))))
-((-4182 (((-410 |#1|) |#1|) 33)))
-(((-1048 |#1|) (-10 -7 (-15 -4182 ((-410 |#1|) |#1|))) (-1248 (-412 (-952 (-551))))) (T -1048))
-((-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-1248 (-412 (-952 (-551))))))))
-(-10 -7 (-15 -4182 ((-410 |#1|) |#1|)))
-((-3516 (((-412 (-410 (-952 |#1|))) (-412 (-952 |#1|))) 14)))
-(((-1049 |#1|) (-10 -7 (-15 -3516 ((-412 (-410 (-952 |#1|))) (-412 (-952 |#1|))))) (-310)) (T -1049))
-((-3516 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-410 (-952 *4)))) (-5 *1 (-1049 *4)))))
-(-10 -7 (-15 -3516 ((-412 (-410 (-952 |#1|))) (-412 (-952 |#1|)))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4174 (($) 18 T CONST)) (-3520 ((|#1| $) 23)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3519 ((|#1| $) 22)) (-3517 ((|#1|) 20 T CONST)) (-4396 (((-868) $) 12)) (-3518 ((|#1| $) 21)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16)))
+((-4200 (((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183))) 38)))
+(((-1045 |#1| |#2|) (-10 -7 (-15 -4200 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183))))) (-561) (-13 (-561) (-1044 |#1|))) (T -1045))
+((-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-13 (-561) (-1044 *5))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1045 *5 *6)))))
+(-10 -7 (-15 -4200 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183)))))
+((-4222 (((-383)) 17)) (-4351 (((-1 (-383)) (-383) (-383)) 22)) (-3566 (((-1 (-383)) (-776)) 50)) (-4232 (((-383)) 37)) (-3252 (((-1 (-383)) (-383) (-383)) 38)) (-4246 (((-383)) 29)) (-4268 (((-1 (-383)) (-383)) 30)) (-4256 (((-383) (-776)) 45)) (-4283 (((-1 (-383)) (-776)) 46)) (-1649 (((-1 (-383)) (-776) (-776)) 49)) (-4010 (((-1 (-383)) (-776) (-776)) 47)))
+(((-1046) (-10 -7 (-15 -4222 ((-383))) (-15 -4232 ((-383))) (-15 -4246 ((-383))) (-15 -4256 ((-383) (-776))) (-15 -4351 ((-1 (-383)) (-383) (-383))) (-15 -3252 ((-1 (-383)) (-383) (-383))) (-15 -4268 ((-1 (-383)) (-383))) (-15 -4283 ((-1 (-383)) (-776))) (-15 -4010 ((-1 (-383)) (-776) (-776))) (-15 -1649 ((-1 (-383)) (-776) (-776))) (-15 -3566 ((-1 (-383)) (-776))))) (T -1046))
+((-3566 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-1649 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-4010 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-4268 (*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-3252 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-4351 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1046)))) (-4246 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))) (-4232 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))) (-4222 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
+(-10 -7 (-15 -4222 ((-383))) (-15 -4232 ((-383))) (-15 -4246 ((-383))) (-15 -4256 ((-383) (-776))) (-15 -4351 ((-1 (-383)) (-383) (-383))) (-15 -3252 ((-1 (-383)) (-383) (-383))) (-15 -4268 ((-1 (-383)) (-383))) (-15 -4283 ((-1 (-383)) (-776))) (-15 -4010 ((-1 (-383)) (-776) (-776))) (-15 -1649 ((-1 (-383)) (-776) (-776))) (-15 -3566 ((-1 (-383)) (-776))))
+((-3699 (((-423 |#1|) |#1|) 33)))
+(((-1047 |#1|) (-10 -7 (-15 -3699 ((-423 |#1|) |#1|))) (-1249 (-412 (-958 (-569))))) (T -1047))
+((-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1047 *3)) (-4 *3 (-1249 (-412 (-958 (-569))))))))
+(-10 -7 (-15 -3699 ((-423 |#1|) |#1|)))
+((-4294 (((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))) 14)))
+(((-1048 |#1|) (-10 -7 (-15 -4294 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))))) (-310)) (T -1048))
+((-4294 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1048 *4)))))
+(-10 -7 (-15 -4294 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|)))))
+((-3865 (((-649 (-1183)) (-412 (-958 |#1|))) 17)) (-3663 (((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183)) 24)) (-3851 (((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183)) 26)) (-4212 (((-3 (-1183) "failed") (-412 (-958 |#1|))) 20)) (-1679 (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|))))) 32) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 33) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|)))) 28) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))) 29)) (-2388 (((-412 (-958 |#1|)) |#1|) 11)))
+(((-1049 |#1|) (-10 -7 (-15 -3865 ((-649 (-1183)) (-412 (-958 |#1|)))) (-15 -4212 ((-3 (-1183) "failed") (-412 (-958 |#1|)))) (-15 -3663 ((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -3851 ((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|))))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2388 ((-412 (-958 |#1|)) |#1|))) (-561)) (T -1049))
+((-2388 (*1 *2 *3) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1049 *3)) (-4 *3 (-561)))) (-1679 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-1679 (*1 *2 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-1679 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-5 *4 (-649 (-412 (-958 *5)))) (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1049 *5)))) (-1679 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1179 (-412 (-958 *5))))) (-5 *4 (-1183)) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1049 *5)) (-4 *5 (-561)))) (-3663 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-412 (-1179 (-412 (-958 *5))))) (-5 *1 (-1049 *5)) (-5 *3 (-412 (-958 *5))))) (-4212 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-1183)) (-5 *1 (-1049 *4)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1183))) (-5 *1 (-1049 *4)))))
+(-10 -7 (-15 -3865 ((-649 (-1183)) (-412 (-958 |#1|)))) (-15 -4212 ((-3 (-1183) "failed") (-412 (-958 |#1|)))) (-15 -3663 ((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -3851 ((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|))))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1679 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2388 ((-412 (-958 |#1|)) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3863 (($) 18 T CONST)) (-4331 ((|#1| $) 23)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4323 ((|#1| $) 22)) (-4304 ((|#1|) 20 T CONST)) (-2388 (((-867) $) 12)) (-4314 ((|#1| $) 21)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-1050 |#1|) (-140) (-23)) (T -1050))
-((-3520 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-3517 (*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3520 (|t#1| $)) (-15 -3519 (|t#1| $)) (-15 -3518 (|t#1| $)) (-15 -3517 (|t#1|) -4402)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3521 (($) 25 T CONST)) (-4174 (($) 18 T CONST)) (-3520 ((|#1| $) 23)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3519 ((|#1| $) 22)) (-3517 ((|#1|) 20 T CONST)) (-4396 (((-868) $) 12)) (-3518 ((|#1| $) 21)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16)))
+((-4331 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-4304 (*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -4331 (|t#1| $)) (-15 -4323 (|t#1| $)) (-15 -4314 (|t#1| $)) (-15 -4304 (|t#1|) -3600)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-4341 (($) 25 T CONST)) (-3863 (($) 18 T CONST)) (-4331 ((|#1| $) 23)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4323 ((|#1| $) 22)) (-4304 ((|#1|) 20 T CONST)) (-2388 (((-867) $) 12)) (-4314 ((|#1| $) 21)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-1051 |#1|) (-140) (-23)) (T -1051))
-((-3521 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
-(-13 (-1050 |t#1|) (-10 -8 (-15 -3521 ($) -4402)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-868)) . T) ((-1050 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 (-785 |#1| (-869 |#2|)))))) (-646 (-785 |#1| (-869 |#2|)))) NIL)) (-4132 (((-646 $) (-646 (-785 |#1| (-869 |#2|)))) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-112)) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-112) (-112)) NIL)) (-3503 (((-646 (-869 |#2|)) $) NIL)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-4143 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-4138 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4224 (((-646 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -1718 $))) (-785 |#1| (-869 |#2|)) $) NIL)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ (-869 |#2|)) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 (-785 |#1| (-869 |#2|)) #1="failed") $ (-869 |#2|)) NIL)) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) NIL (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-4139 (((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|))) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-3319 (((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-562)))) (-3320 (((-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 (-785 |#1| (-869 |#2|)))) NIL)) (-3594 (($ (-646 (-785 |#1| (-869 |#2|)))) NIL)) (-4248 (((-3 $ #1#) $) NIL)) (-4135 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1107))))) (-3848 (($ (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-562)))) (-4144 (((-112) (-785 |#1| (-869 |#2|)) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-4133 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4292 (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|))) NIL (|has| $ (-6 -4443))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-4146 (((-2 (|:| -4311 (-646 (-785 |#1| (-869 |#2|)))) (|:| -1880 (-646 (-785 |#1| (-869 |#2|))))) $) NIL)) (-3635 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-3633 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-3636 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2134 (((-646 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4145 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-3618 (((-869 |#2|) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1107))))) (-2138 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL)) (-3333 (((-646 (-869 |#2|)) $) NIL)) (-3332 (((-112) (-869 |#2|) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3629 (((-3 (-785 |#1| (-869 |#2|)) (-646 $)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3628 (((-646 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -1718 $))) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4247 (((-3 (-785 |#1| (-869 |#2|)) #1#) $) NIL)) (-3630 (((-646 $) (-785 |#1| (-869 |#2|)) $) NIL)) (-3632 (((-3 (-112) (-646 $)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-3676 (((-646 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) $) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-646 $)) NIL) (((-646 $) (-785 |#1| (-869 |#2|)) (-646 $)) NIL)) (-3882 (($ (-785 |#1| (-869 |#2|)) $) NIL) (($ (-646 (-785 |#1| (-869 |#2|))) $) NIL)) (-4147 (((-646 (-785 |#1| (-869 |#2|))) $) NIL)) (-4141 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-4136 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4149 (((-112) $ $) NIL)) (-3322 (((-2 (|:| |num| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-562)))) (-4142 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-4137 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-3 (-785 |#1| (-869 |#2|)) #1#) $) NIL)) (-1444 (((-3 (-785 |#1| (-869 |#2|)) "failed") (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL)) (-4129 (((-3 $ #1#) $ (-785 |#1| (-869 |#2|))) NIL)) (-4218 (($ $ (-785 |#1| (-869 |#2|))) NIL) (((-646 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-646 $) (-785 |#1| (-869 |#2|)) (-646 $)) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) $) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-646 $)) NIL)) (-2136 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-785 |#1| (-869 |#2|))) (-646 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (($ $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (($ $ (-296 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (($ $ (-646 (-296 (-785 |#1| (-869 |#2|))))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4398 (((-776) $) NIL)) (-2135 (((-776) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1107)))) (((-776) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-785 |#1| (-869 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-785 |#1| (-869 |#2|)))) NIL)) (-3329 (($ $ (-869 |#2|)) NIL)) (-3331 (($ $ (-869 |#2|)) NIL)) (-4134 (($ $) NIL)) (-3330 (($ $ (-869 |#2|)) NIL)) (-4396 (((-868) $) NIL) (((-646 (-785 |#1| (-869 |#2|))) $) NIL)) (-4128 (((-776) $) NIL (|has| (-869 |#2|) (-372)))) (-3680 (((-112) $ $) NIL)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 (-785 |#1| (-869 |#2|))))) #1#) (-646 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 (-785 |#1| (-869 |#2|))))) #1#) (-646 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-4140 (((-112) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-646 (-785 |#1| (-869 |#2|))))) NIL)) (-3627 (((-646 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-646 $) (-785 |#1| (-869 |#2|)) (-646 $)) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) $) NIL) (((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-646 $)) NIL)) (-2137 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4130 (((-646 (-869 |#2|)) $) NIL)) (-3634 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-4383 (((-112) (-869 |#2|) $) NIL)) (-3473 (((-112) $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1052 |#1| |#2|) (-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -4132 ((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-112) (-112))))) (-457) (-646 (-1183))) (T -1052))
-((-4132 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-1052 *5 *6)))))
-(-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -4132 ((-646 $) (-646 (-785 |#1| (-869 |#2|))) (-112) (-112)))))
-((-3522 (((-1 (-551)) (-1095 (-551))) 32)) (-3526 (((-551) (-551) (-551) (-551) (-551)) 29)) (-3524 (((-1 (-551)) |RationalNumber|) NIL)) (-3525 (((-1 (-551)) |RationalNumber|) NIL)) (-3523 (((-1 (-551)) (-551) |RationalNumber|) NIL)))
-(((-1053) (-10 -7 (-15 -3522 ((-1 (-551)) (-1095 (-551)))) (-15 -3523 ((-1 (-551)) (-551) |RationalNumber|)) (-15 -3524 ((-1 (-551)) |RationalNumber|)) (-15 -3525 ((-1 (-551)) |RationalNumber|)) (-15 -3526 ((-551) (-551) (-551) (-551) (-551))))) (T -1053))
-((-3526 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1053)))) (-3525 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))) (-3524 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))) (-3523 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053)) (-5 *3 (-551)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-1095 (-551))) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))))
-(-10 -7 (-15 -3522 ((-1 (-551)) (-1095 (-551)))) (-15 -3523 ((-1 (-551)) (-551) |RationalNumber|)) (-15 -3524 ((-1 (-551)) |RationalNumber|)) (-15 -3525 ((-1 (-551)) |RationalNumber|)) (-15 -3526 ((-551) (-551) (-551) (-551) (-551))))
-((-4396 (((-868) $) NIL) (($ (-551)) 10)))
-(((-1054 |#1|) (-10 -8 (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-1055)) (T -1054))
-NIL
-(-10 -8 (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+((-4341 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
+(-13 (-1050 |t#1|) (-10 -8 (-15 -4341 ($) -3600)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1050 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 (-785 |#1| (-869 |#2|)))))) (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-1555 (((-649 $) (-649 (-785 |#1| (-869 |#2|)))) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)) NIL)) (-3865 (((-649 (-869 |#2|)) $) NIL)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-1680 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1624 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4332 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3550 $))) (-785 |#1| (-869 |#2|)) $) NIL)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ (-869 |#2|)) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 (-785 |#1| (-869 |#2|)) "failed") $ (-869 |#2|)) NIL)) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) NIL (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-1635 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-2783 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-2794 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3043 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3414 (((-3 $ "failed") $) NIL)) (-1590 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-1678 (($ (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-1691 (((-112) (-785 |#1| (-869 |#2|)) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1567 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3485 (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|))) NIL (|has| $ (-6 -4443))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1716 (((-2 (|:| -4113 (-649 (-785 |#1| (-869 |#2|)))) (|:| -1675 (-649 (-785 |#1| (-869 |#2|))))) $) NIL)) (-2881 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2862 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2892 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2796 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1703 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2717 (((-869 |#2|) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-3065 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL)) (-2917 (((-649 (-869 |#2|)) $) NIL)) (-2908 (((-112) (-869 |#2|) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2819 (((-3 (-785 |#1| (-869 |#2|)) (-649 $)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-2809 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3550 $))) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1702 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-2830 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL)) (-2852 (((-3 (-112) (-649 $)) (-785 |#1| (-869 |#2|)) $) NIL)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2018 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL)) (-3143 (($ (-785 |#1| (-869 |#2|)) $) NIL) (($ (-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1730 (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1656 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1603 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1755 (((-112) $ $) NIL)) (-2813 (((-2 (|:| |num| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-1667 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1614 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-4316 (((-3 (-785 |#1| (-869 |#2|)) "failed") (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL)) (-1521 (((-3 $ "failed") $ (-785 |#1| (-869 |#2|))) NIL)) (-4295 (($ $ (-785 |#1| (-869 |#2|))) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-3983 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-297 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-649 (-297 (-785 |#1| (-869 |#2|))))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-2091 (((-776) $) NIL)) (-3469 (((-776) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (((-776) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-785 |#1| (-869 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-2876 (($ $ (-869 |#2|)) NIL)) (-2898 (($ $ (-869 |#2|)) NIL)) (-1577 (($ $) NIL)) (-2887 (($ $ (-869 |#2|)) NIL)) (-2388 (((-867) $) NIL) (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1512 (((-776) $) NIL (|has| (-869 |#2|) (-372)))) (-2040 (((-112) $ $) NIL)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1645 (((-112) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-649 (-785 |#1| (-869 |#2|))))) NIL)) (-2800 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-3996 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1532 (((-649 (-869 |#2|)) $) NIL)) (-2871 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-1988 (((-112) (-869 |#2|) $) NIL)) (-2853 (((-112) $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1052 |#1| |#2|) (-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1555 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112))))) (-457) (-649 (-1183))) (T -1052))
+((-1555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1052 *5 *6)))))
+(-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1555 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)))))
+((-4351 (((-1 (-569)) (-1100 (-569))) 32)) (-3073 (((-569) (-569) (-569) (-569) (-569)) 29)) (-3050 (((-1 (-569)) |RationalNumber|) NIL)) (-3064 (((-1 (-569)) |RationalNumber|) NIL)) (-3038 (((-1 (-569)) (-569) |RationalNumber|) NIL)))
+(((-1053) (-10 -7 (-15 -4351 ((-1 (-569)) (-1100 (-569)))) (-15 -3038 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3050 ((-1 (-569)) |RationalNumber|)) (-15 -3064 ((-1 (-569)) |RationalNumber|)) (-15 -3073 ((-569) (-569) (-569) (-569) (-569))))) (T -1053))
+((-3073 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1053)))) (-3064 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))) (-3050 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)) (-5 *3 (-569)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-1100 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
+(-10 -7 (-15 -4351 ((-1 (-569)) (-1100 (-569)))) (-15 -3038 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3050 ((-1 (-569)) |RationalNumber|)) (-15 -3064 ((-1 (-569)) |RationalNumber|)) (-15 -3073 ((-569) (-569) (-569) (-569) (-569))))
+((-2388 (((-867) $) NIL) (($ (-569)) 10)))
+(((-1054 |#1|) (-10 -8 (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-1055)) (T -1054))
+NIL
+(-10 -8 (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-1055) (-140)) (T -1055))
-((-3548 (*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776)))))
-(-13 (-1063) (-731) (-653 $) (-621 (-551)) (-10 -7 (-15 -3548 ((-776)) -4402) (-6 -4440)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-551)) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-3527 (((-412 (-952 |#2|)) (-646 |#2|) (-646 |#2|) (-776) (-776)) 60)))
-(((-1056 |#1| |#2|) (-10 -7 (-15 -3527 ((-412 (-952 |#2|)) (-646 |#2|) (-646 |#2|) (-776) (-776)))) (-1183) (-367)) (T -1056))
-((-3527 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-952 *6))) (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
-(-10 -7 (-15 -3527 ((-412 (-952 |#2|)) (-646 |#2|) (-646 |#2|) (-776) (-776))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 15)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 16 T CONST)) (-3473 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1057 |#1|) (-140) (-1063)) (T -1057))
-((-3528 (*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1063)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1063)))))
-(-13 (-1107) (-10 -8 (-15 (-3528) ($) -4402) (-15 -3626 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-3543 (((-112) $) 40)) (-3545 (((-112) $) 17)) (-3537 (((-776) $) 13)) (-3536 (((-776) $) 14)) (-3544 (((-112) $) 30)) (-3542 (((-112) $) 42)))
-(((-1058 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3536 ((-776) |#1|)) (-15 -3537 ((-776) |#1|)) (-15 -3542 ((-112) |#1|)) (-15 -3543 ((-112) |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3545 ((-112) |#1|))) (-1059 |#2| |#3| |#4| |#5| |#6|) (-776) (-776) (-1055) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1058))
-NIL
-(-10 -8 (-15 -3536 ((-776) |#1|)) (-15 -3537 ((-776) |#1|)) (-15 -3542 ((-112) |#1|)) (-15 -3543 ((-112) |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3545 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3543 (((-112) $) 56)) (-1410 (((-3 $ "failed") $ $) 20)) (-3545 (((-112) $) 58)) (-1312 (((-112) $ (-776)) 66)) (-4174 (($) 18 T CONST)) (-3532 (($ $) 39 (|has| |#3| (-310)))) (-3534 ((|#4| $ (-551)) 44)) (-3531 (((-776) $) 38 (|has| |#3| (-562)))) (-3535 ((|#3| $ (-551) (-551)) 46)) (-2134 (((-646 |#3|) $) 73 (|has| $ (-6 -4443)))) (-3530 (((-776) $) 37 (|has| |#3| (-562)))) (-3529 (((-646 |#5|) $) 36 (|has| |#3| (-562)))) (-3537 (((-776) $) 50)) (-3536 (((-776) $) 49)) (-4169 (((-112) $ (-776)) 65)) (-3541 (((-551) $) 54)) (-3539 (((-551) $) 52)) (-3026 (((-646 |#3|) $) 74 (|has| $ (-6 -4443)))) (-3684 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1107)) (|has| $ (-6 -4443))))) (-3540 (((-551) $) 53)) (-3538 (((-551) $) 51)) (-3546 (($ (-646 (-646 |#3|))) 59)) (-2138 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4043 (((-646 (-646 |#3|)) $) 48)) (-4166 (((-112) $ (-776)) 64)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-562)))) (-2136 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#3|) (-646 |#3|)) 80 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-296 |#3|)) 78 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-646 (-296 |#3|))) 77 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))) (-1313 (((-112) $ $) 60)) (-3845 (((-112) $) 63)) (-4014 (($) 62)) (-4249 ((|#3| $ (-551) (-551)) 47) ((|#3| $ (-551) (-551) |#3|) 45)) (-3544 (((-112) $) 57)) (-2135 (((-776) |#3| $) 75 (-12 (|has| |#3| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4443)))) (-3842 (($ $) 61)) (-3533 ((|#5| $ (-551)) 43)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-2137 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4443)))) (-3542 (((-112) $) 55)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#3|) 40 (|has| |#3| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-4407 (((-776) $) 67 (|has| $ (-6 -4443)))))
+((-3263 (*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776)))))
+(-13 (-1064) (-731) (-653 $) (-621 (-569)) (-10 -7 (-15 -3263 ((-776)) -3600) (-6 -4440)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-3084 (((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)) 60)))
+(((-1056 |#1| |#2|) (-10 -7 (-15 -3084 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)))) (-1183) (-367)) (T -1056))
+((-3084 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-958 *6))) (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
+(-10 -7 (-15 -3084 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 15)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 16 T CONST)) (-2853 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1057 |#1|) (-140) (-1064)) (T -1057))
+((-1786 (*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))))
+(-13 (-1106) (-10 -8 (-15 (-1786) ($) -3600) (-15 -2789 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3205 (((-112) $) 40)) (-3233 (((-112) $) 17)) (-2511 (((-776) $) 13)) (-2522 (((-776) $) 14)) (-3219 (((-112) $) 30)) (-3192 (((-112) $) 42)))
+(((-1058 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2522 ((-776) |#1|)) (-15 -2511 ((-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 -3205 ((-112) |#1|)) (-15 -3219 ((-112) |#1|)) (-15 -3233 ((-112) |#1|))) (-1059 |#2| |#3| |#4| |#5| |#6|) (-776) (-776) (-1055) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1058))
+NIL
+(-10 -8 (-15 -2522 ((-776) |#1|)) (-15 -2511 ((-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 -3205 ((-112) |#1|)) (-15 -3219 ((-112) |#1|)) (-15 -3233 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3205 (((-112) $) 56)) (-3798 (((-3 $ "failed") $ $) 20)) (-3233 (((-112) $) 58)) (-1610 (((-112) $ (-776)) 66)) (-3863 (($) 18 T CONST)) (-3115 (($ $) 39 (|has| |#3| (-310)))) (-3136 ((|#4| $ (-569)) 44)) (-3904 (((-776) $) 38 (|has| |#3| (-561)))) (-3007 ((|#3| $ (-569) (-569)) 46)) (-2796 (((-649 |#3|) $) 73 (|has| $ (-6 -4443)))) (-3106 (((-776) $) 37 (|has| |#3| (-561)))) (-3095 (((-649 |#5|) $) 36 (|has| |#3| (-561)))) (-2511 (((-776) $) 50)) (-2522 (((-776) $) 49)) (-3799 (((-112) $ (-776)) 65)) (-3181 (((-569) $) 54)) (-3160 (((-569) $) 52)) (-2912 (((-649 |#3|) $) 74 (|has| $ (-6 -4443)))) (-2060 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1106)) (|has| $ (-6 -4443))))) (-3171 (((-569) $) 53)) (-3148 (((-569) $) 51)) (-2375 (($ (-649 (-649 |#3|))) 59)) (-3065 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1954 (((-649 (-649 |#3|)) $) 48)) (-1902 (((-112) $ (-776)) 64)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-561)))) (-3983 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#3|) (-649 |#3|)) 80 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) 78 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 (-297 |#3|))) 77 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-1620 (((-112) $ $) 60)) (-4196 (((-112) $) 63)) (-2825 (($) 62)) (-1852 ((|#3| $ (-569) (-569)) 47) ((|#3| $ (-569) (-569) |#3|) 45)) (-3219 (((-112) $) 57)) (-3469 (((-776) |#3| $) 75 (-12 (|has| |#3| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4443)))) (-3885 (($ $) 61)) (-3126 ((|#5| $ (-569)) 43)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3996 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4443)))) (-3192 (((-112) $) 55)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#3|) 40 (|has| |#3| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2394 (((-776) $) 67 (|has| $ (-6 -4443)))))
(((-1059 |#1| |#2| |#3| |#4| |#5|) (-140) (-776) (-776) (-1055) (-239 |t#2| |t#3|) (-239 |t#1| |t#3|)) (T -1059))
-((-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3546 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *5))) (-4 *5 (-1055)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-646 (-646 *5))))) (-4249 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-3535 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-4249 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-3534 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-4408 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-562)))) (-4399 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-776)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-776)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-646 *7)))))
-(-13 (-111 |t#3| |t#3|) (-494 |t#3|) (-10 -8 (-6 -4443) (IF (|has| |t#3| (-173)) (-6 (-722 |t#3|)) |%noBranch|) (-15 -3546 ($ (-646 (-646 |t#3|)))) (-15 -3545 ((-112) $)) (-15 -3544 ((-112) $)) (-15 -3543 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -3541 ((-551) $)) (-15 -3540 ((-551) $)) (-15 -3539 ((-551) $)) (-15 -3538 ((-551) $)) (-15 -3537 ((-776) $)) (-15 -3536 ((-776) $)) (-15 -4043 ((-646 (-646 |t#3|)) $)) (-15 -4249 (|t#3| $ (-551) (-551))) (-15 -3535 (|t#3| $ (-551) (-551))) (-15 -4249 (|t#3| $ (-551) (-551) |t#3|)) (-15 -3534 (|t#4| $ (-551))) (-15 -3533 (|t#5| $ (-551))) (-15 -4408 ($ (-1 |t#3| |t#3|) $)) (-15 -4408 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-562)) (-15 -3907 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-367)) (-15 -4399 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-310)) (-15 -3532 ($ $)) |%noBranch|) (IF (|has| |t#3| (-562)) (PROGN (-15 -3531 ((-776) $)) (-15 -3530 ((-776) $)) (-15 -3529 ((-646 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-618 (-868)) . T) ((-312 |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))) ((-494 |#3|) . T) ((-519 |#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))) ((-651 (-551)) . T) ((-651 |#3|) . T) ((-653 |#3|) . T) ((-645 |#3|) |has| |#3| (-173)) ((-722 |#3|) |has| |#3| (-173)) ((-1057 |#3|) . T) ((-1062 |#3|) . T) ((-1107) . T) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3543 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3545 (((-112) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-3532 (($ $) 47 (|has| |#3| (-310)))) (-3534 (((-240 |#2| |#3|) $ (-551)) 36)) (-3547 (($ (-694 |#3|)) 45)) (-3531 (((-776) $) 49 (|has| |#3| (-562)))) (-3535 ((|#3| $ (-551) (-551)) NIL)) (-2134 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-3530 (((-776) $) 51 (|has| |#3| (-562)))) (-3529 (((-646 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-562)))) (-3537 (((-776) $) NIL)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-3546 (($ (-646 (-646 |#3|))) 31)) (-2138 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4043 (((-646 (-646 |#3|)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-562)))) (-2136 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#3|) (-646 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-296 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-646 (-296 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#3| $ (-551) (-551)) NIL) ((|#3| $ (-551) (-551) |#3|) NIL)) (-4361 (((-134)) 59 (|has| |#3| (-367)))) (-3544 (((-112) $) NIL)) (-2135 (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107)))) (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) 65 (|has| |#3| (-619 (-540))))) (-3533 (((-240 |#1| |#3|) $ (-551)) 40)) (-4396 (((-868) $) 19) (((-694 |#3|) $) 42)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-3528 (($) 16 T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1060 |#1| |#2| |#3|) (-13 (-1059 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (-15 -3547 ($ (-694 |#3|))))) (-776) (-776) (-1055)) (T -1060))
-((-3547 (*1 *1 *2) (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)))))
-(-13 (-1059 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|) (-15 -3547 ($ (-694 |#3|)))))
-((-4292 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4408 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1061 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4408 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4292 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-776) (-776) (-1055) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1059 |#1| |#2| |#3| |#4| |#5|) (-1055) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1059 |#1| |#2| |#7| |#8| |#9|)) (T -1061))
-((-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1059 *5 *6 *10 *11 *12)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10)))))
-(-10 -7 (-15 -4408 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4292 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ |#1|) 27)))
-(((-1062 |#1|) (-140) (-1063)) (T -1062))
+((-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1055)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5))))) (-1852 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-3007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-1852 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-1324 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) (-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-649 *7)))))
+(-13 (-111 |t#3| |t#3|) (-494 |t#3|) (-10 -8 (-6 -4443) (IF (|has| |t#3| (-173)) (-6 (-722 |t#3|)) |%noBranch|) (-15 -2375 ($ (-649 (-649 |t#3|)))) (-15 -3233 ((-112) $)) (-15 -3219 ((-112) $)) (-15 -3205 ((-112) $)) (-15 -3192 ((-112) $)) (-15 -3181 ((-569) $)) (-15 -3171 ((-569) $)) (-15 -3160 ((-569) $)) (-15 -3148 ((-569) $)) (-15 -2511 ((-776) $)) (-15 -2522 ((-776) $)) (-15 -1954 ((-649 (-649 |t#3|)) $)) (-15 -1852 (|t#3| $ (-569) (-569))) (-15 -3007 (|t#3| $ (-569) (-569))) (-15 -1852 (|t#3| $ (-569) (-569) |t#3|)) (-15 -3136 (|t#4| $ (-569))) (-15 -3126 (|t#5| $ (-569))) (-15 -1324 ($ (-1 |t#3| |t#3|) $)) (-15 -1324 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-561)) (-15 -2374 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-367)) (-15 -2956 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-310)) (-15 -3115 ($ $)) |%noBranch|) (IF (|has| |t#3| (-561)) (PROGN (-15 -3904 ((-776) $)) (-15 -3106 ((-776) $)) (-15 -3095 ((-649 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-618 (-867)) . T) ((-312 |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))) ((-494 |#3|) . T) ((-519 |#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))) ((-651 (-569)) . T) ((-651 |#3|) . T) ((-653 |#3|) . T) ((-645 |#3|) |has| |#3| (-173)) ((-722 |#3|) |has| |#3| (-173)) ((-1057 |#3|) . T) ((-1062 |#3|) . T) ((-1106) . T) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3205 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3233 (((-112) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-3115 (($ $) 47 (|has| |#3| (-310)))) (-3136 (((-241 |#2| |#3|) $ (-569)) 36)) (-3250 (($ (-694 |#3|)) 45)) (-3904 (((-776) $) 49 (|has| |#3| (-561)))) (-3007 ((|#3| $ (-569) (-569)) NIL)) (-2796 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-3106 (((-776) $) 51 (|has| |#3| (-561)))) (-3095 (((-649 (-241 |#1| |#3|)) $) 55 (|has| |#3| (-561)))) (-2511 (((-776) $) NIL)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-2375 (($ (-649 (-649 |#3|))) 31)) (-3065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1954 (((-649 (-649 |#3|)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-561)))) (-3983 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#3| $ (-569) (-569)) NIL) ((|#3| $ (-569) (-569) |#3|) NIL)) (-2905 (((-134)) 59 (|has| |#3| (-367)))) (-3219 (((-112) $) NIL)) (-3469 (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106)))) (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) 65 (|has| |#3| (-619 (-541))))) (-3126 (((-241 |#1| |#3|) $ (-569)) 40)) (-2388 (((-867) $) 19) (((-694 |#3|) $) 42)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-1786 (($) 16 T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1060 |#1| |#2| |#3|) (-13 (-1059 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -3250 ($ (-694 |#3|))))) (-776) (-776) (-1055)) (T -1060))
+((-3250 (*1 *1 *2) (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)))))
+(-13 (-1059 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -3250 ($ (-694 |#3|)))))
+((-3485 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1324 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1061 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1324 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3485 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-776) (-776) (-1055) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1059 |#1| |#2| |#3| |#4| |#5|) (-1055) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1059 |#1| |#2| |#7| |#8| |#9|)) (T -1061))
+((-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1059 *5 *6 *10 *11 *12)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10)))))
+(-10 -7 (-15 -1324 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3485 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ |#1|) 27)))
+(((-1062 |#1|) (-140) (-1064)) (T -1062))
NIL
(-13 (-21) (-1057 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-1057 |#1|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
-(((-1063) (-140)) (T -1063))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1057 |#1|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2599 (((-1183) $) 11)) (-2741 ((|#1| $) 12)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3387 (($ (-1183) |#1|) 10)) (-2388 (((-867) $) 22 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2853 (((-112) $ $) 17 (|has| |#1| (-1106)))))
+(((-1063 |#1| |#2|) (-13 (-1223) (-10 -8 (-15 -3387 ($ (-1183) |#1|)) (-15 -2599 ((-1183) $)) (-15 -2741 (|#1| $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1099 |#2|) (-1223)) (T -1063))
+((-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-4 *4 (-1223)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-1099 *4)))) (-2599 (*1 *2 *1) (-12 (-4 *4 (-1223)) (-5 *2 (-1183)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-1099 *4)))) (-2741 (*1 *2 *1) (-12 (-4 *2 (-1099 *3)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1223)))))
+(-13 (-1223) (-10 -8 (-15 -3387 ($ (-1183) |#1|)) (-15 -2599 ((-1183) $)) (-15 -2741 (|#1| $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-1064) (-140)) (T -1064))
NIL
(-13 (-21) (-1118))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4281 (((-1183) $) 11)) (-4186 ((|#1| $) 12)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-3664 (($ (-1183) |#1|) 10)) (-4396 (((-868) $) 22 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3473 (((-112) $ $) 17 (|has| |#1| (-1107)))))
-(((-1064 |#1| |#2|) (-13 (-1222) (-10 -8 (-15 -3664 ($ (-1183) |#1|)) (-15 -4281 ((-1183) $)) (-15 -4186 (|#1| $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|))) (-1100 |#2|) (-1222)) (T -1064))
-((-3664 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-4 *4 (-1222)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-1100 *4)))) (-4281 (*1 *2 *1) (-12 (-4 *4 (-1222)) (-5 *2 (-1183)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-1100 *4)))) (-4186 (*1 *2 *1) (-12 (-4 *2 (-1100 *3)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1222)))))
-(-13 (-1222) (-10 -8 (-15 -3664 ($ (-1183) |#1|)) (-15 -4281 ((-1183) $)) (-15 -4186 (|#1| $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|)))
-((-4220 (($ $) 17)) (-3549 (($ $) 25)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 55)) (-3554 (($ $) 27)) (-3550 (($ $) 12)) (-3552 (($ $) 43)) (-4420 (((-382) $) NIL) (((-226) $) NIL) (((-896 (-382)) $) 36)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL) (($ (-412 (-551))) 31) (($ (-551)) NIL) (($ (-412 (-551))) 31)) (-3548 (((-776)) 9)) (-3553 (($ $) 45)))
-(((-1065 |#1|) (-10 -8 (-15 -3549 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| |#1|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-1066)) (T -1065))
-((-3548 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
-(-10 -8 (-15 -3549 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -3217 ((-894 (-382) |#1|) |#1| (-896 (-382)) (-894 (-382) |#1|))) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 -4420 ((-226) |#1|)) (-15 -4420 ((-382) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| |#1|)) (-15 -3548 ((-776))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3551 (((-551) $) 97)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-4220 (($ $) 95)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-3456 (($ $) 105)) (-1763 (((-112) $ $) 65)) (-4073 (((-551) $) 122)) (-4174 (($) 18 T CONST)) (-3549 (($ $) 94)) (-3595 (((-3 (-551) #1="failed") $) 110) (((-3 (-412 (-551)) #1#) $) 107)) (-3594 (((-551) $) 111) (((-412 (-551)) $) 108)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-4173 (((-112) $) 79)) (-3624 (((-112) $) 120)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 101)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 104)) (-3554 (($ $) 100)) (-3625 (((-112) $) 121)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) 58)) (-2952 (($ $ $) 119)) (-3278 (($ $ $) 118)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-3550 (($ $) 96)) (-3552 (($ $) 98)) (-4182 (((-410 $) $) 82)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-4420 (((-382) $) 113) (((-226) $) 112) (((-896 (-382)) $) 102)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ (-551)) 109) (($ (-412 (-551))) 106)) (-3548 (((-776)) 32 T CONST)) (-3553 (($ $) 99)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3825 (($ $) 123)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-2984 (((-112) $ $) 116)) (-2985 (((-112) $ $) 115)) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 117)) (-3106 (((-112) $ $) 114)) (-4399 (($ $ $) 73)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77) (($ $ (-412 (-551))) 103)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1118) . T) ((-1106) . T))
+((-4305 (($ $) 17)) (-3274 (($ $) 25)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 55)) (-3334 (($ $) 27)) (-3288 (($ $) 12)) (-3312 (($ $) 43)) (-1384 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) 36)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 31) (($ (-569)) NIL) (($ (-412 (-569))) 31)) (-3263 (((-776)) 9)) (-3323 (($ $) 45)))
+(((-1065 |#1|) (-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3334 (|#1| |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| |#1|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-1066)) (T -1065))
+((-3263 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
+(-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3334 (|#1| |#1|)) (-15 -3032 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 -1384 ((-226) |#1|)) (-15 -1384 ((-383) |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| |#1|)) (-15 -3263 ((-776))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3300 (((-569) $) 97)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-4305 (($ $) 95)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-3714 (($ $) 105)) (-4420 (((-112) $ $) 65)) (-2211 (((-569) $) 122)) (-3863 (($) 18 T CONST)) (-3274 (($ $) 94)) (-4359 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3043 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-3848 (((-112) $) 79)) (-2769 (((-112) $) 120)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 104)) (-3334 (($ $) 100)) (-2778 (((-112) $) 121)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2095 (($ $ $) 119)) (-2406 (($ $ $) 118)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3288 (($ $) 96)) (-3312 (($ $) 98)) (-3699 (((-423 $) $) 82)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-1384 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-3263 (((-776)) 32 T CONST)) (-3323 (($ $) 99)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-3999 (($ $) 123)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2904 (((-112) $ $) 116)) (-2882 (((-112) $ $) 115)) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 117)) (-2872 (((-112) $ $) 114)) (-2956 (($ $ $) 73)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-1066) (-140)) (T -1066))
-((-3825 (*1 *1 *1) (-4 *1 (-1066))) (-3554 (*1 *1 *1) (-4 *1 (-1066))) (-3553 (*1 *1 *1) (-4 *1 (-1066))) (-3552 (*1 *1 *1) (-4 *1 (-1066))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-551)))) (-3550 (*1 *1 *1) (-4 *1 (-1066))) (-4220 (*1 *1 *1) (-4 *1 (-1066))) (-3549 (*1 *1 *1) (-4 *1 (-1066))))
-(-13 (-367) (-853) (-1026) (-1044 (-551)) (-1044 (-412 (-551))) (-1008) (-619 (-896 (-382))) (-892 (-382)) (-147) (-10 -8 (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ((-551) $)) (-15 -3550 ($ $)) (-15 -4220 ($ $)) (-15 -3549 ($ $)) (-15 -3825 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-382)) . T) ((-619 (-896 (-382))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-802) . T) ((-853) . T) ((-855) . T) ((-892 (-382)) . T) ((-927) . T) ((-1008) . T) ((-1026) . T) ((-1044 (-412 (-551))) . T) ((-1044 (-551)) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) |#2| $) 26)) (-3558 ((|#1| $) 10)) (-4073 (((-551) |#2| $) 116)) (-3621 (((-3 $ #1="failed") |#2| (-925)) 75)) (-3559 ((|#1| $) 31)) (-3620 ((|#1| |#2| $ |#1|) 40)) (-3556 (($ $) 28)) (-3908 (((-3 |#2| #1#) |#2| $) 111)) (-3624 (((-112) |#2| $) NIL)) (-3625 (((-112) |#2| $) NIL)) (-3555 (((-112) |#2| $) 27)) (-3557 ((|#1| $) 117)) (-3560 ((|#1| $) 30)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3623 ((|#2| $) 102)) (-4396 (((-868) $) 92)) (-3680 (((-112) $ $) NIL)) (-4219 ((|#1| |#2| $ |#1|) 41)) (-3622 (((-646 $) |#2|) 77)) (-3473 (((-112) $ $) 97)))
-(((-1067 |#1| |#2|) (-13 (-1074 |#1| |#2|) (-10 -8 (-15 -3560 (|#1| $)) (-15 -3559 (|#1| $)) (-15 -3558 (|#1| $)) (-15 -3557 (|#1| $)) (-15 -3556 ($ $)) (-15 -3555 ((-112) |#2| $)) (-15 -3620 (|#1| |#2| $ |#1|)))) (-13 (-853) (-367)) (-1248 |#1|)) (T -1067))
-((-3620 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3560 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3559 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3558 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3557 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3556 (*1 *1 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))) (-3555 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-1248 *4)))))
-(-13 (-1074 |#1| |#2|) (-10 -8 (-15 -3560 (|#1| $)) (-15 -3559 (|#1| $)) (-15 -3558 (|#1| $)) (-15 -3557 (|#1| $)) (-15 -3556 ($ $)) (-15 -3555 ((-112) |#2| $)) (-15 -3620 (|#1| |#2| $ |#1|))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-2235 (($ $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2230 (($ $ $ $) NIL)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-4073 (((-551) $) NIL)) (-2780 (($ $ $) NIL)) (-4174 (($) NIL T CONST)) (-3561 (($ (-1183)) 10) (($ (-551)) 7)) (-3595 (((-3 (-551) "failed") $) NIL)) (-3594 (((-551) $) NIL)) (-2982 (($ $ $) NIL)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-694 (-551)) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL)) (-3442 (((-112) $) NIL)) (-3441 (((-412 (-551)) $) NIL)) (-3413 (($) NIL) (($ $) NIL)) (-2981 (($ $ $) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2228 (($ $ $ $) NIL)) (-2236 (($ $ $) NIL)) (-3624 (((-112) $) NIL)) (-1459 (($ $ $) NIL)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL)) (-2591 (((-112) $) NIL)) (-3094 (((-112) $) NIL)) (-3886 (((-3 $ "failed") $) NIL)) (-3625 (((-112) $) NIL)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2229 (($ $ $ $) NIL)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-2232 (($ $) NIL)) (-4283 (($ $) NIL)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2227 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-2234 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) NIL) (($ (-646 $)) NIL)) (-1457 (($ $) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-2233 (($ $) NIL)) (-3842 (($ $) NIL)) (-4420 (((-551) $) 16) (((-540) $) NIL) (((-896 (-551)) $) NIL) (((-382) $) NIL) (((-226) $) NIL) (($ (-1183)) 9)) (-4396 (((-868) $) 23) (($ (-551)) 6) (($ $) NIL) (($ (-551)) 6)) (-3548 (((-776)) NIL T CONST)) (-2237 (((-112) $ $) NIL)) (-3523 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3115 (($) NIL)) (-2250 (((-112) $ $) NIL)) (-2231 (($ $ $ $) NIL)) (-3825 (($ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)) (-4287 (($ $) 22) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL)))
-(((-1068) (-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3561 ($ (-1183))) (-15 -3561 ($ (-551)))))) (T -1068))
-((-3561 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1068)))))
-(-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3561 ($ (-1183))) (-15 -3561 ($ (-551)))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-2390 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-3563 (($) 9)) (-4237 (((-51) $ (-1183) (-51)) NIL)) (-3571 (($ $) 32)) (-3574 (($ $) 30)) (-3575 (($ $) 29)) (-3573 (($ $) 31)) (-3570 (($ $) 35)) (-3569 (($ $) 36)) (-3576 (($ $) 28)) (-3572 (($ $) 33)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) 27 (|has| $ (-6 -4443)))) (-2399 (((-3 (-51) #1="failed") (-1183) $) 43)) (-4174 (($) NIL T CONST)) (-3577 (($) 7)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-3847 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) 53 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-51) #1#) (-1183) $) NIL)) (-3848 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443)))) (-3562 (((-3 (-1165) "failed") $ (-1165) (-551)) 74)) (-1694 (((-51) $ (-1183) (-51)) NIL (|has| $ (-6 -4444)))) (-3535 (((-51) $ (-1183)) NIL)) (-2134 (((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3026 (((-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) 38 (|has| $ (-6 -4443))) (((-646 (-51)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2393 (((-1183) $) NIL (|has| (-1183) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-2834 (((-646 (-1183)) $) NIL)) (-2400 (((-112) (-1183) $) NIL)) (-1372 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL)) (-4057 (($ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) 46)) (-2395 (((-646 (-1183)) $) NIL)) (-2396 (((-112) (-1183) $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-3566 (((-382) $ (-1183)) 52)) (-3565 (((-646 (-1165)) $ (-1165)) 76)) (-4250 (((-51) $) NIL (|has| (-1183) (-855)))) (-1444 (((-3 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) "failed") (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL)) (-2391 (($ $ (-51)) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-296 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL (-12 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-312 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (($ $ (-646 (-51)) (-646 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-296 (-51))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107)))) (($ $ (-646 (-296 (-51)))) NIL (-12 (|has| (-51) (-312 (-51))) (|has| (-51) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107))))) (-2397 (((-646 (-51)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 (((-51) $ (-1183)) NIL) (((-51) $ (-1183) (-51)) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-3564 (($ $ (-1183)) 54)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107)))) (((-776) (-51) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-51) (-1107)))) (((-776) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) 40)) (-4251 (($ $ $) 41)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-618 (-868))) (|has| (-51) (-618 (-868)))))) (-3568 (($ $ (-1183) (-382)) 50)) (-3567 (($ $ (-1183) (-382)) 51)) (-3680 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 (-1183)) (|:| -2264 (-51)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-51) (-1107)) (|has| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1069) (-13 (-1199 (-1183) (-51)) (-10 -8 (-15 -4251 ($ $ $)) (-15 -3577 ($)) (-15 -3576 ($ $)) (-15 -3575 ($ $)) (-15 -3574 ($ $)) (-15 -3573 ($ $)) (-15 -3572 ($ $)) (-15 -3571 ($ $)) (-15 -3570 ($ $)) (-15 -3569 ($ $)) (-15 -3568 ($ $ (-1183) (-382))) (-15 -3567 ($ $ (-1183) (-382))) (-15 -3566 ((-382) $ (-1183))) (-15 -3565 ((-646 (-1165)) $ (-1165))) (-15 -3564 ($ $ (-1183))) (-15 -3563 ($)) (-15 -3562 ((-3 (-1165) "failed") $ (-1165) (-551))) (-6 -4443)))) (T -1069))
-((-4251 (*1 *1 *1 *1) (-5 *1 (-1069))) (-3577 (*1 *1) (-5 *1 (-1069))) (-3576 (*1 *1 *1) (-5 *1 (-1069))) (-3575 (*1 *1 *1) (-5 *1 (-1069))) (-3574 (*1 *1 *1) (-5 *1 (-1069))) (-3573 (*1 *1 *1) (-5 *1 (-1069))) (-3572 (*1 *1 *1) (-5 *1 (-1069))) (-3571 (*1 *1 *1) (-5 *1 (-1069))) (-3570 (*1 *1 *1) (-5 *1 (-1069))) (-3569 (*1 *1 *1) (-5 *1 (-1069))) (-3568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-382)) (-5 *1 (-1069)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-382)) (-5 *1 (-1069)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-382)) (-5 *1 (-1069)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))) (-3563 (*1 *1) (-5 *1 (-1069))) (-3562 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-1069)))))
-(-13 (-1199 (-1183) (-51)) (-10 -8 (-15 -4251 ($ $ $)) (-15 -3577 ($)) (-15 -3576 ($ $)) (-15 -3575 ($ $)) (-15 -3574 ($ $)) (-15 -3573 ($ $)) (-15 -3572 ($ $)) (-15 -3571 ($ $)) (-15 -3570 ($ $)) (-15 -3569 ($ $)) (-15 -3568 ($ $ (-1183) (-382))) (-15 -3567 ($ $ (-1183) (-382))) (-15 -3566 ((-382) $ (-1183))) (-15 -3565 ((-646 (-1165)) $ (-1165))) (-15 -3564 ($ $ (-1183))) (-15 -3563 ($)) (-15 -3562 ((-3 (-1165) "failed") $ (-1165) (-551))) (-6 -4443)))
-((-4246 (($ $) 46)) (-3604 (((-112) $ $) 82)) (-3595 (((-3 |#2| #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 (-551) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-952 (-412 (-551)))) 253) (((-3 $ "failed") (-952 (-551))) 252) (((-3 $ "failed") (-952 |#2|)) 255)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL) (((-551) $) NIL) ((|#4| $) NIL) (($ (-952 (-412 (-551)))) 241) (($ (-952 (-551))) 237) (($ (-952 |#2|)) 257)) (-4409 (($ $) NIL) (($ $ |#4|) 44)) (-4144 (((-112) $ $) 131) (((-112) $ (-646 $)) 135)) (-3610 (((-112) $) 60)) (-4202 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 125)) (-3581 (($ $) 160)) (-3592 (($ $) 156)) (-3593 (($ $) 155)) (-3603 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3602 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4145 (((-112) $ $) 143) (((-112) $ (-646 $)) 144)) (-3618 ((|#4| $) 32)) (-3597 (($ $ $) 128)) (-3611 (((-112) $) 59)) (-3617 (((-776) $) 35)) (-3578 (($ $) 174)) (-3579 (($ $) 171)) (-3606 (((-646 $) $) 72)) (-3609 (($ $) 62)) (-3580 (($ $) 167)) (-3607 (((-646 $) $) 69)) (-3608 (($ $) 64)) (-3612 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3596 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3922 (-776))) $ $) 130)) (-3598 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $) 126) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $ |#4|) 127)) (-3599 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $) 121) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $ |#4|) 123)) (-3601 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3600 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3614 (((-646 $) $) 54)) (-4141 (((-112) $ $) 140) (((-112) $ (-646 $)) 141)) (-4136 (($ $ $) 116)) (-3887 (($ $) 37)) (-4149 (((-112) $ $) 80)) (-4142 (((-112) $ $) 136) (((-112) $ (-646 $)) 138)) (-4137 (($ $ $) 112)) (-3616 (($ $) 41)) (-3582 ((|#2| |#2| $) 164) (($ (-646 $)) NIL) (($ $ $) NIL)) (-3590 (($ $ |#2|) NIL) (($ $ $) 153)) (-3591 (($ $ |#2|) 148) (($ $ $) 151)) (-3615 (($ $) 49)) (-3613 (($ $) 55)) (-4420 (((-896 (-382)) $) NIL) (((-896 (-551)) $) NIL) (((-540) $) NIL) (($ (-952 (-412 (-551)))) 243) (($ (-952 (-551))) 239) (($ (-952 |#2|)) 254) (((-1165) $) 281) (((-952 |#2|) $) 184)) (-4396 (((-868) $) 29) (($ (-551)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-952 |#2|) $) 185) (($ (-412 (-551))) NIL) (($ $) NIL)) (-3605 (((-3 (-112) "failed") $ $) 79)))
-(((-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 ((-952 |#2|) |#1|)) (-15 -4420 ((-952 |#2|) |#1|)) (-15 -4420 ((-1165) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3582 (|#2| |#2| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3591 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#2|)) (-15 -3591 (|#1| |#1| |#2|)) (-15 -3592 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -4420 (|#1| (-952 |#2|))) (-15 -3594 (|#1| (-952 |#2|))) (-15 -3595 ((-3 |#1| "failed") (-952 |#2|))) (-15 -4420 (|#1| (-952 (-551)))) (-15 -3594 (|#1| (-952 (-551)))) (-15 -3595 ((-3 |#1| "failed") (-952 (-551)))) (-15 -4420 (|#1| (-952 (-412 (-551))))) (-15 -3594 (|#1| (-952 (-412 (-551))))) (-15 -3595 ((-3 |#1| "failed") (-952 (-412 (-551))))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3596 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3922 (-776))) |#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -4202 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3599 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3599 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3600 (|#1| |#1| |#1| |#4|)) (-15 -3601 (|#1| |#1| |#1| |#4|)) (-15 -3600 (|#1| |#1| |#1|)) (-15 -3601 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1| |#4|)) (-15 -3603 (|#1| |#1| |#1| |#4|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3603 (|#1| |#1| |#1|)) (-15 -4145 ((-112) |#1| (-646 |#1|))) (-15 -4145 ((-112) |#1| |#1|)) (-15 -4141 ((-112) |#1| (-646 |#1|))) (-15 -4141 ((-112) |#1| |#1|)) (-15 -4142 ((-112) |#1| (-646 |#1|))) (-15 -4142 ((-112) |#1| |#1|)) (-15 -4144 ((-112) |#1| (-646 |#1|))) (-15 -4144 ((-112) |#1| |#1|)) (-15 -3604 ((-112) |#1| |#1|)) (-15 -4149 ((-112) |#1| |#1|)) (-15 -3605 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3606 ((-646 |#1|) |#1|)) (-15 -3607 ((-646 |#1|) |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3609 (|#1| |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -3611 ((-112) |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3612 (|#1| |#1| |#4|)) (-15 -3613 (|#1| |#1|)) (-15 -3614 ((-646 |#1|) |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3617 ((-776) |#1|)) (-15 -3618 (|#4| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4396 (|#1| |#4|)) (-15 -3595 ((-3 |#4| #1="failed") |#1|)) (-15 -3594 (|#4| |#1|)) (-15 -3612 (|#2| |#1|)) (-15 -4409 (|#1| |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-1071 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -1070))
-NIL
-(-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3582 (|#1| (-646 |#1|))) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 ((-952 |#2|) |#1|)) (-15 -4420 ((-952 |#2|) |#1|)) (-15 -4420 ((-1165) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3582 (|#2| |#2| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3591 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#2|)) (-15 -3591 (|#1| |#1| |#2|)) (-15 -3592 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -4420 (|#1| (-952 |#2|))) (-15 -3594 (|#1| (-952 |#2|))) (-15 -3595 ((-3 |#1| "failed") (-952 |#2|))) (-15 -4420 (|#1| (-952 (-551)))) (-15 -3594 (|#1| (-952 (-551)))) (-15 -3595 ((-3 |#1| "failed") (-952 (-551)))) (-15 -4420 (|#1| (-952 (-412 (-551))))) (-15 -3594 (|#1| (-952 (-412 (-551))))) (-15 -3595 ((-3 |#1| "failed") (-952 (-412 (-551))))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3596 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3922 (-776))) |#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -4202 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3598 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3599 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -3321 |#1|)) |#1| |#1| |#4|)) (-15 -3599 ((-2 (|:| -4404 |#1|) (|:| |gap| (-776)) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -3600 (|#1| |#1| |#1| |#4|)) (-15 -3601 (|#1| |#1| |#1| |#4|)) (-15 -3600 (|#1| |#1| |#1|)) (-15 -3601 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1| |#4|)) (-15 -3603 (|#1| |#1| |#1| |#4|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3603 (|#1| |#1| |#1|)) (-15 -4145 ((-112) |#1| (-646 |#1|))) (-15 -4145 ((-112) |#1| |#1|)) (-15 -4141 ((-112) |#1| (-646 |#1|))) (-15 -4141 ((-112) |#1| |#1|)) (-15 -4142 ((-112) |#1| (-646 |#1|))) (-15 -4142 ((-112) |#1| |#1|)) (-15 -4144 ((-112) |#1| (-646 |#1|))) (-15 -4144 ((-112) |#1| |#1|)) (-15 -3604 ((-112) |#1| |#1|)) (-15 -4149 ((-112) |#1| |#1|)) (-15 -3605 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3606 ((-646 |#1|) |#1|)) (-15 -3607 ((-646 |#1|) |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3609 (|#1| |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -3611 ((-112) |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3612 (|#1| |#1| |#4|)) (-15 -3613 (|#1| |#1|)) (-15 -3614 ((-646 |#1|) |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3617 ((-776) |#1|)) (-15 -3618 (|#4| |#1|)) (-15 -4420 ((-540) |#1|)) (-15 -4420 ((-896 (-551)) |#1|)) (-15 -4420 ((-896 (-382)) |#1|)) (-15 -4396 (|#1| |#4|)) (-15 -3595 ((-3 |#4| #1="failed") |#1|)) (-15 -3594 (|#4| |#1|)) (-15 -3612 (|#2| |#1|)) (-15 -4409 (|#1| |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 |#3|) $) 112)) (-3505 (((-1177 $) $ |#3|) 127) (((-1177 |#1|) $) 126)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2251 (($ $) 90 (|has| |#1| (-562)))) (-2249 (((-112) $) 92 (|has| |#1| (-562)))) (-3240 (((-776) $) 114) (((-776) $ (-646 |#3|)) 113)) (-4246 (($ $) 273)) (-3604 (((-112) $ $) 259)) (-1410 (((-3 $ "failed") $ $) 20)) (-4205 (($ $ $) 218 (|has| |#1| (-562)))) (-3586 (((-646 $) $ $) 213 (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) 102 (|has| |#1| (-916)))) (-4224 (($ $) 100 (|has| |#1| (-457)))) (-4419 (((-410 $) $) 99 (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 105 (|has| |#1| (-916)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| #2="failed") $) 166) (((-3 (-412 (-551)) #2#) $) 163 (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) 161 (|has| |#1| (-1044 (-551)))) (((-3 |#3| #2#) $) 138) (((-3 $ "failed") (-952 (-412 (-551)))) 233 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183))))) (((-3 $ "failed") (-952 (-551))) 230 (-3978 (-12 (-3764 (|has| |#1| (-38 (-412 (-551))))) (|has| |#1| (-38 (-551))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183)))))) (((-3 $ "failed") (-952 |#1|)) 227 (-3978 (-12 (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-38 (-551)))) (|has| |#3| (-619 (-1183)))) (-12 (-3764 (|has| |#1| (-550))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (|has| |#1| (-38 (-551))) (|has| |#3| (-619 (-1183)))) (-12 (-3764 (|has| |#1| (-997 (-551)))) (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183))))))) (-3594 ((|#1| $) 165) (((-412 (-551)) $) 164 (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) 162 (|has| |#1| (-1044 (-551)))) ((|#3| $) 139) (($ (-952 (-412 (-551)))) 232 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183))))) (($ (-952 (-551))) 229 (-3978 (-12 (-3764 (|has| |#1| (-38 (-412 (-551))))) (|has| |#1| (-38 (-551))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183)))))) (($ (-952 |#1|)) 226 (-3978 (-12 (-3764 (|has| |#1| (-38 (-412 (-551))))) (-3764 (|has| |#1| (-38 (-551)))) (|has| |#3| (-619 (-1183)))) (-12 (-3764 (|has| |#1| (-550))) (-3764 (|has| |#1| (-38 (-412 (-551))))) (|has| |#1| (-38 (-551))) (|has| |#3| (-619 (-1183)))) (-12 (-3764 (|has| |#1| (-997 (-551)))) (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183))))))) (-4206 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-562)))) (-4409 (($ $) 156) (($ $ |#3|) 268)) (-2445 (((-694 (-551)) (-694 $)) 136 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 135 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-4144 (((-112) $ $) 258) (((-112) $ (-646 $)) 257)) (-3908 (((-3 $ "failed") $) 37)) (-3610 (((-112) $) 266)) (-4202 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 238)) (-3581 (($ $) 207 (|has| |#1| (-457)))) (-3944 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-3239 (((-646 $) $) 111)) (-4173 (((-112) $) 98 (|has| |#1| (-916)))) (-3592 (($ $) 223 (|has| |#1| (-562)))) (-3593 (($ $) 224 (|has| |#1| (-562)))) (-3603 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3602 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1779 (($ $ |#1| |#2| $) 174)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 86 (-12 (|has| |#3| (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 85 (-12 (|has| |#3| (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-2591 (((-112) $) 35)) (-2599 (((-776) $) 171)) (-4145 (((-112) $ $) 252) (((-112) $ (-646 $)) 251)) (-3583 (($ $ $ $ $) 209 (|has| |#1| (-562)))) (-3618 ((|#3| $) 277)) (-3506 (($ (-1177 |#1|) |#3|) 119) (($ (-1177 $) |#3|) 118)) (-3242 (((-646 $) $) 128)) (-4387 (((-112) $) 154)) (-3312 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-646 |#3|) (-646 (-776))) 120)) (-3597 (($ $ $) 237)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#3|) 122)) (-3611 (((-112) $) 267)) (-3241 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-646 (-776)) $ (-646 |#3|)) 123)) (-3617 (((-776) $) 276)) (-1780 (($ (-1 |#2| |#2|) $) 173)) (-4408 (($ (-1 |#1| |#1|) $) 153)) (-3504 (((-3 |#3| #3="failed") $) 125)) (-3578 (($ $) 204 (|has| |#1| (-457)))) (-3579 (($ $) 205 (|has| |#1| (-457)))) (-3606 (((-646 $) $) 262)) (-3609 (($ $) 265)) (-3580 (($ $) 206 (|has| |#1| (-457)))) (-3607 (((-646 $) $) 263)) (-3608 (($ $) 264)) (-3313 (($ $) 151)) (-3612 ((|#1| $) 150) (($ $ |#3|) 269)) (-2079 (($ (-646 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3596 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3922 (-776))) $ $) 236)) (-3598 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $) 240) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $ |#3|) 239)) (-3599 (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $) 242) (((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $ |#3|) 241)) (-3601 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3600 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3681 (((-1165) $) 10)) (-3628 (($ $ $) 212 (|has| |#1| (-562)))) (-3614 (((-646 $) $) 271)) (-3244 (((-3 (-646 $) #3#) $) 116)) (-3243 (((-3 (-646 $) #3#) $) 117)) (-3245 (((-3 (-2 (|:| |var| |#3|) (|:| -2582 (-776))) #3#) $) 115)) (-4141 (((-112) $ $) 254) (((-112) $ (-646 $)) 253)) (-4136 (($ $ $) 234)) (-3887 (($ $) 275)) (-4149 (((-112) $ $) 260)) (-4142 (((-112) $ $) 256) (((-112) $ (-646 $)) 255)) (-4137 (($ $ $) 235)) (-3616 (($ $) 274)) (-3682 (((-1126) $) 11)) (-3587 (((-2 (|:| -3582 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-562)))) (-3588 (((-2 (|:| -3582 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-562)))) (-1982 (((-112) $) 168)) (-1981 ((|#1| $) 169)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 97 (|has| |#1| (-457)))) (-3582 ((|#1| |#1| $) 208 (|has| |#1| (-457))) (($ (-646 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 104 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 103 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 101 (|has| |#1| (-916)))) (-3589 (((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-562)))) (-3907 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3590 (($ $ |#1|) 221 (|has| |#1| (-562))) (($ $ $) 219 (|has| |#1| (-562)))) (-3591 (($ $ |#1|) 222 (|has| |#1| (-562))) (($ $ $) 220 (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) 147) (($ $ (-296 $)) 146) (($ $ $ $) 145) (($ $ (-646 $) (-646 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-646 |#3|) (-646 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-646 |#3|) (-646 $)) 140)) (-4207 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4260 (($ $ |#3|) 46) (($ $ (-646 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-646 |#3|) (-646 (-776))) 43)) (-4398 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-646 (-776)) $ (-646 |#3|)) 131)) (-3615 (($ $) 272)) (-3613 (($ $) 270)) (-4420 (((-896 (-382)) $) 84 (-12 (|has| |#3| (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) 83 (-12 (|has| |#3| (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) 82 (-12 (|has| |#3| (-619 (-540))) (|has| |#1| (-619 (-540))))) (($ (-952 (-412 (-551)))) 231 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183))))) (($ (-952 (-551))) 228 (-3978 (-12 (-3764 (|has| |#1| (-38 (-412 (-551))))) (|has| |#1| (-38 (-551))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#3| (-619 (-1183)))))) (($ (-952 |#1|)) 225 (|has| |#3| (-619 (-1183)))) (((-1165) $) 203 (-12 (|has| |#1| (-1044 (-551))) (|has| |#3| (-619 (-1183))))) (((-952 |#1|) $) 202 (|has| |#3| (-619 (-1183))))) (-3238 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 106 (-3274 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-952 |#1|) $) 201 (|has| |#3| (-619 (-1183)))) (($ (-412 (-551))) 80 (-3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551)))))) (($ $) 87 (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) 170)) (-4127 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-646 |#3|) (-646 (-776))) 129)) (-3123 (((-3 $ #1#) $) 81 (-3978 (-3274 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 32 T CONST)) (-1778 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 91 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3605 (((-3 (-112) "failed") $ $) 261)) (-3085 (($) 34 T CONST)) (-3584 (($ $ $ $ (-776)) 210 (|has| |#1| (-562)))) (-3585 (($ $ $ (-776)) 211 (|has| |#1| (-562)))) (-3090 (($ $ |#3|) 42) (($ $ (-646 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-646 |#3|) (-646 (-776))) 39)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 160 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 159 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+((-3999 (*1 *1 *1) (-4 *1 (-1066))) (-3334 (*1 *1 *1) (-4 *1 (-1066))) (-3323 (*1 *1 *1) (-4 *1 (-1066))) (-3312 (*1 *1 *1) (-4 *1 (-1066))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-569)))) (-3288 (*1 *1 *1) (-4 *1 (-1066))) (-4305 (*1 *1 *1) (-4 *1 (-1066))) (-3274 (*1 *1 *1) (-4 *1 (-1066))))
+(-13 (-367) (-853) (-1028) (-1044 (-569)) (-1044 (-412 (-569))) (-1008) (-619 (-898 (-383))) (-892 (-383)) (-147) (-10 -8 (-15 -3334 ($ $)) (-15 -3323 ($ $)) (-15 -3312 ($ $)) (-15 -3300 ((-569) $)) (-15 -3288 ($ $)) (-15 -4305 ($ $)) (-15 -3274 ($ $)) (-15 -3999 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1008) . T) ((-1028) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) |#2| $) 26)) (-3363 ((|#1| $) 10)) (-2211 (((-569) |#2| $) 116)) (-2740 (((-3 $ "failed") |#2| (-927)) 75)) (-4386 ((|#1| $) 31)) (-2729 ((|#1| |#2| $ |#1|) 40)) (-3355 (($ $) 28)) (-3351 (((-3 |#2| "failed") |#2| $) 111)) (-2769 (((-112) |#2| $) NIL)) (-2778 (((-112) |#2| $) NIL)) (-3345 (((-112) |#2| $) 27)) (-3367 ((|#1| $) 117)) (-4375 ((|#1| $) 30)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2760 ((|#2| $) 102)) (-2388 (((-867) $) 92)) (-2040 (((-112) $ $) NIL)) (-3006 ((|#1| |#2| $ |#1|) 41)) (-2751 (((-649 $) |#2|) 77)) (-2853 (((-112) $ $) 97)))
+(((-1067 |#1| |#2|) (-13 (-1074 |#1| |#2|) (-10 -8 (-15 -4375 (|#1| $)) (-15 -4386 (|#1| $)) (-15 -3363 (|#1| $)) (-15 -3367 (|#1| $)) (-15 -3355 ($ $)) (-15 -3345 ((-112) |#2| $)) (-15 -2729 (|#1| |#2| $ |#1|)))) (-13 (-853) (-367)) (-1249 |#1|)) (T -1067))
+((-2729 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-4375 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-4386 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3363 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3367 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3355 (*1 *1 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3345 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-1249 *4)))))
+(-13 (-1074 |#1| |#2|) (-10 -8 (-15 -4375 (|#1| $)) (-15 -4386 (|#1| $)) (-15 -3363 (|#1| $)) (-15 -3367 (|#1| $)) (-15 -3355 ($ $)) (-15 -3345 ((-112) |#2| $)) (-15 -2729 (|#1| |#2| $ |#1|))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-2424 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2405 (($ $ $ $) NIL)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-2211 (((-569) $) NIL)) (-2979 (($ $ $) NIL)) (-3863 (($) NIL T CONST)) (-3379 (($ (-1183)) 10) (($ (-569)) 7)) (-4359 (((-3 (-569) "failed") $) NIL)) (-3043 (((-569) $) NIL)) (-2339 (($ $ $) NIL)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL)) (-1727 (((-112) $) NIL)) (-1715 (((-412 (-569)) $) NIL)) (-3295 (($) NIL) (($ $) NIL)) (-2348 (($ $ $) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3630 (($ $ $ $) NIL)) (-2432 (($ $ $) NIL)) (-2769 (((-112) $) NIL)) (-1335 (($ $ $) NIL)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2861 (((-112) $) NIL)) (-2355 (((-112) $) NIL)) (-3177 (((-3 $ "failed") $) NIL)) (-2778 (((-112) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3643 (($ $ $ $) NIL)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2537 (($ $) NIL)) (-3747 (($ $) NIL)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-3619 (($ $ $) NIL)) (-2267 (($) NIL T CONST)) (-1566 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1315 (($ $) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-3003 (($ $) NIL)) (-3885 (($ $) NIL)) (-1384 (((-569) $) 16) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL) (($ (-1183)) 9)) (-2388 (((-867) $) 23) (($ (-569)) 6) (($ $) NIL) (($ (-569)) 6)) (-3263 (((-776)) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-3038 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-4344 (($) NIL)) (-2574 (((-112) $ $) NIL)) (-2416 (($ $ $ $) NIL)) (-3999 (($ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2946 (($ $) 22) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-1068) (-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3379 ($ (-1183))) (-15 -3379 ($ (-569)))))) (T -1068))
+((-3379 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1068)))))
+(-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3379 ($ (-1183))) (-15 -3379 ($ (-569)))))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-1699 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3405 (($) 9)) (-3861 (((-52) $ (-1183) (-52)) NIL)) (-3502 (($ $) 32)) (-3532 (($ $) 30)) (-3547 (($ $) 29)) (-3522 (($ $) 31)) (-3491 (($ $) 35)) (-3479 (($ $) 36)) (-3560 (($ $) 28)) (-3512 (($ $) 33)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) 27 (|has| $ (-6 -4443)))) (-2311 (((-3 (-52) "failed") (-1183) $) 43)) (-3863 (($) NIL T CONST)) (-3572 (($) 7)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-4218 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) 53 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-3 (-52) "failed") (-1183) $) NIL)) (-1678 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443)))) (-3393 (((-3 (-1165) "failed") $ (-1165) (-569)) 74)) (-3074 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4444)))) (-3007 (((-52) $ (-1183)) NIL)) (-2796 (((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-1183) $) NIL (|has| (-1183) (-855)))) (-2912 (((-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) 38 (|has| $ (-6 -4443))) (((-649 (-52)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1738 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-2715 (((-649 (-1183)) $) NIL)) (-1795 (((-112) (-1183) $) NIL)) (-3481 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL)) (-2086 (($ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) 46)) (-1762 (((-649 (-1183)) $) NIL)) (-1773 (((-112) (-1183) $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-3441 (((-383) $ (-1183)) 52)) (-3429 (((-649 (-1165)) $ (-1165)) 76)) (-3401 (((-52) $) NIL (|has| (-1183) (-855)))) (-4316 (((-3 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) "failed") (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL)) (-1713 (($ $ (-52)) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL (-12 (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-312 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106))))) (-1784 (((-649 (-52)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 (((-52) $ (-1183)) NIL) (((-52) $ (-1183) (-52)) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-3417 (($ $ (-1183)) 54)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) 40)) (-3632 (($ $ $) 41)) (-2388 (((-867) $) NIL (-2718 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-618 (-867)))))) (-3466 (($ $ (-1183) (-383)) 50)) (-3452 (($ $ (-1183) (-383)) 51)) (-2040 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 (-1183)) (|:| -2179 (-52)))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-52) (-1106)) (|has| (-2 (|:| -1963 (-1183)) (|:| -2179 (-52))) (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1069) (-13 (-1199 (-1183) (-52)) (-10 -8 (-15 -3632 ($ $ $)) (-15 -3572 ($)) (-15 -3560 ($ $)) (-15 -3547 ($ $)) (-15 -3532 ($ $)) (-15 -3522 ($ $)) (-15 -3512 ($ $)) (-15 -3502 ($ $)) (-15 -3491 ($ $)) (-15 -3479 ($ $)) (-15 -3466 ($ $ (-1183) (-383))) (-15 -3452 ($ $ (-1183) (-383))) (-15 -3441 ((-383) $ (-1183))) (-15 -3429 ((-649 (-1165)) $ (-1165))) (-15 -3417 ($ $ (-1183))) (-15 -3405 ($)) (-15 -3393 ((-3 (-1165) "failed") $ (-1165) (-569))) (-6 -4443)))) (T -1069))
+((-3632 (*1 *1 *1 *1) (-5 *1 (-1069))) (-3572 (*1 *1) (-5 *1 (-1069))) (-3560 (*1 *1 *1) (-5 *1 (-1069))) (-3547 (*1 *1 *1) (-5 *1 (-1069))) (-3532 (*1 *1 *1) (-5 *1 (-1069))) (-3522 (*1 *1 *1) (-5 *1 (-1069))) (-3512 (*1 *1 *1) (-5 *1 (-1069))) (-3502 (*1 *1 *1) (-5 *1 (-1069))) (-3491 (*1 *1 *1) (-5 *1 (-1069))) (-3479 (*1 *1 *1) (-5 *1 (-1069))) (-3466 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))) (-3452 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-383)) (-5 *1 (-1069)))) (-3429 (*1 *2 *1 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))) (-3405 (*1 *1) (-5 *1 (-1069))) (-3393 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-1069)))))
+(-13 (-1199 (-1183) (-52)) (-10 -8 (-15 -3632 ($ $ $)) (-15 -3572 ($)) (-15 -3560 ($ $)) (-15 -3547 ($ $)) (-15 -3532 ($ $)) (-15 -3522 ($ $)) (-15 -3512 ($ $)) (-15 -3502 ($ $)) (-15 -3491 ($ $)) (-15 -3479 ($ $)) (-15 -3466 ($ $ (-1183) (-383))) (-15 -3452 ($ $ (-1183) (-383))) (-15 -3441 ((-383) $ (-1183))) (-15 -3429 ((-649 (-1165)) $ (-1165))) (-15 -3417 ($ $ (-1183))) (-15 -3405 ($)) (-15 -3393 ((-3 (-1165) "failed") $ (-1165) (-569))) (-6 -4443)))
+((-1528 (($ $) 46)) (-2571 (((-112) $ $) 82)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) 253) (((-3 $ "failed") (-958 (-569))) 252) (((-3 $ "failed") (-958 |#2|)) 255)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) NIL) (($ (-958 (-412 (-569)))) 241) (($ (-958 (-569))) 237) (($ (-958 |#2|)) 257)) (-1842 (($ $) NIL) (($ $ |#4|) 44)) (-1691 (((-112) $ $) 131) (((-112) $ (-649 $)) 135)) (-2642 (((-112) $) 60)) (-4121 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 125)) (-3613 (($ $) 160)) (-2467 (($ $) 156)) (-2478 (($ $) 155)) (-2561 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2550 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1703 (((-112) $ $) 143) (((-112) $ (-649 $)) 144)) (-2717 ((|#4| $) 32)) (-2497 (($ $ $) 128)) (-2652 (((-112) $) 59)) (-2705 (((-776) $) 35)) (-3581 (($ $) 174)) (-3591 (($ $) 171)) (-2594 (((-649 $) $) 72)) (-2631 (($ $) 62)) (-3603 (($ $) 167)) (-2607 (((-649 $) $) 69)) (-2621 (($ $) 64)) (-1820 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2486 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3508 (-776))) $ $) 130)) (-2506 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $) 126) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $ |#4|) 127)) (-2517 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $) 121) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $ |#4|) 123)) (-2540 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2528 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2674 (((-649 $) $) 54)) (-1656 (((-112) $ $) 140) (((-112) $ (-649 $)) 141)) (-1603 (($ $ $) 116)) (-2267 (($ $) 37)) (-1755 (((-112) $ $) 80)) (-1667 (((-112) $ $) 136) (((-112) $ (-649 $)) 138)) (-1614 (($ $ $) 112)) (-2695 (($ $) 41)) (-1830 ((|#2| |#2| $) 164) (($ (-649 $)) NIL) (($ $ $) NIL)) (-2449 (($ $ |#2|) NIL) (($ $ $) 153)) (-2459 (($ $ |#2|) 148) (($ $ $) 151)) (-2685 (($ $) 49)) (-2662 (($ $) 55)) (-1384 (((-898 (-383)) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (($ (-958 (-412 (-569)))) 243) (($ (-958 (-569))) 239) (($ (-958 |#2|)) 254) (((-1165) $) 281) (((-958 |#2|) $) 184)) (-2388 (((-867) $) 29) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-958 |#2|) $) 185) (($ (-412 (-569))) NIL) (($ $) NIL)) (-2583 (((-3 (-112) "failed") $ $) 79)))
+(((-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 ((-958 |#2|) |#1|)) (-15 -1384 ((-958 |#2|) |#1|)) (-15 -1384 ((-1165) |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -1830 (|#2| |#2| |#1|)) (-15 -2449 (|#1| |#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1| |#2|)) (-15 -2459 (|#1| |#1| |#2|)) (-15 -2467 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -1384 (|#1| (-958 |#2|))) (-15 -3043 (|#1| (-958 |#2|))) (-15 -4359 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1384 (|#1| (-958 (-569)))) (-15 -3043 (|#1| (-958 (-569)))) (-15 -4359 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1384 (|#1| (-958 (-412 (-569))))) (-15 -3043 (|#1| (-958 (-412 (-569))))) (-15 -4359 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2486 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3508 (-776))) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -4121 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2517 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -2517 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1| |#4|)) (-15 -2540 (|#1| |#1| |#1| |#4|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2550 (|#1| |#1| |#1| |#4|)) (-15 -2561 (|#1| |#1| |#1| |#4|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1703 ((-112) |#1| (-649 |#1|))) (-15 -1703 ((-112) |#1| |#1|)) (-15 -1656 ((-112) |#1| (-649 |#1|))) (-15 -1656 ((-112) |#1| |#1|)) (-15 -1667 ((-112) |#1| (-649 |#1|))) (-15 -1667 ((-112) |#1| |#1|)) (-15 -1691 ((-112) |#1| (-649 |#1|))) (-15 -1691 ((-112) |#1| |#1|)) (-15 -2571 ((-112) |#1| |#1|)) (-15 -1755 ((-112) |#1| |#1|)) (-15 -2583 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2594 ((-649 |#1|) |#1|)) (-15 -2607 ((-649 |#1|) |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#4|)) (-15 -1820 (|#1| |#1| |#4|)) (-15 -2662 (|#1| |#1|)) (-15 -2674 ((-649 |#1|) |#1|)) (-15 -2685 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2705 ((-776) |#1|)) (-15 -2717 (|#4| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -2388 (|#1| |#4|)) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -3043 (|#4| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-1071 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -1070))
+NIL
+(-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -1830 (|#1| (-649 |#1|))) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 ((-958 |#2|) |#1|)) (-15 -1384 ((-958 |#2|) |#1|)) (-15 -1384 ((-1165) |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -1830 (|#2| |#2| |#1|)) (-15 -2449 (|#1| |#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1| |#2|)) (-15 -2459 (|#1| |#1| |#2|)) (-15 -2467 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -1384 (|#1| (-958 |#2|))) (-15 -3043 (|#1| (-958 |#2|))) (-15 -4359 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1384 (|#1| (-958 (-569)))) (-15 -3043 (|#1| (-958 (-569)))) (-15 -4359 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1384 (|#1| (-958 (-412 (-569))))) (-15 -3043 (|#1| (-958 (-412 (-569))))) (-15 -4359 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2486 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3508 (-776))) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -4121 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -2506 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2517 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -2804 |#1|)) |#1| |#1| |#4|)) (-15 -2517 ((-2 (|:| -1406 |#1|) (|:| |gap| (-776)) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1| |#4|)) (-15 -2540 (|#1| |#1| |#1| |#4|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2550 (|#1| |#1| |#1| |#4|)) (-15 -2561 (|#1| |#1| |#1| |#4|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1703 ((-112) |#1| (-649 |#1|))) (-15 -1703 ((-112) |#1| |#1|)) (-15 -1656 ((-112) |#1| (-649 |#1|))) (-15 -1656 ((-112) |#1| |#1|)) (-15 -1667 ((-112) |#1| (-649 |#1|))) (-15 -1667 ((-112) |#1| |#1|)) (-15 -1691 ((-112) |#1| (-649 |#1|))) (-15 -1691 ((-112) |#1| |#1|)) (-15 -2571 ((-112) |#1| |#1|)) (-15 -1755 ((-112) |#1| |#1|)) (-15 -2583 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2594 ((-649 |#1|) |#1|)) (-15 -2607 ((-649 |#1|) |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#4|)) (-15 -1820 (|#1| |#1| |#4|)) (-15 -2662 (|#1| |#1|)) (-15 -2674 ((-649 |#1|) |#1|)) (-15 -2685 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2705 ((-776) |#1|)) (-15 -2717 (|#4| |#1|)) (-15 -1384 ((-541) |#1|)) (-15 -1384 ((-898 (-569)) |#1|)) (-15 -1384 ((-898 (-383)) |#1|)) (-15 -2388 (|#1| |#4|)) (-15 -4359 ((-3 |#4| "failed") |#1|)) (-15 -3043 (|#4| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 |#3|) $) 112)) (-3663 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2586 (($ $) 90 (|has| |#1| (-561)))) (-2564 (((-112) $) 92 (|has| |#1| (-561)))) (-3292 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1528 (($ $) 273)) (-2571 (((-112) $ $) 259)) (-3798 (((-3 $ "failed") $ $) 20)) (-4156 (($ $ $) 218 (|has| |#1| (-561)))) (-3660 (((-649 $) $ $) 213 (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-4332 (($ $) 100 (|has| |#1| (-457)))) (-2207 (((-423 $) $) 99 (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-958 (-412 (-569)))) 233 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (((-3 $ "failed") (-958 (-569))) 230 (-2718 (-12 (-1728 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (((-3 $ "failed") (-958 |#1|)) 227 (-2718 (-12 (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1183)))) (-12 (-1728 (|has| |#1| (-550))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (-1728 (|has| |#1| (-998 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))))) (-3043 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139) (($ (-958 (-412 (-569)))) 232 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (($ (-958 (-569))) 229 (-2718 (-12 (-1728 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (($ (-958 |#1|)) 226 (-2718 (-12 (-1728 (|has| |#1| (-38 (-412 (-569))))) (-1728 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1183)))) (-12 (-1728 (|has| |#1| (-550))) (-1728 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (-1728 (|has| |#1| (-998 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))))) (-4168 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-561)))) (-1842 (($ $) 156) (($ $ |#3|) 268)) (-4091 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-1691 (((-112) $ $) 258) (((-112) $ (-649 $)) 257)) (-3351 (((-3 $ "failed") $) 37)) (-2642 (((-112) $) 266)) (-4121 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 238)) (-3613 (($ $) 207 (|has| |#1| (-457)))) (-3556 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1829 (((-649 $) $) 111)) (-3848 (((-112) $) 98 (|has| |#1| (-915)))) (-2467 (($ $) 223 (|has| |#1| (-561)))) (-2478 (($ $) 224 (|has| |#1| (-561)))) (-2561 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2550 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1482 (($ $ |#1| |#2| $) 174)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2861 (((-112) $) 35)) (-2933 (((-776) $) 171)) (-1703 (((-112) $ $) 252) (((-112) $ (-649 $)) 251)) (-3626 (($ $ $ $ $) 209 (|has| |#1| (-561)))) (-2717 ((|#3| $) 277)) (-3851 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-3316 (((-649 $) $) 128)) (-2019 (((-112) $) 154)) (-3838 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-2497 (($ $ $) 237)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#3|) 122)) (-2652 (((-112) $) 267)) (-3304 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-2705 (((-776) $) 276)) (-1491 (($ (-1 |#2| |#2|) $) 173)) (-1324 (($ (-1 |#1| |#1|) $) 153)) (-4212 (((-3 |#3| "failed") $) 125)) (-3581 (($ $) 204 (|has| |#1| (-457)))) (-3591 (($ $) 205 (|has| |#1| (-457)))) (-2594 (((-649 $) $) 262)) (-2631 (($ $) 265)) (-3603 (($ $) 206 (|has| |#1| (-457)))) (-2607 (((-649 $) $) 263)) (-2621 (($ $) 264)) (-1808 (($ $) 151)) (-1820 ((|#1| $) 150) (($ $ |#3|) 269)) (-1798 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-2486 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3508 (-776))) $ $) 236)) (-2506 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $) 240) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $ |#3|) 239)) (-2517 (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $) 242) (((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $ |#3|) 241)) (-2540 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2528 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2050 (((-1165) $) 10)) (-2809 (($ $ $) 212 (|has| |#1| (-561)))) (-2674 (((-649 $) $) 271)) (-3338 (((-3 (-649 $) "failed") $) 116)) (-3327 (((-3 (-649 $) "failed") $) 117)) (-3349 (((-3 (-2 (|:| |var| |#3|) (|:| -2777 (-776))) "failed") $) 115)) (-1656 (((-112) $ $) 254) (((-112) $ (-649 $)) 253)) (-1603 (($ $ $) 234)) (-2267 (($ $) 275)) (-1755 (((-112) $ $) 260)) (-1667 (((-112) $ $) 256) (((-112) $ (-649 $)) 255)) (-1614 (($ $ $) 235)) (-2695 (($ $) 274)) (-3461 (((-1126) $) 11)) (-3673 (((-2 (|:| -1830 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-561)))) (-3687 (((-2 (|:| -1830 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-561)))) (-1787 (((-112) $) 168)) (-1794 ((|#1| $) 169)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1830 ((|#1| |#1| $) 208 (|has| |#1| (-457))) (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2439 (((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-561)))) (-2374 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-2449 (($ $ |#1|) 221 (|has| |#1| (-561))) (($ $ $) 219 (|has| |#1| (-561)))) (-2459 (($ $ |#1|) 222 (|has| |#1| (-561))) (($ $ $) 220 (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-4180 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3430 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-2091 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-2685 (($ $) 272)) (-2662 (($ $) 270)) (-1384 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541))))) (($ (-958 (-412 (-569)))) 231 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (($ (-958 (-569))) 228 (-2718 (-12 (-1728 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (($ (-958 |#1|)) 225 (|has| |#3| (-619 (-1183)))) (((-1165) $) 203 (-12 (|has| |#1| (-1044 (-569))) (|has| |#3| (-619 (-1183))))) (((-958 |#1|) $) 202 (|has| |#3| (-619 (-1183))))) (-3281 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1739 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-958 |#1|) $) 201 (|has| |#3| (-619 (-1183)))) (($ (-412 (-569))) 80 (-2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) 170)) (-1503 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-1488 (((-3 $ "failed") $) 81 (-2718 (-1739 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 32 T CONST)) (-1471 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-2583 (((-3 (-112) "failed") $ $) 261)) (-1796 (($) 34 T CONST)) (-3639 (($ $ $ $ (-776)) 210 (|has| |#1| (-561)))) (-3651 (($ $ $ (-776)) 211 (|has| |#1| (-561)))) (-2749 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
(((-1071 |#1| |#2| |#3|) (-140) (-1055) (-798) (-855)) (T -1071))
-((-3618 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3887 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3615 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3614 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3613 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3612 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4409 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3609 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3607 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3606 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3605 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4149 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3604 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4142 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4141 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4145 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4145 (*1 *2 *1 *3) (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-3603 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3602 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3603 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3602 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3601 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3600 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3601 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3600 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3599 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -3321 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3599 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -3321 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-3598 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3598 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3597 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3596 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3922 (-776)))) (-4 *1 (-1071 *3 *4 *5)))) (-4137 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4136 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3595 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3595 (*1 *1 *2) (|partial| -3978 (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3594 (*1 *1 *2) (-3978 (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4420 (*1 *1 *2) (-3978 (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3595 (*1 *1 *2) (|partial| -3978 (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-3764 (-4 *3 (-38 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-550))) (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-997 (-551)))) (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3594 (*1 *1 *2) (-3978 (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-3764 (-4 *3 (-38 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-550))) (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-952 *3)) (-12 (-3764 (-4 *3 (-997 (-551)))) (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3591 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3590 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3591 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3590 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-4205 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3589 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -3582 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3588 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -3582 *1) (|:| |coef1| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3587 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -3582 *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-4206 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3628 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3585 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-562)))) (-3584 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-562)))) (-3583 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-562)))) (-3582 (*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3581 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3578 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))))
-(-13 (-956 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3618 (|t#3| $)) (-15 -3617 ((-776) $)) (-15 -3887 ($ $)) (-15 -3616 ($ $)) (-15 -4246 ($ $)) (-15 -3615 ($ $)) (-15 -3614 ((-646 $) $)) (-15 -3613 ($ $)) (-15 -3612 ($ $ |t#3|)) (-15 -4409 ($ $ |t#3|)) (-15 -3611 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -3609 ($ $)) (-15 -3608 ($ $)) (-15 -3607 ((-646 $) $)) (-15 -3606 ((-646 $) $)) (-15 -3605 ((-3 (-112) "failed") $ $)) (-15 -4149 ((-112) $ $)) (-15 -3604 ((-112) $ $)) (-15 -4144 ((-112) $ $)) (-15 -4144 ((-112) $ (-646 $))) (-15 -4142 ((-112) $ $)) (-15 -4142 ((-112) $ (-646 $))) (-15 -4141 ((-112) $ $)) (-15 -4141 ((-112) $ (-646 $))) (-15 -4145 ((-112) $ $)) (-15 -4145 ((-112) $ (-646 $))) (-15 -3603 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -3603 ($ $ $ |t#3|)) (-15 -3602 ($ $ $ |t#3|)) (-15 -3601 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -3601 ($ $ $ |t#3|)) (-15 -3600 ($ $ $ |t#3|)) (-15 -3599 ((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $)) (-15 -3599 ((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -3321 $)) $ $ |t#3|)) (-15 -3598 ((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -3598 ((-2 (|:| -4404 $) (|:| |gap| (-776)) (|:| -2162 $) (|:| -3321 $)) $ $ |t#3|)) (-15 -4202 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -3597 ($ $ $)) (-15 -3596 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3922 (-776))) $ $)) (-15 -4137 ($ $ $)) (-15 -4136 ($ $ $)) (IF (|has| |t#3| (-619 (-1183))) (PROGN (-6 (-618 (-952 |t#1|))) (-6 (-619 (-952 |t#1|))) (IF (|has| |t#1| (-38 (-412 (-551)))) (PROGN (-15 -3595 ((-3 $ "failed") (-952 (-412 (-551))))) (-15 -3594 ($ (-952 (-412 (-551))))) (-15 -4420 ($ (-952 (-412 (-551))))) (-15 -3595 ((-3 $ "failed") (-952 (-551)))) (-15 -3594 ($ (-952 (-551)))) (-15 -4420 ($ (-952 (-551)))) (IF (|has| |t#1| (-997 (-551))) |%noBranch| (PROGN (-15 -3595 ((-3 $ "failed") (-952 |t#1|))) (-15 -3594 ($ (-952 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-551))) (IF (|has| |t#1| (-38 (-412 (-551)))) |%noBranch| (PROGN (-15 -3595 ((-3 $ "failed") (-952 (-551)))) (-15 -3594 ($ (-952 (-551)))) (-15 -4420 ($ (-952 (-551)))) (IF (|has| |t#1| (-550)) |%noBranch| (PROGN (-15 -3595 ((-3 $ "failed") (-952 |t#1|))) (-15 -3594 ($ (-952 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-551))) |%noBranch| (IF (|has| |t#1| (-38 (-412 (-551)))) |%noBranch| (PROGN (-15 -3595 ((-3 $ "failed") (-952 |t#1|))) (-15 -3594 ($ (-952 |t#1|)))))) (-15 -4420 ($ (-952 |t#1|))) (IF (|has| |t#1| (-1044 (-551))) (-6 (-619 (-1165))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -3593 ($ $)) (-15 -3592 ($ $)) (-15 -3591 ($ $ |t#1|)) (-15 -3590 ($ $ |t#1|)) (-15 -3591 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -3589 ((-2 (|:| -3582 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3588 ((-2 (|:| -3582 $) (|:| |coef1| $)) $ $)) (-15 -3587 ((-2 (|:| -3582 $) (|:| |coef2| $)) $ $)) (-15 -4206 ($ $ $)) (-15 -3586 ((-646 $) $ $)) (-15 -3628 ($ $ $)) (-15 -3585 ($ $ $ (-776))) (-15 -3584 ($ $ $ $ (-776))) (-15 -3583 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3582 (|t#1| |t#1| $)) (-15 -3581 ($ $)) (-15 -3580 ($ $)) (-15 -3579 ($ $)) (-15 -3578 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-618 (-868)) . T) ((-618 (-952 |#1|)) |has| |#3| (-619 (-1183))) ((-173) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-540)) -12 (|has| |#1| (-619 (-540))) (|has| |#3| (-619 (-540)))) ((-619 (-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#3| (-619 (-896 (-382))))) ((-619 (-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#3| (-619 (-896 (-551))))) ((-619 (-952 |#1|)) |has| |#3| (-619 (-1183))) ((-619 (-1165)) -12 (|has| |#1| (-1044 (-551))) (|has| |#3| (-619 (-1183)))) ((-293) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-916)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-562) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-382)) -12 (|has| |#1| (-892 (-382))) (|has| |#3| (-892 (-382)))) ((-892 (-551)) -12 (|has| |#1| (-892 (-551))) (|has| |#3| (-892 (-551)))) ((-956 |#1| |#2| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) |has| |#1| (-916)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3619 (((-646 (-1141)) $) 18)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-1141) $) 20)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1072) (-13 (-1089) (-10 -8 (-15 -3619 ((-646 (-1141)) $)) (-15 -3671 ((-1141) $))))) (T -1072))
-((-3619 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1072)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072)))))
-(-13 (-1089) (-10 -8 (-15 -3619 ((-646 (-1141)) $)) (-15 -3671 ((-1141) $))))
-((-3626 (((-112) |#3| $) 15)) (-3621 (((-3 $ "failed") |#3| (-925)) 29)) (-3908 (((-3 |#3| "failed") |#3| $) 45)) (-3624 (((-112) |#3| $) 19)) (-3625 (((-112) |#3| $) 17)))
-(((-1073 |#1| |#2| |#3|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") |#3| (-925))) (-15 -3908 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3624 ((-112) |#3| |#1|)) (-15 -3625 ((-112) |#3| |#1|)) (-15 -3626 ((-112) |#3| |#1|))) (-1074 |#2| |#3|) (-13 (-853) (-367)) (-1248 |#2|)) (T -1073))
-NIL
-(-10 -8 (-15 -3621 ((-3 |#1| "failed") |#3| (-925))) (-15 -3908 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3624 ((-112) |#3| |#1|)) (-15 -3625 ((-112) |#3| |#1|)) (-15 -3626 ((-112) |#3| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) |#2| $) 22)) (-4073 (((-551) |#2| $) 23)) (-3621 (((-3 $ "failed") |#2| (-925)) 16)) (-3620 ((|#1| |#2| $ |#1|) 14)) (-3908 (((-3 |#2| "failed") |#2| $) 19)) (-3624 (((-112) |#2| $) 20)) (-3625 (((-112) |#2| $) 21)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3623 ((|#2| $) 18)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-4219 ((|#1| |#2| $ |#1|) 15)) (-3622 (((-646 $) |#2|) 17)) (-3473 (((-112) $ $) 6)))
-(((-1074 |#1| |#2|) (-140) (-13 (-853) (-367)) (-1248 |t#1|)) (T -1074))
-((-4073 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-551)))) (-3626 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-112)))) (-3625 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-112)))) (-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-112)))) (-3908 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1248 *3)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1248 *3)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-646 *1)) (-4 *1 (-1074 *4 *3)))) (-3621 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-925)) (-4 *4 (-13 (-853) (-367))) (-4 *1 (-1074 *4 *2)) (-4 *2 (-1248 *4)))) (-4219 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1248 *2)))) (-3620 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1248 *2)))))
-(-13 (-1107) (-10 -8 (-15 -4073 ((-551) |t#2| $)) (-15 -3626 ((-112) |t#2| $)) (-15 -3625 ((-112) |t#2| $)) (-15 -3624 ((-112) |t#2| $)) (-15 -3908 ((-3 |t#2| "failed") |t#2| $)) (-15 -3623 (|t#2| $)) (-15 -3622 ((-646 $) |t#2|)) (-15 -3621 ((-3 $ "failed") |t#2| (-925))) (-15 -4219 (|t#1| |t#2| $ |t#1|)) (-15 -3620 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-3878 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776)) 114)) (-3875 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776)) 63)) (-3879 (((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776)) 99)) (-3873 (((-776) (-646 |#4|) (-646 |#5|)) 30)) (-3876 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776)) 65) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112)) 67)) (-3877 (((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112)) 87)) (-4420 (((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) 92)) (-3874 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-112)) 62)) (-3872 (((-776) (-646 |#4|) (-646 |#5|)) 21)))
-(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3872 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3873 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3874 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-112))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3878 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776))) (-15 -4420 ((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3879 ((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1075))
-((-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1075 *4 *5 *6 *7 *8)))) (-3878 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-646 *11)) (|:| |todo| (-646 (-2 (|:| |val| *3) (|:| -1718 *11)))))) (-5 *6 (-776)) (-5 *2 (-646 (-2 (|:| |val| (-646 *10)) (|:| -1718 *11)))) (-5 *3 (-646 *10)) (-5 *4 (-646 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1075 *7 *8 *9 *10 *11)))) (-3877 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-3877 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-3876 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3876 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3)))) (-3875 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3874 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3872 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3873 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3874 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-112))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3878 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776))) (-15 -4420 ((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3879 ((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776))))
-((-3635 (((-112) |#5| $) 26)) (-3633 (((-112) |#5| $) 29)) (-3636 (((-112) |#5| $) 18) (((-112) $) 52)) (-3676 (((-646 $) |#5| $) NIL) (((-646 $) (-646 |#5|) $) 94) (((-646 $) (-646 |#5|) (-646 $)) 92) (((-646 $) |#5| (-646 $)) 95)) (-4218 (($ $ |#5|) NIL) (((-646 $) |#5| $) NIL) (((-646 $) |#5| (-646 $)) 73) (((-646 $) (-646 |#5|) $) 75) (((-646 $) (-646 |#5|) (-646 $)) 77)) (-3627 (((-646 $) |#5| $) NIL) (((-646 $) |#5| (-646 $)) 64) (((-646 $) (-646 |#5|) $) 69) (((-646 $) (-646 |#5|) (-646 $)) 71)) (-3634 (((-112) |#5| $) 32)))
-(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4218 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -4218 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -4218 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -4218 ((-646 |#1|) |#5| |#1|)) (-15 -3627 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -3627 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -3627 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -3627 ((-646 |#1|) |#5| |#1|)) (-15 -3676 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -3676 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -3676 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -3676 ((-646 |#1|) |#5| |#1|)) (-15 -3633 ((-112) |#5| |#1|)) (-15 -3636 ((-112) |#1|)) (-15 -3634 ((-112) |#5| |#1|)) (-15 -3635 ((-112) |#5| |#1|)) (-15 -3636 ((-112) |#5| |#1|)) (-15 -4218 (|#1| |#1| |#5|))) (-1077 |#2| |#3| |#4| |#5|) (-457) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1076))
-NIL
-(-10 -8 (-15 -4218 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -4218 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -4218 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -4218 ((-646 |#1|) |#5| |#1|)) (-15 -3627 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -3627 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -3627 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -3627 ((-646 |#1|) |#5| |#1|)) (-15 -3676 ((-646 |#1|) |#5| (-646 |#1|))) (-15 -3676 ((-646 |#1|) (-646 |#5|) (-646 |#1|))) (-15 -3676 ((-646 |#1|) (-646 |#5|) |#1|)) (-15 -3676 ((-646 |#1|) |#5| |#1|)) (-15 -3633 ((-112) |#5| |#1|)) (-15 -3636 ((-112) |#1|)) (-15 -3634 ((-112) |#5| |#1|)) (-15 -3635 ((-112) |#5| |#1|)) (-15 -3636 ((-112) |#5| |#1|)) (-15 -4218 (|#1| |#1| |#5|)))
-((-2986 (((-112) $ $) 7)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) 86)) (-4132 (((-646 $) (-646 |#4|)) 87) (((-646 $) (-646 |#4|) (-112)) 112)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) 102) (((-112) $) 98)) (-4138 ((|#4| |#4| $) 93)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 127)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-4248 (((-3 $ #1#) $) 83)) (-4135 ((|#4| |#4| $) 90)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4133 ((|#4| |#4| $) 88)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) 106)) (-3635 (((-112) |#4| $) 137)) (-3633 (((-112) |#4| $) 134)) (-3636 (((-112) |#4| $) 138) (((-112) $) 135)) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) 105) (((-112) $) 104)) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) 129)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 128)) (-4247 (((-3 |#4| #1#) $) 84)) (-3630 (((-646 $) |#4| $) 130)) (-3632 (((-3 (-112) (-646 $)) |#4| $) 133)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3676 (((-646 $) |#4| $) 126) (((-646 $) (-646 |#4|) $) 125) (((-646 $) (-646 |#4|) (-646 $)) 124) (((-646 $) |#4| (-646 $)) 123)) (-3882 (($ |#4| $) 118) (($ (-646 |#4|) $) 117)) (-4147 (((-646 |#4|) $) 108)) (-4141 (((-112) |#4| $) 100) (((-112) $) 96)) (-4136 ((|#4| |#4| $) 91)) (-4149 (((-112) $ $) 111)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) 101) (((-112) $) 97)) (-4137 ((|#4| |#4| $) 92)) (-3682 (((-1126) $) 11)) (-4250 (((-3 |#4| #1#) $) 85)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4129 (((-3 $ #1#) $ |#4|) 79)) (-4218 (($ $ |#4|) 78) (((-646 $) |#4| $) 116) (((-646 $) |#4| (-646 $)) 115) (((-646 $) (-646 |#4|) $) 114) (((-646 $) (-646 |#4|) (-646 $)) 113)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-4398 (((-776) $) 107)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-4134 (($ $) 89)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-4128 (((-776) $) 77 (|has| |#3| (-372)))) (-3680 (((-112) $ $) 9)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) 99)) (-3627 (((-646 $) |#4| $) 122) (((-646 $) |#4| (-646 $)) 121) (((-646 $) (-646 |#4|) $) 120) (((-646 $) (-646 |#4|) (-646 $)) 119)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) 82)) (-3634 (((-112) |#4| $) 136)) (-4383 (((-112) |#3| $) 81)) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
+((-2717 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-2267 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2695 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2685 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2674 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-2662 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1820 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1842 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2631 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2621 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2607 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-2594 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-2583 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1755 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1691 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-1656 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-1703 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1703 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2561 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2550 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2561 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2550 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2540 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2528 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2517 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -2804 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-2517 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -2804 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-2506 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-2506 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-2497 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2486 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3508 (-776)))) (-4 *1 (-1071 *3 *4 *5)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1603 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-4359 (*1 *1 *2) (|partial| -2718 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3043 (*1 *1 *2) (-2718 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1384 (*1 *1 *2) (-2718 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4359 (*1 *1 *2) (|partial| -2718 (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-1728 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-550))) (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3043 (*1 *1 *2) (-2718 (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-1728 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-550))) (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1728 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855)))) (-2478 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2467 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2459 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2449 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2459 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2449 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2439 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1830 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3687 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1830 *1) (|:| |coef1| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3673 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1830 *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-4168 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3660 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-2809 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3651 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-3639 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-3626 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1830 (*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3613 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3581 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))))
+(-13 (-955 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2717 (|t#3| $)) (-15 -2705 ((-776) $)) (-15 -2267 ($ $)) (-15 -2695 ($ $)) (-15 -1528 ($ $)) (-15 -2685 ($ $)) (-15 -2674 ((-649 $) $)) (-15 -2662 ($ $)) (-15 -1820 ($ $ |t#3|)) (-15 -1842 ($ $ |t#3|)) (-15 -2652 ((-112) $)) (-15 -2642 ((-112) $)) (-15 -2631 ($ $)) (-15 -2621 ($ $)) (-15 -2607 ((-649 $) $)) (-15 -2594 ((-649 $) $)) (-15 -2583 ((-3 (-112) "failed") $ $)) (-15 -1755 ((-112) $ $)) (-15 -2571 ((-112) $ $)) (-15 -1691 ((-112) $ $)) (-15 -1691 ((-112) $ (-649 $))) (-15 -1667 ((-112) $ $)) (-15 -1667 ((-112) $ (-649 $))) (-15 -1656 ((-112) $ $)) (-15 -1656 ((-112) $ (-649 $))) (-15 -1703 ((-112) $ $)) (-15 -1703 ((-112) $ (-649 $))) (-15 -2561 ($ $ $)) (-15 -2550 ($ $ $)) (-15 -2561 ($ $ $ |t#3|)) (-15 -2550 ($ $ $ |t#3|)) (-15 -2540 ($ $ $)) (-15 -2528 ($ $ $)) (-15 -2540 ($ $ $ |t#3|)) (-15 -2528 ($ $ $ |t#3|)) (-15 -2517 ((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $)) (-15 -2517 ((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -2804 $)) $ $ |t#3|)) (-15 -2506 ((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2506 ((-2 (|:| -1406 $) (|:| |gap| (-776)) (|:| -4273 $) (|:| -2804 $)) $ $ |t#3|)) (-15 -4121 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -2497 ($ $ $)) (-15 -2486 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3508 (-776))) $ $)) (-15 -1614 ($ $ $)) (-15 -1603 ($ $ $)) (IF (|has| |t#3| (-619 (-1183))) (PROGN (-6 (-618 (-958 |t#1|))) (-6 (-619 (-958 |t#1|))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -4359 ((-3 $ "failed") (-958 (-412 (-569))))) (-15 -3043 ($ (-958 (-412 (-569))))) (-15 -1384 ($ (-958 (-412 (-569))))) (-15 -4359 ((-3 $ "failed") (-958 (-569)))) (-15 -3043 ($ (-958 (-569)))) (-15 -1384 ($ (-958 (-569)))) (IF (|has| |t#1| (-998 (-569))) |%noBranch| (PROGN (-15 -4359 ((-3 $ "failed") (-958 |t#1|))) (-15 -3043 ($ (-958 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4359 ((-3 $ "failed") (-958 (-569)))) (-15 -3043 ($ (-958 (-569)))) (-15 -1384 ($ (-958 (-569)))) (IF (|has| |t#1| (-550)) |%noBranch| (PROGN (-15 -4359 ((-3 $ "failed") (-958 |t#1|))) (-15 -3043 ($ (-958 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) |%noBranch| (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4359 ((-3 $ "failed") (-958 |t#1|))) (-15 -3043 ($ (-958 |t#1|)))))) (-15 -1384 ($ (-958 |t#1|))) (IF (|has| |t#1| (-1044 (-569))) (-6 (-619 (-1165))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -2478 ($ $)) (-15 -2467 ($ $)) (-15 -2459 ($ $ |t#1|)) (-15 -2449 ($ $ |t#1|)) (-15 -2459 ($ $ $)) (-15 -2449 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -2439 ((-2 (|:| -1830 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3687 ((-2 (|:| -1830 $) (|:| |coef1| $)) $ $)) (-15 -3673 ((-2 (|:| -1830 $) (|:| |coef2| $)) $ $)) (-15 -4168 ($ $ $)) (-15 -3660 ((-649 $) $ $)) (-15 -2809 ($ $ $)) (-15 -3651 ($ $ $ (-776))) (-15 -3639 ($ $ $ $ (-776))) (-15 -3626 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -1830 (|t#1| |t#1| $)) (-15 -3613 ($ $)) (-15 -3603 ($ $)) (-15 -3591 ($ $)) (-15 -3581 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-618 (-958 |#1|)) |has| |#3| (-619 (-1183))) ((-173) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-619 (-958 |#1|)) |has| |#3| (-619 (-1183))) ((-619 (-1165)) -12 (|has| |#1| (-1044 (-569))) (|has| |#3| (-619 (-1183)))) ((-293) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#2| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-2613 (((-649 (-1141)) $) 18)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-1141) $) 20)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1072) (-13 (-1089) (-10 -8 (-15 -2613 ((-649 (-1141)) $)) (-15 -3473 ((-1141) $))))) (T -1072))
+((-2613 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1072)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072)))))
+(-13 (-1089) (-10 -8 (-15 -2613 ((-649 (-1141)) $)) (-15 -3473 ((-1141) $))))
+((-2789 (((-112) |#3| $) 15)) (-2740 (((-3 $ "failed") |#3| (-927)) 29)) (-3351 (((-3 |#3| "failed") |#3| $) 45)) (-2769 (((-112) |#3| $) 19)) (-2778 (((-112) |#3| $) 17)))
+(((-1073 |#1| |#2| |#3|) (-10 -8 (-15 -2740 ((-3 |#1| "failed") |#3| (-927))) (-15 -3351 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2769 ((-112) |#3| |#1|)) (-15 -2778 ((-112) |#3| |#1|)) (-15 -2789 ((-112) |#3| |#1|))) (-1074 |#2| |#3|) (-13 (-853) (-367)) (-1249 |#2|)) (T -1073))
+NIL
+(-10 -8 (-15 -2740 ((-3 |#1| "failed") |#3| (-927))) (-15 -3351 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2769 ((-112) |#3| |#1|)) (-15 -2778 ((-112) |#3| |#1|)) (-15 -2789 ((-112) |#3| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) |#2| $) 22)) (-2211 (((-569) |#2| $) 23)) (-2740 (((-3 $ "failed") |#2| (-927)) 16)) (-2729 ((|#1| |#2| $ |#1|) 14)) (-3351 (((-3 |#2| "failed") |#2| $) 19)) (-2769 (((-112) |#2| $) 20)) (-2778 (((-112) |#2| $) 21)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2760 ((|#2| $) 18)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-3006 ((|#1| |#2| $ |#1|) 15)) (-2751 (((-649 $) |#2|) 17)) (-2853 (((-112) $ $) 6)))
+(((-1074 |#1| |#2|) (-140) (-13 (-853) (-367)) (-1249 |t#1|)) (T -1074))
+((-2211 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-569)))) (-2789 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-2778 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-2769 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-3351 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1249 *3)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1249 *3)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-649 *1)) (-4 *1 (-1074 *4 *3)))) (-2740 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367))) (-4 *1 (-1074 *4 *2)) (-4 *2 (-1249 *4)))) (-3006 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1249 *2)))) (-2729 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1249 *2)))))
+(-13 (-1106) (-10 -8 (-15 -2211 ((-569) |t#2| $)) (-15 -2789 ((-112) |t#2| $)) (-15 -2778 ((-112) |t#2| $)) (-15 -2769 ((-112) |t#2| $)) (-15 -3351 ((-3 |t#2| "failed") |t#2| $)) (-15 -2760 (|t#2| $)) (-15 -2751 ((-649 $) |t#2|)) (-15 -2740 ((-3 $ "failed") |t#2| (-927))) (-15 -3006 (|t#1| |t#2| $ |t#1|)) (-15 -2729 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776)) 114)) (-3080 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776)) 63)) (-2403 (((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776)) 99)) (-4377 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-3091 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776)) 65) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112)) 67)) (-3101 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 87)) (-1384 (((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) 92)) (-4388 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-112)) 62)) (-4366 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
+(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4366 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4377 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4388 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-112))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776))) (-15 -1384 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2403 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1075))
+((-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1075 *4 *5 *6 *7 *8)))) (-3111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3550 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3550 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1075 *7 *8 *9 *10 *11)))) (-3101 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-3101 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-3091 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3091 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3091 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -4366 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4377 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4388 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-112))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776))) (-15 -1384 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2403 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776))))
+((-2881 (((-112) |#5| $) 26)) (-2862 (((-112) |#5| $) 29)) (-2892 (((-112) |#5| $) 18) (((-112) $) 52)) (-2018 (((-649 $) |#5| $) NIL) (((-649 $) (-649 |#5|) $) 94) (((-649 $) (-649 |#5|) (-649 $)) 92) (((-649 $) |#5| (-649 $)) 95)) (-4295 (($ $ |#5|) NIL) (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 73) (((-649 $) (-649 |#5|) $) 75) (((-649 $) (-649 |#5|) (-649 $)) 77)) (-2800 (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 64) (((-649 $) (-649 |#5|) $) 69) (((-649 $) (-649 |#5|) (-649 $)) 71)) (-2871 (((-112) |#5| $) 32)))
+(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4295 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -4295 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -4295 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -4295 ((-649 |#1|) |#5| |#1|)) (-15 -2800 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2800 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2800 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2800 ((-649 |#1|) |#5| |#1|)) (-15 -2018 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2018 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2018 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2018 ((-649 |#1|) |#5| |#1|)) (-15 -2862 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -2871 ((-112) |#5| |#1|)) (-15 -2881 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4295 (|#1| |#1| |#5|))) (-1077 |#2| |#3| |#4| |#5|) (-457) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1076))
+NIL
+(-10 -8 (-15 -4295 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -4295 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -4295 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -4295 ((-649 |#1|) |#5| |#1|)) (-15 -2800 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2800 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2800 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2800 ((-649 |#1|) |#5| |#1|)) (-15 -2018 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2018 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2018 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2018 ((-649 |#1|) |#5| |#1|)) (-15 -2862 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -2871 ((-112) |#5| |#1|)) (-15 -2881 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4295 (|#1| |#1| |#5|)))
+((-2383 (((-112) $ $) 7)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) 86)) (-1555 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) 102) (((-112) $) 98)) (-1624 ((|#4| |#4| $) 93)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 127)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3414 (((-3 $ "failed") $) 83)) (-1590 ((|#4| |#4| $) 90)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1567 ((|#4| |#4| $) 88)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) 106)) (-2881 (((-112) |#4| $) 137)) (-2862 (((-112) |#4| $) 134)) (-2892 (((-112) |#4| $) 138) (((-112) $) 135)) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) 105) (((-112) $) 104)) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 128)) (-1702 (((-3 |#4| "failed") $) 84)) (-2830 (((-649 $) |#4| $) 130)) (-2852 (((-3 (-112) (-649 $)) |#4| $) 133)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2018 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3143 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1730 (((-649 |#4|) $) 108)) (-1656 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-1755 (((-112) $ $) 111)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) 101) (((-112) $) 97)) (-1614 ((|#4| |#4| $) 92)) (-3461 (((-1126) $) 11)) (-3401 (((-3 |#4| "failed") $) 85)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1521 (((-3 $ "failed") $ |#4|) 79)) (-4295 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-2091 (((-776) $) 107)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-1577 (($ $) 89)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1512 (((-776) $) 77 (|has| |#3| (-372)))) (-2040 (((-112) $ $) 9)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2800 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) 82)) (-2871 (((-112) |#4| $) 136)) (-1988 (((-112) |#3| $) 81)) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
(((-1077 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1077))
-((-3636 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3635 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3634 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-3633 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3632 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 (-112) (-646 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3631 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3631 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3630 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3629 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 *3 (-646 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3628 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4224 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-3676 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-3676 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-3627 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3627 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-3627 (*1 *2 *3 *1) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-3627 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-3882 (*1 *1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3882 (*1 *1 *2 *1) (-12 (-5 *2 (-646 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)))) (-4218 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4218 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-4218 (*1 *2 *3 *1) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-4218 (*1 *2 *3 *2) (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *5 *6 *7 *8)))))
-(-13 (-1217 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3636 ((-112) |t#4| $)) (-15 -3635 ((-112) |t#4| $)) (-15 -3634 ((-112) |t#4| $)) (-15 -3636 ((-112) $)) (-15 -3633 ((-112) |t#4| $)) (-15 -3632 ((-3 (-112) (-646 $)) |t#4| $)) (-15 -3631 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |t#4| $)) (-15 -3631 ((-112) |t#4| $)) (-15 -3630 ((-646 $) |t#4| $)) (-15 -3629 ((-3 |t#4| (-646 $)) |t#4| |t#4| $)) (-15 -3628 ((-646 (-2 (|:| |val| |t#4|) (|:| -1718 $))) |t#4| |t#4| $)) (-15 -4224 ((-646 (-2 (|:| |val| |t#4|) (|:| -1718 $))) |t#4| $)) (-15 -3676 ((-646 $) |t#4| $)) (-15 -3676 ((-646 $) (-646 |t#4|) $)) (-15 -3676 ((-646 $) (-646 |t#4|) (-646 $))) (-15 -3676 ((-646 $) |t#4| (-646 $))) (-15 -3627 ((-646 $) |t#4| $)) (-15 -3627 ((-646 $) |t#4| (-646 $))) (-15 -3627 ((-646 $) (-646 |t#4|) $)) (-15 -3627 ((-646 $) (-646 |t#4|) (-646 $))) (-15 -3882 ($ |t#4| $)) (-15 -3882 ($ (-646 |t#4|) $)) (-15 -4218 ((-646 $) |t#4| $)) (-15 -4218 ((-646 $) |t#4| (-646 $))) (-15 -4218 ((-646 $) (-646 |t#4|) $)) (-15 -4218 ((-646 $) (-646 |t#4|) (-646 $))) (-15 -4132 ((-646 $) (-646 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1107) . T) ((-1217 |#1| |#2| |#3| |#4|) . T) ((-1222) . T))
-((-3643 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|) 86)) (-3640 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|) 127)) (-3642 (((-646 |#5|) |#4| |#5|) 74)) (-3641 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3726 (((-1278)) 36)) (-3724 (((-1278)) 25)) (-3725 (((-1278) (-1165) (-1165) (-1165)) 32)) (-3723 (((-1278) (-1165) (-1165) (-1165)) 21)) (-3637 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|) 107)) (-3638 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112)) 118) (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3639 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3723 ((-1278) (-1165) (-1165) (-1165))) (-15 -3724 ((-1278))) (-15 -3725 ((-1278) (-1165) (-1165) (-1165))) (-15 -3726 ((-1278))) (-15 -3637 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3638 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3638 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112))) (-15 -3639 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3641 ((-112) |#4| |#5|)) (-15 -3641 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3642 ((-646 |#5|) |#4| |#5|)) (-15 -3643 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1078))
-((-3643 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 *4)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3640 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3639 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-646 (-2 (|:| |val| *8) (|:| -1718 *9)))) (-5 *1 (-1078 *6 *7 *4 *8 *9)))) (-3638 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3637 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3726 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3725 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3724 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3723 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3723 ((-1278) (-1165) (-1165) (-1165))) (-15 -3724 ((-1278))) (-15 -3725 ((-1278) (-1165) (-1165) (-1165))) (-15 -3726 ((-1278))) (-15 -3637 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3638 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3638 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112))) (-15 -3639 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3641 ((-112) |#4| |#5|)) (-15 -3641 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3642 ((-646 |#5|) |#4| |#5|)) (-15 -3643 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|)))
-((-2986 (((-112) $ $) NIL)) (-3757 (((-1223) $) 13)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3644 (((-1141) $) 10)) (-4396 (((-868) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1079) (-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))) (T -1079))
-((-3644 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1079)))))
-(-13 (-1089) (-10 -8 (-15 -3644 ((-1141) $)) (-15 -3757 ((-1223) $))))
-((-3705 (((-112) $ $) 7)))
-(((-1080) (-13 (-1222) (-10 -8 (-15 -3705 ((-112) $ $))))) (T -1080))
-((-3705 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080)))))
-(-13 (-1222) (-10 -8 (-15 -3705 ((-112) $ $))))
-((-2986 (((-112) $ $) NIL)) (-3647 (($ $ (-646 (-1183)) (-1 (-112) (-646 |#3|))) 34)) (-3648 (($ |#3| |#3|) 23) (($ |#3| |#3| (-646 (-1183))) 21)) (-3969 ((|#3| $) 13)) (-3595 (((-3 (-296 |#3|) "failed") $) 60)) (-3594 (((-296 |#3|) $) NIL)) (-3645 (((-646 (-1183)) $) 16)) (-3646 (((-896 |#1|) $) 11)) (-3970 ((|#3| $) 12)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4249 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-925)) 41)) (-4396 (((-868) $) 89) (($ (-296 |#3|)) 22)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 38)))
-(((-1081 |#1| |#2| |#3|) (-13 (-1107) (-289 |#3| |#3|) (-1044 (-296 |#3|)) (-10 -8 (-15 -3648 ($ |#3| |#3|)) (-15 -3648 ($ |#3| |#3| (-646 (-1183)))) (-15 -3647 ($ $ (-646 (-1183)) (-1 (-112) (-646 |#3|)))) (-15 -3646 ((-896 |#1|) $)) (-15 -3970 (|#3| $)) (-15 -3969 (|#3| $)) (-15 -4249 (|#3| $ |#3| (-925))) (-15 -3645 ((-646 (-1183)) $)))) (-1107) (-13 (-1055) (-892 |#1|) (-619 (-896 |#1|))) (-13 (-426 |#2|) (-892 |#1|) (-619 (-896 |#1|)))) (T -1081))
-((-3648 (*1 *1 *2 *2) (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))) (-5 *1 (-1081 *3 *4 *2)) (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))) (-3648 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))))) (-3647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-1 (-112) (-646 *6))) (-4 *6 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *6)))) (-3646 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2))) (-5 *2 (-896 *3)) (-5 *1 (-1081 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-892 *3) (-619 *2))))) (-3970 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))) (-5 *1 (-1081 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))))) (-3969 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))) (-5 *1 (-1081 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))))) (-4249 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-925)) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))))) (-3645 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))) (-5 *2 (-646 (-1183))) (-5 *1 (-1081 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))))
-(-13 (-1107) (-289 |#3| |#3|) (-1044 (-296 |#3|)) (-10 -8 (-15 -3648 ($ |#3| |#3|)) (-15 -3648 ($ |#3| |#3| (-646 (-1183)))) (-15 -3647 ($ $ (-646 (-1183)) (-1 (-112) (-646 |#3|)))) (-15 -3646 ((-896 |#1|) $)) (-15 -3970 (|#3| $)) (-15 -3969 (|#3| $)) (-15 -4249 (|#3| $ |#3| (-925))) (-15 -3645 ((-646 (-1183)) $))))
-((-2986 (((-112) $ $) NIL)) (-3991 (((-1183) $) 8)) (-3681 (((-1165) $) 17)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 11)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 14)))
-(((-1082 |#1|) (-13 (-1107) (-10 -8 (-15 -3991 ((-1183) $)))) (-1183)) (T -1082))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1082 *3)) (-14 *3 *2))))
-(-13 (-1107) (-10 -8 (-15 -3991 ((-1183) $))))
-((-2986 (((-112) $ $) NIL)) (-3650 (($ (-646 (-1081 |#1| |#2| |#3|))) 14)) (-3649 (((-646 (-1081 |#1| |#2| |#3|)) $) 21)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4249 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-925)) 27)) (-4396 (((-868) $) 17)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 20)))
-(((-1083 |#1| |#2| |#3|) (-13 (-1107) (-289 |#3| |#3|) (-10 -8 (-15 -3650 ($ (-646 (-1081 |#1| |#2| |#3|)))) (-15 -3649 ((-646 (-1081 |#1| |#2| |#3|)) $)) (-15 -4249 (|#3| $ |#3| (-925))))) (-1107) (-13 (-1055) (-892 |#1|) (-619 (-896 |#1|))) (-13 (-426 |#2|) (-892 |#1|) (-619 (-896 |#1|)))) (T -1083))
-((-3650 (*1 *1 *2) (-12 (-5 *2 (-646 (-1081 *3 *4 *5))) (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))) (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))) (-5 *1 (-1083 *3 *4 *5)))) (-3649 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3)))) (-5 *2 (-646 (-1081 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))) (-4249 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-925)) (-4 *4 (-1107)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1083 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))))))
-(-13 (-1107) (-289 |#3| |#3|) (-10 -8 (-15 -3650 ($ (-646 (-1081 |#1| |#2| |#3|)))) (-15 -3649 ((-646 (-1081 |#1| |#2| |#3|)) $)) (-15 -4249 (|#3| $ |#3| (-925)))))
-((-3651 (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112)) 88) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|))) 92) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112)) 90)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112))) (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112)))) (-13 (-310) (-147)) (-646 (-1183))) (T -1084))
-((-3651 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4)))))) (-5 *1 (-1084 *4 *5)) (-5 *3 (-646 (-952 *4))) (-14 *5 (-646 (-1183))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))))))
-(-10 -7 (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112))) (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -3651 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 139)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-367)))) (-2251 (($ $) NIL (|has| |#1| (-367)))) (-2249 (((-112) $) NIL (|has| |#1| (-367)))) (-1967 (((-694 |#1|) (-1272 $)) NIL) (((-694 |#1|)) 123)) (-3772 ((|#1| $) 128)) (-1853 (((-1195 (-925) (-776)) (-551)) NIL (|has| |#1| (-354)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3558 (((-776)) 46 (|has| |#1| (-372)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-1977 (($ (-1272 |#1|) (-1272 $)) NIL) (($ (-1272 |#1|)) 49)) (-1851 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-1966 (((-694 |#1|) $ (-1272 $)) NIL) (((-694 |#1|) $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 115) (((-694 |#1|) (-694 $)) 110)) (-4292 (($ |#2|) 67) (((-3 $ "failed") (-412 |#2|)) NIL (|has| |#1| (-367)))) (-3908 (((-3 $ "failed") $) NIL)) (-3531 (((-925)) 84)) (-3413 (($) 50 (|has| |#1| (-372)))) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-3254 (($) NIL (|has| |#1| (-354)))) (-1858 (((-112) $) NIL (|has| |#1| (-354)))) (-1951 (($ $ (-776)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-4221 (((-925) $) NIL (|has| |#1| (-354))) (((-837 (-925)) $) NIL (|has| |#1| (-354)))) (-2591 (((-112) $) NIL)) (-3554 ((|#1| $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-2202 ((|#2| $) 91 (|has| |#1| (-367)))) (-2198 (((-925) $) 148 (|has| |#1| (-372)))) (-3499 ((|#2| $) 64)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-3887 (($) NIL (|has| |#1| (-354)) CONST)) (-2581 (($ (-925)) 138 (|has| |#1| (-372)))) (-3682 (((-1126) $) NIL)) (-2590 (($) 130)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1854 (((-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))) NIL (|has| |#1| (-354)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4207 ((|#1| (-1272 $)) NIL) ((|#1|) 119)) (-1952 (((-776) $) NIL (|has| |#1| (-354))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-354)))) (-4260 (($ $) NIL (-3978 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-776)) NIL (-3978 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2589 (((-694 |#1|) (-1272 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-3623 ((|#2|) 80)) (-1852 (($) NIL (|has| |#1| (-354)))) (-3662 (((-1272 |#1|) $ (-1272 $)) 96) (((-694 |#1|) (-1272 $) (-1272 $)) NIL) (((-1272 |#1|) $) 77) (((-694 |#1|) (-1272 $)) 92)) (-4420 (((-1272 |#1|) $) NIL) (($ (-1272 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3124 (((-3 (-1272 $) "failed") (-694 $)) NIL (|has| |#1| (-354)))) (-4396 (((-868) $) 63) (($ (-551)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-367))) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-551))))))) (-3123 (($ $) NIL (|has| |#1| (-354))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2788 ((|#2| $) 89)) (-3548 (((-776)) 82 T CONST)) (-3680 (((-112) $ $) NIL)) (-2200 (((-1272 $)) 88)) (-2250 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3528 (($) 32 T CONST)) (-3085 (($) 19 T CONST)) (-3090 (($ $) NIL (-3978 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-776)) NIL (-3978 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-354)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-3473 (((-112) $ $) 69)) (-4399 (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) 73) (($ $ $) NIL)) (-4289 (($ $ $) 71)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-412 (-551)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-551))) NIL (|has| |#1| (-367)))))
-(((-1085 |#1| |#2| |#3|) (-729 |#1| |#2|) (-173) (-1248 |#1|) |#2|) (T -1085))
+((-2892 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2881 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2871 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2862 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2852 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2841 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2841 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2830 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2819 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2809 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4332 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2018 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2018 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-2018 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-2018 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-2800 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-2800 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-3143 (*1 *1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3143 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)))) (-4295 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4295 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-4295 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-4295 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *5 *6 *7 *8)))))
+(-13 (-1216 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2892 ((-112) |t#4| $)) (-15 -2881 ((-112) |t#4| $)) (-15 -2871 ((-112) |t#4| $)) (-15 -2892 ((-112) $)) (-15 -2862 ((-112) |t#4| $)) (-15 -2852 ((-3 (-112) (-649 $)) |t#4| $)) (-15 -2841 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |t#4| $)) (-15 -2841 ((-112) |t#4| $)) (-15 -2830 ((-649 $) |t#4| $)) (-15 -2819 ((-3 |t#4| (-649 $)) |t#4| |t#4| $)) (-15 -2809 ((-649 (-2 (|:| |val| |t#4|) (|:| -3550 $))) |t#4| |t#4| $)) (-15 -4332 ((-649 (-2 (|:| |val| |t#4|) (|:| -3550 $))) |t#4| $)) (-15 -2018 ((-649 $) |t#4| $)) (-15 -2018 ((-649 $) (-649 |t#4|) $)) (-15 -2018 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -2018 ((-649 $) |t#4| (-649 $))) (-15 -2800 ((-649 $) |t#4| $)) (-15 -2800 ((-649 $) |t#4| (-649 $))) (-15 -2800 ((-649 $) (-649 |t#4|) $)) (-15 -2800 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -3143 ($ |t#4| $)) (-15 -3143 ($ (-649 |t#4|) $)) (-15 -4295 ((-649 $) |t#4| $)) (-15 -4295 ((-649 $) |t#4| (-649 $))) (-15 -4295 ((-649 $) (-649 |t#4|) $)) (-15 -4295 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -1555 ((-649 $) (-649 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
+((-2964 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|) 86)) (-2934 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|) 127)) (-2954 (((-649 |#5|) |#4| |#5|) 74)) (-2945 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2365 (((-1278)) 36)) (-2349 (((-1278)) 25)) (-2357 (((-1278) (-1165) (-1165) (-1165)) 32)) (-2340 (((-1278) (-1165) (-1165) (-1165)) 21)) (-2903 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|) 107)) (-2914 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112)) 118) (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2923 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2340 ((-1278) (-1165) (-1165) (-1165))) (-15 -2349 ((-1278))) (-15 -2357 ((-1278) (-1165) (-1165) (-1165))) (-15 -2365 ((-1278))) (-15 -2903 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2914 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2914 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112))) (-15 -2923 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2934 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2945 ((-112) |#4| |#5|)) (-15 -2945 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -2954 ((-649 |#5|) |#4| |#5|)) (-15 -2964 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1078))
+((-2964 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2954 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2945 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2945 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2934 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2923 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3550 *9)))) (-5 *1 (-1078 *6 *7 *4 *8 *9)))) (-2914 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-2903 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2365 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2357 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2349 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2340 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2340 ((-1278) (-1165) (-1165) (-1165))) (-15 -2349 ((-1278))) (-15 -2357 ((-1278) (-1165) (-1165) (-1165))) (-15 -2365 ((-1278))) (-15 -2903 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2914 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2914 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112))) (-15 -2923 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2934 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2945 ((-112) |#4| |#5|)) (-15 -2945 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -2954 ((-649 |#5|) |#4| |#5|)) (-15 -2964 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|)))
+((-2383 (((-112) $ $) NIL)) (-3778 (((-1222) $) 13)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1392 (((-1141) $) 10)) (-2388 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1079) (-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))) (T -1079))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-1079)))))
+(-13 (-1089) (-10 -8 (-15 -1392 ((-1141) $)) (-15 -3778 ((-1222) $))))
+((-4289 (((-112) $ $) 7)))
+(((-1080) (-13 (-1223) (-10 -8 (-15 -4289 ((-112) $ $))))) (T -1080))
+((-4289 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080)))))
+(-13 (-1223) (-10 -8 (-15 -4289 ((-112) $ $))))
+((-2383 (((-112) $ $) NIL)) (-3458 (((-1183) $) 8)) (-2050 (((-1165) $) 17)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 11)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 14)))
+(((-1081 |#1|) (-13 (-1106) (-10 -8 (-15 -3458 ((-1183) $)))) (-1183)) (T -1081))
+((-3458 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1081 *3)) (-14 *3 *2))))
+(-13 (-1106) (-10 -8 (-15 -3458 ((-1183) $))))
+((-2383 (((-112) $ $) NIL)) (-4245 (($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|))) 34)) (-2101 (($ |#3| |#3|) 23) (($ |#3| |#3| (-649 (-1183))) 21)) (-2076 ((|#3| $) 13)) (-4359 (((-3 (-297 |#3|) "failed") $) 60)) (-3043 (((-297 |#3|) $) NIL)) (-2975 (((-649 (-1183)) $) 16)) (-1700 (((-898 |#1|) $) 11)) (-2065 ((|#3| $) 12)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1852 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-927)) 41)) (-2388 (((-867) $) 89) (($ (-297 |#3|)) 22)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 38)))
+(((-1082 |#1| |#2| |#3|) (-13 (-1106) (-289 |#3| |#3|) (-1044 (-297 |#3|)) (-10 -8 (-15 -2101 ($ |#3| |#3|)) (-15 -2101 ($ |#3| |#3| (-649 (-1183)))) (-15 -4245 ($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|)))) (-15 -1700 ((-898 |#1|) $)) (-15 -2065 (|#3| $)) (-15 -2076 (|#3| $)) (-15 -1852 (|#3| $ |#3| (-927))) (-15 -2975 ((-649 (-1183)) $)))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1082))
+((-2101 (*1 *1 *2 *2) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-2101 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1 (-112) (-649 *6))) (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *6)))) (-1700 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2))) (-5 *2 (-898 *3)) (-5 *1 (-1082 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))) (-2065 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))))) (-2076 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))))) (-1852 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1183))) (-5 *1 (-1082 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(-13 (-1106) (-289 |#3| |#3|) (-1044 (-297 |#3|)) (-10 -8 (-15 -2101 ($ |#3| |#3|)) (-15 -2101 ($ |#3| |#3| (-649 (-1183)))) (-15 -4245 ($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|)))) (-15 -1700 ((-898 |#1|) $)) (-15 -2065 (|#3| $)) (-15 -2076 (|#3| $)) (-15 -1852 (|#3| $ |#3| (-927))) (-15 -2975 ((-649 (-1183)) $))))
+((-2383 (((-112) $ $) NIL)) (-4211 (($ (-649 (-1082 |#1| |#2| |#3|))) 14)) (-1535 (((-649 (-1082 |#1| |#2| |#3|)) $) 21)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1852 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-927)) 27)) (-2388 (((-867) $) 17)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 20)))
+(((-1083 |#1| |#2| |#3|) (-13 (-1106) (-289 |#3| |#3|) (-10 -8 (-15 -4211 ($ (-649 (-1082 |#1| |#2| |#3|)))) (-15 -1535 ((-649 (-1082 |#1| |#2| |#3|)) $)) (-15 -1852 (|#3| $ |#3| (-927))))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1083))
+((-4211 (*1 *1 *2) (-12 (-5 *2 (-649 (-1082 *3 *4 *5))) (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1083 *3 *4 *5)))) (-1535 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1082 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-1852 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1083 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
+(-13 (-1106) (-289 |#3| |#3|) (-10 -8 (-15 -4211 ($ (-649 (-1082 |#1| |#2| |#3|)))) (-15 -1535 ((-649 (-1082 |#1| |#2| |#3|)) $)) (-15 -1852 (|#3| $ |#3| (-927)))))
+((-2986 (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 88) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 92) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 90)))
+(((-1084 |#1| |#2|) (-10 -7 (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)))) (-13 (-310) (-147)) (-649 (-1183))) (T -1084))
+((-2986 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))))) (-2986 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4)))))) (-5 *1 (-1084 *4 *5)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1183))))) (-2986 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))))))
+(-10 -7 (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2986 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))))
+((-3699 (((-423 |#3|) |#3|) 18)))
+(((-1085 |#1| |#2| |#3|) (-10 -7 (-15 -3699 ((-423 |#3|) |#3|))) (-1249 (-412 (-569))) (-13 (-367) (-147) (-729 (-412 (-569)) |#1|)) (-1249 |#2|)) (T -1085))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1249 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#3|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 139)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-367)))) (-2586 (($ $) NIL (|has| |#1| (-367)))) (-2564 (((-112) $) NIL (|has| |#1| (-367)))) (-2702 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) 123)) (-3057 ((|#1| $) 128)) (-4068 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3363 (((-776)) 46 (|has| |#1| (-372)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-2806 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) 49)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-2692 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 115) (((-694 |#1|) (-694 $)) 110)) (-3485 (($ |#2|) 67) (((-3 $ "failed") (-412 |#2|)) NIL (|has| |#1| (-367)))) (-3351 (((-3 $ "failed") $) NIL)) (-3904 (((-927)) 84)) (-3295 (($) 50 (|has| |#1| (-372)))) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3445 (($) NIL (|has| |#1| (-353)))) (-4127 (((-112) $) NIL (|has| |#1| (-353)))) (-2525 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-4315 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2861 (((-112) $) NIL)) (-3334 ((|#1| $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3397 ((|#2| $) 91 (|has| |#1| (-367)))) (-3348 (((-927) $) 148 (|has| |#1| (-372)))) (-3472 ((|#2| $) 64)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-2267 (($) NIL (|has| |#1| (-353)) CONST)) (-2114 (($ (-927)) 138 (|has| |#1| (-372)))) (-3461 (((-1126) $) NIL)) (-2290 (($) 130)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4080 (((-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))) NIL (|has| |#1| (-353)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-4180 ((|#1| (-1273 $)) NIL) ((|#1|) 119)) (-2536 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3430 (($ $) NIL (-2718 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2718 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2851 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2760 ((|#2|) 80)) (-4056 (($) NIL (|has| |#1| (-353)))) (-1949 (((-1273 |#1|) $ (-1273 $)) 96) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) 77) (((-694 |#1|) (-1273 $)) 92)) (-1384 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-353)))) (-2388 (((-867) $) 63) (($ (-569)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-367))) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-1488 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3176 ((|#2| $) 89)) (-3263 (((-776)) 82 T CONST)) (-2040 (((-112) $ $) NIL)) (-3371 (((-1273 $)) 88)) (-2574 (((-112) $ $) NIL (|has| |#1| (-367)))) (-1786 (($) 32 T CONST)) (-1796 (($) 19 T CONST)) (-2749 (($ $) NIL (-2718 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2718 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2853 (((-112) $ $) 69)) (-2956 (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) 73) (($ $ $) NIL)) (-2935 (($ $ $) 71)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
+(((-1086 |#1| |#2| |#3|) (-729 |#1| |#2|) (-173) (-1249 |#1|) |#2|) (T -1086))
NIL
(-729 |#1| |#2|)
-((-4182 (((-410 |#3|) |#3|) 18)))
-(((-1086 |#1| |#2| |#3|) (-10 -7 (-15 -4182 ((-410 |#3|) |#3|))) (-1248 (-412 (-551))) (-13 (-367) (-147) (-729 (-412 (-551)) |#1|)) (-1248 |#2|)) (T -1086))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-551)) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1086 *4 *5 *3)) (-4 *3 (-1248 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#3|) |#3|)))
-((-4182 (((-410 |#3|) |#3|) 19)))
-(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -4182 ((-410 |#3|) |#3|))) (-1248 (-412 (-952 (-551)))) (-13 (-367) (-147) (-729 (-412 (-952 (-551))) |#1|)) (-1248 |#2|)) (T -1087))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-1248 (-412 (-952 (-551))))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-952 (-551))) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1248 *5)))))
-(-10 -7 (-15 -4182 ((-410 |#3|) |#3|)))
-((-2986 (((-112) $ $) NIL)) (-2952 (($ $ $) 16)) (-3278 (($ $ $) 17)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3652 (($) 6)) (-4420 (((-1183) $) 20)) (-4396 (((-868) $) 13)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 15)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 9)))
-(((-1088) (-13 (-855) (-619 (-1183)) (-10 -8 (-15 -3652 ($))))) (T -1088))
-((-3652 (*1 *1) (-5 *1 (-1088))))
-(-13 (-855) (-619 (-1183)) (-10 -8 (-15 -3652 ($))))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-3699 (((-423 |#3|) |#3|) 19)))
+(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -3699 ((-423 |#3|) |#3|))) (-1249 (-412 (-958 (-569)))) (-13 (-367) (-147) (-729 (-412 (-958 (-569))) |#1|)) (-1249 |#2|)) (T -1087))
+((-3699 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 (-958 (-569))))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1249 *5)))))
+(-10 -7 (-15 -3699 ((-423 |#3|) |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2095 (($ $ $) 16)) (-2406 (($ $ $) 17)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2994 (($) 6)) (-1384 (((-1183) $) 20)) (-2388 (((-867) $) 13)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 15)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-1088) (-13 (-855) (-619 (-1183)) (-10 -8 (-15 -2994 ($))))) (T -1088))
+((-2994 (*1 *1) (-5 *1 (-1088))))
+(-13 (-855) (-619 (-1183)) (-10 -8 (-15 -2994 ($))))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-1089) (-140)) (T -1089))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-621 #1=(-1188)) . T) ((-618 (-868)) . T) ((-618 #1#) . T) ((-495 #1#) . T) ((-1107) . T))
-((-3655 ((|#1| |#1| (-1 (-551) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3653 (((-1278)) 21)) (-3654 (((-646 |#1|)) 13)))
-(((-1090 |#1|) (-10 -7 (-15 -3653 ((-1278))) (-15 -3654 ((-646 |#1|))) (-15 -3655 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3655 (|#1| |#1| (-1 (-551) |#1| |#1|)))) (-132)) (T -1090))
-((-3655 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-551) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-3655 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-3654 (*1 *2) (-12 (-5 *2 (-646 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))) (-3653 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -3653 ((-1278))) (-15 -3654 ((-646 |#1|))) (-15 -3655 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3655 (|#1| |#1| (-1 (-551) |#1| |#1|))))
-((-3658 (($ (-109) $) 20)) (-3659 (((-696 (-109)) (-511) $) 19)) (-4014 (($) 7)) (-3657 (($) 21)) (-3656 (($) 22)) (-3660 (((-646 (-176)) $) 10)) (-4396 (((-868) $) 25)))
-(((-1091) (-13 (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -3660 ((-646 (-176)) $)) (-15 -3659 ((-696 (-109)) (-511) $)) (-15 -3658 ($ (-109) $)) (-15 -3657 ($)) (-15 -3656 ($))))) (T -1091))
-((-4014 (*1 *1) (-5 *1 (-1091))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-646 (-176))) (-5 *1 (-1091)))) (-3659 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))) (-3658 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))) (-3657 (*1 *1) (-5 *1 (-1091))) (-3656 (*1 *1) (-5 *1 (-1091))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4014 ($)) (-15 -3660 ((-646 (-176)) $)) (-15 -3659 ((-696 (-109)) (-511) $)) (-15 -3658 ($ (-109) $)) (-15 -3657 ($)) (-15 -3656 ($))))
-((-3661 (((-1272 (-694 |#1|)) (-646 (-694 |#1|))) 47) (((-1272 (-694 (-952 |#1|))) (-646 (-1183)) (-694 (-952 |#1|))) 75) (((-1272 (-694 (-412 (-952 |#1|)))) (-646 (-1183)) (-694 (-412 (-952 |#1|)))) 92)) (-3662 (((-1272 |#1|) (-694 |#1|) (-646 (-694 |#1|))) 41)))
-(((-1092 |#1|) (-10 -7 (-15 -3661 ((-1272 (-694 (-412 (-952 |#1|)))) (-646 (-1183)) (-694 (-412 (-952 |#1|))))) (-15 -3661 ((-1272 (-694 (-952 |#1|))) (-646 (-1183)) (-694 (-952 |#1|)))) (-15 -3661 ((-1272 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3662 ((-1272 |#1|) (-694 |#1|) (-646 (-694 |#1|))))) (-367)) (T -1092))
-((-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-1272 *5)) (-5 *1 (-1092 *5)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-646 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1272 (-694 *4))) (-5 *1 (-1092 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-1183))) (-4 *5 (-367)) (-5 *2 (-1272 (-694 (-952 *5)))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-952 *5))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-1183))) (-4 *5 (-367)) (-5 *2 (-1272 (-694 (-412 (-952 *5))))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-412 (-952 *5)))))))
-(-10 -7 (-15 -3661 ((-1272 (-694 (-412 (-952 |#1|)))) (-646 (-1183)) (-694 (-412 (-952 |#1|))))) (-15 -3661 ((-1272 (-694 (-952 |#1|))) (-646 (-1183)) (-694 (-952 |#1|)))) (-15 -3661 ((-1272 (-694 |#1|)) (-646 (-694 |#1|)))) (-15 -3662 ((-1272 |#1|) (-694 |#1|) (-646 (-694 |#1|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1595 (((-646 (-776)) $) NIL) (((-646 (-776)) $ (-1183)) NIL)) (-1629 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-3503 (((-646 (-1094 (-1183))) $) NIL)) (-3505 (((-1177 $) $ (-1094 (-1183))) NIL) (((-1177 |#1|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1094 (-1183)))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-1591 (($ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-1094 (-1183)) #2#) $) NIL) (((-3 (-1183) #2#) $) NIL) (((-3 (-1131 |#1| (-1183)) #2#) $) NIL)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-1094 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4206 (($ $ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-536 (-1094 (-1183))) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3506 (($ (-1177 |#1|) (-1094 (-1183))) NIL) (($ (-1177 $) (-1094 (-1183))) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-646 (-1094 (-1183))) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1094 (-1183))) NIL)) (-3241 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-646 (-776)) $ (-646 (-1094 (-1183)))) NIL)) (-1780 (($ (-1 (-536 (-1094 (-1183))) (-536 (-1094 (-1183)))) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-1630 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3504 (((-3 (-1094 (-1183)) #3="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-1593 (((-1094 (-1183)) $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-1594 (((-112) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1094 (-1183))) (|:| -2582 (-776))) #3#) $) NIL)) (-1592 (($ $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1094 (-1183)) |#1|) NIL) (($ $ (-646 (-1094 (-1183))) (-646 |#1|)) NIL) (($ $ (-1094 (-1183)) $) NIL) (($ $ (-646 (-1094 (-1183))) (-646 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-646 (-1183)) (-646 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-646 (-1183)) (-646 |#1|)) NIL (|has| |#1| (-234)))) (-4207 (($ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-4260 (($ $ (-1094 (-1183))) NIL) (($ $ (-646 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-646 (-1094 (-1183))) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1596 (((-646 (-1183)) $) NIL)) (-4398 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-646 (-776)) $ (-646 (-1094 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-1094 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-646 (-1094 (-1183))) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1094 (-1183))) NIL) (($ $ (-646 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-646 (-1094 (-1183))) (-646 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-93) . T) ((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
+((-3005 ((|#1| |#1| (-1 (-569) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2408 (((-1278)) 21)) (-4293 (((-649 |#1|)) 13)))
+(((-1090 |#1|) (-10 -7 (-15 -2408 ((-1278))) (-15 -4293 ((-649 |#1|))) (-15 -3005 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3005 (|#1| |#1| (-1 (-569) |#1| |#1|)))) (-132)) (T -1090))
+((-3005 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-3005 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-4293 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))) (-2408 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -2408 ((-1278))) (-15 -4293 ((-649 |#1|))) (-15 -3005 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3005 (|#1| |#1| (-1 (-569) |#1| |#1|))))
+((-1915 (($ (-109) $) 20)) (-1924 (((-696 (-109)) (-511) $) 19)) (-2825 (($) 7)) (-1906 (($) 21)) (-3019 (($) 22)) (-1932 (((-649 (-176)) $) 10)) (-2388 (((-867) $) 25)))
+(((-1091) (-13 (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1932 ((-649 (-176)) $)) (-15 -1924 ((-696 (-109)) (-511) $)) (-15 -1915 ($ (-109) $)) (-15 -1906 ($)) (-15 -3019 ($))))) (T -1091))
+((-2825 (*1 *1) (-5 *1 (-1091))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1091)))) (-1924 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))) (-1915 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))) (-1906 (*1 *1) (-5 *1 (-1091))) (-3019 (*1 *1) (-5 *1 (-1091))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2825 ($)) (-15 -1932 ((-649 (-176)) $)) (-15 -1924 ((-696 (-109)) (-511) $)) (-15 -1915 ($ (-109) $)) (-15 -1906 ($)) (-15 -3019 ($))))
+((-1941 (((-1273 (-694 |#1|)) (-649 (-694 |#1|))) 47) (((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|))) 75) (((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|)))) 92)) (-1949 (((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|))) 41)))
+(((-1092 |#1|) (-10 -7 (-15 -1941 ((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|))))) (-15 -1941 ((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|)))) (-15 -1941 ((-1273 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1949 ((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|))))) (-367)) (T -1092))
+((-1949 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-1273 *5)) (-5 *1 (-1092 *5)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-1092 *4)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367)) (-5 *2 (-1273 (-694 (-958 *5)))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-958 *5))))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367)) (-5 *2 (-1273 (-694 (-412 (-958 *5))))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+(-10 -7 (-15 -1941 ((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|))))) (-15 -1941 ((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|)))) (-15 -1941 ((-1273 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1949 ((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3195 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1183)) NIL)) (-2341 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-3865 (((-649 (-1094 (-1183))) $) NIL)) (-3663 (((-1179 $) $ (-1094 (-1183))) NIL) (((-1179 |#1|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1094 (-1183)))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3173 (($ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1094 (-1183)) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL) (((-3 (-1131 |#1| (-1183)) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1094 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4168 (($ $ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-536 (-1094 (-1183))) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3851 (($ (-1179 |#1|) (-1094 (-1183))) NIL) (($ (-1179 $) (-1094 (-1183))) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1094 (-1183))) NIL)) (-3304 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-649 (-776)) $ (-649 (-1094 (-1183)))) NIL)) (-1491 (($ (-1 (-536 (-1094 (-1183))) (-536 (-1094 (-1183)))) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-4212 (((-3 (-1094 (-1183)) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2443 (((-1094 (-1183)) $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-3184 (((-112) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1094 (-1183))) (|:| -2777 (-776))) "failed") $) NIL)) (-1476 (($ $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1094 (-1183)) |#1|) NIL) (($ $ (-649 (-1094 (-1183))) (-649 |#1|)) NIL) (($ $ (-1094 (-1183)) $) NIL) (($ $ (-649 (-1094 (-1183))) (-649 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4180 (($ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-3430 (($ $ (-1094 (-1183))) NIL) (($ $ (-649 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3210 (((-649 (-1183)) $) NIL)) (-2091 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-649 (-776)) $ (-649 (-1094 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1094 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1094 (-1183))) NIL) (($ $ (-649 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1093 |#1|) (-13 (-255 |#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) (-1044 (-1131 |#1| (-1183)))) (-1055)) (T -1093))
NIL
(-13 (-255 |#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) (-1044 (-1131 |#1| (-1183))))
-((-2986 (((-112) $ $) NIL)) (-1629 (((-776) $) NIL)) (-4281 ((|#1| $) 10)) (-3595 (((-3 |#1| "failed") $) NIL)) (-3594 ((|#1| $) NIL)) (-4221 (((-776) $) 11)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-1630 (($ |#1| (-776)) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4260 (($ $) NIL) (($ $ (-776)) NIL)) (-4396 (((-868) $) NIL) (($ |#1|) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 16)))
+((-2383 (((-112) $ $) NIL)) (-2341 (((-776) $) NIL)) (-2599 ((|#1| $) 10)) (-4359 (((-3 |#1| "failed") $) NIL)) (-3043 ((|#1| $) NIL)) (-4315 (((-776) $) 11)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-2350 (($ |#1| (-776)) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3430 (($ $) NIL) (($ $ (-776)) NIL)) (-2388 (((-867) $) NIL) (($ |#1|) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 16)))
(((-1094 |#1|) (-268 |#1|) (-855)) (T -1094))
NIL
(-268 |#1|)
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4186 (($ |#1| |#1|) 16)) (-4408 (((-646 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-853)))) (-3667 ((|#1| $) 12)) (-3669 ((|#1| $) 11)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3665 (((-551) $) 15)) (-3666 ((|#1| $) 14)) (-3668 ((|#1| $) 13)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4413 (((-646 |#1|) $) 44 (|has| |#1| (-853))) (((-646 |#1|) (-646 $)) 43 (|has| |#1| (-853)))) (-4420 (($ |#1|) 29)) (-4396 (((-868) $) 28 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4187 (($ |#1| |#1|) 10)) (-3670 (($ $ (-551)) 17)) (-3473 (((-112) $ $) 22 (|has| |#1| (-1107)))))
-(((-1095 |#1|) (-13 (-1100 |#1|) (-10 -7 (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-646 |#1|))) |%noBranch|))) (-1222)) (T -1095))
-NIL
-(-13 (-1100 |#1|) (-10 -7 (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-646 |#1|))) |%noBranch|)))
-((-4408 (((-646 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 29 (|has| |#1| (-853))) (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 14)))
-(((-1096 |#1| |#2|) (-10 -7 (-15 -4408 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (IF (|has| |#1| (-853)) (-15 -4408 ((-646 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) |%noBranch|)) (-1222) (-1222)) (T -1096))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-853)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-646 *6)) (-5 *1 (-1096 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6)))))
-(-10 -7 (-15 -4408 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (IF (|has| |#1| (-853)) (-15 -4408 ((-646 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3663 (((-646 (-1141)) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1097) (-13 (-1089) (-10 -8 (-15 -3663 ((-646 (-1141)) $))))) (T -1097))
-((-3663 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1097)))))
-(-13 (-1089) (-10 -8 (-15 -3663 ((-646 (-1141)) $))))
-((-2986 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1107)))) (-4281 (((-1183) $) NIL)) (-4186 (((-1095 |#1|) $) NIL)) (-3681 (((-1165) $) NIL (|has| (-1095 |#1|) (-1107)))) (-3682 (((-1126) $) NIL (|has| (-1095 |#1|) (-1107)))) (-3664 (($ (-1183) (-1095 |#1|)) NIL)) (-4396 (((-868) $) NIL (|has| (-1095 |#1|) (-1107)))) (-3680 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1107)))) (-3473 (((-112) $ $) NIL (|has| (-1095 |#1|) (-1107)))))
-(((-1098 |#1|) (-13 (-1222) (-10 -8 (-15 -3664 ($ (-1183) (-1095 |#1|))) (-15 -4281 ((-1183) $)) (-15 -4186 ((-1095 |#1|) $)) (IF (|has| (-1095 |#1|) (-1107)) (-6 (-1107)) |%noBranch|))) (-1222)) (T -1098))
-((-3664 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1095 *4)) (-4 *4 (-1222)) (-5 *1 (-1098 *4)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1222)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1222)))))
-(-13 (-1222) (-10 -8 (-15 -3664 ($ (-1183) (-1095 |#1|))) (-15 -4281 ((-1183) $)) (-15 -4186 ((-1095 |#1|) $)) (IF (|has| (-1095 |#1|) (-1107)) (-6 (-1107)) |%noBranch|)))
-((-4408 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 19)))
-(((-1099 |#1| |#2|) (-10 -7 (-15 -4408 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) (-1222) (-1222)) (T -1099))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1098 *6)) (-5 *1 (-1099 *5 *6)))))
-(-10 -7 (-15 -4408 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))))
-((-4186 (($ |#1| |#1|) 8)) (-3667 ((|#1| $) 11)) (-3669 ((|#1| $) 13)) (-3665 (((-551) $) 9)) (-3666 ((|#1| $) 10)) (-3668 ((|#1| $) 12)) (-4420 (($ |#1|) 6)) (-4187 (($ |#1| |#1|) 15)) (-3670 (($ $ (-551)) 14)))
-(((-1100 |#1|) (-140) (-1222)) (T -1100))
-((-4187 (*1 *1 *2 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1100 *3)) (-4 *3 (-1222)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1222)) (-5 *2 (-551)))) (-4186 (*1 *1 *2 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))))
-(-13 (-623 |t#1|) (-10 -8 (-15 -4187 ($ |t#1| |t#1|)) (-15 -3670 ($ $ (-551))) (-15 -3669 (|t#1| $)) (-15 -3668 (|t#1| $)) (-15 -3667 (|t#1| $)) (-15 -3666 (|t#1| $)) (-15 -3665 ((-551) $)) (-15 -4186 ($ |t#1| |t#1|))))
+((-1324 (((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 29 (|has| |#1| (-853))) (((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 14)))
+(((-1095 |#1| |#2|) (-10 -7 (-15 -1324 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) (IF (|has| |#1| (-853)) (-15 -1324 ((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) |%noBranch|)) (-1223) (-1223)) (T -1095))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-853)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-1095 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1100 *6)) (-5 *1 (-1095 *5 *6)))))
+(-10 -7 (-15 -1324 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) (IF (|has| |#1| (-853)) (-15 -1324 ((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1958 (((-649 (-1141)) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1096) (-13 (-1089) (-10 -8 (-15 -1958 ((-649 (-1141)) $))))) (T -1096))
+((-1958 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1096)))))
+(-13 (-1089) (-10 -8 (-15 -1958 ((-649 (-1141)) $))))
+((-1324 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 19)))
+(((-1097 |#1| |#2|) (-10 -7 (-15 -1324 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) (-1223) (-1223)) (T -1097))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1098 *6)) (-5 *1 (-1097 *5 *6)))))
+(-10 -7 (-15 -1324 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))) (-2599 (((-1183) $) NIL)) (-2741 (((-1100 |#1|) $) NIL)) (-2050 (((-1165) $) NIL (|has| (-1100 |#1|) (-1106)))) (-3461 (((-1126) $) NIL (|has| (-1100 |#1|) (-1106)))) (-3387 (($ (-1183) (-1100 |#1|)) NIL)) (-2388 (((-867) $) NIL (|has| (-1100 |#1|) (-1106)))) (-2040 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))) (-2853 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))))
+(((-1098 |#1|) (-13 (-1223) (-10 -8 (-15 -3387 ($ (-1183) (-1100 |#1|))) (-15 -2599 ((-1183) $)) (-15 -2741 ((-1100 |#1|) $)) (IF (|has| (-1100 |#1|) (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1098))
+((-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1100 *4)) (-4 *4 (-1223)) (-5 *1 (-1098 *4)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1223)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1223)))))
+(-13 (-1223) (-10 -8 (-15 -3387 ($ (-1183) (-1100 |#1|))) (-15 -2599 ((-1183) $)) (-15 -2741 ((-1100 |#1|) $)) (IF (|has| (-1100 |#1|) (-1106)) (-6 (-1106)) |%noBranch|)))
+((-2741 (($ |#1| |#1|) 8)) (-1977 ((|#1| $) 11)) (-1458 ((|#1| $) 13)) (-1468 (((-569) $) 9)) (-1968 ((|#1| $) 10)) (-1769 ((|#1| $) 12)) (-1384 (($ |#1|) 6)) (-3533 (($ |#1| |#1|) 15)) (-2635 (($ $ (-569)) 14)))
+(((-1099 |#1|) (-140) (-1223)) (T -1099))
+((-3533 (*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1099 *3)) (-4 *3 (-1223)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))) (-2741 (*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
+(-13 (-623 |t#1|) (-10 -8 (-15 -3533 ($ |t#1| |t#1|)) (-15 -2635 ($ $ (-569))) (-15 -1458 (|t#1| $)) (-15 -1769 (|t#1| $)) (-15 -1977 (|t#1| $)) (-15 -1968 (|t#1| $)) (-15 -1468 ((-569) $)) (-15 -2741 ($ |t#1| |t#1|))))
(((-623 |#1|) . T))
-((-4186 (($ |#1| |#1|) 8)) (-4408 ((|#2| (-1 |#1| |#1|) $) 16)) (-3667 ((|#1| $) 11)) (-3669 ((|#1| $) 13)) (-3665 (((-551) $) 9)) (-3666 ((|#1| $) 10)) (-3668 ((|#1| $) 12)) (-4413 ((|#2| (-646 $)) 18) ((|#2| $) 17)) (-4420 (($ |#1|) 6)) (-4187 (($ |#1| |#1|) 15)) (-3670 (($ $ (-551)) 14)))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2741 (($ |#1| |#1|) 16)) (-1324 (((-649 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-853)))) (-1977 ((|#1| $) 12)) (-1458 ((|#1| $) 11)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1468 (((-569) $) 15)) (-1968 ((|#1| $) 14)) (-1769 ((|#1| $) 13)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1356 (((-649 |#1|) $) 44 (|has| |#1| (-853))) (((-649 |#1|) (-649 $)) 43 (|has| |#1| (-853)))) (-1384 (($ |#1|) 29)) (-2388 (((-867) $) 28 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3533 (($ |#1| |#1|) 10)) (-2635 (($ $ (-569)) 17)) (-2853 (((-112) $ $) 22 (|has| |#1| (-1106)))))
+(((-1100 |#1|) (-13 (-1099 |#1|) (-10 -7 (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-649 |#1|))) |%noBranch|))) (-1223)) (T -1100))
+NIL
+(-13 (-1099 |#1|) (-10 -7 (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-649 |#1|))) |%noBranch|)))
+((-2741 (($ |#1| |#1|) 8)) (-1324 ((|#2| (-1 |#1| |#1|) $) 16)) (-1977 ((|#1| $) 11)) (-1458 ((|#1| $) 13)) (-1468 (((-569) $) 9)) (-1968 ((|#1| $) 10)) (-1769 ((|#1| $) 12)) (-1356 ((|#2| (-649 $)) 18) ((|#2| $) 17)) (-1384 (($ |#1|) 6)) (-3533 (($ |#1| |#1|) 15)) (-2635 (($ $ (-569)) 14)))
(((-1101 |#1| |#2|) (-140) (-853) (-1155 |t#1|)) (T -1101))
-((-4413 (*1 *2 *3) (-12 (-5 *3 (-646 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3)))) (-4408 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))))
-(-13 (-1100 |t#1|) (-10 -8 (-15 -4413 (|t#2| (-646 $))) (-15 -4413 (|t#2| $)) (-15 -4408 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-623 |#1|) . T) ((-1100 |#1|) . T))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-4247 (((-1141) $) 12)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3671 (((-646 (-1141)) $) 10)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1102) (-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $)) (-15 -4247 ((-1141) $))))) (T -1102))
-((-3671 (*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1102)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102)))))
-(-13 (-1089) (-10 -8 (-15 -3671 ((-646 (-1141)) $)) (-15 -4247 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-1987 (($) NIL (|has| |#1| (-372)))) (-3672 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3674 (($ $ $) 81)) (-3673 (((-112) $ $) 82)) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#1| (-372)))) (-3677 (($ (-646 |#1|)) NIL) (($) 13)) (-1688 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3847 (($ |#1| $) 74 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4443)))) (-3413 (($) NIL (|has| |#1| (-372)))) (-2134 (((-646 |#1|) $) 19 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2952 ((|#1| $) 55 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3278 ((|#1| $) 53 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 34)) (-2198 (((-925) $) NIL (|has| |#1| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3676 (($ $ $) 79)) (-1372 ((|#1| $) 25)) (-4057 (($ |#1| $) 69)) (-2581 (($ (-925)) NIL (|has| |#1| (-372)))) (-3682 (((-1126) $) NIL)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1373 ((|#1| $) 27)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 21)) (-4014 (($) 11)) (-3675 (($ $ |#1|) NIL) (($ $ $) 80)) (-1573 (($) NIL) (($ (-646 |#1|)) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 16)) (-4420 (((-540) $) 50 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 62)) (-1988 (($ $) NIL (|has| |#1| (-372)))) (-4396 (((-868) $) NIL)) (-1989 (((-776) $) NIL)) (-3678 (($ (-646 |#1|)) NIL) (($) 12)) (-3680 (((-112) $ $) NIL)) (-1374 (($ (-646 |#1|)) NIL)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 52)) (-4407 (((-776) $) 10 (|has| $ (-6 -4443)))))
-(((-1103 |#1|) (-431 |#1|) (-1107)) (T -1103))
-NIL
-(-431 |#1|)
-((-3672 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3674 (($ $ $) 10)) (-3675 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1104 |#1| |#2|) (-10 -8 (-15 -3672 (|#1| |#2| |#1|)) (-15 -3672 (|#1| |#1| |#2|)) (-15 -3672 (|#1| |#1| |#1|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#2|)) (-15 -3675 (|#1| |#1| |#1|))) (-1105 |#2|) (-1107)) (T -1104))
-NIL
-(-10 -8 (-15 -3672 (|#1| |#2| |#1|)) (-15 -3672 (|#1| |#1| |#2|)) (-15 -3672 (|#1| |#1| |#1|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -3675 (|#1| |#1| |#2|)) (-15 -3675 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3672 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3674 (($ $ $) 21)) (-3673 (((-112) $ $) 20)) (-1312 (((-112) $ (-776)) 36)) (-3677 (($) 26) (($ (-646 |#1|)) 25)) (-4160 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4443)))) (-4174 (($) 37 T CONST)) (-1443 (($ $) 60 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 59 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4443)))) (-2134 (((-646 |#1|) $) 44 (|has| $ (-6 -4443)))) (-3679 (((-112) $ $) 29)) (-4169 (((-112) $ (-776)) 35)) (-3026 (((-646 |#1|) $) 45 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 39)) (-4166 (((-112) $ (-776)) 34)) (-3681 (((-1165) $) 10)) (-3676 (($ $ $) 24)) (-3682 (((-1126) $) 11)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2136 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#1|) (-646 |#1|)) 51 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 49 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 (-296 |#1|))) 48 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 30)) (-3845 (((-112) $) 33)) (-4014 (($) 32)) (-3675 (($ $ $) 23) (($ $ |#1|) 22)) (-2135 (((-776) |#1| $) 46 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4443)))) (-3842 (($ $) 31)) (-4420 (((-540) $) 61 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 52)) (-4396 (((-868) $) 12)) (-3678 (($) 28) (($ (-646 |#1|)) 27)) (-3680 (((-112) $ $) 9)) (-2137 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 38 (|has| $ (-6 -4443)))))
-(((-1105 |#1|) (-140) (-1107)) (T -1105))
-((-3679 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-3678 (*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-1105 *3)))) (-3677 (*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3677 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-1105 *3)))) (-3676 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3675 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3675 (*1 *1 *1 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3674 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3673 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))) (-3672 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))) (-3672 (*1 *1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(-13 (-1107) (-151 |t#1|) (-10 -8 (-6 -4433) (-15 -3679 ((-112) $ $)) (-15 -3678 ($)) (-15 -3678 ($ (-646 |t#1|))) (-15 -3677 ($)) (-15 -3677 ($ (-646 |t#1|))) (-15 -3676 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3675 ($ $ |t#1|)) (-15 -3674 ($ $ $)) (-15 -3673 ((-112) $ $)) (-15 -3672 ($ $ $)) (-15 -3672 ($ $ |t#1|)) (-15 -3672 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) . T) ((-1222) . T))
-((-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 8)) (-3680 (((-112) $ $) 12)))
-(((-1106 |#1|) (-10 -8 (-15 -3680 ((-112) |#1| |#1|)) (-15 -3681 ((-1165) |#1|)) (-15 -3682 ((-1126) |#1|))) (-1107)) (T -1106))
-NIL
-(-10 -8 (-15 -3680 ((-112) |#1| |#1|)) (-15 -3681 ((-1165) |#1|)) (-15 -3682 ((-1126) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-1107) (-140)) (T -1107))
-((-3682 (*1 *2 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-1126)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-1165)))) (-3680 (*1 *2 *1 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-112)))))
-(-13 (-102) (-618 (-868)) (-10 -8 (-15 -3682 ((-1126) $)) (-15 -3681 ((-1165) $)) (-15 -3680 ((-112) $ $))))
-(((-102) . T) ((-618 (-868)) . T))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) 36)) (-3686 (($ (-646 (-925))) 72)) (-3688 (((-3 $ #1="failed") $ (-925) (-925)) 83)) (-3413 (($) 40)) (-3684 (((-112) (-925) $) 44)) (-2198 (((-925) $) 66)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) 39)) (-3689 (((-3 $ #1#) $ (-925)) 79)) (-3682 (((-1126) $) NIL)) (-3685 (((-1272 $)) 49)) (-3687 (((-646 (-925)) $) 27)) (-3683 (((-776) $ (-925) (-925)) 80)) (-4396 (((-868) $) 32)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 24)))
-(((-1108 |#1| |#2|) (-13 (-372) (-10 -8 (-15 -3689 ((-3 $ #1="failed") $ (-925))) (-15 -3688 ((-3 $ #1#) $ (-925) (-925))) (-15 -3687 ((-646 (-925)) $)) (-15 -3686 ($ (-646 (-925)))) (-15 -3685 ((-1272 $))) (-15 -3684 ((-112) (-925) $)) (-15 -3683 ((-776) $ (-925) (-925))))) (-925) (-925)) (T -1108))
-((-3689 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-925)) (-5 *1 (-1108 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3688 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-925)) (-5 *1 (-1108 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))) (-3685 (*1 *2) (-12 (-5 *2 (-1272 (-1108 *3 *4))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925)))) (-3684 (*1 *2 *3 *1) (-12 (-5 *3 (-925)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-776)) (-5 *1 (-1108 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-372) (-10 -8 (-15 -3689 ((-3 $ #1="failed") $ (-925))) (-15 -3688 ((-3 $ #1#) $ (-925) (-925))) (-15 -3687 ((-646 (-925)) $)) (-15 -3686 ($ (-646 (-925)))) (-15 -3685 ((-1272 $))) (-15 -3684 ((-112) (-925) $)) (-15 -3683 ((-776) $ (-925) (-925)))))
-((-2986 (((-112) $ $) NIL)) (-3699 (((-112) $) NIL)) (-3695 (((-1183) $) NIL)) (-3700 (((-112) $) NIL)) (-3984 (((-1165) $) NIL)) (-3702 (((-112) $) NIL)) (-3704 (((-112) $) NIL)) (-3701 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-3698 (((-112) $) NIL)) (-3694 (((-551) $) NIL)) (-3682 (((-1126) $) NIL)) (-3697 (((-112) $) NIL)) (-3693 (((-226) $) NIL)) (-3692 (((-868) $) NIL)) (-3705 (((-112) $ $) NIL)) (-4249 (($ $ (-551)) NIL) (($ $ (-646 (-551))) NIL)) (-3696 (((-646 $) $) NIL)) (-4420 (($ (-1165)) NIL) (($ (-1183)) NIL) (($ (-551)) NIL) (($ (-226)) NIL) (($ (-868)) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL)) (-3690 (($ $) NIL)) (-3691 (($ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3703 (((-112) $) NIL)) (-3473 (((-112) $ $) NIL)) (-4407 (((-551) $) NIL)))
-(((-1109) (-1110 (-1165) (-1183) (-551) (-226) (-868))) (T -1109))
-NIL
-(-1110 (-1165) (-1183) (-551) (-226) (-868))
-((-2986 (((-112) $ $) 7)) (-3699 (((-112) $) 33)) (-3695 ((|#2| $) 28)) (-3700 (((-112) $) 34)) (-3984 ((|#1| $) 29)) (-3702 (((-112) $) 36)) (-3704 (((-112) $) 38)) (-3701 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3698 (((-112) $) 32)) (-3694 ((|#3| $) 27)) (-3682 (((-1126) $) 11)) (-3697 (((-112) $) 31)) (-3693 ((|#4| $) 26)) (-3692 ((|#5| $) 25)) (-3705 (((-112) $ $) 39)) (-4249 (($ $ (-551)) 21) (($ $ (-646 (-551))) 20)) (-3696 (((-646 $) $) 30)) (-4420 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-646 $)) 40)) (-4396 (((-868) $) 12)) (-3690 (($ $) 23)) (-3691 (($ $) 24)) (-3680 (((-112) $ $) 9)) (-3703 (((-112) $) 37)) (-3473 (((-112) $ $) 6)) (-4407 (((-551) $) 22)))
-(((-1110 |#1| |#2| |#3| |#4| |#5|) (-140) (-1107) (-1107) (-1107) (-1107) (-1107)) (T -1110))
-((-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))) (-3696 (*1 *2 *1) (-12 (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-1110 *3 *4 *5 *6 *7)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *2 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *2 *6)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *2)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *2 (-1107)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)))) (-3690 (*1 *1 *1) (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *2 (-1107)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)))) (-4407 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-551)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)))))
-(-13 (-1107) (-623 |t#1|) (-623 |t#2|) (-623 |t#3|) (-623 |t#4|) (-623 |t#4|) (-623 |t#5|) (-623 (-646 $)) (-10 -8 (-15 -3705 ((-112) $ $)) (-15 -3704 ((-112) $)) (-15 -3703 ((-112) $)) (-15 -3702 ((-112) $)) (-15 -3701 ((-112) $)) (-15 -3700 ((-112) $)) (-15 -3699 ((-112) $)) (-15 -3698 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -3696 ((-646 $) $)) (-15 -3984 (|t#1| $)) (-15 -3695 (|t#2| $)) (-15 -3694 (|t#3| $)) (-15 -3693 (|t#4| $)) (-15 -3692 (|t#5| $)) (-15 -3691 ($ $)) (-15 -3690 ($ $)) (-15 -4407 ((-551) $)) (-15 -4249 ($ $ (-551))) (-15 -4249 ($ $ (-646 (-551))))))
-(((-102) . T) ((-618 (-868)) . T) ((-623 (-646 $)) . T) ((-623 |#1|) . T) ((-623 |#2|) . T) ((-623 |#3|) . T) ((-623 |#4|) . T) ((-623 |#5|) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3699 (((-112) $) 45)) (-3695 ((|#2| $) 48)) (-3700 (((-112) $) 20)) (-3984 ((|#1| $) 21)) (-3702 (((-112) $) 42)) (-3704 (((-112) $) 14)) (-3701 (((-112) $) 44)) (-3681 (((-1165) $) NIL)) (-3698 (((-112) $) 46)) (-3694 ((|#3| $) 50)) (-3682 (((-1126) $) NIL)) (-3697 (((-112) $) 47)) (-3693 ((|#4| $) 49)) (-3692 ((|#5| $) 51)) (-3705 (((-112) $ $) 41)) (-4249 (($ $ (-551)) 62) (($ $ (-646 (-551))) 64)) (-3696 (((-646 $) $) 27)) (-4420 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-646 $)) 52)) (-4396 (((-868) $) 28)) (-3690 (($ $) 26)) (-3691 (($ $) 58)) (-3680 (((-112) $ $) NIL)) (-3703 (((-112) $) 23)) (-3473 (((-112) $ $) 40)) (-4407 (((-551) $) 60)))
-(((-1111 |#1| |#2| |#3| |#4| |#5|) (-1110 |#1| |#2| |#3| |#4| |#5|) (-1107) (-1107) (-1107) (-1107) (-1107)) (T -1111))
-NIL
-(-1110 |#1| |#2| |#3| |#4| |#5|)
-((-3822 (((-1278) $) 22)) (-3706 (($ (-1183) (-439) |#2|) 11)) (-4396 (((-868) $) 16)))
-(((-1112 |#1| |#2|) (-13 (-401) (-10 -8 (-15 -3706 ($ (-1183) (-439) |#2|)))) (-1107) (-426 |#1|)) (T -1112))
-((-3706 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1107)) (-5 *1 (-1112 *5 *4)) (-4 *4 (-426 *5)))))
-(-13 (-401) (-10 -8 (-15 -3706 ($ (-1183) (-439) |#2|))))
-((-3709 (((-112) |#5| |#5|) 44)) (-3712 (((-112) |#5| |#5|) 59)) (-3717 (((-112) |#5| (-646 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3713 (((-112) (-646 |#4|) (-646 |#4|)) 65)) (-3719 (((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) 70)) (-3708 (((-1278)) 32)) (-3707 (((-1278) (-1165) (-1165) (-1165)) 28)) (-3718 (((-646 |#5|) (-646 |#5|)) 101)) (-3720 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) 93)) (-3721 (((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112)) 123)) (-3711 (((-112) |#5| |#5|) 53)) (-3716 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3714 (((-112) (-646 |#4|) (-646 |#4|)) 64)) (-3715 (((-112) (-646 |#4|) (-646 |#4|)) 66)) (-4149 (((-112) (-646 |#4|) (-646 |#4|)) 67)) (-3722 (((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3710 (((-646 |#5|) (-646 |#5|)) 49)))
-(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1278) (-1165) (-1165) (-1165))) (-15 -3708 ((-1278))) (-15 -3709 ((-112) |#5| |#5|)) (-15 -3710 ((-646 |#5|) (-646 |#5|))) (-15 -3711 ((-112) |#5| |#5|)) (-15 -3712 ((-112) |#5| |#5|)) (-15 -3713 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3714 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3715 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -4149 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3716 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3717 ((-112) |#5| |#5|)) (-15 -3717 ((-112) |#5| (-646 |#5|))) (-15 -3718 ((-646 |#5|) (-646 |#5|))) (-15 -3719 ((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3720 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-15 -3721 ((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3722 ((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1113))
-((-3722 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *4) (|:| |ineq| (-646 *9)))) (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-646 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-3721 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-646 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *10) (|:| |ineq| (-646 *9))))) (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-646 *9)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-646 (-2 (|:| |val| (-646 *6)) (|:| -1718 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6 *7 *8 *3)))) (-3717 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3716 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-4149 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3712 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3711 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-3709 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-3708 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3707 ((-1278) (-1165) (-1165) (-1165))) (-15 -3708 ((-1278))) (-15 -3709 ((-112) |#5| |#5|)) (-15 -3710 ((-646 |#5|) (-646 |#5|))) (-15 -3711 ((-112) |#5| |#5|)) (-15 -3712 ((-112) |#5| |#5|)) (-15 -3713 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3714 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3715 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -4149 ((-112) (-646 |#4|) (-646 |#4|))) (-15 -3716 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3717 ((-112) |#5| |#5|)) (-15 -3717 ((-112) |#5| (-646 |#5|))) (-15 -3718 ((-646 |#5|) (-646 |#5|))) (-15 -3719 ((-112) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3720 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-15 -3721 ((-646 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|)))) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3722 ((-3 (-2 (|:| -3705 (-646 |#4|)) (|:| -1718 |#5|) (|:| |ineq| (-646 |#4|))) "failed") (-646 |#4|) |#5| (-646 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3737 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|) 108)) (-3727 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|) 80)) (-3730 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|) 102)) (-3732 (((-646 |#5|) |#4| |#5|) 124)) (-3734 (((-646 |#5|) |#4| |#5|) 131)) (-3736 (((-646 |#5|) |#4| |#5|) 132)) (-3731 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|) 109)) (-3733 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|) 130)) (-3735 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3728 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112)) 92) (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3729 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|) 87)) (-3726 (((-1278)) 36)) (-3724 (((-1278)) 25)) (-3725 (((-1278) (-1165) (-1165) (-1165)) 32)) (-3723 (((-1278) (-1165) (-1165) (-1165)) 21)))
-(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3723 ((-1278) (-1165) (-1165) (-1165))) (-15 -3724 ((-1278))) (-15 -3725 ((-1278) (-1165) (-1165) (-1165))) (-15 -3726 ((-1278))) (-15 -3727 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3728 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3728 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112))) (-15 -3729 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3730 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3735 ((-112) |#4| |#5|)) (-15 -3731 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3732 ((-646 |#5|) |#4| |#5|)) (-15 -3733 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3734 ((-646 |#5|) |#4| |#5|)) (-15 -3735 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3736 ((-646 |#5|) |#4| |#5|)) (-15 -3737 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1114))
-((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3734 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3730 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3729 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-646 (-2 (|:| |val| *8) (|:| -1718 *9)))) (-5 *1 (-1114 *6 *7 *4 *8 *9)))) (-3728 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3727 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3726 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3725 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-3724 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3723 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3723 ((-1278) (-1165) (-1165) (-1165))) (-15 -3724 ((-1278))) (-15 -3725 ((-1278) (-1165) (-1165) (-1165))) (-15 -3726 ((-1278))) (-15 -3727 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3728 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3728 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) |#3| (-112))) (-15 -3729 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3730 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#4| |#5|)) (-15 -3735 ((-112) |#4| |#5|)) (-15 -3731 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3732 ((-646 |#5|) |#4| |#5|)) (-15 -3733 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3734 ((-646 |#5|) |#4| |#5|)) (-15 -3735 ((-646 (-2 (|:| |val| (-112)) (|:| -1718 |#5|))) |#4| |#5|)) (-15 -3736 ((-646 |#5|) |#4| |#5|)) (-15 -3737 ((-646 (-2 (|:| |val| |#4|) (|:| -1718 |#5|))) |#4| |#5|)))
-((-2986 (((-112) $ $) 7)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) 86)) (-4132 (((-646 $) (-646 |#4|)) 87) (((-646 $) (-646 |#4|) (-112)) 112)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) 102) (((-112) $) 98)) (-4138 ((|#4| |#4| $) 93)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 127)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-4248 (((-3 $ #1#) $) 83)) (-4135 ((|#4| |#4| $) 90)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4133 ((|#4| |#4| $) 88)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) 106)) (-3635 (((-112) |#4| $) 137)) (-3633 (((-112) |#4| $) 134)) (-3636 (((-112) |#4| $) 138) (((-112) $) 135)) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) 105) (((-112) $) 104)) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) 129)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 128)) (-4247 (((-3 |#4| #1#) $) 84)) (-3630 (((-646 $) |#4| $) 130)) (-3632 (((-3 (-112) (-646 $)) |#4| $) 133)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3676 (((-646 $) |#4| $) 126) (((-646 $) (-646 |#4|) $) 125) (((-646 $) (-646 |#4|) (-646 $)) 124) (((-646 $) |#4| (-646 $)) 123)) (-3882 (($ |#4| $) 118) (($ (-646 |#4|) $) 117)) (-4147 (((-646 |#4|) $) 108)) (-4141 (((-112) |#4| $) 100) (((-112) $) 96)) (-4136 ((|#4| |#4| $) 91)) (-4149 (((-112) $ $) 111)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) 101) (((-112) $) 97)) (-4137 ((|#4| |#4| $) 92)) (-3682 (((-1126) $) 11)) (-4250 (((-3 |#4| #1#) $) 85)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4129 (((-3 $ #1#) $ |#4|) 79)) (-4218 (($ $ |#4|) 78) (((-646 $) |#4| $) 116) (((-646 $) |#4| (-646 $)) 115) (((-646 $) (-646 |#4|) $) 114) (((-646 $) (-646 |#4|) (-646 $)) 113)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-4398 (((-776) $) 107)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-4134 (($ $) 89)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-4128 (((-776) $) 77 (|has| |#3| (-372)))) (-3680 (((-112) $ $) 9)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) 99)) (-3627 (((-646 $) |#4| $) 122) (((-646 $) |#4| (-646 $)) 121) (((-646 $) (-646 |#4|) $) 120) (((-646 $) (-646 |#4|) (-646 $)) 119)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) 82)) (-3634 (((-112) |#4| $) 136)) (-4383 (((-112) |#3| $) 81)) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
+((-1356 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3)))) (-1324 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))))
+(-13 (-1099 |t#1|) (-10 -8 (-15 -1356 (|t#2| (-649 $))) (-15 -1356 (|t#2| $)) (-15 -1324 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-623 |#1|) . T) ((-1099 |#1|) . T))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-1702 (((-1141) $) 12)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3473 (((-649 (-1141)) $) 10)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1102) (-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $)) (-15 -1702 ((-1141) $))))) (T -1102))
+((-3473 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1102)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102)))))
+(-13 (-1089) (-10 -8 (-15 -3473 ((-649 (-1141)) $)) (-15 -1702 ((-1141) $))))
+((-3893 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1996 (($ $ $) 10)) (-2006 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1103 |#1| |#2|) (-10 -8 (-15 -3893 (|#1| |#2| |#1|)) (-15 -3893 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#2|)) (-15 -2006 (|#1| |#1| |#1|))) (-1104 |#2|) (-1106)) (T -1103))
+NIL
+(-10 -8 (-15 -3893 (|#1| |#2| |#1|)) (-15 -3893 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1| |#2|)) (-15 -2006 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-3893 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-1996 (($ $ $) 21)) (-1987 (((-112) $ $) 20)) (-1610 (((-112) $ (-776)) 36)) (-4250 (($) 26) (($ (-649 |#1|)) 25)) (-1391 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4443)))) (-3863 (($) 37 T CONST)) (-3437 (($ $) 60 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4443)))) (-2796 (((-649 |#1|) $) 44 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) 29)) (-3799 (((-112) $ (-776)) 35)) (-2912 (((-649 |#1|) $) 45 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 39)) (-1902 (((-112) $ (-776)) 34)) (-2050 (((-1165) $) 10)) (-2018 (($ $ $) 24)) (-3461 (((-1126) $) 11)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3983 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#1|) (-649 |#1|)) 51 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 49 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-297 |#1|))) 48 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 30)) (-4196 (((-112) $) 33)) (-2825 (($) 32)) (-2006 (($ $ $) 23) (($ $ |#1|) 22)) (-3469 (((-776) |#1| $) 46 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4443)))) (-3885 (($ $) 31)) (-1384 (((-541) $) 61 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 52)) (-2388 (((-867) $) 12)) (-3776 (($) 28) (($ (-649 |#1|)) 27)) (-2040 (((-112) $ $) 9)) (-3996 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 38 (|has| $ (-6 -4443)))))
+(((-1104 |#1|) (-140) (-1106)) (T -1104))
+((-2029 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-3776 (*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3)))) (-4250 (*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3)))) (-2018 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2006 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2006 (*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-1996 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-1987 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-3893 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3893 (*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3893 (*1 *1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
+(-13 (-1106) (-151 |t#1|) (-10 -8 (-6 -4433) (-15 -2029 ((-112) $ $)) (-15 -3776 ($)) (-15 -3776 ($ (-649 |t#1|))) (-15 -4250 ($)) (-15 -4250 ($ (-649 |t#1|))) (-15 -2018 ($ $ $)) (-15 -2006 ($ $ $)) (-15 -2006 ($ $ |t#1|)) (-15 -1996 ($ $ $)) (-15 -1987 ((-112) $ $)) (-15 -3893 ($ $ $)) (-15 -3893 ($ $ |t#1|)) (-15 -3893 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) . T) ((-1223) . T))
+((-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 8)) (-2040 (((-112) $ $) 12)))
+(((-1105 |#1|) (-10 -8 (-15 -2040 ((-112) |#1| |#1|)) (-15 -2050 ((-1165) |#1|)) (-15 -3461 ((-1126) |#1|))) (-1106)) (T -1105))
+NIL
+(-10 -8 (-15 -2040 ((-112) |#1| |#1|)) (-15 -2050 ((-1165) |#1|)) (-15 -3461 ((-1126) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-1106) (-140)) (T -1106))
+((-3461 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1126)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1165)))) (-2040 (*1 *2 *1 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-112)))))
+(-13 (-102) (-618 (-867)) (-10 -8 (-15 -3461 ((-1126) $)) (-15 -2050 ((-1165) $)) (-15 -2040 ((-112) $ $))))
+(((-102) . T) ((-618 (-867)) . T))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) 36)) (-2081 (($ (-649 (-927))) 72)) (-2100 (((-3 $ "failed") $ (-927) (-927)) 83)) (-3295 (($) 40)) (-2060 (((-112) (-927) $) 44)) (-3348 (((-927) $) 66)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) 39)) (-2110 (((-3 $ "failed") $ (-927)) 79)) (-3461 (((-1126) $) NIL)) (-2070 (((-1273 $)) 49)) (-2090 (((-649 (-927)) $) 27)) (-3011 (((-776) $ (-927) (-927)) 80)) (-2388 (((-867) $) 32)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 24)))
+(((-1107 |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2110 ((-3 $ "failed") $ (-927))) (-15 -2100 ((-3 $ "failed") $ (-927) (-927))) (-15 -2090 ((-649 (-927)) $)) (-15 -2081 ($ (-649 (-927)))) (-15 -2070 ((-1273 $))) (-15 -2060 ((-112) (-927) $)) (-15 -3011 ((-776) $ (-927) (-927))))) (-927) (-927)) (T -1107))
+((-2110 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2100 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2070 (*1 *2) (-12 (-5 *2 (-1273 (-1107 *3 *4))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-372) (-10 -8 (-15 -2110 ((-3 $ "failed") $ (-927))) (-15 -2100 ((-3 $ "failed") $ (-927) (-927))) (-15 -2090 ((-649 (-927)) $)) (-15 -2081 ($ (-649 (-927)))) (-15 -2070 ((-1273 $))) (-15 -2060 ((-112) (-927) $)) (-15 -3011 ((-776) $ (-927) (-927)))))
+((-2383 (((-112) $ $) NIL)) (-2878 (($) NIL (|has| |#1| (-372)))) (-3893 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-1996 (($ $ $) 81)) (-1987 (((-112) $ $) 82)) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#1| (-372)))) (-4250 (($ (-649 |#1|)) NIL) (($) 13)) (-1816 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-4218 (($ |#1| $) 74 (|has| $ (-6 -4443))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4443)))) (-3295 (($) NIL (|has| |#1| (-372)))) (-2796 (((-649 |#1|) $) 19 (|has| $ (-6 -4443)))) (-2029 (((-112) $ $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-2095 ((|#1| $) 55 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-2406 ((|#1| $) 53 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 34)) (-3348 (((-927) $) NIL (|has| |#1| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2018 (($ $ $) 79)) (-3481 ((|#1| $) 25)) (-2086 (($ |#1| $) 69)) (-2114 (($ (-927)) NIL (|has| |#1| (-372)))) (-3461 (((-1126) $) NIL)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3493 ((|#1| $) 27)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 21)) (-2825 (($) 11)) (-2006 (($ $ |#1|) NIL) (($ $ $) 80)) (-3054 (($) NIL) (($ (-649 |#1|)) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 16)) (-1384 (((-541) $) 50 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 62)) (-2889 (($ $) NIL (|has| |#1| (-372)))) (-2388 (((-867) $) NIL)) (-2900 (((-776) $) NIL)) (-3776 (($ (-649 |#1|)) NIL) (($) 12)) (-2040 (((-112) $ $) NIL)) (-3551 (($ (-649 |#1|)) NIL)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 52)) (-2394 (((-776) $) 10 (|has| $ (-6 -4443)))))
+(((-1108 |#1|) (-430 |#1|) (-1106)) (T -1108))
+NIL
+(-430 |#1|)
+((-2383 (((-112) $ $) 7)) (-2139 (((-112) $) 33)) (-1380 ((|#2| $) 28)) (-2149 (((-112) $) 34)) (-3279 ((|#1| $) 29)) (-2168 (((-112) $) 36)) (-2188 (((-112) $) 38)) (-2159 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-2129 (((-112) $) 32)) (-1405 ((|#3| $) 27)) (-3461 (((-1126) $) 11)) (-2120 (((-112) $) 31)) (-2493 ((|#4| $) 26)) (-2555 ((|#5| $) 25)) (-4289 (((-112) $ $) 39)) (-1852 (($ $ (-569)) 21) (($ $ (-649 (-569))) 20)) (-3789 (((-649 $) $) 30)) (-1384 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-649 $)) 40)) (-2388 (((-867) $) 12)) (-3296 (($ $) 23)) (-3284 (($ $) 24)) (-2040 (((-112) $ $) 9)) (-2178 (((-112) $) 37)) (-2853 (((-112) $ $) 6)) (-2394 (((-569) $) 22)))
+(((-1109 |#1| |#2| |#3| |#4| |#5|) (-140) (-1106) (-1106) (-1106) (-1106) (-1106)) (T -1109))
+((-4289 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3789 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-1109 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *2 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *2 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *2)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-569)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)))))
+(-13 (-1106) (-623 |t#1|) (-623 |t#2|) (-623 |t#3|) (-623 |t#4|) (-623 |t#4|) (-623 |t#5|) (-623 (-649 $)) (-10 -8 (-15 -4289 ((-112) $ $)) (-15 -2188 ((-112) $)) (-15 -2178 ((-112) $)) (-15 -2168 ((-112) $)) (-15 -2159 ((-112) $)) (-15 -2149 ((-112) $)) (-15 -2139 ((-112) $)) (-15 -2129 ((-112) $)) (-15 -2120 ((-112) $)) (-15 -3789 ((-649 $) $)) (-15 -3279 (|t#1| $)) (-15 -1380 (|t#2| $)) (-15 -1405 (|t#3| $)) (-15 -2493 (|t#4| $)) (-15 -2555 (|t#5| $)) (-15 -3284 ($ $)) (-15 -3296 ($ $)) (-15 -2394 ((-569) $)) (-15 -1852 ($ $ (-569))) (-15 -1852 ($ $ (-649 (-569))))))
+(((-102) . T) ((-618 (-867)) . T) ((-623 (-649 $)) . T) ((-623 |#1|) . T) ((-623 |#2|) . T) ((-623 |#3|) . T) ((-623 |#4|) . T) ((-623 |#5|) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2139 (((-112) $) NIL)) (-1380 (((-1183) $) NIL)) (-2149 (((-112) $) NIL)) (-3279 (((-1165) $) NIL)) (-2168 (((-112) $) NIL)) (-2188 (((-112) $) NIL)) (-2159 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-2129 (((-112) $) NIL)) (-1405 (((-569) $) NIL)) (-3461 (((-1126) $) NIL)) (-2120 (((-112) $) NIL)) (-2493 (((-226) $) NIL)) (-2555 (((-867) $) NIL)) (-4289 (((-112) $ $) NIL)) (-1852 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3789 (((-649 $) $) NIL)) (-1384 (($ (-1165)) NIL) (($ (-1183)) NIL) (($ (-569)) NIL) (($ (-226)) NIL) (($ (-867)) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL)) (-3296 (($ $) NIL)) (-3284 (($ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2178 (((-112) $) NIL)) (-2853 (((-112) $ $) NIL)) (-2394 (((-569) $) NIL)))
+(((-1110) (-1109 (-1165) (-1183) (-569) (-226) (-867))) (T -1110))
+NIL
+(-1109 (-1165) (-1183) (-569) (-226) (-867))
+((-2383 (((-112) $ $) NIL)) (-2139 (((-112) $) 45)) (-1380 ((|#2| $) 48)) (-2149 (((-112) $) 20)) (-3279 ((|#1| $) 21)) (-2168 (((-112) $) 42)) (-2188 (((-112) $) 14)) (-2159 (((-112) $) 44)) (-2050 (((-1165) $) NIL)) (-2129 (((-112) $) 46)) (-1405 ((|#3| $) 50)) (-3461 (((-1126) $) NIL)) (-2120 (((-112) $) 47)) (-2493 ((|#4| $) 49)) (-2555 ((|#5| $) 51)) (-4289 (((-112) $ $) 41)) (-1852 (($ $ (-569)) 62) (($ $ (-649 (-569))) 64)) (-3789 (((-649 $) $) 27)) (-1384 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-649 $)) 52)) (-2388 (((-867) $) 28)) (-3296 (($ $) 26)) (-3284 (($ $) 58)) (-2040 (((-112) $ $) NIL)) (-2178 (((-112) $) 23)) (-2853 (((-112) $ $) 40)) (-2394 (((-569) $) 60)))
+(((-1111 |#1| |#2| |#3| |#4| |#5|) (-1109 |#1| |#2| |#3| |#4| |#5|) (-1106) (-1106) (-1106) (-1106) (-1106)) (T -1111))
+NIL
+(-1109 |#1| |#2| |#3| |#4| |#5|)
+((-3275 (((-1278) $) 22)) (-4163 (($ (-1183) (-439) |#2|) 11)) (-2388 (((-867) $) 16)))
+(((-1112 |#1| |#2|) (-13 (-400) (-10 -8 (-15 -4163 ($ (-1183) (-439) |#2|)))) (-1106) (-435 |#1|)) (T -1112))
+((-4163 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1106)) (-5 *1 (-1112 *5 *4)) (-4 *4 (-435 *5)))))
+(-13 (-400) (-10 -8 (-15 -4163 ($ (-1183) (-439) |#2|))))
+((-2217 (((-112) |#5| |#5|) 44)) (-2247 (((-112) |#5| |#5|) 59)) (-2288 (((-112) |#5| (-649 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2255 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2305 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) 70)) (-2206 (((-1278)) 32)) (-2197 (((-1278) (-1165) (-1165) (-1165)) 28)) (-2297 (((-649 |#5|) (-649 |#5|)) 101)) (-2314 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) 93)) (-2323 (((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 123)) (-2236 (((-112) |#5| |#5|) 53)) (-2280 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2263 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2272 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-1755 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-2331 (((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2226 (((-649 |#5|) (-649 |#5|)) 49)))
+(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1278) (-1165) (-1165) (-1165))) (-15 -2206 ((-1278))) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2226 ((-649 |#5|) (-649 |#5|))) (-15 -2236 ((-112) |#5| |#5|)) (-15 -2247 ((-112) |#5| |#5|)) (-15 -2255 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2263 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2272 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1755 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2280 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2288 ((-112) |#5| |#5|)) (-15 -2288 ((-112) |#5| (-649 |#5|))) (-15 -2297 ((-649 |#5|) (-649 |#5|))) (-15 -2305 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2314 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-15 -2323 ((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2331 ((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1113))
+((-2331 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -4289 (-649 *9)) (|:| -3550 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-2323 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4289 (-649 *9)) (|:| -3550 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3550 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2305 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6 *7 *8 *3)))) (-2288 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2280 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-1755 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2272 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2263 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2255 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2247 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2236 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2206 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2197 ((-1278) (-1165) (-1165) (-1165))) (-15 -2206 ((-1278))) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2226 ((-649 |#5|) (-649 |#5|))) (-15 -2236 ((-112) |#5| |#5|)) (-15 -2247 ((-112) |#5| |#5|)) (-15 -2255 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2263 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2272 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1755 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2280 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2288 ((-112) |#5| |#5|)) (-15 -2288 ((-112) |#5| (-649 |#5|))) (-15 -2297 ((-649 |#5|) (-649 |#5|))) (-15 -2305 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2314 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-15 -2323 ((-649 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2331 ((-3 (-2 (|:| -4289 (-649 |#4|)) (|:| -3550 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1330 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|) 108)) (-2373 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|) 80)) (-2402 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|) 102)) (-2422 (((-649 |#5|) |#4| |#5|) 124)) (-4418 (((-649 |#5|) |#4| |#5|) 131)) (-1319 (((-649 |#5|) |#4| |#5|) 132)) (-2414 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|) 109)) (-4407 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|) 130)) (-1310 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2384 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112)) 92) (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2393 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|) 87)) (-2365 (((-1278)) 36)) (-2349 (((-1278)) 25)) (-2357 (((-1278) (-1165) (-1165) (-1165)) 32)) (-2340 (((-1278) (-1165) (-1165) (-1165)) 21)))
+(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2340 ((-1278) (-1165) (-1165) (-1165))) (-15 -2349 ((-1278))) (-15 -2357 ((-1278) (-1165) (-1165) (-1165))) (-15 -2365 ((-1278))) (-15 -2373 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2384 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2384 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112))) (-15 -2393 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2402 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -1310 ((-112) |#4| |#5|)) (-15 -2414 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -2422 ((-649 |#5|) |#4| |#5|)) (-15 -4407 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -4418 ((-649 |#5|) |#4| |#5|)) (-15 -1310 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -1319 ((-649 |#5|) |#4| |#5|)) (-15 -1330 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1114))
+((-1330 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1319 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1310 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-4418 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-4407 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2422 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2414 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1310 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2402 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2393 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3550 *9)))) (-5 *1 (-1114 *6 *7 *4 *8 *9)))) (-2384 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-2373 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2365 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2357 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2349 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-2340 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2340 ((-1278) (-1165) (-1165) (-1165))) (-15 -2349 ((-1278))) (-15 -2357 ((-1278) (-1165) (-1165) (-1165))) (-15 -2365 ((-1278))) (-15 -2373 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2384 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2384 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) |#3| (-112))) (-15 -2393 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -2402 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#4| |#5|)) (-15 -1310 ((-112) |#4| |#5|)) (-15 -2414 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -2422 ((-649 |#5|) |#4| |#5|)) (-15 -4407 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -4418 ((-649 |#5|) |#4| |#5|)) (-15 -1310 ((-649 (-2 (|:| |val| (-112)) (|:| -3550 |#5|))) |#4| |#5|)) (-15 -1319 ((-649 |#5|) |#4| |#5|)) (-15 -1330 ((-649 (-2 (|:| |val| |#4|) (|:| -3550 |#5|))) |#4| |#5|)))
+((-2383 (((-112) $ $) 7)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) 86)) (-1555 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) 102) (((-112) $) 98)) (-1624 ((|#4| |#4| $) 93)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 127)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3414 (((-3 $ "failed") $) 83)) (-1590 ((|#4| |#4| $) 90)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1567 ((|#4| |#4| $) 88)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) 106)) (-2881 (((-112) |#4| $) 137)) (-2862 (((-112) |#4| $) 134)) (-2892 (((-112) |#4| $) 138) (((-112) $) 135)) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) 105) (((-112) $) 104)) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 128)) (-1702 (((-3 |#4| "failed") $) 84)) (-2830 (((-649 $) |#4| $) 130)) (-2852 (((-3 (-112) (-649 $)) |#4| $) 133)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2018 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3143 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1730 (((-649 |#4|) $) 108)) (-1656 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-1755 (((-112) $ $) 111)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) 101) (((-112) $) 97)) (-1614 ((|#4| |#4| $) 92)) (-3461 (((-1126) $) 11)) (-3401 (((-3 |#4| "failed") $) 85)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1521 (((-3 $ "failed") $ |#4|) 79)) (-4295 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-2091 (((-776) $) 107)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-1577 (($ $) 89)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1512 (((-776) $) 77 (|has| |#3| (-372)))) (-2040 (((-112) $ $) 9)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2800 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) 82)) (-2871 (((-112) |#4| $) 136)) (-1988 (((-112) |#3| $) 81)) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
(((-1115 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1115))
NIL
(-13 (-1077 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1107) . T) ((-1217 |#1| |#2| |#3| |#4|) . T) ((-1222) . T))
-((-3748 (((-646 (-551)) (-551) (-551) (-551)) 39)) (-3747 (((-646 (-551)) (-551) (-551) (-551)) 29)) (-3746 (((-646 (-551)) (-551) (-551) (-551)) 34)) (-3745 (((-551) (-551) (-551)) 23)) (-3744 (((-1272 (-551)) (-646 (-551)) (-1272 (-551)) (-551)) 75) (((-1272 (-551)) (-1272 (-551)) (-1272 (-551)) (-551)) 70)) (-3743 (((-646 (-551)) (-646 (-551)) (-646 (-551)) (-112)) 52)) (-3742 (((-694 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551))) 74)) (-3741 (((-694 (-551)) (-646 (-551)) (-646 (-551))) 58)) (-3740 (((-646 (-694 (-551))) (-646 (-551))) 63)) (-3739 (((-646 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551))) 78)) (-3738 (((-694 (-551)) (-646 (-551)) (-646 (-551)) (-646 (-551))) 88)))
-(((-1116) (-10 -7 (-15 -3738 ((-694 (-551)) (-646 (-551)) (-646 (-551)) (-646 (-551)))) (-15 -3739 ((-646 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551)))) (-15 -3740 ((-646 (-694 (-551))) (-646 (-551)))) (-15 -3741 ((-694 (-551)) (-646 (-551)) (-646 (-551)))) (-15 -3742 ((-694 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551)))) (-15 -3743 ((-646 (-551)) (-646 (-551)) (-646 (-551)) (-112))) (-15 -3744 ((-1272 (-551)) (-1272 (-551)) (-1272 (-551)) (-551))) (-15 -3744 ((-1272 (-551)) (-646 (-551)) (-1272 (-551)) (-551))) (-15 -3745 ((-551) (-551) (-551))) (-15 -3746 ((-646 (-551)) (-551) (-551) (-551))) (-15 -3747 ((-646 (-551)) (-551) (-551) (-551))) (-15 -3748 ((-646 (-551)) (-551) (-551) (-551))))) (T -1116))
-((-3748 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))) (-3747 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))) (-3746 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1116)))) (-3744 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1272 (-551))) (-5 *3 (-646 (-551))) (-5 *4 (-551)) (-5 *1 (-1116)))) (-3744 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1272 (-551))) (-5 *3 (-551)) (-5 *1 (-1116)))) (-3743 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *3 (-112)) (-5 *1 (-1116)))) (-3742 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-694 (-551))) (-5 *3 (-646 (-551))) (-5 *1 (-1116)))) (-3741 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1116)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-1116)))) (-3739 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *3 (-694 (-551))) (-5 *1 (-1116)))) (-3738 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1116)))))
-(-10 -7 (-15 -3738 ((-694 (-551)) (-646 (-551)) (-646 (-551)) (-646 (-551)))) (-15 -3739 ((-646 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551)))) (-15 -3740 ((-646 (-694 (-551))) (-646 (-551)))) (-15 -3741 ((-694 (-551)) (-646 (-551)) (-646 (-551)))) (-15 -3742 ((-694 (-551)) (-646 (-551)) (-646 (-551)) (-694 (-551)))) (-15 -3743 ((-646 (-551)) (-646 (-551)) (-646 (-551)) (-112))) (-15 -3744 ((-1272 (-551)) (-1272 (-551)) (-1272 (-551)) (-551))) (-15 -3744 ((-1272 (-551)) (-646 (-551)) (-1272 (-551)) (-551))) (-15 -3745 ((-551) (-551) (-551))) (-15 -3746 ((-646 (-551)) (-551) (-551) (-551))) (-15 -3747 ((-646 (-551)) (-551) (-551) (-551))) (-15 -3748 ((-646 (-551)) (-551) (-551) (-551))))
-((** (($ $ (-925)) 10)))
-(((-1117 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-925)))) (-1118)) (T -1117))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-925))))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)) (** (($ $ (-925)) 14)) (* (($ $ $) 15)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
+((-1459 (((-649 (-569)) (-569) (-569) (-569)) 39)) (-1447 (((-649 (-569)) (-569) (-569) (-569)) 29)) (-1437 (((-649 (-569)) (-569) (-569) (-569)) 34)) (-1427 (((-569) (-569) (-569)) 23)) (-1417 (((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569)) 75) (((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569)) 70)) (-1404 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112)) 52)) (-1389 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 74)) (-1377 (((-694 (-569)) (-649 (-569)) (-649 (-569))) 58)) (-1367 (((-649 (-694 (-569))) (-649 (-569))) 63)) (-1355 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 78)) (-1343 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569))) 88)))
+(((-1116) (-10 -7 (-15 -1343 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1355 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -1367 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -1377 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1389 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -1404 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -1417 ((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569))) (-15 -1417 ((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569))) (-15 -1427 ((-569) (-569) (-569))) (-15 -1437 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1447 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1459 ((-649 (-569)) (-569) (-569) (-569))))) (T -1116))
+((-1459 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-1447 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-1437 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-1427 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1116)))) (-1417 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569)) (-5 *1 (-1116)))) (-1417 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-569)) (-5 *1 (-1116)))) (-1404 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1116)))) (-1389 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1116)))) (-1377 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1116)))) (-1355 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1116)))) (-1343 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
+(-10 -7 (-15 -1343 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1355 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -1367 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -1377 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1389 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -1404 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -1417 ((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569))) (-15 -1417 ((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569))) (-15 -1427 ((-569) (-569) (-569))) (-15 -1437 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1447 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1459 ((-649 (-569)) (-569) (-569) (-569))))
+((** (($ $ (-927)) 10)))
+(((-1117 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927)))) (-1118)) (T -1117))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-927))))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 15)))
(((-1118) (-140)) (T -1118))
-((* (*1 *1 *1 *1) (-4 *1 (-1118))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-925)))))
-(-13 (-1107) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-925)))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL (|has| |#3| (-1107)))) (-3626 (((-112) $) NIL (|has| |#3| (-131)))) (-4157 (($ (-925)) NIL (|has| |#3| (-1055)))) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-2823 (($ $ $) NIL (|has| |#3| (-798)))) (-1410 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1312 (((-112) $ (-776)) NIL)) (-3558 (((-776)) NIL (|has| |#3| (-372)))) (-4073 (((-551) $) NIL (|has| |#3| (-853)))) (-4237 ((|#3| $ (-551) |#3|) NIL (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107)))) (((-3 (-412 (-551)) #1#) $) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1107)))) (-3594 (((-551) $) NIL (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107)))) (((-412 (-551)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107)))) ((|#3| $) NIL (|has| |#3| (-1107)))) (-2445 (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#3| (-644 (-551))) (|has| |#3| (-1055)))) (((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 $) (-1272 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055)))) (-3908 (((-3 $ "failed") $) NIL (|has| |#3| (-731)))) (-3413 (($) NIL (|has| |#3| (-372)))) (-1694 ((|#3| $ (-551) |#3|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#3| $ (-551)) 12)) (-3624 (((-112) $) NIL (|has| |#3| (-853)))) (-2134 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL (|has| |#3| (-731)))) (-3625 (((-112) $) NIL (|has| |#3| (-853)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3026 (((-646 |#3|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2138 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#3| |#3|) $) NIL)) (-2198 (((-925) $) NIL (|has| |#3| (-372)))) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#3| (-1107)))) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-2581 (($ (-925)) NIL (|has| |#3| (-372)))) (-3682 (((-1126) $) NIL (|has| |#3| (-1107)))) (-4250 ((|#3| $) NIL (|has| (-551) (-855)))) (-2391 (($ $ |#3|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-296 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107)))) (($ $ (-646 |#3|) (-646 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-2397 (((-646 |#3|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#3| $ (-551) |#3|) NIL) ((|#3| $ (-551)) NIL)) (-4286 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-1575 (($ (-1272 |#3|)) NIL)) (-4361 (((-134)) NIL (|has| |#3| (-367)))) (-4260 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-2135 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1107))))) (-3842 (($ $) NIL)) (-4396 (((-1272 |#3|) $) NIL) (($ (-551)) NIL (-3978 (-12 (|has| |#3| (-1044 (-551))) (|has| |#3| (-1107))) (|has| |#3| (-1055)))) (($ (-412 (-551))) NIL (-12 (|has| |#3| (-1044 (-412 (-551)))) (|has| |#3| (-1107)))) (($ |#3|) NIL (|has| |#3| (-1107))) (((-868) $) NIL (|has| |#3| (-618 (-868))))) (-3548 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-3680 (((-112) $ $) NIL (|has| |#3| (-1107)))) (-2137 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3825 (($ $) NIL (|has| |#3| (-853)))) (-3528 (($) NIL (|has| |#3| (-131)) CONST)) (-3085 (($) NIL (|has| |#3| (-731)) CONST)) (-3090 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-2984 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2985 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3473 (((-112) $ $) NIL (|has| |#3| (-1107)))) (-3105 (((-112) $ $) NIL (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3106 (((-112) $ $) 24 (-3978 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-4399 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-4287 (($ $ $) NIL (|has| |#3| (-1055))) (($ $) NIL (|has| |#3| (-1055)))) (-4289 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-776)) NIL (|has| |#3| (-731))) (($ $ (-925)) NIL (|has| |#3| (-731)))) (* (($ (-551) $) NIL (|has| |#3| (-1055))) (($ $ $) NIL (|has| |#3| (-731))) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ (-776) $) NIL (|has| |#3| (-131))) (($ (-925) $) NIL (|has| |#3| (-25)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1118))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-927)))))
+(-13 (-1106) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-927)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-2789 (((-112) $) NIL (|has| |#3| (-131)))) (-1833 (($ (-927)) NIL (|has| |#3| (-1055)))) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3576 (($ $ $) NIL (|has| |#3| (-798)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1610 (((-112) $ (-776)) NIL)) (-3363 (((-776)) NIL (|has| |#3| (-372)))) (-2211 (((-569) $) NIL (|has| |#3| (-853)))) (-3861 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1106)))) (-3043 (((-569) $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) ((|#3| $) NIL (|has| |#3| (-1106)))) (-4091 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055)))) (-3351 (((-3 $ "failed") $) NIL (|has| |#3| (-731)))) (-3295 (($) NIL (|has| |#3| (-372)))) (-3074 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#3| $ (-569)) 12)) (-2769 (((-112) $) NIL (|has| |#3| (-853)))) (-2796 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL (|has| |#3| (-731)))) (-2778 (((-112) $) NIL (|has| |#3| (-853)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2912 (((-649 |#3|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#3| |#3|) $) NIL)) (-3348 (((-927) $) NIL (|has| |#3| (-372)))) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#3| (-1106)))) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-2114 (($ (-927)) NIL (|has| |#3| (-372)))) (-3461 (((-1126) $) NIL (|has| |#3| (-1106)))) (-3401 ((|#3| $) NIL (|has| (-569) (-855)))) (-1713 (($ $ |#3|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-1784 (((-649 |#3|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) NIL)) (-3523 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-3751 (($ (-1273 |#3|)) NIL)) (-2905 (((-134)) NIL (|has| |#3| (-367)))) (-3430 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-3469 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#3| (-1106))))) (-3885 (($ $) NIL)) (-2388 (((-1273 |#3|) $) NIL) (($ (-569)) NIL (-2718 (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) (($ |#3|) NIL (|has| |#3| (-1106))) (((-867) $) NIL (|has| |#3| (-618 (-867))))) (-3263 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-2040 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-3996 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4443)))) (-3999 (($ $) NIL (|has| |#3| (-853)))) (-1786 (($) NIL (|has| |#3| (-131)) CONST)) (-1796 (($) NIL (|has| |#3| (-731)) CONST)) (-2749 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-2904 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2882 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2853 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-2893 (((-112) $ $) NIL (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2872 (((-112) $ $) 24 (-2718 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-2946 (($ $ $) NIL (|has| |#3| (-1055))) (($ $) NIL (|has| |#3| (-1055)))) (-2935 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-776)) NIL (|has| |#3| (-731))) (($ $ (-927)) NIL (|has| |#3| (-731)))) (* (($ (-569) $) NIL (|has| |#3| (-1055))) (($ $ $) NIL (|has| |#3| (-731))) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ (-776) $) NIL (|has| |#3| (-131))) (($ (-927) $) NIL (|has| |#3| (-25)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
(((-1119 |#1| |#2| |#3|) (-239 |#1| |#3|) (-776) (-776) (-798)) (T -1119))
NIL
(-239 |#1| |#3|)
-((-3749 (((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 50)) (-3755 (((-551) (-1241 |#2| |#1|)) 97 (|has| |#1| (-457)))) (-3753 (((-551) (-1241 |#2| |#1|)) 79)) (-3750 (((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 60)) (-3754 (((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 96 (|has| |#1| (-457)))) (-3751 (((-646 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 64)) (-3752 (((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 78)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -3749 ((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3750 ((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3751 ((-646 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3752 ((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3753 ((-551) (-1241 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3754 ((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3755 ((-551) (-1241 |#2| |#1|)))) |%noBranch|)) (-825) (-1183)) (T -1120))
-((-3755 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))) (-3754 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))) (-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))) (-3751 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 *4)) (-5 *1 (-1120 *4 *5)))) (-3750 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 (-1241 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1241 *5 *4)))) (-3749 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 (-1241 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1241 *5 *4)))))
-(-10 -7 (-15 -3749 ((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3750 ((-646 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3751 ((-646 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3752 ((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3753 ((-551) (-1241 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3754 ((-551) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3755 ((-551) (-1241 |#2| |#1|)))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3757 (((-1188) $) 12)) (-3756 (((-646 (-1188)) $) 14)) (-3758 (($ (-646 (-1188)) (-1188)) 10)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 29)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 17)))
-(((-1121) (-13 (-1107) (-10 -8 (-15 -3758 ($ (-646 (-1188)) (-1188))) (-15 -3757 ((-1188) $)) (-15 -3756 ((-646 (-1188)) $))))) (T -1121))
-((-3758 (*1 *1 *2 *3) (-12 (-5 *2 (-646 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1121)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1121)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1121)))))
-(-13 (-1107) (-10 -8 (-15 -3758 ($ (-646 (-1188)) (-1188))) (-15 -3757 ((-1188) $)) (-15 -3756 ((-646 (-1188)) $))))
-((-2986 (((-112) $ $) NIL)) (-3759 (($ (-511) (-1121)) 13)) (-3758 (((-1121) $) 19)) (-3991 (((-511) $) 16)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 26) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1122) (-13 (-1089) (-10 -8 (-15 -3759 ($ (-511) (-1121))) (-15 -3991 ((-511) $)) (-15 -3758 ((-1121) $))))) (T -1122))
-((-3759 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1121)) (-5 *1 (-1122)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1122)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1122)))))
-(-13 (-1089) (-10 -8 (-15 -3759 ($ (-511) (-1121))) (-15 -3991 ((-511) $)) (-15 -3758 ((-1121) $))))
-((-4073 (((-3 (-551) #1="failed") |#2| (-1183) |#2| (-1165)) 19) (((-3 (-551) #1#) |#2| (-1183) (-847 |#2|)) 17) (((-3 (-551) #1#) |#2|) 60)))
-(((-1123 |#1| |#2|) (-10 -7 (-15 -4073 ((-3 (-551) #1="failed") |#2|)) (-15 -4073 ((-3 (-551) #1#) |#2| (-1183) (-847 |#2|))) (-15 -4073 ((-3 (-551) #1#) |#2| (-1183) |#2| (-1165)))) (-13 (-562) (-1044 (-551)) (-644 (-551)) (-457)) (-13 (-27) (-1208) (-426 |#1|))) (T -1123))
-((-4073 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-13 (-562) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-551)) (-5 *1 (-1123 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))))) (-4073 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-847 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6))) (-4 *6 (-13 (-562) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-551)) (-5 *1 (-1123 *6 *3)))) (-4073 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-551)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))))
-(-10 -7 (-15 -4073 ((-3 (-551) #1="failed") |#2|)) (-15 -4073 ((-3 (-551) #1#) |#2| (-1183) (-847 |#2|))) (-15 -4073 ((-3 (-551) #1#) |#2| (-1183) |#2| (-1165))))
-((-4073 (((-3 (-551) #1="failed") (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)) (-1165)) 38) (((-3 (-551) #1#) (-412 (-952 |#1|)) (-1183) (-847 (-412 (-952 |#1|)))) 33) (((-3 (-551) #1#) (-412 (-952 |#1|))) 14)))
-(((-1124 |#1|) (-10 -7 (-15 -4073 ((-3 (-551) #1="failed") (-412 (-952 |#1|)))) (-15 -4073 ((-3 (-551) #1#) (-412 (-952 |#1|)) (-1183) (-847 (-412 (-952 |#1|))))) (-15 -4073 ((-3 (-551) #1#) (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)) (-1165)))) (-457)) (T -1124))
-((-4073 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-412 (-952 *6))) (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-457)) (-5 *2 (-551)) (-5 *1 (-1124 *6)))) (-4073 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-847 (-412 (-952 *6)))) (-5 *3 (-412 (-952 *6))) (-4 *6 (-457)) (-5 *2 (-551)) (-5 *1 (-1124 *6)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-457)) (-5 *2 (-551)) (-5 *1 (-1124 *4)))))
-(-10 -7 (-15 -4073 ((-3 (-551) #1="failed") (-412 (-952 |#1|)))) (-15 -4073 ((-3 (-551) #1#) (-412 (-952 |#1|)) (-1183) (-847 (-412 (-952 |#1|))))) (-15 -4073 ((-3 (-551) #1#) (-412 (-952 |#1|)) (-1183) (-412 (-952 |#1|)) (-1165))))
-((-4099 (((-317 (-551)) (-48)) 12)))
-(((-1125) (-10 -7 (-15 -4099 ((-317 (-551)) (-48))))) (T -1125))
-((-4099 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-551))) (-5 *1 (-1125)))))
-(-10 -7 (-15 -4099 ((-317 (-551)) (-48))))
-((-2986 (((-112) $ $) NIL)) (-2476 (($ $) 44)) (-3626 (((-112) $) 69)) (-3763 (($ $ $) 51)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 97)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-2235 (($ $ $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-2230 (($ $ $ $) 80)) (-4224 (($ $) NIL)) (-4419 (((-410 $) $) NIL)) (-1763 (((-112) $ $) NIL)) (-3558 (((-776)) 82)) (-4073 (((-551) $) NIL)) (-2780 (($ $ $) 77)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) "failed") $) NIL)) (-3594 (((-551) $) NIL)) (-2982 (($ $ $) 63)) (-2445 (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 91) (((-694 (-551)) (-694 $)) 32)) (-3908 (((-3 $ "failed") $) NIL)) (-3443 (((-3 (-412 (-551)) "failed") $) NIL)) (-3442 (((-112) $) NIL)) (-3441 (((-412 (-551)) $) NIL)) (-3413 (($) 94) (($ $) 95)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL)) (-4173 (((-112) $) NIL)) (-2228 (($ $ $ $) NIL)) (-2236 (($ $ $) 92)) (-3624 (((-112) $) NIL)) (-1459 (($ $ $) NIL)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL)) (-2591 (((-112) $) 71)) (-3094 (((-112) $) 68)) (-3764 (($ $) 45)) (-3886 (((-3 $ "failed") $) NIL)) (-3625 (((-112) $) 81)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL)) (-2229 (($ $ $ $) 78)) (-2952 (($ $ $) 73) (($) 42 T CONST)) (-3278 (($ $ $) 72) (($) 41 T CONST)) (-2232 (($ $) NIL)) (-2198 (((-925) $) 87)) (-4283 (($ $) 76)) (-2079 (($ $ $) NIL) (($ (-646 $)) NIL)) (-3681 (((-1165) $) NIL)) (-2227 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-2581 (($ (-925)) 86)) (-2234 (($ $) 56)) (-3682 (((-1126) $) 75)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL)) (-3582 (($ $ $) 66) (($ (-646 $)) NIL)) (-1457 (($ $) NIL)) (-4182 (((-410 $) $) NIL)) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL)) (-3907 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1762 (((-776) $) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 65)) (-4260 (($ $ (-776)) NIL) (($ $) NIL)) (-2233 (($ $) 57)) (-3842 (($ $) NIL)) (-4420 (((-551) $) 17) (((-540) $) NIL) (((-896 (-551)) $) NIL) (((-382) $) NIL) (((-226) $) NIL)) (-4396 (((-868) $) 35) (($ (-551)) 93) (($ $) NIL) (($ (-551)) 93)) (-3548 (((-776)) NIL T CONST)) (-2237 (((-112) $ $) NIL)) (-3523 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3115 (($) 40)) (-2250 (((-112) $ $) NIL)) (-2231 (($ $ $ $) 79)) (-3825 (($ $) 67)) (-2474 (($ $ $) 47)) (-3528 (($) 7 T CONST)) (-3760 (($ $ $) 50)) (-3085 (($) 39 T CONST)) (-2918 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-828) $) 28) (((-1278) (-828) $ (-112)) 29)) (-3762 (($ $) 48)) (-3090 (($ $ (-776)) NIL) (($ $) NIL)) (-3761 (($ $ $) 49)) (-2984 (((-112) $ $) 55)) (-2985 (((-112) $ $) 52)) (-3473 (((-112) $ $) 43)) (-3105 (((-112) $ $) 54)) (-3106 (((-112) $ $) 10)) (-2475 (($ $ $) 46)) (-4287 (($ $) 16) (($ $ $) 59)) (-4289 (($ $ $) 58)) (** (($ $ (-925)) NIL) (($ $ (-776)) 61)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 38) (($ $ $) 37)))
-(((-1126) (-13 (-550) (-849) (-667) (-826) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3764 ($ $)) (-15 -3763 ($ $ $)) (-15 -3762 ($ $)) (-15 -3761 ($ $ $)) (-15 -3760 ($ $ $))))) (T -1126))
-((-3764 (*1 *1 *1) (-5 *1 (-1126))) (-3763 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3762 (*1 *1 *1) (-5 *1 (-1126))) (-3761 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3760 (*1 *1 *1 *1) (-5 *1 (-1126))))
-(-13 (-550) (-849) (-667) (-826) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -3764 ($ $)) (-15 -3763 ($ $ $)) (-15 -3762 ($ $)) (-15 -3761 ($ $ $)) (-15 -3760 ($ $ $))))
+((-1469 (((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 50)) (-1527 (((-569) (-1246 |#2| |#1|)) 97 (|has| |#1| (-457)))) (-1508 (((-569) (-1246 |#2| |#1|)) 79)) (-1481 (((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 60)) (-1517 (((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 96 (|has| |#1| (-457)))) (-1490 (((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 64)) (-1499 (((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 78)))
+(((-1120 |#1| |#2|) (-10 -7 (-15 -1469 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1481 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1490 ((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1499 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1508 ((-569) (-1246 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -1517 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1527 ((-569) (-1246 |#2| |#1|)))) |%noBranch|)) (-825) (-1183)) (T -1120))
+((-1527 (*1 *2 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-1517 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-1499 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 *4)) (-5 *1 (-1120 *4 *5)))) (-1481 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))) (-1469 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
+(-10 -7 (-15 -1469 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1481 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1490 ((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1499 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1508 ((-569) (-1246 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -1517 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -1527 ((-569) (-1246 |#2| |#1|)))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-1539 (($ (-511) (-1124)) 13)) (-4311 (((-1124) $) 19)) (-3458 (((-511) $) 16)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 26) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1121) (-13 (-1089) (-10 -8 (-15 -1539 ($ (-511) (-1124))) (-15 -3458 ((-511) $)) (-15 -4311 ((-1124) $))))) (T -1121))
+((-1539 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-1121)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1121)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1121)))))
+(-13 (-1089) (-10 -8 (-15 -1539 ($ (-511) (-1124))) (-15 -3458 ((-511) $)) (-15 -4311 ((-1124) $))))
+((-2211 (((-3 (-569) "failed") |#2| (-1183) |#2| (-1165)) 19) (((-3 (-569) "failed") |#2| (-1183) (-848 |#2|)) 17) (((-3 (-569) "failed") |#2|) 60)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -2211 ((-3 (-569) "failed") |#2|)) (-15 -2211 ((-3 (-569) "failed") |#2| (-1183) (-848 |#2|))) (-15 -2211 ((-3 (-569) "failed") |#2| (-1183) |#2| (-1165)))) (-13 (-561) (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|))) (T -1122))
+((-2211 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))))) (-2211 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *6 *3)))) (-2211 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
+(-10 -7 (-15 -2211 ((-3 (-569) "failed") |#2|)) (-15 -2211 ((-3 (-569) "failed") |#2| (-1183) (-848 |#2|))) (-15 -2211 ((-3 (-569) "failed") |#2| (-1183) |#2| (-1165))))
+((-2211 (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165)) 38) (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|)))) 33) (((-3 (-569) "failed") (-412 (-958 |#1|))) 14)))
+(((-1123 |#1|) (-10 -7 (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|))))) (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165)))) (-457)) (T -1123))
+((-2211 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6)))) (-2211 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6)))) (-2211 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *4)))))
+(-10 -7 (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|))))) (-15 -2211 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165))))
+((-2383 (((-112) $ $) NIL)) (-3778 (((-1188) $) 12)) (-3717 (((-649 (-1188)) $) 14)) (-4311 (($ (-649 (-1188)) (-1188)) 10)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 29)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 17)))
+(((-1124) (-13 (-1106) (-10 -8 (-15 -4311 ($ (-649 (-1188)) (-1188))) (-15 -3778 ((-1188) $)) (-15 -3717 ((-649 (-1188)) $))))) (T -1124))
+((-4311 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1124)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1124)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1124)))))
+(-13 (-1106) (-10 -8 (-15 -4311 ($ (-649 (-1188)) (-1188))) (-15 -3778 ((-1188) $)) (-15 -3717 ((-649 (-1188)) $))))
+((-2353 (((-319 (-569)) (-48)) 12)))
+(((-1125) (-10 -7 (-15 -2353 ((-319 (-569)) (-48))))) (T -1125))
+((-2353 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1125)))))
+(-10 -7 (-15 -2353 ((-319 (-569)) (-48))))
+((-2383 (((-112) $ $) NIL)) (-2400 (($ $) 44)) (-2789 (((-112) $) 69)) (-1764 (($ $ $) 51)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 97)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-2424 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2405 (($ $ $ $) 80)) (-4332 (($ $) NIL)) (-2207 (((-423 $) $) NIL)) (-4420 (((-112) $ $) NIL)) (-3363 (((-776)) 82)) (-2211 (((-569) $) NIL)) (-2979 (($ $ $) 77)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL)) (-3043 (((-569) $) NIL)) (-2339 (($ $ $) 63)) (-4091 (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 91) (((-694 (-569)) (-694 $)) 32)) (-3351 (((-3 $ "failed") $) NIL)) (-1740 (((-3 (-412 (-569)) "failed") $) NIL)) (-1727 (((-112) $) NIL)) (-1715 (((-412 (-569)) $) NIL)) (-3295 (($) 94) (($ $) 95)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL)) (-3848 (((-112) $) NIL)) (-3630 (($ $ $ $) NIL)) (-2432 (($ $ $) 92)) (-2769 (((-112) $) NIL)) (-1335 (($ $ $) NIL)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2861 (((-112) $) 71)) (-2355 (((-112) $) 68)) (-1728 (($ $) 45)) (-3177 (((-3 $ "failed") $) NIL)) (-2778 (((-112) $) 81)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3643 (($ $ $ $) 78)) (-2095 (($ $ $) 73) (($) 42 T CONST)) (-2406 (($ $ $) 72) (($) 41 T CONST)) (-2537 (($ $) NIL)) (-3348 (((-927) $) 87)) (-3747 (($ $) 76)) (-1798 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2050 (((-1165) $) NIL)) (-3619 (($ $ $) NIL)) (-2267 (($) NIL T CONST)) (-2114 (($ (-927)) 86)) (-1566 (($ $) 56)) (-3461 (((-1126) $) 75)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1830 (($ $ $) 66) (($ (-649 $)) NIL)) (-1315 (($ $) NIL)) (-3699 (((-423 $) $) NIL)) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL)) (-2374 (((-3 $ "failed") $ $) NIL)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4336 (((-112) $) NIL)) (-4409 (((-776) $) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 65)) (-3430 (($ $ (-776)) NIL) (($ $) NIL)) (-3003 (($ $) 57)) (-3885 (($ $) NIL)) (-1384 (((-569) $) 17) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL)) (-2388 (((-867) $) 35) (($ (-569)) 93) (($ $) NIL) (($ (-569)) 93)) (-3263 (((-776)) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-3038 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-4344 (($) 40)) (-2574 (((-112) $ $) NIL)) (-2416 (($ $ $ $) 79)) (-3999 (($ $) 67)) (-4415 (($ $ $) 47)) (-1786 (($) 7 T CONST)) (-3395 (($ $ $) 50)) (-1796 (($) 39 T CONST)) (-3218 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-827) $) 28) (((-1278) (-827) $ (-112)) 29)) (-3407 (($ $) 48)) (-2749 (($ $ (-776)) NIL) (($ $) NIL)) (-3382 (($ $ $) 49)) (-2904 (((-112) $ $) 55)) (-2882 (((-112) $ $) 52)) (-2853 (((-112) $ $) 43)) (-2893 (((-112) $ $) 54)) (-2872 (((-112) $ $) 10)) (-4404 (($ $ $) 46)) (-2946 (($ $) 16) (($ $ $) 59)) (-2935 (($ $ $) 58)) (** (($ $ (-927)) NIL) (($ $ (-776)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 38) (($ $ $) 37)))
+(((-1126) (-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -1728 ($ $)) (-15 -1764 ($ $ $)) (-15 -3407 ($ $)) (-15 -3382 ($ $ $)) (-15 -3395 ($ $ $))))) (T -1126))
+((-1728 (*1 *1 *1) (-5 *1 (-1126))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3407 (*1 *1 *1) (-5 *1 (-1126))) (-3382 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3395 (*1 *1 *1 *1) (-5 *1 (-1126))))
+(-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4430) (-6 -4435) (-6 -4431) (-15 -1728 ($ $)) (-15 -1764 ($ $ $)) (-15 -3407 ($ $)) (-15 -3382 ($ $ $)) (-15 -3395 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3766 ((|#1| $) 45)) (-1312 (((-112) $ (-776)) 8)) (-4174 (($) 7 T CONST)) (-3768 ((|#1| |#1| $) 47)) (-3767 ((|#1| $) 46)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-1372 ((|#1| $) 40)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-1373 ((|#1| $) 42)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-3765 (((-776) $) 44)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) 43)) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1127 |#1|) (-140) (-1222)) (T -1127))
-((-3768 (*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -3768 (|t#1| |t#1| $)) (-15 -3767 (|t#1| $)) (-15 -3766 (|t#1| $)) (-15 -3765 ((-776) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-3772 ((|#3| $) 87)) (-3595 (((-3 (-551) #1="failed") $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 |#3| #1#) $) 50)) (-3594 (((-551) $) NIL) (((-412 (-551)) $) NIL) ((|#3| $) 47)) (-2445 (((-694 (-551)) (-694 $)) NIL) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL) (((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 $) (-1272 $)) 84) (((-694 |#3|) (-694 $)) 76)) (-4260 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3771 ((|#3| $) 89)) (-3773 ((|#4| $) 43)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-412 (-551))) NIL) (($ |#3|) 25)) (** (($ $ (-925)) NIL) (($ $ (-776)) 24) (($ $ (-551)) 95)))
-(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-551))) (-15 -3771 (|#3| |#1|)) (-15 -3772 (|#3| |#1|)) (-15 -3773 (|#4| |#1|)) (-15 -2445 ((-694 |#3|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -4396 (|#1| |#3|)) (-15 -3595 ((-3 |#3| #1="failed") |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))) (-15 -4396 ((-868) |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-776) (-1055) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1128))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-551))) (-15 -3771 (|#3| |#1|)) (-15 -3772 (|#3| |#1|)) (-15 -3773 (|#4| |#1|)) (-15 -2445 ((-694 |#3|) (-694 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 |#3|)) (|:| |vec| (-1272 |#3|))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 |#1|) (-1272 |#1|))) (-15 -2445 ((-694 (-551)) (-694 |#1|))) (-15 -4396 (|#1| |#3|)) (-15 -3595 ((-3 |#3| #1="failed") |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -4260 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3772 ((|#2| $) 77)) (-3543 (((-112) $) 117)) (-1410 (((-3 $ "failed") $ $) 20)) (-3545 (((-112) $) 115)) (-1312 (((-112) $ (-776)) 107)) (-3775 (($ |#2|) 80)) (-4174 (($) 18 T CONST)) (-3532 (($ $) 134 (|has| |#2| (-310)))) (-3534 ((|#3| $ (-551)) 129)) (-3595 (((-3 (-551) #1="failed") $) 92 (|has| |#2| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) 89 (|has| |#2| (-1044 (-412 (-551))))) (((-3 |#2| #1#) $) 86)) (-3594 (((-551) $) 91 (|has| |#2| (-1044 (-551)))) (((-412 (-551)) $) 88 (|has| |#2| (-1044 (-412 (-551))))) ((|#2| $) 87)) (-2445 (((-694 (-551)) (-694 $)) 84 (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 83 (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 82) (((-694 |#2|) (-694 $)) 81)) (-3908 (((-3 $ "failed") $) 37)) (-3531 (((-776) $) 135 (|has| |#2| (-562)))) (-3535 ((|#2| $ (-551) (-551)) 127)) (-2134 (((-646 |#2|) $) 100 (|has| $ (-6 -4443)))) (-2591 (((-112) $) 35)) (-3530 (((-776) $) 136 (|has| |#2| (-562)))) (-3529 (((-646 |#4|) $) 137 (|has| |#2| (-562)))) (-3537 (((-776) $) 123)) (-3536 (((-776) $) 124)) (-4169 (((-112) $ (-776)) 108)) (-3769 ((|#2| $) 72 (|has| |#2| (-6 (-4445 #2="*"))))) (-3541 (((-551) $) 119)) (-3539 (((-551) $) 121)) (-3026 (((-646 |#2|) $) 99 (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-3540 (((-551) $) 120)) (-3538 (((-551) $) 122)) (-3546 (($ (-646 (-646 |#2|))) 114)) (-2138 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-4043 (((-646 (-646 |#2|)) $) 125)) (-4166 (((-112) $ (-776)) 109)) (-3681 (((-1165) $) 10)) (-4039 (((-3 $ "failed") $) 71 (|has| |#2| (-367)))) (-3682 (((-1126) $) 11)) (-3907 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-562)))) (-2136 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) 96 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) 95 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) 93 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) 113)) (-3845 (((-112) $) 110)) (-4014 (($) 111)) (-4249 ((|#2| $ (-551) (-551) |#2|) 128) ((|#2| $ (-551) (-551)) 126)) (-4260 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-776)) 55) (($ $ (-646 (-1183)) (-646 (-776))) 48 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) 46 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-3771 ((|#2| $) 76)) (-3774 (($ (-646 |#2|)) 79)) (-3544 (((-112) $) 116)) (-3773 ((|#3| $) 78)) (-3770 ((|#2| $) 73 (|has| |#2| (-6 (-4445 #2#))))) (-2135 (((-776) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4443))) (((-776) |#2| $) 98 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 112)) (-3533 ((|#4| $ (-551)) 130)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 90 (|has| |#2| (-1044 (-412 (-551))))) (($ |#2|) 85)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2137 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4443)))) (-3542 (((-112) $) 118)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-776)) 53) (($ $ (-646 (-1183)) (-646 (-776))) 52 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) 50 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#2|) 133 (|has| |#2| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 70 (|has| |#2| (-367)))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-4407 (((-776) $) 106 (|has| $ (-6 -4443)))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3201 ((|#1| $) 45)) (-1610 (((-112) $ (-776)) 8)) (-3863 (($) 7 T CONST)) (-1561 ((|#1| |#1| $) 47)) (-1549 ((|#1| $) 46)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3481 ((|#1| $) 40)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3493 ((|#1| $) 42)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-2723 (((-776) $) 44)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) 43)) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1127 |#1|) (-140) (-1223)) (T -1127))
+((-1561 (*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4443) (-15 -1561 (|t#1| |t#1| $)) (-15 -1549 (|t#1| $)) (-15 -3201 (|t#1| $)) (-15 -2723 ((-776) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-3057 ((|#3| $) 87)) (-4359 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3043 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#3| $) 47)) (-4091 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) 84) (((-694 |#3|) (-694 $)) 76)) (-3430 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-1596 ((|#3| $) 89)) (-1608 ((|#4| $) 43)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#3|) 25)) (** (($ $ (-927)) NIL) (($ $ (-776)) 24) (($ $ (-569)) 95)))
+(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1596 (|#3| |#1|)) (-15 -3057 (|#3| |#1|)) (-15 -1608 (|#4| |#1|)) (-15 -4091 ((-694 |#3|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -2388 (|#1| |#3|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -2388 ((-867) |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-776) (-1055) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1128))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1596 (|#3| |#1|)) (-15 -3057 (|#3| |#1|)) (-15 -1608 (|#4| |#1|)) (-15 -4091 ((-694 |#3|) (-694 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -4091 ((-694 (-569)) (-694 |#1|))) (-15 -2388 (|#1| |#3|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3430 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3057 ((|#2| $) 77)) (-3205 (((-112) $) 117)) (-3798 (((-3 $ "failed") $ $) 20)) (-3233 (((-112) $) 115)) (-1610 (((-112) $ (-776)) 107)) (-1630 (($ |#2|) 80)) (-3863 (($) 18 T CONST)) (-3115 (($ $) 134 (|has| |#2| (-310)))) (-3136 ((|#3| $ (-569)) 129)) (-4359 (((-3 (-569) "failed") $) 92 (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 89 (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) 86)) (-3043 (((-569) $) 91 (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) 88 (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) 87)) (-4091 (((-694 (-569)) (-694 $)) 84 (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 83 (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 82) (((-694 |#2|) (-694 $)) 81)) (-3351 (((-3 $ "failed") $) 37)) (-3904 (((-776) $) 135 (|has| |#2| (-561)))) (-3007 ((|#2| $ (-569) (-569)) 127)) (-2796 (((-649 |#2|) $) 100 (|has| $ (-6 -4443)))) (-2861 (((-112) $) 35)) (-3106 (((-776) $) 136 (|has| |#2| (-561)))) (-3095 (((-649 |#4|) $) 137 (|has| |#2| (-561)))) (-2511 (((-776) $) 123)) (-2522 (((-776) $) 124)) (-3799 (((-112) $ (-776)) 108)) (-1572 ((|#2| $) 72 (|has| |#2| (-6 (-4445 "*"))))) (-3181 (((-569) $) 119)) (-3160 (((-569) $) 121)) (-2912 (((-649 |#2|) $) 99 (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-3171 (((-569) $) 120)) (-3148 (((-569) $) 122)) (-2375 (($ (-649 (-649 |#2|))) 114)) (-3065 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1954 (((-649 (-649 |#2|)) $) 125)) (-1902 (((-112) $ (-776)) 109)) (-2050 (((-1165) $) 10)) (-3059 (((-3 $ "failed") $) 71 (|has| |#2| (-367)))) (-3461 (((-1126) $) 11)) (-2374 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-561)))) (-3983 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) 96 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 95 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 93 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) 113)) (-4196 (((-112) $) 110)) (-2825 (($) 111)) (-1852 ((|#2| $ (-569) (-569) |#2|) 128) ((|#2| $ (-569) (-569)) 126)) (-3430 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-776)) 55) (($ $ (-649 (-1183)) (-649 (-776))) 48 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) 46 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-1596 ((|#2| $) 76)) (-1619 (($ (-649 |#2|)) 79)) (-3219 (((-112) $) 116)) (-1608 ((|#3| $) 78)) (-1583 ((|#2| $) 73 (|has| |#2| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4443))) (((-776) |#2| $) 98 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 112)) (-3126 ((|#4| $ (-569)) 130)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 90 (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) 85)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-3996 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4443)))) (-3192 (((-112) $) 118)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-776)) 53) (($ $ (-649 (-1183)) (-649 (-776))) 52 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) 50 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#2|) 133 (|has| |#2| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 70 (|has| |#2| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2394 (((-776) $) 106 (|has| $ (-6 -4443)))))
(((-1129 |#1| |#2| |#3| |#4|) (-140) (-776) (-1055) (-239 |t#1| |t#2|) (-239 |t#1| |t#2|)) (T -1129))
-((-3775 (*1 *1 *2) (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-646 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 #1="*"))) (-4 *2 (-1055)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 #1#))) (-4 *2 (-1055)))) (-4039 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367)))))
-(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1059 |t#1| |t#1| |t#2| |t#3| |t#4|) (-417 |t#2|) (-381 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-722 |t#2|)) |%noBranch|) (-15 -3775 ($ |t#2|)) (-15 -3774 ($ (-646 |t#2|))) (-15 -3773 (|t#3| $)) (-15 -3772 (|t#2| $)) (-15 -3771 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4445 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3770 (|t#2| $)) (-15 -3769 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-367)) (PROGN (-15 -4039 ((-3 $ "failed") $)) (-15 ** ($ $ (-551)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4445 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 #2=(-412 (-551))) |has| |#2| (-1044 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#2|) . T) ((-618 (-868)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-381 |#2|) . T) ((-417 |#2|) . T) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-651 (-551)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-6 (-4445 #1#)))) ((-644 (-551)) |has| |#2| (-644 (-551))) ((-644 |#2|) . T) ((-722 |#2|) -3978 (|has| |#2| (-173)) (|has| |#2| (-6 (-4445 #1#)))) ((-731) . T) ((-906 (-1183)) |has| |#2| (-906 (-1183))) ((-1059 |#1| |#1| |#2| |#3| |#4|) . T) ((-1044 #2#) |has| |#2| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#2| (-1044 (-551))) ((-1044 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1222) . T))
-((-3778 ((|#4| |#4|) 81)) (-3776 ((|#4| |#4|) 76)) (-3780 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2200 (-646 |#3|))) |#4| |#3|) 91)) (-3779 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3777 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3776 (|#4| |#4|)) (-15 -3777 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3778 (|#4| |#4|)) (-15 -3779 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3780 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2200 (-646 |#3|))) |#4| |#3|))) (-310) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|)) (T -1130))
-((-3780 (*1 *2 *3 *4) (-12 (-4 *5 (-310)) (-4 *6 (-376 *5)) (-4 *4 (-376 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2200 (-646 *4)))) (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4)))) (-3779 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(-10 -7 (-15 -3776 (|#4| |#4|)) (-15 -3777 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3778 (|#4| |#4|)) (-15 -3779 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3780 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2200 (-646 |#3|))) |#4| |#3|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 18)) (-3503 (((-646 |#2|) $) 174)) (-3505 (((-1177 $) $ |#2|) 60) (((-1177 |#1|) $) 49)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 116 (|has| |#1| (-562)))) (-2251 (($ $) 118 (|has| |#1| (-562)))) (-2249 (((-112) $) 120 (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 |#2|)) 213)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) 167) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 |#2| #2#) $) NIL)) (-3594 ((|#1| $) 165) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) ((|#2| $) NIL)) (-4206 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-4409 (($ $) 217)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) 90)) (-3944 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-536 |#2|) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| |#1| (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| |#1| (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-2591 (((-112) $) 20)) (-2599 (((-776) $) 30)) (-3506 (($ (-1177 |#1|) |#2|) 54) (($ (-1177 $) |#2|) 71)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) 38)) (-3312 (($ |#1| (-536 |#2|)) 78) (($ $ |#2| (-776)) 58) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ |#2|) NIL)) (-3241 (((-536 |#2|) $) 205) (((-776) $ |#2|) 206) (((-646 (-776)) $ (-646 |#2|)) 207)) (-1780 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) 128)) (-3504 (((-3 |#2| #3="failed") $) 177)) (-3313 (($ $) 216)) (-3612 ((|#1| $) 43)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-3244 (((-3 (-646 $) #3#) $) NIL)) (-3243 (((-3 (-646 $) #3#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| |#2|) (|:| -2582 (-776))) #3#) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) 39)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 148 (|has| |#1| (-457)))) (-3582 (($ (-646 $)) 153 (|has| |#1| (-457))) (($ $ $) 138 (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#1| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-916)))) (-3907 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-562)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-646 |#2|) (-646 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-646 |#2|) (-646 $)) 194)) (-4207 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-4260 (($ $ |#2|) 215) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-4398 (((-536 |#2|) $) 201) (((-776) $ |#2|) 196) (((-646 (-776)) $ (-646 |#2|)) 199)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| |#1| (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| |#1| (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| |#1| (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#1| $) 134 (|has| |#1| (-457))) (($ $ |#2|) 137 (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4396 (((-868) $) 159) (($ (-551)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-562))) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-4267 (((-646 |#1|) $) 162)) (-4127 ((|#1| $ (-536 |#2|)) 80) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3123 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 87 T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) 123 (|has| |#1| (-562)))) (-3528 (($) 12 T CONST)) (-3085 (($) 14 T CONST)) (-3090 (($ $ |#2|) NIL) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3473 (((-112) $ $) 106)) (-4399 (($ $ |#1|) 132 (|has| |#1| (-367)))) (-4287 (($ $) 93) (($ $ $) 104)) (-4289 (($ $ $) 55)) (** (($ $ (-925)) 110) (($ $ (-776)) 109)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 96) (($ $ $) 72) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1131 |#1| |#2|) (-956 |#1| (-536 |#2|) |#2|) (-1055) (-855)) (T -1131))
-NIL
-(-956 |#1| (-536 |#2|) |#2|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 |#2|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3933 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 128 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 124 (|has| |#1| (-38 (-412 (-551)))))) (-3935 (($ $) 156 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4264 (((-952 |#1|) $ (-776)) NIL) (((-952 |#1|) $ (-776) (-776)) NIL)) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $ |#2|) NIL) (((-776) $ |#2| (-776)) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4387 (((-112) $) NIL)) (-3312 (($ $ (-646 |#2|) (-646 (-536 |#2|))) NIL) (($ $ |#2| (-536 |#2|)) NIL) (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 63) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) 122 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-4262 (($ $ |#2|) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-4126 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-412 (-551)))))) (-4218 (($ $ (-776)) 16)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4393 (($ $) 120 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (($ $ |#2| $) 106) (($ $ (-646 |#2|) (-646 $)) 99) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL)) (-4260 (($ $ |#2|) 109) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-4398 (((-536 |#2|) $) NIL)) (-3781 (((-1 (-1160 |#3|) |#3|) (-646 |#2|) (-646 (-1160 |#3|))) 87)) (-3936 (($ $) 158 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 126 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 18)) (-4396 (((-868) $) 199) (($ (-551)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-562))) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#2|) 70) (($ |#3|) 68)) (-4127 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL) ((|#3| $ (-776)) 43)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 164 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) 160 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 168 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-3942 (($ $) 170 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 166 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 162 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 52 T CONST)) (-3085 (($) 62 T CONST)) (-3090 (($ $ |#2|) NIL) (($ $ (-646 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-646 |#2|) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) 201 (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 66)) (** (($ $ (-925)) NIL) (($ $ (-776)) 77) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 112 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 65) (($ $ (-412 (-551))) 117 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 115 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1132 |#1| |#2| |#3|) (-13 (-745 |#1| |#2|) (-10 -8 (-15 -4127 (|#3| $ (-776))) (-15 -4396 ($ |#2|)) (-15 -4396 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3781 ((-1 (-1160 |#3|) |#3|) (-646 |#2|) (-646 (-1160 |#3|)))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $ |#2| |#1|)) (-15 -4126 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1055) (-855) (-956 |#1| (-536 |#2|) |#2|)) (T -1132))
-((-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-956 *4 (-536 *5) *5)) (-5 *1 (-1132 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-4396 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-956 *3 (-536 *2) *2)))) (-4396 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-956 *3 (-536 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-956 *3 (-536 *4) *4)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-1160 *7))) (-4 *6 (-855)) (-4 *7 (-956 *5 (-536 *6) *6)) (-4 *5 (-1055)) (-5 *2 (-1 (-1160 *7) *7)) (-5 *1 (-1132 *5 *6 *7)))) (-4262 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-956 *3 (-536 *2) *2)))) (-4126 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-551)))) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5)) (-4 *5 (-956 *4 (-536 *3) *3)))))
-(-13 (-745 |#1| |#2|) (-10 -8 (-15 -4127 (|#3| $ (-776))) (-15 -4396 ($ |#2|)) (-15 -4396 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3781 ((-1 (-1160 |#3|) |#3|) (-646 |#2|) (-646 (-1160 |#3|)))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $ |#2| |#1|)) (-15 -4126 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2986 (((-112) $ $) 7)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) 86)) (-4132 (((-646 $) (-646 |#4|)) 87) (((-646 $) (-646 |#4|) (-112)) 112)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) 102) (((-112) $) 98)) (-4138 ((|#4| |#4| $) 93)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 127)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-4248 (((-3 $ #1#) $) 83)) (-4135 ((|#4| |#4| $) 90)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4133 ((|#4| |#4| $) 88)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) 106)) (-3635 (((-112) |#4| $) 137)) (-3633 (((-112) |#4| $) 134)) (-3636 (((-112) |#4| $) 138) (((-112) $) 135)) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) 105) (((-112) $) 104)) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) 129)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 128)) (-4247 (((-3 |#4| #1#) $) 84)) (-3630 (((-646 $) |#4| $) 130)) (-3632 (((-3 (-112) (-646 $)) |#4| $) 133)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3676 (((-646 $) |#4| $) 126) (((-646 $) (-646 |#4|) $) 125) (((-646 $) (-646 |#4|) (-646 $)) 124) (((-646 $) |#4| (-646 $)) 123)) (-3882 (($ |#4| $) 118) (($ (-646 |#4|) $) 117)) (-4147 (((-646 |#4|) $) 108)) (-4141 (((-112) |#4| $) 100) (((-112) $) 96)) (-4136 ((|#4| |#4| $) 91)) (-4149 (((-112) $ $) 111)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) 101) (((-112) $) 97)) (-4137 ((|#4| |#4| $) 92)) (-3682 (((-1126) $) 11)) (-4250 (((-3 |#4| #1#) $) 85)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4129 (((-3 $ #1#) $ |#4|) 79)) (-4218 (($ $ |#4|) 78) (((-646 $) |#4| $) 116) (((-646 $) |#4| (-646 $)) 115) (((-646 $) (-646 |#4|) $) 114) (((-646 $) (-646 |#4|) (-646 $)) 113)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-4398 (((-776) $) 107)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-4134 (($ $) 89)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-4128 (((-776) $) 77 (|has| |#3| (-372)))) (-3680 (((-112) $ $) 9)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) 99)) (-3627 (((-646 $) |#4| $) 122) (((-646 $) |#4| (-646 $)) 121) (((-646 $) (-646 |#4|) $) 120) (((-646 $) (-646 |#4|) (-646 $)) 119)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) 82)) (-3634 (((-112) |#4| $) 136)) (-4383 (((-112) |#3| $) 81)) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
+((-1630 (*1 *1 *2) (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))) (-3059 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367)))))
+(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1059 |t#1| |t#1| |t#2| |t#3| |t#4|) (-416 |t#2|) (-381 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-722 |t#2|)) |%noBranch|) (-15 -1630 ($ |t#2|)) (-15 -1619 ($ (-649 |t#2|))) (-15 -1608 (|t#3| $)) (-15 -3057 (|t#2| $)) (-15 -1596 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4445 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1583 (|t#2| $)) (-15 -1572 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-367)) (PROGN (-15 -3059 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4445 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-381 |#2|) . T) ((-416 |#2|) . T) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-6 (-4445 "*")))) ((-644 (-569)) |has| |#2| (-644 (-569))) ((-644 |#2|) . T) ((-722 |#2|) -2718 (|has| |#2| (-173)) (|has| |#2| (-6 (-4445 "*")))) ((-731) . T) ((-906 (-1183)) |has| |#2| (-906 (-1183))) ((-1059 |#1| |#1| |#2| |#3| |#4|) . T) ((-1044 #0#) |has| |#2| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#2| (-1044 (-569))) ((-1044 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1223) . T))
+((-1661 ((|#4| |#4|) 81)) (-1640 ((|#4| |#4|) 76)) (-1686 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|) 91)) (-1672 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1651 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1640 (|#4| |#4|)) (-15 -1651 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1661 (|#4| |#4|)) (-15 -1672 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1686 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|))) (-310) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1130))
+((-1686 (*1 *2 *3 *4) (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4)))) (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -1640 (|#4| |#4|)) (-15 -1651 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1661 (|#4| |#4|)) (-15 -1672 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1686 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3371 (-649 |#3|))) |#4| |#3|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 18)) (-3865 (((-649 |#2|) $) 174)) (-3663 (((-1179 $) $ |#2|) 60) (((-1179 |#1|) $) 49)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 116 (|has| |#1| (-561)))) (-2586 (($ $) 118 (|has| |#1| (-561)))) (-2564 (((-112) $) 120 (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 |#2|)) 213)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) 167) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#2| "failed") $) NIL)) (-3043 ((|#1| $) 165) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#2| $) NIL)) (-4168 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-1842 (($ $) 217)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) 90)) (-3556 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-536 |#2|) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2861 (((-112) $) 20)) (-2933 (((-776) $) 30)) (-3851 (($ (-1179 |#1|) |#2|) 54) (($ (-1179 $) |#2|) 71)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) 38)) (-3838 (($ |#1| (-536 |#2|)) 78) (($ $ |#2| (-776)) 58) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ |#2|) NIL)) (-3304 (((-536 |#2|) $) 205) (((-776) $ |#2|) 206) (((-649 (-776)) $ (-649 |#2|)) 207)) (-1491 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) 128)) (-4212 (((-3 |#2| "failed") $) 177)) (-1808 (($ $) 216)) (-1820 ((|#1| $) 43)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| |#2|) (|:| -2777 (-776))) "failed") $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) 39)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 148 (|has| |#1| (-457)))) (-1830 (($ (-649 $)) 153 (|has| |#1| (-457))) (($ $ $) 138 (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2374 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-561)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-649 |#2|) (-649 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-649 |#2|) (-649 $)) 194)) (-4180 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3430 (($ $ |#2|) 215) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2091 (((-536 |#2|) $) 201) (((-776) $ |#2|) 196) (((-649 (-776)) $ (-649 |#2|)) 199)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#1| $) 134 (|has| |#1| (-457))) (($ $ |#2|) 137 (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-2388 (((-867) $) 159) (($ (-569)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3346 (((-649 |#1|) $) 162)) (-1503 ((|#1| $ (-536 |#2|)) 80) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 87 T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) 123 (|has| |#1| (-561)))) (-1786 (($) 12 T CONST)) (-1796 (($) 14 T CONST)) (-2749 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2853 (((-112) $ $) 106)) (-2956 (($ $ |#1|) 132 (|has| |#1| (-367)))) (-2946 (($ $) 93) (($ $ $) 104)) (-2935 (($ $ $) 55)) (** (($ $ (-927)) 110) (($ $ (-776)) 109)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 96) (($ $ $) 72) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1131 |#1| |#2|) (-955 |#1| (-536 |#2|) |#2|) (-1055) (-855)) (T -1131))
+NIL
+(-955 |#1| (-536 |#2|) |#2|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 |#2|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-2691 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 156 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2445 (((-958 |#1|) $ (-776)) NIL) (((-958 |#1|) $ (-776) (-776)) NIL)) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $ |#2|) NIL) (((-776) $ |#2| (-776)) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2019 (((-112) $) NIL)) (-3838 (($ $ (-649 |#2|) (-649 (-536 |#2|))) NIL) (($ $ |#2| (-536 |#2|)) NIL) (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 63) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3313 (($ $ |#2|) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1494 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-412 (-569)))))) (-4295 (($ $ (-776)) 16)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4367 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (($ $ |#2| $) 106) (($ $ (-649 |#2|) (-649 $)) 99) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3430 (($ $ |#2|) 109) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2091 (((-536 |#2|) $) NIL)) (-1696 (((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|))) 87)) (-2725 (($ $) 158 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 18)) (-2388 (((-867) $) 199) (($ (-569)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#2|) 70) (($ |#3|) 68)) (-1503 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL) ((|#3| $ (-776)) 43)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-1470 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 52 T CONST)) (-1796 (($) 62 T CONST)) (-2749 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) 201 (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) 77) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 112 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 65) (($ $ (-412 (-569))) 117 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 115 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1132 |#1| |#2| |#3|) (-13 (-745 |#1| |#2|) (-10 -8 (-15 -1503 (|#3| $ (-776))) (-15 -2388 ($ |#2|)) (-15 -2388 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1696 ((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $ |#2| |#1|)) (-15 -1494 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1055) (-855) (-955 |#1| (-536 |#2|) |#2|)) (T -1132))
+((-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5)) (-5 *1 (-1132 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-2388 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-2388 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1163 *7))) (-4 *6 (-855)) (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1055)) (-5 *2 (-1 (-1163 *7) *7)) (-5 *1 (-1132 *5 *6 *7)))) (-3313 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-1494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5)) (-4 *5 (-955 *4 (-536 *3) *3)))))
+(-13 (-745 |#1| |#2|) (-10 -8 (-15 -1503 (|#3| $ (-776))) (-15 -2388 ($ |#2|)) (-15 -2388 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1696 ((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $ |#2| |#1|)) (-15 -1494 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2383 (((-112) $ $) 7)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) 86)) (-1555 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) 102) (((-112) $) 98)) (-1624 ((|#4| |#4| $) 93)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 127)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3414 (((-3 $ "failed") $) 83)) (-1590 ((|#4| |#4| $) 90)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1567 ((|#4| |#4| $) 88)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) 106)) (-2881 (((-112) |#4| $) 137)) (-2862 (((-112) |#4| $) 134)) (-2892 (((-112) |#4| $) 138) (((-112) $) 135)) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) 105) (((-112) $) 104)) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 128)) (-1702 (((-3 |#4| "failed") $) 84)) (-2830 (((-649 $) |#4| $) 130)) (-2852 (((-3 (-112) (-649 $)) |#4| $) 133)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2018 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3143 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1730 (((-649 |#4|) $) 108)) (-1656 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-1755 (((-112) $ $) 111)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) 101) (((-112) $) 97)) (-1614 ((|#4| |#4| $) 92)) (-3461 (((-1126) $) 11)) (-3401 (((-3 |#4| "failed") $) 85)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1521 (((-3 $ "failed") $ |#4|) 79)) (-4295 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-2091 (((-776) $) 107)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-1577 (($ $) 89)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1512 (((-776) $) 77 (|has| |#3| (-372)))) (-2040 (((-112) $ $) 9)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2800 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) 82)) (-2871 (((-112) |#4| $) 136)) (-1988 (((-112) |#3| $) 81)) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
(((-1133 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1133))
NIL
(-13 (-1115 |t#1| |t#2| |t#3| |t#4|) (-789 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-789 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1107) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1217 |#1| |#2| |#3| |#4|) . T) ((-1222) . T))
-((-4022 (((-646 |#2|) |#1|) 15)) (-3787 (((-646 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-646 |#2|) |#1|) 63)) (-3785 (((-646 |#2|) |#2| |#2| |#2|) 45) (((-646 |#2|) |#1|) 61)) (-3782 ((|#2| |#1|) 56)) (-3783 (((-2 (|:| |solns| (-646 |#2|)) (|:| |maps| (-646 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3784 (((-646 |#2|) |#2| |#2|) 42) (((-646 |#2|) |#1|) 60)) (-3786 (((-646 |#2|) |#2| |#2| |#2| |#2|) 46) (((-646 |#2|) |#1|) 62)) (-3791 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3789 ((|#2| |#2| |#2| |#2|) 53)) (-3788 ((|#2| |#2| |#2|) 52)) (-3790 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -4022 ((-646 |#2|) |#1|)) (-15 -3782 (|#2| |#1|)) (-15 -3783 ((-2 (|:| |solns| (-646 |#2|)) (|:| |maps| (-646 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3784 ((-646 |#2|) |#1|)) (-15 -3785 ((-646 |#2|) |#1|)) (-15 -3786 ((-646 |#2|) |#1|)) (-15 -3787 ((-646 |#2|) |#1|)) (-15 -3784 ((-646 |#2|) |#2| |#2|)) (-15 -3785 ((-646 |#2|) |#2| |#2| |#2|)) (-15 -3786 ((-646 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3787 ((-646 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2| |#2| |#2|)) (-15 -3790 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3791 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1248 |#2|) (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (T -1134))
-((-3791 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))) (-3790 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))) (-3789 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))) (-3788 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))) (-3787 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))) (-3786 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))) (-3785 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))) (-3784 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4)))) (-3786 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4)))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4)))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-2 (|:| |solns| (-646 *5)) (|:| |maps| (-646 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-1248 *5)))) (-3782 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551))))))) (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -4022 ((-646 |#2|) |#1|)) (-15 -3782 (|#2| |#1|)) (-15 -3783 ((-2 (|:| |solns| (-646 |#2|)) (|:| |maps| (-646 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3784 ((-646 |#2|) |#1|)) (-15 -3785 ((-646 |#2|) |#1|)) (-15 -3786 ((-646 |#2|) |#1|)) (-15 -3787 ((-646 |#2|) |#1|)) (-15 -3784 ((-646 |#2|) |#2| |#2|)) (-15 -3785 ((-646 |#2|) |#2| |#2| |#2|)) (-15 -3786 ((-646 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3787 ((-646 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2| |#2| |#2|)) (-15 -3790 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3791 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-3792 (((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|))))) 118) (((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183))) 117) (((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|)))) 115) (((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|))) (-646 (-1183))) 113) (((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|)))) 97) (((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|))) (-1183)) 98) (((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|))) 92) (((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|)) (-1183)) 82)) (-3793 (((-646 (-646 (-317 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183))) 111) (((-646 (-317 |#1|)) (-412 (-952 |#1|)) (-1183)) 54)) (-3794 (((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-412 (-952 |#1|)) (-1183)) 122) (((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183)) 121)))
-(((-1135 |#1|) (-10 -7 (-15 -3792 ((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|)))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|))))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|))))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183)))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -3793 ((-646 (-317 |#1|)) (-412 (-952 |#1|)) (-1183))) (-15 -3793 ((-646 (-646 (-317 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3794 ((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -3794 ((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-412 (-952 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -1135))
-((-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-646 (-317 *5)) (-646 (-296 (-317 *5))))) (-5 *1 (-1135 *5)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-412 (-952 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-646 (-317 *5)) (-646 (-296 (-317 *5))))) (-5 *1 (-1135 *5)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-317 *5)))) (-5 *1 (-1135 *5)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-317 *5))) (-5 *1 (-1135 *5)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-646 (-296 (-412 (-952 *4))))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *4))))) (-5 *1 (-1135 *4)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-296 (-412 (-952 *5))))) (-5 *4 (-646 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *5))))) (-5 *1 (-1135 *5)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-646 (-412 (-952 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *4))))) (-5 *1 (-1135 *4)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *5))))) (-5 *1 (-1135 *5)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-296 (-412 (-952 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1135 *4)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-412 (-952 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1135 *5)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1135 *4)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1135 *5)))))
-(-10 -7 (-15 -3792 ((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|)) (-1183))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-412 (-952 |#1|)))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -3792 ((-646 (-296 (-317 |#1|))) (-296 (-412 (-952 |#1|))))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-412 (-952 |#1|))))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183)))) (-15 -3792 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -3793 ((-646 (-317 |#1|)) (-412 (-952 |#1|)) (-1183))) (-15 -3793 ((-646 (-646 (-317 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -3794 ((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -3794 ((-1172 (-646 (-317 |#1|)) (-646 (-296 (-317 |#1|)))) (-412 (-952 |#1|)) (-1183))))
-((-3796 (((-412 (-1177 (-317 |#1|))) (-1272 (-317 |#1|)) (-412 (-1177 (-317 |#1|))) (-551)) 38)) (-3795 (((-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|)))) 49)))
-(((-1136 |#1|) (-10 -7 (-15 -3795 ((-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))))) (-15 -3796 ((-412 (-1177 (-317 |#1|))) (-1272 (-317 |#1|)) (-412 (-1177 (-317 |#1|))) (-551)))) (-562)) (T -1136))
-((-3796 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-412 (-1177 (-317 *5)))) (-5 *3 (-1272 (-317 *5))) (-5 *4 (-551)) (-4 *5 (-562)) (-5 *1 (-1136 *5)))) (-3795 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-412 (-1177 (-317 *3)))) (-4 *3 (-562)) (-5 *1 (-1136 *3)))))
-(-10 -7 (-15 -3795 ((-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))) (-412 (-1177 (-317 |#1|))))) (-15 -3796 ((-412 (-1177 (-317 |#1|))) (-1272 (-317 |#1|)) (-412 (-1177 (-317 |#1|))) (-551))))
-((-4022 (((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-317 |#1|))) (-646 (-1183))) 246) (((-646 (-296 (-317 |#1|))) (-317 |#1|) (-1183)) 23) (((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|)) (-1183)) 29) (((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|))) 28) (((-646 (-296 (-317 |#1|))) (-317 |#1|)) 24)))
-(((-1137 |#1|) (-10 -7 (-15 -4022 ((-646 (-296 (-317 |#1|))) (-317 |#1|))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|)))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|)) (-1183))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-317 |#1|) (-1183))) (-15 -4022 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-317 |#1|))) (-646 (-1183))))) (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (T -1137))
-((-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-1183))) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *5))))) (-5 *1 (-1137 *5)) (-5 *3 (-646 (-296 (-317 *5)))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-317 *5)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-296 (-317 *5))))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-296 (-317 *4))))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147))) (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-317 *4)))))
-(-10 -7 (-15 -4022 ((-646 (-296 (-317 |#1|))) (-317 |#1|))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|)))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-296 (-317 |#1|)) (-1183))) (-15 -4022 ((-646 (-296 (-317 |#1|))) (-317 |#1|) (-1183))) (-15 -4022 ((-646 (-646 (-296 (-317 |#1|)))) (-646 (-296 (-317 |#1|))) (-646 (-1183)))))
-((-3798 ((|#2| |#2|) 30 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3797 ((|#2| |#2|) 29 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1138 |#1| |#2|) (-10 -7 (-15 -3797 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3798 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -3797 (|#2| |#2|)) (-15 -3798 (|#2| |#2|))) |%noBranch|)) (-1222) (-13 (-609 (-551) |#1|) (-10 -7 (-6 -4443) (-6 -4444)))) (T -1138))
-((-3798 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1222)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-551) *3) (-10 -7 (-6 -4443) (-6 -4444)))))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1222)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-551) *3) (-10 -7 (-6 -4443) (-6 -4444)))))) (-3798 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-551) *4) (-10 -7 (-6 -4443) (-6 -4444)))))) (-3797 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-551) *4) (-10 -7 (-6 -4443) (-6 -4444)))))))
-(-10 -7 (-15 -3797 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3798 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -3797 (|#2| |#2|)) (-15 -3798 (|#2| |#2|))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-4338 (((-1171 3 |#1|) $) 141)) (-3808 (((-112) $) 101)) (-3809 (($ $ (-646 (-949 |#1|))) 44) (($ $ (-646 (-646 |#1|))) 104) (($ (-646 (-949 |#1|))) 103) (((-646 (-949 |#1|)) $) 102)) (-3814 (((-112) $) 72)) (-4156 (($ $ (-949 |#1|)) 76) (($ $ (-646 |#1|)) 81) (($ $ (-776)) 83) (($ (-949 |#1|)) 77) (((-949 |#1|) $) 75)) (-3800 (((-2 (|:| -4300 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 139)) (-3818 (((-776) $) 53)) (-3819 (((-776) $) 52)) (-4337 (($ $ (-776) (-949 |#1|)) 67)) (-3806 (((-112) $) 111)) (-3807 (($ $ (-646 (-646 (-949 |#1|))) (-646 (-172)) (-172)) 118) (($ $ (-646 (-646 (-646 |#1|))) (-646 (-172)) (-172)) 120) (($ $ (-646 (-646 (-949 |#1|))) (-112) (-112)) 115) (($ $ (-646 (-646 (-646 |#1|))) (-112) (-112)) 127) (($ (-646 (-646 (-949 |#1|)))) 116) (($ (-646 (-646 (-949 |#1|))) (-112) (-112)) 117) (((-646 (-646 (-949 |#1|))) $) 114)) (-3959 (($ (-646 $)) 56) (($ $ $) 57)) (-3801 (((-646 (-172)) $) 133)) (-3805 (((-646 (-949 |#1|)) $) 130)) (-3802 (((-646 (-646 (-172))) $) 132)) (-3803 (((-646 (-646 (-646 (-949 |#1|)))) $) NIL)) (-3804 (((-646 (-646 (-646 (-776)))) $) 131)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3815 (((-776) $ (-646 (-949 |#1|))) 65)) (-3812 (((-112) $) 84)) (-3813 (($ $ (-646 (-949 |#1|))) 86) (($ $ (-646 (-646 |#1|))) 92) (($ (-646 (-949 |#1|))) 87) (((-646 (-949 |#1|)) $) 85)) (-3820 (($) 48) (($ (-1171 3 |#1|)) 49)) (-3842 (($ $) 63)) (-3816 (((-646 $) $) 62)) (-4204 (($ (-646 $)) 59)) (-3817 (((-646 $) $) 61)) (-4396 (((-868) $) 146)) (-3810 (((-112) $) 94)) (-3811 (($ $ (-646 (-949 |#1|))) 96) (($ $ (-646 (-646 |#1|))) 99) (($ (-646 (-949 |#1|))) 97) (((-646 (-949 |#1|)) $) 95)) (-3799 (($ $) 140)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-789 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
+((-2888 (((-649 |#2|) |#1|) 15)) (-1759 (((-649 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-649 |#2|) |#1|) 63)) (-1735 (((-649 |#2|) |#2| |#2| |#2|) 45) (((-649 |#2|) |#1|) 61)) (-1709 ((|#2| |#1|) 56)) (-1722 (((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2426 (((-649 |#2|) |#2| |#2|) 42) (((-649 |#2|) |#1|) 60)) (-1747 (((-649 |#2|) |#2| |#2| |#2| |#2|) 46) (((-649 |#2|) |#1|) 62)) (-1803 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-1781 ((|#2| |#2| |#2| |#2|) 53)) (-1770 ((|#2| |#2| |#2|) 52)) (-1792 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1134 |#1| |#2|) (-10 -7 (-15 -2888 ((-649 |#2|) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1722 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2426 ((-649 |#2|) |#1|)) (-15 -1735 ((-649 |#2|) |#1|)) (-15 -1747 ((-649 |#2|) |#1|)) (-15 -1759 ((-649 |#2|) |#1|)) (-15 -2426 ((-649 |#2|) |#2| |#2|)) (-15 -1735 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -1747 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1759 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1770 (|#2| |#2| |#2|)) (-15 -1781 (|#2| |#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1803 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1249 |#2|) (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (T -1134))
+((-1803 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-1792 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-1781 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-1770 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-1759 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1747 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1735 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-2426 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-2 (|:| |solns| (-649 *5)) (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-1249 *5)))) (-1709 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -2888 ((-649 |#2|) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1722 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2426 ((-649 |#2|) |#1|)) (-15 -1735 ((-649 |#2|) |#1|)) (-15 -1747 ((-649 |#2|) |#1|)) (-15 -1759 ((-649 |#2|) |#1|)) (-15 -2426 ((-649 |#2|) |#2| |#2|)) (-15 -1735 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -1747 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1759 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1770 (|#2| |#2| |#2|)) (-15 -1781 (|#2| |#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1803 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1814 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|))))) 118) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183))) 117) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|)))) 115) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 113) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|)))) 97) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183)) 98) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|))) 92) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183)) 82)) (-1825 (((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 111) (((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183)) 54)) (-1836 (((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183)) 122) (((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183)) 121)))
+(((-1135 |#1|) (-10 -7 (-15 -1814 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -1825 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -1825 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -1836 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -1836 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -1135))
+((-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5)))) (-5 *1 (-1135 *5)))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5))) (-5 *1 (-1135 *5)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1135 *5)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1135 *5)))))
+(-10 -7 (-15 -1814 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -1814 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -1814 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -1825 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -1825 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -1836 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -1836 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183))))
+((-1857 (((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569)) 38)) (-1847 (((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|)))) 49)))
+(((-1136 |#1|) (-10 -7 (-15 -1847 ((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))))) (-15 -1857 ((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569)))) (-561)) (T -1136))
+((-1857 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-412 (-1179 (-319 *5)))) (-5 *3 (-1273 (-319 *5))) (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1136 *5)))) (-1847 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-412 (-1179 (-319 *3)))) (-4 *3 (-561)) (-5 *1 (-1136 *3)))))
+(-10 -7 (-15 -1847 ((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))))) (-15 -1857 ((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569))))
+((-2888 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183))) 246) (((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183)) 23) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183)) 29) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|))) 28) (((-649 (-297 (-319 |#1|))) (-319 |#1|)) 24)))
+(((-1137 |#1|) (-10 -7 (-15 -2888 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183))) (-15 -2888 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183))))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (T -1137))
+((-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)) (-5 *3 (-649 (-297 (-319 *5)))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-319 *5)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-297 (-319 *5))))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-297 (-319 *4))))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-319 *4)))))
+(-10 -7 (-15 -2888 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183))) (-15 -2888 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183))) (-15 -2888 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183)))))
+((-1873 ((|#2| |#2|) 30 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-1866 ((|#2| |#2|) 29 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1138 |#1| |#2|) (-10 -7 (-15 -1866 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1873 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -1866 (|#2| |#2|)) (-15 -1873 (|#2| |#2|))) |%noBranch|)) (-1223) (-13 (-609 (-569) |#1|) (-10 -7 (-6 -4443) (-6 -4444)))) (T -1138))
+((-1873 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4443) (-6 -4444)))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4443) (-6 -4444)))))) (-1873 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4443) (-6 -4444)))))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4443) (-6 -4444)))))))
+(-10 -7 (-15 -1866 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1873 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -1866 (|#2| |#2|)) (-15 -1873 (|#2| |#2|))) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-2675 (((-1171 3 |#1|) $) 141)) (-3817 (((-112) $) 101)) (-3829 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 104) (($ (-649 (-949 |#1|))) 103) (((-649 (-949 |#1|)) $) 102)) (-3892 (((-112) $) 72)) (-2025 (($ $ (-949 |#1|)) 76) (($ $ (-649 |#1|)) 81) (($ $ (-776)) 83) (($ (-949 |#1|)) 77) (((-949 |#1|) $) 75)) (-4334 (((-2 (|:| -3604 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 139)) (-3940 (((-776) $) 53)) (-3951 (((-776) $) 52)) (-2664 (($ $ (-776) (-949 |#1|)) 67)) (-3793 (((-112) $) 111)) (-3805 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 118) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 120) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 115) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 127) (($ (-649 (-649 (-949 |#1|)))) 116) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 117) (((-649 (-649 (-949 |#1|))) $) 114)) (-3719 (($ (-649 $)) 56) (($ $ $) 57)) (-1890 (((-649 (-172)) $) 133)) (-3207 (((-649 (-949 |#1|)) $) 130)) (-3755 (((-649 (-649 (-172))) $) 132)) (-3767 (((-649 (-649 (-649 (-949 |#1|)))) $) NIL)) (-3781 (((-649 (-649 (-649 (-776)))) $) 131)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3905 (((-776) $ (-649 (-949 |#1|))) 65)) (-3869 (((-112) $) 84)) (-3880 (($ $ (-649 (-949 |#1|))) 86) (($ $ (-649 (-649 |#1|))) 92) (($ (-649 (-949 |#1|))) 87) (((-649 (-949 |#1|)) $) 85)) (-3962 (($) 48) (($ (-1171 3 |#1|)) 49)) (-3885 (($ $) 63)) (-3916 (((-649 $) $) 62)) (-4146 (($ (-649 $)) 59)) (-3929 (((-649 $) $) 61)) (-2388 (((-867) $) 146)) (-3842 (((-112) $) 94)) (-3855 (($ $ (-649 (-949 |#1|))) 96) (($ $ (-649 (-649 |#1|))) 99) (($ (-649 (-949 |#1|))) 97) (((-649 (-949 |#1|)) $) 95)) (-1881 (($ $) 140)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
(((-1139 |#1|) (-1140 |#1|) (-1055)) (T -1139))
NIL
(-1140 |#1|)
-((-2986 (((-112) $ $) 7)) (-4338 (((-1171 3 |#1|) $) 14)) (-3808 (((-112) $) 30)) (-3809 (($ $ (-646 (-949 |#1|))) 34) (($ $ (-646 (-646 |#1|))) 33) (($ (-646 (-949 |#1|))) 32) (((-646 (-949 |#1|)) $) 31)) (-3814 (((-112) $) 45)) (-4156 (($ $ (-949 |#1|)) 50) (($ $ (-646 |#1|)) 49) (($ $ (-776)) 48) (($ (-949 |#1|)) 47) (((-949 |#1|) $) 46)) (-3800 (((-2 (|:| -4300 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 16)) (-3818 (((-776) $) 59)) (-3819 (((-776) $) 60)) (-4337 (($ $ (-776) (-949 |#1|)) 51)) (-3806 (((-112) $) 22)) (-3807 (($ $ (-646 (-646 (-949 |#1|))) (-646 (-172)) (-172)) 29) (($ $ (-646 (-646 (-646 |#1|))) (-646 (-172)) (-172)) 28) (($ $ (-646 (-646 (-949 |#1|))) (-112) (-112)) 27) (($ $ (-646 (-646 (-646 |#1|))) (-112) (-112)) 26) (($ (-646 (-646 (-949 |#1|)))) 25) (($ (-646 (-646 (-949 |#1|))) (-112) (-112)) 24) (((-646 (-646 (-949 |#1|))) $) 23)) (-3959 (($ (-646 $)) 58) (($ $ $) 57)) (-3801 (((-646 (-172)) $) 17)) (-3805 (((-646 (-949 |#1|)) $) 21)) (-3802 (((-646 (-646 (-172))) $) 18)) (-3803 (((-646 (-646 (-646 (-949 |#1|)))) $) 19)) (-3804 (((-646 (-646 (-646 (-776)))) $) 20)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3815 (((-776) $ (-646 (-949 |#1|))) 52)) (-3812 (((-112) $) 40)) (-3813 (($ $ (-646 (-949 |#1|))) 44) (($ $ (-646 (-646 |#1|))) 43) (($ (-646 (-949 |#1|))) 42) (((-646 (-949 |#1|)) $) 41)) (-3820 (($) 62) (($ (-1171 3 |#1|)) 61)) (-3842 (($ $) 53)) (-3816 (((-646 $) $) 54)) (-4204 (($ (-646 $)) 56)) (-3817 (((-646 $) $) 55)) (-4396 (((-868) $) 12)) (-3810 (((-112) $) 35)) (-3811 (($ $ (-646 (-949 |#1|))) 39) (($ $ (-646 (-646 |#1|))) 38) (($ (-646 (-949 |#1|))) 37) (((-646 (-949 |#1|)) $) 36)) (-3799 (($ $) 15)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
+((-2383 (((-112) $ $) 7)) (-2675 (((-1171 3 |#1|) $) 14)) (-3817 (((-112) $) 30)) (-3829 (($ $ (-649 (-949 |#1|))) 34) (($ $ (-649 (-649 |#1|))) 33) (($ (-649 (-949 |#1|))) 32) (((-649 (-949 |#1|)) $) 31)) (-3892 (((-112) $) 45)) (-2025 (($ $ (-949 |#1|)) 50) (($ $ (-649 |#1|)) 49) (($ $ (-776)) 48) (($ (-949 |#1|)) 47) (((-949 |#1|) $) 46)) (-4334 (((-2 (|:| -3604 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 16)) (-3940 (((-776) $) 59)) (-3951 (((-776) $) 60)) (-2664 (($ $ (-776) (-949 |#1|)) 51)) (-3793 (((-112) $) 22)) (-3805 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 29) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 28) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 27) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 26) (($ (-649 (-649 (-949 |#1|)))) 25) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 24) (((-649 (-649 (-949 |#1|))) $) 23)) (-3719 (($ (-649 $)) 58) (($ $ $) 57)) (-1890 (((-649 (-172)) $) 17)) (-3207 (((-649 (-949 |#1|)) $) 21)) (-3755 (((-649 (-649 (-172))) $) 18)) (-3767 (((-649 (-649 (-649 (-949 |#1|)))) $) 19)) (-3781 (((-649 (-649 (-649 (-776)))) $) 20)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-3905 (((-776) $ (-649 (-949 |#1|))) 52)) (-3869 (((-112) $) 40)) (-3880 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 43) (($ (-649 (-949 |#1|))) 42) (((-649 (-949 |#1|)) $) 41)) (-3962 (($) 62) (($ (-1171 3 |#1|)) 61)) (-3885 (($ $) 53)) (-3916 (((-649 $) $) 54)) (-4146 (($ (-649 $)) 56)) (-3929 (((-649 $) $) 55)) (-2388 (((-867) $) 12)) (-3842 (((-112) $) 35)) (-3855 (($ $ (-649 (-949 |#1|))) 39) (($ $ (-649 (-649 |#1|))) 38) (($ (-649 (-949 |#1|))) 37) (((-649 (-949 |#1|)) $) 36)) (-1881 (($ $) 15)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
(((-1140 |#1|) (-140) (-1055)) (T -1140))
-((-4396 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-868)))) (-3820 (*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-4204 (*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3817 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)))) (-3816 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-646 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-4337 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3))))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3))))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3807 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-646 (-646 (-949 *5)))) (-5 *3 (-646 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-3807 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-646 (-646 (-646 *5)))) (-5 *3 (-646 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-3807 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-646 (-646 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-3807 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-646 (-646 (-646 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-949 *3)))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3807 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-646 (-646 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055)) (-4 *1 (-1140 *4)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-949 *3)))))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3))))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-646 (-776))))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-646 (-949 *3))))))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-172)))))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-172))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4300 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776)))))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3)))))
-(-13 (-1107) (-10 -8 (-15 -3820 ($)) (-15 -3820 ($ (-1171 3 |t#1|))) (-15 -3819 ((-776) $)) (-15 -3818 ((-776) $)) (-15 -3959 ($ (-646 $))) (-15 -3959 ($ $ $)) (-15 -4204 ($ (-646 $))) (-15 -3817 ((-646 $) $)) (-15 -3816 ((-646 $) $)) (-15 -3842 ($ $)) (-15 -3815 ((-776) $ (-646 (-949 |t#1|)))) (-15 -4337 ($ $ (-776) (-949 |t#1|))) (-15 -4156 ($ $ (-949 |t#1|))) (-15 -4156 ($ $ (-646 |t#1|))) (-15 -4156 ($ $ (-776))) (-15 -4156 ($ (-949 |t#1|))) (-15 -4156 ((-949 |t#1|) $)) (-15 -3814 ((-112) $)) (-15 -3813 ($ $ (-646 (-949 |t#1|)))) (-15 -3813 ($ $ (-646 (-646 |t#1|)))) (-15 -3813 ($ (-646 (-949 |t#1|)))) (-15 -3813 ((-646 (-949 |t#1|)) $)) (-15 -3812 ((-112) $)) (-15 -3811 ($ $ (-646 (-949 |t#1|)))) (-15 -3811 ($ $ (-646 (-646 |t#1|)))) (-15 -3811 ($ (-646 (-949 |t#1|)))) (-15 -3811 ((-646 (-949 |t#1|)) $)) (-15 -3810 ((-112) $)) (-15 -3809 ($ $ (-646 (-949 |t#1|)))) (-15 -3809 ($ $ (-646 (-646 |t#1|)))) (-15 -3809 ($ (-646 (-949 |t#1|)))) (-15 -3809 ((-646 (-949 |t#1|)) $)) (-15 -3808 ((-112) $)) (-15 -3807 ($ $ (-646 (-646 (-949 |t#1|))) (-646 (-172)) (-172))) (-15 -3807 ($ $ (-646 (-646 (-646 |t#1|))) (-646 (-172)) (-172))) (-15 -3807 ($ $ (-646 (-646 (-949 |t#1|))) (-112) (-112))) (-15 -3807 ($ $ (-646 (-646 (-646 |t#1|))) (-112) (-112))) (-15 -3807 ($ (-646 (-646 (-949 |t#1|))))) (-15 -3807 ($ (-646 (-646 (-949 |t#1|))) (-112) (-112))) (-15 -3807 ((-646 (-646 (-949 |t#1|))) $)) (-15 -3806 ((-112) $)) (-15 -3805 ((-646 (-949 |t#1|)) $)) (-15 -3804 ((-646 (-646 (-646 (-776)))) $)) (-15 -3803 ((-646 (-646 (-646 (-949 |t#1|)))) $)) (-15 -3802 ((-646 (-646 (-172))) $)) (-15 -3801 ((-646 (-172)) $)) (-15 -3800 ((-2 (|:| -4300 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $)) (-15 -3799 ($ $)) (-15 -4338 ((-1171 3 |t#1|) $)) (-15 -4396 ((-868) $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 184) (($ (-1188)) NIL) (((-1188) $) 7)) (-4015 (((-112) $ (|[\|\|]| (-529))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-681))) 27) (((-112) $ (|[\|\|]| (-1283))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-611))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1122))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-686))) 55) (((-112) $ (|[\|\|]| (-522))) 59) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 67) (((-112) $ (|[\|\|]| (-530))) 71) (((-112) $ (|[\|\|]| (-1158))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-676))) 83) (((-112) $ (|[\|\|]| (-315))) 87) (((-112) $ (|[\|\|]| (-1042))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-976))) 99) (((-112) $ (|[\|\|]| (-1079))) 103) (((-112) $ (|[\|\|]| (-1097))) 107) (((-112) $ (|[\|\|]| (-1102))) 111) (((-112) $ (|[\|\|]| (-631))) 115) (((-112) $ (|[\|\|]| (-1173))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-483))) 131) (((-112) $ (|[\|\|]| (-597))) 135) (((-112) $ (|[\|\|]| (-511))) 139) (((-112) $ (|[\|\|]| (-1165))) 143) (((-112) $ (|[\|\|]| (-551))) 147)) (-3680 (((-112) $ $) NIL)) (-4021 (((-529) $) 20) (((-219) $) 24) (((-681) $) 28) (((-1283) $) 32) (((-138) $) 36) (((-611) $) 40) (((-133) $) 44) (((-1122) $) 48) (((-96) $) 52) (((-686) $) 56) (((-522) $) 60) (((-1072) $) 64) (((-1284) $) 68) (((-530) $) 72) (((-1158) $) 76) (((-154) $) 80) (((-676) $) 84) (((-315) $) 88) (((-1042) $) 92) (((-181) $) 96) (((-976) $) 100) (((-1079) $) 104) (((-1097) $) 108) (((-1102) $) 112) (((-631) $) 116) (((-1173) $) 120) (((-156) $) 124) (((-137) $) 128) (((-483) $) 132) (((-597) $) 136) (((-511) $) 140) (((-1165) $) 144) (((-551) $) 148)) (-3473 (((-112) $ $) NIL)))
+((-2388 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-867)))) (-3962 (*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3719 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3929 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))) (-3916 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))) (-3885 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-2664 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3829 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3805 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-3805 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-3805 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-3805 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3805 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055)) (-4 *1 (-1140 *4)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-949 *3)))))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-649 (-776))))))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-649 (-949 *3))))))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-172)))))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-172))))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -3604 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776)))))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3)))))
+(-13 (-1106) (-10 -8 (-15 -3962 ($)) (-15 -3962 ($ (-1171 3 |t#1|))) (-15 -3951 ((-776) $)) (-15 -3940 ((-776) $)) (-15 -3719 ($ (-649 $))) (-15 -3719 ($ $ $)) (-15 -4146 ($ (-649 $))) (-15 -3929 ((-649 $) $)) (-15 -3916 ((-649 $) $)) (-15 -3885 ($ $)) (-15 -3905 ((-776) $ (-649 (-949 |t#1|)))) (-15 -2664 ($ $ (-776) (-949 |t#1|))) (-15 -2025 ($ $ (-949 |t#1|))) (-15 -2025 ($ $ (-649 |t#1|))) (-15 -2025 ($ $ (-776))) (-15 -2025 ($ (-949 |t#1|))) (-15 -2025 ((-949 |t#1|) $)) (-15 -3892 ((-112) $)) (-15 -3880 ($ $ (-649 (-949 |t#1|)))) (-15 -3880 ($ $ (-649 (-649 |t#1|)))) (-15 -3880 ($ (-649 (-949 |t#1|)))) (-15 -3880 ((-649 (-949 |t#1|)) $)) (-15 -3869 ((-112) $)) (-15 -3855 ($ $ (-649 (-949 |t#1|)))) (-15 -3855 ($ $ (-649 (-649 |t#1|)))) (-15 -3855 ($ (-649 (-949 |t#1|)))) (-15 -3855 ((-649 (-949 |t#1|)) $)) (-15 -3842 ((-112) $)) (-15 -3829 ($ $ (-649 (-949 |t#1|)))) (-15 -3829 ($ $ (-649 (-649 |t#1|)))) (-15 -3829 ($ (-649 (-949 |t#1|)))) (-15 -3829 ((-649 (-949 |t#1|)) $)) (-15 -3817 ((-112) $)) (-15 -3805 ($ $ (-649 (-649 (-949 |t#1|))) (-649 (-172)) (-172))) (-15 -3805 ($ $ (-649 (-649 (-649 |t#1|))) (-649 (-172)) (-172))) (-15 -3805 ($ $ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -3805 ($ $ (-649 (-649 (-649 |t#1|))) (-112) (-112))) (-15 -3805 ($ (-649 (-649 (-949 |t#1|))))) (-15 -3805 ($ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -3805 ((-649 (-649 (-949 |t#1|))) $)) (-15 -3793 ((-112) $)) (-15 -3207 ((-649 (-949 |t#1|)) $)) (-15 -3781 ((-649 (-649 (-649 (-776)))) $)) (-15 -3767 ((-649 (-649 (-649 (-949 |t#1|)))) $)) (-15 -3755 ((-649 (-649 (-172))) $)) (-15 -1890 ((-649 (-172)) $)) (-15 -4334 ((-2 (|:| -3604 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $)) (-15 -1881 ($ $)) (-15 -2675 ((-1171 3 |t#1|) $)) (-15 -2388 ((-867) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 184) (($ (-1188)) NIL) (((-1188) $) 7)) (-1775 (((-112) $ (|[\|\|]| (-529))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-681))) 27) (((-112) $ (|[\|\|]| (-1283))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-611))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1121))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-686))) 55) (((-112) $ (|[\|\|]| (-522))) 59) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 67) (((-112) $ (|[\|\|]| (-530))) 71) (((-112) $ (|[\|\|]| (-1157))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-676))) 83) (((-112) $ (|[\|\|]| (-314))) 87) (((-112) $ (|[\|\|]| (-1042))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-976))) 99) (((-112) $ (|[\|\|]| (-1079))) 103) (((-112) $ (|[\|\|]| (-1096))) 107) (((-112) $ (|[\|\|]| (-1102))) 111) (((-112) $ (|[\|\|]| (-631))) 115) (((-112) $ (|[\|\|]| (-1173))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-483))) 131) (((-112) $ (|[\|\|]| (-597))) 135) (((-112) $ (|[\|\|]| (-511))) 139) (((-112) $ (|[\|\|]| (-1165))) 143) (((-112) $ (|[\|\|]| (-569))) 147)) (-2040 (((-112) $ $) NIL)) (-3922 (((-529) $) 20) (((-219) $) 24) (((-681) $) 28) (((-1283) $) 32) (((-138) $) 36) (((-611) $) 40) (((-133) $) 44) (((-1121) $) 48) (((-96) $) 52) (((-686) $) 56) (((-522) $) 60) (((-1072) $) 64) (((-1284) $) 68) (((-530) $) 72) (((-1157) $) 76) (((-154) $) 80) (((-676) $) 84) (((-314) $) 88) (((-1042) $) 92) (((-181) $) 96) (((-976) $) 100) (((-1079) $) 104) (((-1096) $) 108) (((-1102) $) 112) (((-631) $) 116) (((-1173) $) 120) (((-156) $) 124) (((-137) $) 128) (((-483) $) 132) (((-597) $) 136) (((-511) $) 140) (((-1165) $) 144) (((-569) $) 148)) (-2853 (((-112) $ $) NIL)))
(((-1141) (-1143)) (T -1141))
NIL
(-1143)
-((-3821 (((-646 (-1188)) (-1165)) 9)))
-(((-1142) (-10 -7 (-15 -3821 ((-646 (-1188)) (-1165))))) (T -1142))
-((-3821 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-1188))) (-5 *1 (-1142)))))
-(-10 -7 (-15 -3821 ((-646 (-1188)) (-1165))))
-((-2986 (((-112) $ $) 7)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-4015 (((-112) $ (|[\|\|]| (-529))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-681))) 81) (((-112) $ (|[\|\|]| (-1283))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-611))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1122))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-686))) 67) (((-112) $ (|[\|\|]| (-522))) 65) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 61) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1158))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-676))) 53) (((-112) $ (|[\|\|]| (-315))) 51) (((-112) $ (|[\|\|]| (-1042))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-976))) 45) (((-112) $ (|[\|\|]| (-1079))) 43) (((-112) $ (|[\|\|]| (-1097))) 41) (((-112) $ (|[\|\|]| (-1102))) 39) (((-112) $ (|[\|\|]| (-631))) 37) (((-112) $ (|[\|\|]| (-1173))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-483))) 29) (((-112) $ (|[\|\|]| (-597))) 27) (((-112) $ (|[\|\|]| (-511))) 25) (((-112) $ (|[\|\|]| (-1165))) 23) (((-112) $ (|[\|\|]| (-551))) 21)) (-3680 (((-112) $ $) 9)) (-4021 (((-529) $) 84) (((-219) $) 82) (((-681) $) 80) (((-1283) $) 78) (((-138) $) 76) (((-611) $) 74) (((-133) $) 72) (((-1122) $) 70) (((-96) $) 68) (((-686) $) 66) (((-522) $) 64) (((-1072) $) 62) (((-1284) $) 60) (((-530) $) 58) (((-1158) $) 56) (((-154) $) 54) (((-676) $) 52) (((-315) $) 50) (((-1042) $) 48) (((-181) $) 46) (((-976) $) 44) (((-1079) $) 42) (((-1097) $) 40) (((-1102) $) 38) (((-631) $) 36) (((-1173) $) 34) (((-156) $) 32) (((-137) $) 30) (((-483) $) 28) (((-597) $) 26) (((-511) $) 24) (((-1165) $) 22) (((-551) $) 20)) (-3473 (((-112) $ $) 6)))
+((-2001 (((-649 (-1188)) (-1165)) 9)))
+(((-1142) (-10 -7 (-15 -2001 ((-649 (-1188)) (-1165))))) (T -1142))
+((-2001 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-1142)))))
+(-10 -7 (-15 -2001 ((-649 (-1188)) (-1165))))
+((-2383 (((-112) $ $) 7)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-1775 (((-112) $ (|[\|\|]| (-529))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-681))) 81) (((-112) $ (|[\|\|]| (-1283))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-611))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1121))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-686))) 67) (((-112) $ (|[\|\|]| (-522))) 65) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 61) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1157))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-676))) 53) (((-112) $ (|[\|\|]| (-314))) 51) (((-112) $ (|[\|\|]| (-1042))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-976))) 45) (((-112) $ (|[\|\|]| (-1079))) 43) (((-112) $ (|[\|\|]| (-1096))) 41) (((-112) $ (|[\|\|]| (-1102))) 39) (((-112) $ (|[\|\|]| (-631))) 37) (((-112) $ (|[\|\|]| (-1173))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-483))) 29) (((-112) $ (|[\|\|]| (-597))) 27) (((-112) $ (|[\|\|]| (-511))) 25) (((-112) $ (|[\|\|]| (-1165))) 23) (((-112) $ (|[\|\|]| (-569))) 21)) (-2040 (((-112) $ $) 9)) (-3922 (((-529) $) 84) (((-219) $) 82) (((-681) $) 80) (((-1283) $) 78) (((-138) $) 76) (((-611) $) 74) (((-133) $) 72) (((-1121) $) 70) (((-96) $) 68) (((-686) $) 66) (((-522) $) 64) (((-1072) $) 62) (((-1284) $) 60) (((-530) $) 58) (((-1157) $) 56) (((-154) $) 54) (((-676) $) 52) (((-314) $) 50) (((-1042) $) 48) (((-181) $) 46) (((-976) $) 44) (((-1079) $) 42) (((-1096) $) 40) (((-1102) $) 38) (((-631) $) 36) (((-1173) $) 34) (((-156) $) 32) (((-137) $) 30) (((-483) $) 28) (((-597) $) 26) (((-511) $) 24) (((-1165) $) 22) (((-569) $) 20)) (-2853 (((-112) $ $) 6)))
(((-1143) (-140)) (T -1143))
-((-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1122)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1158)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-315)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1097)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165)))) (-4015 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-551))) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-551)))))
-(-13 (-1089) (-1268) (-10 -8 (-15 -4015 ((-112) $ (|[\|\|]| (-529)))) (-15 -4021 ((-529) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-219)))) (-15 -4021 ((-219) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-681)))) (-15 -4021 ((-681) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1283)))) (-15 -4021 ((-1283) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-138)))) (-15 -4021 ((-138) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-611)))) (-15 -4021 ((-611) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-133)))) (-15 -4021 ((-133) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1122)))) (-15 -4021 ((-1122) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-96)))) (-15 -4021 ((-96) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-686)))) (-15 -4021 ((-686) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-522)))) (-15 -4021 ((-522) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1072)))) (-15 -4021 ((-1072) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1284)))) (-15 -4021 ((-1284) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-530)))) (-15 -4021 ((-530) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1158)))) (-15 -4021 ((-1158) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-154)))) (-15 -4021 ((-154) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-676)))) (-15 -4021 ((-676) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-315)))) (-15 -4021 ((-315) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1042)))) (-15 -4021 ((-1042) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-181)))) (-15 -4021 ((-181) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-976)))) (-15 -4021 ((-976) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1079)))) (-15 -4021 ((-1079) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1097)))) (-15 -4021 ((-1097) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1102)))) (-15 -4021 ((-1102) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-631)))) (-15 -4021 ((-631) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1173)))) (-15 -4021 ((-1173) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-156)))) (-15 -4021 ((-156) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-137)))) (-15 -4021 ((-137) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-483)))) (-15 -4021 ((-483) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-597)))) (-15 -4021 ((-597) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-511)))) (-15 -4021 ((-511) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-1165)))) (-15 -4021 ((-1165) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-551)))) (-15 -4021 ((-551) $))))
-(((-93) . T) ((-102) . T) ((-621 #1=(-1188)) . T) ((-618 (-868)) . T) ((-618 #1#) . T) ((-495 #1#) . T) ((-1107) . T) ((-1089) . T) ((-1268) . T))
-((-3824 (((-1278) (-646 (-868))) 22) (((-1278) (-868)) 21)) (-3823 (((-1278) (-646 (-868))) 20) (((-1278) (-868)) 19)) (-3822 (((-1278) (-646 (-868))) 18) (((-1278) (-868)) 10) (((-1278) (-1165) (-868)) 16)))
-(((-1144) (-10 -7 (-15 -3822 ((-1278) (-1165) (-868))) (-15 -3822 ((-1278) (-868))) (-15 -3823 ((-1278) (-868))) (-15 -3824 ((-1278) (-868))) (-15 -3822 ((-1278) (-646 (-868)))) (-15 -3823 ((-1278) (-646 (-868)))) (-15 -3824 ((-1278) (-646 (-868)))))) (T -1144))
-((-3824 (*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(-10 -7 (-15 -3822 ((-1278) (-1165) (-868))) (-15 -3822 ((-1278) (-868))) (-15 -3823 ((-1278) (-868))) (-15 -3824 ((-1278) (-868))) (-15 -3822 ((-1278) (-646 (-868)))) (-15 -3823 ((-1278) (-646 (-868)))) (-15 -3824 ((-1278) (-646 (-868)))))
-((-3828 (($ $ $) 10)) (-3827 (($ $) 9)) (-3831 (($ $ $) 13)) (-3833 (($ $ $) 15)) (-3830 (($ $ $) 12)) (-3832 (($ $ $) 14)) (-3835 (($ $) 17)) (-3834 (($ $) 16)) (-3825 (($ $) 6)) (-3829 (($ $ $) 11) (($ $) 7)) (-3826 (($ $ $) 8)))
+((-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1121)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1157)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-314)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1096)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-569)))))
+(-13 (-1089) (-1268) (-10 -8 (-15 -1775 ((-112) $ (|[\|\|]| (-529)))) (-15 -3922 ((-529) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-219)))) (-15 -3922 ((-219) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-681)))) (-15 -3922 ((-681) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1283)))) (-15 -3922 ((-1283) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-138)))) (-15 -3922 ((-138) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-611)))) (-15 -3922 ((-611) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-133)))) (-15 -3922 ((-133) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1121)))) (-15 -3922 ((-1121) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-96)))) (-15 -3922 ((-96) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-686)))) (-15 -3922 ((-686) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-522)))) (-15 -3922 ((-522) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1072)))) (-15 -3922 ((-1072) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1284)))) (-15 -3922 ((-1284) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-530)))) (-15 -3922 ((-530) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1157)))) (-15 -3922 ((-1157) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-154)))) (-15 -3922 ((-154) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-676)))) (-15 -3922 ((-676) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-314)))) (-15 -3922 ((-314) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1042)))) (-15 -3922 ((-1042) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-181)))) (-15 -3922 ((-181) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-976)))) (-15 -3922 ((-976) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1079)))) (-15 -3922 ((-1079) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1096)))) (-15 -3922 ((-1096) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1102)))) (-15 -3922 ((-1102) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-631)))) (-15 -3922 ((-631) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1173)))) (-15 -3922 ((-1173) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-156)))) (-15 -3922 ((-156) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-137)))) (-15 -3922 ((-137) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-483)))) (-15 -3922 ((-483) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-597)))) (-15 -3922 ((-597) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-511)))) (-15 -3922 ((-511) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3922 ((-1165) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-569)))) (-15 -3922 ((-569) $))))
+(((-93) . T) ((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T) ((-1089) . T) ((-1268) . T))
+((-3988 (((-1278) (-649 (-867))) 22) (((-1278) (-867)) 21)) (-3974 (((-1278) (-649 (-867))) 20) (((-1278) (-867)) 19)) (-3275 (((-1278) (-649 (-867))) 18) (((-1278) (-867)) 10) (((-1278) (-1165) (-867)) 16)))
+(((-1144) (-10 -7 (-15 -3275 ((-1278) (-1165) (-867))) (-15 -3275 ((-1278) (-867))) (-15 -3974 ((-1278) (-867))) (-15 -3988 ((-1278) (-867))) (-15 -3275 ((-1278) (-649 (-867)))) (-15 -3974 ((-1278) (-649 (-867)))) (-15 -3988 ((-1278) (-649 (-867)))))) (T -1144))
+((-3988 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))))
+(-10 -7 (-15 -3275 ((-1278) (-1165) (-867))) (-15 -3275 ((-1278) (-867))) (-15 -3974 ((-1278) (-867))) (-15 -3988 ((-1278) (-867))) (-15 -3275 ((-1278) (-649 (-867)))) (-15 -3974 ((-1278) (-649 (-867)))) (-15 -3988 ((-1278) (-649 (-867)))))
+((-4033 (($ $ $) 10)) (-4022 (($ $) 9)) (-4067 (($ $ $) 13)) (-4089 (($ $ $) 15)) (-4055 (($ $ $) 12)) (-4079 (($ $ $) 14)) (-4115 (($ $) 17)) (-4101 (($ $) 16)) (-3999 (($ $) 6)) (-4044 (($ $ $) 11) (($ $) 7)) (-4010 (($ $ $) 8)))
(((-1145) (-140)) (T -1145))
-((-3835 (*1 *1 *1) (-4 *1 (-1145))) (-3834 (*1 *1 *1) (-4 *1 (-1145))) (-3833 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3832 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3831 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3830 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3829 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3828 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3827 (*1 *1 *1) (-4 *1 (-1145))) (-3826 (*1 *1 *1 *1) (-4 *1 (-1145))) (-3829 (*1 *1 *1) (-4 *1 (-1145))) (-3825 (*1 *1 *1) (-4 *1 (-1145))))
-(-13 (-10 -8 (-15 -3825 ($ $)) (-15 -3829 ($ $)) (-15 -3826 ($ $ $)) (-15 -3827 ($ $)) (-15 -3828 ($ $ $)) (-15 -3829 ($ $ $)) (-15 -3830 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3832 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3834 ($ $)) (-15 -3835 ($ $))))
-((-2986 (((-112) $ $) 44)) (-3844 ((|#1| $) 17)) (-3836 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3843 (((-112) $) 19)) (-3841 (($ $ |#1|) 30)) (-3839 (($ $ (-112)) 32)) (-3838 (($ $) 33)) (-3840 (($ $ |#2|) 31)) (-3681 (((-1165) $) NIL)) (-3837 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3682 (((-1126) $) NIL)) (-3845 (((-112) $) 16)) (-4014 (($) 13)) (-3842 (($ $) 29)) (-3971 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1718 |#2|))) 23) (((-646 $) (-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|)))) 26) (((-646 $) |#1| (-646 |#2|)) 28)) (-4372 ((|#2| $) 18)) (-4396 (((-868) $) 53)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 42)))
-(((-1146 |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -4014 ($)) (-15 -3845 ((-112) $)) (-15 -3844 (|#1| $)) (-15 -4372 (|#2| $)) (-15 -3843 ((-112) $)) (-15 -3971 ($ |#1| |#2| (-112))) (-15 -3971 ($ |#1| |#2|)) (-15 -3971 ($ (-2 (|:| |val| |#1|) (|:| -1718 |#2|)))) (-15 -3971 ((-646 $) (-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|))))) (-15 -3971 ((-646 $) |#1| (-646 |#2|))) (-15 -3842 ($ $)) (-15 -3841 ($ $ |#1|)) (-15 -3840 ($ $ |#2|)) (-15 -3839 ($ $ (-112))) (-15 -3838 ($ $)) (-15 -3837 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3836 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1107) (-34)) (-13 (-1107) (-34))) (T -1146))
-((-4014 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-13 (-1107) (-34))) (-5 *1 (-1146 *2 *3)) (-4 *3 (-13 (-1107) (-34))))) (-4372 (*1 *2 *1) (-12 (-4 *2 (-13 (-1107) (-34))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1107) (-34))))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))) (-3971 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3971 (*1 *1 *2 *3) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1718 *4))) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1146 *3 *4)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-646 (-2 (|:| |val| *4) (|:| -1718 *5)))) (-4 *4 (-13 (-1107) (-34))) (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-646 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *4 (-646 *5)) (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-646 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5)) (-4 *3 (-13 (-1107) (-34))))) (-3842 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3841 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1107) (-34))) (-4 *2 (-13 (-1107) (-34))))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3837 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1107) (-34))) (-4 *6 (-13 (-1107) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *5 *6)))) (-3836 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1107) (-34))))))
-(-13 (-1107) (-10 -8 (-15 -4014 ($)) (-15 -3845 ((-112) $)) (-15 -3844 (|#1| $)) (-15 -4372 (|#2| $)) (-15 -3843 ((-112) $)) (-15 -3971 ($ |#1| |#2| (-112))) (-15 -3971 ($ |#1| |#2|)) (-15 -3971 ($ (-2 (|:| |val| |#1|) (|:| -1718 |#2|)))) (-15 -3971 ((-646 $) (-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|))))) (-15 -3971 ((-646 $) |#1| (-646 |#2|))) (-15 -3842 ($ $)) (-15 -3841 ($ $ |#1|)) (-15 -3840 ($ $ |#2|)) (-15 -3839 ($ $ (-112))) (-15 -3838 ($ $)) (-15 -3837 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3836 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2986 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-3844 (((-1146 |#1| |#2|) $) 27)) (-3853 (($ $) 91)) (-3849 (((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3846 (($ $ $ (-646 (-1146 |#1| |#2|))) 108) (($ $ $ (-646 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1312 (((-112) $ (-776)) NIL)) (-3444 (((-1146 |#1| |#2|) $ (-1146 |#1| |#2|)) 46 (|has| $ (-6 -4444)))) (-4237 (((-1146 |#1| |#2|) $ #1="value" (-1146 |#1| |#2|)) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 44 (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-3851 (((-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|))) $) 95)) (-3847 (($ (-1146 |#1| |#2|) $) 42)) (-3848 (($ (-1146 |#1| |#2|) $) 34)) (-2134 (((-646 (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 54)) (-3850 (((-112) (-1146 |#1| |#2|) $) 97)) (-3446 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 (-1146 |#1| |#2|)) $) 58 (|has| $ (-6 -4443)))) (-3684 (((-112) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-1146 |#1| |#2|) (-1107))))) (-2138 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 50 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 49)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 (-1146 |#1| |#2|)) $) 56)) (-3968 (((-112) $) 45)) (-3681 (((-1165) $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-3682 (((-1126) $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-3854 (((-3 $ "failed") $) 89)) (-2136 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-1146 |#1| |#2|)))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1107)))) (($ $ (-296 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1107)))) (($ $ (-1146 |#1| |#2|) (-1146 |#1| |#2|)) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1107)))) (($ $ (-646 (-1146 |#1| |#2|)) (-646 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1107))))) (-1313 (((-112) $ $) 53)) (-3845 (((-112) $) 24)) (-4014 (($) 26)) (-4249 (((-1146 |#1| |#2|) $ #1#) NIL)) (-3448 (((-551) $ $) NIL)) (-4083 (((-112) $) 47)) (-2135 (((-776) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443))) (((-776) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-1146 |#1| |#2|) (-1107))))) (-3842 (($ $) 52)) (-3971 (($ (-1146 |#1| |#2|)) 10) (($ |#1| |#2| (-646 $)) 13) (($ |#1| |#2| (-646 (-1146 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-646 |#2|)) 18)) (-3852 (((-646 |#2|) $) 96)) (-4396 (((-868) $) 87 (|has| (-1146 |#1| |#2|) (-618 (-868))))) (-3963 (((-646 $) $) 31)) (-3447 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-3680 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1107)))) (-2137 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 70 (|has| (-1146 |#1| |#2|) (-1107)))) (-4407 (((-776) $) 64 (|has| $ (-6 -4443)))))
-(((-1147 |#1| |#2|) (-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3854 ((-3 $ "failed") $)) (-15 -3853 ($ $)) (-15 -3971 ($ (-1146 |#1| |#2|))) (-15 -3971 ($ |#1| |#2| (-646 $))) (-15 -3971 ($ |#1| |#2| (-646 (-1146 |#1| |#2|)))) (-15 -3971 ($ |#1| |#2| |#1| (-646 |#2|))) (-15 -3852 ((-646 |#2|) $)) (-15 -3851 ((-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|))) $)) (-15 -3850 ((-112) (-1146 |#1| |#2|) $)) (-15 -3849 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3848 ($ (-1146 |#1| |#2|) $)) (-15 -3847 ($ (-1146 |#1| |#2|) $)) (-15 -3846 ($ $ $ (-646 (-1146 |#1| |#2|)))) (-15 -3846 ($ $ $ (-646 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1107) (-34)) (-13 (-1107) (-34))) (T -1147))
-((-3854 (*1 *1 *1) (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))) (-3971 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-646 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))))) (-3971 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-646 (-1146 *2 *3))) (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34))) (-5 *1 (-1147 *2 *3)))) (-3971 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-646 *3)) (-4 *3 (-13 (-1107) (-34))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34))))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-646 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))) (-3850 (*1 *2 *3 *1) (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1107) (-34))) (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))) (-3849 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1107) (-34))) (-4 *6 (-13 (-1107) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *5 *6)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))) (-3847 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))) (-3846 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-646 (-1146 *3 *4))) (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))) (-3846 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1107) (-34))) (-4 *5 (-13 (-1107) (-34))) (-5 *1 (-1147 *4 *5)))))
-(-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4444) (-6 -4443) (-15 -3854 ((-3 $ "failed") $)) (-15 -3853 ($ $)) (-15 -3971 ($ (-1146 |#1| |#2|))) (-15 -3971 ($ |#1| |#2| (-646 $))) (-15 -3971 ($ |#1| |#2| (-646 (-1146 |#1| |#2|)))) (-15 -3971 ($ |#1| |#2| |#1| (-646 |#2|))) (-15 -3852 ((-646 |#2|) $)) (-15 -3851 ((-646 (-2 (|:| |val| |#1|) (|:| -1718 |#2|))) $)) (-15 -3850 ((-112) (-1146 |#1| |#2|) $)) (-15 -3849 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3848 ($ (-1146 |#1| |#2|) $)) (-15 -3847 ($ (-1146 |#1| |#2|) $)) (-15 -3846 ($ $ $ (-646 (-1146 |#1| |#2|)))) (-15 -3846 ($ $ $ (-646 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3856 (($ $) NIL)) (-3772 ((|#2| $) NIL)) (-3543 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3855 (($ (-694 |#2|)) 56)) (-3545 (((-112) $) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-3775 (($ |#2|) 14)) (-4174 (($) NIL T CONST)) (-3532 (($ $) 69 (|has| |#2| (-310)))) (-3534 (((-240 |#1| |#2|) $ (-551)) 42)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 |#2| #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) ((|#2| $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) 83)) (-3531 (((-776) $) 71 (|has| |#2| (-562)))) (-3535 ((|#2| $ (-551) (-551)) NIL)) (-2134 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2591 (((-112) $) NIL)) (-3530 (((-776) $) 73 (|has| |#2| (-562)))) (-3529 (((-646 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-562)))) (-3537 (((-776) $) NIL)) (-4064 (($ |#2|) 25)) (-3536 (((-776) $) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-3769 ((|#2| $) 67 (|has| |#2| (-6 (-4445 #2="*"))))) (-3541 (((-551) $) NIL)) (-3539 (((-551) $) NIL)) (-3026 (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3540 (((-551) $) NIL)) (-3538 (((-551) $) NIL)) (-3546 (($ (-646 (-646 |#2|))) 37)) (-2138 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4043 (((-646 (-646 |#2|)) $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-4039 (((-3 $ "failed") $) 80 (|has| |#2| (-367)))) (-3682 (((-1126) $) NIL)) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-2136 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ (-551) (-551) |#2|) NIL) ((|#2| $ (-551) (-551)) NIL)) (-4260 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3771 ((|#2| $) NIL)) (-3774 (($ (-646 |#2|)) 50)) (-3544 (((-112) $) NIL)) (-3773 (((-240 |#1| |#2|) $) NIL)) (-3770 ((|#2| $) 65 (|has| |#2| (-6 (-4445 #2#))))) (-2135 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-3842 (($ $) NIL)) (-4420 (((-540) $) 89 (|has| |#2| (-619 (-540))))) (-3533 (((-240 |#1| |#2|) $ (-551)) 44)) (-4396 (((-868) $) 47) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#2| (-1044 (-412 (-551))))) (($ |#2|) NIL) (((-694 |#2|) $) 52)) (-3548 (((-776)) 23 T CONST)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3542 (((-112) $) NIL)) (-3528 (($) 16 T CONST)) (-3085 (($) 21 T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) 63) (($ $ (-551)) 82 (|has| |#2| (-367)))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1148 |#1| |#2|) (-13 (-1129 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4064 ($ |#2|)) (-15 -3856 ($ $)) (-15 -3855 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4445 "*"))) (-6 -4432) |%noBranch|) (IF (|has| |#2| (-6 (-4445 "*"))) (IF (|has| |#2| (-6 -4440)) (-6 -4440) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|))) (-776) (-1055)) (T -1148))
-((-4064 (*1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4)) (-14 *3 (-776)))))
-(-13 (-1129 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4064 ($ |#2|)) (-15 -3856 ($ $)) (-15 -3855 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4445 "*"))) (-6 -4432) |%noBranch|) (IF (|has| |#2| (-6 (-4445 "*"))) (IF (|has| |#2| (-6 -4440)) (-6 -4440) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-540))) (-6 (-619 (-540))) |%noBranch|)))
-((-3869 (($ $) 19)) (-3859 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3867 (((-112) $ $) 24)) (-3871 (($ $) 17)) (-4249 (((-144) $ (-551) (-144)) NIL) (((-144) $ (-551)) NIL) (($ $ (-1239 (-551))) NIL) (($ $ $) 31)) (-4396 (($ (-144)) 29) (((-868) $) NIL)))
-(((-1149 |#1|) (-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4249 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| (-141))) (-15 -3859 (|#1| |#1| (-144))) (-15 -4396 (|#1| (-144))) (-15 -3867 ((-112) |#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4249 ((-144) |#1| (-551))) (-15 -4249 ((-144) |#1| (-551) (-144)))) (-1150)) (T -1149))
-NIL
-(-10 -8 (-15 -4396 ((-868) |#1|)) (-15 -4249 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| (-141))) (-15 -3859 (|#1| |#1| (-144))) (-15 -4396 (|#1| (-144))) (-15 -3867 ((-112) |#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4249 ((-144) |#1| (-551))) (-15 -4249 ((-144) |#1| (-551) (-144))))
-((-2986 (((-112) $ $) 19 (|has| (-144) (-1107)))) (-3868 (($ $) 121)) (-3869 (($ $) 122)) (-3859 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-3866 (((-112) $ $) 119)) (-3865 (((-112) $ $ (-551)) 118)) (-3860 (((-646 $) $ (-144)) 111) (((-646 $) $ (-141)) 110)) (-1910 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-1908 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 (((-144) $ (-551) (-144)) 53 (|has| $ (-6 -4444))) (((-144) $ (-1239 (-551)) (-144)) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-3857 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-3862 (($ $ (-1239 (-551)) $) 115)) (-1443 (($ $) 79 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ (-144) $) 78 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4443)))) (-4292 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4443)))) (-1694 (((-144) $ (-551) (-144)) 54 (|has| $ (-6 -4444)))) (-3535 (((-144) $ (-551)) 52)) (-3867 (((-112) $ $) 120)) (-3861 (((-551) (-1 (-112) (-144)) $) 98) (((-551) (-144) $) 97 (|has| (-144) (-1107))) (((-551) (-144) $ (-551)) 96 (|has| (-144) (-1107))) (((-551) $ $ (-551)) 114) (((-551) (-141) $ (-551)) 113)) (-2134 (((-646 (-144)) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) (-144)) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| (-144) (-855)))) (-3959 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-3026 (((-646 (-144)) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| (-144) (-855)))) (-3863 (((-112) $ $ (-144)) 116)) (-3864 (((-776) $ $ (-144)) 117)) (-2138 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3870 (($ $) 123)) (-3871 (($ $) 124)) (-4166 (((-112) $ (-776)) 10)) (-3858 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3681 (((-1165) $) 22 (|has| (-144) (-1107)))) (-2467 (($ (-144) $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| (-144) (-1107)))) (-4250 (((-144) $) 43 (|has| (-551) (-855)))) (-1444 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2391 (($ $ (-144)) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-296 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-646 (-144)) (-646 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2397 (((-646 (-144)) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 (((-144) $ (-551) (-144)) 51) (((-144) $ (-551)) 50) (($ $ (-1239 (-551))) 64) (($ $ $) 103)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4443))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| (-144) (-619 (-540))))) (-3971 (($ (-646 (-144))) 71)) (-4251 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (($ (-144)) 112) (((-868) $) 18 (|has| (-144) (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| (-144) (-1107)))) (-2137 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2985 (((-112) $ $) 84 (|has| (-144) (-855)))) (-3473 (((-112) $ $) 20 (|has| (-144) (-1107)))) (-3105 (((-112) $ $) 86 (|has| (-144) (-855)))) (-3106 (((-112) $ $) 83 (|has| (-144) (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+((-4115 (*1 *1 *1) (-4 *1 (-1145))) (-4101 (*1 *1 *1) (-4 *1 (-1145))) (-4089 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4079 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4067 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4055 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4044 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4033 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4022 (*1 *1 *1) (-4 *1 (-1145))) (-4010 (*1 *1 *1 *1) (-4 *1 (-1145))) (-4044 (*1 *1 *1) (-4 *1 (-1145))) (-3999 (*1 *1 *1) (-4 *1 (-1145))))
+(-13 (-10 -8 (-15 -3999 ($ $)) (-15 -4044 ($ $)) (-15 -4010 ($ $ $)) (-15 -4022 ($ $)) (-15 -4033 ($ $ $)) (-15 -4044 ($ $ $)) (-15 -4055 ($ $ $)) (-15 -4067 ($ $ $)) (-15 -4079 ($ $ $)) (-15 -4089 ($ $ $)) (-15 -4101 ($ $)) (-15 -4115 ($ $))))
+((-2383 (((-112) $ $) 44)) (-2150 ((|#1| $) 17)) (-4126 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2469 (((-112) $) 19)) (-4185 (($ $ |#1|) 30)) (-4161 (($ $ (-112)) 32)) (-4151 (($ $) 33)) (-4173 (($ $ |#2|) 31)) (-2050 (((-1165) $) NIL)) (-4139 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3461 (((-1126) $) NIL)) (-4196 (((-112) $) 16)) (-2825 (($) 13)) (-3885 (($ $) 29)) (-3709 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3550 |#2|))) 23) (((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|)))) 26) (((-649 $) |#1| (-649 |#2|)) 28)) (-2335 ((|#2| $) 18)) (-2388 (((-867) $) 53)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 42)))
+(((-1146 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -2825 ($)) (-15 -4196 ((-112) $)) (-15 -2150 (|#1| $)) (-15 -2335 (|#2| $)) (-15 -2469 ((-112) $)) (-15 -3709 ($ |#1| |#2| (-112))) (-15 -3709 ($ |#1| |#2|)) (-15 -3709 ($ (-2 (|:| |val| |#1|) (|:| -3550 |#2|)))) (-15 -3709 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|))))) (-15 -3709 ((-649 $) |#1| (-649 |#2|))) (-15 -3885 ($ $)) (-15 -4185 ($ $ |#1|)) (-15 -4173 ($ $ |#2|)) (-15 -4161 ($ $ (-112))) (-15 -4151 ($ $)) (-15 -4139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4126 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1106) (-34)) (-13 (-1106) (-34))) (T -1146))
+((-2825 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *2 *3)) (-4 *3 (-13 (-1106) (-34))))) (-2335 (*1 *2 *1) (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34))))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-3709 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3709 (*1 *1 *2 *3) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3550 *4))) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *4)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3550 *5)))) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-649 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-649 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5)) (-4 *3 (-13 (-1106) (-34))))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4185 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4173 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34))) (-4 *2 (-13 (-1106) (-34))))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4139 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *5 *6)))) (-4126 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))))))
+(-13 (-1106) (-10 -8 (-15 -2825 ($)) (-15 -4196 ((-112) $)) (-15 -2150 (|#1| $)) (-15 -2335 (|#2| $)) (-15 -2469 ((-112) $)) (-15 -3709 ($ |#1| |#2| (-112))) (-15 -3709 ($ |#1| |#2|)) (-15 -3709 ($ (-2 (|:| |val| |#1|) (|:| -3550 |#2|)))) (-15 -3709 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|))))) (-15 -3709 ((-649 $) |#1| (-649 |#2|))) (-15 -3885 ($ $)) (-15 -4185 ($ $ |#1|)) (-15 -4173 ($ $ |#2|)) (-15 -4161 ($ $ (-112))) (-15 -4151 ($ $)) (-15 -4139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4126 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2383 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-2150 (((-1146 |#1| |#2|) $) 27)) (-4252 (($ $) 91)) (-4228 (((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-4207 (($ $ $ (-649 (-1146 |#1| |#2|))) 108) (($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1610 (((-112) $ (-776)) NIL)) (-1753 (((-1146 |#1| |#2|) $ (-1146 |#1| |#2|)) 46 (|has| $ (-6 -4444)))) (-3861 (((-1146 |#1| |#2|) $ "value" (-1146 |#1| |#2|)) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 44 (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-1666 (((-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|))) $) 95)) (-4218 (($ (-1146 |#1| |#2|) $) 42)) (-1678 (($ (-1146 |#1| |#2|) $) 34)) (-2796 (((-649 (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 54)) (-4241 (((-112) (-1146 |#1| |#2|) $) 97)) (-1774 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 (-1146 |#1| |#2|)) $) 58 (|has| $ (-6 -4443)))) (-2060 (((-112) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-1146 |#1| |#2|) (-1106))))) (-3065 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 50 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 49)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 (-1146 |#1| |#2|)) $) 56)) (-2546 (((-112) $) 45)) (-2050 (((-1165) $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-3461 (((-1126) $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-4264 (((-3 $ "failed") $) 89)) (-3983 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-1146 |#1| |#2|)))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-297 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-1146 |#1| |#2|) (-1146 |#1| |#2|)) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-649 (-1146 |#1| |#2|)) (-649 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106))))) (-1620 (((-112) $ $) 53)) (-4196 (((-112) $) 24)) (-2825 (($) 26)) (-1852 (((-1146 |#1| |#2|) $ "value") NIL)) (-1797 (((-569) $ $) NIL)) (-2284 (((-112) $) 47)) (-3469 (((-776) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443))) (((-776) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-1146 |#1| |#2|) (-1106))))) (-3885 (($ $) 52)) (-3709 (($ (-1146 |#1| |#2|)) 10) (($ |#1| |#2| (-649 $)) 13) (($ |#1| |#2| (-649 (-1146 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-649 |#2|)) 18)) (-4092 (((-649 |#2|) $) 96)) (-2388 (((-867) $) 87 (|has| (-1146 |#1| |#2|) (-618 (-867))))) (-2492 (((-649 $) $) 31)) (-1785 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-2040 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-3996 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 70 (|has| (-1146 |#1| |#2|) (-1106)))) (-2394 (((-776) $) 64 (|has| $ (-6 -4443)))))
+(((-1147 |#1| |#2|) (-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4444) (-6 -4443) (-15 -4264 ((-3 $ "failed") $)) (-15 -4252 ($ $)) (-15 -3709 ($ (-1146 |#1| |#2|))) (-15 -3709 ($ |#1| |#2| (-649 $))) (-15 -3709 ($ |#1| |#2| (-649 (-1146 |#1| |#2|)))) (-15 -3709 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4092 ((-649 |#2|) $)) (-15 -1666 ((-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|))) $)) (-15 -4241 ((-112) (-1146 |#1| |#2|) $)) (-15 -4228 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1678 ($ (-1146 |#1| |#2|) $)) (-15 -4218 ($ (-1146 |#1| |#2|) $)) (-15 -4207 ($ $ $ (-649 (-1146 |#1| |#2|)))) (-15 -4207 ($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1106) (-34)) (-13 (-1106) (-34))) (T -1147))
+((-4264 (*1 *1 *1) (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4252 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-3709 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3709 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1146 *2 *3))) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3)))) (-3709 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4)))) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-4241 (*1 *2 *3 *1) (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))) (-4228 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *5 *6)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-4218 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-4207 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-649 (-1146 *3 *4))) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-4207 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *1 (-1147 *4 *5)))))
+(-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4444) (-6 -4443) (-15 -4264 ((-3 $ "failed") $)) (-15 -4252 ($ $)) (-15 -3709 ($ (-1146 |#1| |#2|))) (-15 -3709 ($ |#1| |#2| (-649 $))) (-15 -3709 ($ |#1| |#2| (-649 (-1146 |#1| |#2|)))) (-15 -3709 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4092 ((-649 |#2|) $)) (-15 -1666 ((-649 (-2 (|:| |val| |#1|) (|:| -3550 |#2|))) $)) (-15 -4241 ((-112) (-1146 |#1| |#2|) $)) (-15 -4228 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1678 ($ (-1146 |#1| |#2|) $)) (-15 -4218 ($ (-1146 |#1| |#2|) $)) (-15 -4207 ($ $ $ (-649 (-1146 |#1| |#2|)))) (-15 -4207 ($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4290 (($ $) NIL)) (-3057 ((|#2| $) NIL)) (-3205 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4278 (($ (-694 |#2|)) 56)) (-3233 (((-112) $) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1630 (($ |#2|) 14)) (-3863 (($) NIL T CONST)) (-3115 (($ $) 69 (|has| |#2| (-310)))) (-3136 (((-241 |#1| |#2|) $ (-569)) 42)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) 83)) (-3904 (((-776) $) 71 (|has| |#2| (-561)))) (-3007 ((|#2| $ (-569) (-569)) NIL)) (-2796 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2861 (((-112) $) NIL)) (-3106 (((-776) $) 73 (|has| |#2| (-561)))) (-3095 (((-649 (-241 |#1| |#2|)) $) 77 (|has| |#2| (-561)))) (-2511 (((-776) $) NIL)) (-4275 (($ |#2|) 25)) (-2522 (((-776) $) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1572 ((|#2| $) 67 (|has| |#2| (-6 (-4445 "*"))))) (-3181 (((-569) $) NIL)) (-3160 (((-569) $) NIL)) (-2912 (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3171 (((-569) $) NIL)) (-3148 (((-569) $) NIL)) (-2375 (($ (-649 (-649 |#2|))) 37)) (-3065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1954 (((-649 (-649 |#2|)) $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-3059 (((-3 $ "failed") $) 80 (|has| |#2| (-367)))) (-3461 (((-1126) $) NIL)) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3983 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) NIL)) (-3430 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1596 ((|#2| $) NIL)) (-1619 (($ (-649 |#2|)) 50)) (-3219 (((-112) $) NIL)) (-1608 (((-241 |#1| |#2|) $) NIL)) (-1583 ((|#2| $) 65 (|has| |#2| (-6 (-4445 "*"))))) (-3469 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-3885 (($ $) NIL)) (-1384 (((-541) $) 89 (|has| |#2| (-619 (-541))))) (-3126 (((-241 |#1| |#2|) $ (-569)) 44)) (-2388 (((-867) $) 47) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) 52)) (-3263 (((-776)) 23 T CONST)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3192 (((-112) $) NIL)) (-1786 (($) 16 T CONST)) (-1796 (($) 21 T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) 63) (($ $ (-569)) 82 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) 59) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) 61)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1148 |#1| |#2|) (-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4275 ($ |#2|)) (-15 -4290 ($ $)) (-15 -4278 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4445 "*"))) (-6 -4432) |%noBranch|) (IF (|has| |#2| (-6 (-4445 "*"))) (IF (|has| |#2| (-6 -4440)) (-6 -4440) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-776) (-1055)) (T -1148))
+((-4275 (*1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055)))) (-4290 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4)) (-14 *3 (-776)))))
+(-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4275 ($ |#2|)) (-15 -4290 ($ $)) (-15 -4278 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4445 "*"))) (-6 -4432) |%noBranch|) (IF (|has| |#2| (-6 (-4445 "*"))) (IF (|has| |#2| (-6 -4440)) (-6 -4440) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+((-4338 (($ $) 19)) (-4301 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2468 (((-112) $ $) 24)) (-4357 (($ $) 17)) (-1852 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (($ $ $) 31)) (-2388 (($ (-144)) 29) (((-867) $) NIL)))
+(((-1149 |#1|) (-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -4301 (|#1| |#1| (-141))) (-15 -4301 (|#1| |#1| (-144))) (-15 -2388 (|#1| (-144))) (-15 -2468 ((-112) |#1| |#1|)) (-15 -4338 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -1852 ((-144) |#1| (-569))) (-15 -1852 ((-144) |#1| (-569) (-144)))) (-1150)) (T -1149))
+NIL
+(-10 -8 (-15 -2388 ((-867) |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -4301 (|#1| |#1| (-141))) (-15 -4301 (|#1| |#1| (-144))) (-15 -2388 (|#1| (-144))) (-15 -2468 ((-112) |#1| |#1|)) (-15 -4338 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -1852 ((-144) |#1| (-569))) (-15 -1852 ((-144) |#1| (-569) (-144))))
+((-2383 (((-112) $ $) 19 (|has| (-144) (-1106)))) (-4328 (($ $) 121)) (-4338 (($ $) 122)) (-4301 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-2450 (((-112) $ $) 119)) (-2430 (((-112) $ $ (-569)) 118)) (-4310 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-3389 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-3364 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4444))) (((-144) $ (-1240 (-569)) (-144)) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-1597 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-4320 (($ $ (-1240 (-569)) $) 115)) (-3437 (($ $) 79 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ (-144) $) 78 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4443)))) (-3485 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4443)))) (-3074 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4444)))) (-3007 (((-144) $ (-569)) 52)) (-2468 (((-112) $ $) 120)) (-3975 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2796 (((-649 (-144)) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) (-144)) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| (-144) (-855)))) (-3719 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2912 (((-649 (-144)) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| (-144) (-855)))) (-3986 (((-112) $ $ (-144)) 116)) (-4104 (((-776) $ $ (-144)) 117)) (-3065 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4348 (($ $) 123)) (-4357 (($ $) 124)) (-1902 (((-112) $ (-776)) 10)) (-1609 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2050 (((-1165) $) 22 (|has| (-144) (-1106)))) (-4274 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| (-144) (-1106)))) (-3401 (((-144) $) 43 (|has| (-569) (-855)))) (-4316 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1713 (($ $ (-144)) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1784 (((-649 (-144)) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1240 (-569))) 64) (($ $ $) 103)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4443))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3709 (($ (-649 (-144))) 71)) (-3632 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (($ (-144)) 112) (((-867) $) 18 (|has| (-144) (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| (-144) (-1106)))) (-3996 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2882 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2853 (((-112) $ $) 20 (|has| (-144) (-1106)))) (-2893 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2872 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-1150) (-140)) (T -1150))
-((-3871 (*1 *1 *1) (-4 *1 (-1150))) (-3870 (*1 *1 *1) (-4 *1 (-1150))) (-3869 (*1 *1 *1) (-4 *1 (-1150))) (-3868 (*1 *1 *1) (-4 *1 (-1150))) (-3867 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-3866 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-3865 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-551)) (-5 *2 (-112)))) (-3864 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))) (-3863 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3862 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1239 (-551))))) (-3861 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-551)))) (-3861 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-551)) (-5 *3 (-141)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-646 *1)) (-4 *1 (-1150)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-646 *1)) (-4 *1 (-1150)))) (-3859 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-3859 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-3858 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-3858 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-3857 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-3857 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-4249 (*1 *1 *1 *1) (-4 *1 (-1150))))
-(-13 (-19 (-144)) (-10 -8 (-15 -3871 ($ $)) (-15 -3870 ($ $)) (-15 -3869 ($ $)) (-15 -3868 ($ $)) (-15 -3867 ((-112) $ $)) (-15 -3866 ((-112) $ $)) (-15 -3865 ((-112) $ $ (-551))) (-15 -3864 ((-776) $ $ (-144))) (-15 -3863 ((-112) $ $ (-144))) (-15 -3862 ($ $ (-1239 (-551)) $)) (-15 -3861 ((-551) $ $ (-551))) (-15 -3861 ((-551) (-141) $ (-551))) (-15 -4396 ($ (-144))) (-15 -3860 ((-646 $) $ (-144))) (-15 -3860 ((-646 $) $ (-141))) (-15 -3859 ($ $ (-144))) (-15 -3859 ($ $ (-141))) (-15 -3858 ($ $ (-144))) (-15 -3858 ($ $ (-141))) (-15 -3857 ($ $ (-144))) (-15 -3857 ($ $ (-141))) (-15 -4249 ($ $ $))))
-(((-34) . T) ((-102) -3978 (|has| (-144) (-1107)) (|has| (-144) (-855))) ((-618 (-868)) -3978 (|has| (-144) (-1107)) (|has| (-144) (-855)) (|has| (-144) (-618 (-868)))) ((-151 #1=(-144)) . T) ((-619 (-540)) |has| (-144) (-619 (-540))) ((-289 #2=(-551) #1#) . T) ((-291 #2# #1#) . T) ((-312 #1#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))) ((-376 #1#) . T) ((-494 #1#) . T) ((-609 #2# #1#) . T) ((-519 #1# #1#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))) ((-656 #1#) . T) ((-19 #1#) . T) ((-855) |has| (-144) (-855)) ((-1107) -3978 (|has| (-144) (-1107)) (|has| (-144) (-855))) ((-1222) . T))
-((-3878 (((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776)) 112)) (-3875 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776)) 61)) (-3879 (((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776)) 97)) (-3873 (((-776) (-646 |#4|) (-646 |#5|)) 30)) (-3876 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776)) 63) (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112)) 65)) (-3877 (((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112)) 85)) (-4420 (((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) 90)) (-3874 (((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|) 60)) (-3872 (((-776) (-646 |#4|) (-646 |#5|)) 21)))
-(((-1151 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3872 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3873 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3874 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3878 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776))) (-15 -4420 ((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3879 ((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -1151))
-((-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1151 *4 *5 *6 *7 *8)))) (-3878 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-646 *11)) (|:| |todo| (-646 (-2 (|:| |val| *3) (|:| -1718 *11)))))) (-5 *6 (-776)) (-5 *2 (-646 (-2 (|:| |val| (-646 *10)) (|:| -1718 *11)))) (-5 *3 (-646 *10)) (-5 *4 (-646 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1151 *7 *8 *9 *10 *11)))) (-3877 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-3877 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-3876 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-3876 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-3876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *7 *8 *9 *3 *4)) (-4 *4 (-1115 *7 *8 *9 *3)))) (-3875 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-3874 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-646 *4)) (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3872 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3873 ((-776) (-646 |#4|) (-646 |#5|))) (-15 -3874 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3875 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5| (-776))) (-15 -3876 ((-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) |#4| |#5|)) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112))) (-15 -3877 ((-646 |#5|) (-646 |#4|) (-646 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3878 ((-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-646 |#4|) (-646 |#5|) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-2 (|:| |done| (-646 |#5|)) (|:| |todo| (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))))) (-776))) (-15 -4420 ((-1165) (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|)))) (-15 -3879 ((-1278) (-646 (-2 (|:| |val| (-646 |#4|)) (|:| -1718 |#5|))) (-776))))
-((-2986 (((-112) $ $) NIL)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) NIL)) (-4132 (((-646 $) (-646 |#4|)) 124) (((-646 $) (-646 |#4|) (-112)) 125) (((-646 $) (-646 |#4|) (-112) (-112)) 123) (((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3503 (((-646 |#3|) $) NIL)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4138 ((|#4| |#4| $) NIL)) (-4224 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| $) 97)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) 75)) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) 29 (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3319 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) NIL)) (-3594 (($ (-646 |#4|)) NIL)) (-4248 (((-3 $ #1#) $) 45)) (-4135 ((|#4| |#4| $) 78)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3848 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4133 ((|#4| |#4| $) NIL)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) NIL)) (-3635 (((-112) |#4| $) NIL)) (-3633 (((-112) |#4| $) NIL)) (-3636 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3880 (((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112)) 139)) (-2134 (((-646 |#4|) $) 18 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3618 ((|#3| $) 38)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#4|) $) 19 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-2138 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 23)) (-3333 (((-646 |#3|) $) NIL)) (-3332 (((-112) |#3| $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-3629 (((-3 |#4| (-646 $)) |#4| |#4| $) NIL)) (-3628 (((-646 (-2 (|:| |val| |#4|) (|:| -1718 $))) |#4| |#4| $) 117)) (-4247 (((-3 |#4| #1#) $) 42)) (-3630 (((-646 $) |#4| $) 102)) (-3632 (((-3 (-112) (-646 $)) |#4| $) NIL)) (-3631 (((-646 (-2 (|:| |val| (-112)) (|:| -1718 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3676 (((-646 $) |#4| $) 121) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) 122) (((-646 $) |#4| (-646 $)) NIL)) (-3881 (((-646 $) (-646 |#4|) (-112) (-112) (-112)) 134)) (-3882 (($ |#4| $) 88) (($ (-646 |#4|) $) 89) (((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4147 (((-646 |#4|) $) NIL)) (-4141 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-4149 (((-112) $ $) NIL)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4137 ((|#4| |#4| $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-3 |#4| #1#) $) 40)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4129 (((-3 $ #1#) $ |#4|) 59)) (-4218 (($ $ |#4|) NIL) (((-646 $) |#4| $) 104) (((-646 $) |#4| (-646 $)) NIL) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) 99)) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 17)) (-4014 (($) 14)) (-4398 (((-776) $) NIL)) (-2135 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) 13)) (-4420 (((-540) $) NIL (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 22)) (-3329 (($ $ |#3|) 52)) (-3331 (($ $ |#3|) 54)) (-4134 (($ $) NIL)) (-3330 (($ $ |#3|) NIL)) (-4396 (((-868) $) 35) (((-646 |#4|) $) 46)) (-4128 (((-776) $) NIL (|has| |#3| (-372)))) (-3680 (((-112) $ $) NIL)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) NIL)) (-3627 (((-646 $) |#4| $) 66) (((-646 $) |#4| (-646 $)) NIL) (((-646 $) (-646 |#4|) $) NIL) (((-646 $) (-646 |#4|) (-646 $)) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) NIL)) (-3634 (((-112) |#4| $) NIL)) (-4383 (((-112) |#3| $) 74)) (-3473 (((-112) $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1152 |#1| |#2| |#3| |#4|) (-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3882 ((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112))) (-15 -3881 ((-646 $) (-646 |#4|) (-112) (-112) (-112))) (-15 -3880 ((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1152))
-((-3882 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-4132 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-4132 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-3881 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-3880 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-646 *8)) (|:| |towers| (-646 (-1152 *5 *6 *7 *8))))) (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-646 *8)))))
-(-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3882 ((-646 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112))) (-15 -4132 ((-646 $) (-646 |#4|) (-112) (-112) (-112) (-112))) (-15 -3881 ((-646 $) (-646 |#4|) (-112) (-112) (-112))) (-15 -3880 ((-2 (|:| |val| (-646 |#4|)) (|:| |towers| (-646 $))) (-646 |#4|) (-112) (-112)))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3766 ((|#1| $) 37)) (-3883 (($ (-646 |#1|)) 45)) (-1312 (((-112) $ (-776)) NIL)) (-4174 (($) NIL T CONST)) (-3768 ((|#1| |#1| $) 40)) (-3767 ((|#1| $) 35)) (-2134 (((-646 |#1|) $) 18 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 22)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-1372 ((|#1| $) 38)) (-4057 (($ |#1| $) 41)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-1373 ((|#1| $) 36)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 32)) (-4014 (($) 43)) (-3765 (((-776) $) 30)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 27)) (-4396 (((-868) $) 14 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-1374 (($ (-646 |#1|)) NIL)) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 17 (|has| |#1| (-1107)))) (-4407 (((-776) $) 31 (|has| $ (-6 -4443)))))
-(((-1153 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -3883 ($ (-646 |#1|))))) (-1222)) (T -1153))
-((-3883 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1153 *3)))))
-(-13 (-1127 |#1|) (-10 -8 (-15 -3883 ($ (-646 |#1|)))))
-((-4237 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1239 (-551)) |#2|) 55) ((|#2| $ (-551) |#2|) 52)) (-3884 (((-112) $) 12)) (-2138 (($ (-1 |#2| |#2|) $) 50)) (-4250 ((|#2| $) NIL) (($ $ (-776)) 20)) (-2391 (($ $ |#2|) 51)) (-3885 (((-112) $) 11)) (-4249 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1239 (-551))) 38) ((|#2| $ (-551)) 29) ((|#2| $ (-551) |#2|) NIL)) (-4240 (($ $ $) 58) (($ $ |#2|) NIL)) (-4251 (($ $ $) 40) (($ |#2| $) NIL) (($ (-646 $)) 47) (($ $ |#2|) NIL)))
-(((-1154 |#1| |#2|) (-10 -8 (-15 -3884 ((-112) |#1|)) (-15 -3885 ((-112) |#1|)) (-15 -4237 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -2391 (|#1| |#1| |#2|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4237 (|#2| |#1| (-1239 (-551)) |#2|)) (-15 -4237 (|#2| |#1| #1="last" |#2|)) (-15 -4237 (|#1| |#1| #2="rest" |#1|)) (-15 -4237 (|#2| |#1| #3="first" |#2|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -4249 (|#1| |#1| #2#)) (-15 -4250 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| #3#)) (-15 -4250 (|#2| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4237 (|#2| |#1| #4="value" |#2|)) (-15 -4249 (|#2| |#1| #4#)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|))) (-1155 |#2|) (-1222)) (T -1154))
-NIL
-(-10 -8 (-15 -3884 ((-112) |#1|)) (-15 -3885 ((-112) |#1|)) (-15 -4237 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551) |#2|)) (-15 -4249 (|#2| |#1| (-551))) (-15 -2391 (|#1| |#1| |#2|)) (-15 -4251 (|#1| |#1| |#2|)) (-15 -4251 (|#1| (-646 |#1|))) (-15 -4249 (|#1| |#1| (-1239 (-551)))) (-15 -4237 (|#2| |#1| (-1239 (-551)) |#2|)) (-15 -4237 (|#2| |#1| #1="last" |#2|)) (-15 -4237 (|#1| |#1| #2="rest" |#1|)) (-15 -4237 (|#2| |#1| #3="first" |#2|)) (-15 -4240 (|#1| |#1| |#2|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -4249 (|#1| |#1| #2#)) (-15 -4250 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| #3#)) (-15 -4250 (|#2| |#1|)) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#1|)) (-15 -4237 (|#2| |#1| #4="value" |#2|)) (-15 -4249 (|#2| |#1| #4#)) (-15 -2138 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-4244 ((|#1| $) 66)) (-4246 (($ $) 68)) (-2390 (((-1278) $ (-551) (-551)) 98 (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 53 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-4236 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) 87 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4443)))) (-4245 ((|#1| $) 67)) (-4174 (($) 7 T CONST)) (-4248 (($ $) 74) (($ $ (-776)) 72)) (-1443 (($ $) 100 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4443))) (($ |#1| $) 101 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1694 ((|#1| $ (-551) |#1|) 86 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 88)) (-3884 (((-112) $) 84)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) 109)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 96 (|has| (-551) (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 95 (|has| (-551) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4247 ((|#1| $) 71) (($ $ (-776)) 69)) (-2467 (($ $ $ (-551)) 117) (($ |#1| $ (-551)) 116)) (-2395 (((-646 (-551)) $) 93)) (-2396 (((-112) (-551) $) 92)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 77) (($ $ (-776)) 75)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2391 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-3885 (((-112) $) 85)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 91)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1239 (-551))) 113) ((|#1| $ (-551)) 90) ((|#1| $ (-551) |#1|) 89)) (-3448 (((-551) $ $) 45)) (-2468 (($ $ (-1239 (-551))) 115) (($ $ (-551)) 114)) (-4083 (((-112) $) 47)) (-4241 (($ $) 63)) (-4239 (($ $) 60 (|has| $ (-6 -4444)))) (-4242 (((-776) $) 64)) (-4243 (($ $) 65)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4420 (((-540) $) 99 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 108)) (-4240 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-4251 (($ $ $) 79) (($ |#1| $) 78) (($ (-646 $)) 111) (($ $ |#1|) 110)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1155 |#1|) (-140) (-1222)) (T -1155))
-((-3885 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(-13 (-1261 |t#1|) (-656 |t#1|) (-10 -8 (-15 -3885 ((-112) $)) (-15 -3884 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T) ((-1261 |#1|) . T))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) NIL)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1156 |#1| |#2| |#3|) (-1199 |#1| |#2|) (-1107) (-1107) |#2|) (T -1156))
+((-4357 (*1 *1 *1) (-4 *1 (-1150))) (-4348 (*1 *1 *1) (-4 *1 (-1150))) (-4338 (*1 *1 *1) (-4 *1 (-1150))) (-4328 (*1 *1 *1) (-4 *1 (-1150))) (-2468 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-2450 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-2430 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-569)) (-5 *2 (-112)))) (-4104 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))) (-3986 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))) (-4320 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1240 (-569))))) (-3975 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)))) (-3975 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)) (-5 *3 (-141)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))) (-4301 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-4301 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1609 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-1609 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1597 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-1597 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1852 (*1 *1 *1 *1) (-4 *1 (-1150))))
+(-13 (-19 (-144)) (-10 -8 (-15 -4357 ($ $)) (-15 -4348 ($ $)) (-15 -4338 ($ $)) (-15 -4328 ($ $)) (-15 -2468 ((-112) $ $)) (-15 -2450 ((-112) $ $)) (-15 -2430 ((-112) $ $ (-569))) (-15 -4104 ((-776) $ $ (-144))) (-15 -3986 ((-112) $ $ (-144))) (-15 -4320 ($ $ (-1240 (-569)) $)) (-15 -3975 ((-569) $ $ (-569))) (-15 -3975 ((-569) (-141) $ (-569))) (-15 -2388 ($ (-144))) (-15 -4310 ((-649 $) $ (-144))) (-15 -4310 ((-649 $) $ (-141))) (-15 -4301 ($ $ (-144))) (-15 -4301 ($ $ (-141))) (-15 -1609 ($ $ (-144))) (-15 -1609 ($ $ (-141))) (-15 -1597 ($ $ (-144))) (-15 -1597 ($ $ (-141))) (-15 -1852 ($ $ $))))
+(((-34) . T) ((-102) -2718 (|has| (-144) (-1106)) (|has| (-144) (-855))) ((-618 (-867)) -2718 (|has| (-144) (-1106)) (|has| (-144) (-855)) (|has| (-144) (-618 (-867)))) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-656 #0#) . T) ((-19 #0#) . T) ((-855) |has| (-144) (-855)) ((-1106) -2718 (|has| (-144) (-1106)) (|has| (-144) (-855))) ((-1223) . T))
+((-3111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776)) 112)) (-3080 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776)) 61)) (-2403 (((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776)) 97)) (-4377 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-3091 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776)) 63) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112)) 65)) (-3101 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 85)) (-1384 (((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) 90)) (-4388 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|) 60)) (-4366 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
+(((-1151 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4366 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4377 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4388 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776))) (-15 -1384 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2403 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -1151))
+((-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1151 *4 *5 *6 *7 *8)))) (-3111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3550 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3550 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1151 *7 *8 *9 *10 *11)))) (-3101 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-3101 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-3091 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-3091 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-3091 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *7 *8 *9 *3 *4)) (-4 *4 (-1115 *7 *8 *9 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-4388 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -4366 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4377 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -4388 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3080 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5| (-776))) (-15 -3091 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) |#4| |#5|)) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3101 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))))) (-776))) (-15 -1384 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|)))) (-15 -2403 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3550 |#5|))) (-776))))
+((-2383 (((-112) $ $) NIL)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1555 (((-649 $) (-649 |#4|)) 124) (((-649 $) (-649 |#4|) (-112)) 125) (((-649 $) (-649 |#4|) (-112) (-112)) 123) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3865 (((-649 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1624 ((|#4| |#4| $) NIL)) (-4332 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| $) 97)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 75)) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) 29 (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2783 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3043 (($ (-649 |#4|)) NIL)) (-3414 (((-3 $ "failed") $) 45)) (-1590 ((|#4| |#4| $) 78)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1678 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1567 ((|#4| |#4| $) NIL)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) NIL)) (-2881 (((-112) |#4| $) NIL)) (-2862 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3121 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 139)) (-2796 (((-649 |#4|) $) 18 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2717 ((|#3| $) 38)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#4|) $) 19 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3065 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 23)) (-2917 (((-649 |#3|) $) NIL)) (-2908 (((-112) |#3| $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-2819 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-2809 (((-649 (-2 (|:| |val| |#4|) (|:| -3550 $))) |#4| |#4| $) 117)) (-1702 (((-3 |#4| "failed") $) 42)) (-2830 (((-649 $) |#4| $) 102)) (-2852 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-2841 (((-649 (-2 (|:| |val| (-112)) (|:| -3550 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2018 (((-649 $) |#4| $) 121) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 122) (((-649 $) |#4| (-649 $)) NIL)) (-3132 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 134)) (-3143 (($ |#4| $) 88) (($ (-649 |#4|) $) 89) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1730 (((-649 |#4|) $) NIL)) (-1656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-1755 (((-112) $ $) NIL)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1614 ((|#4| |#4| $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-3 |#4| "failed") $) 40)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1521 (((-3 $ "failed") $ |#4|) 59)) (-4295 (($ $ |#4|) NIL) (((-649 $) |#4| $) 104) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 99)) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 17)) (-2825 (($) 14)) (-2091 (((-776) $) NIL)) (-3469 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) 13)) (-1384 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 22)) (-2876 (($ $ |#3|) 52)) (-2898 (($ $ |#3|) 54)) (-1577 (($ $) NIL)) (-2887 (($ $ |#3|) NIL)) (-2388 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1512 (((-776) $) NIL (|has| |#3| (-372)))) (-2040 (((-112) $ $) NIL)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2800 (((-649 $) |#4| $) 66) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) NIL)) (-2871 (((-112) |#4| $) NIL)) (-1988 (((-112) |#3| $) 74)) (-2853 (((-112) $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1152 |#1| |#2| |#3| |#4|) (-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3143 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -3132 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -3121 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1152))
+((-3143 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-1555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-1555 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-3121 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1152 *5 *6 *7 *8))))) (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3143 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1555 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -3132 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -3121 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3201 ((|#1| $) 37)) (-2319 (($ (-649 |#1|)) 45)) (-1610 (((-112) $ (-776)) NIL)) (-3863 (($) NIL T CONST)) (-1561 ((|#1| |#1| $) 40)) (-1549 ((|#1| $) 35)) (-2796 (((-649 |#1|) $) 18 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 22)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3481 ((|#1| $) 38)) (-2086 (($ |#1| $) 41)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3493 ((|#1| $) 36)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 32)) (-2825 (($) 43)) (-2723 (((-776) $) 30)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 27)) (-2388 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3551 (($ (-649 |#1|)) NIL)) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 17 (|has| |#1| (-1106)))) (-2394 (((-776) $) 31 (|has| $ (-6 -4443)))))
+(((-1153 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -2319 ($ (-649 |#1|))))) (-1223)) (T -1153))
+((-2319 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1153 *3)))))
+(-13 (-1127 |#1|) (-10 -8 (-15 -2319 ($ (-649 |#1|)))))
+((-3861 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1240 (-569)) |#2|) 55) ((|#2| $ (-569) |#2|) 52)) (-3154 (((-112) $) 12)) (-3065 (($ (-1 |#2| |#2|) $) 50)) (-3401 ((|#2| $) NIL) (($ $ (-776)) 20)) (-1713 (($ $ |#2|) 51)) (-3166 (((-112) $) 11)) (-1852 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1240 (-569))) 38) ((|#2| $ (-569)) 29) ((|#2| $ (-569) |#2|) NIL)) (-3149 (($ $ $) 58) (($ $ |#2|) NIL)) (-3632 (($ $ $) 40) (($ |#2| $) NIL) (($ (-649 $)) 47) (($ $ |#2|) NIL)))
+(((-1154 |#1| |#2|) (-10 -8 (-15 -3154 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -3861 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1713 (|#1| |#1| |#2|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -3632 (|#1| (-649 |#1|))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -3861 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -3861 (|#2| |#1| "last" |#2|)) (-15 -3861 (|#1| |#1| "rest" |#1|)) (-15 -3861 (|#2| |#1| "first" |#2|)) (-15 -3149 (|#1| |#1| |#2|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -1852 (|#2| |#1| "last")) (-15 -1852 (|#1| |#1| "rest")) (-15 -3401 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "first")) (-15 -3401 (|#2| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1852 (|#2| |#1| "value")) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|))) (-1155 |#2|) (-1223)) (T -1154))
+NIL
+(-10 -8 (-15 -3154 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -3861 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569) |#2|)) (-15 -1852 (|#2| |#1| (-569))) (-15 -1713 (|#1| |#1| |#2|)) (-15 -3632 (|#1| |#1| |#2|)) (-15 -3632 (|#1| (-649 |#1|))) (-15 -1852 (|#1| |#1| (-1240 (-569)))) (-15 -3861 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -3861 (|#2| |#1| "last" |#2|)) (-15 -3861 (|#1| |#1| "rest" |#1|)) (-15 -3861 (|#2| |#1| "first" |#2|)) (-15 -3149 (|#1| |#1| |#2|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -1852 (|#2| |#1| "last")) (-15 -1852 (|#1| |#1| "rest")) (-15 -3401 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "first")) (-15 -3401 (|#2| |#1|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#1|)) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1852 (|#2| |#1| "value")) (-15 -3065 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-2498 ((|#1| $) 66)) (-1528 (($ $) 68)) (-1699 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 53 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3116 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ "rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4443)))) (-2487 ((|#1| $) 67)) (-3863 (($) 7 T CONST)) (-3414 (($ $) 74) (($ $ (-776)) 72)) (-3437 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4443))) (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3074 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 88)) (-3154 (((-112) $) 84)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) 109)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 96 (|has| (-569) (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 95 (|has| (-569) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1702 ((|#1| $) 71) (($ $ (-776)) 69)) (-4274 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1762 (((-649 (-569)) $) 93)) (-1773 (((-112) (-569) $) 92)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 77) (($ $ (-776)) 75)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1713 (($ $ |#1|) 97 (|has| $ (-6 -4444)))) (-3166 (((-112) $) 85)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 91)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-1797 (((-569) $ $) 45)) (-4326 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2284 (((-112) $) 47)) (-3161 (($ $) 63)) (-3137 (($ $) 60 (|has| $ (-6 -4444)))) (-3172 (((-776) $) 64)) (-3182 (($ $) 65)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-1384 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 108)) (-3149 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-3632 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1155 |#1|) (-140) (-1223)) (T -1155))
+((-3166 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(-13 (-1261 |t#1|) (-656 |t#1|) (-10 -8 (-15 -3166 ((-112) $)) (-15 -3154 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T) ((-1261 |#1|) . T))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) NIL)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) NIL)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1156 |#1| |#2| |#3|) (-1199 |#1| |#2|) (-1106) (-1106) |#2|) (T -1156))
NIL
(-1199 |#1| |#2|)
-((-2986 (((-112) $ $) 7)) (-3886 (((-3 $ "failed") $) 14)) (-3681 (((-1165) $) 10)) (-3887 (($) 15 T CONST)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3473 (((-112) $ $) 6)))
-(((-1157) (-140)) (T -1157))
-((-3887 (*1 *1) (-4 *1 (-1157))) (-3886 (*1 *1 *1) (|partial| -4 *1 (-1157))))
-(-13 (-1107) (-10 -8 (-15 -3887 ($) -4402) (-15 -3886 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-868)) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3889 (((-696 (-1141)) $) 27)) (-3888 (((-1141) $) 15)) (-3890 (((-1141) $) 17)) (-3681 (((-1165) $) NIL)) (-3891 (((-511) $) 13)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 37) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1158) (-13 (-1089) (-10 -8 (-15 -3891 ((-511) $)) (-15 -3890 ((-1141) $)) (-15 -3889 ((-696 (-1141)) $)) (-15 -3888 ((-1141) $))))) (T -1158))
-((-3891 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1158)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1158)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1158)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1158)))))
-(-13 (-1089) (-10 -8 (-15 -3891 ((-511) $)) (-15 -3890 ((-1141) $)) (-15 -3889 ((-696 (-1141)) $)) (-15 -3888 ((-1141) $))))
-((-3894 (((-1160 |#1|) (-1160 |#1|)) 17)) (-3892 (((-1160 |#1|) (-1160 |#1|)) 13)) (-3895 (((-1160 |#1|) (-1160 |#1|) (-551) (-551)) 20)) (-3893 (((-1160 |#1|) (-1160 |#1|)) 15)))
-(((-1159 |#1|) (-10 -7 (-15 -3892 ((-1160 |#1|) (-1160 |#1|))) (-15 -3893 ((-1160 |#1|) (-1160 |#1|))) (-15 -3894 ((-1160 |#1|) (-1160 |#1|))) (-15 -3895 ((-1160 |#1|) (-1160 |#1|) (-551) (-551)))) (-13 (-562) (-147))) (T -1159))
-((-3895 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-13 (-562) (-147))) (-5 *1 (-1159 *4)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))))
-(-10 -7 (-15 -3892 ((-1160 |#1|) (-1160 |#1|))) (-15 -3893 ((-1160 |#1|) (-1160 |#1|))) (-15 -3894 ((-1160 |#1|) (-1160 |#1|))) (-15 -3895 ((-1160 |#1|) (-1160 |#1|) (-551) (-551))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) NIL)) (-4244 ((|#1| $) NIL)) (-4246 (($ $) 67)) (-2390 (((-1278) $ (-551) (-551)) 99 (|has| $ (-6 -4444)))) (-4234 (($ $ (-551)) 129 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-3900 (((-868) $) 56 (|has| |#1| (-1107)))) (-3899 (((-112)) 55 (|has| |#1| (-1107)))) (-3444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-4236 (($ $ $) 116 (|has| $ (-6 -4444))) (($ $ (-551) $) 142)) (-4235 ((|#1| $ |#1|) 126 (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 121 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ #2="first" |#1|) 123 (|has| $ (-6 -4444))) (($ $ #3="rest" $) 125 (|has| $ (-6 -4444))) ((|#1| $ #4="last" |#1|) 128 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 113 (|has| $ (-6 -4444))) ((|#1| $ (-551) |#1|) 77 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 80)) (-4245 ((|#1| $) NIL)) (-4174 (($) NIL T CONST)) (-2486 (($ $) 14)) (-4248 (($ $) 42) (($ $ (-776)) 111)) (-3905 (((-112) (-646 |#1|) $) 135 (|has| |#1| (-1107)))) (-3906 (($ (-646 |#1|)) 131)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) 79)) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3884 (((-112) $) NIL)) (-2134 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3901 (((-1278) (-551) $) 141 (|has| |#1| (-1107)))) (-2485 (((-776) $) 138)) (-3450 (((-646 $) $) NIL)) (-3446 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4166 (((-112) $ (-776)) NIL)) (-3449 (((-646 |#1|) $) NIL)) (-3968 (((-112) $) NIL)) (-2488 (($ $) 114)) (-2489 (((-112) $) 13)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-4247 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-2467 (($ $ $ (-551)) NIL) (($ |#1| $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) 96)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-3898 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2487 ((|#1| $) 10)) (-4250 ((|#1| $) 41) (($ $ (-776)) 65)) (-3904 (((-2 (|:| |cycle?| (-112)) (|:| -3013 (-776)) (|:| |period| (-776))) (-776) $) 36)) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3897 (($ (-1 (-112) |#1|) $) 146)) (-3896 (($ (-1 (-112) |#1|) $) 147)) (-2391 (($ $ |#1|) 90 (|has| $ (-6 -4444)))) (-4218 (($ $ (-551)) 45)) (-3885 (((-112) $) 94)) (-2490 (((-112) $) 12)) (-2491 (((-112) $) 137)) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 30)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) 20)) (-4014 (($) 60)) (-4249 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1239 (-551))) NIL) ((|#1| $ (-551)) 75) ((|#1| $ (-551) |#1|) NIL)) (-3448 (((-551) $ $) 64)) (-2468 (($ $ (-1239 (-551))) NIL) (($ $ (-551)) NIL)) (-3903 (($ (-1 $)) 63)) (-4083 (((-112) $) 91)) (-4241 (($ $) 92)) (-4239 (($ $) 117 (|has| $ (-6 -4444)))) (-4242 (((-776) $) NIL)) (-4243 (($ $) NIL)) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 59)) (-4420 (((-540) $) NIL (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 73)) (-3902 (($ |#1| $) 115)) (-4240 (($ $ $) 119 (|has| $ (-6 -4444))) (($ $ |#1|) 120 (|has| $ (-6 -4444)))) (-4251 (($ $ $) 101) (($ |#1| $) 61) (($ (-646 $)) 106) (($ $ |#1|) 100)) (-3310 (($ $) 66)) (-4396 (($ (-646 |#1|)) 130) (((-868) $) 57 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) NIL)) (-3447 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 133 (|has| |#1| (-1107)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1160 |#1|) (-13 (-679 |#1|) (-621 (-646 |#1|)) (-10 -8 (-6 -4444) (-15 -3906 ($ (-646 |#1|))) (IF (|has| |#1| (-1107)) (-15 -3905 ((-112) (-646 |#1|) $)) |%noBranch|) (-15 -3904 ((-2 (|:| |cycle?| (-112)) (|:| -3013 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -3903 ($ (-1 $))) (-15 -3902 ($ |#1| $)) (IF (|has| |#1| (-1107)) (PROGN (-15 -3901 ((-1278) (-551) $)) (-15 -3900 ((-868) $)) (-15 -3899 ((-112)))) |%noBranch|) (-15 -4236 ($ $ (-551) $)) (-15 -3898 ($ (-1 |#1|))) (-15 -3898 ($ (-1 |#1| |#1|) |#1|)) (-15 -3897 ($ (-1 (-112) |#1|) $)) (-15 -3896 ($ (-1 (-112) |#1|) $)))) (-1222)) (T -1160))
-((-3906 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))) (-3905 (*1 *2 *3 *1) (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-4 *4 (-1222)) (-5 *2 (-112)) (-5 *1 (-1160 *4)))) (-3904 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3013 (-776)) (|:| |period| (-776)))) (-5 *1 (-1160 *4)) (-4 *4 (-1222)) (-5 *3 (-776)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-1 (-1160 *3))) (-5 *1 (-1160 *3)) (-4 *3 (-1222)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *1 (-1160 *2)) (-4 *2 (-1222)))) (-3901 (*1 *2 *3 *1) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1160 *4)) (-4 *4 (-1107)) (-4 *4 (-1222)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1160 *3)) (-4 *3 (-1107)) (-4 *3 (-1222)))) (-3899 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3)) (-4 *3 (-1107)) (-4 *3 (-1222)))) (-4236 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1160 *3)) (-4 *3 (-1222)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))) (-3897 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))))
-(-13 (-679 |#1|) (-621 (-646 |#1|)) (-10 -8 (-6 -4444) (-15 -3906 ($ (-646 |#1|))) (IF (|has| |#1| (-1107)) (-15 -3905 ((-112) (-646 |#1|) $)) |%noBranch|) (-15 -3904 ((-2 (|:| |cycle?| (-112)) (|:| -3013 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -3903 ($ (-1 $))) (-15 -3902 ($ |#1| $)) (IF (|has| |#1| (-1107)) (PROGN (-15 -3901 ((-1278) (-551) $)) (-15 -3900 ((-868) $)) (-15 -3899 ((-112)))) |%noBranch|) (-15 -4236 ($ $ (-551) $)) (-15 -3898 ($ (-1 |#1|))) (-15 -3898 ($ (-1 |#1| |#1|) |#1|)) (-15 -3897 ($ (-1 (-112) |#1|) $)) (-15 -3896 ($ (-1 (-112) |#1|) $))))
-((-4251 (((-1160 |#1|) (-1160 (-1160 |#1|))) 15)))
-(((-1161 |#1|) (-10 -7 (-15 -4251 ((-1160 |#1|) (-1160 (-1160 |#1|))))) (-1222)) (T -1161))
-((-4251 (*1 *2 *3) (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1161 *4)) (-4 *4 (-1222)))))
-(-10 -7 (-15 -4251 ((-1160 |#1|) (-1160 (-1160 |#1|)))))
-((-4291 (((-1160 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|)) 25)) (-4292 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|)) 26)) (-4408 (((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)) 16)))
-(((-1162 |#1| |#2|) (-10 -7 (-15 -4408 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|))) (-15 -4291 ((-1160 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|))) (-15 -4292 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|)))) (-1222) (-1222)) (T -1162))
-((-4292 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1160 *5)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-1162 *5 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1160 *6)) (-4 *6 (-1222)) (-4 *3 (-1222)) (-5 *2 (-1160 *3)) (-5 *1 (-1162 *6 *3)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1160 *6)) (-5 *1 (-1162 *5 *6)))))
-(-10 -7 (-15 -4408 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|))) (-15 -4291 ((-1160 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|))) (-15 -4292 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1160 |#1|))))
-((-4408 (((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-1160 |#2|)) 21)))
-(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-1160 |#2|)))) (-1222) (-1222) (-1222)) (T -1163))
-((-4408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1160 *6)) (-5 *5 (-1160 *7)) (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8)) (-5 *1 (-1163 *6 *7 *8)))))
-(-10 -7 (-15 -4408 ((-1160 |#3|) (-1 |#3| |#1| |#2|) (-1160 |#1|) (-1160 |#2|))))
-((-2986 (((-112) $ $) 19)) (-3868 (($ $) 121)) (-3869 (($ $) 122)) (-3859 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-3866 (((-112) $ $) 119)) (-3865 (((-112) $ $ (-551)) 118)) (-3984 (($ (-551)) 128)) (-3860 (((-646 $) $ (-144)) 111) (((-646 $) $ (-141)) 110)) (-1910 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-1908 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 (((-144) $ (-551) (-144)) 53 (|has| $ (-6 -4444))) (((-144) $ (-1239 (-551)) (-144)) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-3857 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-3862 (($ $ (-1239 (-551)) $) 115)) (-1443 (($ $) 79 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ (-144) $) 78 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4443)))) (-4292 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4443)))) (-1694 (((-144) $ (-551) (-144)) 54 (|has| $ (-6 -4444)))) (-3535 (((-144) $ (-551)) 52)) (-3867 (((-112) $ $) 120)) (-3861 (((-551) (-1 (-112) (-144)) $) 98) (((-551) (-144) $) 97 (|has| (-144) (-1107))) (((-551) (-144) $ (-551)) 96 (|has| (-144) (-1107))) (((-551) $ $ (-551)) 114) (((-551) (-141) $ (-551)) 113)) (-2134 (((-646 (-144)) $) 31 (|has| $ (-6 -4443)))) (-4064 (($ (-776) (-144)) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| (-144) (-855)))) (-3959 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-3026 (((-646 (-144)) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| (-144) (-855)))) (-3863 (((-112) $ $ (-144)) 116)) (-3864 (((-776) $ $ (-144)) 117)) (-2138 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3870 (($ $) 123)) (-3871 (($ $) 124)) (-4166 (((-112) $ (-776)) 10)) (-3858 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3681 (((-1165) $) 22)) (-2467 (($ (-144) $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21)) (-4250 (((-144) $) 43 (|has| (-551) (-855)))) (-1444 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2391 (($ $ (-144)) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-296 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-646 (-144)) (-646 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2397 (((-646 (-144)) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 (((-144) $ (-551) (-144)) 51) (((-144) $ (-551)) 50) (($ $ (-1239 (-551))) 64) (($ $ $) 103)) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-2135 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4443))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| (-144) (-619 (-540))))) (-3971 (($ (-646 (-144))) 71)) (-4251 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (($ (-144)) 112) (((-868) $) 18)) (-3680 (((-112) $ $) 23)) (-2137 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4443)))) (-2918 (((-1165) $) 132) (((-1165) $ (-112)) 131) (((-1278) (-828) $) 130) (((-1278) (-828) $ (-112)) 129)) (-2984 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2985 (((-112) $ $) 84 (|has| (-144) (-855)))) (-3473 (((-112) $ $) 20)) (-3105 (((-112) $ $) 86 (|has| (-144) (-855)))) (-3106 (((-112) $ $) 83 (|has| (-144) (-855)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
+((-2383 (((-112) $ $) NIL)) (-3188 (((-696 (-1141)) $) 27)) (-3681 (((-1141) $) 15)) (-3199 (((-1141) $) 17)) (-2050 (((-1165) $) NIL)) (-3214 (((-511) $) 13)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 37) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1157) (-13 (-1089) (-10 -8 (-15 -3214 ((-511) $)) (-15 -3199 ((-1141) $)) (-15 -3188 ((-696 (-1141)) $)) (-15 -3681 ((-1141) $))))) (T -1157))
+((-3214 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1157)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1157)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
+(-13 (-1089) (-10 -8 (-15 -3214 ((-511) $)) (-15 -3199 ((-1141) $)) (-15 -3188 ((-696 (-1141)) $)) (-15 -3681 ((-1141) $))))
+((-2383 (((-112) $ $) 7)) (-3177 (((-3 $ "failed") $) 14)) (-2050 (((-1165) $) 10)) (-2267 (($) 15 T CONST)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-2853 (((-112) $ $) 6)))
+(((-1158) (-140)) (T -1158))
+((-2267 (*1 *1) (-4 *1 (-1158))) (-3177 (*1 *1 *1) (|partial| -4 *1 (-1158))))
+(-13 (-1106) (-10 -8 (-15 -2267 ($) -3600) (-15 -3177 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-3257 (((-1163 |#1|) (-1163 |#1|)) 17)) (-3228 (((-1163 |#1|) (-1163 |#1|)) 13)) (-3269 (((-1163 |#1|) (-1163 |#1|) (-569) (-569)) 20)) (-3242 (((-1163 |#1|) (-1163 |#1|)) 15)))
+(((-1159 |#1|) (-10 -7 (-15 -3228 ((-1163 |#1|) (-1163 |#1|))) (-15 -3242 ((-1163 |#1|) (-1163 |#1|))) (-15 -3257 ((-1163 |#1|) (-1163 |#1|))) (-15 -3269 ((-1163 |#1|) (-1163 |#1|) (-569) (-569)))) (-13 (-561) (-147))) (T -1159))
+((-3269 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1159 *4)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))) (-3242 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))))
+(-10 -7 (-15 -3228 ((-1163 |#1|) (-1163 |#1|))) (-15 -3242 ((-1163 |#1|) (-1163 |#1|))) (-15 -3257 ((-1163 |#1|) (-1163 |#1|))) (-15 -3269 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))))
+((-3632 (((-1163 |#1|) (-1163 (-1163 |#1|))) 15)))
+(((-1160 |#1|) (-10 -7 (-15 -3632 ((-1163 |#1|) (-1163 (-1163 |#1|))))) (-1223)) (T -1160))
+((-3632 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1160 *4)) (-4 *4 (-1223)))))
+(-10 -7 (-15 -3632 ((-1163 |#1|) (-1163 (-1163 |#1|)))))
+((-3535 (((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)) 25)) (-3485 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)) 26)) (-1324 (((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|)) 16)))
+(((-1161 |#1| |#2|) (-10 -7 (-15 -1324 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -3535 ((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))) (-15 -3485 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)))) (-1223) (-1223)) (T -1161))
+((-3485 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-1161 *5 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1163 *6)) (-4 *6 (-1223)) (-4 *3 (-1223)) (-5 *2 (-1163 *3)) (-5 *1 (-1161 *6 *3)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6)))))
+(-10 -7 (-15 -1324 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -3535 ((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))) (-15 -3485 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))))
+((-1324 (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|)) 21)))
+(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|)))) (-1223) (-1223) (-1223)) (T -1162))
+((-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-1163 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-1162 *6 *7 *8)))))
+(-10 -7 (-15 -1324 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) NIL)) (-2498 ((|#1| $) NIL)) (-1528 (($ $) 67)) (-1699 (((-1278) $ (-569) (-569)) 99 (|has| $ (-6 -4444)))) (-4412 (($ $ (-569)) 129 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3294 (((-867) $) 56 (|has| |#1| (-1106)))) (-3283 (((-112)) 55 (|has| |#1| (-1106)))) (-1753 ((|#1| $ |#1|) NIL (|has| $ (-6 -4444)))) (-3116 (($ $ $) 116 (|has| $ (-6 -4444))) (($ $ (-569) $) 142)) (-4423 ((|#1| $ |#1|) 126 (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 121 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4444))) (($ $ "rest" $) 125 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 113 (|has| $ (-6 -4444))) ((|#1| $ (-569) |#1|) 77 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 80)) (-2487 ((|#1| $) NIL)) (-3863 (($) NIL T CONST)) (-3083 (($ $) 14)) (-3414 (($ $) 42) (($ $ (-776)) 111)) (-3329 (((-112) (-649 |#1|) $) 135 (|has| |#1| (-1106)))) (-3340 (($ (-649 |#1|)) 131)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) 79)) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3154 (((-112) $) NIL)) (-2796 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-1832 (((-1278) (-569) $) 141 (|has| |#1| (-1106)))) (-3072 (((-776) $) 138)) (-1807 (((-649 $) $) NIL)) (-1774 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1902 (((-112) $ (-776)) NIL)) (-2238 (((-649 |#1|) $) NIL)) (-2546 (((-112) $) NIL)) (-3105 (($ $) 114)) (-3114 (((-112) $) 13)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1702 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4274 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) 96)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1320 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3094 ((|#1| $) 10)) (-3401 ((|#1| $) 41) (($ $ (-776)) 65)) (-3318 (((-2 (|:| |cycle?| (-112)) (|:| -4291 (-776)) (|:| |period| (-776))) (-776) $) 36)) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1368 (($ (-1 (-112) |#1|) $) 146)) (-1379 (($ (-1 (-112) |#1|) $) 147)) (-1713 (($ $ |#1|) 90 (|has| $ (-6 -4444)))) (-4295 (($ $ (-569)) 45)) (-3166 (((-112) $) 94)) (-3125 (((-112) $) 12)) (-3135 (((-112) $) 137)) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 30)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) 20)) (-2825 (($) 60)) (-1852 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) 75) ((|#1| $ (-569) |#1|) NIL)) (-1797 (((-569) $ $) 64)) (-4326 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3306 (($ (-1 $)) 63)) (-2284 (((-112) $) 91)) (-3161 (($ $) 92)) (-3137 (($ $) 117 (|has| $ (-6 -4444)))) (-3172 (((-776) $) NIL)) (-3182 (($ $) NIL)) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 59)) (-1384 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 73)) (-1812 (($ |#1| $) 115)) (-3149 (($ $ $) 119 (|has| $ (-6 -4444))) (($ $ |#1|) 120 (|has| $ (-6 -4444)))) (-3632 (($ $ $) 101) (($ |#1| $) 61) (($ (-649 $)) 106) (($ $ |#1|) 100)) (-2745 (($ $) 66)) (-2388 (($ (-649 |#1|)) 130) (((-867) $) 57 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 133 (|has| |#1| (-1106)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1163 |#1|) (-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4444) (-15 -3340 ($ (-649 |#1|))) (IF (|has| |#1| (-1106)) (-15 -3329 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -3318 ((-2 (|:| |cycle?| (-112)) (|:| -4291 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -3306 ($ (-1 $))) (-15 -1812 ($ |#1| $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -1832 ((-1278) (-569) $)) (-15 -3294 ((-867) $)) (-15 -3283 ((-112)))) |%noBranch|) (-15 -3116 ($ $ (-569) $)) (-15 -1320 ($ (-1 |#1|))) (-15 -1320 ($ (-1 |#1| |#1|) |#1|)) (-15 -1368 ($ (-1 (-112) |#1|) $)) (-15 -1379 ($ (-1 (-112) |#1|) $)))) (-1223)) (T -1163))
+((-3340 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-3329 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112)) (-5 *1 (-1163 *4)))) (-3318 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4291 (-776)) (|:| |period| (-776)))) (-5 *1 (-1163 *4)) (-4 *4 (-1223)) (-5 *3 (-776)))) (-3306 (*1 *1 *2) (-12 (-5 *2 (-1 (-1163 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))) (-1812 (*1 *1 *2 *1) (-12 (-5 *1 (-1163 *2)) (-4 *2 (-1223)))) (-1832 (*1 *2 *3 *1) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1163 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1163 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)))) (-3283 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)))) (-3116 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1320 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1368 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1379 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
+(-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4444) (-15 -3340 ($ (-649 |#1|))) (IF (|has| |#1| (-1106)) (-15 -3329 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -3318 ((-2 (|:| |cycle?| (-112)) (|:| -4291 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -3306 ($ (-1 $))) (-15 -1812 ($ |#1| $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -1832 ((-1278) (-569) $)) (-15 -3294 ((-867) $)) (-15 -3283 ((-112)))) |%noBranch|) (-15 -3116 ($ $ (-569) $)) (-15 -1320 ($ (-1 |#1|))) (-15 -1320 ($ (-1 |#1| |#1|) |#1|)) (-15 -1368 ($ (-1 (-112) |#1|) $)) (-15 -1379 ($ (-1 (-112) |#1|) $))))
+((-2383 (((-112) $ $) 19)) (-4328 (($ $) 121)) (-4338 (($ $) 122)) (-4301 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-2450 (((-112) $ $) 119)) (-2430 (((-112) $ $ (-569)) 118)) (-3279 (($ (-569)) 128)) (-4310 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-3389 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-3364 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4444))) (((-144) $ (-1240 (-569)) (-144)) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-1597 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-4320 (($ $ (-1240 (-569)) $) 115)) (-3437 (($ $) 79 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ (-144) $) 78 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4443)))) (-3485 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4443)))) (-3074 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4444)))) (-3007 (((-144) $ (-569)) 52)) (-2468 (((-112) $ $) 120)) (-3975 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2796 (((-649 (-144)) $) 31 (|has| $ (-6 -4443)))) (-4275 (($ (-776) (-144)) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| (-144) (-855)))) (-3719 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2912 (((-649 (-144)) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| (-144) (-855)))) (-3986 (((-112) $ $ (-144)) 116)) (-4104 (((-776) $ $ (-144)) 117)) (-3065 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4348 (($ $) 123)) (-4357 (($ $) 124)) (-1902 (((-112) $ (-776)) 10)) (-1609 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2050 (((-1165) $) 22)) (-4274 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21)) (-3401 (((-144) $) 43 (|has| (-569) (-855)))) (-4316 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1713 (($ $ (-144)) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1784 (((-649 (-144)) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1240 (-569))) 64) (($ $ $) 103)) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3469 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4443))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3709 (($ (-649 (-144))) 71)) (-3632 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (($ (-144)) 112) (((-867) $) 18)) (-2040 (((-112) $ $) 23)) (-3996 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4443)))) (-3218 (((-1165) $) 132) (((-1165) $ (-112)) 131) (((-1278) (-827) $) 130) (((-1278) (-827) $ (-112)) 129)) (-2904 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2882 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2853 (((-112) $ $) 20)) (-2893 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2872 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
(((-1164) (-140)) (T -1164))
-((-3984 (*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1164)))))
-(-13 (-1150) (-1107) (-826) (-10 -8 (-15 -3984 ($ (-551)))))
-(((-34) . T) ((-102) . T) ((-618 (-868)) . T) ((-151 #1=(-144)) . T) ((-619 (-540)) |has| (-144) (-619 (-540))) ((-289 #2=(-551) #1#) . T) ((-291 #2# #1#) . T) ((-312 #1#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))) ((-376 #1#) . T) ((-494 #1#) . T) ((-609 #2# #1#) . T) ((-519 #1# #1#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))) ((-656 #1#) . T) ((-19 #1#) . T) ((-826) . T) ((-855) |has| (-144) (-855)) ((-1107) . T) ((-1150) . T) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3868 (($ $) NIL)) (-3869 (($ $) NIL)) (-3859 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-3866 (((-112) $ $) NIL)) (-3865 (((-112) $ $ (-551)) NIL)) (-3984 (($ (-551)) 8)) (-3860 (((-646 $) $ (-144)) NIL) (((-646 $) $ (-141)) NIL)) (-1910 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-1908 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-855))))) (-3328 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 (((-144) $ (-551) (-144)) NIL (|has| $ (-6 -4444))) (((-144) $ (-1239 (-551)) (-144)) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-3857 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-3862 (($ $ (-1239 (-551)) $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-3848 (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1694 (((-144) $ (-551) (-144)) NIL (|has| $ (-6 -4444)))) (-3535 (((-144) $ (-551)) NIL)) (-3867 (((-112) $ $) NIL)) (-3861 (((-551) (-1 (-112) (-144)) $) NIL) (((-551) (-144) $) NIL (|has| (-144) (-1107))) (((-551) (-144) $ (-551)) NIL (|has| (-144) (-1107))) (((-551) $ $ (-551)) NIL) (((-551) (-141) $ (-551)) NIL)) (-2134 (((-646 (-144)) $) NIL (|has| $ (-6 -4443)))) (-4064 (($ (-776) (-144)) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| (-144) (-855)))) (-3959 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-3026 (((-646 (-144)) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2393 (((-551) $) NIL (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| (-144) (-855)))) (-3863 (((-112) $ $ (-144)) NIL)) (-3864 (((-776) $ $ (-144)) NIL)) (-2138 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3870 (($ $) NIL)) (-3871 (($ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3858 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3681 (((-1165) $) NIL)) (-2467 (($ (-144) $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-144) $) NIL (|has| (-551) (-855)))) (-1444 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2391 (($ $ (-144)) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-296 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107)))) (($ $ (-646 (-144)) (-646 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-2397 (((-646 (-144)) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 (((-144) $ (-551) (-144)) NIL) (((-144) $ (-551)) NIL) (($ $ (-1239 (-551))) NIL) (($ $ $) NIL)) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-2135 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-144) (-619 (-540))))) (-3971 (($ (-646 (-144))) NIL)) (-4251 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (($ (-144)) NIL) (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2137 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-2918 (((-1165) $) 19) (((-1165) $ (-112)) 21) (((-1278) (-828) $) 22) (((-1278) (-828) $ (-112)) 23)) (-2984 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2985 (((-112) $ $) NIL (|has| (-144) (-855)))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (|has| (-144) (-855)))) (-3106 (((-112) $ $) NIL (|has| (-144) (-855)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
+((-3279 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1164)))))
+(-13 (-1150) (-1106) (-833) (-10 -8 (-15 -3279 ($ (-569)))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-656 #0#) . T) ((-19 #0#) . T) ((-833) . T) ((-855) |has| (-144) (-855)) ((-1106) . T) ((-1150) . T) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-4328 (($ $) NIL)) (-4338 (($ $) NIL)) (-4301 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-2450 (((-112) $ $) NIL)) (-2430 (((-112) $ $ (-569)) NIL)) (-3279 (($ (-569)) 8)) (-4310 (((-649 $) $ (-144)) NIL) (((-649 $) $ (-141)) NIL)) (-3389 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-3364 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-855))))) (-3246 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4444))) (((-144) $ (-1240 (-569)) (-144)) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-1597 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-4320 (($ $ (-1240 (-569)) $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1678 (($ (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4443))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3074 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4444)))) (-3007 (((-144) $ (-569)) NIL)) (-2468 (((-112) $ $) NIL)) (-3975 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) NIL (|has| (-144) (-1106))) (((-569) $ $ (-569)) NIL) (((-569) (-141) $ (-569)) NIL)) (-2796 (((-649 (-144)) $) NIL (|has| $ (-6 -4443)))) (-4275 (($ (-776) (-144)) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| (-144) (-855)))) (-3719 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2912 (((-649 (-144)) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1738 (((-569) $) NIL (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| (-144) (-855)))) (-3986 (((-112) $ $ (-144)) NIL)) (-4104 (((-776) $ $ (-144)) NIL)) (-3065 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4348 (($ $) NIL)) (-4357 (($ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-1609 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2050 (((-1165) $) NIL)) (-4274 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-144) $) NIL (|has| (-569) (-855)))) (-4316 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1713 (($ $ (-144)) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-1784 (((-649 (-144)) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (($ $ $) NIL)) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3469 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-144) (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3709 (($ (-649 (-144))) NIL)) (-3632 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (($ (-144)) NIL) (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-3996 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4443)))) (-3218 (((-1165) $) 19) (((-1165) $ (-112)) 21) (((-1278) (-827) $) 22) (((-1278) (-827) $ (-112)) 23)) (-2904 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2882 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2872 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
(((-1165) (-1164)) (T -1165))
NIL
(-1164)
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)) (|has| |#1| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-2390 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-1165) |#1|) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#1| #1="failed") (-1165) $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#1| #1#) (-1165) $) NIL)) (-3848 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-1165)) NIL)) (-2134 (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3026 (((-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)) (|has| |#1| (-1107))))) (-2834 (((-646 (-1165)) $) NIL)) (-2400 (((-112) (-1165) $) NIL)) (-1372 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-2395 (((-646 (-1165)) $) NIL)) (-2396 (((-112) (-1165) $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)) (|has| |#1| (-1107))))) (-4250 ((|#1| $) NIL (|has| (-1165) (-855)))) (-1444 (((-3 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) "failed") (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL (-12 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-312 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-1165)) NIL) ((|#1| $ (-1165) |#1|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-618 (-868))) (|has| |#1| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)) (|has| |#1| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (-1107)) (|has| |#1| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1166 |#1|) (-13 (-1199 (-1165) |#1|) (-10 -7 (-6 -4443))) (-1107)) (T -1166))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-1699 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-1165) |#1|) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#1| "failed") (-1165) $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#1| "failed") (-1165) $) NIL)) (-1678 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-1165)) NIL)) (-2796 (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-1165) $) NIL (|has| (-1165) (-855)))) (-2912 (((-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-2715 (((-649 (-1165)) $) NIL)) (-1795 (((-112) (-1165) $) NIL)) (-3481 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-1762 (((-649 (-1165)) $) NIL)) (-1773 (((-112) (-1165) $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-3401 ((|#1| $) NIL (|has| (-1165) (-855)))) (-4316 (((-3 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) "failed") (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL (-12 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-312 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-1165)) NIL) ((|#1| $ (-1165) |#1|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-618 (-867))) (|has| |#1| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 (-1165)) (|:| -2179 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1166 |#1|) (-13 (-1199 (-1165) |#1|) (-10 -7 (-6 -4443))) (-1106)) (T -1166))
NIL
(-13 (-1199 (-1165) |#1|) (-10 -7 (-6 -4443)))
-((-4254 (((-1160 |#1|) (-1160 |#1|)) 84)) (-3908 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 42)) (-3919 (((-1160 |#1|) (-412 (-551)) (-1160 |#1|)) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3922 (((-1160 |#1|) |#1| (-1160 |#1|)) 142 (|has| |#1| (-367)))) (-4257 (((-1160 |#1|) (-1160 |#1|)) 99)) (-3910 (((-1160 (-551)) (-551)) 64)) (-3918 (((-1160 |#1|) (-1160 (-1160 |#1|))) 118 (|has| |#1| (-38 (-412 (-551)))))) (-4253 (((-1160 |#1|) (-551) (-551) (-1160 |#1|)) 104)) (-4388 (((-1160 |#1|) |#1| (-551)) 54)) (-3912 (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 67)) (-3920 (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 139 (|has| |#1| (-367)))) (-3917 (((-1160 |#1|) |#1| (-1 (-1160 |#1|))) 117 (|has| |#1| (-38 (-412 (-551)))))) (-3921 (((-1160 |#1|) (-1 |#1| (-551)) |#1| (-1 (-1160 |#1|))) 140 (|has| |#1| (-367)))) (-4258 (((-1160 |#1|) (-1160 |#1|)) 98)) (-4259 (((-1160 |#1|) (-1160 |#1|)) 83)) (-4252 (((-1160 |#1|) (-551) (-551) (-1160 |#1|)) 105)) (-4262 (((-1160 |#1|) |#1| (-1160 |#1|)) 114 (|has| |#1| (-38 (-412 (-551)))))) (-3909 (((-1160 (-551)) (-551)) 63)) (-3911 (((-1160 |#1|) |#1|) 66)) (-4255 (((-1160 |#1|) (-1160 |#1|) (-551) (-551)) 101)) (-3914 (((-1160 |#1|) (-1 |#1| (-551)) (-1160 |#1|)) 73)) (-3907 (((-3 (-1160 |#1|) "failed") (-1160 |#1|) (-1160 |#1|)) 40)) (-4256 (((-1160 |#1|) (-1160 |#1|)) 100)) (-4217 (((-1160 |#1|) (-1160 |#1|) |#1|) 78)) (-3913 (((-1160 |#1|) (-1160 |#1|)) 69)) (-3915 (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 79)) (-4396 (((-1160 |#1|) |#1|) 74)) (-3916 (((-1160 |#1|) (-1160 (-1160 |#1|))) 89)) (-4399 (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 41)) (-4287 (((-1160 |#1|) (-1160 |#1|)) 21) (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 23)) (-4289 (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 17)) (* (((-1160 |#1|) (-1160 |#1|) |#1|) 29) (((-1160 |#1|) |#1| (-1160 |#1|)) 26) (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 27)))
-(((-1167 |#1|) (-10 -7 (-15 -4289 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4287 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4287 ((-1160 |#1|) (-1160 |#1|))) (-15 * ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 * ((-1160 |#1|) |#1| (-1160 |#1|))) (-15 * ((-1160 |#1|) (-1160 |#1|) |#1|)) (-15 -3907 ((-3 (-1160 |#1|) "failed") (-1160 |#1|) (-1160 |#1|))) (-15 -4399 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3908 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -4388 ((-1160 |#1|) |#1| (-551))) (-15 -3909 ((-1160 (-551)) (-551))) (-15 -3910 ((-1160 (-551)) (-551))) (-15 -3911 ((-1160 |#1|) |#1|)) (-15 -3912 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3913 ((-1160 |#1|) (-1160 |#1|))) (-15 -3914 ((-1160 |#1|) (-1 |#1| (-551)) (-1160 |#1|))) (-15 -4396 ((-1160 |#1|) |#1|)) (-15 -4217 ((-1160 |#1|) (-1160 |#1|) |#1|)) (-15 -3915 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4259 ((-1160 |#1|) (-1160 |#1|))) (-15 -4254 ((-1160 |#1|) (-1160 |#1|))) (-15 -3916 ((-1160 |#1|) (-1160 (-1160 |#1|)))) (-15 -4258 ((-1160 |#1|) (-1160 |#1|))) (-15 -4257 ((-1160 |#1|) (-1160 |#1|))) (-15 -4256 ((-1160 |#1|) (-1160 |#1|))) (-15 -4255 ((-1160 |#1|) (-1160 |#1|) (-551) (-551))) (-15 -4253 ((-1160 |#1|) (-551) (-551) (-1160 |#1|))) (-15 -4252 ((-1160 |#1|) (-551) (-551) (-1160 |#1|))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ((-1160 |#1|) |#1| (-1160 |#1|))) (-15 -3917 ((-1160 |#1|) |#1| (-1 (-1160 |#1|)))) (-15 -3918 ((-1160 |#1|) (-1160 (-1160 |#1|)))) (-15 -3919 ((-1160 |#1|) (-412 (-551)) (-1160 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3920 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3921 ((-1160 |#1|) (-1 |#1| (-551)) |#1| (-1 (-1160 |#1|)))) (-15 -3922 ((-1160 |#1|) |#1| (-1160 |#1|)))) |%noBranch|)) (-1055)) (T -1167))
-((-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-551))) (-5 *5 (-1 (-1160 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4)))) (-3920 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-1160 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055)) (-5 *3 (-412 (-551))) (-5 *1 (-1167 *4)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-38 (-412 (-551)))) (-4 *4 (-1055)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1160 *3))) (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)))) (-4262 (*1 *2 *3 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4252 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-4253 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-4255 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-4256 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1055)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3915 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4217 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4396 (*1 *2 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3914 (*1 *2 *3 *2) (-12 (-5 *2 (-1160 *4)) (-5 *3 (-1 *4 (-551))) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3912 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3911 (*1 *2 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3910 (*1 *2 *3) (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-551)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-551)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3908 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4399 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3907 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4287 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-4289 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(-10 -7 (-15 -4289 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4287 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4287 ((-1160 |#1|) (-1160 |#1|))) (-15 * ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 * ((-1160 |#1|) |#1| (-1160 |#1|))) (-15 * ((-1160 |#1|) (-1160 |#1|) |#1|)) (-15 -3907 ((-3 (-1160 |#1|) "failed") (-1160 |#1|) (-1160 |#1|))) (-15 -4399 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3908 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -4388 ((-1160 |#1|) |#1| (-551))) (-15 -3909 ((-1160 (-551)) (-551))) (-15 -3910 ((-1160 (-551)) (-551))) (-15 -3911 ((-1160 |#1|) |#1|)) (-15 -3912 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3913 ((-1160 |#1|) (-1160 |#1|))) (-15 -3914 ((-1160 |#1|) (-1 |#1| (-551)) (-1160 |#1|))) (-15 -4396 ((-1160 |#1|) |#1|)) (-15 -4217 ((-1160 |#1|) (-1160 |#1|) |#1|)) (-15 -3915 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4259 ((-1160 |#1|) (-1160 |#1|))) (-15 -4254 ((-1160 |#1|) (-1160 |#1|))) (-15 -3916 ((-1160 |#1|) (-1160 (-1160 |#1|)))) (-15 -4258 ((-1160 |#1|) (-1160 |#1|))) (-15 -4257 ((-1160 |#1|) (-1160 |#1|))) (-15 -4256 ((-1160 |#1|) (-1160 |#1|))) (-15 -4255 ((-1160 |#1|) (-1160 |#1|) (-551) (-551))) (-15 -4253 ((-1160 |#1|) (-551) (-551) (-1160 |#1|))) (-15 -4252 ((-1160 |#1|) (-551) (-551) (-1160 |#1|))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ((-1160 |#1|) |#1| (-1160 |#1|))) (-15 -3917 ((-1160 |#1|) |#1| (-1 (-1160 |#1|)))) (-15 -3918 ((-1160 |#1|) (-1160 (-1160 |#1|)))) (-15 -3919 ((-1160 |#1|) (-412 (-551)) (-1160 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3920 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3921 ((-1160 |#1|) (-1 |#1| (-551)) |#1| (-1 (-1160 |#1|)))) (-15 -3922 ((-1160 |#1|) |#1| (-1160 |#1|)))) |%noBranch|))
-((-3933 (((-1160 |#1|) (-1160 |#1|)) 107)) (-4089 (((-1160 |#1|) (-1160 |#1|)) 61)) (-3924 (((-2 (|:| -3931 (-1160 |#1|)) (|:| -3932 (-1160 |#1|))) (-1160 |#1|)) 103)) (-3931 (((-1160 |#1|) (-1160 |#1|)) 104)) (-3923 (((-2 (|:| -4088 (-1160 |#1|)) (|:| -4084 (-1160 |#1|))) (-1160 |#1|)) 54)) (-4088 (((-1160 |#1|) (-1160 |#1|)) 55)) (-3935 (((-1160 |#1|) (-1160 |#1|)) 109)) (-4087 (((-1160 |#1|) (-1160 |#1|)) 68)) (-4392 (((-1160 |#1|) (-1160 |#1|)) 40)) (-4393 (((-1160 |#1|) (-1160 |#1|)) 37)) (-3936 (((-1160 |#1|) (-1160 |#1|)) 110)) (-4086 (((-1160 |#1|) (-1160 |#1|)) 69)) (-3934 (((-1160 |#1|) (-1160 |#1|)) 108)) (-4085 (((-1160 |#1|) (-1160 |#1|)) 64)) (-3932 (((-1160 |#1|) (-1160 |#1|)) 105)) (-4084 (((-1160 |#1|) (-1160 |#1|)) 56)) (-3939 (((-1160 |#1|) (-1160 |#1|)) 118)) (-3927 (((-1160 |#1|) (-1160 |#1|)) 93)) (-3937 (((-1160 |#1|) (-1160 |#1|)) 112)) (-3925 (((-1160 |#1|) (-1160 |#1|)) 89)) (-3941 (((-1160 |#1|) (-1160 |#1|)) 122)) (-3929 (((-1160 |#1|) (-1160 |#1|)) 97)) (-3942 (((-1160 |#1|) (-1160 |#1|)) 124)) (-3930 (((-1160 |#1|) (-1160 |#1|)) 99)) (-3940 (((-1160 |#1|) (-1160 |#1|)) 120)) (-3928 (((-1160 |#1|) (-1160 |#1|)) 95)) (-3938 (((-1160 |#1|) (-1160 |#1|)) 114)) (-3926 (((-1160 |#1|) (-1160 |#1|)) 91)) (** (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 41)))
-(((-1168 |#1|) (-10 -7 (-15 -4393 ((-1160 |#1|) (-1160 |#1|))) (-15 -4392 ((-1160 |#1|) (-1160 |#1|))) (-15 ** ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3923 ((-2 (|:| -4088 (-1160 |#1|)) (|:| -4084 (-1160 |#1|))) (-1160 |#1|))) (-15 -4088 ((-1160 |#1|) (-1160 |#1|))) (-15 -4084 ((-1160 |#1|) (-1160 |#1|))) (-15 -4089 ((-1160 |#1|) (-1160 |#1|))) (-15 -4085 ((-1160 |#1|) (-1160 |#1|))) (-15 -4087 ((-1160 |#1|) (-1160 |#1|))) (-15 -4086 ((-1160 |#1|) (-1160 |#1|))) (-15 -3925 ((-1160 |#1|) (-1160 |#1|))) (-15 -3926 ((-1160 |#1|) (-1160 |#1|))) (-15 -3927 ((-1160 |#1|) (-1160 |#1|))) (-15 -3928 ((-1160 |#1|) (-1160 |#1|))) (-15 -3929 ((-1160 |#1|) (-1160 |#1|))) (-15 -3930 ((-1160 |#1|) (-1160 |#1|))) (-15 -3924 ((-2 (|:| -3931 (-1160 |#1|)) (|:| -3932 (-1160 |#1|))) (-1160 |#1|))) (-15 -3931 ((-1160 |#1|) (-1160 |#1|))) (-15 -3932 ((-1160 |#1|) (-1160 |#1|))) (-15 -3933 ((-1160 |#1|) (-1160 |#1|))) (-15 -3934 ((-1160 |#1|) (-1160 |#1|))) (-15 -3935 ((-1160 |#1|) (-1160 |#1|))) (-15 -3936 ((-1160 |#1|) (-1160 |#1|))) (-15 -3937 ((-1160 |#1|) (-1160 |#1|))) (-15 -3938 ((-1160 |#1|) (-1160 |#1|))) (-15 -3939 ((-1160 |#1|) (-1160 |#1|))) (-15 -3940 ((-1160 |#1|) (-1160 |#1|))) (-15 -3941 ((-1160 |#1|) (-1160 |#1|))) (-15 -3942 ((-1160 |#1|) (-1160 |#1|)))) (-38 (-412 (-551)))) (T -1168))
-((-3942 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3932 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3924 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-551)))) (-5 *2 (-2 (|:| -3931 (-1160 *4)) (|:| -3932 (-1160 *4)))) (-5 *1 (-1168 *4)) (-5 *3 (-1160 *4)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-551)))) (-5 *2 (-2 (|:| -4088 (-1160 *4)) (|:| -4084 (-1160 *4)))) (-5 *1 (-1168 *4)) (-5 *3 (-1160 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4392 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))) (-4393 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3)))))
-(-10 -7 (-15 -4393 ((-1160 |#1|) (-1160 |#1|))) (-15 -4392 ((-1160 |#1|) (-1160 |#1|))) (-15 ** ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -3923 ((-2 (|:| -4088 (-1160 |#1|)) (|:| -4084 (-1160 |#1|))) (-1160 |#1|))) (-15 -4088 ((-1160 |#1|) (-1160 |#1|))) (-15 -4084 ((-1160 |#1|) (-1160 |#1|))) (-15 -4089 ((-1160 |#1|) (-1160 |#1|))) (-15 -4085 ((-1160 |#1|) (-1160 |#1|))) (-15 -4087 ((-1160 |#1|) (-1160 |#1|))) (-15 -4086 ((-1160 |#1|) (-1160 |#1|))) (-15 -3925 ((-1160 |#1|) (-1160 |#1|))) (-15 -3926 ((-1160 |#1|) (-1160 |#1|))) (-15 -3927 ((-1160 |#1|) (-1160 |#1|))) (-15 -3928 ((-1160 |#1|) (-1160 |#1|))) (-15 -3929 ((-1160 |#1|) (-1160 |#1|))) (-15 -3930 ((-1160 |#1|) (-1160 |#1|))) (-15 -3924 ((-2 (|:| -3931 (-1160 |#1|)) (|:| -3932 (-1160 |#1|))) (-1160 |#1|))) (-15 -3931 ((-1160 |#1|) (-1160 |#1|))) (-15 -3932 ((-1160 |#1|) (-1160 |#1|))) (-15 -3933 ((-1160 |#1|) (-1160 |#1|))) (-15 -3934 ((-1160 |#1|) (-1160 |#1|))) (-15 -3935 ((-1160 |#1|) (-1160 |#1|))) (-15 -3936 ((-1160 |#1|) (-1160 |#1|))) (-15 -3937 ((-1160 |#1|) (-1160 |#1|))) (-15 -3938 ((-1160 |#1|) (-1160 |#1|))) (-15 -3939 ((-1160 |#1|) (-1160 |#1|))) (-15 -3940 ((-1160 |#1|) (-1160 |#1|))) (-15 -3941 ((-1160 |#1|) (-1160 |#1|))) (-15 -3942 ((-1160 |#1|) (-1160 |#1|))))
-((-3933 (((-1160 |#1|) (-1160 |#1|)) 60)) (-4089 (((-1160 |#1|) (-1160 |#1|)) 42)) (-3931 (((-1160 |#1|) (-1160 |#1|)) 56)) (-4088 (((-1160 |#1|) (-1160 |#1|)) 38)) (-3935 (((-1160 |#1|) (-1160 |#1|)) 63)) (-4087 (((-1160 |#1|) (-1160 |#1|)) 45)) (-4392 (((-1160 |#1|) (-1160 |#1|)) 34)) (-4393 (((-1160 |#1|) (-1160 |#1|)) 29)) (-3936 (((-1160 |#1|) (-1160 |#1|)) 64)) (-4086 (((-1160 |#1|) (-1160 |#1|)) 46)) (-3934 (((-1160 |#1|) (-1160 |#1|)) 61)) (-4085 (((-1160 |#1|) (-1160 |#1|)) 43)) (-3932 (((-1160 |#1|) (-1160 |#1|)) 58)) (-4084 (((-1160 |#1|) (-1160 |#1|)) 40)) (-3939 (((-1160 |#1|) (-1160 |#1|)) 68)) (-3927 (((-1160 |#1|) (-1160 |#1|)) 50)) (-3937 (((-1160 |#1|) (-1160 |#1|)) 66)) (-3925 (((-1160 |#1|) (-1160 |#1|)) 48)) (-3941 (((-1160 |#1|) (-1160 |#1|)) 71)) (-3929 (((-1160 |#1|) (-1160 |#1|)) 53)) (-3942 (((-1160 |#1|) (-1160 |#1|)) 72)) (-3930 (((-1160 |#1|) (-1160 |#1|)) 54)) (-3940 (((-1160 |#1|) (-1160 |#1|)) 70)) (-3928 (((-1160 |#1|) (-1160 |#1|)) 52)) (-3938 (((-1160 |#1|) (-1160 |#1|)) 69)) (-3926 (((-1160 |#1|) (-1160 |#1|)) 51)) (** (((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) 36)))
-(((-1169 |#1|) (-10 -7 (-15 -4393 ((-1160 |#1|) (-1160 |#1|))) (-15 -4392 ((-1160 |#1|) (-1160 |#1|))) (-15 ** ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4088 ((-1160 |#1|) (-1160 |#1|))) (-15 -4084 ((-1160 |#1|) (-1160 |#1|))) (-15 -4089 ((-1160 |#1|) (-1160 |#1|))) (-15 -4085 ((-1160 |#1|) (-1160 |#1|))) (-15 -4087 ((-1160 |#1|) (-1160 |#1|))) (-15 -4086 ((-1160 |#1|) (-1160 |#1|))) (-15 -3925 ((-1160 |#1|) (-1160 |#1|))) (-15 -3926 ((-1160 |#1|) (-1160 |#1|))) (-15 -3927 ((-1160 |#1|) (-1160 |#1|))) (-15 -3928 ((-1160 |#1|) (-1160 |#1|))) (-15 -3929 ((-1160 |#1|) (-1160 |#1|))) (-15 -3930 ((-1160 |#1|) (-1160 |#1|))) (-15 -3931 ((-1160 |#1|) (-1160 |#1|))) (-15 -3932 ((-1160 |#1|) (-1160 |#1|))) (-15 -3933 ((-1160 |#1|) (-1160 |#1|))) (-15 -3934 ((-1160 |#1|) (-1160 |#1|))) (-15 -3935 ((-1160 |#1|) (-1160 |#1|))) (-15 -3936 ((-1160 |#1|) (-1160 |#1|))) (-15 -3937 ((-1160 |#1|) (-1160 |#1|))) (-15 -3938 ((-1160 |#1|) (-1160 |#1|))) (-15 -3939 ((-1160 |#1|) (-1160 |#1|))) (-15 -3940 ((-1160 |#1|) (-1160 |#1|))) (-15 -3941 ((-1160 |#1|) (-1160 |#1|))) (-15 -3942 ((-1160 |#1|) (-1160 |#1|)))) (-38 (-412 (-551)))) (T -1169))
-((-3942 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3932 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4392 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))) (-4393 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(-10 -7 (-15 -4393 ((-1160 |#1|) (-1160 |#1|))) (-15 -4392 ((-1160 |#1|) (-1160 |#1|))) (-15 ** ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4088 ((-1160 |#1|) (-1160 |#1|))) (-15 -4084 ((-1160 |#1|) (-1160 |#1|))) (-15 -4089 ((-1160 |#1|) (-1160 |#1|))) (-15 -4085 ((-1160 |#1|) (-1160 |#1|))) (-15 -4087 ((-1160 |#1|) (-1160 |#1|))) (-15 -4086 ((-1160 |#1|) (-1160 |#1|))) (-15 -3925 ((-1160 |#1|) (-1160 |#1|))) (-15 -3926 ((-1160 |#1|) (-1160 |#1|))) (-15 -3927 ((-1160 |#1|) (-1160 |#1|))) (-15 -3928 ((-1160 |#1|) (-1160 |#1|))) (-15 -3929 ((-1160 |#1|) (-1160 |#1|))) (-15 -3930 ((-1160 |#1|) (-1160 |#1|))) (-15 -3931 ((-1160 |#1|) (-1160 |#1|))) (-15 -3932 ((-1160 |#1|) (-1160 |#1|))) (-15 -3933 ((-1160 |#1|) (-1160 |#1|))) (-15 -3934 ((-1160 |#1|) (-1160 |#1|))) (-15 -3935 ((-1160 |#1|) (-1160 |#1|))) (-15 -3936 ((-1160 |#1|) (-1160 |#1|))) (-15 -3937 ((-1160 |#1|) (-1160 |#1|))) (-15 -3938 ((-1160 |#1|) (-1160 |#1|))) (-15 -3939 ((-1160 |#1|) (-1160 |#1|))) (-15 -3940 ((-1160 |#1|) (-1160 |#1|))) (-15 -3941 ((-1160 |#1|) (-1160 |#1|))) (-15 -3942 ((-1160 |#1|) (-1160 |#1|))))
-((-3943 (((-964 |#2|) |#2| |#2|) 50)) (-3944 ((|#2| |#2| |#1|) 19 (|has| |#1| (-310)))))
-(((-1170 |#1| |#2|) (-10 -7 (-15 -3943 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -3944 (|#2| |#2| |#1|)) |%noBranch|)) (-562) (-1248 |#1|)) (T -1170))
-((-3944 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-4 *3 (-562)) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1248 *3)))) (-3943 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -3943 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -3944 (|#2| |#2| |#1|)) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3952 (($ $ (-646 (-776))) 81)) (-4338 (($) 33)) (-3961 (($ $) 51)) (-4201 (((-646 $) $) 60)) (-3967 (((-112) $) 19)) (-3945 (((-646 (-949 |#2|)) $) 88)) (-3946 (($ $) 82)) (-3962 (((-776) $) 47)) (-4064 (($) 32)) (-3955 (($ $ (-646 (-776)) (-949 |#2|)) 74) (($ $ (-646 (-776)) (-776)) 75) (($ $ (-776) (-949 |#2|)) 77)) (-3959 (($ $ $) 57) (($ (-646 $)) 59)) (-3947 (((-776) $) 89)) (-3968 (((-112) $) 15)) (-3681 (((-1165) $) NIL)) (-3966 (((-112) $) 22)) (-3682 (((-1126) $) NIL)) (-3948 (((-172) $) 87)) (-3951 (((-949 |#2|) $) 83)) (-3950 (((-776) $) 84)) (-3949 (((-112) $) 86)) (-3953 (($ $ (-646 (-776)) (-172)) 80)) (-3960 (($ $) 52)) (-4396 (((-868) $) 100)) (-3954 (($ $ (-646 (-776)) (-112)) 79)) (-3963 (((-646 $) $) 11)) (-3964 (($ $ (-776)) 46)) (-3965 (($ $) 43)) (-3680 (((-112) $ $) NIL)) (-3956 (($ $ $ (-949 |#2|) (-776)) 70)) (-3957 (($ $ (-949 |#2|)) 69)) (-3958 (($ $ (-646 (-776)) (-949 |#2|)) 66) (($ $ (-646 (-776)) (-776)) 72) (((-776) $ (-949 |#2|)) 73)) (-3473 (((-112) $ $) 94)))
-(((-1171 |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -3968 ((-112) $)) (-15 -3967 ((-112) $)) (-15 -3966 ((-112) $)) (-15 -4064 ($)) (-15 -4338 ($)) (-15 -3965 ($ $)) (-15 -3964 ($ $ (-776))) (-15 -3963 ((-646 $) $)) (-15 -3962 ((-776) $)) (-15 -3961 ($ $)) (-15 -3960 ($ $)) (-15 -3959 ($ $ $)) (-15 -3959 ($ (-646 $))) (-15 -4201 ((-646 $) $)) (-15 -3958 ($ $ (-646 (-776)) (-949 |#2|))) (-15 -3957 ($ $ (-949 |#2|))) (-15 -3956 ($ $ $ (-949 |#2|) (-776))) (-15 -3955 ($ $ (-646 (-776)) (-949 |#2|))) (-15 -3958 ($ $ (-646 (-776)) (-776))) (-15 -3955 ($ $ (-646 (-776)) (-776))) (-15 -3958 ((-776) $ (-949 |#2|))) (-15 -3955 ($ $ (-776) (-949 |#2|))) (-15 -3954 ($ $ (-646 (-776)) (-112))) (-15 -3953 ($ $ (-646 (-776)) (-172))) (-15 -3952 ($ $ (-646 (-776)))) (-15 -3951 ((-949 |#2|) $)) (-15 -3950 ((-776) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-172) $)) (-15 -3947 ((-776) $)) (-15 -3946 ($ $)) (-15 -3945 ((-646 (-949 |#2|)) $)))) (-925) (-1055)) (T -1171))
-((-3968 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-4064 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-4338 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3959 (*1 *1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3958 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))) (-3957 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)))) (-3956 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))) (-3955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))) (-3958 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)) (-4 *5 (-1055)))) (-3955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)) (-4 *5 (-1055)))) (-3958 (*1 *2 *1 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))) (-3955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))) (-3954 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)) (-4 *5 (-1055)))) (-3953 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)) (-4 *5 (-1055)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))) (-3946 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-646 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(-13 (-1107) (-10 -8 (-15 -3968 ((-112) $)) (-15 -3967 ((-112) $)) (-15 -3966 ((-112) $)) (-15 -4064 ($)) (-15 -4338 ($)) (-15 -3965 ($ $)) (-15 -3964 ($ $ (-776))) (-15 -3963 ((-646 $) $)) (-15 -3962 ((-776) $)) (-15 -3961 ($ $)) (-15 -3960 ($ $)) (-15 -3959 ($ $ $)) (-15 -3959 ($ (-646 $))) (-15 -4201 ((-646 $) $)) (-15 -3958 ($ $ (-646 (-776)) (-949 |#2|))) (-15 -3957 ($ $ (-949 |#2|))) (-15 -3956 ($ $ $ (-949 |#2|) (-776))) (-15 -3955 ($ $ (-646 (-776)) (-949 |#2|))) (-15 -3958 ($ $ (-646 (-776)) (-776))) (-15 -3955 ($ $ (-646 (-776)) (-776))) (-15 -3958 ((-776) $ (-949 |#2|))) (-15 -3955 ($ $ (-776) (-949 |#2|))) (-15 -3954 ($ $ (-646 (-776)) (-112))) (-15 -3953 ($ $ (-646 (-776)) (-172))) (-15 -3952 ($ $ (-646 (-776)))) (-15 -3951 ((-949 |#2|) $)) (-15 -3950 ((-776) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-172) $)) (-15 -3947 ((-776) $)) (-15 -3946 ($ $)) (-15 -3945 ((-646 (-949 |#2|)) $))))
-((-2986 (((-112) $ $) NIL)) (-3969 ((|#2| $) 11)) (-3970 ((|#1| $) 10)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-3971 (($ |#1| |#2|) 9)) (-4396 (((-868) $) 16)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1172 |#1| |#2|) (-13 (-1107) (-10 -8 (-15 -3971 ($ |#1| |#2|)) (-15 -3970 (|#1| $)) (-15 -3969 (|#2| $)))) (-1107) (-1107)) (T -1172))
-((-3971 (*1 *1 *2 *3) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-3970 (*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1107)))) (-3969 (*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1107)))))
-(-13 (-1107) (-10 -8 (-15 -3971 ($ |#1| |#2|)) (-15 -3970 (|#1| $)) (-15 -3969 (|#2| $))))
-((-2986 (((-112) $ $) NIL)) (-3972 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1173) (-13 (-1089) (-10 -8 (-15 -3972 ((-1141) $))))) (T -1173))
-((-3972 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
-(-13 (-1089) (-10 -8 (-15 -3972 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 11)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-2251 (($ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-2249 (((-112) $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-4220 (($ $ (-551)) NIL) (($ $ (-551) (-551)) 75)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) NIL)) (-4181 (((-1181 |#1| |#2| |#3|) $) 42)) (-4178 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 32)) (-4179 (((-1181 |#1| |#2| |#3|) $) 33)) (-3933 (($ $) 116 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 92 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) 112 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 88 (|has| |#1| (-38 (-412 (-551)))))) (-4073 (((-551) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) 120 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 96 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-1181 |#1| |#2| |#3|) #2="failed") $) 34) (((-3 (-1183) #2#) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-551)) #2#) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367)))) (((-3 (-551) #2#) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))))) (-3594 (((-1181 |#1| |#2| |#3|) $) 140) (((-1183) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-551)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367)))) (((-551) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))))) (-4180 (($ $) 37) (($ (-551) $) 38)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-1181 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-1181 |#1| |#2| |#3|))) (|:| |vec| (-1272 (-1181 |#1| |#2| |#3|)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-551))) (|has| |#1| (-367)))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-551))) (|has| |#1| (-367))))) (-3908 (((-3 $ "failed") $) 54)) (-4177 (((-412 (-952 |#1|)) $ (-551)) 74 (|has| |#1| (-562))) (((-412 (-952 |#1|)) $ (-551) (-551)) 76 (|has| |#1| (-562)))) (-3413 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3624 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3311 (((-112) $) 28)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-382))) (|has| |#1| (-367)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-551))) (|has| |#1| (-367))))) (-4221 (((-551) $) NIL) (((-551) $ (-551)) 26)) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL (|has| |#1| (-367)))) (-3417 (((-1181 |#1| |#2| |#3|) $) 44 (|has| |#1| (-367)))) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3886 (((-3 $ "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1157)) (|has| |#1| (-367))))) (-3625 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4226 (($ $ (-925)) NIL)) (-4265 (($ (-1 |#1| (-551)) $) NIL)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-551)) 19) (($ $ (-1088) (-551)) NIL) (($ $ (-646 (-1088)) (-646 (-551))) NIL)) (-2952 (($ $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3278 (($ $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-4392 (($ $) 81 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4228 (($ (-551) (-1181 |#1| |#2| |#3|)) 36)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) 79 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 80 (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1157)) (|has| |#1| (-367))) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3550 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3552 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-551)) 158)) (-3907 (((-3 $ "failed") $ $) 55 (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) 82 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-551))))) (($ $ (-1183) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-1183)) (-646 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-296 (-1181 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-296 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-1181 |#1| |#2| |#3|)) (-646 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-551)) NIL) (($ $ $) 61 (|has| (-551) (-1118))) (($ $ (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 57) (($ $ (-776)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) 56 (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-3414 (($ $) NIL (|has| |#1| (-367)))) (-3416 (((-1181 |#1| |#2| |#3|) $) 46 (|has| |#1| (-367)))) (-4398 (((-551) $) 43)) (-3936 (($ $) 122 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 98 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 118 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 94 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 114 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 90 (|has| |#1| (-38 (-412 (-551)))))) (-4420 (((-540) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-540))) (|has| |#1| (-367)))) (((-382) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1026)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1026)) (|has| |#1| (-367)))) (((-896 (-382)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-896 (-382)))) (|has| |#1| (-367)))) (((-896 (-551)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-896 (-551)))) (|has| |#1| (-367))))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) 162) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1181 |#1| |#2| |#3|)) 30) (($ (-1269 |#2|)) 25) (($ (-1183)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562)))) (($ (-412 (-551))) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-551))))))) (-4127 ((|#1| $ (-551)) 77)) (-3123 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 12)) (-3553 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 128 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 104 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-3937 (($ $) 124 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 100 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 108 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-551)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 110 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 106 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 126 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 102 (|has| |#1| (-38 (-412 (-551)))))) (-3825 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3528 (($) 21 T CONST)) (-3085 (($) 16 T CONST)) (-3090 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-2984 (((-112) $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2985 (((-112) $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3106 (((-112) $ $) NIL (-3978 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 49 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) 50 (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 23)) (** (($ $ (-925)) NIL) (($ $ (-776)) 60) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) 83 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 137 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1181 |#1| |#2| |#3|)) 48 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) $) 47 (|has| |#1| (-367))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1174 |#1| |#2| |#3|) (-13 (-1236 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1174))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1236 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-3973 ((|#2| |#2| (-1098 |#2|)) 26) ((|#2| |#2| (-1183)) 28)))
-(((-1175 |#1| |#2|) (-10 -7 (-15 -3973 (|#2| |#2| (-1183))) (-15 -3973 (|#2| |#2| (-1098 |#2|)))) (-13 (-562) (-1044 (-551)) (-644 (-551))) (-13 (-426 |#1|) (-160) (-27) (-1208))) (T -1175))
-((-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-426 *4) (-160) (-27) (-1208))) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1175 *4 *2)))) (-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-426 *4) (-160) (-27) (-1208))))))
-(-10 -7 (-15 -3973 (|#2| |#2| (-1183))) (-15 -3973 (|#2| |#2| (-1098 |#2|))))
-((-3973 (((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1098 (-412 (-952 |#1|)))) 31) (((-412 (-952 |#1|)) (-952 |#1|) (-1098 (-952 |#1|))) 44) (((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1183)) 33) (((-412 (-952 |#1|)) (-952 |#1|) (-1183)) 36)))
-(((-1176 |#1|) (-10 -7 (-15 -3973 ((-412 (-952 |#1|)) (-952 |#1|) (-1183))) (-15 -3973 ((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1183))) (-15 -3973 ((-412 (-952 |#1|)) (-952 |#1|) (-1098 (-952 |#1|)))) (-15 -3973 ((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1098 (-412 (-952 |#1|)))))) (-13 (-562) (-1044 (-551)))) (T -1176))
-((-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1176 *5)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-952 *5))) (-5 *3 (-952 *5)) (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-412 *3)) (-5 *1 (-1176 *5)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-3 (-412 (-952 *5)) (-317 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-412 (-952 *5))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-412 (-952 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-952 *5)))))
-(-10 -7 (-15 -3973 ((-412 (-952 |#1|)) (-952 |#1|) (-1183))) (-15 -3973 ((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1183))) (-15 -3973 ((-412 (-952 |#1|)) (-952 |#1|) (-1098 (-952 |#1|)))) (-15 -3973 ((-3 (-412 (-952 |#1|)) (-317 |#1|)) (-412 (-952 |#1|)) (-1098 (-412 (-952 |#1|))))))
-((-2986 (((-112) $ $) 171)) (-3626 (((-112) $) 43)) (-4216 (((-1272 |#1|) $ (-776)) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4214 (($ (-1177 |#1|)) NIL)) (-3505 (((-1177 $) $ (-1088)) 82) (((-1177 |#1|) $) 71)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) 164 (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1088))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4205 (($ $ $) 158 (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) 95 (|has| |#1| (-916)))) (-4224 (($ $) NIL (|has| |#1| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 115 (|has| |#1| (-916)))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4210 (($ $ (-776)) 61)) (-4209 (($ $ (-776)) 63)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#1| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-1088) #2#) $) NIL)) (-3594 ((|#1| $) NIL) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-1088) $) NIL)) (-4206 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) 80)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4208 (($ $ $) 131)) (-4203 (($ $ $) NIL (|has| |#1| (-562)))) (-4202 (((-2 (|:| -4404 |#1|) (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-3944 (($ $) 165 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-776) $) 69)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1088) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1088) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-3974 (((-868) $ (-868)) 148)) (-4221 (((-776) $ $) NIL (|has| |#1| (-562)))) (-2591 (((-112) $) 48)) (-2599 (((-776) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#1| (-1157)))) (-3506 (($ (-1177 |#1|) (-1088)) 73) (($ (-1177 $) (-1088)) 89)) (-4226 (($ $ (-776)) 51)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) 87) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1088)) NIL) (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 153)) (-3241 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-1780 (($ (-1 (-776) (-776)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4215 (((-1177 |#1|) $) NIL)) (-3504 (((-3 (-1088) #4="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) 76)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3681 (((-1165) $) NIL)) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) 60)) (-3244 (((-3 (-646 $) #4#) $) NIL)) (-3243 (((-3 (-646 $) #4#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1088)) (|:| -2582 (-776))) #4#) $) NIL)) (-4262 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) NIL (|has| |#1| (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) 50)) (-1981 ((|#1| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 103 (|has| |#1| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-457))) (($ $ $) 167 (|has| |#1| (-457)))) (-4188 (($ $ (-776) |#1| $) 123)) (-3126 (((-410 (-1177 $)) (-1177 $)) 101 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 100 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 108 (|has| |#1| (-916)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-646 (-1088)) (-646 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-646 (-1088)) (-646 $)) NIL)) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-562))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-562)))) (-4213 (((-3 $ #5="failed") $ (-776)) 54)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 172 (|has| |#1| (-367)))) (-4207 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-4260 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4398 (((-776) $) 78) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1088) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) 162 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-916))))) (-4204 (((-3 $ #5#) $ $) NIL (|has| |#1| (-562))) (((-3 (-412 $) #5#) (-412 $) $) NIL (|has| |#1| (-562)))) (-4396 (((-868) $) 149) (($ (-551)) NIL) (($ |#1|) 77) (($ (-1088)) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) 41 (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 17 T CONST)) (-3085 (($) 19 T CONST)) (-3090 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3473 (((-112) $ $) 120)) (-4399 (($ $ |#1|) 173 (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 90)) (** (($ $ (-925)) 14) (($ $ (-776)) 12)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 39) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1177 |#1|) (-13 (-1248 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-868))) (-15 -4188 ($ $ (-776) |#1| $)))) (-1055)) (T -1177))
-((-3974 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-1177 *3)) (-4 *3 (-1055)))) (-4188 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1177 *3)) (-4 *3 (-1055)))))
-(-13 (-1248 |#1|) (-10 -8 (-15 -3974 ((-868) $ (-868))) (-15 -4188 ($ $ (-776) |#1| $))))
-((-4408 (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 13)))
-(((-1178 |#1| |#2|) (-10 -7 (-15 -4408 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)))) (-1055) (-1055)) (T -1178))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))))
-(-10 -7 (-15 -4408 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))))
-((-4419 (((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|))) 51)) (-4182 (((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|))) 52)))
-(((-1179 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 ((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|)))) (-15 -4419 ((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|))))) (-798) (-855) (-457) (-956 |#3| |#1| |#2|)) (T -1179))
-((-4419 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-410 (-1177 (-412 *7)))) (-5 *1 (-1179 *4 *5 *6 *7)) (-5 *3 (-1177 (-412 *7))))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-410 (-1177 (-412 *7)))) (-5 *1 (-1179 *4 *5 *6 *7)) (-5 *3 (-1177 (-412 *7))))))
-(-10 -7 (-15 -4182 ((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|)))) (-15 -4419 ((-410 (-1177 (-412 |#4|))) (-1177 (-412 |#4|)))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 11)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) NIL) (($ $ (-412 (-551)) (-412 (-551))) NIL)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-1174 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1181 |#1| |#2| |#3|) #1#) $) 36)) (-3594 (((-1174 |#1| |#2| |#3|) $) NIL) (((-1181 |#1| |#2| |#3|) $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4230 (((-412 (-551)) $) 59)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4231 (($ (-412 (-551)) (-1174 |#1| |#2| |#3|)) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) NIL) (((-412 (-551)) $ (-412 (-551))) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) NIL) (($ $ (-412 (-551))) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-412 (-551))) 20) (($ $ (-1088) (-412 (-551))) NIL) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4229 (((-1174 |#1| |#2| |#3|) $) 41)) (-4227 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) NIL)) (-4228 (((-1174 |#1| |#2| |#3|) $) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) 39 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) NIL) (($ $ $) NIL (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-4398 (((-412 (-551)) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) 62) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1174 |#1| |#2| |#3|)) 30) (($ (-1181 |#1| |#2| |#3|)) 31) (($ (-1269 |#2|)) 26) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 12)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 22 T CONST)) (-3085 (($) 16 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 24)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1180 |#1| |#2| |#3|) (-13 (-1257 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1180))
-((-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1257 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 129)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 119)) (-4261 (((-1241 |#2| |#1|) $ (-776)) 69)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-776)) 85) (($ $ (-776) (-776)) 82)) (-4223 (((-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 105)) (-3933 (($ $) 173 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) 169 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 118) (($ (-1160 |#1|)) 113)) (-3935 (($ $) 177 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) 25)) (-4266 (($ $) 28)) (-4264 (((-952 |#1|) $ (-776)) 81) (((-952 |#1|) $ (-776) (-776)) 83)) (-3311 (((-112) $) 124)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $) 126) (((-776) $ (-776)) 128)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) NIL)) (-4265 (($ (-1 |#1| (-551)) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) 13) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-4262 (($ $) 133 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-4218 (($ $ (-776)) 15)) (-3907 (((-3 $ "failed") $ $) 26 (|has| |#1| (-562)))) (-4393 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-4249 ((|#1| $ (-776)) 122) (($ $ $) 132 (|has| (-776) (-1118)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 31)) (-4398 (((-776) $) NIL)) (-3936 (($ $) 179 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 175 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 171 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) 206) (($ (-551)) NIL) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1241 |#2| |#1|)) 55) (($ (-1269 |#2|)) 36)) (-4267 (((-1160 |#1|) $) 101)) (-4127 ((|#1| $ (-776)) 121)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 58)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 185 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 161 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) 181 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 157 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 189 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 165 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-776)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 191 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 167 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 187 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 163 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 183 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 159 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 17 T CONST)) (-3085 (($) 20 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) 198)) (-4289 (($ $ $) 35)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 203 (|has| |#1| (-367))) (($ $ $) 138 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 141 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1181 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-10 -8 (-15 -4396 ($ (-1241 |#2| |#1|))) (-15 -4261 ((-1241 |#2| |#1|) $ (-776))) (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1181))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1181 *3 *4 *5)))) (-4261 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1181 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1265 |#1|) (-10 -8 (-15 -4396 ($ (-1241 |#2| |#1|))) (-15 -4261 ((-1241 |#2| |#1|) $ (-776))) (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-4396 (((-868) $) 33) (($ (-1183)) 35)) (-3978 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 46)) (-3975 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 39) (($ $) 40)) (-3982 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 41)) (-3980 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 43)) (-3981 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 42)) (-3979 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 44)) (-3977 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $))) 45)))
-(((-1182) (-13 (-618 (-868)) (-10 -8 (-15 -4396 ($ (-1183))) (-15 -3982 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3980 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3979 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3978 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3977 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3975 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3975 ($ $))))) (T -1182))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3982 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3981 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3980 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3979 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3978 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3977 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-3975 (*1 *1 *1) (-5 *1 (-1182))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4396 ($ (-1183))) (-15 -3982 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3980 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3979 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3978 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3977 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)) (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3975 ($ (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382))) (|:| CF (-317 (-169 (-382)))) (|:| |switch| $)))) (-15 -3975 ($ $))))
-((-2986 (((-112) $ $) NIL)) (-3986 (($ $ (-646 (-868))) 62)) (-3987 (($ $ (-646 (-868))) 60)) (-3984 (((-1165) $) 101)) (-3989 (((-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868)))) $) 108)) (-3990 (((-112) $) 23)) (-3988 (($ $ (-646 (-646 (-868)))) 59) (($ $ (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868))))) 99)) (-4174 (($) 163 T CONST)) (-3992 (((-1278)) 135)) (-3217 (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 69) (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 76)) (-4064 (($) 122) (($ $) 131)) (-3991 (($ $) 100)) (-2952 (($ $ $) NIL)) (-3278 (($ $ $) NIL)) (-3983 (((-646 $) $) 136)) (-3681 (((-1165) $) 114)) (-3682 (((-1126) $) NIL)) (-4249 (($ $ (-646 (-868))) 61)) (-4420 (((-540) $) 48) (((-1183) $) 49) (((-896 (-551)) $) 80) (((-896 (-382)) $) 78)) (-4396 (((-868) $) 55) (($ (-1165)) 50)) (-3680 (((-112) $ $) NIL)) (-3985 (($ $ (-646 (-868))) 63)) (-2918 (((-1165) $) 34) (((-1165) $ (-112)) 35) (((-1278) (-828) $) 36) (((-1278) (-828) $ (-112)) 37)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 51)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) 52)))
-(((-1183) (-13 (-855) (-619 (-540)) (-826) (-619 (-1183)) (-621 (-1165)) (-619 (-896 (-551))) (-619 (-896 (-382))) (-892 (-551)) (-892 (-382)) (-10 -8 (-15 -4064 ($)) (-15 -4064 ($ $)) (-15 -3992 ((-1278))) (-15 -3991 ($ $)) (-15 -3990 ((-112) $)) (-15 -3989 ((-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868)))) $)) (-15 -3988 ($ $ (-646 (-646 (-868))))) (-15 -3988 ($ $ (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868)))))) (-15 -3987 ($ $ (-646 (-868)))) (-15 -3986 ($ $ (-646 (-868)))) (-15 -3985 ($ $ (-646 (-868)))) (-15 -4249 ($ $ (-646 (-868)))) (-15 -3984 ((-1165) $)) (-15 -3983 ((-646 $) $)) (-15 -4174 ($) -4402)))) (T -1183))
-((-4064 (*1 *1) (-5 *1 (-1183))) (-4064 (*1 *1 *1) (-5 *1 (-1183))) (-3992 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))) (-3991 (*1 *1 *1) (-5 *1 (-1183))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868))))) (-5 *1 (-1183)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-646 (-868)))) (-5 *1 (-1183)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868))))) (-5 *1 (-1183)))) (-3987 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))) (-3985 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1183)))) (-4174 (*1 *1) (-5 *1 (-1183))))
-(-13 (-855) (-619 (-540)) (-826) (-619 (-1183)) (-621 (-1165)) (-619 (-896 (-551))) (-619 (-896 (-382))) (-892 (-551)) (-892 (-382)) (-10 -8 (-15 -4064 ($)) (-15 -4064 ($ $)) (-15 -3992 ((-1278))) (-15 -3991 ($ $)) (-15 -3990 ((-112) $)) (-15 -3989 ((-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868)))) $)) (-15 -3988 ($ $ (-646 (-646 (-868))))) (-15 -3988 ($ $ (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868))) (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868))) (|:| |args| (-646 (-868)))))) (-15 -3987 ($ $ (-646 (-868)))) (-15 -3986 ($ $ (-646 (-868)))) (-15 -3985 ($ $ (-646 (-868)))) (-15 -4249 ($ $ (-646 (-868)))) (-15 -3984 ((-1165) $)) (-15 -3983 ((-646 $) $)) (-15 -4174 ($) -4402)))
-((-3993 (((-1272 |#1|) |#1| (-925)) 18) (((-1272 |#1|) (-646 |#1|)) 25)))
-(((-1184 |#1|) (-10 -7 (-15 -3993 ((-1272 |#1|) (-646 |#1|))) (-15 -3993 ((-1272 |#1|) |#1| (-925)))) (-1055)) (T -1184))
-((-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-5 *2 (-1272 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1055)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-1055)) (-5 *2 (-1272 *4)) (-5 *1 (-1184 *4)))))
-(-10 -7 (-15 -3993 ((-1272 |#1|) (-646 |#1|))) (-15 -3993 ((-1272 |#1|) |#1| (-925))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| |#1| (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| |#1| (-1044 (-412 (-551))))) (((-3 |#1| #1#) $) NIL)) (-3594 (((-551) $) NIL (|has| |#1| (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| |#1| (-1044 (-412 (-551))))) ((|#1| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-3944 (($ $) NIL (|has| |#1| (-457)))) (-1779 (($ $ |#1| (-977) $) NIL)) (-2591 (((-112) $) 17)) (-2599 (((-776) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-977)) NIL)) (-3241 (((-977) $) NIL)) (-1780 (($ (-1 (-977) (-977)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#1| $) NIL)) (-4188 (($ $ (-977) |#1| $) NIL (-12 (|has| (-977) (-131)) (|has| |#1| (-562))))) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-4398 (((-977) $) NIL)) (-3238 ((|#1| $) NIL (|has| |#1| (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) NIL) (($ (-412 (-551))) NIL (-3978 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-1044 (-412 (-551))))))) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ (-977)) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3528 (($) 11 T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 21)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1185 |#1|) (-13 (-329 |#1| (-977)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| (-977) (-131)) (-15 -4188 ($ $ (-977) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055)) (T -1185))
-((-4188 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))))
-(-13 (-329 |#1| #1=(-977)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| #1# (-131)) (-15 -4188 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
-((-3994 (((-1187) (-1183) $) 25)) (-4004 (($) 29)) (-3996 (((-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) (-1183) $) 22)) (-3998 (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1#)) $) 41) (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) 42) (((-1278) (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) 43)) (-4006 (((-1278) (-1183)) 58)) (-3997 (((-1278) (-1183) $) 55) (((-1278) (-1183)) 56) (((-1278)) 57)) (-4002 (((-1278) (-1183)) 37)) (-4000 (((-1183)) 36)) (-4014 (($) 34)) (-4013 (((-441) (-1183) (-441) (-1183) $) 45) (((-441) (-646 (-1183)) (-441) (-1183) $) 49) (((-441) (-1183) (-441)) 46) (((-441) (-1183) (-441) (-1183)) 50)) (-4001 (((-1183)) 35)) (-4396 (((-868) $) 28)) (-4003 (((-1278)) 30) (((-1278) (-1183)) 33)) (-3995 (((-646 (-1183)) (-1183) $) 24)) (-3999 (((-1278) (-1183) (-646 (-1183)) $) 38) (((-1278) (-1183) (-646 (-1183))) 39) (((-1278) (-646 (-1183))) 40)))
-(((-1186) (-13 (-618 (-868)) (-10 -8 (-15 -4004 ($)) (-15 -4003 ((-1278))) (-15 -4003 ((-1278) (-1183))) (-15 -4013 ((-441) (-1183) (-441) (-1183) $)) (-15 -4013 ((-441) (-646 (-1183)) (-441) (-1183) $)) (-15 -4013 ((-441) (-1183) (-441))) (-15 -4013 ((-441) (-1183) (-441) (-1183))) (-15 -4002 ((-1278) (-1183))) (-15 -4001 ((-1183))) (-15 -4000 ((-1183))) (-15 -3999 ((-1278) (-1183) (-646 (-1183)) $)) (-15 -3999 ((-1278) (-1183) (-646 (-1183)))) (-15 -3999 ((-1278) (-646 (-1183)))) (-15 -3998 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) $)) (-15 -3998 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))) (-15 -3998 ((-1278) (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))) (-15 -3997 ((-1278) (-1183) $)) (-15 -3997 ((-1278) (-1183))) (-15 -3997 ((-1278))) (-15 -4006 ((-1278) (-1183))) (-15 -4014 ($)) (-15 -3996 ((-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-1183) $)) (-15 -3995 ((-646 (-1183)) (-1183) $)) (-15 -3994 ((-1187) (-1183) $))))) (T -1186))
-((-4004 (*1 *1) (-5 *1 (-1186))) (-4003 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4013 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-4013 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-441)) (-5 *3 (-646 (-1183))) (-5 *4 (-1183)) (-5 *1 (-1186)))) (-4013 (*1 *2 *3 *2) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-4013 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4001 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-4000 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-3999 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3998 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3997 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3997 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4014 (*1 *1) (-5 *1 (-1186))) (-3996 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *1 (-1186)))) (-3995 (*1 *2 *3 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))) (-3994 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4004 ($)) (-15 -4003 ((-1278))) (-15 -4003 ((-1278) (-1183))) (-15 -4013 ((-441) (-1183) (-441) (-1183) $)) (-15 -4013 ((-441) (-646 (-1183)) (-441) (-1183) $)) (-15 -4013 ((-441) (-1183) (-441))) (-15 -4013 ((-441) (-1183) (-441) (-1183))) (-15 -4002 ((-1278) (-1183))) (-15 -4001 ((-1183))) (-15 -4000 ((-1183))) (-15 -3999 ((-1278) (-1183) (-646 (-1183)) $)) (-15 -3999 ((-1278) (-1183) (-646 (-1183)))) (-15 -3999 ((-1278) (-646 (-1183)))) (-15 -3998 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1="void")) $)) (-15 -3998 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))) (-15 -3998 ((-1278) (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))) (-15 -3997 ((-1278) (-1183) $)) (-15 -3997 ((-1278) (-1183))) (-15 -3997 ((-1278))) (-15 -4006 ((-1278) (-1183))) (-15 -4014 ($)) (-15 -3996 ((-3 (|:| |fst| (-439)) (|:| -4360 #1#)) (-1183) $)) (-15 -3995 ((-646 (-1183)) (-1183) $)) (-15 -3994 ((-1187) (-1183) $))))
-((-4008 (((-646 (-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551))))))))) $) 66)) (-4010 (((-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551)))))))) (-439) $) 47)) (-4005 (($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-441))))) 17)) (-4006 (((-1278) $) 73)) (-4011 (((-646 (-1183)) $) 22)) (-4007 (((-1109) $) 60)) (-4012 (((-441) (-1183) $) 27)) (-4009 (((-646 (-1183)) $) 30)) (-4014 (($) 19)) (-4013 (((-441) (-646 (-1183)) (-441) $) 25) (((-441) (-1183) (-441) $) 24)) (-4396 (((-868) $) 9) (((-1195 (-1183) (-441)) $) 13)))
-(((-1187) (-13 (-618 (-868)) (-10 -8 (-15 -4396 ((-1195 (-1183) (-441)) $)) (-15 -4014 ($)) (-15 -4013 ((-441) (-646 (-1183)) (-441) $)) (-15 -4013 ((-441) (-1183) (-441) $)) (-15 -4012 ((-441) (-1183) $)) (-15 -4011 ((-646 (-1183)) $)) (-15 -4010 ((-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551)))))))) (-439) $)) (-15 -4009 ((-646 (-1183)) $)) (-15 -4008 ((-646 (-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551))))))))) $)) (-15 -4007 ((-1109) $)) (-15 -4006 ((-1278) $)) (-15 -4005 ($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-441))))))))) (T -1187))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-1195 (-1183) (-441))) (-5 *1 (-1187)))) (-4014 (*1 *1) (-5 *1 (-1187))) (-4013 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-441)) (-5 *3 (-646 (-1183))) (-5 *1 (-1187)))) (-4013 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1187)))) (-4012 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-441)) (-5 *1 (-1187)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1187)))) (-4010 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551))))))))) (-5 *1 (-1187)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1187)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551)))))))))) (-5 *1 (-1187)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-1187)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))) (-4005 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-441))))) (-5 *1 (-1187)))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4396 ((-1195 (-1183) (-441)) $)) (-15 -4014 ($)) (-15 -4013 ((-441) (-646 (-1183)) (-441) $)) (-15 -4013 ((-441) (-1183) (-441) $)) (-15 -4012 ((-441) (-1183) $)) (-15 -4011 ((-646 (-1183)) $)) (-15 -4010 ((-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551)))))))) (-439) $)) (-15 -4009 ((-646 (-1183)) $)) (-15 -4008 ((-646 (-646 (-3 (|:| -3991 (-1183)) (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551))))))))) $)) (-15 -4007 ((-1109) $)) (-15 -4006 ((-1278) $)) (-15 -4005 ($ (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-441))))))))
-((-2986 (((-112) $ $) NIL)) (-3595 (((-3 (-551) #1="failed") $) 29) (((-3 (-226) #1#) $) 35) (((-3 (-511) #1#) $) 43) (((-3 (-1165) #1#) $) 47)) (-3594 (((-551) $) 30) (((-226) $) 36) (((-511) $) 40) (((-1165) $) 48)) (-4019 (((-112) $) 53)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4018 (((-3 (-551) (-226) (-511) (-1165) $) $) 55)) (-4017 (((-646 $) $) 57)) (-4420 (((-1109) $) 24) (($ (-1109)) 25)) (-4016 (((-112) $) 56)) (-4396 (((-868) $) 23) (($ (-551)) 26) (($ (-226)) 32) (($ (-511)) 38) (($ (-1165)) 44) (((-540) $) 59) (((-551) $) 31) (((-226) $) 37) (((-511) $) 41) (((-1165) $) 49)) (-4015 (((-112) $ (|[\|\|]| (-551))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-511))) 19) (((-112) $ (|[\|\|]| (-1165))) 16)) (-4020 (($ (-511) (-646 $)) 51) (($ $ (-646 $)) 52)) (-3680 (((-112) $ $) NIL)) (-4021 (((-551) $) 27) (((-226) $) 33) (((-511) $) 39) (((-1165) $) 45)) (-3473 (((-112) $ $) 7)))
-(((-1188) (-13 (-1268) (-1107) (-1044 (-551)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-540)) (-10 -8 (-15 -4420 ((-1109) $)) (-15 -4420 ($ (-1109))) (-15 -4396 ((-551) $)) (-15 -4021 ((-551) $)) (-15 -4396 ((-226) $)) (-15 -4021 ((-226) $)) (-15 -4396 ((-511) $)) (-15 -4021 ((-511) $)) (-15 -4396 ((-1165) $)) (-15 -4021 ((-1165) $)) (-15 -4020 ($ (-511) (-646 $))) (-15 -4020 ($ $ (-646 $))) (-15 -4019 ((-112) $)) (-15 -4018 ((-3 (-551) (-226) (-511) (-1165) $) $)) (-15 -4017 ((-646 $) $)) (-15 -4016 ((-112) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-551)))) (-15 -4015 ((-112) $ (|[\|\|]| (-226)))) (-15 -4015 ((-112) $ (|[\|\|]| (-511)))) (-15 -4015 ((-112) $ (|[\|\|]| (-1165))))))) (T -1188))
-((-4420 (*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-1188)))) (-4420 (*1 *1 *2) (-12 (-5 *2 (-1109)) (-5 *1 (-1188)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1188)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1188)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-4020 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-1188))) (-5 *1 (-1188)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1188)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-3 (-551) (-226) (-511) (-1165) (-1188))) (-5 *1 (-1188)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1188)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-551))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188)))))
-(-13 (-1268) (-1107) (-1044 (-551)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-540)) (-10 -8 (-15 -4420 ((-1109) $)) (-15 -4420 ($ (-1109))) (-15 -4396 ((-551) $)) (-15 -4021 ((-551) $)) (-15 -4396 ((-226) $)) (-15 -4021 ((-226) $)) (-15 -4396 ((-511) $)) (-15 -4021 ((-511) $)) (-15 -4396 ((-1165) $)) (-15 -4021 ((-1165) $)) (-15 -4020 ($ (-511) (-646 $))) (-15 -4020 ($ $ (-646 $))) (-15 -4019 ((-112) $)) (-15 -4018 ((-3 (-551) (-226) (-511) (-1165) $) $)) (-15 -4017 ((-646 $) $)) (-15 -4016 ((-112) $)) (-15 -4015 ((-112) $ (|[\|\|]| (-551)))) (-15 -4015 ((-112) $ (|[\|\|]| (-226)))) (-15 -4015 ((-112) $ (|[\|\|]| (-511)))) (-15 -4015 ((-112) $ (|[\|\|]| (-1165))))))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) 22)) (-4174 (($) 12 T CONST)) (-3413 (($) 26)) (-2952 (($ $ $) NIL) (($) 19 T CONST)) (-3278 (($ $ $) NIL) (($) 20 T CONST)) (-2198 (((-925) $) 24)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) 23)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1189 |#1|) (-13 (-849) (-10 -8 (-15 -4174 ($) -4402))) (-925)) (T -1189))
-((-4174 (*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-925)))))
-(-13 (-849) (-10 -8 (-15 -4174 ($) -4402)))
+((-3223 (((-1163 |#1|) (-1163 |#1|)) 84)) (-3351 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 42)) (-3475 (((-1163 |#1|) (-412 (-569)) (-1163 |#1|)) 136 (|has| |#1| (-38 (-412 (-569)))))) (-3508 (((-1163 |#1|) |#1| (-1163 |#1|)) 142 (|has| |#1| (-367)))) (-3264 (((-1163 |#1|) (-1163 |#1|)) 99)) (-3375 (((-1163 (-569)) (-569)) 64)) (-3462 (((-1163 |#1|) (-1163 (-1163 |#1|))) 118 (|has| |#1| (-38 (-412 (-569)))))) (-3206 (((-1163 |#1|) (-569) (-569) (-1163 |#1|)) 104)) (-3236 (((-1163 |#1|) |#1| (-569)) 54)) (-3388 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 67)) (-3487 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 139 (|has| |#1| (-367)))) (-3447 (((-1163 |#1|) |#1| (-1 (-1163 |#1|))) 117 (|has| |#1| (-38 (-412 (-569)))))) (-3498 (((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|))) 140 (|has| |#1| (-367)))) (-3276 (((-1163 |#1|) (-1163 |#1|)) 98)) (-3289 (((-1163 |#1|) (-1163 |#1|)) 83)) (-3193 (((-1163 |#1|) (-569) (-569) (-1163 |#1|)) 105)) (-3313 (((-1163 |#1|) |#1| (-1163 |#1|)) 114 (|has| |#1| (-38 (-412 (-569)))))) (-3362 (((-1163 (-569)) (-569)) 63)) (-3704 (((-1163 |#1|) |#1|) 66)) (-3234 (((-1163 |#1|) (-1163 |#1|) (-569) (-569)) 101)) (-3412 (((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|)) 73)) (-2374 (((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|)) 40)) (-3251 (((-1163 |#1|) (-1163 |#1|)) 100)) (-1679 (((-1163 |#1|) (-1163 |#1|) |#1|) 78)) (-3400 (((-1163 |#1|) (-1163 |#1|)) 69)) (-3424 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 79)) (-2388 (((-1163 |#1|) |#1|) 74)) (-3436 (((-1163 |#1|) (-1163 (-1163 |#1|))) 89)) (-2956 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 41)) (-2946 (((-1163 |#1|) (-1163 |#1|)) 21) (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 23)) (-2935 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 17)) (* (((-1163 |#1|) (-1163 |#1|) |#1|) 29) (((-1163 |#1|) |#1| (-1163 |#1|)) 26) (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 27)))
+(((-1167 |#1|) (-10 -7 (-15 -2935 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2946 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2946 ((-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2374 ((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|))) (-15 -2956 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3351 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3236 ((-1163 |#1|) |#1| (-569))) (-15 -3362 ((-1163 (-569)) (-569))) (-15 -3375 ((-1163 (-569)) (-569))) (-15 -3704 ((-1163 |#1|) |#1|)) (-15 -3388 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3400 ((-1163 |#1|) (-1163 |#1|))) (-15 -3412 ((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|))) (-15 -2388 ((-1163 |#1|) |#1|)) (-15 -1679 ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -3424 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3289 ((-1163 |#1|) (-1163 |#1|))) (-15 -3223 ((-1163 |#1|) (-1163 |#1|))) (-15 -3436 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3276 ((-1163 |#1|) (-1163 |#1|))) (-15 -3264 ((-1163 |#1|) (-1163 |#1|))) (-15 -3251 ((-1163 |#1|) (-1163 |#1|))) (-15 -3234 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))) (-15 -3206 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (-15 -3193 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 -3447 ((-1163 |#1|) |#1| (-1 (-1163 |#1|)))) (-15 -3462 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3475 ((-1163 |#1|) (-412 (-569)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3487 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3498 ((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|)))) (-15 -3508 ((-1163 |#1|) |#1| (-1163 |#1|)))) |%noBranch|)) (-1055)) (T -1167))
+((-3508 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1163 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)))) (-3487 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055)) (-5 *3 (-412 (-569))) (-5 *1 (-1167 *4)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1163 *3))) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))) (-3313 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3193 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3206 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3234 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1055)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-1679 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3412 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3704 (*1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3375 (*1 *2 *3) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-569)))) (-3362 (*1 *2 *3) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-569)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-3351 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2956 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2374 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2935 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(-10 -7 (-15 -2935 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2946 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2946 ((-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2374 ((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|))) (-15 -2956 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3351 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3236 ((-1163 |#1|) |#1| (-569))) (-15 -3362 ((-1163 (-569)) (-569))) (-15 -3375 ((-1163 (-569)) (-569))) (-15 -3704 ((-1163 |#1|) |#1|)) (-15 -3388 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3400 ((-1163 |#1|) (-1163 |#1|))) (-15 -3412 ((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|))) (-15 -2388 ((-1163 |#1|) |#1|)) (-15 -1679 ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -3424 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3289 ((-1163 |#1|) (-1163 |#1|))) (-15 -3223 ((-1163 |#1|) (-1163 |#1|))) (-15 -3436 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3276 ((-1163 |#1|) (-1163 |#1|))) (-15 -3264 ((-1163 |#1|) (-1163 |#1|))) (-15 -3251 ((-1163 |#1|) (-1163 |#1|))) (-15 -3234 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))) (-15 -3206 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (-15 -3193 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 -3447 ((-1163 |#1|) |#1| (-1 (-1163 |#1|)))) (-15 -3462 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3475 ((-1163 |#1|) (-412 (-569)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3487 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3498 ((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|)))) (-15 -3508 ((-1163 |#1|) |#1| (-1163 |#1|)))) |%noBranch|))
+((-2691 (((-1163 |#1|) (-1163 |#1|)) 60)) (-2556 (((-1163 |#1|) (-1163 |#1|)) 42)) (-2669 (((-1163 |#1|) (-1163 |#1|)) 56)) (-2534 (((-1163 |#1|) (-1163 |#1|)) 38)) (-2712 (((-1163 |#1|) (-1163 |#1|)) 63)) (-2576 (((-1163 |#1|) (-1163 |#1|)) 45)) (-2616 (((-1163 |#1|) (-1163 |#1|)) 34)) (-4367 (((-1163 |#1|) (-1163 |#1|)) 29)) (-2725 (((-1163 |#1|) (-1163 |#1|)) 64)) (-2588 (((-1163 |#1|) (-1163 |#1|)) 46)) (-2701 (((-1163 |#1|) (-1163 |#1|)) 61)) (-2566 (((-1163 |#1|) (-1163 |#1|)) 43)) (-2680 (((-1163 |#1|) (-1163 |#1|)) 58)) (-2545 (((-1163 |#1|) (-1163 |#1|)) 40)) (-4119 (((-1163 |#1|) (-1163 |#1|)) 68)) (-2627 (((-1163 |#1|) (-1163 |#1|)) 50)) (-4094 (((-1163 |#1|) (-1163 |#1|)) 66)) (-2601 (((-1163 |#1|) (-1163 |#1|)) 48)) (-4144 (((-1163 |#1|) (-1163 |#1|)) 71)) (-2648 (((-1163 |#1|) (-1163 |#1|)) 53)) (-1470 (((-1163 |#1|) (-1163 |#1|)) 72)) (-2658 (((-1163 |#1|) (-1163 |#1|)) 54)) (-4131 (((-1163 |#1|) (-1163 |#1|)) 70)) (-2638 (((-1163 |#1|) (-1163 |#1|)) 52)) (-4106 (((-1163 |#1|) (-1163 |#1|)) 69)) (-2615 (((-1163 |#1|) (-1163 |#1|)) 51)) (** (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 36)))
+(((-1168 |#1|) (-10 -7 (-15 -4367 ((-1163 |#1|) (-1163 |#1|))) (-15 -2616 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2534 ((-1163 |#1|) (-1163 |#1|))) (-15 -2545 ((-1163 |#1|) (-1163 |#1|))) (-15 -2556 ((-1163 |#1|) (-1163 |#1|))) (-15 -2566 ((-1163 |#1|) (-1163 |#1|))) (-15 -2576 ((-1163 |#1|) (-1163 |#1|))) (-15 -2588 ((-1163 |#1|) (-1163 |#1|))) (-15 -2601 ((-1163 |#1|) (-1163 |#1|))) (-15 -2615 ((-1163 |#1|) (-1163 |#1|))) (-15 -2627 ((-1163 |#1|) (-1163 |#1|))) (-15 -2638 ((-1163 |#1|) (-1163 |#1|))) (-15 -2648 ((-1163 |#1|) (-1163 |#1|))) (-15 -2658 ((-1163 |#1|) (-1163 |#1|))) (-15 -2669 ((-1163 |#1|) (-1163 |#1|))) (-15 -2680 ((-1163 |#1|) (-1163 |#1|))) (-15 -2691 ((-1163 |#1|) (-1163 |#1|))) (-15 -2701 ((-1163 |#1|) (-1163 |#1|))) (-15 -2712 ((-1163 |#1|) (-1163 |#1|))) (-15 -2725 ((-1163 |#1|) (-1163 |#1|))) (-15 -4094 ((-1163 |#1|) (-1163 |#1|))) (-15 -4106 ((-1163 |#1|) (-1163 |#1|))) (-15 -4119 ((-1163 |#1|) (-1163 |#1|))) (-15 -4131 ((-1163 |#1|) (-1163 |#1|))) (-15 -4144 ((-1163 |#1|) (-1163 |#1|))) (-15 -1470 ((-1163 |#1|) (-1163 |#1|)))) (-38 (-412 (-569)))) (T -1168))
+((-1470 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2669 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4367 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))))
+(-10 -7 (-15 -4367 ((-1163 |#1|) (-1163 |#1|))) (-15 -2616 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2534 ((-1163 |#1|) (-1163 |#1|))) (-15 -2545 ((-1163 |#1|) (-1163 |#1|))) (-15 -2556 ((-1163 |#1|) (-1163 |#1|))) (-15 -2566 ((-1163 |#1|) (-1163 |#1|))) (-15 -2576 ((-1163 |#1|) (-1163 |#1|))) (-15 -2588 ((-1163 |#1|) (-1163 |#1|))) (-15 -2601 ((-1163 |#1|) (-1163 |#1|))) (-15 -2615 ((-1163 |#1|) (-1163 |#1|))) (-15 -2627 ((-1163 |#1|) (-1163 |#1|))) (-15 -2638 ((-1163 |#1|) (-1163 |#1|))) (-15 -2648 ((-1163 |#1|) (-1163 |#1|))) (-15 -2658 ((-1163 |#1|) (-1163 |#1|))) (-15 -2669 ((-1163 |#1|) (-1163 |#1|))) (-15 -2680 ((-1163 |#1|) (-1163 |#1|))) (-15 -2691 ((-1163 |#1|) (-1163 |#1|))) (-15 -2701 ((-1163 |#1|) (-1163 |#1|))) (-15 -2712 ((-1163 |#1|) (-1163 |#1|))) (-15 -2725 ((-1163 |#1|) (-1163 |#1|))) (-15 -4094 ((-1163 |#1|) (-1163 |#1|))) (-15 -4106 ((-1163 |#1|) (-1163 |#1|))) (-15 -4119 ((-1163 |#1|) (-1163 |#1|))) (-15 -4131 ((-1163 |#1|) (-1163 |#1|))) (-15 -4144 ((-1163 |#1|) (-1163 |#1|))) (-15 -1470 ((-1163 |#1|) (-1163 |#1|))))
+((-2691 (((-1163 |#1|) (-1163 |#1|)) 107)) (-2556 (((-1163 |#1|) (-1163 |#1|)) 61)) (-3528 (((-2 (|:| -2669 (-1163 |#1|)) (|:| -2680 (-1163 |#1|))) (-1163 |#1|)) 103)) (-2669 (((-1163 |#1|) (-1163 |#1|)) 104)) (-3518 (((-2 (|:| -2534 (-1163 |#1|)) (|:| -2545 (-1163 |#1|))) (-1163 |#1|)) 54)) (-2534 (((-1163 |#1|) (-1163 |#1|)) 55)) (-2712 (((-1163 |#1|) (-1163 |#1|)) 109)) (-2576 (((-1163 |#1|) (-1163 |#1|)) 68)) (-2616 (((-1163 |#1|) (-1163 |#1|)) 40)) (-4367 (((-1163 |#1|) (-1163 |#1|)) 37)) (-2725 (((-1163 |#1|) (-1163 |#1|)) 110)) (-2588 (((-1163 |#1|) (-1163 |#1|)) 69)) (-2701 (((-1163 |#1|) (-1163 |#1|)) 108)) (-2566 (((-1163 |#1|) (-1163 |#1|)) 64)) (-2680 (((-1163 |#1|) (-1163 |#1|)) 105)) (-2545 (((-1163 |#1|) (-1163 |#1|)) 56)) (-4119 (((-1163 |#1|) (-1163 |#1|)) 118)) (-2627 (((-1163 |#1|) (-1163 |#1|)) 93)) (-4094 (((-1163 |#1|) (-1163 |#1|)) 112)) (-2601 (((-1163 |#1|) (-1163 |#1|)) 89)) (-4144 (((-1163 |#1|) (-1163 |#1|)) 122)) (-2648 (((-1163 |#1|) (-1163 |#1|)) 97)) (-1470 (((-1163 |#1|) (-1163 |#1|)) 124)) (-2658 (((-1163 |#1|) (-1163 |#1|)) 99)) (-4131 (((-1163 |#1|) (-1163 |#1|)) 120)) (-2638 (((-1163 |#1|) (-1163 |#1|)) 95)) (-4106 (((-1163 |#1|) (-1163 |#1|)) 114)) (-2615 (((-1163 |#1|) (-1163 |#1|)) 91)) (** (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 41)))
+(((-1169 |#1|) (-10 -7 (-15 -4367 ((-1163 |#1|) (-1163 |#1|))) (-15 -2616 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3518 ((-2 (|:| -2534 (-1163 |#1|)) (|:| -2545 (-1163 |#1|))) (-1163 |#1|))) (-15 -2534 ((-1163 |#1|) (-1163 |#1|))) (-15 -2545 ((-1163 |#1|) (-1163 |#1|))) (-15 -2556 ((-1163 |#1|) (-1163 |#1|))) (-15 -2566 ((-1163 |#1|) (-1163 |#1|))) (-15 -2576 ((-1163 |#1|) (-1163 |#1|))) (-15 -2588 ((-1163 |#1|) (-1163 |#1|))) (-15 -2601 ((-1163 |#1|) (-1163 |#1|))) (-15 -2615 ((-1163 |#1|) (-1163 |#1|))) (-15 -2627 ((-1163 |#1|) (-1163 |#1|))) (-15 -2638 ((-1163 |#1|) (-1163 |#1|))) (-15 -2648 ((-1163 |#1|) (-1163 |#1|))) (-15 -2658 ((-1163 |#1|) (-1163 |#1|))) (-15 -3528 ((-2 (|:| -2669 (-1163 |#1|)) (|:| -2680 (-1163 |#1|))) (-1163 |#1|))) (-15 -2669 ((-1163 |#1|) (-1163 |#1|))) (-15 -2680 ((-1163 |#1|) (-1163 |#1|))) (-15 -2691 ((-1163 |#1|) (-1163 |#1|))) (-15 -2701 ((-1163 |#1|) (-1163 |#1|))) (-15 -2712 ((-1163 |#1|) (-1163 |#1|))) (-15 -2725 ((-1163 |#1|) (-1163 |#1|))) (-15 -4094 ((-1163 |#1|) (-1163 |#1|))) (-15 -4106 ((-1163 |#1|) (-1163 |#1|))) (-15 -4119 ((-1163 |#1|) (-1163 |#1|))) (-15 -4131 ((-1163 |#1|) (-1163 |#1|))) (-15 -4144 ((-1163 |#1|) (-1163 |#1|))) (-15 -1470 ((-1163 |#1|) (-1163 |#1|)))) (-38 (-412 (-569)))) (T -1169))
+((-1470 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2669 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-3528 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2669 (-1163 *4)) (|:| -2680 (-1163 *4)))) (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2534 (-1163 *4)) (|:| -2545 (-1163 *4)))) (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4367 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))))
+(-10 -7 (-15 -4367 ((-1163 |#1|) (-1163 |#1|))) (-15 -2616 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3518 ((-2 (|:| -2534 (-1163 |#1|)) (|:| -2545 (-1163 |#1|))) (-1163 |#1|))) (-15 -2534 ((-1163 |#1|) (-1163 |#1|))) (-15 -2545 ((-1163 |#1|) (-1163 |#1|))) (-15 -2556 ((-1163 |#1|) (-1163 |#1|))) (-15 -2566 ((-1163 |#1|) (-1163 |#1|))) (-15 -2576 ((-1163 |#1|) (-1163 |#1|))) (-15 -2588 ((-1163 |#1|) (-1163 |#1|))) (-15 -2601 ((-1163 |#1|) (-1163 |#1|))) (-15 -2615 ((-1163 |#1|) (-1163 |#1|))) (-15 -2627 ((-1163 |#1|) (-1163 |#1|))) (-15 -2638 ((-1163 |#1|) (-1163 |#1|))) (-15 -2648 ((-1163 |#1|) (-1163 |#1|))) (-15 -2658 ((-1163 |#1|) (-1163 |#1|))) (-15 -3528 ((-2 (|:| -2669 (-1163 |#1|)) (|:| -2680 (-1163 |#1|))) (-1163 |#1|))) (-15 -2669 ((-1163 |#1|) (-1163 |#1|))) (-15 -2680 ((-1163 |#1|) (-1163 |#1|))) (-15 -2691 ((-1163 |#1|) (-1163 |#1|))) (-15 -2701 ((-1163 |#1|) (-1163 |#1|))) (-15 -2712 ((-1163 |#1|) (-1163 |#1|))) (-15 -2725 ((-1163 |#1|) (-1163 |#1|))) (-15 -4094 ((-1163 |#1|) (-1163 |#1|))) (-15 -4106 ((-1163 |#1|) (-1163 |#1|))) (-15 -4119 ((-1163 |#1|) (-1163 |#1|))) (-15 -4131 ((-1163 |#1|) (-1163 |#1|))) (-15 -4144 ((-1163 |#1|) (-1163 |#1|))) (-15 -1470 ((-1163 |#1|) (-1163 |#1|))))
+((-3541 (((-964 |#2|) |#2| |#2|) 50)) (-3556 ((|#2| |#2| |#1|) 19 (|has| |#1| (-310)))))
+(((-1170 |#1| |#2|) (-10 -7 (-15 -3541 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -3556 (|#2| |#2| |#1|)) |%noBranch|)) (-561) (-1249 |#1|)) (T -1170))
+((-3556 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1249 *3)))) (-3541 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3541 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -3556 (|#2| |#2| |#1|)) |%noBranch|))
+((-2383 (((-112) $ $) NIL)) (-3634 (($ $ (-649 (-776))) 81)) (-2675 (($) 33)) (-2474 (($ $) 51)) (-4108 (((-649 $) $) 60)) (-2535 (((-112) $) 19)) (-3568 (((-649 (-949 |#2|)) $) 88)) (-3577 (($ $) 82)) (-2482 (((-776) $) 47)) (-4275 (($) 32)) (-3667 (($ $ (-649 (-776)) (-949 |#2|)) 74) (($ $ (-649 (-776)) (-776)) 75) (($ $ (-776) (-949 |#2|)) 77)) (-3719 (($ $ $) 57) (($ (-649 $)) 59)) (-2412 (((-776) $) 89)) (-2546 (((-112) $) 15)) (-2050 (((-1165) $) NIL)) (-2524 (((-112) $) 22)) (-3461 (((-1126) $) NIL)) (-3587 (((-172) $) 87)) (-3622 (((-949 |#2|) $) 83)) (-3611 (((-776) $) 84)) (-3597 (((-112) $) 86)) (-3646 (($ $ (-649 (-776)) (-172)) 80)) (-3732 (($ $) 52)) (-2388 (((-867) $) 100)) (-3655 (($ $ (-649 (-776)) (-112)) 79)) (-2492 (((-649 $) $) 11)) (-2502 (($ $ (-776)) 46)) (-2512 (($ $) 43)) (-2040 (((-112) $ $) NIL)) (-3682 (($ $ $ (-949 |#2|) (-776)) 70)) (-3693 (($ $ (-949 |#2|)) 69)) (-3703 (($ $ (-649 (-776)) (-949 |#2|)) 66) (($ $ (-649 (-776)) (-776)) 72) (((-776) $ (-949 |#2|)) 73)) (-2853 (((-112) $ $) 94)))
+(((-1171 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -2546 ((-112) $)) (-15 -2535 ((-112) $)) (-15 -2524 ((-112) $)) (-15 -4275 ($)) (-15 -2675 ($)) (-15 -2512 ($ $)) (-15 -2502 ($ $ (-776))) (-15 -2492 ((-649 $) $)) (-15 -2482 ((-776) $)) (-15 -2474 ($ $)) (-15 -3732 ($ $)) (-15 -3719 ($ $ $)) (-15 -3719 ($ (-649 $))) (-15 -4108 ((-649 $) $)) (-15 -3703 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -3693 ($ $ (-949 |#2|))) (-15 -3682 ($ $ $ (-949 |#2|) (-776))) (-15 -3667 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -3703 ($ $ (-649 (-776)) (-776))) (-15 -3667 ($ $ (-649 (-776)) (-776))) (-15 -3703 ((-776) $ (-949 |#2|))) (-15 -3667 ($ $ (-776) (-949 |#2|))) (-15 -3655 ($ $ (-649 (-776)) (-112))) (-15 -3646 ($ $ (-649 (-776)) (-172))) (-15 -3634 ($ $ (-649 (-776)))) (-15 -3622 ((-949 |#2|) $)) (-15 -3611 ((-776) $)) (-15 -3597 ((-112) $)) (-15 -3587 ((-172) $)) (-15 -2412 ((-776) $)) (-15 -3577 ($ $)) (-15 -3568 ((-649 (-949 |#2|)) $)))) (-927) (-1055)) (T -1171))
+((-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-4275 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2675 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2512 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3703 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-3693 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)))) (-3682 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-3667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-3703 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-3667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-3667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-3655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-3646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-3634 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))))
+(-13 (-1106) (-10 -8 (-15 -2546 ((-112) $)) (-15 -2535 ((-112) $)) (-15 -2524 ((-112) $)) (-15 -4275 ($)) (-15 -2675 ($)) (-15 -2512 ($ $)) (-15 -2502 ($ $ (-776))) (-15 -2492 ((-649 $) $)) (-15 -2482 ((-776) $)) (-15 -2474 ($ $)) (-15 -3732 ($ $)) (-15 -3719 ($ $ $)) (-15 -3719 ($ (-649 $))) (-15 -4108 ((-649 $) $)) (-15 -3703 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -3693 ($ $ (-949 |#2|))) (-15 -3682 ($ $ $ (-949 |#2|) (-776))) (-15 -3667 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -3703 ($ $ (-649 (-776)) (-776))) (-15 -3667 ($ $ (-649 (-776)) (-776))) (-15 -3703 ((-776) $ (-949 |#2|))) (-15 -3667 ($ $ (-776) (-949 |#2|))) (-15 -3655 ($ $ (-649 (-776)) (-112))) (-15 -3646 ($ $ (-649 (-776)) (-172))) (-15 -3634 ($ $ (-649 (-776)))) (-15 -3622 ((-949 |#2|) $)) (-15 -3611 ((-776) $)) (-15 -3597 ((-112) $)) (-15 -3587 ((-172) $)) (-15 -2412 ((-776) $)) (-15 -3577 ($ $)) (-15 -3568 ((-649 (-949 |#2|)) $))))
+((-2383 (((-112) $ $) NIL)) (-2076 ((|#2| $) 11)) (-2065 ((|#1| $) 10)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-3709 (($ |#1| |#2|) 9)) (-2388 (((-867) $) 16)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1172 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -3709 ($ |#1| |#2|)) (-15 -2065 (|#1| $)) (-15 -2076 (|#2| $)))) (-1106) (-1106)) (T -1172))
+((-3709 (*1 *1 *2 *3) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-2065 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1106)))) (-2076 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1106)))))
+(-13 (-1106) (-10 -8 (-15 -3709 ($ |#1| |#2|)) (-15 -2065 (|#1| $)) (-15 -2076 (|#2| $))))
+((-2383 (((-112) $ $) NIL)) (-3618 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1173) (-13 (-1089) (-10 -8 (-15 -3618 ((-1141) $))))) (T -1173))
+((-3618 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
+(-13 (-1089) (-10 -8 (-15 -3618 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 11)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2586 (($ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2564 (((-112) $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4305 (($ $ (-569)) NIL) (($ $ (-569) (-569)) 75)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-3911 (((-1181 |#1| |#2| |#3|) $) 42)) (-3887 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 32)) (-1729 (((-1181 |#1| |#2| |#3|) $) 33)) (-2691 (($ $) 116 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) 112 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-2211 (((-569) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1183) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3043 (((-1181 |#1| |#2| |#3|) $) 140) (((-1183) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3899 (($ $) 37) (($ (-569) $) 38)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-1181 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-1181 |#1| |#2| |#3|))) (|:| |vec| (-1273 (-1181 |#1| |#2| |#3|)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3351 (((-3 $ "failed") $) 54)) (-3875 (((-412 (-958 |#1|)) $ (-569)) 74 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 76 (|has| |#1| (-561)))) (-3295 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2769 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2755 (((-112) $) 28)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-4315 (((-569) $) NIL) (((-569) $ (-569)) 26)) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL (|has| |#1| (-367)))) (-4378 (((-1181 |#1| |#2| |#3|) $) 44 (|has| |#1| (-367)))) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3177 (((-3 $ "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))))) (-2778 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4352 (($ $ (-927)) NIL)) (-3324 (($ (-1 |#1| (-569)) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-569)) 19) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-2095 (($ $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2406 (($ $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2616 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1741 (($ (-569) (-1181 |#1| |#2| |#3|)) 36)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) 79 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3288 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3312 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-569)) 158)) (-2374 (((-3 $ "failed") $ $) 55 (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1181 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1181 |#1| |#2| |#3|)) (-649 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-569)) NIL) (($ $ $) 61 (|has| (-569) (-1118))) (($ $ (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 57) (($ $ (-776)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 56 (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1440 (($ $) NIL (|has| |#1| (-367)))) (-4390 (((-1181 |#1| |#2| |#3|) $) 46 (|has| |#1| (-367)))) (-2091 (((-569) $) 43)) (-2725 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 118 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-1384 (((-541) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) 162) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1181 |#1| |#2| |#3|)) 30) (($ (-1269 |#2|)) 25) (($ (-1183)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-1503 ((|#1| $ (-569)) 77)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 12)) (-3323 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4094 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 110 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 106 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-3999 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1786 (($) 21 T CONST)) (-1796 (($) 16 T CONST)) (-2749 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2904 (((-112) $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2882 (((-112) $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2872 (((-112) $ $) NIL (-2718 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 49 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) 50 (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) 60) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) 83 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1181 |#1| |#2| |#3|)) 48 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) $) 47 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1174 |#1| |#2| |#3|) (-13 (-1235 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1174))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1235 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-3167 ((|#2| |#2| (-1098 |#2|)) 26) ((|#2| |#2| (-1183)) 28)))
+(((-1175 |#1| |#2|) (-10 -7 (-15 -3167 (|#2| |#2| (-1183))) (-15 -3167 (|#2| |#2| (-1098 |#2|)))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-435 |#1|) (-160) (-27) (-1208))) (T -1175))
+((-3167 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1175 *4 *2)))) (-3167 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208))))))
+(-10 -7 (-15 -3167 (|#2| |#2| (-1183))) (-15 -3167 (|#2| |#2| (-1098 |#2|))))
+((-3167 (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|)))) 31) (((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|))) 44) (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183)) 33) (((-412 (-958 |#1|)) (-958 |#1|) (-1183)) 36)))
+(((-1176 |#1|) (-10 -7 (-15 -3167 ((-412 (-958 |#1|)) (-958 |#1|) (-1183))) (-15 -3167 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -3167 ((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|)))) (-15 -3167 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|)))))) (-13 (-561) (-1044 (-569)))) (T -1176))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 *3 (-319 *5))) (-5 *1 (-1176 *5)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-958 *5))) (-5 *3 (-958 *5)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 *3)) (-5 *1 (-1176 *5)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-412 (-958 *5))))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-958 *5)))))
+(-10 -7 (-15 -3167 ((-412 (-958 |#1|)) (-958 |#1|) (-1183))) (-15 -3167 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -3167 ((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|)))) (-15 -3167 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|))))))
+((-1324 (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 13)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -1324 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)))) (-1055) (-1055)) (T -1177))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6)))))
+(-10 -7 (-15 -1324 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))))
+((-2207 (((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))) 51)) (-3699 (((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))) 52)))
+(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))) (-15 -2207 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))))) (-798) (-855) (-457) (-955 |#3| |#1| |#2|)) (T -1178))
+((-2207 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7)))) (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7))))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7)))) (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7))))))
+(-10 -7 (-15 -3699 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))) (-15 -2207 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))))
+((-2383 (((-112) $ $) 171)) (-2789 (((-112) $) 43)) (-4284 (((-1273 |#1|) $ (-776)) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-4258 (($ (-1179 |#1|)) NIL)) (-3663 (((-1179 $) $ (-1088)) 82) (((-1179 |#1|) $) 71)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) 164 (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4156 (($ $ $) 158 (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) 95 (|has| |#1| (-915)))) (-4332 (($ $) NIL (|has| |#1| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 115 (|has| |#1| (-915)))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-4213 (($ $ (-776)) 61)) (-4201 (($ $ (-776)) 63)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3043 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL)) (-4168 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) 80)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-4190 (($ $ $) 131)) (-4133 (($ $ $) NIL (|has| |#1| (-561)))) (-4121 (((-2 (|:| -1406 |#1|) (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3556 (($ $) 165 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-776) $) 69)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2557 (((-867) $ (-867)) 148)) (-4315 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2861 (((-112) $) 48)) (-2933 (((-776) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-3851 (($ (-1179 |#1|) (-1088)) 73) (($ (-1179 $) (-1088)) 89)) (-4352 (($ $ (-776)) 51)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) 87) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1088)) NIL) (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 153)) (-3304 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1491 (($ (-1 (-776) (-776)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-4270 (((-1179 |#1|) $) NIL)) (-4212 (((-3 (-1088) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) 76)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2050 (((-1165) $) NIL)) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) 60)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1088)) (|:| -2777 (-776))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) NIL (|has| |#1| (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) 50)) (-1794 ((|#1| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 103 (|has| |#1| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 167 (|has| |#1| (-457)))) (-3957 (($ $ (-776) |#1| $) 123)) (-1515 (((-423 (-1179 $)) (-1179 $)) 101 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 100 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 108 (|has| |#1| (-915)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-4247 (((-3 $ "failed") $ (-776)) 54)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 172 (|has| |#1| (-367)))) (-4180 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-3430 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2091 (((-776) $) 78) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) 162 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-4146 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-2388 (((-867) $) 149) (($ (-569)) NIL) (($ |#1|) 77) (($ (-1088)) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) 41 (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 17 T CONST)) (-1796 (($) 19 T CONST)) (-2749 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2853 (((-112) $ $) 120)) (-2956 (($ $ |#1|) 173 (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 90)) (** (($ $ (-927)) 14) (($ $ (-776)) 12)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1179 |#1|) (-13 (-1249 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-867))) (-15 -3957 ($ $ (-776) |#1| $)))) (-1055)) (T -1179))
+((-2557 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))) (-3957 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))))
+(-13 (-1249 |#1|) (-10 -8 (-15 -2557 ((-867) $ (-867))) (-15 -3957 ($ $ (-776) |#1| $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 11)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 36)) (-3043 (((-1174 |#1| |#2| |#3|) $) NIL) (((-1181 |#1| |#2| |#3|) $) NIL)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-4382 (((-412 (-569)) $) 59)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-1754 (($ (-412 (-569)) (-1174 |#1| |#2| |#3|)) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-412 (-569))) 20) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4371 (((-1174 |#1| |#2| |#3|) $) 41)) (-4360 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) NIL)) (-1741 (((-1174 |#1| |#2| |#3|) $) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-2091 (((-412 (-569)) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) 62) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1174 |#1| |#2| |#3|)) 30) (($ (-1181 |#1| |#2| |#3|)) 31) (($ (-1269 |#2|)) 26) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 12)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 22 T CONST)) (-1796 (($) 16 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 24)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1180 |#1| |#2| |#3|) (-13 (-1256 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1180))
+((-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1256 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 129)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 119)) (-3301 (((-1246 |#2| |#1|) $ (-776)) 69)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-776)) 85) (($ $ (-776) (-776)) 82)) (-4324 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 105)) (-2691 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) 169 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 118) (($ (-1163 |#1|)) 113)) (-2712 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) 25)) (-3335 (($ $) 28)) (-2445 (((-958 |#1|) $ (-776)) 81) (((-958 |#1|) $ (-776) (-776)) 83)) (-2755 (((-112) $) 124)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $) 126) (((-776) $ (-776)) 128)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) NIL)) (-3324 (($ (-1 |#1| (-569)) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) 13) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3313 (($ $) 133 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 134 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-4295 (($ $ (-776)) 15)) (-2374 (((-3 $ "failed") $ $) 26 (|has| |#1| (-561)))) (-4367 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1852 ((|#1| $ (-776)) 122) (($ $ $) 132 (|has| (-776) (-1118)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 31)) (-2091 (((-776) $) NIL)) (-2725 (($ $) 179 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) 206) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1246 |#2| |#1|)) 55) (($ (-1269 |#2|)) 36)) (-3346 (((-1163 |#1|) $) 101)) (-1503 ((|#1| $ (-776)) 121)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 58)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 161 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) 181 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 165 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-776)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 167 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 159 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 17 T CONST)) (-1796 (($) 20 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) 198)) (-2935 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 203 (|has| |#1| (-367))) (($ $ $) 138 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 141 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1181 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -2388 ($ (-1246 |#2| |#1|))) (-15 -3301 ((-1246 |#2| |#1|) $ (-776))) (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1181))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1181 *3 *4 *5)))) (-3301 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1181 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1264 |#1|) (-10 -8 (-15 -2388 ($ (-1246 |#2| |#1|))) (-15 -3301 ((-1246 |#2| |#1|) $ (-776))) (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-2388 (((-867) $) 33) (($ (-1183)) 35)) (-2718 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 46)) (-2706 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 39) (($ $) 40)) (-2617 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 41)) (-2603 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 43)) (-2590 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 42)) (-2578 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 44)) (-2071 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 45)))
+(((-1182) (-13 (-618 (-867)) (-10 -8 (-15 -2388 ($ (-1183))) (-15 -2617 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2590 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2603 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2578 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2718 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2071 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2706 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2706 ($ $))))) (T -1182))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-2617 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2590 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2603 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2578 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2718 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2071 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2706 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2706 (*1 *1 *1) (-5 *1 (-1182))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2388 ($ (-1183))) (-15 -2617 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2590 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2603 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2578 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2718 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2071 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2706 ($ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2706 ($ $))))
+((-2383 (((-112) $ $) NIL)) (-2577 (($ $ (-649 (-867))) 62)) (-2589 (($ $ (-649 (-867))) 60)) (-3279 (((-1165) $) 101)) (-3760 (((-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867)))) $) 108)) (-2602 (((-112) $) 23)) (-3677 (($ $ (-649 (-649 (-867)))) 59) (($ $ (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867))))) 99)) (-3863 (($) 163 T CONST)) (-2612 (((-1278)) 135)) (-3032 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 69) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 76)) (-4275 (($) 122) (($ $) 131)) (-3458 (($ $) 100)) (-2095 (($ $ $) NIL)) (-2406 (($ $ $) NIL)) (-3271 (((-649 $) $) 136)) (-2050 (((-1165) $) 114)) (-3461 (((-1126) $) NIL)) (-1852 (($ $ (-649 (-867))) 61)) (-1384 (((-541) $) 48) (((-1183) $) 49) (((-898 (-569)) $) 80) (((-898 (-383)) $) 78)) (-2388 (((-867) $) 55) (($ (-1165)) 50)) (-2040 (((-112) $ $) NIL)) (-2567 (($ $ (-649 (-867))) 63)) (-3218 (((-1165) $) 34) (((-1165) $ (-112)) 35) (((-1278) (-827) $) 36) (((-1278) (-827) $ (-112)) 37)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 51)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 52)))
+(((-1183) (-13 (-855) (-619 (-541)) (-833) (-619 (-1183)) (-621 (-1165)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4275 ($)) (-15 -4275 ($ $)) (-15 -2612 ((-1278))) (-15 -3458 ($ $)) (-15 -2602 ((-112) $)) (-15 -3760 ((-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -3677 ($ $ (-649 (-649 (-867))))) (-15 -3677 ($ $ (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2589 ($ $ (-649 (-867)))) (-15 -2577 ($ $ (-649 (-867)))) (-15 -2567 ($ $ (-649 (-867)))) (-15 -1852 ($ $ (-649 (-867)))) (-15 -3279 ((-1165) $)) (-15 -3271 ((-649 $) $)) (-15 -3863 ($) -3600)))) (T -1183))
+((-4275 (*1 *1) (-5 *1 (-1183))) (-4275 (*1 *1 *1) (-5 *1 (-1183))) (-2612 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))) (-3458 (*1 *1 *1) (-5 *1 (-1183))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1183)))) (-3677 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1183)))) (-3677 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1183)))) (-2589 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-2577 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-2567 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1183)))) (-3863 (*1 *1) (-5 *1 (-1183))))
+(-13 (-855) (-619 (-541)) (-833) (-619 (-1183)) (-621 (-1165)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4275 ($)) (-15 -4275 ($ $)) (-15 -2612 ((-1278))) (-15 -3458 ($ $)) (-15 -2602 ((-112) $)) (-15 -3760 ((-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -3677 ($ $ (-649 (-649 (-867))))) (-15 -3677 ($ $ (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2589 ($ $ (-649 (-867)))) (-15 -2577 ($ $ (-649 (-867)))) (-15 -2567 ($ $ (-649 (-867)))) (-15 -1852 ($ $ (-649 (-867)))) (-15 -3279 ((-1165) $)) (-15 -3271 ((-649 $) $)) (-15 -3863 ($) -3600)))
+((-2626 (((-1273 |#1|) |#1| (-927)) 18) (((-1273 |#1|) (-649 |#1|)) 25)))
+(((-1184 |#1|) (-10 -7 (-15 -2626 ((-1273 |#1|) (-649 |#1|))) (-15 -2626 ((-1273 |#1|) |#1| (-927)))) (-1055)) (T -1184))
+((-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1273 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1055)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4)) (-5 *1 (-1184 *4)))))
+(-10 -7 (-15 -2626 ((-1273 |#1|) (-649 |#1|))) (-15 -2626 ((-1273 |#1|) |#1| (-927))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3043 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3556 (($ $) NIL (|has| |#1| (-457)))) (-1482 (($ $ |#1| (-977) $) NIL)) (-2861 (((-112) $) 17)) (-2933 (((-776) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-977)) NIL)) (-3304 (((-977) $) NIL)) (-1491 (($ (-1 (-977) (-977)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#1| $) NIL)) (-3957 (($ $ (-977) |#1| $) NIL (-12 (|has| (-977) (-131)) (|has| |#1| (-561))))) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-2091 (((-977) $) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2718 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ (-977)) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1786 (($) 11 T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 21)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1185 |#1|) (-13 (-329 |#1| (-977)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-977) (-131)) (-15 -3957 ($ $ (-977) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055)) (T -1185))
+((-3957 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
+(-13 (-329 |#1| (-977)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-977) (-131)) (-15 -3957 ($ $ (-977) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
+((-2637 (((-1187) (-1183) $) 25)) (-2746 (($) 29)) (-2657 (((-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-1183) $) 22)) (-2679 (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")) $) 41) (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) 42) (((-1278) (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) 43)) (-2756 (((-1278) (-1183)) 58)) (-2668 (((-1278) (-1183) $) 55) (((-1278) (-1183)) 56) (((-1278)) 57)) (-2724 (((-1278) (-1183)) 37)) (-2700 (((-1183)) 36)) (-2825 (($) 34)) (-2663 (((-442) (-1183) (-442) (-1183) $) 45) (((-442) (-649 (-1183)) (-442) (-1183) $) 49) (((-442) (-1183) (-442)) 46) (((-442) (-1183) (-442) (-1183)) 50)) (-2711 (((-1183)) 35)) (-2388 (((-867) $) 28)) (-2735 (((-1278)) 30) (((-1278) (-1183)) 33)) (-2647 (((-649 (-1183)) (-1183) $) 24)) (-2690 (((-1278) (-1183) (-649 (-1183)) $) 38) (((-1278) (-1183) (-649 (-1183))) 39) (((-1278) (-649 (-1183))) 40)))
+(((-1186) (-13 (-618 (-867)) (-10 -8 (-15 -2746 ($)) (-15 -2735 ((-1278))) (-15 -2735 ((-1278) (-1183))) (-15 -2663 ((-442) (-1183) (-442) (-1183) $)) (-15 -2663 ((-442) (-649 (-1183)) (-442) (-1183) $)) (-15 -2663 ((-442) (-1183) (-442))) (-15 -2663 ((-442) (-1183) (-442) (-1183))) (-15 -2724 ((-1278) (-1183))) (-15 -2711 ((-1183))) (-15 -2700 ((-1183))) (-15 -2690 ((-1278) (-1183) (-649 (-1183)) $)) (-15 -2690 ((-1278) (-1183) (-649 (-1183)))) (-15 -2690 ((-1278) (-649 (-1183)))) (-15 -2679 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")) $)) (-15 -2679 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")))) (-15 -2679 ((-1278) (-3 (|:| |fst| (-439)) (|:| -2513 "void")))) (-15 -2668 ((-1278) (-1183) $)) (-15 -2668 ((-1278) (-1183))) (-15 -2668 ((-1278))) (-15 -2756 ((-1278) (-1183))) (-15 -2825 ($)) (-15 -2657 ((-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-1183) $)) (-15 -2647 ((-649 (-1183)) (-1183) $)) (-15 -2637 ((-1187) (-1183) $))))) (T -1186))
+((-2746 (*1 *1) (-5 *1 (-1186))) (-2735 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2663 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-2663 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *4 (-1183)) (-5 *1 (-1186)))) (-2663 (*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-2663 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2711 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-2700 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-2690 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2679 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2668 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2668 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2825 (*1 *1) (-5 *1 (-1186))) (-2657 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *1 (-1186)))) (-2647 (*1 *2 *3 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))) (-2637 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2746 ($)) (-15 -2735 ((-1278))) (-15 -2735 ((-1278) (-1183))) (-15 -2663 ((-442) (-1183) (-442) (-1183) $)) (-15 -2663 ((-442) (-649 (-1183)) (-442) (-1183) $)) (-15 -2663 ((-442) (-1183) (-442))) (-15 -2663 ((-442) (-1183) (-442) (-1183))) (-15 -2724 ((-1278) (-1183))) (-15 -2711 ((-1183))) (-15 -2700 ((-1183))) (-15 -2690 ((-1278) (-1183) (-649 (-1183)) $)) (-15 -2690 ((-1278) (-1183) (-649 (-1183)))) (-15 -2690 ((-1278) (-649 (-1183)))) (-15 -2679 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")) $)) (-15 -2679 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2513 "void")))) (-15 -2679 ((-1278) (-3 (|:| |fst| (-439)) (|:| -2513 "void")))) (-15 -2668 ((-1278) (-1183) $)) (-15 -2668 ((-1278) (-1183))) (-15 -2668 ((-1278))) (-15 -2756 ((-1278) (-1183))) (-15 -2825 ($)) (-15 -2657 ((-3 (|:| |fst| (-439)) (|:| -2513 "void")) (-1183) $)) (-15 -2647 ((-649 (-1183)) (-1183) $)) (-15 -2637 ((-1187) (-1183) $))))
+((-2774 (((-649 (-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $) 66)) (-2795 (((-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $) 47)) (-3220 (($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-442))))) 17)) (-2756 (((-1278) $) 73)) (-2805 (((-649 (-1183)) $) 22)) (-2765 (((-1110) $) 60)) (-2814 (((-442) (-1183) $) 27)) (-2784 (((-649 (-1183)) $) 30)) (-2825 (($) 19)) (-2663 (((-442) (-649 (-1183)) (-442) $) 25) (((-442) (-1183) (-442) $) 24)) (-2388 (((-867) $) 9) (((-1196 (-1183) (-442)) $) 13)))
+(((-1187) (-13 (-618 (-867)) (-10 -8 (-15 -2388 ((-1196 (-1183) (-442)) $)) (-15 -2825 ($)) (-15 -2663 ((-442) (-649 (-1183)) (-442) $)) (-15 -2663 ((-442) (-1183) (-442) $)) (-15 -2814 ((-442) (-1183) $)) (-15 -2805 ((-649 (-1183)) $)) (-15 -2795 ((-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -2784 ((-649 (-1183)) $)) (-15 -2774 ((-649 (-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $)) (-15 -2765 ((-1110) $)) (-15 -2756 ((-1278) $)) (-15 -3220 ($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-442))))))))) (T -1187))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1183) (-442))) (-5 *1 (-1187)))) (-2825 (*1 *1) (-5 *1 (-1187))) (-2663 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *1 (-1187)))) (-2663 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1187)))) (-2814 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-442)) (-5 *1 (-1187)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))) (-2795 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) (-5 *1 (-1187)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))))) (-5 *1 (-1187)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1187)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-442))))) (-5 *1 (-1187)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2388 ((-1196 (-1183) (-442)) $)) (-15 -2825 ($)) (-15 -2663 ((-442) (-649 (-1183)) (-442) $)) (-15 -2663 ((-442) (-1183) (-442) $)) (-15 -2814 ((-442) (-1183) $)) (-15 -2805 ((-649 (-1183)) $)) (-15 -2795 ((-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -2784 ((-649 (-1183)) $)) (-15 -2774 ((-649 (-649 (-3 (|:| -3458 (-1183)) (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $)) (-15 -2765 ((-1110) $)) (-15 -2756 ((-1278) $)) (-15 -3220 ($ (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-442))))))))
+((-2383 (((-112) $ $) NIL)) (-4359 (((-3 (-569) "failed") $) 29) (((-3 (-226) "failed") $) 35) (((-3 (-511) "failed") $) 43) (((-3 (-1165) "failed") $) 47)) (-3043 (((-569) $) 30) (((-226) $) 36) (((-511) $) 40) (((-1165) $) 48)) (-2867 (((-112) $) 53)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2858 (((-3 (-569) (-226) (-511) (-1165) $) $) 55)) (-2846 (((-649 $) $) 57)) (-1384 (((-1110) $) 24) (($ (-1110)) 25)) (-2835 (((-112) $) 56)) (-2388 (((-867) $) 23) (($ (-569)) 26) (($ (-226)) 32) (($ (-511)) 38) (($ (-1165)) 44) (((-541) $) 59) (((-569) $) 31) (((-226) $) 37) (((-511) $) 41) (((-1165) $) 49)) (-1775 (((-112) $ (|[\|\|]| (-569))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-511))) 19) (((-112) $ (|[\|\|]| (-1165))) 16)) (-2877 (($ (-511) (-649 $)) 51) (($ $ (-649 $)) 52)) (-2040 (((-112) $ $) NIL)) (-3922 (((-569) $) 27) (((-226) $) 33) (((-511) $) 39) (((-1165) $) 45)) (-2853 (((-112) $ $) 7)))
+(((-1188) (-13 (-1268) (-1106) (-1044 (-569)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-541)) (-10 -8 (-15 -1384 ((-1110) $)) (-15 -1384 ($ (-1110))) (-15 -2388 ((-569) $)) (-15 -3922 ((-569) $)) (-15 -2388 ((-226) $)) (-15 -3922 ((-226) $)) (-15 -2388 ((-511) $)) (-15 -3922 ((-511) $)) (-15 -2388 ((-1165) $)) (-15 -3922 ((-1165) $)) (-15 -2877 ($ (-511) (-649 $))) (-15 -2877 ($ $ (-649 $))) (-15 -2867 ((-112) $)) (-15 -2858 ((-3 (-569) (-226) (-511) (-1165) $) $)) (-15 -2846 ((-649 $) $)) (-15 -2835 ((-112) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-569)))) (-15 -1775 ((-112) $ (|[\|\|]| (-226)))) (-15 -1775 ((-112) $ (|[\|\|]| (-511)))) (-15 -1775 ((-112) $ (|[\|\|]| (-1165))))))) (T -1188))
+((-1384 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1188)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-1188)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1188))) (-5 *1 (-1188)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1165) (-1188))) (-5 *1 (-1188)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188)))))
+(-13 (-1268) (-1106) (-1044 (-569)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-541)) (-10 -8 (-15 -1384 ((-1110) $)) (-15 -1384 ($ (-1110))) (-15 -2388 ((-569) $)) (-15 -3922 ((-569) $)) (-15 -2388 ((-226) $)) (-15 -3922 ((-226) $)) (-15 -2388 ((-511) $)) (-15 -3922 ((-511) $)) (-15 -2388 ((-1165) $)) (-15 -3922 ((-1165) $)) (-15 -2877 ($ (-511) (-649 $))) (-15 -2877 ($ $ (-649 $))) (-15 -2867 ((-112) $)) (-15 -2858 ((-3 (-569) (-226) (-511) (-1165) $) $)) (-15 -2846 ((-649 $) $)) (-15 -2835 ((-112) $)) (-15 -1775 ((-112) $ (|[\|\|]| (-569)))) (-15 -1775 ((-112) $ (|[\|\|]| (-226)))) (-15 -1775 ((-112) $ (|[\|\|]| (-511)))) (-15 -1775 ((-112) $ (|[\|\|]| (-1165))))))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) 22)) (-3863 (($) 12 T CONST)) (-3295 (($) 26)) (-2095 (($ $ $) NIL) (($) 19 T CONST)) (-2406 (($ $ $) NIL) (($) 20 T CONST)) (-3348 (((-927) $) 24)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) 23)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1189 |#1|) (-13 (-849) (-10 -8 (-15 -3863 ($) -3600))) (-927)) (T -1189))
+((-3863 (*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-927)))))
+(-13 (-849) (-10 -8 (-15 -3863 ($) -3600)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) 19 T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) 12 T CONST)) (-3278 (($ $ $) NIL) (($) 18 T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-4175 (($ $ $) 21)) (-4176 (($ $ $) 20)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1190 |#1|) (-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402))) (-925)) (T -1190))
-((-4176 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925)))) (-4175 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925)))) (-4174 (*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925)))))
-(-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) 19 T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) 12 T CONST)) (-2406 (($ $ $) NIL) (($) 18 T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1369 (($ $ $) 21)) (-1357 (($ $ $) 20)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1190 |#1|) (-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600))) (-927)) (T -1190))
+((-1357 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))) (-1369 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))) (-3863 (*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))))
+(-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 9)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 7)))
-(((-1191) (-1107)) (T -1191))
-NIL
-(-1107)
-((-4023 (((-646 (-646 (-952 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183))) 67)) (-4022 (((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|)))) 78) (((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|))) 74) (((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183)) 79) (((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183)) 73) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|))))) 106) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|)))) 105) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183))) 107) (((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|))) (-646 (-1183))) 104)))
-(((-1192 |#1|) (-10 -7 (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|))))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|)))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|))))) (-15 -4023 ((-646 (-646 (-952 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183))))) (-562)) (T -1192))
-((-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-952 *5)))) (-5 *1 (-1192 *5)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-296 (-412 (-952 *4)))))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-412 (-952 *4))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-296 (-412 (-952 *5)))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-412 (-952 *5))))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-1192 *4)) (-5 *3 (-646 (-296 (-412 (-952 *4))))))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-646 (-412 (-952 *4)))) (-4 *4 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-1192 *4)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-646 (-1183))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-1192 *5)) (-5 *3 (-646 (-296 (-412 (-952 *5))))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-1192 *5)))))
-(-10 -7 (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|)))) (-646 (-1183)))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-412 (-952 |#1|))))) (-15 -4022 ((-646 (-646 (-296 (-412 (-952 |#1|))))) (-646 (-296 (-412 (-952 |#1|)))))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|)) (-1183))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|))) (-1183))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-412 (-952 |#1|)))) (-15 -4022 ((-646 (-296 (-412 (-952 |#1|)))) (-296 (-412 (-952 |#1|))))) (-15 -4023 ((-646 (-646 (-952 |#1|))) (-646 (-412 (-952 |#1|))) (-646 (-1183)))))
-((-4028 (((-1165)) 7)) (-4025 (((-1165)) 11 T CONST)) (-4024 (((-1278) (-1165)) 13)) (-4027 (((-1165)) 8 T CONST)) (-4026 (((-130)) 10 T CONST)))
-(((-1193) (-13 (-1222) (-10 -7 (-15 -4028 ((-1165))) (-15 -4027 ((-1165)) -4402) (-15 -4026 ((-130)) -4402) (-15 -4025 ((-1165)) -4402) (-15 -4024 ((-1278) (-1165)))))) (T -1193))
-((-4028 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-4027 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-4026 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))) (-4025 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
-(-13 (-1222) (-10 -7 (-15 -4028 ((-1165))) (-15 -4027 ((-1165)) -4402) (-15 -4026 ((-130)) -4402) (-15 -4025 ((-1165)) -4402) (-15 -4024 ((-1278) (-1165)))))
-((-4032 (((-646 (-646 |#1|)) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|)))) 56)) (-4035 (((-646 (-646 (-646 |#1|))) (-646 (-646 |#1|))) 38)) (-4036 (((-1196 (-646 |#1|)) (-646 |#1|)) 49)) (-4038 (((-646 (-646 |#1|)) (-646 |#1|)) 45)) (-4041 (((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 (-646 (-646 |#1|)))) 53)) (-4040 (((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 |#1|) (-646 (-646 (-646 |#1|))) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|)))) 52)) (-4037 (((-646 (-646 |#1|)) (-646 (-646 |#1|))) 43)) (-4039 (((-646 |#1|) (-646 |#1|)) 46)) (-4031 (((-646 (-646 (-646 |#1|))) (-646 |#1|) (-646 (-646 (-646 |#1|)))) 32)) (-4030 (((-646 (-646 (-646 |#1|))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 (-646 |#1|)))) 29)) (-4029 (((-2 (|:| |fs| (-112)) (|:| |sd| (-646 |#1|)) (|:| |td| (-646 (-646 |#1|)))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 |#1|))) 24)) (-4033 (((-646 (-646 |#1|)) (-646 (-646 (-646 |#1|)))) 58)) (-4034 (((-646 (-646 |#1|)) (-1196 (-646 |#1|))) 60)))
-(((-1194 |#1|) (-10 -7 (-15 -4029 ((-2 (|:| |fs| (-112)) (|:| |sd| (-646 |#1|)) (|:| |td| (-646 (-646 |#1|)))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 |#1|)))) (-15 -4030 ((-646 (-646 (-646 |#1|))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 (-646 |#1|))))) (-15 -4031 ((-646 (-646 (-646 |#1|))) (-646 |#1|) (-646 (-646 (-646 |#1|))))) (-15 -4032 ((-646 (-646 |#1|)) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))))) (-15 -4033 ((-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))))) (-15 -4034 ((-646 (-646 |#1|)) (-1196 (-646 |#1|)))) (-15 -4035 ((-646 (-646 (-646 |#1|))) (-646 (-646 |#1|)))) (-15 -4036 ((-1196 (-646 |#1|)) (-646 |#1|))) (-15 -4037 ((-646 (-646 |#1|)) (-646 (-646 |#1|)))) (-15 -4038 ((-646 (-646 |#1|)) (-646 |#1|))) (-15 -4039 ((-646 |#1|) (-646 |#1|))) (-15 -4040 ((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 |#1|) (-646 (-646 (-646 |#1|))) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|))))) (-15 -4041 ((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 (-646 (-646 |#1|)))))) (-855)) (T -1194))
-((-4041 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-2 (|:| |f1| (-646 *4)) (|:| |f2| (-646 (-646 (-646 *4)))) (|:| |f3| (-646 (-646 *4))) (|:| |f4| (-646 (-646 (-646 *4)))))) (-5 *1 (-1194 *4)) (-5 *3 (-646 (-646 (-646 *4)))))) (-4040 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-855)) (-5 *3 (-646 *6)) (-5 *5 (-646 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-646 *5)) (|:| |f3| *5) (|:| |f4| (-646 *5)))) (-5 *1 (-1194 *6)) (-5 *4 (-646 *5)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-4038 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-646 (-646 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-646 *4)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-4036 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-1196 (-646 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-646 *4)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-646 (-646 (-646 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-646 (-646 *4))))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1196 (-646 *4))) (-4 *4 (-855)) (-5 *2 (-646 (-646 *4))) (-5 *1 (-1194 *4)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-646 (-646 (-646 *4)))) (-5 *2 (-646 (-646 *4))) (-5 *1 (-1194 *4)) (-4 *4 (-855)))) (-4032 (*1 *2 *2 *3) (-12 (-5 *3 (-646 (-646 (-646 *4)))) (-5 *2 (-646 (-646 *4))) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-4031 (*1 *2 *3 *2) (-12 (-5 *2 (-646 (-646 (-646 *4)))) (-5 *3 (-646 *4)) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-4030 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-646 (-646 (-646 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-646 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))) (-4029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-646 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-646 *4)))) (-5 *1 (-1194 *6)) (-5 *5 (-646 *4)))))
-(-10 -7 (-15 -4029 ((-2 (|:| |fs| (-112)) (|:| |sd| (-646 |#1|)) (|:| |td| (-646 (-646 |#1|)))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 |#1|)))) (-15 -4030 ((-646 (-646 (-646 |#1|))) (-1 (-112) |#1| |#1|) (-646 |#1|) (-646 (-646 (-646 |#1|))))) (-15 -4031 ((-646 (-646 (-646 |#1|))) (-646 |#1|) (-646 (-646 (-646 |#1|))))) (-15 -4032 ((-646 (-646 |#1|)) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))))) (-15 -4033 ((-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))))) (-15 -4034 ((-646 (-646 |#1|)) (-1196 (-646 |#1|)))) (-15 -4035 ((-646 (-646 (-646 |#1|))) (-646 (-646 |#1|)))) (-15 -4036 ((-1196 (-646 |#1|)) (-646 |#1|))) (-15 -4037 ((-646 (-646 |#1|)) (-646 (-646 |#1|)))) (-15 -4038 ((-646 (-646 |#1|)) (-646 |#1|))) (-15 -4039 ((-646 |#1|) (-646 |#1|))) (-15 -4040 ((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 |#1|) (-646 (-646 (-646 |#1|))) (-646 (-646 |#1|)) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|))) (-646 (-646 (-646 |#1|))))) (-15 -4041 ((-2 (|:| |f1| (-646 |#1|)) (|:| |f2| (-646 (-646 (-646 |#1|)))) (|:| |f3| (-646 (-646 |#1|))) (|:| |f4| (-646 (-646 (-646 |#1|))))) (-646 (-646 (-646 |#1|))))))
-((-2986 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4047 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2390 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#2| $ |#1| |#2|) NIL)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4174 (($) NIL T CONST)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) NIL)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-646 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2393 ((|#1| $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-2834 (((-646 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2395 (((-646 |#1|) $) NIL)) (-2396 (((-112) |#1| $) NIL)) (-3682 (((-1126) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4250 ((|#2| $) NIL (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL)) (-2391 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1573 (($) NIL) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-4396 (((-868) $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-618 (-868)))))) (-3680 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) NIL)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) NIL (-3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1195 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1107) (-1107)) (T -1195))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 9)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 7)))
+(((-1191) (-1106)) (T -1191))
+NIL
+(-1106)
+((-2899 (((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 67)) (-2888 (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|)))) 78) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|))) 74) (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183)) 79) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183)) 73) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|))))) 106) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|)))) 105) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183))) 107) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 104)))
+(((-1192 |#1|) (-10 -7 (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -2899 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))))) (-561)) (T -1192))
+((-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1192 *5)))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-297 (-412 (-958 *4)))))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-412 (-958 *4))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-297 (-412 (-958 *5)))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-412 (-958 *5))))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4))))))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5)) (-5 *3 (-649 (-297 (-412 (-958 *5))))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5)))))
+(-10 -7 (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -2888 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -2888 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -2899 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))))
+((-2940 (((-1165)) 7)) (-2909 (((-1165)) 11 T CONST)) (-3599 (((-1278) (-1165)) 13)) (-2929 (((-1165)) 8 T CONST)) (-2918 (((-130)) 10 T CONST)))
+(((-1193) (-13 (-1223) (-10 -7 (-15 -2940 ((-1165))) (-15 -2929 ((-1165)) -3600) (-15 -2918 ((-130)) -3600) (-15 -2909 ((-1165)) -3600) (-15 -3599 ((-1278) (-1165)))))) (T -1193))
+((-2940 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-2929 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-2918 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))) (-2909 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
+(-13 (-1223) (-10 -7 (-15 -2940 ((-1165))) (-15 -2929 ((-1165)) -3600) (-15 -2918 ((-130)) -3600) (-15 -2909 ((-1165)) -3600) (-15 -3599 ((-1278) (-1165)))))
+((-2981 (((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 56)) (-3013 (((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|))) 38)) (-3025 (((-1195 (-649 |#1|)) (-649 |#1|)) 49)) (-3045 (((-649 (-649 |#1|)) (-649 |#1|)) 45)) (-3451 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))) 53)) (-1937 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|)))) 52)) (-3034 (((-649 (-649 |#1|)) (-649 (-649 |#1|))) 43)) (-3059 (((-649 |#1|) (-649 |#1|)) 46)) (-2969 (((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 32)) (-2960 (((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 29)) (-2951 (((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|))) 24)) (-2989 (((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 58)) (-3000 (((-649 (-649 |#1|)) (-1195 (-649 |#1|))) 60)))
+(((-1194 |#1|) (-10 -7 (-15 -2951 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -2960 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2969 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2981 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2989 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -3000 ((-649 (-649 |#1|)) (-1195 (-649 |#1|)))) (-15 -3013 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3025 ((-1195 (-649 |#1|)) (-649 |#1|))) (-15 -3034 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -3045 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -3059 ((-649 |#1|) (-649 |#1|))) (-15 -1937 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3451 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))))) (-855)) (T -1194))
+((-3451 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4)))) (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4)))))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 (-649 *4)))))) (-1937 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5) (|:| |f4| (-649 *5)))) (-5 *1 (-1194 *6)) (-5 *4 (-649 *5)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-649 *4)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-1195 (-649 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-649 *4)))) (-3013 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 *4))))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-1195 (-649 *4))) (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)) (-4 *4 (-855)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-2969 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-2960 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))) (-2951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4)))) (-5 *1 (-1194 *6)) (-5 *5 (-649 *4)))))
+(-10 -7 (-15 -2951 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -2960 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2969 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2981 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2989 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -3000 ((-649 (-649 |#1|)) (-1195 (-649 |#1|)))) (-15 -3013 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3025 ((-1195 (-649 |#1|)) (-649 |#1|))) (-15 -3034 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -3045 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -3059 ((-649 |#1|) (-649 |#1|))) (-15 -1937 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3451 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|))))))
+((-1945 (($ (-649 (-649 |#1|))) 10)) (-1954 (((-649 (-649 |#1|)) $) 11)) (-2388 (((-867) $) 36)))
+(((-1195 |#1|) (-10 -8 (-15 -1945 ($ (-649 (-649 |#1|)))) (-15 -1954 ((-649 (-649 |#1|)) $)) (-15 -2388 ((-867) $))) (-1106)) (T -1195))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-1195 *3)))))
+(-10 -8 (-15 -1945 ($ (-649 (-649 |#1|)))) (-15 -1954 ((-649 (-649 |#1|)) $)) (-15 -2388 ((-867) $)))
+((-2383 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4261 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-1699 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#2| $ |#1| |#2|) NIL)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) NIL)) (-3863 (($) NIL T CONST)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) NIL)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) NIL)) (-1726 ((|#1| $) NIL (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-649 |#2|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1738 ((|#1| $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2715 (((-649 |#1|) $) NIL)) (-1795 (((-112) |#1| $) NIL)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-1762 (((-649 |#1|) $) NIL)) (-1773 (((-112) |#1| $) NIL)) (-3461 (((-1126) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3401 ((|#2| $) NIL (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL)) (-1713 (($ $ |#2|) NIL (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3054 (($) NIL) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) NIL (-12 (|has| $ (-6 -4443)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-2388 (((-867) $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-2040 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) NIL)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) NIL (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) NIL (-2718 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1196 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443))) (-1106) (-1106)) (T -1196))
NIL
(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4443)))
-((-4042 (($ (-646 (-646 |#1|))) 10)) (-4043 (((-646 (-646 |#1|)) $) 11)) (-4396 (((-868) $) 36)))
-(((-1196 |#1|) (-10 -8 (-15 -4042 ($ (-646 (-646 |#1|)))) (-15 -4043 ((-646 (-646 |#1|)) $)) (-15 -4396 ((-868) $))) (-1107)) (T -1196))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1196 *3)) (-4 *3 (-1107)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 *3))) (-5 *1 (-1196 *3)) (-4 *3 (-1107)))) (-4042 (*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-1196 *3)))))
-(-10 -8 (-15 -4042 ($ (-646 (-646 |#1|)))) (-15 -4043 ((-646 (-646 |#1|)) $)) (-15 -4396 ((-868) $)))
-((-4044 ((|#1| (-646 |#1|)) 49)) (-4046 ((|#1| |#1| (-551)) 24)) (-4045 (((-1177 |#1|) |#1| (-925)) 20)))
-(((-1197 |#1|) (-10 -7 (-15 -4044 (|#1| (-646 |#1|))) (-15 -4045 ((-1177 |#1|) |#1| (-925))) (-15 -4046 (|#1| |#1| (-551)))) (-367)) (T -1197))
-((-4046 (*1 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *4 (-925)) (-5 *2 (-1177 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-367)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
-(-10 -7 (-15 -4044 (|#1| (-646 |#1|))) (-15 -4045 ((-1177 |#1|) |#1| (-925))) (-15 -4046 (|#1| |#1| (-551))))
-((-4047 (($) 10) (($ (-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)))) 14)) (-3847 (($ (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2134 (((-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) 39) (((-646 |#3|) $) 41)) (-2138 (($ (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4408 (($ (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1372 (((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) 60)) (-4057 (($ (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) 16)) (-2395 (((-646 |#2|) $) 19)) (-2396 (((-112) |#2| $) 65)) (-1444 (((-3 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) "failed") (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) 64)) (-1373 (((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) 69)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2397 (((-646 |#3|) $) 43)) (-4249 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) NIL) (((-776) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) $) NIL) (((-776) |#3| $) NIL) (((-776) (-1 (-112) |#3|) $) 79)) (-4396 (((-868) $) 27)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3473 (((-112) $ $) 51)))
-(((-1198 |#1| |#2| |#3|) (-10 -8 (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -4408 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4047 (|#1| (-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))))) (-15 -4047 (|#1|)) (-15 -4408 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2138 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2134 ((-646 |#3|) |#1|)) (-15 -2135 ((-776) |#3| |#1|)) (-15 -4249 (|#3| |#1| |#2| |#3|)) (-15 -4249 (|#3| |#1| |#2|)) (-15 -2397 ((-646 |#3|) |#1|)) (-15 -2396 ((-112) |#2| |#1|)) (-15 -2395 ((-646 |#2|) |#1|)) (-15 -3847 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3847 (|#1| (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -3847 (|#1| (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -1444 ((-3 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) "failed") (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -1372 ((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -4057 (|#1| (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -1373 ((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -2135 ((-776) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -2134 ((-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2135 ((-776) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2136 ((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2137 ((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2138 (|#1| (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -4408 (|#1| (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|))) (-1199 |#2| |#3|) (-1107) (-1107)) (T -1198))
-NIL
-(-10 -8 (-15 -3473 ((-112) |#1| |#1|)) (-15 -4396 ((-868) |#1|)) (-15 -4408 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4047 (|#1| (-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))))) (-15 -4047 (|#1|)) (-15 -4408 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2138 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2137 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2136 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2135 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2134 ((-646 |#3|) |#1|)) (-15 -2135 ((-776) |#3| |#1|)) (-15 -4249 (|#3| |#1| |#2| |#3|)) (-15 -4249 (|#3| |#1| |#2|)) (-15 -2397 ((-646 |#3|) |#1|)) (-15 -2396 ((-112) |#2| |#1|)) (-15 -2395 ((-646 |#2|) |#1|)) (-15 -3847 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3847 (|#1| (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -3847 (|#1| (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -1444 ((-3 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) "failed") (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -1372 ((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -4057 (|#1| (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -1373 ((-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -2135 ((-776) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) |#1|)) (-15 -2134 ((-646 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2135 ((-776) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2136 ((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2137 ((-112) (-1 (-112) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -2138 (|#1| (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)) (-15 -4408 (|#1| (-1 (-2 (|:| -4310 |#2|) (|:| -2264 |#3|)) (-2 (|:| -4310 |#2|) (|:| -2264 |#3|))) |#1|)))
-((-2986 (((-112) $ $) 19 (-3978 (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-4047 (($) 73) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 72)) (-2390 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#2| $ |#1| |#2|) 74)) (-1688 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 46 (|has| $ (-6 -4443)))) (-4160 (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 56 (|has| $ (-6 -4443)))) (-2399 (((-3 |#2| #1="failed") |#1| $) 62)) (-4174 (($) 7 T CONST)) (-1443 (($ $) 59 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443))))) (-3847 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| #1#) |#1| $) 63)) (-3848 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 55 (|has| $ (-6 -4443)))) (-4292 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 57 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 53 (|has| $ (-6 -4443)))) (-1694 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4444)))) (-3535 ((|#2| $ |#1|) 89)) (-2134 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 31 (|has| $ (-6 -4443))) (((-646 |#2|) $) 80 (|has| $ (-6 -4443)))) (-4169 (((-112) $ (-776)) 9)) (-2392 ((|#1| $) 97 (|has| |#1| (-855)))) (-3026 (((-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 30 (|has| $ (-6 -4443))) (((-646 |#2|) $) 81 (|has| $ (-6 -4443)))) (-3684 (((-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443))))) (-2393 ((|#1| $) 96 (|has| |#1| (-855)))) (-2138 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 35 (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4444)))) (-4408 (($ (-1 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4166 (((-112) $ (-776)) 10)) (-3681 (((-1165) $) 22 (-3978 (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-2834 (((-646 |#1|) $) 64)) (-2400 (((-112) |#1| $) 65)) (-1372 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 40)) (-4057 (($ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 41)) (-2395 (((-646 |#1|) $) 94)) (-2396 (((-112) |#1| $) 93)) (-3682 (((-1126) $) 21 (-3978 (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-4250 ((|#2| $) 98 (|has| |#1| (-855)))) (-1444 (((-3 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) "failed") (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 52)) (-2391 (($ $ |#2|) 99 (|has| $ (-6 -4444)))) (-1373 (((-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 42)) (-2136 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 33 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))))) 27 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-296 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 26 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) 25 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 24 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)))) (($ $ (-646 |#2|) (-646 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-296 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107)))) (($ $ (-646 (-296 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1107))))) (-2397 (((-646 |#2|) $) 92)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1573 (($) 50) (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 49)) (-2135 (((-776) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| $ (-6 -4443)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4443)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 60 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))))) (-3971 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 51)) (-4396 (((-868) $) 18 (-3978 (|has| |#2| (-618 (-868))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868)))))) (-3680 (((-112) $ $) 23 (-3978 (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-1374 (($ (-646 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) 43)) (-2137 (((-112) (-1 (-112) (-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) $) 34 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (-3978 (|has| |#2| (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1199 |#1| |#2|) (-140) (-1107) (-1107)) (T -1199))
-((-4237 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))) (-4047 (*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-646 (-2 (|:| -4310 *3) (|:| -2264 *4)))) (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *1 (-1199 *3 *4)))) (-4408 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(-13 (-615 |t#1| |t#2|) (-609 |t#1| |t#2|) (-10 -8 (-15 -4237 (|t#2| $ |t#1| |t#2|)) (-15 -4047 ($)) (-15 -4047 ($ (-646 (-2 (|:| -4310 |t#1|) (|:| -2264 |t#2|))))) (-15 -4408 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #1=(-2 (|:| -4310 |#1|) (|:| -2264 |#2|))) . T) ((-102) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))) ((-618 (-868)) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-618 (-868))) (|has| |#2| (-1107)) (|has| |#2| (-618 (-868)))) ((-151 #1#) . T) ((-619 (-540)) |has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-619 (-540))) ((-230 #1#) . T) ((-236 #1#) . T) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 #1#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-494 #1#) . T) ((-494 |#2|) . T) ((-609 |#1| |#2|) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-312 (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)))) (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1107))) ((-615 |#1| |#2|) . T) ((-1107) -3978 (|has| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (-1107)) (|has| |#2| (-1107))) ((-1222) . T))
-((-4053 (((-112)) 29)) (-4050 (((-1278) (-1165)) 31)) (-4054 (((-112)) 41)) (-4051 (((-1278)) 39)) (-4049 (((-1278) (-1165) (-1165)) 30)) (-4055 (((-112)) 42)) (-4057 (((-1278) |#1| |#2|) 53)) (-4048 (((-1278)) 26)) (-4056 (((-3 |#2| "failed") |#1|) 51)) (-4052 (((-1278)) 40)))
-(((-1200 |#1| |#2|) (-10 -7 (-15 -4048 ((-1278))) (-15 -4049 ((-1278) (-1165) (-1165))) (-15 -4050 ((-1278) (-1165))) (-15 -4051 ((-1278))) (-15 -4052 ((-1278))) (-15 -4053 ((-112))) (-15 -4054 ((-112))) (-15 -4055 ((-112))) (-15 -4056 ((-3 |#2| "failed") |#1|)) (-15 -4057 ((-1278) |#1| |#2|))) (-1107) (-1107)) (T -1200))
-((-4057 (*1 *2 *3 *4) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4056 (*1 *2 *3) (|partial| -12 (-4 *2 (-1107)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1107)))) (-4055 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4054 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4053 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4052 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4051 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)))) (-4049 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)))) (-4048 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(-10 -7 (-15 -4048 ((-1278))) (-15 -4049 ((-1278) (-1165) (-1165))) (-15 -4050 ((-1278) (-1165))) (-15 -4051 ((-1278))) (-15 -4052 ((-1278))) (-15 -4053 ((-112))) (-15 -4054 ((-112))) (-15 -4055 ((-112))) (-15 -4056 ((-3 |#2| "failed") |#1|)) (-15 -4057 ((-1278) |#1| |#2|)))
-((-4059 (((-1165) (-1165)) 22)) (-4058 (((-51) (-1165)) 25)))
-(((-1201) (-10 -7 (-15 -4058 ((-51) (-1165))) (-15 -4059 ((-1165) (-1165))))) (T -1201))
-((-4059 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-1201)))))
-(-10 -7 (-15 -4058 ((-51) (-1165))) (-15 -4059 ((-1165) (-1165))))
-((-2986 (((-112) $ $) NIL)) (-4065 (((-646 (-1165)) $) 39)) (-4061 (((-646 (-1165)) $ (-646 (-1165))) 42)) (-4060 (((-646 (-1165)) $ (-646 (-1165))) 41)) (-4062 (((-646 (-1165)) $ (-646 (-1165))) 43)) (-4063 (((-646 (-1165)) $) 38)) (-4064 (($) 28)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4066 (((-646 (-1165)) $) 40)) (-4067 (((-1278) $ (-551)) 35) (((-1278) $) 36)) (-4420 (($ (-868) (-551)) 33) (($ (-868) (-551) (-868)) NIL)) (-4396 (((-868) $) 49) (($ (-868)) 32)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1202) (-13 (-1107) (-621 (-868)) (-10 -8 (-15 -4420 ($ (-868) (-551))) (-15 -4420 ($ (-868) (-551) (-868))) (-15 -4067 ((-1278) $ (-551))) (-15 -4067 ((-1278) $)) (-15 -4066 ((-646 (-1165)) $)) (-15 -4065 ((-646 (-1165)) $)) (-15 -4064 ($)) (-15 -4063 ((-646 (-1165)) $)) (-15 -4062 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4061 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4060 ((-646 (-1165)) $ (-646 (-1165))))))) (T -1202))
-((-4420 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-1202)))) (-4420 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-1202)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1202)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1202)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))) (-4064 (*1 *1) (-5 *1 (-1202))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))) (-4062 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))) (-4061 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))) (-4060 (*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(-13 (-1107) (-621 (-868)) (-10 -8 (-15 -4420 ($ (-868) (-551))) (-15 -4420 ($ (-868) (-551) (-868))) (-15 -4067 ((-1278) $ (-551))) (-15 -4067 ((-1278) $)) (-15 -4066 ((-646 (-1165)) $)) (-15 -4065 ((-646 (-1165)) $)) (-15 -4064 ($)) (-15 -4063 ((-646 (-1165)) $)) (-15 -4062 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4061 ((-646 (-1165)) $ (-646 (-1165)))) (-15 -4060 ((-646 (-1165)) $ (-646 (-1165))))))
-((-4396 (((-1202) |#1|) 11)))
-(((-1203 |#1|) (-10 -7 (-15 -4396 ((-1202) |#1|))) (-1107)) (T -1203))
-((-4396 (*1 *2 *3) (-12 (-5 *2 (-1202)) (-5 *1 (-1203 *3)) (-4 *3 (-1107)))))
-(-10 -7 (-15 -4396 ((-1202) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-4072 (((-1165) $ (-1165)) 17) (((-1165) $) 16)) (-1875 (((-1165) $ (-1165)) 15)) (-1879 (($ $ (-1165)) NIL)) (-4070 (((-3 (-1165) "failed") $) 11)) (-4071 (((-1165) $) 8)) (-4069 (((-3 (-1165) "failed") $) 12)) (-1876 (((-1165) $) 9)) (-1880 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3991 (((-393) $) NIL)) (-3681 (((-1165) $) NIL)) (-1877 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4068 (((-112) $) 21)) (-4396 (((-868) $) NIL)) (-1878 (($ $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1204) (-13 (-369 (-393) (-1165)) (-10 -8 (-15 -4072 ((-1165) $ (-1165))) (-15 -4072 ((-1165) $)) (-15 -4071 ((-1165) $)) (-15 -4070 ((-3 (-1165) "failed") $)) (-15 -4069 ((-3 (-1165) "failed") $)) (-15 -4068 ((-112) $))))) (T -1204))
-((-4072 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-4070 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-4069 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
-(-13 (-369 (-393) (-1165)) (-10 -8 (-15 -4072 ((-1165) $ (-1165))) (-15 -4072 ((-1165) $)) (-15 -4071 ((-1165) $)) (-15 -4070 ((-3 (-1165) "failed") $)) (-15 -4069 ((-3 (-1165) "failed") $)) (-15 -4068 ((-112) $))))
-((-4073 (((-3 (-551) "failed") |#1|) 19)) (-4074 (((-3 (-551) "failed") |#1|) 14)) (-4075 (((-551) (-1165)) 33)))
-(((-1205 |#1|) (-10 -7 (-15 -4073 ((-3 (-551) "failed") |#1|)) (-15 -4074 ((-3 (-551) "failed") |#1|)) (-15 -4075 ((-551) (-1165)))) (-1055)) (T -1205))
-((-4075 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-551)) (-5 *1 (-1205 *4)) (-4 *4 (-1055)))) (-4074 (*1 *2 *3) (|partial| -12 (-5 *2 (-551)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *2 (-551)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(-10 -7 (-15 -4073 ((-3 (-551) "failed") |#1|)) (-15 -4074 ((-3 (-551) "failed") |#1|)) (-15 -4075 ((-551) (-1165))))
-((-4076 (((-1139 (-226))) 9)))
-(((-1206) (-10 -7 (-15 -4076 ((-1139 (-226)))))) (T -1206))
-((-4076 (*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
-(-10 -7 (-15 -4076 ((-1139 (-226)))))
-((-4077 (($) 12)) (-3939 (($ $) 36)) (-3937 (($ $) 34)) (-3925 (($ $) 26)) (-3941 (($ $) 18)) (-3942 (($ $) 16)) (-3940 (($ $) 20)) (-3928 (($ $) 31)) (-3938 (($ $) 35)) (-3926 (($ $) 30)))
-(((-1207 |#1|) (-10 -8 (-15 -4077 (|#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3926 (|#1| |#1|))) (-1208)) (T -1207))
-NIL
-(-10 -8 (-15 -4077 (|#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)))
-((-3933 (($ $) 26)) (-4089 (($ $) 11)) (-3931 (($ $) 27)) (-4088 (($ $) 10)) (-3935 (($ $) 28)) (-4087 (($ $) 9)) (-4077 (($) 16)) (-4392 (($ $) 19)) (-4393 (($ $) 18)) (-3936 (($ $) 29)) (-4086 (($ $) 8)) (-3934 (($ $) 30)) (-4085 (($ $) 7)) (-3932 (($ $) 31)) (-4084 (($ $) 6)) (-3939 (($ $) 20)) (-3927 (($ $) 32)) (-3937 (($ $) 21)) (-3925 (($ $) 33)) (-3941 (($ $) 22)) (-3929 (($ $) 34)) (-3942 (($ $) 23)) (-3930 (($ $) 35)) (-3940 (($ $) 24)) (-3928 (($ $) 36)) (-3938 (($ $) 25)) (-3926 (($ $) 37)) (** (($ $ $) 17)))
+((-1964 ((|#1| (-649 |#1|)) 49)) (-1983 ((|#1| |#1| (-569)) 24)) (-1973 (((-1179 |#1|) |#1| (-927)) 20)))
+(((-1197 |#1|) (-10 -7 (-15 -1964 (|#1| (-649 |#1|))) (-15 -1973 ((-1179 |#1|) |#1| (-927))) (-15 -1983 (|#1| |#1| (-569)))) (-367)) (T -1197))
+((-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1179 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-367)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
+(-10 -7 (-15 -1964 (|#1| (-649 |#1|))) (-15 -1973 ((-1179 |#1|) |#1| (-927))) (-15 -1983 (|#1| |#1| (-569))))
+((-4261 (($) 10) (($ (-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)))) 14)) (-4218 (($ (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2796 (((-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) 39) (((-649 |#3|) $) 41)) (-3065 (($ (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1324 (($ (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3481 (((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) 60)) (-2086 (($ (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) 16)) (-1762 (((-649 |#2|) $) 19)) (-1773 (((-112) |#2| $) 65)) (-4316 (((-3 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) "failed") (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) 64)) (-3493 (((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) 69)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1784 (((-649 |#3|) $) 43)) (-1852 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) NIL) (((-776) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) $) NIL) (((-776) |#3| $) NIL) (((-776) (-1 (-112) |#3|) $) 79)) (-2388 (((-867) $) 27)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2853 (((-112) $ $) 51)))
+(((-1198 |#1| |#2| |#3|) (-10 -8 (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -1324 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4261 (|#1| (-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))))) (-15 -4261 (|#1|)) (-15 -1324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2796 ((-649 |#3|) |#1|)) (-15 -3469 ((-776) |#3| |#1|)) (-15 -1852 (|#3| |#1| |#2| |#3|)) (-15 -1852 (|#3| |#1| |#2|)) (-15 -1784 ((-649 |#3|) |#1|)) (-15 -1773 ((-112) |#2| |#1|)) (-15 -1762 ((-649 |#2|) |#1|)) (-15 -4218 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4218 (|#1| (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -4218 (|#1| (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -4316 ((-3 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) "failed") (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3481 ((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -2086 (|#1| (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -3493 ((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -3469 ((-776) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -2796 ((-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3469 ((-776) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3983 ((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3996 ((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3065 (|#1| (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -1324 (|#1| (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|))) (-1199 |#2| |#3|) (-1106) (-1106)) (T -1198))
+NIL
+(-10 -8 (-15 -2853 ((-112) |#1| |#1|)) (-15 -2388 ((-867) |#1|)) (-15 -1324 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4261 (|#1| (-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))))) (-15 -4261 (|#1|)) (-15 -1324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3996 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3983 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3469 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2796 ((-649 |#3|) |#1|)) (-15 -3469 ((-776) |#3| |#1|)) (-15 -1852 (|#3| |#1| |#2| |#3|)) (-15 -1852 (|#3| |#1| |#2|)) (-15 -1784 ((-649 |#3|) |#1|)) (-15 -1773 ((-112) |#2| |#1|)) (-15 -1762 ((-649 |#2|) |#1|)) (-15 -4218 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4218 (|#1| (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -4218 (|#1| (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -4316 ((-3 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) "failed") (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3481 ((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -2086 (|#1| (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -3493 ((-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -3469 ((-776) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) |#1|)) (-15 -2796 ((-649 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3469 ((-776) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3983 ((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3996 ((-112) (-1 (-112) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -3065 (|#1| (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)) (-15 -1324 (|#1| (-1 (-2 (|:| -1963 |#2|) (|:| -2179 |#3|)) (-2 (|:| -1963 |#2|) (|:| -2179 |#3|))) |#1|)))
+((-2383 (((-112) $ $) 19 (-2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-4261 (($) 73) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 72)) (-1699 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#2| $ |#1| |#2|) 74)) (-1816 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 46 (|has| $ (-6 -4443)))) (-1391 (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 56 (|has| $ (-6 -4443)))) (-2311 (((-3 |#2| "failed") |#1| $) 62)) (-3863 (($) 7 T CONST)) (-3437 (($ $) 59 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443))))) (-4218 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 48 (|has| $ (-6 -4443))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 47 (|has| $ (-6 -4443))) (((-3 |#2| "failed") |#1| $) 63)) (-1678 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 55 (|has| $ (-6 -4443)))) (-3485 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 57 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 54 (|has| $ (-6 -4443))) (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 53 (|has| $ (-6 -4443)))) (-3074 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4444)))) (-3007 ((|#2| $ |#1|) 89)) (-2796 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 31 (|has| $ (-6 -4443))) (((-649 |#2|) $) 80 (|has| $ (-6 -4443)))) (-3799 (((-112) $ (-776)) 9)) (-1726 ((|#1| $) 97 (|has| |#1| (-855)))) (-2912 (((-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 30 (|has| $ (-6 -4443))) (((-649 |#2|) $) 81 (|has| $ (-6 -4443)))) (-2060 (((-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443))))) (-1738 ((|#1| $) 96 (|has| |#1| (-855)))) (-3065 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 35 (|has| $ (-6 -4444))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4444)))) (-1324 (($ (-1 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1902 (((-112) $ (-776)) 10)) (-2050 (((-1165) $) 22 (-2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-2715 (((-649 |#1|) $) 64)) (-1795 (((-112) |#1| $) 65)) (-3481 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 40)) (-2086 (($ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 41)) (-1762 (((-649 |#1|) $) 94)) (-1773 (((-112) |#1| $) 93)) (-3461 (((-1126) $) 21 (-2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-3401 ((|#2| $) 98 (|has| |#1| (-855)))) (-4316 (((-3 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) "failed") (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 52)) (-1713 (($ $ |#2|) 99 (|has| $ (-6 -4444)))) (-3493 (((-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 42)) (-3983 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 33 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))))) 27 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 26 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) 25 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 24 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4443)) (|has| |#2| (-1106))))) (-1784 (((-649 |#2|) $) 92)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3054 (($) 50) (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 49)) (-3469 (((-776) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 32 (|has| $ (-6 -4443))) (((-776) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| $ (-6 -4443)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4443)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 60 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))))) (-3709 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 51)) (-2388 (((-867) $) 18 (-2718 (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867)))))) (-2040 (((-112) $ $) 23 (-2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-3551 (($ (-649 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) 43)) (-3996 (((-112) (-1 (-112) (-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) $) 34 (|has| $ (-6 -4443))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (-2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1199 |#1| |#2|) (-140) (-1106) (-1106)) (T -1199))
+((-3861 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-4261 (*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-4261 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1963 *3) (|:| -2179 *4)))) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *1 (-1199 *3 *4)))) (-1324 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
+(-13 (-615 |t#1| |t#2|) (-609 |t#1| |t#2|) (-10 -8 (-15 -3861 (|t#2| $ |t#1| |t#2|)) (-15 -4261 ($)) (-15 -4261 ($ (-649 (-2 (|:| -1963 |t#1|) (|:| -2179 |t#2|))))) (-15 -1324 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1963 |#1|) (|:| -2179 |#2|))) . T) ((-102) -2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-618 (-867)) -2718 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 #0#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-494 #0#) . T) ((-494 |#2|) . T) ((-609 |#1| |#2|) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-312 (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)))) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-615 |#1| |#2|) . T) ((-1106) -2718 (|has| |#2| (-1106)) (|has| (-2 (|:| -1963 |#1|) (|:| -2179 |#2|)) (-1106))) ((-1223) . T))
+((-2045 (((-112)) 29)) (-2014 (((-1278) (-1165)) 31)) (-2055 (((-112)) 41)) (-2024 (((-1278)) 39)) (-2002 (((-1278) (-1165) (-1165)) 30)) (-2066 (((-112)) 42)) (-2086 (((-1278) |#1| |#2|) 53)) (-1992 (((-1278)) 26)) (-2077 (((-3 |#2| "failed") |#1|) 51)) (-2034 (((-1278)) 40)))
+(((-1200 |#1| |#2|) (-10 -7 (-15 -1992 ((-1278))) (-15 -2002 ((-1278) (-1165) (-1165))) (-15 -2014 ((-1278) (-1165))) (-15 -2024 ((-1278))) (-15 -2034 ((-1278))) (-15 -2045 ((-112))) (-15 -2055 ((-112))) (-15 -2066 ((-112))) (-15 -2077 ((-3 |#2| "failed") |#1|)) (-15 -2086 ((-1278) |#1| |#2|))) (-1106) (-1106)) (T -1200))
+((-2086 (*1 *2 *3 *4) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2077 (*1 *2 *3) (|partial| -12 (-4 *2 (-1106)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1106)))) (-2066 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2055 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2045 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2034 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2024 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)))) (-2002 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)))) (-1992 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
+(-10 -7 (-15 -1992 ((-1278))) (-15 -2002 ((-1278) (-1165) (-1165))) (-15 -2014 ((-1278) (-1165))) (-15 -2024 ((-1278))) (-15 -2034 ((-1278))) (-15 -2045 ((-112))) (-15 -2055 ((-112))) (-15 -2066 ((-112))) (-15 -2077 ((-3 |#2| "failed") |#1|)) (-15 -2086 ((-1278) |#1| |#2|)))
+((-2106 (((-1165) (-1165)) 22)) (-2096 (((-52) (-1165)) 25)))
+(((-1201) (-10 -7 (-15 -2096 ((-52) (-1165))) (-15 -2106 ((-1165) (-1165))))) (T -1201))
+((-2106 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-1201)))))
+(-10 -7 (-15 -2096 ((-52) (-1165))) (-15 -2106 ((-1165) (-1165))))
+((-2388 (((-1203) |#1|) 11)))
+(((-1202 |#1|) (-10 -7 (-15 -2388 ((-1203) |#1|))) (-1106)) (T -1202))
+((-2388 (*1 *2 *3) (-12 (-5 *2 (-1203)) (-5 *1 (-1202 *3)) (-4 *3 (-1106)))))
+(-10 -7 (-15 -2388 ((-1203) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-3715 (((-649 (-1165)) $) 39)) (-2125 (((-649 (-1165)) $ (-649 (-1165))) 42)) (-2116 (((-649 (-1165)) $ (-649 (-1165))) 41)) (-2135 (((-649 (-1165)) $ (-649 (-1165))) 43)) (-2145 (((-649 (-1165)) $) 38)) (-4275 (($) 28)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2155 (((-649 (-1165)) $) 40)) (-4138 (((-1278) $ (-569)) 35) (((-1278) $) 36)) (-1384 (($ (-867) (-569)) 33) (($ (-867) (-569) (-867)) NIL)) (-2388 (((-867) $) 49) (($ (-867)) 32)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1203) (-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1384 ($ (-867) (-569))) (-15 -1384 ($ (-867) (-569) (-867))) (-15 -4138 ((-1278) $ (-569))) (-15 -4138 ((-1278) $)) (-15 -2155 ((-649 (-1165)) $)) (-15 -3715 ((-649 (-1165)) $)) (-15 -4275 ($)) (-15 -2145 ((-649 (-1165)) $)) (-15 -2135 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2125 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2116 ((-649 (-1165)) $ (-649 (-1165))))))) (T -1203))
+((-1384 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203)))) (-1384 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203)))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1203)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1203)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4275 (*1 *1) (-5 *1 (-1203))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-2135 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-2125 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-2116 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1384 ($ (-867) (-569))) (-15 -1384 ($ (-867) (-569) (-867))) (-15 -4138 ((-1278) $ (-569))) (-15 -4138 ((-1278) $)) (-15 -2155 ((-649 (-1165)) $)) (-15 -3715 ((-649 (-1165)) $)) (-15 -4275 ($)) (-15 -2145 ((-649 (-1165)) $)) (-15 -2135 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2125 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -2116 ((-649 (-1165)) $ (-649 (-1165))))))
+((-2383 (((-112) $ $) NIL)) (-2202 (((-1165) $ (-1165)) 17) (((-1165) $) 16)) (-2991 (((-1165) $ (-1165)) 15)) (-3035 (($ $ (-1165)) NIL)) (-2184 (((-3 (-1165) "failed") $) 11)) (-2193 (((-1165) $) 8)) (-2173 (((-3 (-1165) "failed") $) 12)) (-3001 (((-1165) $) 9)) (-1675 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3458 (((-393) $) NIL)) (-2050 (((-1165) $) NIL)) (-3014 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2164 (((-112) $) 21)) (-2388 (((-867) $) NIL)) (-3026 (($ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1204) (-13 (-368 (-393) (-1165)) (-10 -8 (-15 -2202 ((-1165) $ (-1165))) (-15 -2202 ((-1165) $)) (-15 -2193 ((-1165) $)) (-15 -2184 ((-3 (-1165) "failed") $)) (-15 -2173 ((-3 (-1165) "failed") $)) (-15 -2164 ((-112) $))))) (T -1204))
+((-2202 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2184 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2173 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
+(-13 (-368 (-393) (-1165)) (-10 -8 (-15 -2202 ((-1165) $ (-1165))) (-15 -2202 ((-1165) $)) (-15 -2193 ((-1165) $)) (-15 -2184 ((-3 (-1165) "failed") $)) (-15 -2173 ((-3 (-1165) "failed") $)) (-15 -2164 ((-112) $))))
+((-2211 (((-3 (-569) "failed") |#1|) 19)) (-2222 (((-3 (-569) "failed") |#1|) 14)) (-2232 (((-569) (-1165)) 33)))
+(((-1205 |#1|) (-10 -7 (-15 -2211 ((-3 (-569) "failed") |#1|)) (-15 -2222 ((-3 (-569) "failed") |#1|)) (-15 -2232 ((-569) (-1165)))) (-1055)) (T -1205))
+((-2232 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-1205 *4)) (-4 *4 (-1055)))) (-2222 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))) (-2211 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
+(-10 -7 (-15 -2211 ((-3 (-569) "failed") |#1|)) (-15 -2222 ((-3 (-569) "failed") |#1|)) (-15 -2232 ((-569) (-1165))))
+((-2243 (((-1139 (-226))) 9)))
+(((-1206) (-10 -7 (-15 -2243 ((-1139 (-226)))))) (T -1206))
+((-2243 (*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
+(-10 -7 (-15 -2243 ((-1139 (-226)))))
+((-4408 (($) 12)) (-4119 (($ $) 36)) (-4094 (($ $) 34)) (-2601 (($ $) 26)) (-4144 (($ $) 18)) (-1470 (($ $) 16)) (-4131 (($ $) 20)) (-2638 (($ $) 31)) (-4106 (($ $) 35)) (-2615 (($ $) 30)))
+(((-1207 |#1|) (-10 -8 (-15 -4408 (|#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2615 (|#1| |#1|))) (-1208)) (T -1207))
+NIL
+(-10 -8 (-15 -4408 (|#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)))
+((-2691 (($ $) 26)) (-2556 (($ $) 11)) (-2669 (($ $) 27)) (-2534 (($ $) 10)) (-2712 (($ $) 28)) (-2576 (($ $) 9)) (-4408 (($) 16)) (-2616 (($ $) 19)) (-4367 (($ $) 18)) (-2725 (($ $) 29)) (-2588 (($ $) 8)) (-2701 (($ $) 30)) (-2566 (($ $) 7)) (-2680 (($ $) 31)) (-2545 (($ $) 6)) (-4119 (($ $) 20)) (-2627 (($ $) 32)) (-4094 (($ $) 21)) (-2601 (($ $) 33)) (-4144 (($ $) 22)) (-2648 (($ $) 34)) (-1470 (($ $) 23)) (-2658 (($ $) 35)) (-4131 (($ $) 24)) (-2638 (($ $) 36)) (-4106 (($ $) 25)) (-2615 (($ $) 37)) (** (($ $ $) 17)))
(((-1208) (-140)) (T -1208))
-((-4077 (*1 *1) (-4 *1 (-1208))))
-(-13 (-1211) (-95) (-498) (-35) (-287) (-10 -8 (-15 -4077 ($))))
+((-4408 (*1 *1) (-4 *1 (-1208))))
+(-13 (-1211) (-95) (-498) (-35) (-287) (-10 -8 (-15 -4408 ($))))
(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-1211) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3844 ((|#1| $) 19)) (-4082 (($ |#1| (-646 $)) 28) (($ (-646 |#1|)) 35) (($ |#1|) 30)) (-1312 (((-112) $ (-776)) 71)) (-3444 ((|#1| $ |#1|) 14 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 13 (|has| $ (-6 -4444)))) (-4174 (($) NIL T CONST)) (-2134 (((-646 |#1|) $) 75 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 63)) (-3446 (((-112) $ $) 49 (|has| |#1| (-1107)))) (-4169 (((-112) $ (-776)) 61)) (-3026 (((-646 |#1|) $) 76 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2138 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 27)) (-4166 (((-112) $ (-776)) 59)) (-3449 (((-646 |#1|) $) 54)) (-3968 (((-112) $) 52)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-2136 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 105)) (-3845 (((-112) $) 9)) (-4014 (($) 10)) (-4249 ((|#1| $ #1#) NIL)) (-3448 (((-551) $ $) 48)) (-4078 (((-646 $) $) 87)) (-4079 (((-112) $ $) 108)) (-4080 (((-646 $) $) 103)) (-4081 (($ $) 104)) (-4083 (((-112) $) 82)) (-2135 (((-776) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4443))) (((-776) |#1| $) 17 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3842 (($ $) 86)) (-4396 (((-868) $) 89 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 12)) (-3447 (((-112) $ $) 39 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 37 (|has| |#1| (-1107)))) (-4407 (((-776) $) 57 (|has| $ (-6 -4443)))))
-(((-1209 |#1|) (-13 (-1016 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -4082 ($ |#1| (-646 $))) (-15 -4082 ($ (-646 |#1|))) (-15 -4082 ($ |#1|)) (-15 -4083 ((-112) $)) (-15 -4081 ($ $)) (-15 -4080 ((-646 $) $)) (-15 -4079 ((-112) $ $)) (-15 -4078 ((-646 $) $)))) (-1107)) (T -1209))
-((-4083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))) (-4082 (*1 *1 *2 *3) (-12 (-5 *3 (-646 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1107)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-1209 *3)))) (-4082 (*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1107)))) (-4081 (*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1107)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-646 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))) (-4079 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-646 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))))
-(-13 (-1016 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -4082 ($ |#1| (-646 $))) (-15 -4082 ($ (-646 |#1|))) (-15 -4082 ($ |#1|)) (-15 -4083 ((-112) $)) (-15 -4081 ($ $)) (-15 -4080 ((-646 $) $)) (-15 -4079 ((-112) $ $)) (-15 -4078 ((-646 $) $))))
-((-4089 (($ $) 15)) (-4087 (($ $) 12)) (-4086 (($ $) 10)) (-4085 (($ $) 17)))
-(((-1210 |#1|) (-10 -8 (-15 -4085 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4089 (|#1| |#1|))) (-1211)) (T -1210))
-NIL
-(-10 -8 (-15 -4085 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)))
-((-4089 (($ $) 11)) (-4088 (($ $) 10)) (-4087 (($ $) 9)) (-4086 (($ $) 8)) (-4085 (($ $) 7)) (-4084 (($ $) 6)))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2150 ((|#1| $) 19)) (-2240 (($ |#1| (-649 $)) 28) (($ (-649 |#1|)) 35) (($ |#1|) 30)) (-1610 (((-112) $ (-776)) 71)) (-1753 ((|#1| $ |#1|) 14 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 13 (|has| $ (-6 -4444)))) (-3863 (($) NIL T CONST)) (-2796 (((-649 |#1|) $) 75 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 63)) (-1774 (((-112) $ $) 49 (|has| |#1| (-1106)))) (-3799 (((-112) $ (-776)) 61)) (-2912 (((-649 |#1|) $) 76 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3065 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 27)) (-1902 (((-112) $ (-776)) 59)) (-2238 (((-649 |#1|) $) 54)) (-2546 (((-112) $) 52)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3983 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 105)) (-4196 (((-112) $) 9)) (-2825 (($) 10)) (-1852 ((|#1| $ "value") NIL)) (-1797 (((-569) $ $) 48)) (-2251 (((-649 $) $) 87)) (-2259 (((-112) $ $) 108)) (-2268 (((-649 $) $) 103)) (-2276 (($ $) 104)) (-2284 (((-112) $) 82)) (-3469 (((-776) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4443))) (((-776) |#1| $) 17 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3885 (($ $) 86)) (-2388 (((-867) $) 89 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 12)) (-1785 (((-112) $ $) 39 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 37 (|has| |#1| (-1106)))) (-2394 (((-776) $) 57 (|has| $ (-6 -4443)))))
+(((-1209 |#1|) (-13 (-1016 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2240 ($ |#1| (-649 $))) (-15 -2240 ($ (-649 |#1|))) (-15 -2240 ($ |#1|)) (-15 -2284 ((-112) $)) (-15 -2276 ($ $)) (-15 -2268 ((-649 $) $)) (-15 -2259 ((-112) $ $)) (-15 -2251 ((-649 $) $)))) (-1106)) (T -1209))
+((-2284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1209 *3)))) (-2240 (*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
+(-13 (-1016 |#1|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -2240 ($ |#1| (-649 $))) (-15 -2240 ($ (-649 |#1|))) (-15 -2240 ($ |#1|)) (-15 -2284 ((-112) $)) (-15 -2276 ($ $)) (-15 -2268 ((-649 $) $)) (-15 -2259 ((-112) $ $)) (-15 -2251 ((-649 $) $))))
+((-2556 (($ $) 15)) (-2576 (($ $) 12)) (-2588 (($ $) 10)) (-2566 (($ $) 17)))
+(((-1210 |#1|) (-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2556 (|#1| |#1|))) (-1211)) (T -1210))
+NIL
+(-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2556 (|#1| |#1|)))
+((-2556 (($ $) 11)) (-2534 (($ $) 10)) (-2576 (($ $) 9)) (-2588 (($ $) 8)) (-2566 (($ $) 7)) (-2545 (($ $) 6)))
(((-1211) (-140)) (T -1211))
-((-4089 (*1 *1 *1) (-4 *1 (-1211))) (-4088 (*1 *1 *1) (-4 *1 (-1211))) (-4087 (*1 *1 *1) (-4 *1 (-1211))) (-4086 (*1 *1 *1) (-4 *1 (-1211))) (-4085 (*1 *1 *1) (-4 *1 (-1211))) (-4084 (*1 *1 *1) (-4 *1 (-1211))))
-(-13 (-10 -8 (-15 -4084 ($ $)) (-15 -4085 ($ $)) (-15 -4086 ($ $)) (-15 -4087 ($ $)) (-15 -4088 ($ $)) (-15 -4089 ($ $))))
-((-4092 ((|#2| |#2|) 98)) (-4095 (((-112) |#2|) 29)) (-4093 ((|#2| |#2|) 33)) (-4094 ((|#2| |#2|) 35)) (-4090 ((|#2| |#2| (-1183)) 92) ((|#2| |#2|) 93)) (-4096 (((-169 |#2|) |#2|) 31)) (-4091 ((|#2| |#2| (-1183)) 94) ((|#2| |#2|) 95)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -4090 (|#2| |#2|)) (-15 -4090 (|#2| |#2| (-1183))) (-15 -4091 (|#2| |#2|)) (-15 -4091 (|#2| |#2| (-1183))) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 ((-112) |#2|)) (-15 -4096 ((-169 |#2|) |#2|))) (-13 (-457) (-1044 (-551)) (-644 (-551))) (-13 (-27) (-1208) (-426 |#1|))) (T -1212))
-((-4096 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-169 *3)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-112)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))) (-4091 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))) (-4090 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *3))))))
-(-10 -7 (-15 -4090 (|#2| |#2|)) (-15 -4090 (|#2| |#2| (-1183))) (-15 -4091 (|#2| |#2|)) (-15 -4091 (|#2| |#2| (-1183))) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 ((-112) |#2|)) (-15 -4096 ((-169 |#2|) |#2|)))
-((-4097 ((|#4| |#4| |#1|) 32)) (-4098 ((|#4| |#4| |#1|) 33)))
-(((-1213 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4097 (|#4| |#4| |#1|)) (-15 -4098 (|#4| |#4| |#1|))) (-562) (-376 |#1|) (-376 |#1|) (-691 |#1| |#2| |#3|)) (T -1213))
-((-4098 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))) (-4097 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(-10 -7 (-15 -4097 (|#4| |#4| |#1|)) (-15 -4098 (|#4| |#4| |#1|)))
-((-4116 ((|#2| |#2|) 148)) (-4118 ((|#2| |#2|) 145)) (-4115 ((|#2| |#2|) 136)) (-4117 ((|#2| |#2|) 133)) (-4114 ((|#2| |#2|) 141)) (-4113 ((|#2| |#2|) 129)) (-4102 ((|#2| |#2|) 44)) (-4101 ((|#2| |#2|) 105)) (-4099 ((|#2| |#2|) 88)) (-4112 ((|#2| |#2|) 143)) (-4111 ((|#2| |#2|) 131)) (-4124 ((|#2| |#2|) 153)) (-4122 ((|#2| |#2|) 151)) (-4123 ((|#2| |#2|) 152)) (-4121 ((|#2| |#2|) 150)) (-4100 ((|#2| |#2|) 163)) (-4125 ((|#2| |#2|) 30 (-12 (|has| |#2| (-619 (-896 |#1|))) (|has| |#2| (-892 |#1|)) (|has| |#1| (-619 (-896 |#1|))) (|has| |#1| (-892 |#1|))))) (-4103 ((|#2| |#2|) 89)) (-4104 ((|#2| |#2|) 154)) (-4413 ((|#2| |#2|) 155)) (-4110 ((|#2| |#2|) 142)) (-4109 ((|#2| |#2|) 130)) (-4108 ((|#2| |#2|) 149)) (-4120 ((|#2| |#2|) 147)) (-4107 ((|#2| |#2|) 137)) (-4119 ((|#2| |#2|) 135)) (-4106 ((|#2| |#2|) 139)) (-4105 ((|#2| |#2|) 127)))
-(((-1214 |#1| |#2|) (-10 -7 (-15 -4413 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4111 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-896 |#1|))) (IF (|has| |#2| (-619 (-896 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -4125 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-457) (-13 (-426 |#1|) (-1208))) (T -1214))
-((-4125 (*1 *2 *2) (-12 (-4 *3 (-619 (-896 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-896 *3))) (-4 *2 (-892 *3)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4123 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4122 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4115 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4111 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))) (-4413 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(-10 -7 (-15 -4413 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4111 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-896 |#1|))) (IF (|has| |#2| (-619 (-896 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -4125 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1183)) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4264 (((-952 |#1|) $ (-776)) 20) (((-952 |#1|) $ (-776) (-776)) NIL)) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $ (-1183)) NIL) (((-776) $ (-1183) (-776)) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4387 (((-112) $) NIL)) (-3312 (($ $ (-646 (-1183)) (-646 (-536 (-1183)))) NIL) (($ $ (-1183) (-536 (-1183))) NIL) (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-4262 (($ $ (-1183)) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-4126 (($ (-1 $) (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4218 (($ $ (-776)) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (($ $ (-1183) $) NIL) (($ $ (-646 (-1183)) (-646 $)) NIL) (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL)) (-4260 (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-4398 (((-536 (-1183)) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-562))) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-1183)) NIL) (($ (-952 |#1|)) NIL)) (-4127 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (((-952 |#1|) $ (-776)) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3090 (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1215 |#1|) (-13 (-745 |#1| (-1183)) (-10 -8 (-15 -4127 ((-952 |#1|) $ (-776))) (-15 -4396 ($ (-1183))) (-15 -4396 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $ (-1183) |#1|)) (-15 -4126 ($ (-1 $) (-1183) |#1|))) |%noBranch|))) (-1055)) (T -1215))
-((-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-952 *4)) (-5 *1 (-1215 *4)) (-4 *4 (-1055)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1215 *3)) (-4 *3 (-1055)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1055)) (-5 *1 (-1215 *3)))) (-4262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-1215 *3)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)))) (-4126 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1215 *4))) (-5 *3 (-1183)) (-5 *1 (-1215 *4)) (-4 *4 (-38 (-412 (-551)))) (-4 *4 (-1055)))))
-(-13 (-745 |#1| (-1183)) (-10 -8 (-15 -4127 ((-952 |#1|) $ (-776))) (-15 -4396 ($ (-1183))) (-15 -4396 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $ (-1183) |#1|)) (-15 -4126 ($ (-1 $) (-1183) |#1|))) |%noBranch|)))
-((-4143 (((-112) |#5| $) 68) (((-112) $) 110)) (-4138 ((|#5| |#5| $) 83)) (-4160 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4139 (((-646 |#5|) (-646 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3595 (((-3 $ "failed") (-646 |#5|)) 135)) (-4248 (((-3 $ "failed") $) 120)) (-4135 ((|#5| |#5| $) 102)) (-4144 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4133 ((|#5| |#5| $) 106)) (-4292 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4146 (((-2 (|:| -4311 (-646 |#5|)) (|:| -1880 (-646 |#5|))) $) 63)) (-4145 (((-112) |#5| $) 66) (((-112) $) 111)) (-3618 ((|#4| $) 116)) (-4247 (((-3 |#5| "failed") $) 118)) (-4147 (((-646 |#5|) $) 55)) (-4141 (((-112) |#5| $) 75) (((-112) $) 115)) (-4136 ((|#5| |#5| $) 89)) (-4149 (((-112) $ $) 29)) (-4142 (((-112) |#5| $) 71) (((-112) $) 113)) (-4137 ((|#5| |#5| $) 86)) (-4250 (((-3 |#5| "failed") $) 117)) (-4218 (($ $ |#5|) 136)) (-4398 (((-776) $) 60)) (-3971 (($ (-646 |#5|)) 133)) (-3329 (($ $ |#4|) 131)) (-3331 (($ $ |#4|) 129)) (-4134 (($ $) 128)) (-4396 (((-868) $) NIL) (((-646 |#5|) $) 121)) (-4128 (((-776) $) 140)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4140 (((-112) $ (-1 (-112) |#5| (-646 |#5|))) 108)) (-4130 (((-646 |#4|) $) 123)) (-4383 (((-112) |#4| $) 126)) (-3473 (((-112) $ $) 20)))
-(((-1216 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4128 ((-776) |#1|)) (-15 -4218 (|#1| |#1| |#5|)) (-15 -4160 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4383 ((-112) |#4| |#1|)) (-15 -4130 ((-646 |#4|) |#1|)) (-15 -4248 ((-3 |#1| "failed") |#1|)) (-15 -4247 ((-3 |#5| "failed") |#1|)) (-15 -4250 ((-3 |#5| "failed") |#1|)) (-15 -4133 (|#5| |#5| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 (|#5| |#5| |#1|)) (-15 -4136 (|#5| |#5| |#1|)) (-15 -4137 (|#5| |#5| |#1|)) (-15 -4138 (|#5| |#5| |#1|)) (-15 -4139 ((-646 |#5|) (-646 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4292 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4141 ((-112) |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4140 ((-112) |#1| (-1 (-112) |#5| (-646 |#5|)))) (-15 -4141 ((-112) |#5| |#1|)) (-15 -4142 ((-112) |#5| |#1|)) (-15 -4143 ((-112) |#5| |#1|)) (-15 -4144 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4145 ((-112) |#1|)) (-15 -4145 ((-112) |#5| |#1|)) (-15 -4146 ((-2 (|:| -4311 (-646 |#5|)) (|:| -1880 (-646 |#5|))) |#1|)) (-15 -4398 ((-776) |#1|)) (-15 -4147 ((-646 |#5|) |#1|)) (-15 -4148 ((-3 (-2 (|:| |bas| |#1|) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4148 ((-3 (-2 (|:| |bas| |#1|) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4149 ((-112) |#1| |#1|)) (-15 -3329 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3618 (|#4| |#1|)) (-15 -3595 ((-3 |#1| "failed") (-646 |#5|))) (-15 -4396 ((-646 |#5|) |#1|)) (-15 -3971 (|#1| (-646 |#5|))) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4160 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|))) (-1217 |#2| |#3| |#4| |#5|) (-562) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1216))
-NIL
-(-10 -8 (-15 -4128 ((-776) |#1|)) (-15 -4218 (|#1| |#1| |#5|)) (-15 -4160 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4383 ((-112) |#4| |#1|)) (-15 -4130 ((-646 |#4|) |#1|)) (-15 -4248 ((-3 |#1| "failed") |#1|)) (-15 -4247 ((-3 |#5| "failed") |#1|)) (-15 -4250 ((-3 |#5| "failed") |#1|)) (-15 -4133 (|#5| |#5| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 (|#5| |#5| |#1|)) (-15 -4136 (|#5| |#5| |#1|)) (-15 -4137 (|#5| |#5| |#1|)) (-15 -4138 (|#5| |#5| |#1|)) (-15 -4139 ((-646 |#5|) (-646 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4292 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4141 ((-112) |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4140 ((-112) |#1| (-1 (-112) |#5| (-646 |#5|)))) (-15 -4141 ((-112) |#5| |#1|)) (-15 -4142 ((-112) |#5| |#1|)) (-15 -4143 ((-112) |#5| |#1|)) (-15 -4144 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4145 ((-112) |#1|)) (-15 -4145 ((-112) |#5| |#1|)) (-15 -4146 ((-2 (|:| -4311 (-646 |#5|)) (|:| -1880 (-646 |#5|))) |#1|)) (-15 -4398 ((-776) |#1|)) (-15 -4147 ((-646 |#5|) |#1|)) (-15 -4148 ((-3 (-2 (|:| |bas| |#1|) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4148 ((-3 (-2 (|:| |bas| |#1|) (|:| -3766 (-646 |#5|))) "failed") (-646 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4149 ((-112) |#1| |#1|)) (-15 -3329 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3618 (|#4| |#1|)) (-15 -3595 ((-3 |#1| "failed") (-646 |#5|))) (-15 -4396 ((-646 |#5|) |#1|)) (-15 -3971 (|#1| (-646 |#5|))) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4160 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4396 ((-868) |#1|)) (-15 -3473 ((-112) |#1| |#1|)))
-((-2986 (((-112) $ $) 7)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) 86)) (-4132 (((-646 $) (-646 |#4|)) 87)) (-3503 (((-646 |#3|) $) 34)) (-3327 (((-112) $) 27)) (-3318 (((-112) $) 18 (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) 102) (((-112) $) 98)) (-4138 ((|#4| |#4| $) 93)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) 28)) (-1312 (((-112) $ (-776)) 45)) (-4160 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-4174 (($) 46 T CONST)) (-3323 (((-112) $) 23 (|has| |#1| (-562)))) (-3325 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3324 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3326 (((-112) $) 26 (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3319 (((-646 |#4|) (-646 |#4|) $) 19 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) 20 (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) 37)) (-3594 (($ (-646 |#4|)) 36)) (-4248 (((-3 $ "failed") $) 83)) (-4135 ((|#4| |#4| $) 90)) (-1443 (($ $) 69 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#4| $) 68 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4133 ((|#4| |#4| $) 88)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) 106)) (-2134 (((-646 |#4|) $) 53 (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) 105) (((-112) $) 104)) (-3618 ((|#3| $) 35)) (-4169 (((-112) $ (-776)) 44)) (-3026 (((-646 |#4|) $) 54 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) 48)) (-3333 (((-646 |#3|) $) 33)) (-3332 (((-112) |#3| $) 32)) (-4166 (((-112) $ (-776)) 43)) (-3681 (((-1165) $) 10)) (-4247 (((-3 |#4| "failed") $) 84)) (-4147 (((-646 |#4|) $) 108)) (-4141 (((-112) |#4| $) 100) (((-112) $) 96)) (-4136 ((|#4| |#4| $) 91)) (-4149 (((-112) $ $) 111)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) 101) (((-112) $) 97)) (-4137 ((|#4| |#4| $) 92)) (-3682 (((-1126) $) 11)) (-4250 (((-3 |#4| "failed") $) 85)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4129 (((-3 $ "failed") $ |#4|) 79)) (-4218 (($ $ |#4|) 78)) (-2136 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) 39)) (-3845 (((-112) $) 42)) (-4014 (($) 41)) (-4398 (((-776) $) 107)) (-2135 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1107)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3842 (($ $) 40)) (-4420 (((-540) $) 70 (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) 61)) (-3329 (($ $ |#3|) 29)) (-3331 (($ $ |#3|) 31)) (-4134 (($ $) 89)) (-3330 (($ $ |#3|) 30)) (-4396 (((-868) $) 12) (((-646 |#4|) $) 38)) (-4128 (((-776) $) 77 (|has| |#3| (-372)))) (-3680 (((-112) $ $) 9)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) "failed") (-646 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) "failed") (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) 99)) (-2137 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) 82)) (-4383 (((-112) |#3| $) 81)) (-3473 (((-112) $ $) 6)) (-4407 (((-776) $) 47 (|has| $ (-6 -4443)))))
-(((-1217 |#1| |#2| |#3| |#4|) (-140) (-562) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1217))
-((-4149 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-4148 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3766 (-646 *8)))) (-5 *3 (-646 *8)) (-4 *1 (-1217 *5 *6 *7 *8)))) (-4148 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3766 (-646 *9)))) (-5 *3 (-646 *9)) (-4 *1 (-1217 *6 *7 *8 *9)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *6)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776)))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-2 (|:| -4311 (-646 *6)) (|:| -1880 (-646 *6)))))) (-4145 (*1 *2 *3 *1) (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-4144 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1217 *5 *6 *7 *3)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))) (-4143 (*1 *2 *3 *1) (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4142 (*1 *2 *3 *1) (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4141 (*1 *2 *3 *1) (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4140 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-646 *7))) (-4 *1 (-1217 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-4292 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1217 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *2 (-1071 *5 *6 *7)))) (-4139 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-646 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1217 *5 *6 *7 *8)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)))) (-4138 (*1 *2 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4137 (*1 *2 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4136 (*1 *2 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4135 (*1 *2 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4134 (*1 *1 *1) (-12 (-4 *1 (-1217 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-4133 (*1 *2 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1217 *4 *5 *6 *7)))) (-4131 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-646 (-2 (|:| -4311 *1) (|:| -1880 (-646 *7))))) (-5 *3 (-646 *7)) (-4 *1 (-1217 *4 *5 *6 *7)))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4247 (*1 *2 *1) (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4248 (*1 *1 *1) (|partial| -12 (-4 *1 (-1217 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5)))) (-4383 (*1 *2 *3 *1) (-12 (-4 *1 (-1217 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-4160 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1217 *4 *5 *3 *2)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3)))) (-4129 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4218 (*1 *1 *1 *2) (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776)))))
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -4149 ((-112) $ $)) (-15 -4148 ((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |t#4|))) "failed") (-646 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4148 ((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |t#4|))) "failed") (-646 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4147 ((-646 |t#4|) $)) (-15 -4398 ((-776) $)) (-15 -4146 ((-2 (|:| -4311 (-646 |t#4|)) (|:| -1880 (-646 |t#4|))) $)) (-15 -4145 ((-112) |t#4| $)) (-15 -4145 ((-112) $)) (-15 -4144 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4143 ((-112) |t#4| $)) (-15 -4142 ((-112) |t#4| $)) (-15 -4141 ((-112) |t#4| $)) (-15 -4140 ((-112) $ (-1 (-112) |t#4| (-646 |t#4|)))) (-15 -4143 ((-112) $)) (-15 -4142 ((-112) $)) (-15 -4141 ((-112) $)) (-15 -4292 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4139 ((-646 |t#4|) (-646 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4138 (|t#4| |t#4| $)) (-15 -4137 (|t#4| |t#4| $)) (-15 -4136 (|t#4| |t#4| $)) (-15 -4135 (|t#4| |t#4| $)) (-15 -4134 ($ $)) (-15 -4133 (|t#4| |t#4| $)) (-15 -4132 ((-646 $) (-646 |t#4|))) (-15 -4131 ((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |t#4|)))) (-646 |t#4|))) (-15 -4250 ((-3 |t#4| "failed") $)) (-15 -4247 ((-3 |t#4| "failed") $)) (-15 -4248 ((-3 $ "failed") $)) (-15 -4130 ((-646 |t#3|) $)) (-15 -4383 ((-112) |t#3| $)) (-15 -4160 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4129 ((-3 $ "failed") $ |t#4|)) (-15 -4218 ($ $ |t#4|)) (IF (|has| |t#3| (-372)) (-15 -4128 ((-776) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-618 (-646 |#4|)) . T) ((-618 (-868)) . T) ((-151 |#4|) . T) ((-619 (-540)) |has| |#4| (-619 (-540))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1107) . T) ((-1222) . T))
-((-4155 (($ |#1| (-646 (-646 (-949 (-226)))) (-112)) 19)) (-4154 (((-112) $ (-112)) 18)) (-4153 (((-112) $) 17)) (-4151 (((-646 (-646 (-949 (-226)))) $) 13)) (-4150 ((|#1| $) 8)) (-4152 (((-112) $) 15)))
-(((-1218 |#1|) (-10 -8 (-15 -4150 (|#1| $)) (-15 -4151 ((-646 (-646 (-949 (-226)))) $)) (-15 -4152 ((-112) $)) (-15 -4153 ((-112) $)) (-15 -4154 ((-112) $ (-112))) (-15 -4155 ($ |#1| (-646 (-646 (-949 (-226)))) (-112)))) (-980)) (T -1218))
-((-4155 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1218 *2)) (-4 *2 (-980)))) (-4154 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-4150 (*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
-(-10 -8 (-15 -4150 (|#1| $)) (-15 -4151 ((-646 (-646 (-949 (-226)))) $)) (-15 -4152 ((-112) $)) (-15 -4153 ((-112) $)) (-15 -4154 ((-112) $ (-112))) (-15 -4155 ($ |#1| (-646 (-646 (-949 (-226)))) (-112))))
-((-4157 (((-949 (-226)) (-949 (-226))) 31)) (-4156 (((-949 (-226)) (-226) (-226) (-226) (-226)) 10)) (-4159 (((-646 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-646 (-646 (-226)))) 60)) (-4286 (((-226) (-949 (-226)) (-949 (-226))) 27)) (-4284 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 28)) (-4158 (((-646 (-646 (-226))) (-551)) 48)) (-4287 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 26)) (-4289 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 24)) (* (((-949 (-226)) (-226) (-949 (-226))) 22)))
-(((-1219) (-10 -7 (-15 -4156 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -4289 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4287 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4286 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -4284 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4157 ((-949 (-226)) (-949 (-226)))) (-15 -4158 ((-646 (-646 (-226))) (-551))) (-15 -4159 ((-646 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-646 (-646 (-226))))))) (T -1219))
-((-4159 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-646 (-646 (-226)))) (-5 *4 (-226)) (-5 *2 (-646 (-949 *4))) (-5 *1 (-1219)) (-5 *3 (-949 *4)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-551)) (-5 *2 (-646 (-646 (-226)))) (-5 *1 (-1219)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-4284 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-4286 (*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219)))) (-4287 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-4289 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219)))) (-4156 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
-(-10 -7 (-15 -4156 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -4289 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4287 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4286 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -4284 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4157 ((-949 (-226)) (-949 (-226)))) (-15 -4158 ((-646 (-646 (-226))) (-551))) (-15 -4159 ((-646 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-646 (-646 (-226))))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4160 ((|#1| $ (-776)) 18)) (-4283 (((-776) $) 13)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4396 (((-964 |#1|) $) 12) (($ (-964 |#1|)) 11) (((-868) $) 29 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3473 (((-112) $ $) 22 (|has| |#1| (-1107)))))
-(((-1220 |#1|) (-13 (-495 (-964 |#1|)) (-10 -8 (-15 -4160 (|#1| $ (-776))) (-15 -4283 ((-776) $)) (IF (|has| |#1| (-618 (-868))) (-6 (-618 (-868))) |%noBranch|) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|))) (-1222)) (T -1220))
-((-4160 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1222)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1222)))))
-(-13 (-495 (-964 |#1|)) (-10 -8 (-15 -4160 (|#1| $ (-776))) (-15 -4283 ((-776) $)) (IF (|has| |#1| (-618 (-868))) (-6 (-618 (-868))) |%noBranch|) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|)))
-((-4163 (((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)) (-551)) 94)) (-4161 (((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|))) 86)) (-4162 (((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|))) 70)))
-(((-1221 |#1|) (-10 -7 (-15 -4161 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)))) (-15 -4162 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)))) (-15 -4163 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)) (-551)))) (-354)) (T -1221))
-((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-551)) (-4 *5 (-354)) (-5 *2 (-410 (-1177 (-1177 *5)))) (-5 *1 (-1221 *5)) (-5 *3 (-1177 (-1177 *5))))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-410 (-1177 (-1177 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1177 (-1177 *4))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-410 (-1177 (-1177 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1177 (-1177 *4))))))
-(-10 -7 (-15 -4161 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)))) (-15 -4162 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)))) (-15 -4163 ((-410 (-1177 (-1177 |#1|))) (-1177 (-1177 |#1|)) (-551))))
-NIL
-(((-1222) (-140)) (T -1222))
-NIL
-(-13 (-10 -7 (-6 -2451)))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 9) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1223) (-1089)) (T -1223))
+((-2556 (*1 *1 *1) (-4 *1 (-1211))) (-2534 (*1 *1 *1) (-4 *1 (-1211))) (-2576 (*1 *1 *1) (-4 *1 (-1211))) (-2588 (*1 *1 *1) (-4 *1 (-1211))) (-2566 (*1 *1 *1) (-4 *1 (-1211))) (-2545 (*1 *1 *1) (-4 *1 (-1211))))
+(-13 (-10 -8 (-15 -2545 ($ $)) (-15 -2566 ($ $)) (-15 -2588 ($ $)) (-15 -2576 ($ $)) (-15 -2534 ($ $)) (-15 -2556 ($ $))))
+((-2309 ((|#2| |#2|) 98)) (-2318 (((-112) |#2|) 29)) (-3728 ((|#2| |#2|) 33)) (-3740 ((|#2| |#2|) 35)) (-2293 ((|#2| |#2| (-1183)) 92) ((|#2| |#2|) 93)) (-2327 (((-170 |#2|) |#2|) 31)) (-2301 ((|#2| |#2| (-1183)) 94) ((|#2| |#2|) 95)))
+(((-1212 |#1| |#2|) (-10 -7 (-15 -2293 (|#2| |#2|)) (-15 -2293 (|#2| |#2| (-1183))) (-15 -2301 (|#2| |#2|)) (-15 -2301 (|#2| |#2| (-1183))) (-15 -2309 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -2318 ((-112) |#2|)) (-15 -2327 ((-170 |#2|) |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -1212))
+((-2327 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-170 *3)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2293 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
+(-10 -7 (-15 -2293 (|#2| |#2|)) (-15 -2293 (|#2| |#2| (-1183))) (-15 -2301 (|#2| |#2|)) (-15 -2301 (|#2| |#2| (-1183))) (-15 -2309 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -2318 ((-112) |#2|)) (-15 -2327 ((-170 |#2|) |#2|)))
+((-2334 ((|#4| |#4| |#1|) 32)) (-2344 ((|#4| |#4| |#1|) 33)))
+(((-1213 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2334 (|#4| |#4| |#1|)) (-15 -2344 (|#4| |#4| |#1|))) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1213))
+((-2344 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2334 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -2334 (|#4| |#4| |#1|)) (-15 -2344 (|#4| |#4| |#1|)))
+((-1385 ((|#2| |#2|) 148)) (-1411 ((|#2| |#2|) 145)) (-1373 ((|#2| |#2|) 136)) (-1397 ((|#2| |#2|) 133)) (-1361 ((|#2| |#2|) 141)) (-1350 ((|#2| |#2|) 129)) (-2379 ((|#2| |#2|) 44)) (-2369 ((|#2| |#2|) 105)) (-2353 ((|#2| |#2|) 88)) (-1336 ((|#2| |#2|) 143)) (-1325 ((|#2| |#2|) 131)) (-1475 ((|#2| |#2|) 153)) (-1452 ((|#2| |#2|) 151)) (-1463 ((|#2| |#2|) 152)) (-1442 ((|#2| |#2|) 150)) (-2362 ((|#2| |#2|) 163)) (-1485 ((|#2| |#2|) 30 (-12 (|has| |#2| (-619 (-898 |#1|))) (|has| |#2| (-892 |#1|)) (|has| |#1| (-619 (-898 |#1|))) (|has| |#1| (-892 |#1|))))) (-2389 ((|#2| |#2|) 89)) (-2397 ((|#2| |#2|) 154)) (-1356 ((|#2| |#2|) 155)) (-2454 ((|#2| |#2|) 142)) (-2444 ((|#2| |#2|) 130)) (-2435 ((|#2| |#2|) 149)) (-1432 ((|#2| |#2|) 147)) (-2427 ((|#2| |#2|) 137)) (-1422 ((|#2| |#2|) 135)) (-2418 ((|#2| |#2|) 139)) (-2409 ((|#2| |#2|) 127)))
+(((-1214 |#1| |#2|) (-10 -7 (-15 -1356 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -1325 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1442 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1485 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-457) (-13 (-435 |#1|) (-1208))) (T -1214))
+((-1485 (*1 *2 *2) (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1452 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1442 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1422 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1325 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2454 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2418 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))))
+(-10 -7 (-15 -1356 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -1325 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1442 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1485 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1680 (((-112) |#5| $) 68) (((-112) $) 110)) (-1624 ((|#5| |#5| $) 83)) (-1391 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1635 (((-649 |#5|) (-649 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4359 (((-3 $ "failed") (-649 |#5|)) 135)) (-3414 (((-3 $ "failed") $) 120)) (-1590 ((|#5| |#5| $) 102)) (-1691 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1567 ((|#5| |#5| $) 106)) (-3485 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1716 (((-2 (|:| -4113 (-649 |#5|)) (|:| -1675 (-649 |#5|))) $) 63)) (-1703 (((-112) |#5| $) 66) (((-112) $) 111)) (-2717 ((|#4| $) 116)) (-1702 (((-3 |#5| "failed") $) 118)) (-1730 (((-649 |#5|) $) 55)) (-1656 (((-112) |#5| $) 75) (((-112) $) 115)) (-1603 ((|#5| |#5| $) 89)) (-1755 (((-112) $ $) 29)) (-1667 (((-112) |#5| $) 71) (((-112) $) 113)) (-1614 ((|#5| |#5| $) 86)) (-3401 (((-3 |#5| "failed") $) 117)) (-4295 (($ $ |#5|) 136)) (-2091 (((-776) $) 60)) (-3709 (($ (-649 |#5|)) 133)) (-2876 (($ $ |#4|) 131)) (-2898 (($ $ |#4|) 129)) (-1577 (($ $) 128)) (-2388 (((-867) $) NIL) (((-649 |#5|) $) 121)) (-1512 (((-776) $) 140)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1645 (((-112) $ (-1 (-112) |#5| (-649 |#5|))) 108)) (-1532 (((-649 |#4|) $) 123)) (-1988 (((-112) |#4| $) 126)) (-2853 (((-112) $ $) 20)))
+(((-1215 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1512 ((-776) |#1|)) (-15 -4295 (|#1| |#1| |#5|)) (-15 -1391 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1988 ((-112) |#4| |#1|)) (-15 -1532 ((-649 |#4|) |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -1702 ((-3 |#5| "failed") |#1|)) (-15 -3401 ((-3 |#5| "failed") |#1|)) (-15 -1567 (|#5| |#5| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1590 (|#5| |#5| |#1|)) (-15 -1603 (|#5| |#5| |#1|)) (-15 -1614 (|#5| |#5| |#1|)) (-15 -1624 (|#5| |#5| |#1|)) (-15 -1635 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3485 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1656 ((-112) |#1|)) (-15 -1667 ((-112) |#1|)) (-15 -1680 ((-112) |#1|)) (-15 -1645 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -1656 ((-112) |#5| |#1|)) (-15 -1667 ((-112) |#5| |#1|)) (-15 -1680 ((-112) |#5| |#1|)) (-15 -1691 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1703 ((-112) |#1|)) (-15 -1703 ((-112) |#5| |#1|)) (-15 -1716 ((-2 (|:| -4113 (-649 |#5|)) (|:| -1675 (-649 |#5|))) |#1|)) (-15 -2091 ((-776) |#1|)) (-15 -1730 ((-649 |#5|) |#1|)) (-15 -1742 ((-3 (-2 (|:| |bas| |#1|) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1742 ((-3 (-2 (|:| |bas| |#1|) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1755 ((-112) |#1| |#1|)) (-15 -2876 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -2717 (|#4| |#1|)) (-15 -4359 ((-3 |#1| "failed") (-649 |#5|))) (-15 -2388 ((-649 |#5|) |#1|)) (-15 -3709 (|#1| (-649 |#5|))) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1391 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|))) (-1216 |#2| |#3| |#4| |#5|) (-561) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1215))
+NIL
+(-10 -8 (-15 -1512 ((-776) |#1|)) (-15 -4295 (|#1| |#1| |#5|)) (-15 -1391 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1988 ((-112) |#4| |#1|)) (-15 -1532 ((-649 |#4|) |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -1702 ((-3 |#5| "failed") |#1|)) (-15 -3401 ((-3 |#5| "failed") |#1|)) (-15 -1567 (|#5| |#5| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1590 (|#5| |#5| |#1|)) (-15 -1603 (|#5| |#5| |#1|)) (-15 -1614 (|#5| |#5| |#1|)) (-15 -1624 (|#5| |#5| |#1|)) (-15 -1635 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3485 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1656 ((-112) |#1|)) (-15 -1667 ((-112) |#1|)) (-15 -1680 ((-112) |#1|)) (-15 -1645 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -1656 ((-112) |#5| |#1|)) (-15 -1667 ((-112) |#5| |#1|)) (-15 -1680 ((-112) |#5| |#1|)) (-15 -1691 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1703 ((-112) |#1|)) (-15 -1703 ((-112) |#5| |#1|)) (-15 -1716 ((-2 (|:| -4113 (-649 |#5|)) (|:| -1675 (-649 |#5|))) |#1|)) (-15 -2091 ((-776) |#1|)) (-15 -1730 ((-649 |#5|) |#1|)) (-15 -1742 ((-3 (-2 (|:| |bas| |#1|) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1742 ((-3 (-2 (|:| |bas| |#1|) (|:| -3201 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1755 ((-112) |#1| |#1|)) (-15 -2876 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -2717 (|#4| |#1|)) (-15 -4359 ((-3 |#1| "failed") (-649 |#5|))) (-15 -2388 ((-649 |#5|) |#1|)) (-15 -3709 (|#1| (-649 |#5|))) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1391 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3485 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2388 ((-867) |#1|)) (-15 -2853 ((-112) |#1| |#1|)))
+((-2383 (((-112) $ $) 7)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) 86)) (-1555 (((-649 $) (-649 |#4|)) 87)) (-3865 (((-649 |#3|) $) 34)) (-2866 (((-112) $) 27)) (-2773 (((-112) $) 18 (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) 102) (((-112) $) 98)) (-1624 ((|#4| |#4| $) 93)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) 28)) (-1610 (((-112) $ (-776)) 45)) (-1391 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) 80)) (-3863 (($) 46 T CONST)) (-2824 (((-112) $) 23 (|has| |#1| (-561)))) (-2845 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2834 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2857 (((-112) $) 26 (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2783 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) 37)) (-3043 (($ (-649 |#4|)) 36)) (-3414 (((-3 $ "failed") $) 83)) (-1590 ((|#4| |#4| $) 90)) (-3437 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1567 ((|#4| |#4| $) 88)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) 106)) (-2796 (((-649 |#4|) $) 53 (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) 105) (((-112) $) 104)) (-2717 ((|#3| $) 35)) (-3799 (((-112) $ (-776)) 44)) (-2912 (((-649 |#4|) $) 54 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) 48)) (-2917 (((-649 |#3|) $) 33)) (-2908 (((-112) |#3| $) 32)) (-1902 (((-112) $ (-776)) 43)) (-2050 (((-1165) $) 10)) (-1702 (((-3 |#4| "failed") $) 84)) (-1730 (((-649 |#4|) $) 108)) (-1656 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-1755 (((-112) $ $) 111)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) 101) (((-112) $) 97)) (-1614 ((|#4| |#4| $) 92)) (-3461 (((-1126) $) 11)) (-3401 (((-3 |#4| "failed") $) 85)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1521 (((-3 $ "failed") $ |#4|) 79)) (-4295 (($ $ |#4|) 78)) (-3983 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) 39)) (-4196 (((-112) $) 42)) (-2825 (($) 41)) (-2091 (((-776) $) 107)) (-3469 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4443)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4443)))) (-3885 (($ $) 40)) (-1384 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) 61)) (-2876 (($ $ |#3|) 29)) (-2898 (($ $ |#3|) 31)) (-1577 (($ $) 89)) (-2887 (($ $ |#3|) 30)) (-2388 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1512 (((-776) $) 77 (|has| |#3| (-372)))) (-2040 (((-112) $ $) 9)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3996 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) 82)) (-1988 (((-112) |#3| $) 81)) (-2853 (((-112) $ $) 6)) (-2394 (((-776) $) 47 (|has| $ (-6 -4443)))))
+(((-1216 |#1| |#2| |#3| |#4|) (-140) (-561) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1216))
+((-1755 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-1742 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3201 (-649 *8)))) (-5 *3 (-649 *8)) (-4 *1 (-1216 *5 *6 *7 *8)))) (-1742 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3201 (-649 *9)))) (-5 *3 (-649 *9)) (-4 *1 (-1216 *6 *7 *8 *9)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *6)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-2 (|:| -4113 (-649 *6)) (|:| -1675 (-649 *6)))))) (-1703 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-1691 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1216 *5 *6 *7 *3)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))) (-1680 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1667 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1656 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1216 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-3485 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1216 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *2 (-1071 *5 *6 *7)))) (-1635 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1216 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)))) (-1624 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1614 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1603 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1590 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-1567 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1216 *4 *5 *6 *7)))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| -4113 *1) (|:| -1675 (-649 *7))))) (-5 *3 (-649 *7)) (-4 *1 (-1216 *4 *5 *6 *7)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1702 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3414 (*1 *1 *1) (|partial| -12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-1988 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-1391 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1216 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3)))) (-1521 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-4295 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776)))))
+(-13 (-982 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4443) (-6 -4444) (-15 -1755 ((-112) $ $)) (-15 -1742 ((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1742 ((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1730 ((-649 |t#4|) $)) (-15 -2091 ((-776) $)) (-15 -1716 ((-2 (|:| -4113 (-649 |t#4|)) (|:| -1675 (-649 |t#4|))) $)) (-15 -1703 ((-112) |t#4| $)) (-15 -1703 ((-112) $)) (-15 -1691 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1680 ((-112) |t#4| $)) (-15 -1667 ((-112) |t#4| $)) (-15 -1656 ((-112) |t#4| $)) (-15 -1645 ((-112) $ (-1 (-112) |t#4| (-649 |t#4|)))) (-15 -1680 ((-112) $)) (-15 -1667 ((-112) $)) (-15 -1656 ((-112) $)) (-15 -3485 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1635 ((-649 |t#4|) (-649 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1624 (|t#4| |t#4| $)) (-15 -1614 (|t#4| |t#4| $)) (-15 -1603 (|t#4| |t#4| $)) (-15 -1590 (|t#4| |t#4| $)) (-15 -1577 ($ $)) (-15 -1567 (|t#4| |t#4| $)) (-15 -1555 ((-649 $) (-649 |t#4|))) (-15 -1544 ((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |t#4|)))) (-649 |t#4|))) (-15 -3401 ((-3 |t#4| "failed") $)) (-15 -1702 ((-3 |t#4| "failed") $)) (-15 -3414 ((-3 $ "failed") $)) (-15 -1532 ((-649 |t#3|) $)) (-15 -1988 ((-112) |t#3| $)) (-15 -1391 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1521 ((-3 $ "failed") $ |t#4|)) (-15 -4295 ($ $ |t#4|)) (IF (|has| |t#3| (-372)) (-15 -1512 ((-776) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1223) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1183)) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2445 (((-958 |#1|) $ (-776)) 20) (((-958 |#1|) $ (-776) (-776)) NIL)) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $ (-1183)) NIL) (((-776) $ (-1183) (-776)) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2019 (((-112) $) NIL)) (-3838 (($ $ (-649 (-1183)) (-649 (-536 (-1183)))) NIL) (($ $ (-1183) (-536 (-1183))) NIL) (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3313 (($ $ (-1183)) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1494 (($ (-1 $) (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4295 (($ $ (-776)) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (($ $ (-1183) $) NIL) (($ $ (-649 (-1183)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3430 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2091 (((-536 (-1183)) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-1183)) NIL) (($ (-958 |#1|)) NIL)) (-1503 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (((-958 |#1|) $ (-776)) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2749 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1217 |#1|) (-13 (-745 |#1| (-1183)) (-10 -8 (-15 -1503 ((-958 |#1|) $ (-776))) (-15 -2388 ($ (-1183))) (-15 -2388 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $ (-1183) |#1|)) (-15 -1494 ($ (-1 $) (-1183) |#1|))) |%noBranch|))) (-1055)) (T -1217))
+((-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1217 *4)) (-4 *4 (-1055)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-1055)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-5 *1 (-1217 *3)))) (-3313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))) (-1494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1217 *4))) (-5 *3 (-1183)) (-5 *1 (-1217 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
+(-13 (-745 |#1| (-1183)) (-10 -8 (-15 -1503 ((-958 |#1|) $ (-776))) (-15 -2388 ($ (-1183))) (-15 -2388 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $ (-1183) |#1|)) (-15 -1494 ($ (-1 $) (-1183) |#1|))) |%noBranch|)))
+((-1821 (($ |#1| (-649 (-649 (-949 (-226)))) (-112)) 19)) (-1809 (((-112) $ (-112)) 18)) (-1799 (((-112) $) 17)) (-1777 (((-649 (-649 (-949 (-226)))) $) 13)) (-1765 ((|#1| $) 8)) (-1788 (((-112) $) 15)))
+(((-1218 |#1|) (-10 -8 (-15 -1765 (|#1| $)) (-15 -1777 ((-649 (-649 (-949 (-226)))) $)) (-15 -1788 ((-112) $)) (-15 -1799 ((-112) $)) (-15 -1809 ((-112) $ (-112))) (-15 -1821 ($ |#1| (-649 (-649 (-949 (-226)))) (-112)))) (-980)) (T -1218))
+((-1821 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1218 *2)) (-4 *2 (-980)))) (-1809 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-1765 (*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
+(-10 -8 (-15 -1765 (|#1| $)) (-15 -1777 ((-649 (-649 (-949 (-226)))) $)) (-15 -1788 ((-112) $)) (-15 -1799 ((-112) $)) (-15 -1809 ((-112) $ (-112))) (-15 -1821 ($ |#1| (-649 (-649 (-949 (-226)))) (-112))))
+((-1833 (((-949 (-226)) (-949 (-226))) 31)) (-2025 (((-949 (-226)) (-226) (-226) (-226) (-226)) 10)) (-1853 (((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226)))) 60)) (-3523 (((-226) (-949 (-226)) (-949 (-226))) 27)) (-3513 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 28)) (-1843 (((-649 (-649 (-226))) (-569)) 48)) (-2946 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 26)) (-2935 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 24)) (* (((-949 (-226)) (-226) (-949 (-226))) 22)))
+(((-1219) (-10 -7 (-15 -2025 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -2935 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -2946 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3523 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3513 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -1833 ((-949 (-226)) (-949 (-226)))) (-15 -1843 ((-649 (-649 (-226))) (-569))) (-15 -1853 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))) (T -1219))
+((-1853 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 (-949 *4))) (-5 *1 (-1219)) (-5 *3 (-949 *4)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1219)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-3513 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219)))) (-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-2935 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219)))) (-2025 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
+(-10 -7 (-15 -2025 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -2935 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -2946 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3523 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3513 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -1833 ((-949 (-226)) (-949 (-226)))) (-15 -1843 ((-649 (-649 (-226))) (-569))) (-15 -1853 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1391 ((|#1| $ (-776)) 18)) (-3747 (((-776) $) 13)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2388 (((-964 |#1|) $) 12) (($ (-964 |#1|)) 11) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2853 (((-112) $ $) 22 (|has| |#1| (-1106)))))
+(((-1220 |#1|) (-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1391 (|#1| $ (-776))) (-15 -3747 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1220))
+((-1391 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1223)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1223)))))
+(-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1391 (|#1| $ (-776))) (-15 -3747 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
+((-1877 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569)) 94)) (-1862 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|))) 86)) (-1869 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|))) 70)))
+(((-1221 |#1|) (-10 -7 (-15 -1862 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -1869 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -1877 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569)))) (-353)) (T -1221))
+((-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1179 (-1179 *5)))) (-5 *1 (-1221 *5)) (-5 *3 (-1179 (-1179 *5))))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))) (-1862 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
+(-10 -7 (-15 -1862 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -1869 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -1877 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 9) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1222) (-1089)) (T -1222))
NIL
(-1089)
-((-4167 (((-112)) 18)) (-4164 (((-1278) (-646 |#1|) (-646 |#1|)) 22) (((-1278) (-646 |#1|)) 23)) (-4169 (((-112) |#1| |#1|) 37 (|has| |#1| (-855)))) (-4166 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4168 ((|#1| (-646 |#1|)) 38 (|has| |#1| (-855))) ((|#1| (-646 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4165 (((-2 (|:| -3667 (-646 |#1|)) (|:| -3666 (-646 |#1|)))) 20)))
-(((-1224 |#1|) (-10 -7 (-15 -4164 ((-1278) (-646 |#1|))) (-15 -4164 ((-1278) (-646 |#1|) (-646 |#1|))) (-15 -4165 ((-2 (|:| -3667 (-646 |#1|)) (|:| -3666 (-646 |#1|))))) (-15 -4166 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4166 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4168 (|#1| (-646 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4167 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -4168 (|#1| (-646 |#1|))) (-15 -4169 ((-112) |#1| |#1|))) |%noBranch|)) (-1107)) (T -1224))
-((-4169 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855)) (-4 *3 (-1107)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-855)) (-5 *1 (-1224 *2)))) (-4167 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1107)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2)) (-4 *2 (-1107)))) (-4166 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1107)) (-5 *2 (-112)) (-5 *1 (-1224 *3)))) (-4166 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1107)))) (-4165 (*1 *2) (-12 (-5 *2 (-2 (|:| -3667 (-646 *3)) (|:| -3666 (-646 *3)))) (-5 *1 (-1224 *3)) (-4 *3 (-1107)))) (-4164 (*1 *2 *3 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))))
-(-10 -7 (-15 -4164 ((-1278) (-646 |#1|))) (-15 -4164 ((-1278) (-646 |#1|) (-646 |#1|))) (-15 -4165 ((-2 (|:| -3667 (-646 |#1|)) (|:| -3666 (-646 |#1|))))) (-15 -4166 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4166 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4168 (|#1| (-646 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4167 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -4168 (|#1| (-646 |#1|))) (-15 -4169 ((-112) |#1| |#1|))) |%noBranch|))
-((-4170 (((-1278) (-646 (-1183)) (-646 (-1183))) 14) (((-1278) (-646 (-1183))) 12)) (-4172 (((-1278)) 16)) (-4171 (((-2 (|:| -3666 (-646 (-1183))) (|:| -3667 (-646 (-1183))))) 20)))
-(((-1225) (-10 -7 (-15 -4170 ((-1278) (-646 (-1183)))) (-15 -4170 ((-1278) (-646 (-1183)) (-646 (-1183)))) (-15 -4171 ((-2 (|:| -3666 (-646 (-1183))) (|:| -3667 (-646 (-1183)))))) (-15 -4172 ((-1278))))) (T -1225))
-((-4172 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))) (-4171 (*1 *2) (-12 (-5 *2 (-2 (|:| -3666 (-646 (-1183))) (|:| -3667 (-646 (-1183))))) (-5 *1 (-1225)))) (-4170 (*1 *2 *3 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(-10 -7 (-15 -4170 ((-1278) (-646 (-1183)))) (-15 -4170 ((-1278) (-646 (-1183)) (-646 (-1183)))) (-15 -4171 ((-2 (|:| -3666 (-646 (-1183))) (|:| -3667 (-646 (-1183)))))) (-15 -4172 ((-1278))))
-((-4224 (($ $) 17)) (-4173 (((-112) $) 28)))
-(((-1226 |#1|) (-10 -8 (-15 -4224 (|#1| |#1|)) (-15 -4173 ((-112) |#1|))) (-1227)) (T -1226))
-NIL
-(-10 -8 (-15 -4224 (|#1| |#1|)) (-15 -4173 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 57)) (-4419 (((-410 $) $) 58)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-4173 (((-112) $) 59)) (-2591 (((-112) $) 35)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-4182 (((-410 $) $) 56)) (-3907 (((-3 $ "failed") $ $) 48)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27)))
+NIL
+(((-1223) (-140)) (T -1223))
+NIL
+(-13 (-10 -7 (-6 -2973)))
+((-1911 (((-112)) 18)) (-1886 (((-1278) (-649 |#1|) (-649 |#1|)) 22) (((-1278) (-649 |#1|)) 23)) (-3799 (((-112) |#1| |#1|) 37 (|has| |#1| (-855)))) (-1902 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1920 ((|#1| (-649 |#1|)) 38 (|has| |#1| (-855))) ((|#1| (-649 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1895 (((-2 (|:| -1977 (-649 |#1|)) (|:| -1968 (-649 |#1|)))) 20)))
+(((-1224 |#1|) (-10 -7 (-15 -1886 ((-1278) (-649 |#1|))) (-15 -1886 ((-1278) (-649 |#1|) (-649 |#1|))) (-15 -1895 ((-2 (|:| -1977 (-649 |#1|)) (|:| -1968 (-649 |#1|))))) (-15 -1902 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1902 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1920 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1911 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -1920 (|#1| (-649 |#1|))) (-15 -3799 ((-112) |#1| |#1|))) |%noBranch|)) (-1106)) (T -1224))
+((-3799 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855)) (-4 *3 (-1106)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-855)) (-5 *1 (-1224 *2)))) (-1911 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2)) (-4 *2 (-1106)))) (-1902 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1106)) (-5 *2 (-112)) (-5 *1 (-1224 *3)))) (-1902 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-1895 (*1 *2) (-12 (-5 *2 (-2 (|:| -1977 (-649 *3)) (|:| -1968 (-649 *3)))) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-1886 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))))
+(-10 -7 (-15 -1886 ((-1278) (-649 |#1|))) (-15 -1886 ((-1278) (-649 |#1|) (-649 |#1|))) (-15 -1895 ((-2 (|:| -1977 (-649 |#1|)) (|:| -1968 (-649 |#1|))))) (-15 -1902 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1902 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1920 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1911 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -1920 (|#1| (-649 |#1|))) (-15 -3799 ((-112) |#1| |#1|))) |%noBranch|))
+((-3812 (((-1278) (-649 (-1183)) (-649 (-1183))) 14) (((-1278) (-649 (-1183))) 12)) (-3835 (((-1278)) 16)) (-3824 (((-2 (|:| -1968 (-649 (-1183))) (|:| -1977 (-649 (-1183))))) 20)))
+(((-1225) (-10 -7 (-15 -3812 ((-1278) (-649 (-1183)))) (-15 -3812 ((-1278) (-649 (-1183)) (-649 (-1183)))) (-15 -3824 ((-2 (|:| -1968 (-649 (-1183))) (|:| -1977 (-649 (-1183)))))) (-15 -3835 ((-1278))))) (T -1225))
+((-3835 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))) (-3824 (*1 *2) (-12 (-5 *2 (-2 (|:| -1968 (-649 (-1183))) (|:| -1977 (-649 (-1183))))) (-5 *1 (-1225)))) (-3812 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
+(-10 -7 (-15 -3812 ((-1278) (-649 (-1183)))) (-15 -3812 ((-1278) (-649 (-1183)) (-649 (-1183)))) (-15 -3824 ((-2 (|:| -1968 (-649 (-1183))) (|:| -1977 (-649 (-1183)))))) (-15 -3835 ((-1278))))
+((-4332 (($ $) 17)) (-3848 (((-112) $) 28)))
+(((-1226 |#1|) (-10 -8 (-15 -4332 (|#1| |#1|)) (-15 -3848 ((-112) |#1|))) (-1227)) (T -1226))
+NIL
+(-10 -8 (-15 -4332 (|#1| |#1|)) (-15 -3848 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 57)) (-2207 (((-423 $) $) 58)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-3848 (((-112) $) 59)) (-2861 (((-112) $) 35)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3699 (((-423 $) $) 56)) (-2374 (((-3 $ "failed") $ $) 48)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-1227) (-140)) (T -1227))
-((-4173 (*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1227)))) (-4224 (*1 *1 *1) (-4 *1 (-1227))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1227)))))
-(-13 (-457) (-10 -8 (-15 -4173 ((-112) $)) (-15 -4419 ((-410 $) $)) (-15 -4224 ($ $)) (-15 -4182 ((-410 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-562) . T) ((-651 (-551)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-4175 (($ $ $) NIL)) (-4176 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1228) (-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))) (T -1228))
-((-4176 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4175 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4174 (*1 *1) (-5 *1 (-1228))))
-(-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-3848 (*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227)))) (-4332 (*1 *1 *1) (-4 *1 (-1227))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227)))))
+(-13 (-457) (-10 -8 (-15 -3848 ((-112) $)) (-15 -2207 ((-423 $) $)) (-15 -4332 ($ $)) (-15 -3699 ((-423 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1369 (($ $ $) NIL)) (-1357 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1228) (-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))) (T -1228))
+((-1357 (*1 *1 *1 *1) (-5 *1 (-1228))) (-1369 (*1 *1 *1 *1) (-5 *1 (-1228))) (-3863 (*1 *1) (-5 *1 (-1228))))
+(-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-4175 (($ $ $) NIL)) (-4176 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1229) (-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))) (T -1229))
-((-4176 (*1 *1 *1 *1) (-5 *1 (-1229))) (-4175 (*1 *1 *1 *1) (-5 *1 (-1229))) (-4174 (*1 *1) (-5 *1 (-1229))))
-(-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1369 (($ $ $) NIL)) (-1357 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1229) (-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))) (T -1229))
+((-1357 (*1 *1 *1 *1) (-5 *1 (-1229))) (-1369 (*1 *1 *1 *1) (-5 *1 (-1229))) (-3863 (*1 *1) (-5 *1 (-1229))))
+(-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-4175 (($ $ $) NIL)) (-4176 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1230) (-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))) (T -1230))
-((-4176 (*1 *1 *1 *1) (-5 *1 (-1230))) (-4175 (*1 *1 *1 *1) (-5 *1 (-1230))) (-4174 (*1 *1) (-5 *1 (-1230))))
-(-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1369 (($ $ $) NIL)) (-1357 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1230) (-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))) (T -1230))
+((-1357 (*1 *1 *1 *1) (-5 *1 (-1230))) (-1369 (*1 *1 *1 *1) (-5 *1 (-1230))) (-3863 (*1 *1) (-5 *1 (-1230))))
+(-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2986 (((-112) $ $) NIL)) (-3558 (((-776)) NIL)) (-4174 (($) NIL T CONST)) (-3413 (($) NIL)) (-2952 (($ $ $) NIL) (($) NIL T CONST)) (-3278 (($ $ $) NIL) (($) NIL T CONST)) (-2198 (((-925) $) NIL)) (-3681 (((-1165) $) NIL)) (-2581 (($ (-925)) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) NIL)) (-4175 (($ $ $) NIL)) (-4176 (($ $ $) NIL)) (-3680 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL)) (-3106 (((-112) $ $) NIL)))
-(((-1231) (-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))) (T -1231))
-((-4176 (*1 *1 *1 *1) (-5 *1 (-1231))) (-4175 (*1 *1 *1 *1) (-5 *1 (-1231))) (-4174 (*1 *1) (-5 *1 (-1231))))
-(-13 (-849) (-10 -8 (-15 -4176 ($ $ $)) (-15 -4175 ($ $ $)) (-15 -4174 ($) -4402)))
+((-2383 (((-112) $ $) NIL)) (-3363 (((-776)) NIL)) (-3863 (($) NIL T CONST)) (-3295 (($) NIL)) (-2095 (($ $ $) NIL) (($) NIL T CONST)) (-2406 (($ $ $) NIL) (($) NIL T CONST)) (-3348 (((-927) $) NIL)) (-2050 (((-1165) $) NIL)) (-2114 (($ (-927)) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) NIL)) (-1369 (($ $ $) NIL)) (-1357 (($ $ $) NIL)) (-2040 (((-112) $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2882 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1231) (-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))) (T -1231))
+((-1357 (*1 *1 *1 *1) (-5 *1 (-1231))) (-1369 (*1 *1 *1 *1) (-5 *1 (-1231))) (-3863 (*1 *1) (-5 *1 (-1231))))
+(-13 (-849) (-10 -8 (-15 -1357 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3863 ($) -3600)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3551 (((-1262 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 10)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-2251 (($ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-2249 (((-112) $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-4220 (($ $ (-551)) NIL) (($ $ (-551) (-551)) NIL)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) NIL)) (-4181 (((-1262 |#1| |#2| |#3|) $) NIL)) (-4178 (((-3 (-1262 |#1| |#2| |#3|) "failed") $) NIL)) (-4179 (((-1262 |#1| |#2| |#3|) $) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4073 (((-551) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-1262 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1183) #2#) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-551)) #2#) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367)))) (((-3 (-551) #2#) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))))) (-3594 (((-1262 |#1| |#2| |#3|) $) NIL) (((-1183) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-551)) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367)))) (((-551) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))))) (-4180 (($ $) NIL) (($ (-551) $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-1262 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-1262 |#1| |#2| |#3|))) (|:| |vec| (-1272 (-1262 |#1| |#2| |#3|)))) (-694 $) (-1272 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-644 (-551))) (|has| |#1| (-367)))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-644 (-551))) (|has| |#1| (-367))))) (-3908 (((-3 $ "failed") $) NIL)) (-4177 (((-412 (-952 |#1|)) $ (-551)) NIL (|has| |#1| (-562))) (((-412 (-952 |#1|)) $ (-551) (-551)) NIL (|has| |#1| (-562)))) (-3413 (($) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3624 (((-112) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-892 (-382))) (|has| |#1| (-367)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-892 (-551))) (|has| |#1| (-367))))) (-4221 (((-551) $) NIL) (((-551) $ (-551)) NIL)) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL (|has| |#1| (-367)))) (-3417 (((-1262 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3886 (((-3 $ "failed") $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1157)) (|has| |#1| (-367))))) (-3625 (((-112) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4226 (($ $ (-925)) NIL)) (-4265 (($ (-1 |#1| (-551)) $) NIL)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-551)) 18) (($ $ (-1088) (-551)) NIL) (($ $ (-646 (-1088)) (-646 (-551))) NIL)) (-2952 (($ $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3278 (($ $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4228 (($ (-551) (-1262 |#1| |#2| |#3|)) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) 27 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 28 (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1157)) (|has| |#1| (-367))) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3550 (($ $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3552 (((-1262 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-551)) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-551))))) (($ $ (-1183) (-1262 |#1| |#2| |#3|)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-519 (-1183) (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-1183)) (-646 (-1262 |#1| |#2| |#3|))) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-519 (-1183) (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-296 (-1262 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-296 (-1262 |#1| |#2| |#3|))) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-646 (-1262 |#1| |#2| |#3|)) (-646 (-1262 |#1| |#2| |#3|))) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-312 (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-551)) NIL) (($ $ $) NIL (|has| (-551) (-1118))) (($ $ (-1262 |#1| |#2| |#3|)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-289 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-1 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 26) (($ $ (-776)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) 25 (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-3414 (($ $) NIL (|has| |#1| (-367)))) (-3416 (((-1262 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-4398 (((-551) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4420 (((-540) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-619 (-540))) (|has| |#1| (-367)))) (((-382) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1026)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1026)) (|has| |#1| (-367)))) (((-896 (-382)) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-619 (-896 (-382)))) (|has| |#1| (-367)))) (((-896 (-551)) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-619 (-896 (-551)))) (|has| |#1| (-367))))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1262 |#1| |#2| |#3|)) NIL) (($ (-1269 |#2|)) 24) (($ (-1183)) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562)))) (($ (-412 (-551))) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-1044 (-551))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-551))))))) (-4127 ((|#1| $ (-551)) NIL)) (-3123 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| $ (-145)) (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 11)) (-3553 (((-1262 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-916)) (|has| |#1| (-367))) (|has| |#1| (-562))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-551)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3825 (($ $) NIL (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3528 (($) 20 T CONST)) (-3085 (($) 15 T CONST)) (-3090 (($ $ (-1 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-2984 (((-112) $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2985 (((-112) $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3473 (((-112) $ $) NIL)) (-3105 (((-112) $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3106 (((-112) $ $) NIL (-3978 (-12 (|has| (-1262 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1262 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367))) (($ (-1262 |#1| |#2| |#3|) (-1262 |#1| |#2| |#3|)) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 22)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1262 |#1| |#2| |#3|)) NIL (|has| |#1| (-367))) (($ (-1262 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1232 |#1| |#2| |#3|) (-13 (-1236 |#1| (-1262 |#1| |#2| |#3|)) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1232))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1236 |#1| (-1262 |#1| |#2| |#3|)) (-10 -8 (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-4408 (((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)) 23)))
-(((-1233 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4408 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1233))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1233 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
-(-10 -7 (-15 -4408 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ (-551)) 110) (($ $ (-551) (-551)) 109)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) 117)) (-3933 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 174 (|has| |#1| (-367)))) (-4419 (((-410 $) $) 175 (|has| |#1| (-367)))) (-3456 (($ $) 129 (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) 165 (|has| |#1| (-367)))) (-3931 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 131 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) 185)) (-3935 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-2982 (($ $ $) 169 (|has| |#1| (-367)))) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-4177 (((-412 (-952 |#1|)) $ (-551)) 183 (|has| |#1| (-562))) (((-412 (-952 |#1|)) $ (-551) (-551)) 182 (|has| |#1| (-562)))) (-2981 (($ $ $) 168 (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 163 (|has| |#1| (-367)))) (-4173 (((-112) $) 176 (|has| |#1| (-367)))) (-3311 (((-112) $) 85)) (-4077 (($) 157 (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-551) $) 112) (((-551) $ (-551)) 111)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 128 (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) 113)) (-4265 (($ (-1 |#1| (-551)) $) 184)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 172 (|has| |#1| (-367)))) (-4387 (((-112) $) 74)) (-3312 (($ |#1| (-551)) 73) (($ $ (-1088) (-551)) 88) (($ $ (-646 (-1088)) (-646 (-551))) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-4392 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-2079 (($ (-646 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 177 (|has| |#1| (-367)))) (-4262 (($ $) 181 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 180 (-3978 (-12 (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-551))))) (-12 (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-551)))))))) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 162 (|has| |#1| (-367)))) (-3582 (($ (-646 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-4182 (((-410 $) $) 173 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 170 (|has| |#1| (-367)))) (-4218 (($ $ (-551)) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 164 (|has| |#1| (-367)))) (-4393 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-551)))))) (-1762 (((-776) $) 166 (|has| |#1| (-367)))) (-4249 ((|#1| $ (-551)) 116) (($ $ $) 93 (|has| (-551) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 167 (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (-4398 (((-551) $) 76)) (-3936 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 133 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 143 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562)))) (-4127 ((|#1| $ (-551)) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 141 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3937 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 139 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-551)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 127 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
-(((-1234 |#1|) (-140) (-1055)) (T -1234))
-((-4268 (*1 *1 *2) (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1234 *3)))) (-4265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-551))) (-4 *1 (-1234 *3)) (-4 *3 (-1055)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1234 *4)) (-4 *4 (-1055)) (-4 *4 (-562)) (-5 *2 (-412 (-952 *4))))) (-4177 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-4 *1 (-1234 *4)) (-4 *4 (-1055)) (-4 *4 (-562)) (-5 *2 (-412 (-952 *4))))) (-4262 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551)))))) (-4262 (*1 *1 *1 *2) (-3978 (-12 (-5 *2 (-1183)) (-4 *1 (-1234 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-551)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1234 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3503 ((-646 *2) *3))) (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551)))))))))
-(-13 (-1251 |t#1| (-551)) (-10 -8 (-15 -4268 ($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |t#1|))))) (-15 -4265 ($ (-1 |t#1| (-551)) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -4177 ((-412 (-952 |t#1|)) $ (-551))) (-15 -4177 ((-412 (-952 |t#1|)) $ (-551) (-551)))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $)) (IF (|has| |t#1| (-15 -4262 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3503 ((-646 (-1183)) |t#1|))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-551))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-551)) . T) ((-25) . T) ((-38 #2=(-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-551) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-289 $ $) |has| (-551) (-1118)) ((-293) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-562) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-651 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-722 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) ((-979 |#1| #1# (-1088)) . T) ((-927) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1057 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #1#) . T))
-((-3626 (((-112) $) 12)) (-3595 (((-3 |#3| #1="failed") $) 17) (((-3 (-1183) #1#) $) NIL) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 (-551) #1#) $) NIL)) (-3594 ((|#3| $) 14) (((-1183) $) NIL) (((-412 (-551)) $) NIL) (((-551) $) NIL)))
-(((-1235 |#1| |#2| |#3|) (-10 -8 (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -3595 ((-3 |#3| #1#) |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3626 ((-112) |#1|))) (-1236 |#2| |#3|) (-1055) (-1265 |#2|)) (T -1235))
-NIL
-(-10 -8 (-15 -3595 ((-3 (-551) #1="failed") |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3595 ((-3 (-1183) #1#) |#1|)) (-15 -3594 ((-1183) |#1|)) (-15 -3595 ((-3 |#3| #1#) |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3626 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3551 ((|#2| $) 242 (-3274 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ (-551)) 110) (($ $ (-551) (-551)) 109)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) 117)) (-4181 ((|#2| $) 278)) (-4178 (((-3 |#2| "failed") $) 274)) (-4179 ((|#2| $) 275)) (-3933 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-3128 (((-410 (-1177 $)) (-1177 $)) 251 (-3274 (|has| |#2| (-916)) (|has| |#1| (-367))))) (-4224 (($ $) 174 (|has| |#1| (-367)))) (-4419 (((-410 $) $) 175 (|has| |#1| (-367)))) (-3456 (($ $) 129 (|has| |#1| (-38 (-412 (-551)))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 248 (-3274 (|has| |#2| (-916)) (|has| |#1| (-367))))) (-1763 (((-112) $ $) 165 (|has| |#1| (-367)))) (-3931 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 131 (|has| |#1| (-38 (-412 (-551)))))) (-4073 (((-551) $) 260 (-3274 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) 185)) (-3935 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#2| #2="failed") $) 281) (((-3 (-551) #2#) $) 271 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#1| (-367)))) (((-3 (-412 (-551)) #2#) $) 269 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#1| (-367)))) (((-3 (-1183) #2#) $) 253 (-3274 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3594 ((|#2| $) 282) (((-551) $) 270 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#1| (-367)))) (((-412 (-551)) $) 268 (-3274 (|has| |#2| (-1044 (-551))) (|has| |#1| (-367)))) (((-1183) $) 252 (-3274 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-4180 (($ $) 277) (($ (-551) $) 276)) (-2982 (($ $ $) 169 (|has| |#1| (-367)))) (-4409 (($ $) 72)) (-2445 (((-694 |#2|) (-694 $)) 232 (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) 231 (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 230 (-3274 (|has| |#2| (-644 (-551))) (|has| |#1| (-367)))) (((-694 (-551)) (-694 $)) 229 (-3274 (|has| |#2| (-644 (-551))) (|has| |#1| (-367))))) (-3908 (((-3 $ "failed") $) 37)) (-4177 (((-412 (-952 |#1|)) $ (-551)) 183 (|has| |#1| (-562))) (((-412 (-952 |#1|)) $ (-551) (-551)) 182 (|has| |#1| (-562)))) (-3413 (($) 244 (-3274 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2981 (($ $ $) 168 (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 163 (|has| |#1| (-367)))) (-4173 (((-112) $) 176 (|has| |#1| (-367)))) (-3624 (((-112) $) 258 (-3274 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3311 (((-112) $) 85)) (-4077 (($) 157 (|has| |#1| (-38 (-412 (-551)))))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 236 (-3274 (|has| |#2| (-892 (-382))) (|has| |#1| (-367)))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 235 (-3274 (|has| |#2| (-892 (-551))) (|has| |#1| (-367))))) (-4221 (((-551) $) 112) (((-551) $ (-551)) 111)) (-2591 (((-112) $) 35)) (-3415 (($ $) 240 (|has| |#1| (-367)))) (-3417 ((|#2| $) 238 (|has| |#1| (-367)))) (-3430 (($ $ (-551)) 128 (|has| |#1| (-38 (-412 (-551)))))) (-3886 (((-3 $ "failed") $) 272 (-3274 (|has| |#2| (-1157)) (|has| |#1| (-367))))) (-3625 (((-112) $) 259 (-3274 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4226 (($ $ (-925)) 113)) (-4265 (($ (-1 |#1| (-551)) $) 184)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) 172 (|has| |#1| (-367)))) (-4387 (((-112) $) 74)) (-3312 (($ |#1| (-551)) 73) (($ $ (-1088) (-551)) 88) (($ $ (-646 (-1088)) (-646 (-551))) 87)) (-2952 (($ $ $) 262 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3278 (($ $ $) 263 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-4408 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-367)))) (-4392 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-2079 (($ (-646 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-4228 (($ (-551) |#2|) 279)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 177 (|has| |#1| (-367)))) (-4262 (($ $) 181 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 180 (-3978 (-12 (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-551))))) (-12 (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-551)))))))) (-3887 (($) 273 (-3274 (|has| |#2| (-1157)) (|has| |#1| (-367))) CONST)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 162 (|has| |#1| (-367)))) (-3582 (($ (-646 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3550 (($ $) 243 (-3274 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3552 ((|#2| $) 246 (-3274 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-3126 (((-410 (-1177 $)) (-1177 $)) 249 (-3274 (|has| |#2| (-916)) (|has| |#1| (-367))))) (-3127 (((-410 (-1177 $)) (-1177 $)) 250 (-3274 (|has| |#2| (-916)) (|has| |#1| (-367))))) (-4182 (((-410 $) $) 173 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 170 (|has| |#1| (-367)))) (-4218 (($ $ (-551)) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 164 (|has| |#1| (-367)))) (-4393 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-551))))) (($ $ (-1183) |#2|) 223 (-3274 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-646 (-1183)) (-646 |#2|)) 222 (-3274 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-646 (-296 |#2|))) 221 (-3274 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-296 |#2|)) 220 (-3274 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) 219 (-3274 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-646 |#2|) (-646 |#2|)) 218 (-3274 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-1762 (((-776) $) 166 (|has| |#1| (-367)))) (-4249 ((|#1| $ (-551)) 116) (($ $ $) 93 (|has| (-551) (-1118))) (($ $ |#2|) 217 (-3274 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 167 (|has| |#1| (-367)))) (-4260 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 227 (|has| |#1| (-367))) (($ $ (-776)) 96 (-3978 (-3274 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) 94 (-3978 (-3274 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) 101 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) 100 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) 99 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) 98 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-3414 (($ $) 241 (|has| |#1| (-367)))) (-3416 ((|#2| $) 239 (|has| |#1| (-367)))) (-4398 (((-551) $) 76)) (-3936 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 133 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 143 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-4420 (((-226) $) 257 (-3274 (|has| |#2| (-1026)) (|has| |#1| (-367)))) (((-382) $) 256 (-3274 (|has| |#2| (-1026)) (|has| |#1| (-367)))) (((-540) $) 255 (-3274 (|has| |#2| (-619 (-540))) (|has| |#1| (-367)))) (((-896 (-382)) $) 234 (-3274 (|has| |#2| (-619 (-896 (-382)))) (|has| |#1| (-367)))) (((-896 (-551)) $) 233 (-3274 (|has| |#2| (-619 (-896 (-551)))) (|has| |#1| (-367))))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 247 (-3274 (-3274 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#1| (-367))))) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1183)) 254 (-3274 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367)))) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562)))) (-4127 ((|#1| $ (-551)) 71)) (-3123 (((-3 $ "failed") $) 60 (-3978 (-3274 (-3978 (|has| |#2| (-145)) (-3274 (|has| $ (-145)) (|has| |#2| (-916)))) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3553 ((|#2| $) 245 (-3274 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 141 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3937 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 139 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-551)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3825 (($ $) 261 (-3274 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 225 (|has| |#1| (-367))) (($ $ (-776)) 97 (-3978 (-3274 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) 95 (-3978 (-3274 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) 105 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183) (-776)) 104 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-646 (-1183))) 103 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))))) (($ $ (-1183)) 102 (-3978 (-3274 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))))) (-2984 (((-112) $ $) 265 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2985 (((-112) $ $) 266 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3473 (((-112) $ $) 6)) (-3105 (((-112) $ $) 264 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3106 (((-112) $ $) 267 (-3274 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367))) (($ |#2| |#2|) 237 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 127 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-367))) (($ |#2| $) 215 (|has| |#1| (-367))) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
-(((-1236 |#1| |#2|) (-140) (-1055) (-1265 |t#1|)) (T -1236))
-((-4398 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1265 *3)) (-5 *2 (-551)))) (-4228 (*1 *1 *2 *3) (-12 (-5 *2 (-551)) (-4 *4 (-1055)) (-4 *1 (-1236 *4 *3)) (-4 *3 (-1265 *4)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1265 *2)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1265 *3)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))) (-4178 (*1 *2 *1) (|partial| -12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))))
-(-13 (-1234 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -4228 ($ (-551) |t#2|)) (-15 -4398 ((-551) $)) (-15 -4181 (|t#2| $)) (-15 -4180 ($ $)) (-15 -4180 ($ (-551) $)) (-15 -4179 (|t#2| $)) (-15 -4178 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-367)) (-6 (-997 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-551)) . T) ((-25) . T) ((-38 #2=(-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-367)) ((-38 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-367)) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) -3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-621 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 #3=(-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1026))) ((-619 (-382)) -12 (|has| |#1| (-367)) (|has| |#2| (-1026))) ((-619 (-540)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-540)))) ((-619 (-896 (-382))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-382))))) ((-619 (-896 (-551))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-551))))) ((-232 |#2|) |has| |#1| (-367)) ((-234) -3978 (|has| |#1| (-15 * (|#1| (-551) |#1|))) (-12 (|has| |#1| (-367)) (|has| |#2| (-234)))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-289 |#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) ((-289 $ $) |has| (-551) (-1118)) ((-293) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-367) |has| |#1| (-367)) ((-342 |#2|) |has| |#1| (-367)) ((-381 |#2|) |has| |#1| (-367)) ((-405 |#2|) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-519 (-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))) ((-519 |#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-562) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-651 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-367)) ((-651 $) . T) ((-653 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-653 |#1|) . T) ((-653 |#2|) |has| |#1| (-367)) ((-653 $) . T) ((-645 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 |#2|) |has| |#1| (-367)) ((-645 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-644 (-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-551)))) ((-644 |#2|) |has| |#1| (-367)) ((-722 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 |#2|) |has| |#1| (-367)) ((-722 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-731) . T) ((-796) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-797) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-799) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-802) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-825) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-853) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-855) -3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-855))) (-12 (|has| |#1| (-367)) (|has| |#2| (-825)))) ((-906 (-1183)) -3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183))))) ((-892 (-382)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-382)))) ((-892 (-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-551)))) ((-890 |#2|) |has| |#1| (-367)) ((-916) -12 (|has| |#1| (-367)) (|has| |#2| (-916))) ((-979 |#1| #1# (-1088)) . T) ((-927) |has| |#1| (-367)) ((-997 |#2|) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1026) -12 (|has| |#1| (-367)) (|has| |#2| (-1026))) ((-1044 (-412 (-551))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551)))) ((-1044 (-551)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551)))) ((-1044 #3#) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-1044 |#2|) . T) ((-1057 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1057 |#1|) . T) ((-1057 |#2|) |has| |#1| (-367)) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1062 |#1|) . T) ((-1062 |#2|) |has| |#1| (-367)) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) -12 (|has| |#1| (-367)) (|has| |#2| (-1157))) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))) ((-1222) |has| |#1| (-367)) ((-1227) |has| |#1| (-367)) ((-1234 |#1|) . T) ((-1251 |#1| #1#) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 81)) (-3551 ((|#2| $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-310))))) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 100)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-551)) 109) (($ $ (-551) (-551)) 111)) (-4223 (((-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|))) $) 51)) (-4181 ((|#2| $) 11)) (-4178 (((-3 |#2| "failed") $) 35)) (-4179 ((|#2| $) 36)) (-3933 (($ $) 206 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 182 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-916))))) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-916))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) 202 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 178 (|has| |#1| (-38 (-412 (-551)))))) (-4073 (((-551) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-825))))) (-4268 (($ (-1160 (-2 (|:| |k| (-551)) (|:| |c| |#1|)))) 59)) (-3935 (($ $) 210 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 186 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) 157) (((-3 (-551) #2#) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551))))) (((-3 (-412 (-551)) #2#) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551))))) (((-3 (-1183) #2#) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))))) (-3594 ((|#2| $) 156) (((-551) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551))))) (((-412 (-551)) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-551))))) (((-1183) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))))) (-4180 (($ $) 65) (($ (-551) $) 28)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-2445 (((-694 |#2|) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-644 (-551))))) (((-694 (-551)) (-694 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-644 (-551)))))) (-3908 (((-3 $ "failed") $) 88)) (-4177 (((-412 (-952 |#1|)) $ (-551)) 124 (|has| |#1| (-562))) (((-412 (-952 |#1|)) $ (-551) (-551)) 126 (|has| |#1| (-562)))) (-3413 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-550))))) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3624 (((-112) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-825))))) (-3311 (((-112) $) 74)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-892 (-551)))))) (-4221 (((-551) $) 105) (((-551) $ (-551)) 107)) (-2591 (((-112) $) NIL)) (-3415 (($ $) NIL (|has| |#1| (-367)))) (-3417 ((|#2| $) 165 (|has| |#1| (-367)))) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3886 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1157))))) (-3625 (((-112) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-825))))) (-4226 (($ $ (-925)) 148)) (-4265 (($ (-1 |#1| (-551)) $) 144)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-551)) 20) (($ $ (-1088) (-551)) NIL) (($ $ (-646 (-1088)) (-646 (-551))) NIL)) (-2952 (($ $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-3278 (($ $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-4408 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-367)))) (-4392 (($ $) 176 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4228 (($ (-551) |#2|) 10)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 159 (|has| |#1| (-367)))) (-4262 (($ $) 228 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 233 (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))))))) (-3887 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1157))) CONST)) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3550 (($ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-310))))) (-3552 ((|#2| $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-550))))) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-916))))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-916))))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-551)) 138)) (-3907 (((-3 $ "failed") $ $) 128 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) 174 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-551))))) (($ $ (-1183) |#2|) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|)))) (($ $ (-646 (-1183)) (-646 |#2|)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|)))) (($ $ (-646 (-296 |#2|))) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|)))) (($ $ (-296 |#2|)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|)))) (($ $ (-646 |#2|) (-646 |#2|)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-551)) 103) (($ $ $) 90 (|has| (-551) (-1118))) (($ $ |#2|) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) 149 (-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-1183)) 153 (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183))))))) (-3414 (($ $) NIL (|has| |#1| (-367)))) (-3416 ((|#2| $) 166 (|has| |#1| (-367)))) (-4398 (((-551) $) 12)) (-3936 (($ $) 212 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 188 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 208 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 184 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 204 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 180 (|has| |#1| (-38 (-412 (-551)))))) (-4420 (((-226) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1026)))) (((-382) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1026)))) (((-540) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-619 (-540))))) (((-896 (-382)) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-619 (-896 (-551))))))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-367)) (|has| |#2| (-916))))) (-3310 (($ $) 136)) (-4396 (((-868) $) 267) (($ (-551)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183))))) (($ (-412 (-551))) 169 (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-551)) 85)) (-3123 (((-3 $ "failed") $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#1| (-367)) (|has| |#2| (-916))) (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145)))))) (-3548 (((-776)) 155 T CONST)) (-4222 ((|#1| $) 102)) (-3553 ((|#2| $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-550))))) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 218 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 194 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) 214 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 190 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 222 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 198 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-551)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-551)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 224 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 200 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 220 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 196 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 216 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 192 (|has| |#1| (-38 (-412 (-551)))))) (-3825 (($ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-825))))) (-3528 (($) 13 T CONST)) (-3085 (($) 18 T CONST)) (-3090 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $) NIL (-3978 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-551) |#1|))))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-646 (-1183))) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-551) |#1|)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183))))))) (-2984 (((-112) $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-2985 (((-112) $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-3473 (((-112) $ $) 72)) (-3105 (((-112) $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-3106 (((-112) $ $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 163 (|has| |#1| (-367))) (($ |#2| |#2|) 164 (|has| |#1| (-367)))) (-4287 (($ $) 227) (($ $ $) 78)) (-4289 (($ $ $) 76)) (** (($ $ (-925)) NIL) (($ $ (-776)) 84) (($ $ (-551)) 160 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 172 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-367))) (($ |#2| $) 161 (|has| |#1| (-367))) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1237 |#1| |#2|) (-1236 |#1| |#2|) (-1055) (-1265 |#1|)) (T -1237))
-NIL
-(-1236 |#1| |#2|)
-((-4184 (((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112)) 13)) (-4183 (((-410 |#1|) |#1|) 26)) (-4182 (((-410 |#1|) |#1|) 24)))
-(((-1238 |#1|) (-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1|)) (-15 -4184 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112)))) (-1248 (-551))) (T -1238))
-((-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551))))))) (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))) (-4183 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))))
-(-10 -7 (-15 -4182 ((-410 |#1|) |#1|)) (-15 -4183 ((-410 |#1|) |#1|)) (-15 -4184 ((-2 (|:| |contp| (-551)) (|:| -1964 (-646 (-2 (|:| |irr| |#1|) (|:| -2576 (-551)))))) |#1| (-112))))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4186 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4408 (((-1160 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-853)))) (-3667 ((|#1| $) 15)) (-3669 ((|#1| $) 12)) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-3665 (((-551) $) 19)) (-3666 ((|#1| $) 18)) (-3668 ((|#1| $) 13)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4185 (((-112) $) 17)) (-4413 (((-1160 |#1|) $) 41 (|has| |#1| (-853))) (((-1160 |#1|) (-646 $)) 40 (|has| |#1| (-853)))) (-4420 (($ |#1|) 26)) (-4396 (($ (-1095 |#1|)) 25) (((-868) $) 37 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4187 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3670 (($ $ (-551)) 14)) (-3473 (((-112) $ $) 30 (|has| |#1| (-1107)))))
-(((-1239 |#1|) (-13 (-1100 |#1|) (-10 -8 (-15 -4187 ($ |#1|)) (-15 -4186 ($ |#1|)) (-15 -4396 ($ (-1095 |#1|))) (-15 -4185 ((-112) $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1160 |#1|))) |%noBranch|))) (-1222)) (T -1239))
-((-4187 (*1 *1 *2) (-12 (-5 *1 (-1239 *2)) (-4 *2 (-1222)))) (-4186 (*1 *1 *2) (-12 (-5 *1 (-1239 *2)) (-4 *2 (-1222)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-1222)) (-5 *1 (-1239 *3)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1222)))))
-(-13 (-1100 |#1|) (-10 -8 (-15 -4187 ($ |#1|)) (-15 -4186 ($ |#1|)) (-15 -4396 ($ (-1095 |#1|))) (-15 -4185 ((-112) $)) (IF (|has| |#1| (-1107)) (-6 (-1107)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1160 |#1|))) |%noBranch|)))
-((-4408 (((-1160 |#2|) (-1 |#2| |#1|) (-1239 |#1|)) 23 (|has| |#1| (-853))) (((-1239 |#2|) (-1 |#2| |#1|) (-1239 |#1|)) 17)))
-(((-1240 |#1| |#2|) (-10 -7 (-15 -4408 ((-1239 |#2|) (-1 |#2| |#1|) (-1239 |#1|))) (IF (|has| |#1| (-853)) (-15 -4408 ((-1160 |#2|) (-1 |#2| |#1|) (-1239 |#1|))) |%noBranch|)) (-1222) (-1222)) (T -1240))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5)) (-4 *5 (-853)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1160 *6)) (-5 *1 (-1240 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1239 *6)) (-5 *1 (-1240 *5 *6)))))
-(-10 -7 (-15 -4408 ((-1239 |#2|) (-1 |#2| |#1|) (-1239 |#1|))) (IF (|has| |#1| (-853)) (-15 -4408 ((-1160 |#2|) (-1 |#2| |#1|) (-1239 |#1|))) |%noBranch|))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4216 (((-1272 |#2|) $ (-776)) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4214 (($ (-1177 |#2|)) NIL)) (-3505 (((-1177 $) $ (-1088)) NIL) (((-1177 |#2|) $) NIL)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2251 (($ $) NIL (|has| |#2| (-562)))) (-2249 (((-112) $) NIL (|has| |#2| (-562)))) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1088))) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4205 (($ $ $) NIL (|has| |#2| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4224 (($ $) NIL (|has| |#2| (-457)))) (-4419 (((-410 $) $) NIL (|has| |#2| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-1763 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4210 (($ $ (-776)) NIL)) (-4209 (($ $ (-776)) NIL)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-457)))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| #2="failed") $) NIL) (((-3 (-412 (-551)) #2#) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) NIL (|has| |#2| (-1044 (-551)))) (((-3 (-1088) #2#) $) NIL)) (-3594 ((|#2| $) NIL) (((-412 (-551)) $) NIL (|has| |#2| (-1044 (-412 (-551))))) (((-551) $) NIL (|has| |#2| (-1044 (-551)))) (((-1088) $) NIL)) (-4206 (($ $ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2982 (($ $ $) NIL (|has| |#2| (-367)))) (-4409 (($ $) NIL)) (-2445 (((-694 (-551)) (-694 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) NIL (|has| |#2| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#2|)) (|:| |vec| (-1272 |#2|))) (-694 $) (-1272 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-2981 (($ $ $) NIL (|has| |#2| (-367)))) (-4208 (($ $ $) NIL)) (-4203 (($ $ $) NIL (|has| |#2| (-562)))) (-4202 (((-2 (|:| -4404 |#2|) (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#2| (-367)))) (-3944 (($ $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-3239 (((-646 $) $) NIL)) (-4173 (((-112) $) NIL (|has| |#2| (-916)))) (-1779 (($ $ |#2| (-776) $) NIL)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) NIL (-12 (|has| (-1088) (-892 (-382))) (|has| |#2| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) NIL (-12 (|has| (-1088) (-892 (-551))) (|has| |#2| (-892 (-551)))))) (-4221 (((-776) $ $) NIL (|has| |#2| (-562)))) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3886 (((-3 $ "failed") $) NIL (|has| |#2| (-1157)))) (-3506 (($ (-1177 |#2|) (-1088)) NIL) (($ (-1177 $) (-1088)) NIL)) (-4226 (($ $ (-776)) NIL)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) NIL (|has| |#2| (-367)))) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-3312 (($ |#2| (-776)) 18) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1088)) NIL) (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL)) (-3241 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-1780 (($ (-1 (-776) (-776)) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-4215 (((-1177 |#2|) $) NIL)) (-3504 (((-3 (-1088) #4="failed") $) NIL)) (-3313 (($ $) NIL)) (-3612 ((|#2| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3681 (((-1165) $) NIL)) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) NIL)) (-3244 (((-3 (-646 $) #4#) $) NIL)) (-3243 (((-3 (-646 $) #4#) $) NIL)) (-3245 (((-3 (-2 (|:| |var| (-1088)) (|:| -2582 (-776))) #4#) $) NIL)) (-4262 (($ $) NIL (|has| |#2| (-38 (-412 (-551)))))) (-3887 (($) NIL (|has| |#2| (-1157)) CONST)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 ((|#2| $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#2| (-457)))) (-3582 (($ (-646 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-4188 (($ $ (-776) |#2| $) NIL)) (-3126 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) NIL (|has| |#2| (-916)))) (-4182 (((-410 $) $) NIL (|has| |#2| (-916)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#2| (-367)))) (-3907 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#2| (-367)))) (-4217 (($ $ (-646 (-296 $))) NIL) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1088) |#2|) NIL) (($ $ (-646 (-1088)) (-646 |#2|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-646 (-1088)) (-646 $)) NIL)) (-1762 (((-776) $) NIL (|has| |#2| (-367)))) (-4249 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#2| (-562))) ((|#2| (-412 $) |#2|) NIL (|has| |#2| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#2| (-562)))) (-4213 (((-3 $ #5="failed") $ (-776)) NIL)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#2| (-367)))) (-4207 (($ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-4260 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4398 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-646 (-776)) $ (-646 (-1088))) NIL)) (-4420 (((-896 (-382)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-382)))) (|has| |#2| (-619 (-896 (-382)))))) (((-896 (-551)) $) NIL (-12 (|has| (-1088) (-619 (-896 (-551)))) (|has| |#2| (-619 (-896 (-551)))))) (((-540) $) NIL (-12 (|has| (-1088) (-619 (-540))) (|has| |#2| (-619 (-540)))))) (-3238 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-916))))) (-4204 (((-3 $ #5#) $ $) NIL (|has| |#2| (-562))) (((-3 (-412 $) #5#) (-412 $) $) NIL (|has| |#2| (-562)))) (-4396 (((-868) $) 13) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-1088)) NIL) (($ (-1269 |#1|)) 20) (($ (-412 (-551))) NIL (-3978 (|has| |#2| (-38 (-412 (-551)))) (|has| |#2| (-1044 (-412 (-551)))))) (($ $) NIL (|has| |#2| (-562)))) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3123 (((-3 $ #1#) $) NIL (-3978 (-12 (|has| $ (-145)) (|has| |#2| (-916))) (|has| |#2| (-145))))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL (|has| |#2| (-562)))) (-3528 (($) NIL T CONST)) (-3085 (($) 14 T CONST)) (-3090 (($ $ (-1088)) NIL) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-412 (-551))) NIL (|has| |#2| (-38 (-412 (-551))))) (($ (-412 (-551)) $) NIL (|has| |#2| (-38 (-412 (-551))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1241 |#1| |#2|) (-13 (-1248 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -4188 ($ $ (-776) |#2| $)))) (-1183) (-1055)) (T -1241))
-((-4188 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1183)) (-4 *3 (-1055)))))
-(-13 (-1248 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -4188 ($ $ (-776) |#2| $))))
-((-4408 (((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)) 15)))
-(((-1242 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)))) (-1183) (-1055) (-1183) (-1055)) (T -1242))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1241 *7 *8)) (-5 *1 (-1242 *5 *6 *7 *8)) (-14 *7 (-1183)))))
-(-10 -7 (-15 -4408 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|))))
-((-4191 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4189 ((|#1| |#3|) 13)) (-4190 ((|#3| |#3|) 19)))
-(((-1243 |#1| |#2| |#3|) (-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -4190 (|#3| |#3|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-997 |#1|) (-1248 |#2|)) (T -1243))
-((-4191 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-997 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1243 *4 *5 *3)) (-4 *3 (-1248 *5)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-997 *3)) (-5 *1 (-1243 *3 *4 *2)) (-4 *2 (-1248 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-1243 *2 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -4190 (|#3| |#3|)) (-15 -4191 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-4193 (((-3 |#2| "failed") |#2| (-776) |#1|) 37)) (-4192 (((-3 |#2| "failed") |#2| (-776)) 38)) (-4195 (((-3 (-2 (|:| -3560 |#2|) (|:| -3559 |#2|)) "failed") |#2|) 52)) (-4196 (((-646 |#2|) |#2|) 54)) (-4194 (((-3 |#2| "failed") |#2| |#2|) 48)))
-(((-1244 |#1| |#2|) (-10 -7 (-15 -4192 ((-3 |#2| "failed") |#2| (-776))) (-15 -4193 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -4194 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4195 ((-3 (-2 (|:| -3560 |#2|) (|:| -3559 |#2|)) "failed") |#2|)) (-15 -4196 ((-646 |#2|) |#2|))) (-13 (-562) (-147)) (-1248 |#1|)) (T -1244))
-((-4196 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-147))) (-5 *2 (-646 *3)) (-5 *1 (-1244 *4 *3)) (-4 *3 (-1248 *4)))) (-4195 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-147))) (-5 *2 (-2 (|:| -3560 *3) (|:| -3559 *3))) (-5 *1 (-1244 *4 *3)) (-4 *3 (-1248 *4)))) (-4194 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1244 *3 *2)) (-4 *2 (-1248 *3)))) (-4193 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-562) (-147))) (-5 *1 (-1244 *4 *2)) (-4 *2 (-1248 *4)))) (-4192 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-562) (-147))) (-5 *1 (-1244 *4 *2)) (-4 *2 (-1248 *4)))))
-(-10 -7 (-15 -4192 ((-3 |#2| "failed") |#2| (-776))) (-15 -4193 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -4194 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4195 ((-3 (-2 (|:| -3560 |#2|) (|:| -3559 |#2|)) "failed") |#2|)) (-15 -4196 ((-646 |#2|) |#2|)))
-((-4197 (((-3 (-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1245 |#1| |#2|) (-10 -7 (-15 -4197 ((-3 (-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) "failed") |#2| |#2|))) (-562) (-1248 |#1|)) (T -1245))
-((-4197 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-1245 *4 *3)) (-4 *3 (-1248 *4)))))
-(-10 -7 (-15 -4197 ((-3 (-2 (|:| -2162 |#2|) (|:| -3321 |#2|)) "failed") |#2| |#2|)))
-((-4198 ((|#2| |#2| |#2|) 22)) (-4199 ((|#2| |#2| |#2|) 36)) (-4200 ((|#2| |#2| |#2| (-776) (-776)) 44)))
-(((-1246 |#1| |#2|) (-10 -7 (-15 -4198 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2|)) (-15 -4200 (|#2| |#2| |#2| (-776) (-776)))) (-1055) (-1248 |#1|)) (T -1246))
-((-4200 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1246 *4 *2)) (-4 *2 (-1248 *4)))) (-4199 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1248 *3)))) (-4198 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -4198 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2|)) (-15 -4200 (|#2| |#2| |#2| (-776) (-776))))
-((-4216 (((-1272 |#2|) $ (-776)) 129)) (-3503 (((-646 (-1088)) $) 16)) (-4214 (($ (-1177 |#2|)) 80)) (-3240 (((-776) $) NIL) (((-776) $ (-646 (-1088))) 21)) (-3128 (((-410 (-1177 $)) (-1177 $)) 204)) (-4224 (($ $) 194)) (-4419 (((-410 $) $) 192)) (-3125 (((-3 (-646 (-1177 $)) "failed") (-646 (-1177 $)) (-1177 $)) 95)) (-4210 (($ $ (-776)) 84)) (-4209 (($ $ (-776)) 86)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3595 (((-3 |#2| #1="failed") $) 132) (((-3 (-412 (-551)) #1#) $) NIL) (((-3 (-551) #1#) $) NIL) (((-3 (-1088) #1#) $) NIL)) (-3594 ((|#2| $) 130) (((-412 (-551)) $) NIL) (((-551) $) NIL) (((-1088) $) NIL)) (-4203 (($ $ $) 170)) (-4202 (((-2 (|:| -4404 |#2|) (|:| -2162 $) (|:| -3321 $)) $ $) 172)) (-4221 (((-776) $ $) 189)) (-3886 (((-3 $ "failed") $) 138)) (-3312 (($ |#2| (-776)) NIL) (($ $ (-1088) (-776)) 59) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-3241 (((-776) $) NIL) (((-776) $ (-1088)) 54) (((-646 (-776)) $ (-646 (-1088))) 55)) (-4215 (((-1177 |#2|) $) 72)) (-3504 (((-3 (-1088) "failed") $) 52)) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) 83)) (-4262 (($ $) 219)) (-3887 (($) 134)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 201)) (-3126 (((-410 (-1177 $)) (-1177 $)) 101)) (-3127 (((-410 (-1177 $)) (-1177 $)) 99)) (-4182 (((-410 $) $) 120)) (-4217 (($ $ (-646 (-296 $))) 51) (($ $ (-296 $)) NIL) (($ $ $ $) NIL) (($ $ (-646 $) (-646 $)) NIL) (($ $ (-1088) |#2|) 39) (($ $ (-646 (-1088)) (-646 |#2|)) 36) (($ $ (-1088) $) 32) (($ $ (-646 (-1088)) (-646 $)) 30)) (-1762 (((-776) $) 207)) (-4249 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) 164) ((|#2| (-412 $) |#2|) 206) (((-412 $) $ (-412 $)) 188)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 212)) (-4260 (($ $ (-1088)) 157) (($ $ (-646 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL) (($ $ (-776)) NIL) (($ $) 155) (($ $ (-1183)) NIL) (($ $ (-646 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-646 (-1183)) (-646 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4398 (((-776) $) NIL) (((-776) $ (-1088)) 17) (((-646 (-776)) $ (-646 (-1088))) 23)) (-3238 ((|#2| $) NIL) (($ $ (-1088)) 140)) (-4204 (((-3 $ "failed") $ $) 180) (((-3 (-412 $) "failed") (-412 $) $) 176)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#2|) NIL) (($ (-1088)) 64) (($ (-412 (-551))) NIL) (($ $) NIL)))
-(((-1247 |#1| |#2|) (-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -4249 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -1762 ((-776) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -4262 (|#1| |#1|)) (-15 -4249 (|#2| (-412 |#1|) |#2|)) (-15 -4201 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4202 ((-2 (|:| -4404 |#2|) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -4204 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4221 ((-776) |#1| |#1|)) (-15 -4249 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4209 (|#1| |#1| (-776))) (-15 -4210 (|#1| |#1| (-776))) (-15 -4211 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| (-776))) (-15 -4214 (|#1| (-1177 |#2|))) (-15 -4215 ((-1177 |#2|) |#1|)) (-15 -4216 ((-1272 |#2|) |#1| (-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| |#1|)) (-15 -4249 (|#2| |#1| |#2|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3128 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3238 (|#1| |#1| (-1088))) (-15 -3503 ((-646 (-1088)) |#1|)) (-15 -3240 ((-776) |#1| (-646 (-1088)))) (-15 -3240 ((-776) |#1|)) (-15 -3312 (|#1| |#1| (-646 (-1088)) (-646 (-776)))) (-15 -3312 (|#1| |#1| (-1088) (-776))) (-15 -3241 ((-646 (-776)) |#1| (-646 (-1088)))) (-15 -3241 ((-776) |#1| (-1088))) (-15 -3504 ((-3 (-1088) "failed") |#1|)) (-15 -4398 ((-646 (-776)) |#1| (-646 (-1088)))) (-15 -4398 ((-776) |#1| (-1088))) (-15 -4396 (|#1| (-1088))) (-15 -3595 ((-3 (-1088) #1="failed") |#1|)) (-15 -3594 ((-1088) |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1088)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-1088) |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1088)) (-646 |#2|))) (-15 -4217 (|#1| |#1| (-1088) |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4398 ((-776) |#1|)) (-15 -3312 (|#1| |#2| (-776))) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3241 ((-776) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -4260 (|#1| |#1| (-646 (-1088)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1088) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1088)))) (-15 -4260 (|#1| |#1| (-1088))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|))) (-1248 |#2|) (-1055)) (T -1247))
-NIL
-(-10 -8 (-15 -4396 (|#1| |#1|)) (-15 -3129 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-410 |#1|) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -3887 (|#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 -4249 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -1762 ((-776) |#1|)) (-15 -3300 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -4262 (|#1| |#1|)) (-15 -4249 (|#2| (-412 |#1|) |#2|)) (-15 -4201 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4202 ((-2 (|:| -4404 |#2|) (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -4204 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4221 ((-776) |#1| |#1|)) (-15 -4249 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4209 (|#1| |#1| (-776))) (-15 -4210 (|#1| |#1| (-776))) (-15 -4211 ((-2 (|:| -2162 |#1|) (|:| -3321 |#1|)) |#1| (-776))) (-15 -4214 (|#1| (-1177 |#2|))) (-15 -4215 ((-1177 |#2|) |#1|)) (-15 -4216 ((-1272 |#2|) |#1| (-776))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4260 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1183) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1183)))) (-15 -4260 (|#1| |#1| (-1183))) (-15 -4260 (|#1| |#1|)) (-15 -4260 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| |#1|)) (-15 -4249 (|#2| |#1| |#2|)) (-15 -4182 ((-410 |#1|) |#1|)) (-15 -3128 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3127 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3126 ((-410 (-1177 |#1|)) (-1177 |#1|))) (-15 -3125 ((-3 (-646 (-1177 |#1|)) "failed") (-646 (-1177 |#1|)) (-1177 |#1|))) (-15 -3238 (|#1| |#1| (-1088))) (-15 -3503 ((-646 (-1088)) |#1|)) (-15 -3240 ((-776) |#1| (-646 (-1088)))) (-15 -3240 ((-776) |#1|)) (-15 -3312 (|#1| |#1| (-646 (-1088)) (-646 (-776)))) (-15 -3312 (|#1| |#1| (-1088) (-776))) (-15 -3241 ((-646 (-776)) |#1| (-646 (-1088)))) (-15 -3241 ((-776) |#1| (-1088))) (-15 -3504 ((-3 (-1088) "failed") |#1|)) (-15 -4398 ((-646 (-776)) |#1| (-646 (-1088)))) (-15 -4398 ((-776) |#1| (-1088))) (-15 -4396 (|#1| (-1088))) (-15 -3595 ((-3 (-1088) #1="failed") |#1|)) (-15 -3594 ((-1088) |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1088)) (-646 |#1|))) (-15 -4217 (|#1| |#1| (-1088) |#1|)) (-15 -4217 (|#1| |#1| (-646 (-1088)) (-646 |#2|))) (-15 -4217 (|#1| |#1| (-1088) |#2|)) (-15 -4217 (|#1| |#1| (-646 |#1|) (-646 |#1|))) (-15 -4217 (|#1| |#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| (-296 |#1|))) (-15 -4217 (|#1| |#1| (-646 (-296 |#1|)))) (-15 -4398 ((-776) |#1|)) (-15 -3312 (|#1| |#2| (-776))) (-15 -3595 ((-3 (-551) #1#) |#1|)) (-15 -3594 ((-551) |#1|)) (-15 -3595 ((-3 (-412 (-551)) #1#) |#1|)) (-15 -3594 ((-412 (-551)) |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -3595 ((-3 |#2| #1#) |#1|)) (-15 -4396 (|#1| |#2|)) (-15 -3241 ((-776) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -4260 (|#1| |#1| (-646 (-1088)) (-646 (-776)))) (-15 -4260 (|#1| |#1| (-1088) (-776))) (-15 -4260 (|#1| |#1| (-646 (-1088)))) (-15 -4260 (|#1| |#1| (-1088))) (-15 -4396 (|#1| (-551))) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4216 (((-1272 |#1|) $ (-776)) 240)) (-3503 (((-646 (-1088)) $) 112)) (-4214 (($ (-1177 |#1|)) 238)) (-3505 (((-1177 $) $ (-1088)) 127) (((-1177 |#1|) $) 126)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2251 (($ $) 90 (|has| |#1| (-562)))) (-2249 (((-112) $) 92 (|has| |#1| (-562)))) (-3240 (((-776) $) 114) (((-776) $ (-646 (-1088))) 113)) (-1410 (((-3 $ "failed") $ $) 20)) (-4205 (($ $ $) 225 (|has| |#1| (-562)))) (-3128 (((-410 (-1177 $)) (-1177 $)) 102 (|has| |#1| (-916)))) (-4224 (($ $) 100 (|has| |#1| (-457)))) (-4419 (((-410 $) $) 99 (|has| |#1| (-457)))) (-3125 (((-3 (-646 (-1177 $)) #1="failed") (-646 (-1177 $)) (-1177 $)) 105 (|has| |#1| (-916)))) (-1763 (((-112) $ $) 210 (|has| |#1| (-367)))) (-4210 (($ $ (-776)) 233)) (-4209 (($ $ (-776)) 232)) (-4201 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-457)))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| #2="failed") $) 166) (((-3 (-412 (-551)) #2#) $) 163 (|has| |#1| (-1044 (-412 (-551))))) (((-3 (-551) #2#) $) 161 (|has| |#1| (-1044 (-551)))) (((-3 (-1088) #2#) $) 138)) (-3594 ((|#1| $) 165) (((-412 (-551)) $) 164 (|has| |#1| (-1044 (-412 (-551))))) (((-551) $) 162 (|has| |#1| (-1044 (-551)))) (((-1088) $) 139)) (-4206 (($ $ $ (-1088)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2982 (($ $ $) 214 (|has| |#1| (-367)))) (-4409 (($ $) 156)) (-2445 (((-694 (-551)) (-694 $)) 136 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 (-551))) (|:| |vec| (-1272 (-551)))) (-694 $) (-1272 $)) 135 (|has| |#1| (-644 (-551)))) (((-2 (|:| -1758 (-694 |#1|)) (|:| |vec| (-1272 |#1|))) (-694 $) (-1272 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 213 (|has| |#1| (-367)))) (-4208 (($ $ $) 231)) (-4203 (($ $ $) 222 (|has| |#1| (-562)))) (-4202 (((-2 (|:| -4404 |#1|) (|:| -2162 $) (|:| -3321 $)) $ $) 221 (|has| |#1| (-562)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 208 (|has| |#1| (-367)))) (-3944 (($ $) 178 (|has| |#1| (-457))) (($ $ (-1088)) 107 (|has| |#1| (-457)))) (-3239 (((-646 $) $) 111)) (-4173 (((-112) $) 98 (|has| |#1| (-916)))) (-1779 (($ $ |#1| (-776) $) 174)) (-3217 (((-894 (-382) $) $ (-896 (-382)) (-894 (-382) $)) 86 (-12 (|has| (-1088) (-892 (-382))) (|has| |#1| (-892 (-382))))) (((-894 (-551) $) $ (-896 (-551)) (-894 (-551) $)) 85 (-12 (|has| (-1088) (-892 (-551))) (|has| |#1| (-892 (-551)))))) (-4221 (((-776) $ $) 226 (|has| |#1| (-562)))) (-2591 (((-112) $) 35)) (-2599 (((-776) $) 171)) (-3886 (((-3 $ "failed") $) 206 (|has| |#1| (-1157)))) (-3506 (($ (-1177 |#1|) (-1088)) 119) (($ (-1177 $) (-1088)) 118)) (-4226 (($ $ (-776)) 237)) (-1760 (((-3 (-646 $) #3="failed") (-646 $) $) 217 (|has| |#1| (-367)))) (-3242 (((-646 $) $) 128)) (-4387 (((-112) $) 154)) (-3312 (($ |#1| (-776)) 155) (($ $ (-1088) (-776)) 121) (($ $ (-646 (-1088)) (-646 (-776))) 120)) (-4212 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $ (-1088)) 122) (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 235)) (-3241 (((-776) $) 172) (((-776) $ (-1088)) 124) (((-646 (-776)) $ (-646 (-1088))) 123)) (-1780 (($ (-1 (-776) (-776)) $) 173)) (-4408 (($ (-1 |#1| |#1|) $) 153)) (-4215 (((-1177 |#1|) $) 239)) (-3504 (((-3 (-1088) #4="failed") $) 125)) (-3313 (($ $) 151)) (-3612 ((|#1| $) 150)) (-2079 (($ (-646 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3681 (((-1165) $) 10)) (-4211 (((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776)) 234)) (-3244 (((-3 (-646 $) #4#) $) 116)) (-3243 (((-3 (-646 $) #4#) $) 117)) (-3245 (((-3 (-2 (|:| |var| (-1088)) (|:| -2582 (-776))) #4#) $) 115)) (-4262 (($ $) 218 (|has| |#1| (-38 (-412 (-551)))))) (-3887 (($) 205 (|has| |#1| (-1157)) CONST)) (-3682 (((-1126) $) 11)) (-1982 (((-112) $) 168)) (-1981 ((|#1| $) 169)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 97 (|has| |#1| (-457)))) (-3582 (($ (-646 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3126 (((-410 (-1177 $)) (-1177 $)) 104 (|has| |#1| (-916)))) (-3127 (((-410 (-1177 $)) (-1177 $)) 103 (|has| |#1| (-916)))) (-4182 (((-410 $) $) 101 (|has| |#1| (-916)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 216 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 215 (|has| |#1| (-367)))) (-3907 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 209 (|has| |#1| (-367)))) (-4217 (($ $ (-646 (-296 $))) 147) (($ $ (-296 $)) 146) (($ $ $ $) 145) (($ $ (-646 $) (-646 $)) 144) (($ $ (-1088) |#1|) 143) (($ $ (-646 (-1088)) (-646 |#1|)) 142) (($ $ (-1088) $) 141) (($ $ (-646 (-1088)) (-646 $)) 140)) (-1762 (((-776) $) 211 (|has| |#1| (-367)))) (-4249 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-412 $) (-412 $) (-412 $)) 227 (|has| |#1| (-562))) ((|#1| (-412 $) |#1|) 219 (|has| |#1| (-367))) (((-412 $) $ (-412 $)) 207 (|has| |#1| (-562)))) (-4213 (((-3 $ "failed") $ (-776)) 236)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 212 (|has| |#1| (-367)))) (-4207 (($ $ (-1088)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-4260 (($ $ (-1088)) 46) (($ $ (-646 (-1088))) 45) (($ $ (-1088) (-776)) 44) (($ $ (-646 (-1088)) (-646 (-776))) 43) (($ $ (-776)) 255) (($ $) 253) (($ $ (-1183)) 252 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 251 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 250 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 249 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4398 (((-776) $) 152) (((-776) $ (-1088)) 132) (((-646 (-776)) $ (-646 (-1088))) 131)) (-4420 (((-896 (-382)) $) 84 (-12 (|has| (-1088) (-619 (-896 (-382)))) (|has| |#1| (-619 (-896 (-382)))))) (((-896 (-551)) $) 83 (-12 (|has| (-1088) (-619 (-896 (-551)))) (|has| |#1| (-619 (-896 (-551)))))) (((-540) $) 82 (-12 (|has| (-1088) (-619 (-540))) (|has| |#1| (-619 (-540)))))) (-3238 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ (-1088)) 108 (|has| |#1| (-457)))) (-3124 (((-3 (-1272 $) #1#) (-694 $)) 106 (-3274 (|has| $ (-145)) (|has| |#1| (-916))))) (-4204 (((-3 $ "failed") $ $) 224 (|has| |#1| (-562))) (((-3 (-412 $) "failed") (-412 $) $) 223 (|has| |#1| (-562)))) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 167) (($ (-1088)) 137) (($ (-412 (-551))) 80 (-3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551)))))) (($ $) 87 (|has| |#1| (-562)))) (-4267 (((-646 |#1|) $) 170)) (-4127 ((|#1| $ (-776)) 157) (($ $ (-1088) (-776)) 130) (($ $ (-646 (-1088)) (-646 (-776))) 129)) (-3123 (((-3 $ #1#) $) 81 (-3978 (-3274 (|has| $ (-145)) (|has| |#1| (-916))) (|has| |#1| (-145))))) (-3548 (((-776)) 32 T CONST)) (-1778 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 91 (|has| |#1| (-562)))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-1088)) 42) (($ $ (-646 (-1088))) 41) (($ $ (-1088) (-776)) 40) (($ $ (-646 (-1088)) (-646 (-776))) 39) (($ $ (-776)) 256) (($ $) 254) (($ $ (-1183)) 248 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183))) 247 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 246 (|has| |#1| (-906 (-1183)))) (($ $ (-646 (-1183)) (-646 (-776))) 245 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 160 (|has| |#1| (-38 (-412 (-551))))) (($ (-412 (-551)) $) 159 (|has| |#1| (-38 (-412 (-551))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1248 |#1|) (-140) (-1055)) (T -1248))
-((-4216 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1248 *4)) (-4 *4 (-1055)) (-5 *2 (-1272 *4)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-5 *2 (-1177 *3)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1055)) (-4 *1 (-1248 *3)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))) (-4213 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))) (-4212 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1248 *3)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1248 *4)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))) (-4208 (*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)))) (-4260 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-4206 (*1 *2 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-4249 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-4 *3 (-562)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-4 *3 (-562)) (-5 *2 (-776)))) (-4205 (*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))) (-4204 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))) (-4204 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-4 *3 (-562)))) (-4203 (*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4404 *3) (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1248 *3)))) (-4201 (*1 *2 *1 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1248 *3)))) (-4249 (*1 *2 *3 *2) (-12 (-5 *3 (-412 *1)) (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4262 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551)))))))
-(-13 (-956 |t#1| (-776) (-1088)) (-289 |t#1| |t#1|) (-289 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -4216 ((-1272 |t#1|) $ (-776))) (-15 -4215 ((-1177 |t#1|) $)) (-15 -4214 ($ (-1177 |t#1|))) (-15 -4226 ($ $ (-776))) (-15 -4213 ((-3 $ "failed") $ (-776))) (-15 -4212 ((-2 (|:| -2162 $) (|:| -3321 $)) $ $)) (-15 -4211 ((-2 (|:| -2162 $) (|:| -3321 $)) $ (-776))) (-15 -4210 ($ $ (-776))) (-15 -4209 ($ $ (-776))) (-15 -4208 ($ $ $)) (-15 -4260 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1157)) (-6 (-1157)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4207 (|t#1| $)) (-15 -4206 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-289 (-412 $) (-412 $))) (-15 -4249 ((-412 $) (-412 $) (-412 $))) (-15 -4221 ((-776) $ $)) (-15 -4205 ($ $ $)) (-15 -4204 ((-3 $ "failed") $ $)) (-15 -4204 ((-3 (-412 $) "failed") (-412 $) $)) (-15 -4203 ($ $ $)) (-15 -4202 ((-2 (|:| -4404 |t#1|) (|:| -2162 $) (|:| -3321 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-15 -4201 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-310)) (-6 -4439) (-15 -4249 (|t#1| (-412 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-551)))) (-15 -4262 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-776)) . T) ((-25) . T) ((-38 #2=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) -3978 (|has| |#1| (-1044 (-412 (-551)))) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 #3=(-1088)) . T) ((-621 |#1|) . T) ((-621 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-540)) -12 (|has| |#1| (-619 (-540))) (|has| (-1088) (-619 (-540)))) ((-619 (-896 (-382))) -12 (|has| |#1| (-619 (-896 (-382)))) (|has| (-1088) (-619 (-896 (-382))))) ((-619 (-896 (-551))) -12 (|has| |#1| (-619 (-896 (-551)))) (|has| (-1088) (-619 (-896 (-551))))) ((-232 |#1|) . T) ((-234) . T) ((-289 (-412 $) (-412 $)) |has| |#1| (-562)) ((-289 |#1| |#1|) . T) ((-289 $ $) . T) ((-293) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 $) . T) ((-329 |#1| #1#) . T) ((-381 |#1|) . T) ((-417 |#1|) . T) ((-457) -3978 (|has| |#1| (-916)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-519 #3# |#1|) . T) ((-519 #3# $) . T) ((-519 $ $) . T) ((-562) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-651 #2#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-644 (-551)) |has| |#1| (-644 (-551))) ((-644 |#1|) . T) ((-722 #2#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-731) . T) ((-906 #3#) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-382)) -12 (|has| |#1| (-892 (-382))) (|has| (-1088) (-892 (-382)))) ((-892 (-551)) -12 (|has| |#1| (-892 (-551))) (|has| (-1088) (-892 (-551)))) ((-956 |#1| #1# #3#) . T) ((-916) |has| |#1| (-916)) ((-927) |has| |#1| (-367)) ((-1044 (-412 (-551))) |has| |#1| (-1044 (-412 (-551)))) ((-1044 (-551)) |has| |#1| (-1044 (-551))) ((-1044 #3#) . T) ((-1044 |#1|) . T) ((-1057 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1157) |has| |#1| (-1157)) ((-1227) |has| |#1| (-916)))
-((-4408 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1249 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-1248 |#1|) (-1055) (-1248 |#3|)) (T -1249))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1248 *6)) (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1248 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3503 (((-646 (-1088)) $) 34)) (-4409 (($ $) 31)) (-3312 (($ |#2| |#3|) NIL) (($ $ (-1088) |#3|) 28) (($ $ (-646 (-1088)) (-646 |#3|)) 27)) (-3313 (($ $) 14)) (-3612 ((|#2| $) 12)) (-4398 ((|#3| $) 10)))
-(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -3503 ((-646 (-1088)) |#1|)) (-15 -3312 (|#1| |#1| (-646 (-1088)) (-646 |#3|))) (-15 -3312 (|#1| |#1| (-1088) |#3|)) (-15 -4409 (|#1| |#1|)) (-15 -3312 (|#1| |#2| |#3|)) (-15 -4398 (|#3| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3612 (|#2| |#1|))) (-1251 |#2| |#3|) (-1055) (-797)) (T -1250))
-NIL
-(-10 -8 (-15 -3503 ((-646 (-1088)) |#1|)) (-15 -3312 (|#1| |#1| (-646 (-1088)) (-646 |#3|))) (-15 -3312 (|#1| |#1| (-1088) |#3|)) (-15 -4409 (|#1| |#1|)) (-15 -3312 (|#1| |#2| |#3|)) (-15 -4398 (|#3| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3612 (|#2| |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4223 (((-1160 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-3311 (((-112) $) 85)) (-4221 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2591 (((-112) $) 35)) (-4226 (($ $ (-925)) 113)) (-4387 (((-112) $) 74)) (-3312 (($ |#1| |#2|) 73) (($ $ (-1088) |#2|) 88) (($ $ (-646 (-1088)) (-646 |#2|)) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4218 (($ $ |#2|) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4249 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1118)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-646 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4398 ((|#2| $) 76)) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4127 ((|#1| $ |#2|) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4219 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-646 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
+((-1324 (((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)) 23)))
+(((-1232 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1324 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1232))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1232 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
+(-10 -7 (-15 -1324 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-2691 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 174 (|has| |#1| (-367)))) (-2207 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3714 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2669 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-2712 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-2339 (($ $ $) 169 (|has| |#1| (-367)))) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-3875 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-2348 (($ $ $) 168 (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-3848 (((-112) $) 176 (|has| |#1| (-367)))) (-2755 (((-112) $) 85)) (-4408 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) 113)) (-3324 (($ (-1 |#1| (-569)) $) 184)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2019 (((-112) $) 74)) (-3838 (($ |#1| (-569)) 73) (($ $ (-1088) (-569)) 88) (($ $ (-649 (-1088)) (-649 (-569))) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-2616 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-1798 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 177 (|has| |#1| (-367)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2718 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1830 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3699 (((-423 $) $) 173 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 170 (|has| |#1| (-367)))) (-4295 (($ $ (-569)) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4367 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-4409 (((-776) $) 166 (|has| |#1| (-367)))) (-1852 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 167 (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2091 (((-569) $) 76)) (-2725 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-1503 ((|#1| $ (-569)) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4094 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1233 |#1|) (-140) (-1055)) (T -1233))
+((-2056 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1233 *3)))) (-3324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1233 *3)) (-4 *3 (-1055)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-3313 (*1 *1 *1 *2) (-2718 (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3865 ((-649 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1251 |t#1| (-569)) (-10 -8 (-15 -2056 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |t#1|))))) (-15 -3324 ($ (-1 |t#1| (-569)) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -3875 ((-412 (-958 |t#1|)) $ (-569))) (-15 -3875 ((-412 (-958 |t#1|)) $ (-569) (-569)))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3865 ((-649 (-1183)) |t#1|))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-569) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-569) (-1118)) ((-293) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T))
+((-2789 (((-112) $) 12)) (-4359 (((-3 |#3| "failed") $) 17) (((-3 (-1183) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL)) (-3043 ((|#3| $) 14) (((-1183) $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL)))
+(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -2789 ((-112) |#1|))) (-1235 |#2| |#3|) (-1055) (-1264 |#2|)) (T -1234))
+NIL
+(-10 -8 (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -4359 ((-3 (-1183) "failed") |#1|)) (-15 -3043 ((-1183) |#1|)) (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -2789 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3300 ((|#2| $) 242 (-1739 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-3911 ((|#2| $) 278)) (-3887 (((-3 |#2| "failed") $) 274)) (-1729 ((|#2| $) 275)) (-2691 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-1537 (((-423 (-1179 $)) (-1179 $)) 251 (-1739 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-4332 (($ $) 174 (|has| |#1| (-367)))) (-2207 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3714 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 248 (-1739 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-4420 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2669 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2211 (((-569) $) 260 (-1739 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-2712 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#2| "failed") $) 281) (((-3 (-569) "failed") $) 271 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) 269 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-1183) "failed") $) 253 (-1739 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3043 ((|#2| $) 282) (((-569) $) 270 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) 268 (-1739 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-1183) $) 252 (-1739 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3899 (($ $) 277) (($ (-569) $) 276)) (-2339 (($ $ $) 169 (|has| |#1| (-367)))) (-1842 (($ $) 72)) (-4091 (((-694 |#2|) (-694 $)) 232 (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 231 (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 230 (-1739 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) 229 (-1739 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3351 (((-3 $ "failed") $) 37)) (-3875 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-3295 (($) 244 (-1739 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2348 (($ $ $) 168 (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-3848 (((-112) $) 176 (|has| |#1| (-367)))) (-2769 (((-112) $) 258 (-1739 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2755 (((-112) $) 85)) (-4408 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 236 (-1739 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 235 (-1739 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-4315 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2861 (((-112) $) 35)) (-1450 (($ $) 240 (|has| |#1| (-367)))) (-4378 ((|#2| $) 238 (|has| |#1| (-367)))) (-1589 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3177 (((-3 $ "failed") $) 272 (-1739 (|has| |#2| (-1158)) (|has| |#1| (-367))))) (-2778 (((-112) $) 259 (-1739 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4352 (($ $ (-927)) 113)) (-3324 (($ (-1 |#1| (-569)) $) 184)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2019 (((-112) $) 74)) (-3838 (($ |#1| (-569)) 73) (($ $ (-1088) (-569)) 88) (($ $ (-649 (-1088)) (-649 (-569))) 87)) (-2095 (($ $ $) 262 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2406 (($ $ $) 263 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1324 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-367)))) (-2616 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-1798 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1741 (($ (-569) |#2|) 279)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 177 (|has| |#1| (-367)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2718 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-2267 (($) 273 (-1739 (|has| |#2| (-1158)) (|has| |#1| (-367))) CONST)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1830 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3288 (($ $) 243 (-1739 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3312 ((|#2| $) 246 (-1739 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1515 (((-423 (-1179 $)) (-1179 $)) 249 (-1739 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1525 (((-423 (-1179 $)) (-1179 $)) 250 (-1739 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3699 (((-423 $) $) 173 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 170 (|has| |#1| (-367)))) (-4295 (($ $ (-569)) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4367 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) |#2|) 223 (-1739 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 |#2|)) 222 (-1739 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) 221 (-1739 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) 220 (-1739 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) 219 (-1739 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) 218 (-1739 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-4409 (((-776) $) 166 (|has| |#1| (-367)))) (-1852 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1118))) (($ $ |#2|) 217 (-1739 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 167 (|has| |#1| (-367)))) (-3430 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 227 (|has| |#1| (-367))) (($ $ (-776)) 96 (-2718 (-1739 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 94 (-2718 (-1739 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) 101 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183) (-776)) 100 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1183))) 99 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183)) 98 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-1440 (($ $) 241 (|has| |#1| (-367)))) (-4390 ((|#2| $) 239 (|has| |#1| (-367)))) (-2091 (((-569) $) 76)) (-2725 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1384 (((-226) $) 257 (-1739 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-383) $) 256 (-1739 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-541) $) 255 (-1739 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) 234 (-1739 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) 233 (-1739 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 247 (-1739 (-1739 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#1| (-367))))) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1183)) 254 (-1739 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367)))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-1503 ((|#1| $ (-569)) 71)) (-1488 (((-3 $ "failed") $) 60 (-2718 (-1739 (-2718 (|has| |#2| (-145)) (-1739 (|has| $ (-145)) (|has| |#2| (-915)))) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-3323 ((|#2| $) 245 (-1739 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4094 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-3999 (($ $) 261 (-1739 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 225 (|has| |#1| (-367))) (($ $ (-776)) 97 (-2718 (-1739 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 95 (-2718 (-1739 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) 105 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183) (-776)) 104 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1183))) 103 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183)) 102 (-2718 (-1739 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-2904 (((-112) $ $) 265 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2882 (((-112) $ $) 266 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2853 (((-112) $ $) 6)) (-2893 (((-112) $ $) 264 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2872 (((-112) $ $) 267 (-1739 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367))) (($ |#2| |#2|) 237 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-367))) (($ |#2| $) 215 (|has| |#1| (-367))) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1235 |#1| |#2|) (-140) (-1055) (-1264 |t#1|)) (T -1235))
+((-2091 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3)) (-5 *2 (-569)))) (-1741 (*1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *4 (-1055)) (-4 *1 (-1235 *4 *3)) (-4 *3 (-1264 *4)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))) (-3899 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1264 *2)))) (-3899 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))) (-3887 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
+(-13 (-1233 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1741 ($ (-569) |t#2|)) (-15 -2091 ((-569) $)) (-15 -3911 (|t#2| $)) (-15 -3899 ($ $)) (-15 -3899 ($ (-569) $)) (-15 -1729 (|t#2| $)) (-15 -3887 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-367)) (-6 (-998 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-367)) ((-38 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-367)) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) -2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-621 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-619 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-619 (-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) ((-232 |#2|) |has| |#1| (-367)) ((-234) -2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 |#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) ((-289 $ $) |has| (-569) (-1118)) ((-293) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-367) |has| |#1| (-367)) ((-342 |#2|) |has| |#1| (-367)) ((-381 |#2|) |has| |#1| (-367)) ((-405 |#2|) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 (-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))) ((-519 |#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-561) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-367)) ((-651 $) . T) ((-653 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 |#2|) |has| |#1| (-367)) ((-653 $) . T) ((-645 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 |#2|) |has| |#1| (-367)) ((-645 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-644 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((-644 |#2|) |has| |#1| (-367)) ((-722 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 |#2|) |has| |#1| (-367)) ((-722 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-796) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-797) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-799) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-800) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-825) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-853) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-855) -2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-855))) (-12 (|has| |#1| (-367)) (|has| |#2| (-825)))) ((-906 (-1183)) -2718 (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) ((-892 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))) ((-890 |#2|) |has| |#1| (-367)) ((-915) -12 (|has| |#1| (-367)) (|has| |#2| (-915))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-998 |#2|) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1028) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-1044 (-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) ((-1044 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) ((-1044 #2#) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-1044 |#2|) . T) ((-1057 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 |#2|) |has| |#1| (-367)) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 |#2|) |has| |#1| (-367)) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) -12 (|has| |#1| (-367)) (|has| |#2| (-1158))) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1223) |has| |#1| (-367)) ((-1227) |has| |#1| (-367)) ((-1233 |#1|) . T) ((-1251 |#1| #0#) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 81)) (-3300 ((|#2| $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 100)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-569)) 109) (($ $ (-569) (-569)) 111)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 51)) (-3911 ((|#2| $) 11)) (-3887 (((-3 |#2| "failed") $) 35)) (-1729 ((|#2| $) 36)) (-2691 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-2211 (((-569) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 59)) (-2712 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) 157) (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-1183) "failed") $) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3043 ((|#2| $) 156) (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-1183) $) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3899 (($ $) 65) (($ (-569) $) 28)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-4091 (((-694 |#2|) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3351 (((-3 $ "failed") $) 88)) (-3875 (((-412 (-958 |#1|)) $ (-569)) 124 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 126 (|has| |#1| (-561)))) (-3295 (($) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2769 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2755 (((-112) $) 74)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-4315 (((-569) $) 105) (((-569) $ (-569)) 107)) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL (|has| |#1| (-367)))) (-4378 ((|#2| $) 165 (|has| |#1| (-367)))) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3177 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1158)) (|has| |#1| (-367))))) (-2778 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4352 (($ $ (-927)) 148)) (-3324 (($ (-1 |#1| (-569)) $) 144)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-569)) 20) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-2095 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2406 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1324 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-367)))) (-2616 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1741 (($ (-569) |#2|) 10)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 159 (|has| |#1| (-367)))) (-3313 (($ $) 228 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 233 (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-2267 (($) NIL (-12 (|has| |#2| (-1158)) (|has| |#1| (-367))) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3288 (($ $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3312 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-569)) 138)) (-2374 (((-3 $ "failed") $ $) 128 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) |#2|) NIL (-12 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 |#2|)) NIL (-12 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-569)) 103) (($ $ $) 90 (|has| (-569) (-1118))) (($ $ |#2|) NIL (-12 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2718 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 149 (-2718 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) 153 (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1440 (($ $) NIL (|has| |#1| (-367)))) (-4390 ((|#2| $) 166 (|has| |#1| (-367)))) (-2091 (((-569) $) 12)) (-2725 (($ $) 212 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-1384 (((-226) $) NIL (-12 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-541) $) NIL (-12 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2745 (($ $) 136)) (-2388 (((-867) $) 267) (($ (-569)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1183)) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367)))) (($ (-412 (-569))) 169 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-569)) 85)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))) (-12 (|has| |#2| (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3263 (((-776)) 155 T CONST)) (-2132 ((|#1| $) 102)) (-3323 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) 214 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 222 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-569)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 224 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 220 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 216 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-3999 (($ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1786 (($) 13 T CONST)) (-1796 (($) 18 T CONST)) (-2749 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2718 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2718 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2904 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2882 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2853 (((-112) $ $) 72)) (-2893 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2872 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 163 (|has| |#1| (-367))) (($ |#2| |#2|) 164 (|has| |#1| (-367)))) (-2946 (($ $) 227) (($ $ $) 78)) (-2935 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 84) (($ $ (-569)) 160 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 172 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-367))) (($ |#2| $) 161 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1236 |#1| |#2|) (-1235 |#1| |#2|) (-1055) (-1264 |#1|)) (T -1236))
+NIL
+(-1235 |#1| |#2|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3300 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 10)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2586 (($ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2564 (((-112) $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4305 (($ $ (-569)) NIL) (($ $ (-569) (-569)) NIL)) (-4324 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-3911 (((-1265 |#1| |#2| |#3|) $) NIL)) (-3887 (((-3 (-1265 |#1| |#2| |#3|) "failed") $) NIL)) (-1729 (((-1265 |#1| |#2| |#3|) $) NIL)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2211 (((-569) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2056 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-1265 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3043 (((-1265 |#1| |#2| |#3|) $) NIL) (((-1183) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3899 (($ $) NIL) (($ (-569) $) NIL)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-1265 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-1265 |#1| |#2| |#3|))) (|:| |vec| (-1273 (-1265 |#1| |#2| |#3|)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3351 (((-3 $ "failed") $) NIL)) (-3875 (((-412 (-958 |#1|)) $ (-569)) NIL (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) NIL (|has| |#1| (-561)))) (-3295 (($) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2769 (((-112) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-4315 (((-569) $) NIL) (((-569) $ (-569)) NIL)) (-2861 (((-112) $) NIL)) (-1450 (($ $) NIL (|has| |#1| (-367)))) (-4378 (((-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3177 (((-3 $ "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))))) (-2778 (((-112) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4352 (($ $ (-927)) NIL)) (-3324 (($ (-1 |#1| (-569)) $) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-569)) 18) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-2095 (($ $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2406 (($ $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1741 (($ (-569) (-1265 |#1| |#2| |#3|)) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) 27 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 28 (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))) CONST)) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3288 (($ $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3312 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-569)) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1265 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1265 |#1| |#2| |#3|)) (-649 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-569)) NIL) (($ $ $) NIL (|has| (-569) (-1118))) (($ $ (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-289 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 26) (($ $ (-776)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 25 (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1440 (($ $) NIL (|has| |#1| (-367)))) (-4390 (((-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-2091 (((-569) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1384 (((-541) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1265 |#1| |#2| |#3|)) NIL) (($ (-1269 |#2|)) 24) (($ (-1183)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-1503 ((|#1| $ (-569)) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 11)) (-3323 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3999 (($ $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1786 (($) 20 T CONST)) (-1796 (($) 15 T CONST)) (-2749 (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2904 (((-112) $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2882 (((-112) $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2853 (((-112) $ $) NIL)) (-2893 (((-112) $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2872 (((-112) $ $) NIL (-2718 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367))) (($ (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1265 |#1| |#2| |#3|)) NIL (|has| |#1| (-367))) (($ (-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1237 |#1| |#2| |#3|) (-13 (-1235 |#1| (-1265 |#1| |#2| |#3|)) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1237))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1235 |#1| (-1265 |#1| |#2| |#3|)) (-10 -8 (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-3935 (((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112)) 13)) (-3924 (((-423 |#1|) |#1|) 26)) (-3699 (((-423 |#1|) |#1|) 24)))
+(((-1238 |#1|) (-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1|)) (-15 -3935 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112)))) (-1249 (-569))) (T -1238))
+((-3935 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569))))))) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
+(-10 -7 (-15 -3699 ((-423 |#1|) |#1|)) (-15 -3924 ((-423 |#1|) |#1|)) (-15 -3935 ((-2 (|:| |contp| (-569)) (|:| -2671 (-649 (-2 (|:| |irr| |#1|) (|:| -2727 (-569)))))) |#1| (-112))))
+((-1324 (((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|)) 23 (|has| |#1| (-853))) (((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|)) 17)))
+(((-1239 |#1| |#2|) (-10 -7 (-15 -1324 ((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) (IF (|has| |#1| (-853)) (-15 -1324 ((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) |%noBranch|)) (-1223) (-1223)) (T -1239))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-853)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1239 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1240 *6)) (-5 *1 (-1239 *5 *6)))))
+(-10 -7 (-15 -1324 ((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) (IF (|has| |#1| (-853)) (-15 -1324 ((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) |%noBranch|))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2741 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1324 (((-1163 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-853)))) (-1977 ((|#1| $) 15)) (-1458 ((|#1| $) 12)) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1468 (((-569) $) 19)) (-1968 ((|#1| $) 18)) (-1769 ((|#1| $) 13)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3946 (((-112) $) 17)) (-1356 (((-1163 |#1|) $) 41 (|has| |#1| (-853))) (((-1163 |#1|) (-649 $)) 40 (|has| |#1| (-853)))) (-1384 (($ |#1|) 26)) (-2388 (($ (-1100 |#1|)) 25) (((-867) $) 37 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3533 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2635 (($ $ (-569)) 14)) (-2853 (((-112) $ $) 30 (|has| |#1| (-1106)))))
+(((-1240 |#1|) (-13 (-1099 |#1|) (-10 -8 (-15 -3533 ($ |#1|)) (-15 -2741 ($ |#1|)) (-15 -2388 ($ (-1100 |#1|))) (-15 -3946 ((-112) $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1163 |#1|))) |%noBranch|))) (-1223)) (T -1240))
+((-3533 (*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))) (-2741 (*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1100 *3)) (-4 *3 (-1223)) (-5 *1 (-1240 *3)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1223)))))
+(-13 (-1099 |#1|) (-10 -8 (-15 -3533 ($ |#1|)) (-15 -2741 ($ |#1|)) (-15 -2388 ($ (-1100 |#1|))) (-15 -3946 ((-112) $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1163 |#1|))) |%noBranch|)))
+((-1324 (((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|)) 15)))
+(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 ((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|)))) (-1183) (-1055) (-1183) (-1055)) (T -1241))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1246 *5 *6)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1246 *7 *8)) (-5 *1 (-1241 *5 *6 *7 *8)) (-14 *7 (-1183)))))
+(-10 -7 (-15 -1324 ((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|))))
+((-3994 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3969 ((|#1| |#3|) 13)) (-3981 ((|#3| |#3|) 19)))
+(((-1242 |#1| |#2| |#3|) (-10 -7 (-15 -3969 (|#1| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-998 |#1|) (-1249 |#2|)) (T -1242))
+((-3994 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1242 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-1242 *3 *4 *2)) (-4 *2 (-1249 *4)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-1242 *2 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -3969 (|#1| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3994 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4016 (((-3 |#2| "failed") |#2| (-776) |#1|) 37)) (-4005 (((-3 |#2| "failed") |#2| (-776)) 38)) (-4039 (((-3 (-2 (|:| -4375 |#2|) (|:| -4386 |#2|)) "failed") |#2|) 52)) (-4050 (((-649 |#2|) |#2|) 54)) (-4028 (((-3 |#2| "failed") |#2| |#2|) 48)))
+(((-1243 |#1| |#2|) (-10 -7 (-15 -4005 ((-3 |#2| "failed") |#2| (-776))) (-15 -4016 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -4028 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4039 ((-3 (-2 (|:| -4375 |#2|) (|:| -4386 |#2|)) "failed") |#2|)) (-15 -4050 ((-649 |#2|) |#2|))) (-13 (-561) (-147)) (-1249 |#1|)) (T -1243))
+((-4050 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3)) (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))) (-4039 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| -4375 *3) (|:| -4386 *3))) (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))) (-4028 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1249 *3)))) (-4016 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))) (-4005 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
+(-10 -7 (-15 -4005 ((-3 |#2| "failed") |#2| (-776))) (-15 -4016 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -4028 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4039 ((-3 (-2 (|:| -4375 |#2|) (|:| -4386 |#2|)) "failed") |#2|)) (-15 -4050 ((-649 |#2|) |#2|)))
+((-4062 (((-3 (-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1244 |#1| |#2|) (-10 -7 (-15 -4062 ((-3 (-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) "failed") |#2| |#2|))) (-561) (-1249 |#1|)) (T -1244))
+((-4062 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-1244 *4 *3)) (-4 *3 (-1249 *4)))))
+(-10 -7 (-15 -4062 ((-3 (-2 (|:| -4273 |#2|) (|:| -2804 |#2|)) "failed") |#2| |#2|)))
+((-4074 ((|#2| |#2| |#2|) 22)) (-4084 ((|#2| |#2| |#2|) 36)) (-4096 ((|#2| |#2| |#2| (-776) (-776)) 44)))
+(((-1245 |#1| |#2|) (-10 -7 (-15 -4074 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4096 (|#2| |#2| |#2| (-776) (-776)))) (-1055) (-1249 |#1|)) (T -1245))
+((-4096 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1249 *4)))) (-4084 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))) (-4074 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -4074 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4096 (|#2| |#2| |#2| (-776) (-776))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-4284 (((-1273 |#2|) $ (-776)) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-4258 (($ (-1179 |#2|)) NIL)) (-3663 (((-1179 $) $ (-1088)) NIL) (((-1179 |#2|) $) NIL)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2586 (($ $) NIL (|has| |#2| (-561)))) (-2564 (((-112) $) NIL (|has| |#2| (-561)))) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4156 (($ $ $) NIL (|has| |#2| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4332 (($ $) NIL (|has| |#2| (-457)))) (-2207 (((-423 $) $) NIL (|has| |#2| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4420 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4213 (($ $ (-776)) NIL)) (-4201 (($ $ (-776)) NIL)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-457)))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3043 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-1088) $) NIL)) (-4168 (($ $ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2339 (($ $ $) NIL (|has| |#2| (-367)))) (-1842 (($ $) NIL)) (-4091 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2348 (($ $ $) NIL (|has| |#2| (-367)))) (-4190 (($ $ $) NIL)) (-4133 (($ $ $) NIL (|has| |#2| (-561)))) (-4121 (((-2 (|:| -1406 |#2|) (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-3556 (($ $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-1829 (((-649 $) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-915)))) (-1482 (($ $ |#2| (-776) $) NIL)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-4315 (((-776) $ $) NIL (|has| |#2| (-561)))) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3177 (((-3 $ "failed") $) NIL (|has| |#2| (-1158)))) (-3851 (($ (-1179 |#2|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-4352 (($ $ (-776)) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3838 (($ |#2| (-776)) 18) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1088)) NIL) (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL)) (-3304 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1491 (($ (-1 (-776) (-776)) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-4270 (((-1179 |#2|) $) NIL)) (-4212 (((-3 (-1088) "failed") $) NIL)) (-1808 (($ $) NIL)) (-1820 ((|#2| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2050 (((-1165) $) NIL)) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) NIL)) (-3338 (((-3 (-649 $) "failed") $) NIL)) (-3327 (((-3 (-649 $) "failed") $) NIL)) (-3349 (((-3 (-2 (|:| |var| (-1088)) (|:| -2777 (-776))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#2| (-38 (-412 (-569)))))) (-2267 (($) NIL (|has| |#2| (-1158)) CONST)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 ((|#2| $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1830 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3957 (($ $ (-776) |#2| $) NIL)) (-1515 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3699 (((-423 $) $) NIL (|has| |#2| (-915)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#2| (-367)))) (-2374 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1679 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#2|) NIL) (($ $ (-649 (-1088)) (-649 |#2|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-4409 (((-776) $) NIL (|has| |#2| (-367)))) (-1852 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#2| (-561))) ((|#2| (-412 $) |#2|) NIL (|has| |#2| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#2| (-561)))) (-4247 (((-3 $ "failed") $ (-776)) NIL)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#2| (-367)))) (-4180 (($ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-3430 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2091 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1384 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3281 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-4146 (((-3 $ "failed") $ $) NIL (|has| |#2| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#2| (-561)))) (-2388 (((-867) $) 13) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1088)) NIL) (($ (-1269 |#1|)) 20) (($ (-412 (-569))) NIL (-2718 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1488 (((-3 $ "failed") $) NIL (-2718 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1786 (($) NIL T CONST)) (-1796 (($) 14 T CONST)) (-2749 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1246 |#1| |#2|) (-13 (-1249 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -3957 ($ $ (-776) |#2| $)))) (-1183) (-1055)) (T -1246))
+((-3957 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1246 *4 *3)) (-14 *4 (-1183)) (-4 *3 (-1055)))))
+(-13 (-1249 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -3957 ($ $ (-776) |#2| $))))
+((-1324 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-1249 |#1|) (-1055) (-1249 |#3|)) (T -1247))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1249 *6)) (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1249 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4284 (((-1273 |#2|) $ (-776)) 129)) (-3865 (((-649 (-1088)) $) 16)) (-4258 (($ (-1179 |#2|)) 80)) (-3292 (((-776) $) NIL) (((-776) $ (-649 (-1088))) 21)) (-1537 (((-423 (-1179 $)) (-1179 $)) 204)) (-4332 (($ $) 194)) (-2207 (((-423 $) $) 192)) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 95)) (-4213 (($ $ (-776)) 84)) (-4201 (($ $ (-776)) 86)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4359 (((-3 |#2| "failed") $) 132) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-1088) "failed") $) NIL)) (-3043 ((|#2| $) 130) (((-412 (-569)) $) NIL) (((-569) $) NIL) (((-1088) $) NIL)) (-4133 (($ $ $) 170)) (-4121 (((-2 (|:| -1406 |#2|) (|:| -4273 $) (|:| -2804 $)) $ $) 172)) (-4315 (((-776) $ $) 189)) (-3177 (((-3 $ "failed") $) 138)) (-3838 (($ |#2| (-776)) NIL) (($ $ (-1088) (-776)) 59) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3304 (((-776) $) NIL) (((-776) $ (-1088)) 54) (((-649 (-776)) $ (-649 (-1088))) 55)) (-4270 (((-1179 |#2|) $) 72)) (-4212 (((-3 (-1088) "failed") $) 52)) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) 83)) (-3313 (($ $) 219)) (-2267 (($) 134)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 201)) (-1515 (((-423 (-1179 $)) (-1179 $)) 101)) (-1525 (((-423 (-1179 $)) (-1179 $)) 99)) (-3699 (((-423 $) $) 120)) (-1679 (($ $ (-649 (-297 $))) 51) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#2|) 39) (($ $ (-649 (-1088)) (-649 |#2|)) 36) (($ $ (-1088) $) 32) (($ $ (-649 (-1088)) (-649 $)) 30)) (-4409 (((-776) $) 207)) (-1852 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) 164) ((|#2| (-412 $) |#2|) 206) (((-412 $) $ (-412 $)) 188)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 212)) (-3430 (($ $ (-1088)) 157) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) 155) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-2091 (((-776) $) NIL) (((-776) $ (-1088)) 17) (((-649 (-776)) $ (-649 (-1088))) 23)) (-3281 ((|#2| $) NIL) (($ $ (-1088)) 140)) (-4146 (((-3 $ "failed") $ $) 180) (((-3 (-412 $) "failed") (-412 $) $) 176)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1088)) 64) (($ (-412 (-569))) NIL) (($ $) NIL)))
+(((-1248 |#1| |#2|) (-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -4409 ((-776) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1852 (|#2| (-412 |#1|) |#2|)) (-15 -4108 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4121 ((-2 (|:| -1406 |#2|) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4146 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4146 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4315 ((-776) |#1| |#1|)) (-15 -1852 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4201 (|#1| |#1| (-776))) (-15 -4213 (|#1| |#1| (-776))) (-15 -4223 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| (-776))) (-15 -4258 (|#1| (-1179 |#2|))) (-15 -4270 ((-1179 |#2|) |#1|)) (-15 -4284 ((-1273 |#2|) |#1| (-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| |#1|)) (-15 -1852 (|#2| |#1| |#2|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -1537 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3281 (|#1| |#1| (-1088))) (-15 -3865 ((-649 (-1088)) |#1|)) (-15 -3292 ((-776) |#1| (-649 (-1088)))) (-15 -3292 ((-776) |#1|)) (-15 -3838 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3838 (|#1| |#1| (-1088) (-776))) (-15 -3304 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3304 ((-776) |#1| (-1088))) (-15 -4212 ((-3 (-1088) "failed") |#1|)) (-15 -2091 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -2091 ((-776) |#1| (-1088))) (-15 -2388 (|#1| (-1088))) (-15 -4359 ((-3 (-1088) "failed") |#1|)) (-15 -3043 ((-1088) |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1088)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-1088) |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1088)) (-649 |#2|))) (-15 -1679 (|#1| |#1| (-1088) |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -2091 ((-776) |#1|)) (-15 -3838 (|#1| |#2| (-776))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -3304 ((-776) |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -3430 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1088) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1088)))) (-15 -3430 (|#1| |#1| (-1088))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|))) (-1249 |#2|) (-1055)) (T -1248))
+NIL
+(-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -1547 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-423 |#1|) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2267 (|#1|)) (-15 -3177 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -4409 ((-776) |#1|)) (-15 -2636 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1852 (|#2| (-412 |#1|) |#2|)) (-15 -4108 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4121 ((-2 (|:| -1406 |#2|) (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4146 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4146 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4315 ((-776) |#1| |#1|)) (-15 -1852 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4201 (|#1| |#1| (-776))) (-15 -4213 (|#1| |#1| (-776))) (-15 -4223 ((-2 (|:| -4273 |#1|) (|:| -2804 |#1|)) |#1| (-776))) (-15 -4258 (|#1| (-1179 |#2|))) (-15 -4270 ((-1179 |#2|) |#1|)) (-15 -4284 ((-1273 |#2|) |#1| (-776))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1183) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1183)))) (-15 -3430 (|#1| |#1| (-1183))) (-15 -3430 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| |#1|)) (-15 -1852 (|#2| |#1| |#2|)) (-15 -3699 ((-423 |#1|) |#1|)) (-15 -1537 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1525 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1515 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -1506 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3281 (|#1| |#1| (-1088))) (-15 -3865 ((-649 (-1088)) |#1|)) (-15 -3292 ((-776) |#1| (-649 (-1088)))) (-15 -3292 ((-776) |#1|)) (-15 -3838 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3838 (|#1| |#1| (-1088) (-776))) (-15 -3304 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3304 ((-776) |#1| (-1088))) (-15 -4212 ((-3 (-1088) "failed") |#1|)) (-15 -2091 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -2091 ((-776) |#1| (-1088))) (-15 -2388 (|#1| (-1088))) (-15 -4359 ((-3 (-1088) "failed") |#1|)) (-15 -3043 ((-1088) |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1088)) (-649 |#1|))) (-15 -1679 (|#1| |#1| (-1088) |#1|)) (-15 -1679 (|#1| |#1| (-649 (-1088)) (-649 |#2|))) (-15 -1679 (|#1| |#1| (-1088) |#2|)) (-15 -1679 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1679 (|#1| |#1| |#1| |#1|)) (-15 -1679 (|#1| |#1| (-297 |#1|))) (-15 -1679 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -2091 ((-776) |#1|)) (-15 -3838 (|#1| |#2| (-776))) (-15 -4359 ((-3 (-569) "failed") |#1|)) (-15 -3043 ((-569) |#1|)) (-15 -4359 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3043 ((-412 (-569)) |#1|)) (-15 -3043 (|#2| |#1|)) (-15 -4359 ((-3 |#2| "failed") |#1|)) (-15 -2388 (|#1| |#2|)) (-15 -3304 ((-776) |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -3430 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3430 (|#1| |#1| (-1088) (-776))) (-15 -3430 (|#1| |#1| (-649 (-1088)))) (-15 -3430 (|#1| |#1| (-1088))) (-15 -2388 (|#1| (-569))) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-4284 (((-1273 |#1|) $ (-776)) 240)) (-3865 (((-649 (-1088)) $) 112)) (-4258 (($ (-1179 |#1|)) 238)) (-3663 (((-1179 $) $ (-1088)) 127) (((-1179 |#1|) $) 126)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2586 (($ $) 90 (|has| |#1| (-561)))) (-2564 (((-112) $) 92 (|has| |#1| (-561)))) (-3292 (((-776) $) 114) (((-776) $ (-649 (-1088))) 113)) (-3798 (((-3 $ "failed") $ $) 20)) (-4156 (($ $ $) 225 (|has| |#1| (-561)))) (-1537 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-4332 (($ $) 100 (|has| |#1| (-457)))) (-2207 (((-423 $) $) 99 (|has| |#1| (-457)))) (-1506 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-4420 (((-112) $ $) 210 (|has| |#1| (-367)))) (-4213 (($ $ (-776)) 233)) (-4201 (($ $ (-776)) 232)) (-4108 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-457)))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) 138)) (-3043 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) (((-1088) $) 139)) (-4168 (($ $ $ (-1088)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2339 (($ $ $) 214 (|has| |#1| (-367)))) (-1842 (($ $) 156)) (-4091 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -4368 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 213 (|has| |#1| (-367)))) (-4190 (($ $ $) 231)) (-4133 (($ $ $) 222 (|has| |#1| (-561)))) (-4121 (((-2 (|:| -1406 |#1|) (|:| -4273 $) (|:| -2804 $)) $ $) 221 (|has| |#1| (-561)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 208 (|has| |#1| (-367)))) (-3556 (($ $) 178 (|has| |#1| (-457))) (($ $ (-1088)) 107 (|has| |#1| (-457)))) (-1829 (((-649 $) $) 111)) (-3848 (((-112) $) 98 (|has| |#1| (-915)))) (-1482 (($ $ |#1| (-776) $) 174)) (-3032 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-4315 (((-776) $ $) 226 (|has| |#1| (-561)))) (-2861 (((-112) $) 35)) (-2933 (((-776) $) 171)) (-3177 (((-3 $ "failed") $) 206 (|has| |#1| (-1158)))) (-3851 (($ (-1179 |#1|) (-1088)) 119) (($ (-1179 $) (-1088)) 118)) (-4352 (($ $ (-776)) 237)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 217 (|has| |#1| (-367)))) (-3316 (((-649 $) $) 128)) (-2019 (((-112) $) 154)) (-3838 (($ |#1| (-776)) 155) (($ $ (-1088) (-776)) 121) (($ $ (-649 (-1088)) (-649 (-776))) 120)) (-4234 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $ (-1088)) 122) (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 235)) (-3304 (((-776) $) 172) (((-776) $ (-1088)) 124) (((-649 (-776)) $ (-649 (-1088))) 123)) (-1491 (($ (-1 (-776) (-776)) $) 173)) (-1324 (($ (-1 |#1| |#1|) $) 153)) (-4270 (((-1179 |#1|) $) 239)) (-4212 (((-3 (-1088) "failed") $) 125)) (-1808 (($ $) 151)) (-1820 ((|#1| $) 150)) (-1798 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-2050 (((-1165) $) 10)) (-4223 (((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776)) 234)) (-3338 (((-3 (-649 $) "failed") $) 116)) (-3327 (((-3 (-649 $) "failed") $) 117)) (-3349 (((-3 (-2 (|:| |var| (-1088)) (|:| -2777 (-776))) "failed") $) 115)) (-3313 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2267 (($) 205 (|has| |#1| (-1158)) CONST)) (-3461 (((-1126) $) 11)) (-1787 (((-112) $) 168)) (-1794 ((|#1| $) 169)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1830 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-1515 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-1525 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3699 (((-423 $) $) 101 (|has| |#1| (-915)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 215 (|has| |#1| (-367)))) (-2374 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 209 (|has| |#1| (-367)))) (-1679 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ (-1088) |#1|) 143) (($ $ (-649 (-1088)) (-649 |#1|)) 142) (($ $ (-1088) $) 141) (($ $ (-649 (-1088)) (-649 $)) 140)) (-4409 (((-776) $) 211 (|has| |#1| (-367)))) (-1852 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-412 $) (-412 $) (-412 $)) 227 (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) 219 (|has| |#1| (-367))) (((-412 $) $ (-412 $)) 207 (|has| |#1| (-561)))) (-4247 (((-3 $ "failed") $ (-776)) 236)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 212 (|has| |#1| (-367)))) (-4180 (($ $ (-1088)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-3430 (($ $ (-1088)) 46) (($ $ (-649 (-1088))) 45) (($ $ (-1088) (-776)) 44) (($ $ (-649 (-1088)) (-649 (-776))) 43) (($ $ (-776)) 255) (($ $) 253) (($ $ (-1183)) 252 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 251 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 250 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 249 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-2091 (((-776) $) 152) (((-776) $ (-1088)) 132) (((-649 (-776)) $ (-649 (-1088))) 131)) (-1384 (((-898 (-383)) $) 84 (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3281 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ (-1088)) 108 (|has| |#1| (-457)))) (-1497 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1739 (|has| $ (-145)) (|has| |#1| (-915))))) (-4146 (((-3 $ "failed") $ $) 224 (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) 223 (|has| |#1| (-561)))) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ (-1088)) 137) (($ (-412 (-569))) 80 (-2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-3346 (((-649 |#1|) $) 170)) (-1503 ((|#1| $ (-776)) 157) (($ $ (-1088) (-776)) 130) (($ $ (-649 (-1088)) (-649 (-776))) 129)) (-1488 (((-3 $ "failed") $) 81 (-2718 (-1739 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3263 (((-776)) 32 T CONST)) (-1471 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-1088)) 42) (($ $ (-649 (-1088))) 41) (($ $ (-1088) (-776)) 40) (($ $ (-649 (-1088)) (-649 (-776))) 39) (($ $ (-776)) 256) (($ $) 254) (($ $ (-1183)) 248 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 247 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 246 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 245 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1249 |#1|) (-140) (-1055)) (T -1249))
+((-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1249 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-5 *2 (-1179 *3)))) (-4258 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1055)) (-4 *1 (-1249 *3)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4247 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4234 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1249 *3)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1249 *4)))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)))) (-3430 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-4168 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)))) (-4315 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)) (-5 *2 (-776)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4146 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4146 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)))) (-4133 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -1406 *3) (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1249 *3)))) (-4108 (*1 *2 *1 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1249 *3)))) (-1852 (*1 *2 *3 *2) (-12 (-5 *3 (-412 *1)) (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))))
+(-13 (-955 |t#1| (-776) (-1088)) (-289 |t#1| |t#1|) (-289 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -4284 ((-1273 |t#1|) $ (-776))) (-15 -4270 ((-1179 |t#1|) $)) (-15 -4258 ($ (-1179 |t#1|))) (-15 -4352 ($ $ (-776))) (-15 -4247 ((-3 $ "failed") $ (-776))) (-15 -4234 ((-2 (|:| -4273 $) (|:| -2804 $)) $ $)) (-15 -4223 ((-2 (|:| -4273 $) (|:| -2804 $)) $ (-776))) (-15 -4213 ($ $ (-776))) (-15 -4201 ($ $ (-776))) (-15 -4190 ($ $ $)) (-15 -3430 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4180 (|t#1| $)) (-15 -4168 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-289 (-412 $) (-412 $))) (-15 -1852 ((-412 $) (-412 $) (-412 $))) (-15 -4315 ((-776) $ $)) (-15 -4156 ($ $ $)) (-15 -4146 ((-3 $ "failed") $ $)) (-15 -4146 ((-3 (-412 $) "failed") (-412 $) $)) (-15 -4133 ($ $ $)) (-15 -4121 ((-2 (|:| -1406 |t#1|) (|:| -4273 $) (|:| -2804 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-15 -4108 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-310)) (-6 -4439) (-15 -1852 (|t#1| (-412 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-15 -3313 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2718 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1088)) . T) ((-621 |#1|) . T) ((-621 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) . T) ((-289 (-412 $) (-412 $)) |has| |#1| (-561)) ((-289 |#1| |#1|) . T) ((-289 $ $) . T) ((-293) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 $) . T) ((-329 |#1| #0#) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2718 (|has| |#1| (-915)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-519 #2# |#1|) . T) ((-519 #2# $) . T) ((-519 $ $) . T) ((-561) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-731) . T) ((-906 #2#) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) -12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383)))) ((-892 (-569)) -12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))) ((-955 |#1| #0# #2#) . T) ((-915) |has| |#1| (-915)) ((-926) |has| |#1| (-367)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 |#1|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-1158)) ((-1227) |has| |#1| (-915)))
+((-3865 (((-649 (-1088)) $) 34)) (-1842 (($ $) 31)) (-3838 (($ |#2| |#3|) NIL) (($ $ (-1088) |#3|) 28) (($ $ (-649 (-1088)) (-649 |#3|)) 27)) (-1808 (($ $) 14)) (-1820 ((|#2| $) 12)) (-2091 ((|#3| $) 10)))
+(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -3865 ((-649 (-1088)) |#1|)) (-15 -3838 (|#1| |#1| (-649 (-1088)) (-649 |#3|))) (-15 -3838 (|#1| |#1| (-1088) |#3|)) (-15 -1842 (|#1| |#1|)) (-15 -3838 (|#1| |#2| |#3|)) (-15 -2091 (|#3| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1820 (|#2| |#1|))) (-1251 |#2| |#3|) (-1055) (-797)) (T -1250))
+NIL
+(-10 -8 (-15 -3865 ((-649 (-1088)) |#1|)) (-15 -3838 (|#1| |#1| (-649 (-1088)) (-649 |#3|))) (-15 -3838 (|#1| |#1| (-1088) |#3|)) (-15 -1842 (|#1| |#1|)) (-15 -3838 (|#1| |#2| |#3|)) (-15 -2091 (|#3| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1820 (|#2| |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4324 (((-1163 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2755 (((-112) $) 85)) (-4315 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2861 (((-112) $) 35)) (-4352 (($ $ (-927)) 113)) (-2019 (((-112) $) 74)) (-3838 (($ |#1| |#2|) 73) (($ $ (-1088) |#2|) 88) (($ $ (-649 (-1088)) (-649 |#2|)) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-4295 (($ $ |#2|) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1852 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1118)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2091 ((|#2| $) 76)) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-1503 ((|#1| $ |#2|) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3006 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
(((-1251 |#1| |#2|) (-140) (-1055) (-797)) (T -1251))
-((-4223 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1160 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4249 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1183)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4221 (*1 *2 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4220 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4220 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4219 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4396 (*2 (-1183)))) (-4 *2 (-1055)))) (-4218 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4217 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1160 *3)))))
-(-13 (-979 |t#1| |t#2| (-1088)) (-10 -8 (-15 -4223 ((-1160 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4249 (|t#1| $ |t#2|)) (-15 -4281 ((-1183) $)) (-15 -4222 (|t#1| $)) (-15 -4226 ($ $ (-925))) (-15 -4221 (|t#2| $)) (-15 -4221 (|t#2| $ |t#2|)) (-15 -4220 ($ $ |t#2|)) (-15 -4220 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4396 (|t#1| (-1183)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4219 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4218 ($ $ |t#2|)) (IF (|has| |t#2| (-1118)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4217 ((-1160 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-289 $ $) |has| |#2| (-1118)) ((-293) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-651 #1#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #1#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-979 |#1| |#2| (-1088)) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-4224 ((|#2| |#2|) 12)) (-4419 (((-410 |#2|) |#2|) 14)) (-4225 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-551))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-551)))) 30)))
-(((-1252 |#1| |#2|) (-10 -7 (-15 -4419 ((-410 |#2|) |#2|)) (-15 -4224 (|#2| |#2|)) (-15 -4225 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-551))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-551)))))) (-562) (-13 (-1248 |#1|) (-562) (-10 -8 (-15 -3582 ($ $ $))))) (T -1252))
-((-4225 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-551)))) (-4 *4 (-13 (-1248 *3) (-562) (-10 -8 (-15 -3582 ($ $ $))))) (-4 *3 (-562)) (-5 *1 (-1252 *3 *4)))) (-4224 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-13 (-1248 *3) (-562) (-10 -8 (-15 -3582 ($ $ $))))))) (-4419 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-410 *3)) (-5 *1 (-1252 *4 *3)) (-4 *3 (-13 (-1248 *4) (-562) (-10 -8 (-15 -3582 ($ $ $))))))))
-(-10 -7 (-15 -4419 ((-410 |#2|) |#2|)) (-15 -4224 (|#2| |#2|)) (-15 -4225 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-551))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-551))))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 11)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) NIL) (($ $ (-412 (-551)) (-412 (-551))) NIL)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-1232 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1262 |#1| |#2| |#3|) #1#) $) 22)) (-3594 (((-1232 |#1| |#2| |#3|) $) NIL) (((-1262 |#1| |#2| |#3|) $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4230 (((-412 (-551)) $) 69)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4231 (($ (-412 (-551)) (-1232 |#1| |#2| |#3|)) NIL)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) NIL) (((-412 (-551)) $ (-412 (-551))) NIL)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) NIL) (($ $ (-412 (-551))) NIL)) (-1760 (((-3 (-646 $) #2="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-412 (-551))) 30) (($ $ (-1088) (-412 (-551))) NIL) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4229 (((-1232 |#1| |#2| |#3|) $) 72)) (-4227 (((-3 (-1232 |#1| |#2| |#3|) "failed") $) NIL)) (-4228 (((-1232 |#1| |#2| |#3|) $) NIL)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) NIL (|has| |#1| (-367)))) (-4262 (($ $) 39 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) NIL (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) NIL)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) NIL) (($ $ $) NIL (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-4398 (((-412 (-551)) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) NIL)) (-4396 (((-868) $) 109) (($ (-551)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1232 |#1| |#2| |#3|)) 16) (($ (-1262 |#1| |#2| |#3|)) 17) (($ (-1269 |#2|)) 36) (($ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 12)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 32 T CONST)) (-3085 (($) 26 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 34)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ (-551)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1253 |#1| |#2| |#3|) (-13 (-1257 |#1| (-1232 |#1| |#2| |#3|)) (-1044 (-1262 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1253))
-((-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1257 |#1| (-1232 |#1| |#2| |#3|)) (-1044 (-1262 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -4260 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-4408 (((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)) 24)))
-(((-1254 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4408 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1254))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1254 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
-(-10 -7 (-15 -4408 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) 110) (($ $ (-412 (-551)) (-412 (-551))) 109)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) 117)) (-3933 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 174 (|has| |#1| (-367)))) (-4419 (((-410 $) $) 175 (|has| |#1| (-367)))) (-3456 (($ $) 129 (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) 165 (|has| |#1| (-367)))) (-3931 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 131 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) 183)) (-3935 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-2982 (($ $ $) 169 (|has| |#1| (-367)))) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 168 (|has| |#1| (-367)))) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 163 (|has| |#1| (-367)))) (-4173 (((-112) $) 176 (|has| |#1| (-367)))) (-3311 (((-112) $) 85)) (-4077 (($) 157 (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) 112) (((-412 (-551)) $ (-412 (-551))) 111)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 128 (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) 113) (($ $ (-412 (-551))) 182)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 172 (|has| |#1| (-367)))) (-4387 (((-112) $) 74)) (-3312 (($ |#1| (-412 (-551))) 73) (($ $ (-1088) (-412 (-551))) 88) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-4392 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-2079 (($ (-646 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3681 (((-1165) $) 10)) (-2824 (($ $) 177 (|has| |#1| (-367)))) (-4262 (($ $) 181 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 180 (-3978 (-12 (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-551))))) (-12 (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-551)))))))) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 162 (|has| |#1| (-367)))) (-3582 (($ (-646 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-4182 (((-410 $) $) 173 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 170 (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 164 (|has| |#1| (-367)))) (-4393 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) 166 (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) 116) (($ $ $) 93 (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 167 (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-4398 (((-412 (-551)) $) 76)) (-3936 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 133 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 143 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 141 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3937 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 139 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 127 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
-(((-1255 |#1|) (-140) (-1055)) (T -1255))
-((-4268 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| *4)))) (-4 *4 (-1055)) (-4 *1 (-1255 *4)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-4 *1 (-1255 *3)) (-4 *3 (-1055)))) (-4262 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551)))))) (-4262 (*1 *1 *1 *2) (-3978 (-12 (-5 *2 (-1183)) (-4 *1 (-1255 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-551)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1255 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3503 ((-646 *2) *3))) (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551)))))))))
-(-13 (-1251 |t#1| (-412 (-551))) (-10 -8 (-15 -4268 ($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |t#1|))))) (-15 -4226 ($ $ (-412 (-551)))) (IF (|has| |t#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $)) (IF (|has| |t#1| (-15 -4262 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3503 ((-646 (-1183)) |t#1|))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-551))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-412 (-551))) . T) ((-25) . T) ((-38 #2=(-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-289 $ $) |has| (-412 (-551)) (-1118)) ((-293) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-562) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-651 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-722 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) ((-979 |#1| #1# (-1088)) . T) ((-927) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1057 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #1#) . T))
-((-3626 (((-112) $) 12)) (-3595 (((-3 |#3| "failed") $) 17)) (-3594 ((|#3| $) 14)))
-(((-1256 |#1| |#2| |#3|) (-10 -8 (-15 -3595 ((-3 |#3| "failed") |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3626 ((-112) |#1|))) (-1257 |#2| |#3|) (-1055) (-1234 |#2|)) (T -1256))
-NIL
-(-10 -8 (-15 -3595 ((-3 |#3| "failed") |#1|)) (-15 -3594 (|#3| |#1|)) (-15 -3626 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) 110) (($ $ (-412 (-551)) (-412 (-551))) 109)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) 117)) (-3933 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 174 (|has| |#1| (-367)))) (-4419 (((-410 $) $) 175 (|has| |#1| (-367)))) (-3456 (($ $) 129 (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) 165 (|has| |#1| (-367)))) (-3931 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 131 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) 183)) (-3935 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#2| "failed") $) 194)) (-3594 ((|#2| $) 195)) (-2982 (($ $ $) 169 (|has| |#1| (-367)))) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-4230 (((-412 (-551)) $) 191)) (-2981 (($ $ $) 168 (|has| |#1| (-367)))) (-4231 (($ (-412 (-551)) |#2|) 192)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 163 (|has| |#1| (-367)))) (-4173 (((-112) $) 176 (|has| |#1| (-367)))) (-3311 (((-112) $) 85)) (-4077 (($) 157 (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) 112) (((-412 (-551)) $ (-412 (-551))) 111)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 128 (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) 113) (($ $ (-412 (-551))) 182)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 172 (|has| |#1| (-367)))) (-4387 (((-112) $) 74)) (-3312 (($ |#1| (-412 (-551))) 73) (($ $ (-1088) (-412 (-551))) 88) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-4392 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-2079 (($ (-646 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-4229 ((|#2| $) 190)) (-4227 (((-3 |#2| "failed") $) 188)) (-4228 ((|#2| $) 189)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 177 (|has| |#1| (-367)))) (-4262 (($ $) 181 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 180 (-3978 (-12 (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-551))))) (-12 (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-551)))))))) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 162 (|has| |#1| (-367)))) (-3582 (($ (-646 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-4182 (((-410 $) $) 173 (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 170 (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 164 (|has| |#1| (-367)))) (-4393 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) 166 (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) 116) (($ $ $) 93 (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 167 (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-4398 (((-412 (-551)) $) 76)) (-3936 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 133 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 143 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 141 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3937 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 139 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 127 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
-(((-1257 |#1| |#2|) (-140) (-1055) (-1234 |t#1|)) (T -1257))
-((-4398 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1234 *3)) (-5 *2 (-412 (-551))))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-4 *4 (-1055)) (-4 *1 (-1257 *4 *3)) (-4 *3 (-1234 *4)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1234 *3)) (-5 *2 (-412 (-551))))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))) (-4227 (*1 *2 *1) (|partial| -12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))))
-(-13 (-1255 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -4231 ($ (-412 (-551)) |t#2|)) (-15 -4230 ((-412 (-551)) $)) (-15 -4229 (|t#2| $)) (-15 -4398 ((-412 (-551)) $)) (-15 -4228 (|t#2| $)) (-15 -4227 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-412 (-551))) . T) ((-25) . T) ((-38 #2=(-412 (-551))) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-289 $ $) |has| (-412 (-551)) (-1118)) ((-293) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-562) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-651 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-722 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) ((-979 |#1| #1# (-1088)) . T) ((-927) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1044 |#2|) . T) ((-1057 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #2#) -3978 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-551))))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #1#) . T) ((-1255 |#1|) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 104)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) NIL (|has| |#1| (-562)))) (-4220 (($ $ (-412 (-551))) 116) (($ $ (-412 (-551)) (-412 (-551))) 118)) (-4223 (((-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|))) $) 54)) (-3933 (($ $) 192 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 168 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-4224 (($ $) NIL (|has| |#1| (-367)))) (-4419 (((-410 $) $) NIL (|has| |#1| (-367)))) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1763 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3931 (($ $) 188 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 164 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-776) (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#1|)))) 65)) (-3935 (($ $) 196 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 172 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| "failed") $) NIL)) (-3594 ((|#2| $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-367)))) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) 85)) (-4230 (((-412 (-551)) $) 13)) (-2981 (($ $ $) NIL (|has| |#1| (-367)))) (-4231 (($ (-412 (-551)) |#2|) 11)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) NIL (|has| |#1| (-367)))) (-4173 (((-112) $) NIL (|has| |#1| (-367)))) (-3311 (((-112) $) 74)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-412 (-551)) $) 113) (((-412 (-551)) $ (-412 (-551))) 114)) (-2591 (((-112) $) NIL)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) 130) (($ $ (-412 (-551))) 128)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-412 (-551))) 33) (($ $ (-1088) (-412 (-551))) NIL) (($ $ (-646 (-1088)) (-646 (-412 (-551)))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) 125)) (-4392 (($ $) 162 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-2079 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4229 ((|#2| $) 12)) (-4227 (((-3 |#2| "failed") $) 44)) (-4228 ((|#2| $) 45)) (-3681 (((-1165) $) NIL)) (-2824 (($ $) 101 (|has| |#1| (-367)))) (-4262 (($ $) 146 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 151 (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))))))) (-3682 (((-1126) $) NIL)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) NIL (|has| |#1| (-367)))) (-3582 (($ (-646 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4182 (((-410 $) $) NIL (|has| |#1| (-367)))) (-1761 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) NIL (|has| |#1| (-367)))) (-4218 (($ $ (-412 (-551))) 122)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3161 (((-3 (-646 $) "failed") (-646 $) $) NIL (|has| |#1| (-367)))) (-4393 (($ $) 160 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))))) (-1762 (((-776) $) NIL (|has| |#1| (-367)))) (-4249 ((|#1| $ (-412 (-551))) 108) (($ $ $) 94 (|has| (-412 (-551)) (-1118)))) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) NIL (|has| |#1| (-367)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) 138 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-4398 (((-412 (-551)) $) 16)) (-3936 (($ $) 198 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 174 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 194 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 170 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 190 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 166 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 120)) (-4396 (((-868) $) NIL) (($ (-551)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-412 (-551))) 139 (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562)))) (-4127 ((|#1| $ (-412 (-551))) 107)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) 127 T CONST)) (-4222 ((|#1| $) 106)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) 204 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 180 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) 200 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 176 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 208 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 184 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-412 (-551))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-551))))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 210 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 186 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 206 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 182 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 202 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 178 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 21 T CONST)) (-3085 (($) 17 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-551)) |#1|))))) (-3473 (((-112) $ $) 72)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 100 (|has| |#1| (-367)))) (-4287 (($ $) 142) (($ $ $) 78)) (-4289 (($ $ $) 76)) (** (($ $ (-925)) NIL) (($ $ (-776)) 82) (($ $ (-551)) 157 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 158 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1258 |#1| |#2|) (-1257 |#1| |#2|) (-1055) (-1234 |#1|)) (T -1258))
-NIL
-(-1257 |#1| |#2|)
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 37)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2251 (($ $) NIL)) (-2249 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 (-551) #1="failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1044 (-551)))) (((-3 (-412 (-551)) #1#) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1044 (-412 (-551))))) (((-3 (-1253 |#2| |#3| |#4|) #1#) $) 22)) (-3594 (((-551) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1044 (-551)))) (((-412 (-551)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1044 (-412 (-551))))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-4409 (($ $) 41)) (-3908 (((-3 $ "failed") $) 27)) (-3944 (($ $) NIL (|has| (-1253 |#2| |#3| |#4|) (-457)))) (-1779 (($ $ (-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|) $) NIL)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) 11)) (-4387 (((-112) $) NIL)) (-3312 (($ (-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) 25)) (-3241 (((-322 |#2| |#3| |#4|) $) NIL)) (-1780 (($ (-1 (-322 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) $) NIL)) (-4408 (($ (-1 (-1253 |#2| |#3| |#4|) (-1253 |#2| |#3| |#4|)) $) NIL)) (-4233 (((-3 (-847 |#2|) "failed") $) 90)) (-3313 (($ $) NIL)) (-3612 (((-1253 |#2| |#3| |#4|) $) 20)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-1982 (((-112) $) NIL)) (-1981 (((-1253 |#2| |#3| |#4|) $) NIL)) (-3907 (((-3 $ "failed") $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-562))) (((-3 $ "failed") $ $) NIL)) (-4232 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-646 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $) 74)) (-4398 (((-322 |#2| |#3| |#4|) $) 17)) (-3238 (((-1253 |#2| |#3| |#4|) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-457)))) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ (-1253 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-412 (-551))) NIL (-3978 (|has| (-1253 |#2| |#3| |#4|) (-1044 (-412 (-551)))) (|has| (-1253 |#2| |#3| |#4|) (-38 (-412 (-551))))))) (-4267 (((-646 (-1253 |#2| |#3| |#4|)) $) NIL)) (-4127 (((-1253 |#2| |#3| |#4|) $ (-322 |#2| |#3| |#4|)) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-145)))) (-3548 (((-776)) NIL T CONST)) (-1778 (($ $ $ (-776)) NIL (|has| (-1253 |#2| |#3| |#4|) (-173)))) (-3680 (((-112) $ $) NIL)) (-2250 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ (-1253 |#2| |#3| |#4|)) NIL) (($ (-1253 |#2| |#3| |#4|) $) NIL) (($ (-412 (-551)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-412 (-551)))))))
-(((-1259 |#1| |#2| |#3| |#4|) (-13 (-329 (-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -4233 ((-3 (-847 |#2|) "failed") $)) (-15 -4232 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-646 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $)))) (-13 (-1044 (-551)) (-644 (-551)) (-457)) (-13 (-27) (-1208) (-426 |#1|)) (-1183) |#2|) (T -1259))
-((-4233 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457))) (-5 *2 (-847 *4)) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4))) (-4232 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6)) (|:| |%expTerms| (-646 (-2 (|:| |k| (-412 (-551))) (|:| |c| *4)))))) (|:| |%type| (-1165)))) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
-(-13 (-329 (-1253 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -4233 ((-3 (-847 |#2|) "failed") $)) (-15 -4232 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-646 (-2 (|:| |k| (-412 (-551))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $))))
-((-3844 ((|#2| $) 34)) (-4244 ((|#2| $) 18)) (-4246 (($ $) 52)) (-4234 (($ $ (-551)) 85)) (-1312 (((-112) $ (-776)) 46)) (-3444 ((|#2| $ |#2|) 82)) (-4235 ((|#2| $ |#2|) 78)) (-4237 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3445 (($ $ (-646 $)) 81)) (-4245 ((|#2| $) 17)) (-4248 (($ $) NIL) (($ $ (-776)) 59)) (-3450 (((-646 $) $) 31)) (-3446 (((-112) $ $) 69)) (-4169 (((-112) $ (-776)) 45)) (-4166 (((-112) $ (-776)) 43)) (-3968 (((-112) $) 33)) (-4247 ((|#2| $) 25) (($ $ (-776)) 64)) (-4249 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4083 (((-112) $) 23)) (-4241 (($ $) 55)) (-4239 (($ $) 86)) (-4242 (((-776) $) 58)) (-4243 (($ $) 57)) (-4251 (($ $ $) 77) (($ |#2| $) NIL)) (-3963 (((-646 $) $) 32)) (-3473 (((-112) $ $) 67)) (-4407 (((-776) $) 51)))
-(((-1260 |#1| |#2|) (-10 -8 (-15 -4234 (|#1| |#1| (-551))) (-15 -4237 (|#2| |#1| "last" |#2|)) (-15 -4235 (|#2| |#1| |#2|)) (-15 -4237 (|#1| |#1| "rest" |#1|)) (-15 -4237 (|#2| |#1| "first" |#2|)) (-15 -4239 (|#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4242 ((-776) |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4244 (|#2| |#1|)) (-15 -4245 (|#2| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4247 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "last")) (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| "rest")) (-15 -4248 (|#1| |#1|)) (-15 -4249 (|#2| |#1| "first")) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#1|)) (-15 -3444 (|#2| |#1| |#2|)) (-15 -4237 (|#2| |#1| #1="value" |#2|)) (-15 -3445 (|#1| |#1| (-646 |#1|))) (-15 -3446 ((-112) |#1| |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -3844 (|#2| |#1|)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776)))) (-1261 |#2|) (-1222)) (T -1260))
-NIL
-(-10 -8 (-15 -4234 (|#1| |#1| (-551))) (-15 -4237 (|#2| |#1| "last" |#2|)) (-15 -4235 (|#2| |#1| |#2|)) (-15 -4237 (|#1| |#1| "rest" |#1|)) (-15 -4237 (|#2| |#1| "first" |#2|)) (-15 -4239 (|#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4242 ((-776) |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4244 (|#2| |#1|)) (-15 -4245 (|#2| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4247 (|#1| |#1| (-776))) (-15 -4249 (|#2| |#1| "last")) (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#1| |#1| (-776))) (-15 -4249 (|#1| |#1| "rest")) (-15 -4248 (|#1| |#1|)) (-15 -4249 (|#2| |#1| "first")) (-15 -4251 (|#1| |#2| |#1|)) (-15 -4251 (|#1| |#1| |#1|)) (-15 -3444 (|#2| |#1| |#2|)) (-15 -4237 (|#2| |#1| #1="value" |#2|)) (-15 -3445 (|#1| |#1| (-646 |#1|))) (-15 -3446 ((-112) |#1| |#1|)) (-15 -4083 ((-112) |#1|)) (-15 -4249 (|#2| |#1| #1#)) (-15 -3844 (|#2| |#1|)) (-15 -3968 ((-112) |#1|)) (-15 -3450 ((-646 |#1|) |#1|)) (-15 -3963 ((-646 |#1|) |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -4407 ((-776) |#1|)) (-15 -1312 ((-112) |#1| (-776))) (-15 -4169 ((-112) |#1| (-776))) (-15 -4166 ((-112) |#1| (-776))))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-3844 ((|#1| $) 49)) (-4244 ((|#1| $) 66)) (-4246 (($ $) 68)) (-4234 (($ $ (-551)) 53 (|has| $ (-6 -4444)))) (-1312 (((-112) $ (-776)) 8)) (-3444 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-4236 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4235 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-4238 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-4237 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ "rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4444)))) (-3445 (($ $ (-646 $)) 42 (|has| $ (-6 -4444)))) (-4245 ((|#1| $) 67)) (-4174 (($) 7 T CONST)) (-4248 (($ $) 74) (($ $ (-776)) 72)) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-3450 (((-646 $) $) 51)) (-3446 (((-112) $ $) 43 (|has| |#1| (-1107)))) (-4169 (((-112) $ (-776)) 9)) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36)) (-4166 (((-112) $ (-776)) 10)) (-3449 (((-646 |#1|) $) 46)) (-3968 (((-112) $) 50)) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-4247 ((|#1| $) 71) (($ $ (-776)) 69)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 77) (($ $ (-776)) 75)) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ #1#) 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3448 (((-551) $ $) 45)) (-4083 (((-112) $) 47)) (-4241 (($ $) 63)) (-4239 (($ $) 60 (|has| $ (-6 -4444)))) (-4242 (((-776) $) 64)) (-4243 (($ $) 65)) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3842 (($ $) 13)) (-4240 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-4251 (($ $ $) 79) (($ |#1| $) 78)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3963 (((-646 $) $) 52)) (-3447 (((-112) $ $) 44 (|has| |#1| (-1107)))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1261 |#1|) (-140) (-1222)) (T -1261))
-((-4251 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4251 (*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4250 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222)))) (-4248 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1222)))) (-4248 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4247 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4243 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4240 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4240 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4239 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4238 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4237 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4236 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4237 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3)) (-4 *3 (-1222)))) (-4235 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4237 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-551)) (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3)) (-4 *3 (-1222)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -4251 ($ $ $)) (-15 -4251 ($ |t#1| $)) (-15 -4250 (|t#1| $)) (-15 -4249 (|t#1| $ "first")) (-15 -4250 ($ $ (-776))) (-15 -4248 ($ $)) (-15 -4249 ($ $ "rest")) (-15 -4248 ($ $ (-776))) (-15 -4247 (|t#1| $)) (-15 -4249 (|t#1| $ "last")) (-15 -4247 ($ $ (-776))) (-15 -4246 ($ $)) (-15 -4245 (|t#1| $)) (-15 -4244 (|t#1| $)) (-15 -4243 ($ $)) (-15 -4242 ((-776) $)) (-15 -4241 ($ $)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -4240 ($ $ $)) (-15 -4240 ($ $ |t#1|)) (-15 -4239 ($ $)) (-15 -4238 (|t#1| $ |t#1|)) (-15 -4237 (|t#1| $ "first" |t#1|)) (-15 -4236 ($ $ $)) (-15 -4237 ($ $ "rest" $)) (-15 -4235 (|t#1| $ |t#1|)) (-15 -4237 (|t#1| $ "last" |t#1|)) (-15 -4234 ($ $ (-551)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1107)) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-618 (-868)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-1016 |#1|) . T) ((-1107) |has| |#1| (-1107)) ((-1222) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-3503 (((-646 (-1088)) $) NIL)) (-4281 (((-1183) $) 92)) (-4261 (((-1241 |#2| |#1|) $ (-776)) 73)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2251 (($ $) NIL (|has| |#1| (-562)))) (-2249 (((-112) $) 144 (|has| |#1| (-562)))) (-4220 (($ $ (-776)) 129) (($ $ (-776) (-776)) 132)) (-4223 (((-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 43)) (-3933 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 52) (($ (-1160 |#1|)) NIL)) (-3935 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) NIL T CONST)) (-4254 (($ $) 136)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4266 (($ $) 142)) (-4264 (((-952 |#1|) $ (-776)) 63) (((-952 |#1|) $ (-776) (-776)) 65)) (-3311 (((-112) $) NIL)) (-4077 (($) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $) NIL) (((-776) $ (-776)) NIL)) (-2591 (((-112) $) NIL)) (-4257 (($ $) 119)) (-3430 (($ $ (-551)) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4253 (($ (-551) (-551) $) 138)) (-4226 (($ $ (-925)) 141)) (-4265 (($ (-1 |#1| (-551)) $) 113)) (-4387 (((-112) $) NIL)) (-3312 (($ |#1| (-776)) 16) (($ $ (-1088) (-776)) NIL) (($ $ (-646 (-1088)) (-646 (-776))) NIL)) (-4408 (($ (-1 |#1| |#1|) $) 100)) (-4392 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-4258 (($ $) 117)) (-4259 (($ $) 115)) (-4252 (($ (-551) (-551) $) 140)) (-4262 (($ $) 152 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 158 (-3978 (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208))) (-12 (|has| |#1| (-38 (-412 (-551)))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|)))))) (($ $ (-1269 |#2|)) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3682 (((-1126) $) NIL)) (-4255 (($ $ (-551) (-551)) 123)) (-4218 (($ $ (-776)) 125)) (-3907 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4393 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4256 (($ $) 121)) (-4217 (((-1160 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-4249 ((|#1| $ (-776)) 97) (($ $ $) 134 (|has| (-776) (-1118)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 110 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 105)) (-4398 (((-776) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 127)) (-4396 (((-868) $) NIL) (($ (-551)) 26) (($ (-412 (-551))) 150 (|has| |#1| (-38 (-412 (-551))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1241 |#2| |#1|)) 83) (($ (-1269 |#2|)) 22)) (-4267 (((-1160 |#1|) $) NIL)) (-4127 ((|#1| $ (-776)) 96)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3548 (((-776)) NIL T CONST)) (-4222 ((|#1| $) 93)) (-3680 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3937 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-776)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 18 T CONST)) (-3085 (($) 13 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-3473 (((-112) $ $) NIL)) (-4399 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) 109)) (-4289 (($ $ $) 20)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 147 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-412 (-551)) $) NIL (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) NIL (|has| |#1| (-38 (-412 (-551)))))))
-(((-1262 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-10 -8 (-15 -4396 ($ (-1241 |#2| |#1|))) (-15 -4261 ((-1241 |#2| |#1|) $ (-776))) (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (-15 -4259 ($ $)) (-15 -4258 ($ $)) (-15 -4257 ($ $)) (-15 -4256 ($ $)) (-15 -4255 ($ $ (-551) (-551))) (-15 -4254 ($ $)) (-15 -4253 ($ (-551) (-551) $)) (-15 -4252 ($ (-551) (-551) $)) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1262))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1262 *3 *4 *5)))) (-4261 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1262 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-4259 (*1 *1 *1) (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4258 (*1 *1 *1) (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4257 (*1 *1 *1) (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4256 (*1 *1 *1) (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4255 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-4254 (*1 *1 *1) (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4253 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-4252 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1265 |#1|) (-10 -8 (-15 -4396 ($ (-1241 |#2| |#1|))) (-15 -4261 ((-1241 |#2| |#1|) $ (-776))) (-15 -4396 ($ (-1269 |#2|))) (-15 -4260 ($ $ (-1269 |#2|))) (-15 -4259 ($ $)) (-15 -4258 ($ $)) (-15 -4257 ($ $)) (-15 -4256 ($ $)) (-15 -4255 ($ $ (-551) (-551))) (-15 -4254 ($ $)) (-15 -4253 ($ (-551) (-551) $)) (-15 -4252 ($ (-551) (-551) $)) (IF (|has| |#1| (-38 (-412 (-551)))) (-15 -4262 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-4408 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4408 (|#4| (-1 |#2| |#1|) |#3|))) (-1055) (-1055) (-1265 |#1|) (-1265 |#2|)) (T -1263))
-((-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1265 *6)) (-5 *1 (-1263 *5 *6 *4 *2)) (-4 *4 (-1265 *5)))))
-(-10 -7 (-15 -4408 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3626 (((-112) $) 17)) (-3933 (($ $) 106)) (-4089 (($ $) 82)) (-3931 (($ $) 102)) (-4088 (($ $) 78)) (-3935 (($ $) 110)) (-4087 (($ $) 86)) (-4392 (($ $) 76)) (-4393 (($ $) 74)) (-3936 (($ $) 112)) (-4086 (($ $) 88)) (-3934 (($ $) 108)) (-4085 (($ $) 84)) (-3932 (($ $) 104)) (-4084 (($ $) 80)) (-4396 (((-868) $) 62) (($ (-551)) NIL) (($ (-412 (-551))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3939 (($ $) 118)) (-3927 (($ $) 94)) (-3937 (($ $) 114)) (-3925 (($ $) 90)) (-3941 (($ $) 122)) (-3929 (($ $) 98)) (-3942 (($ $) 124)) (-3930 (($ $) 100)) (-3940 (($ $) 120)) (-3928 (($ $) 96)) (-3938 (($ $) 116)) (-3926 (($ $) 92)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-412 (-551))) 72)))
-(((-1264 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -4089 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -4392 (|#1| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))) (-15 -3626 ((-112) |#1|)) (-15 -4396 ((-868) |#1|))) (-1265 |#2|) (-1055)) (T -1264))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-412 (-551)))) (-15 -4089 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -4392 (|#1| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4396 (|#1| |#2|)) (-15 -4396 (|#1| |#1|)) (-15 -4396 (|#1| (-412 (-551)))) (-15 -4396 (|#1| (-551))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-925))) (-15 -3626 ((-112) |#1|)) (-15 -4396 ((-868) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-3503 (((-646 (-1088)) $) 86)) (-4281 (((-1183) $) 115)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2251 (($ $) 64 (|has| |#1| (-562)))) (-2249 (((-112) $) 66 (|has| |#1| (-562)))) (-4220 (($ $ (-776)) 110) (($ $ (-776) (-776)) 109)) (-4223 (((-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 117)) (-3933 (($ $) 147 (|has| |#1| (-38 (-412 (-551)))))) (-4089 (($ $) 130 (|has| |#1| (-38 (-412 (-551)))))) (-1410 (((-3 $ "failed") $ $) 20)) (-3456 (($ $) 129 (|has| |#1| (-38 (-412 (-551)))))) (-3931 (($ $) 146 (|has| |#1| (-38 (-412 (-551)))))) (-4088 (($ $) 131 (|has| |#1| (-38 (-412 (-551)))))) (-4268 (($ (-1160 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 167) (($ (-1160 |#1|)) 165)) (-3935 (($ $) 145 (|has| |#1| (-38 (-412 (-551)))))) (-4087 (($ $) 132 (|has| |#1| (-38 (-412 (-551)))))) (-4174 (($) 18 T CONST)) (-4409 (($ $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-4266 (($ $) 164)) (-4264 (((-952 |#1|) $ (-776)) 162) (((-952 |#1|) $ (-776) (-776)) 161)) (-3311 (((-112) $) 85)) (-4077 (($) 157 (|has| |#1| (-38 (-412 (-551)))))) (-4221 (((-776) $) 112) (((-776) $ (-776)) 111)) (-2591 (((-112) $) 35)) (-3430 (($ $ (-551)) 128 (|has| |#1| (-38 (-412 (-551)))))) (-4226 (($ $ (-925)) 113)) (-4265 (($ (-1 |#1| (-551)) $) 163)) (-4387 (((-112) $) 74)) (-3312 (($ |#1| (-776)) 73) (($ $ (-1088) (-776)) 88) (($ $ (-646 (-1088)) (-646 (-776))) 87)) (-4408 (($ (-1 |#1| |#1|) $) 75)) (-4392 (($ $) 154 (|has| |#1| (-38 (-412 (-551)))))) (-3313 (($ $) 77)) (-3612 ((|#1| $) 78)) (-3681 (((-1165) $) 10)) (-4262 (($ $) 159 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-1183)) 158 (-3978 (-12 (|has| |#1| (-29 (-551))) (|has| |#1| (-966)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-551))))) (-12 (|has| |#1| (-15 -3503 ((-646 (-1183)) |#1|))) (|has| |#1| (-15 -4262 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-551)))))))) (-3682 (((-1126) $) 11)) (-4218 (($ $ (-776)) 107)) (-3907 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4393 (($ $) 155 (|has| |#1| (-38 (-412 (-551)))))) (-4217 (((-1160 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-4249 ((|#1| $ (-776)) 116) (($ $ $) 93 (|has| (-776) (-1118)))) (-4260 (($ $ (-646 (-1183)) (-646 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-4398 (((-776) $) 76)) (-3936 (($ $) 144 (|has| |#1| (-38 (-412 (-551)))))) (-4086 (($ $) 133 (|has| |#1| (-38 (-412 (-551)))))) (-3934 (($ $) 143 (|has| |#1| (-38 (-412 (-551)))))) (-4085 (($ $) 134 (|has| |#1| (-38 (-412 (-551)))))) (-3932 (($ $) 142 (|has| |#1| (-38 (-412 (-551)))))) (-4084 (($ $) 135 (|has| |#1| (-38 (-412 (-551)))))) (-3310 (($ $) 84)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ (-412 (-551))) 69 (|has| |#1| (-38 (-412 (-551))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4267 (((-1160 |#1|) $) 166)) (-4127 ((|#1| $ (-776)) 71)) (-3123 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3548 (((-776)) 32 T CONST)) (-4222 ((|#1| $) 114)) (-3680 (((-112) $ $) 9)) (-3939 (($ $) 153 (|has| |#1| (-38 (-412 (-551)))))) (-3927 (($ $) 141 (|has| |#1| (-38 (-412 (-551)))))) (-2250 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3937 (($ $) 152 (|has| |#1| (-38 (-412 (-551)))))) (-3925 (($ $) 140 (|has| |#1| (-38 (-412 (-551)))))) (-3941 (($ $) 151 (|has| |#1| (-38 (-412 (-551)))))) (-3929 (($ $) 139 (|has| |#1| (-38 (-412 (-551)))))) (-4219 ((|#1| $ (-776)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -4396 (|#1| (-1183))))))) (-3942 (($ $) 150 (|has| |#1| (-38 (-412 (-551)))))) (-3930 (($ $) 138 (|has| |#1| (-38 (-412 (-551)))))) (-3940 (($ $) 149 (|has| |#1| (-38 (-412 (-551)))))) (-3928 (($ $) 137 (|has| |#1| (-38 (-412 (-551)))))) (-3938 (($ $) 148 (|has| |#1| (-38 (-412 (-551)))))) (-3926 (($ $) 136 (|has| |#1| (-38 (-412 (-551)))))) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3090 (($ $ (-646 (-1183)) (-646 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-646 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ |#1|) 160 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 127 (|has| |#1| (-38 (-412 (-551)))))) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-551)) $) 68 (|has| |#1| (-38 (-412 (-551))))) (($ $ (-412 (-551))) 67 (|has| |#1| (-38 (-412 (-551)))))))
-(((-1265 |#1|) (-140) (-1055)) (T -1265))
-((-4268 (*1 *1 *2) (-12 (-5 *2 (-1160 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1265 *3)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1055)) (-5 *2 (-1160 *3)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-4 *1 (-1265 *3)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)))) (-4265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-551))) (-4 *1 (-1265 *3)) (-4 *3 (-1055)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1265 *4)) (-4 *4 (-1055)) (-5 *2 (-952 *4)))) (-4264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1265 *4)) (-4 *4 (-1055)) (-5 *2 (-952 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4262 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551)))))) (-4262 (*1 *1 *1 *2) (-3978 (-12 (-5 *2 (-1183)) (-4 *1 (-1265 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-551)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1265 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3503 ((-646 *2) *3))) (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551)))))))))
-(-13 (-1251 |t#1| (-776)) (-10 -8 (-15 -4268 ($ (-1160 (-2 (|:| |k| (-776)) (|:| |c| |t#1|))))) (-15 -4267 ((-1160 |t#1|) $)) (-15 -4268 ($ (-1160 |t#1|))) (-15 -4266 ($ $)) (-15 -4265 ($ (-1 |t#1| (-551)) $)) (-15 -4264 ((-952 |t#1|) $ (-776))) (-15 -4264 ((-952 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-367)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-551)))) (PROGN (-15 -4262 ($ $)) (IF (|has| |t#1| (-15 -4262 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3503 ((-646 (-1183)) |t#1|))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-551))) (-15 -4262 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-776)) . T) ((-25) . T) ((-38 #2=(-412 (-551))) |has| |#1| (-38 (-412 (-551)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-412 (-551)))) ((-95) |has| |#1| (-38 (-412 (-551)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-412 (-551)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #2#) |has| |#1| (-38 (-412 (-551)))) ((-621 (-551)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-562)) ((-618 (-868)) . T) ((-173) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-776) |#1|))) ((-287) |has| |#1| (-38 (-412 (-551)))) ((-289 $ $) |has| (-776) (-1118)) ((-293) |has| |#1| (-562)) ((-498) |has| |#1| (-38 (-412 (-551)))) ((-562) |has| |#1| (-562)) ((-651 #2#) |has| |#1| (-38 (-412 (-551)))) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #2#) |has| |#1| (-38 (-412 (-551)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #2#) |has| |#1| (-38 (-412 (-551)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-562)) ((-722 #2#) |has| |#1| (-38 (-412 (-551)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-562)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|)))) ((-979 |#1| #1# (-1088)) . T) ((-1008) |has| |#1| (-38 (-412 (-551)))) ((-1057 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1057 |#1|) . T) ((-1057 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1062 #2#) |has| |#1| (-38 (-412 (-551)))) ((-1062 |#1|) . T) ((-1062 $) -3978 (|has| |#1| (-562)) (|has| |#1| (-173))) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1208) |has| |#1| (-38 (-412 (-551)))) ((-1211) |has| |#1| (-38 (-412 (-551)))) ((-1251 |#1| #1#) . T))
-((-4271 (((-1 (-1160 |#1|) (-646 (-1160 |#1|))) (-1 |#2| (-646 |#2|))) 24)) (-4270 (((-1 (-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4269 (((-1 (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2|)) 13)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4273 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4275 ((|#2| (-1 |#2| (-646 |#2|)) (-646 |#1|)) 60)) (-4276 (((-646 |#2|) (-646 |#1|) (-646 (-1 |#2| (-646 |#2|)))) 66)) (-4272 ((|#2| |#2| |#2|) 43)))
-(((-1266 |#1| |#2|) (-10 -7 (-15 -4269 ((-1 (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2|))) (-15 -4270 ((-1 (-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4271 ((-1 (-1160 |#1|) (-646 (-1160 |#1|))) (-1 |#2| (-646 |#2|)))) (-15 -4272 (|#2| |#2| |#2|)) (-15 -4273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#2| (-1 |#2| (-646 |#2|)) (-646 |#1|))) (-15 -4276 ((-646 |#2|) (-646 |#1|) (-646 (-1 |#2| (-646 |#2|)))))) (-38 (-412 (-551))) (-1265 |#1|)) (T -1266))
-((-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 (-1 *6 (-646 *6)))) (-4 *5 (-38 (-412 (-551)))) (-4 *6 (-1265 *5)) (-5 *2 (-646 *6)) (-5 *1 (-1266 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-646 *2))) (-5 *4 (-646 *5)) (-4 *5 (-38 (-412 (-551)))) (-4 *2 (-1265 *5)) (-5 *1 (-1266 *5 *2)))) (-4274 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-551)))))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-551)))))) (-4272 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1266 *3 *2)) (-4 *2 (-1265 *3)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-646 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551)))) (-5 *2 (-1 (-1160 *4) (-646 (-1160 *4)))) (-5 *1 (-1266 *4 *5)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551)))) (-5 *2 (-1 (-1160 *4) (-1160 *4) (-1160 *4))) (-5 *1 (-1266 *4 *5)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551)))) (-5 *2 (-1 (-1160 *4) (-1160 *4))) (-5 *1 (-1266 *4 *5)))))
-(-10 -7 (-15 -4269 ((-1 (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2|))) (-15 -4270 ((-1 (-1160 |#1|) (-1160 |#1|) (-1160 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4271 ((-1 (-1160 |#1|) (-646 (-1160 |#1|))) (-1 |#2| (-646 |#2|)))) (-15 -4272 (|#2| |#2| |#2|)) (-15 -4273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#2| (-1 |#2| (-646 |#2|)) (-646 |#1|))) (-15 -4276 ((-646 |#2|) (-646 |#1|) (-646 (-1 |#2| (-646 |#2|))))))
-((-4278 ((|#2| |#4| (-776)) 34)) (-4277 ((|#4| |#2|) 29)) (-4280 ((|#4| (-412 |#2|)) 53 (|has| |#1| (-562)))) (-4279 (((-1 |#4| (-646 |#4|)) |#3|) 46)))
-(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4277 (|#4| |#2|)) (-15 -4278 (|#2| |#4| (-776))) (-15 -4279 ((-1 |#4| (-646 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -4280 (|#4| (-412 |#2|))) |%noBranch|)) (-1055) (-1248 |#1|) (-663 |#2|) (-1265 |#1|)) (T -1267))
-((-4280 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-562)) (-4 *4 (-1055)) (-4 *2 (-1265 *4)) (-5 *1 (-1267 *4 *5 *6 *2)) (-4 *6 (-663 *5)))) (-4279 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-1248 *4)) (-5 *2 (-1 *6 (-646 *6))) (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-663 *5)) (-4 *6 (-1265 *4)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1248 *5)) (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-663 *2)) (-4 *3 (-1265 *5)))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-1248 *4)) (-4 *2 (-1265 *4)) (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-663 *3)))))
-(-10 -7 (-15 -4277 (|#4| |#2|)) (-15 -4278 (|#2| |#4| (-776))) (-15 -4279 ((-1 |#4| (-646 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -4280 (|#4| (-412 |#2|))) |%noBranch|))
+((-4324 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1163 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1852 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1183)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4315 (*1 *2 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4305 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4305 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-3006 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2388 (*2 (-1183)))) (-4 *2 (-1055)))) (-4295 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1679 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1163 *3)))))
+(-13 (-979 |t#1| |t#2| (-1088)) (-10 -8 (-15 -4324 ((-1163 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1852 (|t#1| $ |t#2|)) (-15 -2599 ((-1183) $)) (-15 -2132 (|t#1| $)) (-15 -4352 ($ $ (-927))) (-15 -4315 (|t#2| $)) (-15 -4315 (|t#2| $ |t#2|)) (-15 -4305 ($ $ |t#2|)) (-15 -4305 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2388 (|t#1| (-1183)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3006 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4295 ($ $ |t#2|)) (IF (|has| |t#2| (-1118)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1679 ((-1163 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-289 $ $) |has| |#2| (-1118)) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| |#2| (-1088)) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-4332 ((|#2| |#2|) 12)) (-2207 (((-423 |#2|) |#2|) 14)) (-4342 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))) 30)))
+(((-1252 |#1| |#2|) (-10 -7 (-15 -2207 ((-423 |#2|) |#2|)) (-15 -4332 (|#2| |#2|)) (-15 -4342 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))))) (-561) (-13 (-1249 |#1|) (-561) (-10 -8 (-15 -1830 ($ $ $))))) (T -1252))
+((-4342 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-569)))) (-4 *4 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1830 ($ $ $))))) (-4 *3 (-561)) (-5 *1 (-1252 *3 *4)))) (-4332 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1830 ($ $ $))))))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1252 *4 *3)) (-4 *3 (-13 (-1249 *4) (-561) (-10 -8 (-15 -1830 ($ $ $))))))))
+(-10 -7 (-15 -2207 ((-423 |#2|) |#2|)) (-15 -4332 (|#2| |#2|)) (-15 -4342 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))))))
+((-1324 (((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|)) 24)))
+(((-1253 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1324 ((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1253))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1258 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1258 *6 *8 *10)) (-5 *1 (-1253 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
+(-10 -7 (-15 -1324 ((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2691 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 174 (|has| |#1| (-367)))) (-2207 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3714 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2669 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-2712 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-2339 (($ $ $) 169 (|has| |#1| (-367)))) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 168 (|has| |#1| (-367)))) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-3848 (((-112) $) 176 (|has| |#1| (-367)))) (-2755 (((-112) $) 85)) (-4408 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2019 (((-112) $) 74)) (-3838 (($ |#1| (-412 (-569))) 73) (($ $ (-1088) (-412 (-569))) 88) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-2616 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-1798 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-2050 (((-1165) $) 10)) (-1776 (($ $) 177 (|has| |#1| (-367)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2718 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1830 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3699 (((-423 $) $) 173 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 170 (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4367 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) 166 (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 167 (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2091 (((-412 (-569)) $) 76)) (-2725 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4094 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1254 |#1|) (-140) (-1055)) (T -1254))
+((-2056 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))) (-4 *4 (-1055)) (-4 *1 (-1254 *4)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1254 *3)) (-4 *3 (-1055)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-3313 (*1 *1 *1 *2) (-2718 (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3865 ((-649 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1251 |t#1| (-412 (-569))) (-10 -8 (-15 -2056 ($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |t#1|))))) (-15 -4352 ($ $ (-412 (-569)))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3865 ((-649 (-1183)) |t#1|))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1118)) ((-293) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T))
+((-2789 (((-112) $) 12)) (-4359 (((-3 |#3| "failed") $) 17)) (-3043 ((|#3| $) 14)))
+(((-1255 |#1| |#2| |#3|) (-10 -8 (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -2789 ((-112) |#1|))) (-1256 |#2| |#3|) (-1055) (-1233 |#2|)) (T -1255))
+NIL
+(-10 -8 (-15 -4359 ((-3 |#3| "failed") |#1|)) (-15 -3043 (|#3| |#1|)) (-15 -2789 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2691 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 174 (|has| |#1| (-367)))) (-2207 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3714 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2669 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-2712 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#2| "failed") $) 194)) (-3043 ((|#2| $) 195)) (-2339 (($ $ $) 169 (|has| |#1| (-367)))) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-4382 (((-412 (-569)) $) 191)) (-2348 (($ $ $) 168 (|has| |#1| (-367)))) (-1754 (($ (-412 (-569)) |#2|) 192)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-3848 (((-112) $) 176 (|has| |#1| (-367)))) (-2755 (((-112) $) 85)) (-4408 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2019 (((-112) $) 74)) (-3838 (($ |#1| (-412 (-569))) 73) (($ $ (-1088) (-412 (-569))) 88) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-2616 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-1798 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-4371 ((|#2| $) 190)) (-4360 (((-3 |#2| "failed") $) 188)) (-1741 ((|#2| $) 189)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 177 (|has| |#1| (-367)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2718 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1830 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3699 (((-423 $) $) 173 (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 170 (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4367 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) 166 (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 167 (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2091 (((-412 (-569)) $) 76)) (-2725 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4094 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1256 |#1| |#2|) (-140) (-1055) (-1233 |t#1|)) (T -1256))
+((-2091 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3)) (-5 *2 (-412 (-569))))) (-1754 (*1 *1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1055)) (-4 *1 (-1256 *4 *3)) (-4 *3 (-1233 *4)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3)) (-5 *2 (-412 (-569))))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))) (-4360 (*1 *2 *1) (|partial| -12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
+(-13 (-1254 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1754 ($ (-412 (-569)) |t#2|)) (-15 -4382 ((-412 (-569)) $)) (-15 -4371 (|t#2| $)) (-15 -2091 ((-412 (-569)) $)) (-15 -1741 (|t#2| $)) (-15 -4360 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1118)) ((-293) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1044 |#2|) . T) ((-1057 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2718 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T) ((-1254 |#1|) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 104)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) 116) (($ $ (-412 (-569)) (-412 (-569))) 118)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 54)) (-2691 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 65)) (-2712 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 172 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL)) (-3043 ((|#2| $) NIL)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) 85)) (-4382 (((-412 (-569)) $) 13)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-1754 (($ (-412 (-569)) |#2|) 11)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2755 (((-112) $) 74)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) 113) (((-412 (-569)) $ (-412 (-569))) 114)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) 130) (($ $ (-412 (-569))) 128)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-412 (-569))) 33) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) 125)) (-2616 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4371 ((|#2| $) 12)) (-4360 (((-3 |#2| "failed") $) 44)) (-1741 ((|#2| $) 45)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) 101 (|has| |#1| (-367)))) (-3313 (($ $) 146 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 151 (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) 122)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) 108) (($ $ $) 94 (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 138 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2091 (((-412 (-569)) $) 16)) (-2725 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 120)) (-2388 (((-867) $) NIL) (($ (-569)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-412 (-569))) 139 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) 107)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) 127 T CONST)) (-2132 ((|#1| $) 106)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 21 T CONST)) (-1796 (($) 17 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) 72)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 100 (|has| |#1| (-367)))) (-2946 (($ $) 142) (($ $ $) 78)) (-2935 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 82) (($ $ (-569)) 157 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 158 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1257 |#1| |#2|) (-1256 |#1| |#2|) (-1055) (-1233 |#1|)) (T -1257))
+NIL
+(-1256 |#1| |#2|)
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 11)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) NIL (|has| |#1| (-561)))) (-4305 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-4324 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-367)))) (-2207 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4420 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-1237 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1265 |#1| |#2| |#3|) "failed") $) 22)) (-3043 (((-1237 |#1| |#2| |#3|) $) NIL) (((-1265 |#1| |#2| |#3|) $) NIL)) (-2339 (($ $ $) NIL (|has| |#1| (-367)))) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-4382 (((-412 (-569)) $) 69)) (-2348 (($ $ $) NIL (|has| |#1| (-367)))) (-1754 (($ (-412 (-569)) (-1237 |#1| |#2| |#3|)) NIL)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3848 (((-112) $) NIL (|has| |#1| (-367)))) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2861 (((-112) $) NIL)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-412 (-569))) 30) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-1798 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4371 (((-1237 |#1| |#2| |#3|) $) 72)) (-4360 (((-3 (-1237 |#1| |#2| |#3|) "failed") $) NIL)) (-1741 (((-1237 |#1| |#2| |#3|) $) NIL)) (-2050 (((-1165) $) NIL)) (-1776 (($ $) NIL (|has| |#1| (-367)))) (-3313 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1830 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3699 (((-423 $) $) NIL (|has| |#1| (-367)))) (-4398 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) NIL (|has| |#1| (-367)))) (-4295 (($ $ (-412 (-569))) NIL)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3753 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-4409 (((-776) $) NIL (|has| |#1| (-367)))) (-1852 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) NIL (|has| |#1| (-367)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-2091 (((-412 (-569)) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) NIL)) (-2388 (((-867) $) 109) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1237 |#1| |#2| |#3|)) 16) (($ (-1265 |#1| |#2| |#3|)) 17) (($ (-1269 |#2|)) 36) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-1503 ((|#1| $ (-412 (-569))) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 12)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-412 (-569))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 32 T CONST)) (-1796 (($) 26 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 34)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1258 |#1| |#2| |#3|) (-13 (-1256 |#1| (-1237 |#1| |#2| |#3|)) (-1044 (-1265 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1258))
+((-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1256 |#1| (-1237 |#1| |#2| |#3|)) (-1044 (-1265 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3430 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 37)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL)) (-2586 (($ $) NIL)) (-2564 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 (-569) "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))) (((-3 (-1258 |#2| |#3| |#4|) "failed") $) 22)) (-3043 (((-569) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))) (((-1258 |#2| |#3| |#4|) $) NIL)) (-1842 (($ $) 41)) (-3351 (((-3 $ "failed") $) 27)) (-3556 (($ $) NIL (|has| (-1258 |#2| |#3| |#4|) (-457)))) (-1482 (($ $ (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|) $) NIL)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) 11)) (-2019 (((-112) $) NIL)) (-3838 (($ (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) 25)) (-3304 (((-322 |#2| |#3| |#4|) $) NIL)) (-1491 (($ (-1 (-322 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) $) NIL)) (-1324 (($ (-1 (-1258 |#2| |#3| |#4|) (-1258 |#2| |#3| |#4|)) $) NIL)) (-4401 (((-3 (-848 |#2|) "failed") $) 90)) (-1808 (($ $) NIL)) (-1820 (((-1258 |#2| |#3| |#4|) $) 20)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1787 (((-112) $) NIL)) (-1794 (((-1258 |#2| |#3| |#4|) $) NIL)) (-2374 (((-3 $ "failed") $ (-1258 |#2| |#3| |#4|)) NIL (|has| (-1258 |#2| |#3| |#4|) (-561))) (((-3 $ "failed") $ $) NIL)) (-4394 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $) 74)) (-2091 (((-322 |#2| |#3| |#4|) $) 17)) (-3281 (((-1258 |#2| |#3| |#4|) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-457)))) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ (-1258 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL (-2718 (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))) (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))))) (-3346 (((-649 (-1258 |#2| |#3| |#4|)) $) NIL)) (-1503 (((-1258 |#2| |#3| |#4|) $ (-322 |#2| |#3| |#4|)) NIL)) (-1488 (((-3 $ "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-145)))) (-3263 (((-776)) NIL T CONST)) (-1471 (($ $ $ (-776)) NIL (|has| (-1258 |#2| |#3| |#4|) (-173)))) (-2040 (((-112) $ $) NIL)) (-2574 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ (-1258 |#2| |#3| |#4|)) NIL (|has| (-1258 |#2| |#3| |#4|) (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-1258 |#2| |#3| |#4|)) NIL) (($ (-1258 |#2| |#3| |#4|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))))))
+(((-1259 |#1| |#2| |#3| |#4|) (-13 (-329 (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -4401 ((-3 (-848 |#2|) "failed") $)) (-15 -4394 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $)))) (-13 (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -1259))
+((-4401 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))) (-4394 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))))) (|:| |%type| (-1165)))) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
+(-13 (-329 (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -4401 ((-3 (-848 |#2|) "failed") $)) (-15 -4394 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $))))
+((-2150 ((|#2| $) 34)) (-2498 ((|#2| $) 18)) (-1528 (($ $) 52)) (-4412 (($ $ (-569)) 85)) (-1610 (((-112) $ (-776)) 46)) (-1753 ((|#2| $ |#2|) 82)) (-4423 ((|#2| $ |#2|) 78)) (-3861 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1763 (($ $ (-649 $)) 81)) (-2487 ((|#2| $) 17)) (-3414 (($ $) NIL) (($ $ (-776)) 59)) (-1807 (((-649 $) $) 31)) (-1774 (((-112) $ $) 69)) (-3799 (((-112) $ (-776)) 45)) (-1902 (((-112) $ (-776)) 43)) (-2546 (((-112) $) 33)) (-1702 ((|#2| $) 25) (($ $ (-776)) 64)) (-1852 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2284 (((-112) $) 23)) (-3161 (($ $) 55)) (-3137 (($ $) 86)) (-3172 (((-776) $) 58)) (-3182 (($ $) 57)) (-3632 (($ $ $) 77) (($ |#2| $) NIL)) (-2492 (((-649 $) $) 32)) (-2853 (((-112) $ $) 67)) (-2394 (((-776) $) 51)))
+(((-1260 |#1| |#2|) (-10 -8 (-15 -4412 (|#1| |#1| (-569))) (-15 -3861 (|#2| |#1| "last" |#2|)) (-15 -4423 (|#2| |#1| |#2|)) (-15 -3861 (|#1| |#1| "rest" |#1|)) (-15 -3861 (|#2| |#1| "first" |#2|)) (-15 -3137 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3172 ((-776) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -2498 (|#2| |#1|)) (-15 -2487 (|#2| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1702 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "last")) (-15 -1702 (|#2| |#1|)) (-15 -3414 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| "rest")) (-15 -3414 (|#1| |#1|)) (-15 -1852 (|#2| |#1| "first")) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#1|)) (-15 -1753 (|#2| |#1| |#2|)) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1763 (|#1| |#1| (-649 |#1|))) (-15 -1774 ((-112) |#1| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776)))) (-1261 |#2|) (-1223)) (T -1260))
+NIL
+(-10 -8 (-15 -4412 (|#1| |#1| (-569))) (-15 -3861 (|#2| |#1| "last" |#2|)) (-15 -4423 (|#2| |#1| |#2|)) (-15 -3861 (|#1| |#1| "rest" |#1|)) (-15 -3861 (|#2| |#1| "first" |#2|)) (-15 -3137 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3172 ((-776) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -2498 (|#2| |#1|)) (-15 -2487 (|#2| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1702 (|#1| |#1| (-776))) (-15 -1852 (|#2| |#1| "last")) (-15 -1702 (|#2| |#1|)) (-15 -3414 (|#1| |#1| (-776))) (-15 -1852 (|#1| |#1| "rest")) (-15 -3414 (|#1| |#1|)) (-15 -1852 (|#2| |#1| "first")) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#1| |#1|)) (-15 -1753 (|#2| |#1| |#2|)) (-15 -3861 (|#2| |#1| "value" |#2|)) (-15 -1763 (|#1| |#1| (-649 |#1|))) (-15 -1774 ((-112) |#1| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1852 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1807 ((-649 |#1|) |#1|)) (-15 -2492 ((-649 |#1|) |#1|)) (-15 -2853 ((-112) |#1| |#1|)) (-15 -2394 ((-776) |#1|)) (-15 -1610 ((-112) |#1| (-776))) (-15 -3799 ((-112) |#1| (-776))) (-15 -1902 ((-112) |#1| (-776))))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2150 ((|#1| $) 49)) (-2498 ((|#1| $) 66)) (-1528 (($ $) 68)) (-4412 (($ $ (-569)) 53 (|has| $ (-6 -4444)))) (-1610 (((-112) $ (-776)) 8)) (-1753 ((|#1| $ |#1|) 40 (|has| $ (-6 -4444)))) (-3116 (($ $ $) 57 (|has| $ (-6 -4444)))) (-4423 ((|#1| $ |#1|) 55 (|has| $ (-6 -4444)))) (-3127 ((|#1| $ |#1|) 59 (|has| $ (-6 -4444)))) (-3861 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4444))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4444))) (($ $ "rest" $) 56 (|has| $ (-6 -4444))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4444)))) (-1763 (($ $ (-649 $)) 42 (|has| $ (-6 -4444)))) (-2487 ((|#1| $) 67)) (-3863 (($) 7 T CONST)) (-3414 (($ $) 74) (($ $ (-776)) 72)) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1807 (((-649 $) $) 51)) (-1774 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-3799 (((-112) $ (-776)) 9)) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-112) $ (-776)) 10)) (-2238 (((-649 |#1|) $) 46)) (-2546 (((-112) $) 50)) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1702 ((|#1| $) 71) (($ $ (-776)) 69)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 77) (($ $ (-776)) 75)) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1797 (((-569) $ $) 45)) (-2284 (((-112) $) 47)) (-3161 (($ $) 63)) (-3137 (($ $) 60 (|has| $ (-6 -4444)))) (-3172 (((-776) $) 64)) (-3182 (($ $) 65)) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3885 (($ $) 13)) (-3149 (($ $ $) 62 (|has| $ (-6 -4444))) (($ $ |#1|) 61 (|has| $ (-6 -4444)))) (-3632 (($ $ $) 79) (($ |#1| $) 78)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2492 (((-649 $) $) 52)) (-1785 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1261 |#1|) (-140) (-1223)) (T -1261))
+((-3632 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3632 (*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3401 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1852 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3182 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3149 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3149 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3137 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3127 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3861 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3116 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3861 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-4423 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3861 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))))
+(-13 (-1016 |t#1|) (-10 -8 (-15 -3632 ($ $ $)) (-15 -3632 ($ |t#1| $)) (-15 -3401 (|t#1| $)) (-15 -1852 (|t#1| $ "first")) (-15 -3401 ($ $ (-776))) (-15 -3414 ($ $)) (-15 -1852 ($ $ "rest")) (-15 -3414 ($ $ (-776))) (-15 -1702 (|t#1| $)) (-15 -1852 (|t#1| $ "last")) (-15 -1702 ($ $ (-776))) (-15 -1528 ($ $)) (-15 -2487 (|t#1| $)) (-15 -2498 (|t#1| $)) (-15 -3182 ($ $)) (-15 -3172 ((-776) $)) (-15 -3161 ($ $)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3149 ($ $ $)) (-15 -3149 ($ $ |t#1|)) (-15 -3137 ($ $)) (-15 -3127 (|t#1| $ |t#1|)) (-15 -3861 (|t#1| $ "first" |t#1|)) (-15 -3116 ($ $ $)) (-15 -3861 ($ $ "rest" $)) (-15 -4423 (|t#1| $ |t#1|)) (-15 -3861 (|t#1| $ "last" |t#1|)) (-15 -4412 ($ $ (-569)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-1324 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| (-1 |#2| |#1|) |#3|))) (-1055) (-1055) (-1264 |#1|) (-1264 |#2|)) (T -1262))
+((-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *6 *4 *2)) (-4 *4 (-1264 *5)))))
+(-10 -7 (-15 -1324 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2789 (((-112) $) 17)) (-2691 (($ $) 106)) (-2556 (($ $) 82)) (-2669 (($ $) 102)) (-2534 (($ $) 78)) (-2712 (($ $) 110)) (-2576 (($ $) 86)) (-2616 (($ $) 76)) (-4367 (($ $) 74)) (-2725 (($ $) 112)) (-2588 (($ $) 88)) (-2701 (($ $) 108)) (-2566 (($ $) 84)) (-2680 (($ $) 104)) (-2545 (($ $) 80)) (-2388 (((-867) $) 62) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4119 (($ $) 118)) (-2627 (($ $) 94)) (-4094 (($ $) 114)) (-2601 (($ $) 90)) (-4144 (($ $) 122)) (-2648 (($ $) 98)) (-1470 (($ $) 124)) (-2658 (($ $) 100)) (-4131 (($ $) 120)) (-2638 (($ $) 96)) (-4106 (($ $) 116)) (-2615 (($ $) 92)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-412 (-569))) 72)))
+(((-1263 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2556 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -2789 ((-112) |#1|)) (-15 -2388 ((-867) |#1|))) (-1264 |#2|) (-1055)) (T -1263))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2556 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2388 (|#1| |#2|)) (-15 -2388 (|#1| |#1|)) (-15 -2388 (|#1| (-412 (-569)))) (-15 -2388 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -2789 ((-112) |#1|)) (-15 -2388 ((-867) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3865 (((-649 (-1088)) $) 86)) (-2599 (((-1183) $) 115)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2586 (($ $) 64 (|has| |#1| (-561)))) (-2564 (((-112) $) 66 (|has| |#1| (-561)))) (-4305 (($ $ (-776)) 110) (($ $ (-776) (-776)) 109)) (-4324 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 117)) (-2691 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-3714 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 167) (($ (-1163 |#1|)) 165)) (-2712 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) 18 T CONST)) (-1842 (($ $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-3335 (($ $) 164)) (-2445 (((-958 |#1|) $ (-776)) 162) (((-958 |#1|) $ (-776) (-776)) 161)) (-2755 (((-112) $) 85)) (-4408 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $) 112) (((-776) $ (-776)) 111)) (-2861 (((-112) $) 35)) (-1589 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-4352 (($ $ (-927)) 113)) (-3324 (($ (-1 |#1| (-569)) $) 163)) (-2019 (((-112) $) 74)) (-3838 (($ |#1| (-776)) 73) (($ $ (-1088) (-776)) 88) (($ $ (-649 (-1088)) (-649 (-776))) 87)) (-1324 (($ (-1 |#1| |#1|) $) 75)) (-2616 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) 77)) (-1820 ((|#1| $) 78)) (-2050 (((-1165) $) 10)) (-3313 (($ $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 158 (-2718 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3461 (((-1126) $) 11)) (-4295 (($ $ (-776)) 107)) (-2374 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4367 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1679 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1852 ((|#1| $ (-776)) 116) (($ $ $) 93 (|has| (-776) (-1118)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2091 (((-776) $) 76)) (-2725 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 84)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-3346 (((-1163 |#1|) $) 166)) (-1503 ((|#1| $ (-776)) 71)) (-1488 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3263 (((-776)) 32 T CONST)) (-2132 ((|#1| $) 114)) (-2040 (((-112) $ $) 9)) (-4119 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4094 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-776)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ |#1|) 160 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1264 |#1|) (-140) (-1055)) (T -1264))
+((-2056 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1264 *3)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-5 *2 (-1163 *3)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-4 *1 (-1264 *3)))) (-3335 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)))) (-3324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1264 *3)) (-4 *3 (-1055)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055)) (-5 *2 (-958 *4)))) (-2445 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055)) (-5 *2 (-958 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-3313 (*1 *1 *1 *2) (-2718 (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -3865 ((-649 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1251 |t#1| (-776)) (-10 -8 (-15 -2056 ($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |t#1|))))) (-15 -3346 ((-1163 |t#1|) $)) (-15 -2056 ($ (-1163 |t#1|))) (-15 -3335 ($ $)) (-15 -3324 ($ (-1 |t#1| (-569)) $)) (-15 -2445 ((-958 |t#1|) $ (-776))) (-15 -2445 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-367)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -3865 ((-649 (-1183)) |t#1|))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3313 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-776) |#1|))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-776) (-1118)) ((-293) |has| |#1| (-561)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2718 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1251 |#1| #0#) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3865 (((-649 (-1088)) $) NIL)) (-2599 (((-1183) $) 92)) (-3301 (((-1246 |#2| |#1|) $ (-776)) 73)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2586 (($ $) NIL (|has| |#1| (-561)))) (-2564 (((-112) $) 144 (|has| |#1| (-561)))) (-4305 (($ $ (-776)) 129) (($ $ (-776) (-776)) 132)) (-4324 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 43)) (-2691 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2556 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3714 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2056 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 52) (($ (-1163 |#1|)) NIL)) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3863 (($) NIL T CONST)) (-3223 (($ $) 136)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-3335 (($ $) 142)) (-2445 (((-958 |#1|) $ (-776)) 63) (((-958 |#1|) $ (-776) (-776)) 65)) (-2755 (((-112) $) NIL)) (-4408 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4315 (((-776) $) NIL) (((-776) $ (-776)) NIL)) (-2861 (((-112) $) NIL)) (-3264 (($ $) 119)) (-1589 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3206 (($ (-569) (-569) $) 138)) (-4352 (($ $ (-927)) 141)) (-3324 (($ (-1 |#1| (-569)) $) 113)) (-2019 (((-112) $) NIL)) (-3838 (($ |#1| (-776)) 16) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1324 (($ (-1 |#1| |#1|) $) 100)) (-2616 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1808 (($ $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3276 (($ $) 117)) (-3289 (($ $) 115)) (-3193 (($ (-569) (-569) $) 140)) (-3313 (($ $) 152 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 158 (-2718 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -3865 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 153 (|has| |#1| (-38 (-412 (-569)))))) (-3461 (((-1126) $) NIL)) (-3234 (($ $ (-569) (-569)) 123)) (-4295 (($ $ (-776)) 125)) (-2374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4367 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3251 (($ $) 121)) (-1679 (((-1163 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1852 ((|#1| $ (-776)) 97) (($ $ $) 134 (|has| (-776) (-1118)))) (-3430 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 110 (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 105)) (-2091 (((-776) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2680 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2745 (($ $) 127)) (-2388 (((-867) $) NIL) (($ (-569)) 26) (($ (-412 (-569))) 150 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1246 |#2| |#1|)) 83) (($ (-1269 |#2|)) 22)) (-3346 (((-1163 |#1|) $) NIL)) (-1503 ((|#1| $ (-776)) 96)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3263 (((-776)) NIL T CONST)) (-2132 ((|#1| $) 93)) (-2040 (((-112) $ $) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2627 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2574 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4094 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4144 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3006 ((|#1| $ (-776)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -2388 (|#1| (-1183))))))) (-1470 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2658 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4131 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2638 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1786 (($) 18 T CONST)) (-1796 (($) 13 T CONST)) (-2749 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2853 (((-112) $ $) NIL)) (-2956 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) 109)) (-2935 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 147 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1265 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -2388 ($ (-1246 |#2| |#1|))) (-15 -3301 ((-1246 |#2| |#1|) $ (-776))) (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (-15 -3289 ($ $)) (-15 -3276 ($ $)) (-15 -3264 ($ $)) (-15 -3251 ($ $)) (-15 -3234 ($ $ (-569) (-569))) (-15 -3223 ($ $)) (-15 -3206 ($ (-569) (-569) $)) (-15 -3193 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1265))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1265 *3 *4 *5)))) (-3301 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1265 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3289 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3264 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3251 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3234 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-3223 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3206 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-3193 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(-13 (-1264 |#1|) (-10 -8 (-15 -2388 ($ (-1246 |#2| |#1|))) (-15 -3301 ((-1246 |#2| |#1|) $ (-776))) (-15 -2388 ($ (-1269 |#2|))) (-15 -3430 ($ $ (-1269 |#2|))) (-15 -3289 ($ $)) (-15 -3276 ($ $)) (-15 -3264 ($ $)) (-15 -3251 ($ $)) (-15 -3234 ($ $ (-569) (-569))) (-15 -3223 ($ $)) (-15 -3206 ($ (-569) (-569) $)) (-15 -3193 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3313 ($ $ (-1269 |#2|))) |%noBranch|)))
+((-3380 (((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|))) 24)) (-3368 (((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3356 (((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|)) 13)) (-3419 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3406 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3431 ((|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|)) 60)) (-3442 (((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))) 66)) (-3394 ((|#2| |#2| |#2|) 43)))
+(((-1266 |#1| |#2|) (-10 -7 (-15 -3356 ((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|))) (-15 -3368 ((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3380 ((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3406 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3431 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -3442 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))))) (-38 (-412 (-569))) (-1264 |#1|)) (T -1266))
+((-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6)))) (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1264 *5)) (-5 *2 (-649 *6)) (-5 *1 (-1266 *5 *6)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5)) (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1264 *5)) (-5 *1 (-1266 *5 *2)))) (-3419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-3394 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1266 *3 *2)) (-4 *2 (-1264 *3)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-649 (-1163 *4)))) (-5 *1 (-1266 *4 *5)))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))))
+(-10 -7 (-15 -3356 ((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|))) (-15 -3368 ((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3380 ((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3406 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3431 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -3442 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|))))))
+((-3467 ((|#2| |#4| (-776)) 34)) (-3454 ((|#4| |#2|) 29)) (-3492 ((|#4| (-412 |#2|)) 53 (|has| |#1| (-561)))) (-3480 (((-1 |#4| (-649 |#4|)) |#3|) 46)))
+(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 (|#4| |#2|)) (-15 -3467 (|#2| |#4| (-776))) (-15 -3480 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -3492 (|#4| (-412 |#2|))) |%noBranch|)) (-1055) (-1249 |#1|) (-661 |#2|) (-1264 |#1|)) (T -1267))
+((-3492 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-561)) (-4 *4 (-1055)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *5 *6 *2)) (-4 *6 (-661 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-1249 *4)) (-5 *2 (-1 *6 (-649 *6))) (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1264 *4)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1264 *5)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-1249 *4)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
+(-10 -7 (-15 -3454 (|#4| |#2|)) (-15 -3467 (|#2| |#4| (-776))) (-15 -3480 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -3492 (|#4| (-412 |#2|))) |%noBranch|))
NIL
(((-1268) (-140)) (T -1268))
NIL
-(-13 (-10 -7 (-6 -2451)))
-((-2986 (((-112) $ $) NIL)) (-4281 (((-1183)) 12)) (-3681 (((-1165) $) 18)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 11) (((-1183) $) 8)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) 15)))
-(((-1269 |#1|) (-13 (-1107) (-618 (-1183)) (-10 -8 (-15 -4396 ((-1183) $)) (-15 -4281 ((-1183))))) (-1183)) (T -1269))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))) (-4281 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
-(-13 (-1107) (-618 (-1183)) (-10 -8 (-15 -4396 ((-1183) $)) (-15 -4281 ((-1183)))))
-((-4288 (($ (-776)) 19)) (-4285 (((-694 |#2|) $ $) 41)) (-4282 ((|#2| $) 51)) (-4283 ((|#2| $) 50)) (-4286 ((|#2| $ $) 36)) (-4284 (($ $ $) 47)) (-4287 (($ $) 23) (($ $ $) 29)) (-4289 (($ $ $) 15)) (* (($ (-551) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1270 |#1| |#2|) (-10 -8 (-15 -4282 (|#2| |#1|)) (-15 -4283 (|#2| |#1|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -4285 ((-694 |#2|) |#1| |#1|)) (-15 -4286 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4288 (|#1| (-776))) (-15 -4289 (|#1| |#1| |#1|))) (-1271 |#2|) (-1222)) (T -1270))
-NIL
-(-10 -8 (-15 -4282 (|#2| |#1|)) (-15 -4283 (|#2| |#1|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -4285 ((-694 |#2|) |#1| |#1|)) (-15 -4286 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-551) |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4288 (|#1| (-776))) (-15 -4289 (|#1| |#1| |#1|)))
-((-2986 (((-112) $ $) 19 (|has| |#1| (-1107)))) (-4288 (($ (-776)) 113 (|has| |#1| (-23)))) (-2390 (((-1278) $ (-551) (-551)) 41 (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) 8)) (-4237 ((|#1| $ (-551) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) 59 (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-4174 (($) 7 T CONST)) (-2460 (($ $) 91 (|has| $ (-6 -4444)))) (-2461 (($ $) 101)) (-1443 (($ $) 79 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-3848 (($ |#1| $) 78 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) 54 (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) 52)) (-3861 (((-551) (-1 (-112) |#1|) $) 98) (((-551) |#1| $) 97 (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) 96 (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) 31 (|has| $ (-6 -4443)))) (-4285 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4064 (($ (-776) |#1|) 70)) (-4169 (((-112) $ (-776)) 9)) (-2392 (((-551) $) 44 (|has| (-551) (-855)))) (-2952 (($ $ $) 88 (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) 30 (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-2393 (((-551) $) 45 (|has| (-551) (-855)))) (-3278 (($ $ $) 87 (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4282 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-4166 (((-112) $ (-776)) 10)) (-4283 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-3681 (((-1165) $) 22 (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) 61) (($ $ $ (-551)) 60)) (-2395 (((-646 (-551)) $) 47)) (-2396 (((-112) (-551) $) 48)) (-3682 (((-1126) $) 21 (|has| |#1| (-1107)))) (-4250 ((|#1| $) 43 (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2391 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) 14)) (-2394 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) 49)) (-3845 (((-112) $) 11)) (-4014 (($) 12)) (-4249 ((|#1| $ (-551) |#1|) 51) ((|#1| $ (-551)) 50) (($ $ (-1239 (-551))) 64)) (-4286 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-2468 (($ $ (-551)) 63) (($ $ (-1239 (-551))) 62)) (-4284 (($ $ $) 105 (|has| |#1| (-1055)))) (-2135 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1107)) (|has| $ (-6 -4443))))) (-1909 (($ $ $ (-551)) 92 (|has| $ (-6 -4444)))) (-3842 (($ $) 13)) (-4420 (((-540) $) 80 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 71)) (-4251 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-646 $)) 66)) (-4396 (((-868) $) 18 (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) 23 (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2985 (((-112) $ $) 84 (|has| |#1| (-855)))) (-3473 (((-112) $ $) 20 (|has| |#1| (-1107)))) (-3105 (((-112) $ $) 86 (|has| |#1| (-855)))) (-3106 (((-112) $ $) 83 (|has| |#1| (-855)))) (-4287 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4289 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-551) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-4407 (((-776) $) 6 (|has| $ (-6 -4443)))))
-(((-1271 |#1|) (-140) (-1222)) (T -1271))
-((-4289 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-25)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1222)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-21)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-4 *1 (-1271 *3)) (-4 *3 (-1222)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-731)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-731)))) (-4286 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1055)))) (-4285 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1222)) (-4 *3 (-1055)) (-5 *2 (-694 *3)))) (-4284 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1055)))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1008)) (-4 *2 (-1055)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1008)) (-4 *2 (-1055)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4289 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4288 ($ (-776))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4287 ($ $)) (-15 -4287 ($ $ $)) (-15 * ($ (-551) $))) |%noBranch|) (IF (|has| |t#1| (-731)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-15 -4286 (|t#1| $ $)) (-15 -4285 ((-694 |t#1|) $ $)) (-15 -4284 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1008)) (IF (|has| |t#1| (-1055)) (PROGN (-15 -4283 (|t#1| $)) (-15 -4282 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-618 (-868)) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855)) (|has| |#1| (-618 (-868)))) ((-151 |#1|) . T) ((-619 (-540)) |has| |#1| (-619 (-540))) ((-289 #1=(-551) |#1|) . T) ((-291 #1# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-376 |#1|) . T) ((-494 |#1|) . T) ((-609 #1# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1107) -3978 (|has| |#1| (-1107)) (|has| |#1| (-855))) ((-1222) . T))
-((-2986 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-4288 (($ (-776)) NIL (|has| |#1| (-23)))) (-4290 (($ (-646 |#1|)) 11)) (-2390 (((-1278) $ (-551) (-551)) NIL (|has| $ (-6 -4444)))) (-1910 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-1908 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3328 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1312 (((-112) $ (-776)) NIL)) (-4237 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1239 (-551)) |#1|) NIL (|has| $ (-6 -4444)))) (-4160 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4174 (($) NIL T CONST)) (-2460 (($ $) NIL (|has| $ (-6 -4444)))) (-2461 (($ $) NIL)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-3848 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-1694 ((|#1| $ (-551) |#1|) NIL (|has| $ (-6 -4444)))) (-3535 ((|#1| $ (-551)) NIL)) (-3861 (((-551) (-1 (-112) |#1|) $) NIL) (((-551) |#1| $) NIL (|has| |#1| (-1107))) (((-551) |#1| $ (-551)) NIL (|has| |#1| (-1107)))) (-2134 (((-646 |#1|) $) 16 (|has| $ (-6 -4443)))) (-4285 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4064 (($ (-776) |#1|) NIL)) (-4169 (((-112) $ (-776)) NIL)) (-2392 (((-551) $) NIL (|has| (-551) (-855)))) (-2952 (($ $ $) NIL (|has| |#1| (-855)))) (-3959 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3026 (((-646 |#1|) $) NIL (|has| $ (-6 -4443)))) (-3684 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2393 (((-551) $) 12 (|has| (-551) (-855)))) (-3278 (($ $ $) NIL (|has| |#1| (-855)))) (-2138 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4282 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-4166 (((-112) $ (-776)) NIL)) (-4283 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-3681 (((-1165) $) NIL (|has| |#1| (-1107)))) (-2467 (($ |#1| $ (-551)) NIL) (($ $ $ (-551)) NIL)) (-2395 (((-646 (-551)) $) NIL)) (-2396 (((-112) (-551) $) NIL)) (-3682 (((-1126) $) NIL (|has| |#1| (-1107)))) (-4250 ((|#1| $) NIL (|has| (-551) (-855)))) (-1444 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2391 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-2136 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 (-296 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-296 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107)))) (($ $ (-646 |#1|) (-646 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1107))))) (-1313 (((-112) $ $) NIL)) (-2394 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-2397 (((-646 |#1|) $) NIL)) (-3845 (((-112) $) NIL)) (-4014 (($) NIL)) (-4249 ((|#1| $ (-551) |#1|) NIL) ((|#1| $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4286 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-2468 (($ $ (-551)) NIL) (($ $ (-1239 (-551))) NIL)) (-4284 (($ $ $) NIL (|has| |#1| (-1055)))) (-2135 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1107))))) (-1909 (($ $ $ (-551)) NIL (|has| $ (-6 -4444)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) 20 (|has| |#1| (-619 (-540))))) (-3971 (($ (-646 |#1|)) 10)) (-4251 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-646 $)) NIL)) (-4396 (((-868) $) NIL (|has| |#1| (-618 (-868))))) (-3680 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-2137 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3473 (((-112) $ $) NIL (|has| |#1| (-1107)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3106 (((-112) $ $) NIL (|has| |#1| (-855)))) (-4287 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4289 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-551) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1272 |#1|) (-13 (-1271 |#1|) (-10 -8 (-15 -4290 ($ (-646 |#1|))))) (-1222)) (T -1272))
-((-4290 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1272 *3)))))
-(-13 (-1271 |#1|) (-10 -8 (-15 -4290 ($ (-646 |#1|)))))
-((-4291 (((-1272 |#2|) (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|) 13)) (-4292 ((|#2| (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|) 15)) (-4408 (((-3 (-1272 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1272 |#1|)) 30) (((-1272 |#2|) (-1 |#2| |#1|) (-1272 |#1|)) 18)))
-(((-1273 |#1| |#2|) (-10 -7 (-15 -4291 ((-1272 |#2|) (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|)) (-15 -4408 ((-1272 |#2|) (-1 |#2| |#1|) (-1272 |#1|))) (-15 -4408 ((-3 (-1272 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1272 |#1|)))) (-1222) (-1222)) (T -1273))
-((-4408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1272 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1272 *6)) (-5 *1 (-1273 *5 *6)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1272 *6)) (-5 *1 (-1273 *5 *6)))) (-4292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1272 *5)) (-4 *5 (-1222)) (-4 *2 (-1222)) (-5 *1 (-1273 *5 *2)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1272 *6)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-5 *2 (-1272 *5)) (-5 *1 (-1273 *6 *5)))))
-(-10 -7 (-15 -4291 ((-1272 |#2|) (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|)) (-15 -4292 (|#2| (-1 |#2| |#1| |#2|) (-1272 |#1|) |#2|)) (-15 -4408 ((-1272 |#2|) (-1 |#2| |#1|) (-1272 |#1|))) (-15 -4408 ((-3 (-1272 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1272 |#1|))))
-((-4293 (((-473) (-646 (-646 (-949 (-226)))) (-646 (-263))) 22) (((-473) (-646 (-646 (-949 (-226))))) 21) (((-473) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263))) 20)) (-4294 (((-1275) (-646 (-646 (-949 (-226)))) (-646 (-263))) 33) (((-1275) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263))) 32)) (-4396 (((-1275) (-473)) 48)))
-(((-1274) (-10 -7 (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263)))) (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))))) (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))) (-646 (-263)))) (-15 -4294 ((-1275) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263)))) (-15 -4294 ((-1275) (-646 (-646 (-949 (-226)))) (-646 (-263)))) (-15 -4396 ((-1275) (-473))))) (T -1274))
-((-4396 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1275)) (-5 *1 (-1274)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-1274)))) (-4294 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-925)) (-5 *6 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-1274)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-646 (-263))) (-5 *2 (-473)) (-5 *1 (-1274)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1274)))) (-4293 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-925)) (-5 *6 (-646 (-263))) (-5 *2 (-473)) (-5 *1 (-1274)))))
-(-10 -7 (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263)))) (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))))) (-15 -4293 ((-473) (-646 (-646 (-949 (-226)))) (-646 (-263)))) (-15 -4294 ((-1275) (-646 (-646 (-949 (-226)))) (-879) (-879) (-925) (-646 (-263)))) (-15 -4294 ((-1275) (-646 (-646 (-949 (-226)))) (-646 (-263)))) (-15 -4396 ((-1275) (-473))))
-((-2986 (((-112) $ $) NIL)) (-4312 (((-1165) $ (-1165)) 107) (((-1165) $ (-1165) (-1165)) 105) (((-1165) $ (-1165) (-646 (-1165))) 104)) (-4308 (($) 69)) (-4295 (((-1278) $ (-473) (-925)) 54)) (-4301 (((-1278) $ (-925) (-1165)) 89) (((-1278) $ (-925) (-879)) 90)) (-4323 (((-1278) $ (-925) (-382) (-382)) 57)) (-4333 (((-1278) $ (-1165)) 84)) (-4296 (((-1278) $ (-925) (-1165)) 94)) (-4297 (((-1278) $ (-925) (-382) (-382)) 58)) (-4334 (((-1278) $ (-925) (-925)) 55)) (-4314 (((-1278) $) 85)) (-4299 (((-1278) $ (-925) (-1165)) 93)) (-4303 (((-1278) $ (-473) (-925)) 41)) (-4300 (((-1278) $ (-925) (-1165)) 92)) (-4336 (((-646 (-263)) $) 29) (($ $ (-646 (-263))) 30)) (-4335 (((-1278) $ (-776) (-776)) 52)) (-4307 (($ $) 70) (($ (-473) (-646 (-263))) 71)) (-3681 (((-1165) $) NIL)) (-4310 (((-551) $) 48)) (-3682 (((-1126) $) NIL)) (-4304 (((-1272 (-3 (-473) "undefined")) $) 47)) (-4305 (((-1272 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4300 (-551)) (|:| -4298 (-551)) (|:| |spline| (-551)) (|:| -4329 (-551)) (|:| |axesColor| (-879)) (|:| -4301 (-551)) (|:| |unitsColor| (-879)) (|:| |showing| (-551)))) $) 46)) (-4306 (((-1278) $ (-925) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-879) (-551) (-879) (-551)) 83)) (-4309 (((-646 (-949 (-226))) $) NIL)) (-4302 (((-473) $ (-925)) 43)) (-4332 (((-1278) $ (-776) (-776) (-925) (-925)) 50)) (-4330 (((-1278) $ (-1165)) 95)) (-4298 (((-1278) $ (-925) (-1165)) 91)) (-4396 (((-868) $) 102)) (-4311 (((-1278) $) 96)) (-3680 (((-112) $ $) NIL)) (-4329 (((-1278) $ (-925) (-1165)) 87) (((-1278) $ (-925) (-879)) 88)) (-3473 (((-112) $ $) NIL)))
-(((-1275) (-13 (-1107) (-10 -8 (-15 -4309 ((-646 (-949 (-226))) $)) (-15 -4308 ($)) (-15 -4307 ($ $)) (-15 -4336 ((-646 (-263)) $)) (-15 -4336 ($ $ (-646 (-263)))) (-15 -4307 ($ (-473) (-646 (-263)))) (-15 -4306 ((-1278) $ (-925) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-879) (-551) (-879) (-551))) (-15 -4305 ((-1272 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4300 (-551)) (|:| -4298 (-551)) (|:| |spline| (-551)) (|:| -4329 (-551)) (|:| |axesColor| (-879)) (|:| -4301 (-551)) (|:| |unitsColor| (-879)) (|:| |showing| (-551)))) $)) (-15 -4304 ((-1272 (-3 (-473) "undefined")) $)) (-15 -4333 ((-1278) $ (-1165))) (-15 -4303 ((-1278) $ (-473) (-925))) (-15 -4302 ((-473) $ (-925))) (-15 -4329 ((-1278) $ (-925) (-1165))) (-15 -4329 ((-1278) $ (-925) (-879))) (-15 -4301 ((-1278) $ (-925) (-1165))) (-15 -4301 ((-1278) $ (-925) (-879))) (-15 -4300 ((-1278) $ (-925) (-1165))) (-15 -4299 ((-1278) $ (-925) (-1165))) (-15 -4298 ((-1278) $ (-925) (-1165))) (-15 -4330 ((-1278) $ (-1165))) (-15 -4311 ((-1278) $)) (-15 -4332 ((-1278) $ (-776) (-776) (-925) (-925))) (-15 -4297 ((-1278) $ (-925) (-382) (-382))) (-15 -4323 ((-1278) $ (-925) (-382) (-382))) (-15 -4296 ((-1278) $ (-925) (-1165))) (-15 -4335 ((-1278) $ (-776) (-776))) (-15 -4295 ((-1278) $ (-473) (-925))) (-15 -4334 ((-1278) $ (-925) (-925))) (-15 -4312 ((-1165) $ (-1165))) (-15 -4312 ((-1165) $ (-1165) (-1165))) (-15 -4312 ((-1165) $ (-1165) (-646 (-1165)))) (-15 -4314 ((-1278) $)) (-15 -4310 ((-551) $)) (-15 -4396 ((-868) $))))) (T -1275))
-((-4396 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1275)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-646 (-949 (-226)))) (-5 *1 (-1275)))) (-4308 (*1 *1) (-5 *1 (-1275))) (-4307 (*1 *1 *1) (-5 *1 (-1275))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1275)))) (-4336 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1275)))) (-4307 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-646 (-263))) (-5 *1 (-1275)))) (-4306 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-925)) (-5 *4 (-226)) (-5 *5 (-551)) (-5 *6 (-879)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-1272 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4300 (-551)) (|:| -4298 (-551)) (|:| |spline| (-551)) (|:| -4329 (-551)) (|:| |axesColor| (-879)) (|:| -4301 (-551)) (|:| |unitsColor| (-879)) (|:| |showing| (-551))))) (-5 *1 (-1275)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-1272 (-3 (-473) "undefined"))) (-5 *1 (-1275)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4303 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-925)) (-5 *2 (-473)) (-5 *1 (-1275)))) (-4329 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4329 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4301 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4301 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4300 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4299 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4298 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4332 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4297 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4323 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4296 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4335 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4295 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4312 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-4312 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-4312 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1275)))))
-(-13 (-1107) (-10 -8 (-15 -4309 ((-646 (-949 (-226))) $)) (-15 -4308 ($)) (-15 -4307 ($ $)) (-15 -4336 ((-646 (-263)) $)) (-15 -4336 ($ $ (-646 (-263)))) (-15 -4307 ($ (-473) (-646 (-263)))) (-15 -4306 ((-1278) $ (-925) (-226) (-226) (-226) (-226) (-551) (-551) (-551) (-551) (-879) (-551) (-879) (-551))) (-15 -4305 ((-1272 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4300 (-551)) (|:| -4298 (-551)) (|:| |spline| (-551)) (|:| -4329 (-551)) (|:| |axesColor| (-879)) (|:| -4301 (-551)) (|:| |unitsColor| (-879)) (|:| |showing| (-551)))) $)) (-15 -4304 ((-1272 (-3 (-473) "undefined")) $)) (-15 -4333 ((-1278) $ (-1165))) (-15 -4303 ((-1278) $ (-473) (-925))) (-15 -4302 ((-473) $ (-925))) (-15 -4329 ((-1278) $ (-925) (-1165))) (-15 -4329 ((-1278) $ (-925) (-879))) (-15 -4301 ((-1278) $ (-925) (-1165))) (-15 -4301 ((-1278) $ (-925) (-879))) (-15 -4300 ((-1278) $ (-925) (-1165))) (-15 -4299 ((-1278) $ (-925) (-1165))) (-15 -4298 ((-1278) $ (-925) (-1165))) (-15 -4330 ((-1278) $ (-1165))) (-15 -4311 ((-1278) $)) (-15 -4332 ((-1278) $ (-776) (-776) (-925) (-925))) (-15 -4297 ((-1278) $ (-925) (-382) (-382))) (-15 -4323 ((-1278) $ (-925) (-382) (-382))) (-15 -4296 ((-1278) $ (-925) (-1165))) (-15 -4335 ((-1278) $ (-776) (-776))) (-15 -4295 ((-1278) $ (-473) (-925))) (-15 -4334 ((-1278) $ (-925) (-925))) (-15 -4312 ((-1165) $ (-1165))) (-15 -4312 ((-1165) $ (-1165) (-1165))) (-15 -4312 ((-1165) $ (-1165) (-646 (-1165)))) (-15 -4314 ((-1278) $)) (-15 -4310 ((-551) $)) (-15 -4396 ((-868) $))))
-((-2986 (((-112) $ $) NIL)) (-4324 (((-1278) $ (-382)) 169) (((-1278) $ (-382) (-382) (-382)) 170)) (-4312 (((-1165) $ (-1165)) 179) (((-1165) $ (-1165) (-1165)) 177) (((-1165) $ (-1165) (-646 (-1165))) 176)) (-4340 (($) 67)) (-4331 (((-1278) $ (-382) (-382) (-382) (-382) (-382)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1278) $ (-551) (-551) (-382) (-382) (-382)) 144) (((-1278) $ (-382) (-382)) 145) (((-1278) $ (-382) (-382) (-382)) 152)) (-4343 (((-382)) 122) (((-382) (-382)) 123)) (-4345 (((-382)) 117) (((-382) (-382)) 119)) (-4344 (((-382)) 120) (((-382) (-382)) 121)) (-4341 (((-382)) 126) (((-382) (-382)) 127)) (-4342 (((-382)) 124) (((-382) (-382)) 125)) (-4323 (((-1278) $ (-382) (-382)) 171)) (-4333 (((-1278) $ (-1165)) 153)) (-4338 (((-1139 (-226)) $) 68) (($ $ (-1139 (-226))) 69)) (-4319 (((-1278) $ (-1165)) 187)) (-4318 (((-1278) $ (-1165)) 188)) (-4325 (((-1278) $ (-382) (-382)) 151) (((-1278) $ (-551) (-551)) 168)) (-4334 (((-1278) $ (-925) (-925)) 160)) (-4314 (((-1278) $) 137)) (-4322 (((-1278) $ (-1165)) 186)) (-4327 (((-1278) $ (-1165)) 134)) (-4336 (((-646 (-263)) $) 70) (($ $ (-646 (-263))) 71)) (-4335 (((-1278) $ (-776) (-776)) 159)) (-4337 (((-1278) $ (-776) (-949 (-226))) 193)) (-4339 (($ $) 73) (($ (-1139 (-226)) (-1165)) 74) (($ (-1139 (-226)) (-646 (-263))) 75)) (-4316 (((-1278) $ (-382) (-382) (-382)) 131)) (-3681 (((-1165) $) NIL)) (-4310 (((-551) $) 128)) (-4315 (((-1278) $ (-382)) 174)) (-4320 (((-1278) $ (-382)) 191)) (-3682 (((-1126) $) NIL)) (-4321 (((-1278) $ (-382)) 190)) (-4326 (((-1278) $ (-1165)) 136)) (-4332 (((-1278) $ (-776) (-776) (-925) (-925)) 158)) (-4328 (((-1278) $ (-1165)) 133)) (-4330 (((-1278) $ (-1165)) 135)) (-4313 (((-1278) $ (-157) (-157)) 157)) (-4396 (((-868) $) 166)) (-4311 (((-1278) $) 138)) (-4317 (((-1278) $ (-1165)) 189)) (-3680 (((-112) $ $) NIL)) (-4329 (((-1278) $ (-1165)) 132)) (-3473 (((-112) $ $) NIL)))
-(((-1276) (-13 (-1107) (-10 -8 (-15 -4345 ((-382))) (-15 -4345 ((-382) (-382))) (-15 -4344 ((-382))) (-15 -4344 ((-382) (-382))) (-15 -4343 ((-382))) (-15 -4343 ((-382) (-382))) (-15 -4342 ((-382))) (-15 -4342 ((-382) (-382))) (-15 -4341 ((-382))) (-15 -4341 ((-382) (-382))) (-15 -4340 ($)) (-15 -4339 ($ $)) (-15 -4339 ($ (-1139 (-226)) (-1165))) (-15 -4339 ($ (-1139 (-226)) (-646 (-263)))) (-15 -4338 ((-1139 (-226)) $)) (-15 -4338 ($ $ (-1139 (-226)))) (-15 -4337 ((-1278) $ (-776) (-949 (-226)))) (-15 -4336 ((-646 (-263)) $)) (-15 -4336 ($ $ (-646 (-263)))) (-15 -4335 ((-1278) $ (-776) (-776))) (-15 -4334 ((-1278) $ (-925) (-925))) (-15 -4333 ((-1278) $ (-1165))) (-15 -4332 ((-1278) $ (-776) (-776) (-925) (-925))) (-15 -4331 ((-1278) $ (-382) (-382) (-382) (-382) (-382))) (-15 -4331 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -4331 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4331 ((-1278) $ (-551) (-551) (-382) (-382) (-382))) (-15 -4331 ((-1278) $ (-382) (-382))) (-15 -4331 ((-1278) $ (-382) (-382) (-382))) (-15 -4330 ((-1278) $ (-1165))) (-15 -4329 ((-1278) $ (-1165))) (-15 -4328 ((-1278) $ (-1165))) (-15 -4327 ((-1278) $ (-1165))) (-15 -4326 ((-1278) $ (-1165))) (-15 -4325 ((-1278) $ (-382) (-382))) (-15 -4325 ((-1278) $ (-551) (-551))) (-15 -4324 ((-1278) $ (-382))) (-15 -4324 ((-1278) $ (-382) (-382) (-382))) (-15 -4323 ((-1278) $ (-382) (-382))) (-15 -4322 ((-1278) $ (-1165))) (-15 -4321 ((-1278) $ (-382))) (-15 -4320 ((-1278) $ (-382))) (-15 -4319 ((-1278) $ (-1165))) (-15 -4318 ((-1278) $ (-1165))) (-15 -4317 ((-1278) $ (-1165))) (-15 -4316 ((-1278) $ (-382) (-382) (-382))) (-15 -4315 ((-1278) $ (-382))) (-15 -4314 ((-1278) $)) (-15 -4313 ((-1278) $ (-157) (-157))) (-15 -4312 ((-1165) $ (-1165))) (-15 -4312 ((-1165) $ (-1165) (-1165))) (-15 -4312 ((-1165) $ (-1165) (-646 (-1165)))) (-15 -4311 ((-1278) $)) (-15 -4310 ((-551) $))))) (T -1276))
-((-4345 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4344 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4344 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4343 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4343 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4342 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4341 (*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4341 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))) (-4340 (*1 *1) (-5 *1 (-1276))) (-4339 (*1 *1 *1) (-5 *1 (-1276))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1276)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-646 (-263))) (-5 *1 (-1276)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1276)))) (-4338 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1276)))) (-4337 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1276)))) (-4336 (*1 *1 *1 *2) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1276)))) (-4335 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4332 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4331 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1276)))) (-4331 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4331 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-551)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4331 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4331 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4329 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4328 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4326 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4325 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4325 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4324 (*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4324 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4322 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4321 (*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4320 (*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4318 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4316 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4312 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1276)))) (-4312 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1276)))) (-4312 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1276)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1276)))))
-(-13 (-1107) (-10 -8 (-15 -4345 ((-382))) (-15 -4345 ((-382) (-382))) (-15 -4344 ((-382))) (-15 -4344 ((-382) (-382))) (-15 -4343 ((-382))) (-15 -4343 ((-382) (-382))) (-15 -4342 ((-382))) (-15 -4342 ((-382) (-382))) (-15 -4341 ((-382))) (-15 -4341 ((-382) (-382))) (-15 -4340 ($)) (-15 -4339 ($ $)) (-15 -4339 ($ (-1139 (-226)) (-1165))) (-15 -4339 ($ (-1139 (-226)) (-646 (-263)))) (-15 -4338 ((-1139 (-226)) $)) (-15 -4338 ($ $ (-1139 (-226)))) (-15 -4337 ((-1278) $ (-776) (-949 (-226)))) (-15 -4336 ((-646 (-263)) $)) (-15 -4336 ($ $ (-646 (-263)))) (-15 -4335 ((-1278) $ (-776) (-776))) (-15 -4334 ((-1278) $ (-925) (-925))) (-15 -4333 ((-1278) $ (-1165))) (-15 -4332 ((-1278) $ (-776) (-776) (-925) (-925))) (-15 -4331 ((-1278) $ (-382) (-382) (-382) (-382) (-382))) (-15 -4331 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -4331 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4331 ((-1278) $ (-551) (-551) (-382) (-382) (-382))) (-15 -4331 ((-1278) $ (-382) (-382))) (-15 -4331 ((-1278) $ (-382) (-382) (-382))) (-15 -4330 ((-1278) $ (-1165))) (-15 -4329 ((-1278) $ (-1165))) (-15 -4328 ((-1278) $ (-1165))) (-15 -4327 ((-1278) $ (-1165))) (-15 -4326 ((-1278) $ (-1165))) (-15 -4325 ((-1278) $ (-382) (-382))) (-15 -4325 ((-1278) $ (-551) (-551))) (-15 -4324 ((-1278) $ (-382))) (-15 -4324 ((-1278) $ (-382) (-382) (-382))) (-15 -4323 ((-1278) $ (-382) (-382))) (-15 -4322 ((-1278) $ (-1165))) (-15 -4321 ((-1278) $ (-382))) (-15 -4320 ((-1278) $ (-382))) (-15 -4319 ((-1278) $ (-1165))) (-15 -4318 ((-1278) $ (-1165))) (-15 -4317 ((-1278) $ (-1165))) (-15 -4316 ((-1278) $ (-382) (-382) (-382))) (-15 -4315 ((-1278) $ (-382))) (-15 -4314 ((-1278) $)) (-15 -4313 ((-1278) $ (-157) (-157))) (-15 -4312 ((-1165) $ (-1165))) (-15 -4312 ((-1165) $ (-1165) (-1165))) (-15 -4312 ((-1165) $ (-1165) (-646 (-1165)))) (-15 -4311 ((-1278) $)) (-15 -4310 ((-551) $))))
-((-4354 (((-646 (-1165)) (-646 (-1165))) 104) (((-646 (-1165))) 96)) (-4355 (((-646 (-1165))) 94)) (-4352 (((-646 (-925)) (-646 (-925))) 69) (((-646 (-925))) 64)) (-4351 (((-646 (-776)) (-646 (-776))) 61) (((-646 (-776))) 55)) (-4353 (((-1278)) 71)) (-4357 (((-925) (-925)) 87) (((-925)) 86)) (-4356 (((-925) (-925)) 85) (((-925)) 84)) (-4349 (((-879) (-879)) 81) (((-879)) 80)) (-4359 (((-226)) 91) (((-226) (-382)) 93)) (-4358 (((-925)) 88) (((-925) (-925)) 89)) (-4350 (((-925) (-925)) 83) (((-925)) 82)) (-4346 (((-879) (-879)) 75) (((-879)) 73)) (-4347 (((-879) (-879)) 77) (((-879)) 76)) (-4348 (((-879) (-879)) 79) (((-879)) 78)))
-(((-1277) (-10 -7 (-15 -4346 ((-879))) (-15 -4346 ((-879) (-879))) (-15 -4347 ((-879))) (-15 -4347 ((-879) (-879))) (-15 -4348 ((-879))) (-15 -4348 ((-879) (-879))) (-15 -4349 ((-879))) (-15 -4349 ((-879) (-879))) (-15 -4350 ((-925))) (-15 -4350 ((-925) (-925))) (-15 -4351 ((-646 (-776)))) (-15 -4351 ((-646 (-776)) (-646 (-776)))) (-15 -4352 ((-646 (-925)))) (-15 -4352 ((-646 (-925)) (-646 (-925)))) (-15 -4353 ((-1278))) (-15 -4354 ((-646 (-1165)))) (-15 -4354 ((-646 (-1165)) (-646 (-1165)))) (-15 -4355 ((-646 (-1165)))) (-15 -4356 ((-925))) (-15 -4357 ((-925))) (-15 -4356 ((-925) (-925))) (-15 -4357 ((-925) (-925))) (-15 -4358 ((-925) (-925))) (-15 -4358 ((-925))) (-15 -4359 ((-226) (-382))) (-15 -4359 ((-226))))) (T -1277))
-((-4359 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1277)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-226)) (-5 *1 (-1277)))) (-4358 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4357 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4356 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4357 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4356 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4355 (*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277)))) (-4354 (*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277)))) (-4353 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1277)))) (-4352 (*1 *2 *2) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1277)))) (-4352 (*1 *2) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1277)))) (-4351 (*1 *2 *2) (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1277)))) (-4351 (*1 *2) (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1277)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4350 (*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4349 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4348 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4348 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4347 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4347 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4346 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))) (-4346 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))))
-(-10 -7 (-15 -4346 ((-879))) (-15 -4346 ((-879) (-879))) (-15 -4347 ((-879))) (-15 -4347 ((-879) (-879))) (-15 -4348 ((-879))) (-15 -4348 ((-879) (-879))) (-15 -4349 ((-879))) (-15 -4349 ((-879) (-879))) (-15 -4350 ((-925))) (-15 -4350 ((-925) (-925))) (-15 -4351 ((-646 (-776)))) (-15 -4351 ((-646 (-776)) (-646 (-776)))) (-15 -4352 ((-646 (-925)))) (-15 -4352 ((-646 (-925)) (-646 (-925)))) (-15 -4353 ((-1278))) (-15 -4354 ((-646 (-1165)))) (-15 -4354 ((-646 (-1165)) (-646 (-1165)))) (-15 -4355 ((-646 (-1165)))) (-15 -4356 ((-925))) (-15 -4357 ((-925))) (-15 -4356 ((-925) (-925))) (-15 -4357 ((-925) (-925))) (-15 -4358 ((-925) (-925))) (-15 -4358 ((-925))) (-15 -4359 ((-226) (-382))) (-15 -4359 ((-226))))
-((-4360 (($) 6)) (-4396 (((-868) $) 9)))
-(((-1278) (-13 (-618 (-868)) (-10 -8 (-15 -4360 ($))))) (T -1278))
-((-4360 (*1 *1) (-5 *1 (-1278))))
-(-13 (-618 (-868)) (-10 -8 (-15 -4360 ($))))
-((-4399 (($ $ |#2|) 10)))
-(((-1279 |#1| |#2|) (-10 -8 (-15 -4399 (|#1| |#1| |#2|))) (-1280 |#2|) (-367)) (T -1279))
-NIL
-(-10 -8 (-15 -4399 (|#1| |#1| |#2|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4361 (((-134)) 33)) (-4396 (((-868) $) 12)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3473 (((-112) $ $) 6)) (-4399 (($ $ |#1|) 34)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(-13 (-10 -7 (-6 -2973)))
+((-2383 (((-112) $ $) NIL)) (-2599 (((-1183)) 12)) (-2050 (((-1165) $) 18)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 11) (((-1183) $) 8)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) 15)))
+(((-1269 |#1|) (-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -2388 ((-1183) $)) (-15 -2599 ((-1183))))) (-1183)) (T -1269))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))) (-2599 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
+(-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -2388 ((-1183) $)) (-15 -2599 ((-1183)))))
+((-3357 (($ (-776)) 19)) (-1344 (((-694 |#2|) $ $) 41)) (-3503 ((|#2| $) 51)) (-3747 ((|#2| $) 50)) (-3523 ((|#2| $ $) 36)) (-3513 (($ $ $) 47)) (-2946 (($ $) 23) (($ $ $) 29)) (-2935 (($ $ $) 15)) (* (($ (-569) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1270 |#1| |#2|) (-10 -8 (-15 -3503 (|#2| |#1|)) (-15 -3747 (|#2| |#1|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -1344 ((-694 |#2|) |#1| |#1|)) (-15 -3523 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3357 (|#1| (-776))) (-15 -2935 (|#1| |#1| |#1|))) (-1271 |#2|) (-1223)) (T -1270))
+NIL
+(-10 -8 (-15 -3503 (|#2| |#1|)) (-15 -3747 (|#2| |#1|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -1344 ((-694 |#2|) |#1| |#1|)) (-15 -3523 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3357 (|#1| (-776))) (-15 -2935 (|#1| |#1| |#1|)))
+((-2383 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3357 (($ (-776)) 113 (|has| |#1| (-23)))) (-1699 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4444))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4444))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) 8)) (-3861 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4443)))) (-3863 (($) 7 T CONST)) (-4188 (($ $) 91 (|has| $ (-6 -4444)))) (-2214 (($ $) 101)) (-3437 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1678 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) 52)) (-3975 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) 31 (|has| $ (-6 -4443)))) (-1344 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4275 (($ (-776) |#1|) 70)) (-3799 (((-112) $ (-776)) 9)) (-1726 (((-569) $) 44 (|has| (-569) (-855)))) (-2095 (($ $ $) 88 (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) 30 (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-1738 (((-569) $) 45 (|has| (-569) (-855)))) (-2406 (($ $ $) 87 (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3503 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-1902 (((-112) $ (-776)) 10)) (-3747 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-2050 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1762 (((-649 (-569)) $) 47)) (-1773 (((-112) (-569) $) 48)) (-3461 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3401 ((|#1| $) 43 (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1713 (($ $ |#1|) 42 (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) 14)) (-1750 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) 49)) (-4196 (((-112) $) 11)) (-2825 (($) 12)) (-1852 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-3523 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-4326 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3513 (($ $ $) 105 (|has| |#1| (-1055)))) (-3469 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4443))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4443))))) (-3376 (($ $ $ (-569)) 92 (|has| $ (-6 -4444)))) (-3885 (($ $) 13)) (-1384 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 71)) (-3632 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-2388 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2882 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2853 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2893 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2872 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2946 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2935 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2394 (((-776) $) 6 (|has| $ (-6 -4443)))))
+(((-1271 |#1|) (-140) (-1223)) (T -1271))
+((-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-25)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1223)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (-1344 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-1055)) (-5 *2 (-694 *3)))) (-3513 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008)) (-4 *2 (-1055)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008)) (-4 *2 (-1055)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2935 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3357 ($ (-776))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2946 ($ $)) (-15 -2946 ($ $ $)) (-15 * ($ (-569) $))) |%noBranch|) (IF (|has| |t#1| (-731)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-15 -3523 (|t#1| $ $)) (-15 -1344 ((-694 |t#1|) $ $)) (-15 -3513 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1008)) (IF (|has| |t#1| (-1055)) (PROGN (-15 -3747 (|t#1| $)) (-15 -3503 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2718 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
+((-3535 (((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|) 13)) (-3485 ((|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|) 15)) (-1324 (((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|)) 30) (((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|)) 18)))
+(((-1272 |#1| |#2|) (-10 -7 (-15 -3535 ((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -1324 ((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|))) (-15 -1324 ((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|)))) (-1223) (-1223)) (T -1272))
+((-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-1272 *5 *2)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1273 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-1273 *5)) (-5 *1 (-1272 *6 *5)))))
+(-10 -7 (-15 -3535 ((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -3485 (|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -1324 ((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|))) (-15 -1324 ((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|))))
+((-2383 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3357 (($ (-776)) NIL (|has| |#1| (-23)))) (-3418 (($ (-649 |#1|)) 11)) (-1699 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4444)))) (-3389 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3364 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4444))) (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-855))))) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-1610 (((-112) $ (-776)) NIL)) (-3861 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4444)))) (-1391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3863 (($) NIL T CONST)) (-4188 (($ $) NIL (|has| $ (-6 -4444)))) (-2214 (($ $) NIL)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1678 (($ |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-3485 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4443))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4443)))) (-3074 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4444)))) (-3007 ((|#1| $ (-569)) NIL)) (-3975 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2796 (((-649 |#1|) $) 16 (|has| $ (-6 -4443)))) (-1344 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4275 (($ (-776) |#1|) NIL)) (-3799 (((-112) $ (-776)) NIL)) (-1726 (((-569) $) NIL (|has| (-569) (-855)))) (-2095 (($ $ $) NIL (|has| |#1| (-855)))) (-3719 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2912 (((-649 |#1|) $) NIL (|has| $ (-6 -4443)))) (-2060 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1738 (((-569) $) 12 (|has| (-569) (-855)))) (-2406 (($ $ $) NIL (|has| |#1| (-855)))) (-3065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3503 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1902 (((-112) $ (-776)) NIL)) (-3747 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2050 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4274 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1762 (((-649 (-569)) $) NIL)) (-1773 (((-112) (-569) $) NIL)) (-3461 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3401 ((|#1| $) NIL (|has| (-569) (-855)))) (-4316 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 (($ $ |#1|) NIL (|has| $ (-6 -4444)))) (-3983 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-1620 (((-112) $ $) NIL)) (-1750 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-1784 (((-649 |#1|) $) NIL)) (-4196 (((-112) $) NIL)) (-2825 (($) NIL)) (-1852 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3523 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-4326 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3513 (($ $ $) NIL (|has| |#1| (-1055)))) (-3469 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#1| (-1106))))) (-3376 (($ $ $ (-569)) NIL (|has| $ (-6 -4444)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) 20 (|has| |#1| (-619 (-541))))) (-3709 (($ (-649 |#1|)) 10)) (-3632 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-2388 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-2040 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3996 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4443)))) (-2904 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2882 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2853 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2893 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2946 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2935 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1273 |#1|) (-13 (-1271 |#1|) (-10 -8 (-15 -3418 ($ (-649 |#1|))))) (-1223)) (T -1273))
+((-3418 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1273 *3)))))
+(-13 (-1271 |#1|) (-10 -8 (-15 -3418 ($ (-649 |#1|)))))
+((-2383 (((-112) $ $) NIL)) (-1704 (((-1165) $ (-1165)) 107) (((-1165) $ (-1165) (-1165)) 105) (((-1165) $ (-1165) (-649 (-1165))) 104)) (-3688 (($) 69)) (-3917 (((-1278) $ (-473) (-927)) 54)) (-3051 (((-1278) $ (-927) (-1165)) 89) (((-1278) $ (-927) (-879)) 90)) (-2826 (((-1278) $ (-927) (-383) (-383)) 57)) (-3221 (((-1278) $ (-1165)) 84)) (-3033 (((-1278) $ (-927) (-1165)) 94)) (-3573 (((-1278) $ (-927) (-383) (-383)) 58)) (-2643 (((-1278) $ (-927) (-927)) 55)) (-1681 (((-1278) $) 85)) (-3592 (((-1278) $ (-927) (-1165)) 93)) (-3627 (((-1278) $ (-473) (-927)) 41)) (-3604 (((-1278) $ (-927) (-1165)) 92)) (-3238 (((-649 (-265)) $) 29) (($ $ (-649 (-265))) 30)) (-2653 (((-1278) $ (-776) (-776)) 52)) (-3675 (($ $) 70) (($ (-473) (-649 (-265))) 71)) (-2050 (((-1165) $) NIL)) (-1963 (((-569) $) 48)) (-3461 (((-1126) $) NIL)) (-3640 (((-1273 (-3 (-473) "undefined")) $) 47)) (-3652 (((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3604 (-569)) (|:| -3582 (-569)) (|:| |spline| (-569)) (|:| -2595 (-569)) (|:| |axesColor| (-879)) (|:| -3051 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $) 46)) (-3661 (((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569)) 83)) (-3697 (((-649 (-949 (-226))) $) NIL)) (-3614 (((-473) $ (-927)) 43)) (-2632 (((-1278) $ (-776) (-776) (-927) (-927)) 50)) (-2608 (((-1278) $ (-1165)) 95)) (-3582 (((-1278) $ (-927) (-1165)) 91)) (-2388 (((-867) $) 102)) (-4113 (((-1278) $) 96)) (-2040 (((-112) $ $) NIL)) (-2595 (((-1278) $ (-927) (-1165)) 87) (((-1278) $ (-927) (-879)) 88)) (-2853 (((-112) $ $) NIL)))
+(((-1274) (-13 (-1106) (-10 -8 (-15 -3697 ((-649 (-949 (-226))) $)) (-15 -3688 ($)) (-15 -3675 ($ $)) (-15 -3238 ((-649 (-265)) $)) (-15 -3238 ($ $ (-649 (-265)))) (-15 -3675 ($ (-473) (-649 (-265)))) (-15 -3661 ((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3652 ((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3604 (-569)) (|:| -3582 (-569)) (|:| |spline| (-569)) (|:| -2595 (-569)) (|:| |axesColor| (-879)) (|:| -3051 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -3640 ((-1273 (-3 (-473) "undefined")) $)) (-15 -3221 ((-1278) $ (-1165))) (-15 -3627 ((-1278) $ (-473) (-927))) (-15 -3614 ((-473) $ (-927))) (-15 -2595 ((-1278) $ (-927) (-1165))) (-15 -2595 ((-1278) $ (-927) (-879))) (-15 -3051 ((-1278) $ (-927) (-1165))) (-15 -3051 ((-1278) $ (-927) (-879))) (-15 -3604 ((-1278) $ (-927) (-1165))) (-15 -3592 ((-1278) $ (-927) (-1165))) (-15 -3582 ((-1278) $ (-927) (-1165))) (-15 -2608 ((-1278) $ (-1165))) (-15 -4113 ((-1278) $)) (-15 -2632 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -3573 ((-1278) $ (-927) (-383) (-383))) (-15 -2826 ((-1278) $ (-927) (-383) (-383))) (-15 -3033 ((-1278) $ (-927) (-1165))) (-15 -2653 ((-1278) $ (-776) (-776))) (-15 -3917 ((-1278) $ (-473) (-927))) (-15 -2643 ((-1278) $ (-927) (-927))) (-15 -1704 ((-1165) $ (-1165))) (-15 -1704 ((-1165) $ (-1165) (-1165))) (-15 -1704 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -1681 ((-1278) $)) (-15 -1963 ((-569) $)) (-15 -2388 ((-867) $))))) (T -1274))
+((-2388 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1274)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1274)))) (-3688 (*1 *1) (-5 *1 (-1274))) (-3675 (*1 *1 *1) (-5 *1 (-1274))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274)))) (-3675 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1274)))) (-3661 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3604 (-569)) (|:| -3582 (-569)) (|:| |spline| (-569)) (|:| -2595 (-569)) (|:| |axesColor| (-879)) (|:| -3051 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569))))) (-5 *1 (-1274)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-1273 (-3 (-473) "undefined"))) (-5 *1 (-1274)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3627 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3614 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1274)))) (-2595 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2595 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3051 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3051 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3604 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3592 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2608 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2632 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3573 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2826 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3033 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2653 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3917 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2643 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-1704 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1704 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1704 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1274)))))
+(-13 (-1106) (-10 -8 (-15 -3697 ((-649 (-949 (-226))) $)) (-15 -3688 ($)) (-15 -3675 ($ $)) (-15 -3238 ((-649 (-265)) $)) (-15 -3238 ($ $ (-649 (-265)))) (-15 -3675 ($ (-473) (-649 (-265)))) (-15 -3661 ((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3652 ((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3604 (-569)) (|:| -3582 (-569)) (|:| |spline| (-569)) (|:| -2595 (-569)) (|:| |axesColor| (-879)) (|:| -3051 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -3640 ((-1273 (-3 (-473) "undefined")) $)) (-15 -3221 ((-1278) $ (-1165))) (-15 -3627 ((-1278) $ (-473) (-927))) (-15 -3614 ((-473) $ (-927))) (-15 -2595 ((-1278) $ (-927) (-1165))) (-15 -2595 ((-1278) $ (-927) (-879))) (-15 -3051 ((-1278) $ (-927) (-1165))) (-15 -3051 ((-1278) $ (-927) (-879))) (-15 -3604 ((-1278) $ (-927) (-1165))) (-15 -3592 ((-1278) $ (-927) (-1165))) (-15 -3582 ((-1278) $ (-927) (-1165))) (-15 -2608 ((-1278) $ (-1165))) (-15 -4113 ((-1278) $)) (-15 -2632 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -3573 ((-1278) $ (-927) (-383) (-383))) (-15 -2826 ((-1278) $ (-927) (-383) (-383))) (-15 -3033 ((-1278) $ (-927) (-1165))) (-15 -2653 ((-1278) $ (-776) (-776))) (-15 -3917 ((-1278) $ (-473) (-927))) (-15 -2643 ((-1278) $ (-927) (-927))) (-15 -1704 ((-1165) $ (-1165))) (-15 -1704 ((-1165) $ (-1165) (-1165))) (-15 -1704 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -1681 ((-1278) $)) (-15 -1963 ((-569) $)) (-15 -2388 ((-867) $))))
+((-2383 (((-112) $ $) NIL)) (-2541 (((-1278) $ (-383)) 169) (((-1278) $ (-383) (-383) (-383)) 170)) (-1704 (((-1165) $ (-1165)) 179) (((-1165) $ (-1165) (-1165)) 177) (((-1165) $ (-1165) (-649 (-1165))) 176)) (-2696 (($) 67)) (-2622 (((-1278) $ (-383) (-383) (-383) (-383) (-383)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1278) $ (-569) (-569) (-383) (-383) (-383)) 144) (((-1278) $ (-383) (-383)) 145) (((-1278) $ (-383) (-383) (-383)) 152)) (-2731 (((-383)) 122) (((-383) (-383)) 123)) (-2752 (((-383)) 117) (((-383) (-383)) 119)) (-2742 (((-383)) 120) (((-383) (-383)) 121)) (-2707 (((-383)) 126) (((-383) (-383)) 127)) (-2719 (((-383)) 124) (((-383) (-383)) 125)) (-2826 (((-1278) $ (-383) (-383)) 171)) (-3221 (((-1278) $ (-1165)) 153)) (-2675 (((-1139 (-226)) $) 68) (($ $ (-1139 (-226))) 69)) (-3775 (((-1278) $ (-1165)) 187)) (-3762 (((-1278) $ (-1165)) 188)) (-2551 (((-1278) $ (-383) (-383)) 151) (((-1278) $ (-569) (-569)) 168)) (-2643 (((-1278) $ (-927) (-927)) 160)) (-1681 (((-1278) $) 137)) (-2530 (((-1278) $ (-1165)) 186)) (-2572 (((-1278) $ (-1165)) 134)) (-3238 (((-649 (-265)) $) 70) (($ $ (-649 (-265))) 71)) (-2653 (((-1278) $ (-776) (-776)) 159)) (-2664 (((-1278) $ (-776) (-949 (-226))) 193)) (-2686 (($ $) 73) (($ (-1139 (-226)) (-1165)) 74) (($ (-1139 (-226)) (-649 (-265))) 75)) (-3738 (((-1278) $ (-383) (-383) (-383)) 131)) (-2050 (((-1165) $) NIL)) (-1963 (((-569) $) 128)) (-3726 (((-1278) $ (-383)) 174)) (-2507 (((-1278) $ (-383)) 191)) (-3461 (((-1126) $) NIL)) (-2518 (((-1278) $ (-383)) 190)) (-2562 (((-1278) $ (-1165)) 136)) (-2632 (((-1278) $ (-776) (-776) (-927) (-927)) 158)) (-2584 (((-1278) $ (-1165)) 133)) (-2608 (((-1278) $ (-1165)) 135)) (-3713 (((-1278) $ (-157) (-157)) 157)) (-2388 (((-867) $) 166)) (-4113 (((-1278) $) 138)) (-3749 (((-1278) $ (-1165)) 189)) (-2040 (((-112) $ $) NIL)) (-2595 (((-1278) $ (-1165)) 132)) (-2853 (((-112) $ $) NIL)))
+(((-1275) (-13 (-1106) (-10 -8 (-15 -2752 ((-383))) (-15 -2752 ((-383) (-383))) (-15 -2742 ((-383))) (-15 -2742 ((-383) (-383))) (-15 -2731 ((-383))) (-15 -2731 ((-383) (-383))) (-15 -2719 ((-383))) (-15 -2719 ((-383) (-383))) (-15 -2707 ((-383))) (-15 -2707 ((-383) (-383))) (-15 -2696 ($)) (-15 -2686 ($ $)) (-15 -2686 ($ (-1139 (-226)) (-1165))) (-15 -2686 ($ (-1139 (-226)) (-649 (-265)))) (-15 -2675 ((-1139 (-226)) $)) (-15 -2675 ($ $ (-1139 (-226)))) (-15 -2664 ((-1278) $ (-776) (-949 (-226)))) (-15 -3238 ((-649 (-265)) $)) (-15 -3238 ($ $ (-649 (-265)))) (-15 -2653 ((-1278) $ (-776) (-776))) (-15 -2643 ((-1278) $ (-927) (-927))) (-15 -3221 ((-1278) $ (-1165))) (-15 -2632 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -2622 ((-1278) $ (-383) (-383) (-383) (-383) (-383))) (-15 -2622 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -2622 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -2622 ((-1278) $ (-569) (-569) (-383) (-383) (-383))) (-15 -2622 ((-1278) $ (-383) (-383))) (-15 -2622 ((-1278) $ (-383) (-383) (-383))) (-15 -2608 ((-1278) $ (-1165))) (-15 -2595 ((-1278) $ (-1165))) (-15 -2584 ((-1278) $ (-1165))) (-15 -2572 ((-1278) $ (-1165))) (-15 -2562 ((-1278) $ (-1165))) (-15 -2551 ((-1278) $ (-383) (-383))) (-15 -2551 ((-1278) $ (-569) (-569))) (-15 -2541 ((-1278) $ (-383))) (-15 -2541 ((-1278) $ (-383) (-383) (-383))) (-15 -2826 ((-1278) $ (-383) (-383))) (-15 -2530 ((-1278) $ (-1165))) (-15 -2518 ((-1278) $ (-383))) (-15 -2507 ((-1278) $ (-383))) (-15 -3775 ((-1278) $ (-1165))) (-15 -3762 ((-1278) $ (-1165))) (-15 -3749 ((-1278) $ (-1165))) (-15 -3738 ((-1278) $ (-383) (-383) (-383))) (-15 -3726 ((-1278) $ (-383))) (-15 -1681 ((-1278) $)) (-15 -3713 ((-1278) $ (-157) (-157))) (-15 -1704 ((-1165) $ (-1165))) (-15 -1704 ((-1165) $ (-1165) (-1165))) (-15 -1704 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -4113 ((-1278) $)) (-15 -1963 ((-569) $))))) (T -1275))
+((-2752 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2742 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2742 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2731 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2731 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2719 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2707 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-2696 (*1 *1) (-5 *1 (-1275))) (-2686 (*1 *1 *1) (-5 *1 (-1275))) (-2686 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1275)))) (-2686 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1275)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))) (-2664 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))) (-2653 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2643 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2632 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2622 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1275)))) (-2622 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2622 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2622 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2622 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2608 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2595 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2584 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2572 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2562 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2541 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2541 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2530 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2507 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3775 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3749 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3738 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3726 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3713 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1704 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-1704 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-1704 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1275)))))
+(-13 (-1106) (-10 -8 (-15 -2752 ((-383))) (-15 -2752 ((-383) (-383))) (-15 -2742 ((-383))) (-15 -2742 ((-383) (-383))) (-15 -2731 ((-383))) (-15 -2731 ((-383) (-383))) (-15 -2719 ((-383))) (-15 -2719 ((-383) (-383))) (-15 -2707 ((-383))) (-15 -2707 ((-383) (-383))) (-15 -2696 ($)) (-15 -2686 ($ $)) (-15 -2686 ($ (-1139 (-226)) (-1165))) (-15 -2686 ($ (-1139 (-226)) (-649 (-265)))) (-15 -2675 ((-1139 (-226)) $)) (-15 -2675 ($ $ (-1139 (-226)))) (-15 -2664 ((-1278) $ (-776) (-949 (-226)))) (-15 -3238 ((-649 (-265)) $)) (-15 -3238 ($ $ (-649 (-265)))) (-15 -2653 ((-1278) $ (-776) (-776))) (-15 -2643 ((-1278) $ (-927) (-927))) (-15 -3221 ((-1278) $ (-1165))) (-15 -2632 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -2622 ((-1278) $ (-383) (-383) (-383) (-383) (-383))) (-15 -2622 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -2622 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -2622 ((-1278) $ (-569) (-569) (-383) (-383) (-383))) (-15 -2622 ((-1278) $ (-383) (-383))) (-15 -2622 ((-1278) $ (-383) (-383) (-383))) (-15 -2608 ((-1278) $ (-1165))) (-15 -2595 ((-1278) $ (-1165))) (-15 -2584 ((-1278) $ (-1165))) (-15 -2572 ((-1278) $ (-1165))) (-15 -2562 ((-1278) $ (-1165))) (-15 -2551 ((-1278) $ (-383) (-383))) (-15 -2551 ((-1278) $ (-569) (-569))) (-15 -2541 ((-1278) $ (-383))) (-15 -2541 ((-1278) $ (-383) (-383) (-383))) (-15 -2826 ((-1278) $ (-383) (-383))) (-15 -2530 ((-1278) $ (-1165))) (-15 -2518 ((-1278) $ (-383))) (-15 -2507 ((-1278) $ (-383))) (-15 -3775 ((-1278) $ (-1165))) (-15 -3762 ((-1278) $ (-1165))) (-15 -3749 ((-1278) $ (-1165))) (-15 -3738 ((-1278) $ (-383) (-383) (-383))) (-15 -3726 ((-1278) $ (-383))) (-15 -1681 ((-1278) $)) (-15 -3713 ((-1278) $ (-157) (-157))) (-15 -1704 ((-1165) $ (-1165))) (-15 -1704 ((-1165) $ (-1165) (-1165))) (-15 -1704 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -4113 ((-1278) $)) (-15 -1963 ((-569) $))))
+((-2842 (((-649 (-1165)) (-649 (-1165))) 104) (((-649 (-1165))) 96)) (-2854 (((-649 (-1165))) 94)) (-2821 (((-649 (-927)) (-649 (-927))) 69) (((-649 (-927))) 64)) (-2810 (((-649 (-776)) (-649 (-776))) 61) (((-649 (-776))) 55)) (-2831 (((-1278)) 71)) (-2873 (((-927) (-927)) 87) (((-927)) 86)) (-2863 (((-927) (-927)) 85) (((-927)) 84)) (-2791 (((-879) (-879)) 81) (((-879)) 80)) (-2894 (((-226)) 91) (((-226) (-383)) 93)) (-2883 (((-927)) 88) (((-927) (-927)) 89)) (-2801 (((-927) (-927)) 83) (((-927)) 82)) (-2761 (((-879) (-879)) 75) (((-879)) 73)) (-2770 (((-879) (-879)) 77) (((-879)) 76)) (-2780 (((-879) (-879)) 79) (((-879)) 78)))
+(((-1276) (-10 -7 (-15 -2761 ((-879))) (-15 -2761 ((-879) (-879))) (-15 -2770 ((-879))) (-15 -2770 ((-879) (-879))) (-15 -2780 ((-879))) (-15 -2780 ((-879) (-879))) (-15 -2791 ((-879))) (-15 -2791 ((-879) (-879))) (-15 -2801 ((-927))) (-15 -2801 ((-927) (-927))) (-15 -2810 ((-649 (-776)))) (-15 -2810 ((-649 (-776)) (-649 (-776)))) (-15 -2821 ((-649 (-927)))) (-15 -2821 ((-649 (-927)) (-649 (-927)))) (-15 -2831 ((-1278))) (-15 -2842 ((-649 (-1165)))) (-15 -2842 ((-649 (-1165)) (-649 (-1165)))) (-15 -2854 ((-649 (-1165)))) (-15 -2863 ((-927))) (-15 -2873 ((-927))) (-15 -2863 ((-927) (-927))) (-15 -2873 ((-927) (-927))) (-15 -2883 ((-927) (-927))) (-15 -2883 ((-927))) (-15 -2894 ((-226) (-383))) (-15 -2894 ((-226))))) (T -1276))
+((-2894 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1276)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1276)))) (-2883 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2873 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2863 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2854 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-2842 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-2842 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-2831 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))) (-2821 (*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))) (-2810 (*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2801 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2791 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2780 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2770 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-2761 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
+(-10 -7 (-15 -2761 ((-879))) (-15 -2761 ((-879) (-879))) (-15 -2770 ((-879))) (-15 -2770 ((-879) (-879))) (-15 -2780 ((-879))) (-15 -2780 ((-879) (-879))) (-15 -2791 ((-879))) (-15 -2791 ((-879) (-879))) (-15 -2801 ((-927))) (-15 -2801 ((-927) (-927))) (-15 -2810 ((-649 (-776)))) (-15 -2810 ((-649 (-776)) (-649 (-776)))) (-15 -2821 ((-649 (-927)))) (-15 -2821 ((-649 (-927)) (-649 (-927)))) (-15 -2831 ((-1278))) (-15 -2842 ((-649 (-1165)))) (-15 -2842 ((-649 (-1165)) (-649 (-1165)))) (-15 -2854 ((-649 (-1165)))) (-15 -2863 ((-927))) (-15 -2873 ((-927))) (-15 -2863 ((-927) (-927))) (-15 -2873 ((-927) (-927))) (-15 -2883 ((-927) (-927))) (-15 -2883 ((-927))) (-15 -2894 ((-226) (-383))) (-15 -2894 ((-226))))
+((-3549 (((-473) (-649 (-649 (-949 (-226)))) (-649 (-265))) 22) (((-473) (-649 (-649 (-949 (-226))))) 21) (((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 20)) (-3561 (((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265))) 33) (((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 32)) (-2388 (((-1274) (-473)) 48)))
+(((-1277) (-10 -7 (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3561 ((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3561 ((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -2388 ((-1274) (-473))))) (T -1277))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-3561 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1277)))) (-3549 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277)))))
+(-10 -7 (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3549 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3561 ((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3561 ((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -2388 ((-1274) (-473))))
+((-2513 (($) 6)) (-2388 (((-867) $) 9)))
+(((-1278) (-13 (-618 (-867)) (-10 -8 (-15 -2513 ($))))) (T -1278))
+((-2513 (*1 *1) (-5 *1 (-1278))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2513 ($))))
+((-2956 (($ $ |#2|) 10)))
+(((-1279 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| |#1| |#2|))) (-1280 |#2|) (-367)) (T -1279))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1| |#2|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2905 (((-134)) 33)) (-2388 (((-867) $) 12)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-2853 (((-112) $ $) 6)) (-2956 (($ $ |#1|) 34)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-1280 |#1|) (-140) (-367)) (T -1280))
-((-4399 (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367)))) (-4361 (*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
-(-13 (-722 |t#1|) (-10 -8 (-15 -4399 ($ $ |t#1|)) (-15 -4361 ((-134)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1107) . T))
-((-4366 (((-646 (-1215 |#1|)) (-1183) (-1215 |#1|)) 83)) (-4364 (((-1160 (-1160 (-952 |#1|))) (-1183) (-1160 (-952 |#1|))) 63)) (-4367 (((-1 (-1160 (-1215 |#1|)) (-1160 (-1215 |#1|))) (-776) (-1215 |#1|) (-1160 (-1215 |#1|))) 74)) (-4362 (((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776)) 65)) (-4365 (((-1 (-1177 (-952 |#1|)) (-952 |#1|)) (-1183)) 32)) (-4363 (((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776)) 64)))
-(((-1281 |#1|) (-10 -7 (-15 -4362 ((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776))) (-15 -4363 ((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776))) (-15 -4364 ((-1160 (-1160 (-952 |#1|))) (-1183) (-1160 (-952 |#1|)))) (-15 -4365 ((-1 (-1177 (-952 |#1|)) (-952 |#1|)) (-1183))) (-15 -4366 ((-646 (-1215 |#1|)) (-1183) (-1215 |#1|))) (-15 -4367 ((-1 (-1160 (-1215 |#1|)) (-1160 (-1215 |#1|))) (-776) (-1215 |#1|) (-1160 (-1215 |#1|))))) (-367)) (T -1281))
-((-4367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1215 *6)) (-5 *2 (-1 (-1160 *4) (-1160 *4))) (-5 *1 (-1281 *6)) (-5 *5 (-1160 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-646 (-1215 *5))) (-5 *1 (-1281 *5)) (-5 *4 (-1215 *5)))) (-4365 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1177 (-952 *4)) (-952 *4))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1160 (-1160 (-952 *5)))) (-5 *1 (-1281 *5)) (-5 *4 (-1160 (-952 *5))))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1160 (-952 *4)) (-1160 (-952 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1160 (-952 *4)) (-1160 (-952 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
-(-10 -7 (-15 -4362 ((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776))) (-15 -4363 ((-1 (-1160 (-952 |#1|)) (-1160 (-952 |#1|))) (-776))) (-15 -4364 ((-1160 (-1160 (-952 |#1|))) (-1183) (-1160 (-952 |#1|)))) (-15 -4365 ((-1 (-1177 (-952 |#1|)) (-952 |#1|)) (-1183))) (-15 -4366 ((-646 (-1215 |#1|)) (-1183) (-1215 |#1|))) (-15 -4367 ((-1 (-1160 (-1215 |#1|)) (-1160 (-1215 |#1|))) (-776) (-1215 |#1|) (-1160 (-1215 |#1|)))))
-((-4369 (((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 82)) (-4368 (((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 81)))
-(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) (-354) (-1248 |#1|) (-1248 |#2|) (-415 |#2| |#3|)) (T -1282))
-((-4369 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 *3)) (-5 *2 (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5)))) (-4368 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-2 (|:| -2200 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5)))))
-(-10 -7 (-15 -4368 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -4369 ((-2 (|:| -2200 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)))
-((-2986 (((-112) $ $) NIL)) (-4370 (((-1141) $) 11)) (-4371 (((-1141) $) 9)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1283) (-13 (-1089) (-10 -8 (-15 -4371 ((-1141) $)) (-15 -4370 ((-1141) $))))) (T -1283))
-((-4371 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
-(-13 (-1089) (-10 -8 (-15 -4371 ((-1141) $)) (-15 -4370 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4372 (((-1141) $) 9)) (-4396 (((-868) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3680 (((-112) $ $) NIL)) (-3473 (((-112) $ $) NIL)))
-(((-1284) (-13 (-1089) (-10 -8 (-15 -4372 ((-1141) $))))) (T -1284))
-((-4372 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
-(-13 (-1089) (-10 -8 (-15 -4372 ((-1141) $))))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 58)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) NIL)) (-2591 (((-112) $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4396 (((-868) $) 81) (($ (-551)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-3548 (((-776)) NIL T CONST)) (-4373 (((-1278) (-776)) 16)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 37 T CONST)) (-3085 (($) 84 T CONST)) (-3473 (((-112) $ $) 87)) (-4399 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-4287 (($ $) 89) (($ $ $) NIL)) (-4289 (($ $ $) 63)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-1285 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4399 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4373 ((-1278) (-776))))) (-1055) (-855) (-798) (-956 |#1| |#3| |#2|) (-646 |#2|) (-646 (-776)) (-776)) (T -1285))
-((-4399 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-798)) (-14 *6 (-646 *3)) (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-956 *2 *4 *3)) (-14 *7 (-646 (-776))) (-14 *8 (-776)))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-14 *8 (-646 *5)) (-5 *2 (-1278)) (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-956 *4 *6 *5)) (-14 *9 (-646 *3)) (-14 *10 *3))))
-(-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -4399 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4373 ((-1278) (-776)))))
-((-2986 (((-112) $ $) NIL)) (-4131 (((-646 (-2 (|:| -4311 $) (|:| -1880 (-646 |#4|)))) (-646 |#4|)) NIL)) (-4132 (((-646 $) (-646 |#4|)) 96)) (-3503 (((-646 |#3|) $) NIL)) (-3327 (((-112) $) NIL)) (-3318 (((-112) $) NIL (|has| |#1| (-562)))) (-4143 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4138 ((|#4| |#4| $) NIL)) (-3328 (((-2 (|:| |under| $) (|:| -3552 $) (|:| |upper| $)) $ |#3|) NIL)) (-1312 (((-112) $ (-776)) NIL)) (-4160 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4174 (($) NIL T CONST)) (-3323 (((-112) $) NIL (|has| |#1| (-562)))) (-3325 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3324 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3326 (((-112) $) NIL (|has| |#1| (-562)))) (-4139 (((-646 |#4|) (-646 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3319 (((-646 |#4|) (-646 |#4|) $) 28 (|has| |#1| (-562)))) (-3320 (((-646 |#4|) (-646 |#4|) $) NIL (|has| |#1| (-562)))) (-3595 (((-3 $ "failed") (-646 |#4|)) NIL)) (-3594 (($ (-646 |#4|)) NIL)) (-4248 (((-3 $ #1#) $) 78)) (-4135 ((|#4| |#4| $) 83)) (-1443 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-3848 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3321 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4144 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4133 ((|#4| |#4| $) NIL)) (-4292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4146 (((-2 (|:| -4311 (-646 |#4|)) (|:| -1880 (-646 |#4|))) $) NIL)) (-2134 (((-646 |#4|) $) NIL (|has| $ (-6 -4443)))) (-4145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3618 ((|#3| $) 84)) (-4169 (((-112) $ (-776)) NIL)) (-3026 (((-646 |#4|) $) 32 (|has| $ (-6 -4443)))) (-3684 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107))))) (-4376 (((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-646 |#4|)) 38)) (-2138 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4444)))) (-4408 (($ (-1 |#4| |#4|) $) NIL)) (-3333 (((-646 |#3|) $) NIL)) (-3332 (((-112) |#3| $) NIL)) (-4166 (((-112) $ (-776)) NIL)) (-3681 (((-1165) $) NIL)) (-4247 (((-3 |#4| #1#) $) NIL)) (-4147 (((-646 |#4|) $) 54)) (-4141 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) 82)) (-4149 (((-112) $ $) 93)) (-3322 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-4142 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4137 ((|#4| |#4| $) NIL)) (-3682 (((-1126) $) NIL)) (-4250 (((-3 |#4| #1#) $) 77)) (-1444 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4129 (((-3 $ #1#) $ |#4|) NIL)) (-4218 (($ $ |#4|) NIL)) (-2136 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4217 (($ $ (-646 |#4|) (-646 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-296 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107)))) (($ $ (-646 (-296 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1107))))) (-1313 (((-112) $ $) NIL)) (-3845 (((-112) $) 75)) (-4014 (($) 46)) (-4398 (((-776) $) NIL)) (-2135 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1107)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3842 (($ $) NIL)) (-4420 (((-540) $) NIL (|has| |#4| (-619 (-540))))) (-3971 (($ (-646 |#4|)) NIL)) (-3329 (($ $ |#3|) NIL)) (-3331 (($ $ |#3|) NIL)) (-4134 (($ $) NIL)) (-3330 (($ $ |#3|) NIL)) (-4396 (((-868) $) NIL) (((-646 |#4|) $) 63)) (-4128 (((-776) $) NIL (|has| |#3| (-372)))) (-4375 (((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-646 |#4|)) 45)) (-4374 (((-646 $) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-646 $) (-646 |#4|)) 74)) (-3680 (((-112) $ $) NIL)) (-4148 (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3766 (-646 |#4|))) #1#) (-646 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4140 (((-112) $ (-1 (-112) |#4| (-646 |#4|))) NIL)) (-2137 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-4130 (((-646 |#3|) $) NIL)) (-4383 (((-112) |#3| $) NIL)) (-3473 (((-112) $ $) NIL)) (-4407 (((-776) $) NIL (|has| $ (-6 -4443)))))
-(((-1286 |#1| |#2| |#3| |#4|) (-13 (-1217 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4376 ((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4376 ((-3 $ "failed") (-646 |#4|))) (-15 -4375 ((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4375 ((-3 $ "failed") (-646 |#4|))) (-15 -4374 ((-646 $) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4374 ((-646 $) (-646 |#4|))))) (-562) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1286))
-((-4376 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-4376 (*1 *1 *2) (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-4375 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-4375 (*1 *1 *2) (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-4374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-646 (-1286 *6 *7 *8 *9))) (-5 *1 (-1286 *6 *7 *8 *9)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 (-1286 *4 *5 *6 *7))) (-5 *1 (-1286 *4 *5 *6 *7)))))
-(-13 (-1217 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4376 ((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4376 ((-3 $ "failed") (-646 |#4|))) (-15 -4375 ((-3 $ "failed") (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4375 ((-3 $ "failed") (-646 |#4|))) (-15 -4374 ((-646 $) (-646 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4374 ((-646 $) (-646 |#4|)))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-1410 (((-3 $ "failed") $ $) 20)) (-4174 (($) 18 T CONST)) (-3908 (((-3 $ "failed") $) 37)) (-2591 (((-112) $) 35)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#1|) 45)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+((-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367)))) (-2905 (*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
+(-13 (-722 |t#1|) (-10 -8 (-15 -2956 ($ $ |t#1|)) (-15 -2905 ((-134)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
+((-2955 (((-649 (-1217 |#1|)) (-1183) (-1217 |#1|)) 83)) (-2936 (((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|))) 63)) (-2965 (((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|))) 74)) (-2915 (((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776)) 65)) (-2947 (((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183)) 32)) (-2924 (((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776)) 64)))
+(((-1281 |#1|) (-10 -7 (-15 -2915 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -2924 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -2936 ((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|)))) (-15 -2947 ((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183))) (-15 -2955 ((-649 (-1217 |#1|)) (-1183) (-1217 |#1|))) (-15 -2965 ((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|))))) (-367)) (T -1281))
+((-2965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1217 *6)) (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1281 *6)) (-5 *5 (-1163 *4)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-649 (-1217 *5))) (-5 *1 (-1281 *5)) (-5 *4 (-1217 *5)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1179 (-958 *4)) (-958 *4))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1163 (-1163 (-958 *5)))) (-5 *1 (-1281 *5)) (-5 *4 (-1163 (-958 *5))))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
+(-10 -7 (-15 -2915 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -2924 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -2936 ((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|)))) (-15 -2947 ((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183))) (-15 -2955 ((-649 (-1217 |#1|)) (-1183) (-1217 |#1|))) (-15 -2965 ((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|)))))
+((-2987 (((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 82)) (-2976 (((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 81)))
+(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) (-353) (-1249 |#1|) (-1249 |#2|) (-414 |#2| |#3|)) (T -1282))
+((-2987 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3)) (-5 *2 (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))) (-2976 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -3371 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
+(-10 -7 (-15 -2976 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2987 ((-2 (|:| -3371 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)))
+((-2383 (((-112) $ $) NIL)) (-2995 (((-1141) $) 11)) (-3008 (((-1141) $) 9)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1283) (-13 (-1089) (-10 -8 (-15 -3008 ((-1141) $)) (-15 -2995 ((-1141) $))))) (T -1283))
+((-3008 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
+(-13 (-1089) (-10 -8 (-15 -3008 ((-1141) $)) (-15 -2995 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2335 (((-1141) $) 9)) (-2388 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-2040 (((-112) $ $) NIL)) (-2853 (((-112) $ $) NIL)))
+(((-1284) (-13 (-1089) (-10 -8 (-15 -2335 ((-1141) $))))) (T -1284))
+((-2335 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
+(-13 (-1089) (-10 -8 (-15 -2335 ((-1141) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 58)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) NIL)) (-2861 (((-112) $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2388 (((-867) $) 81) (($ (-569)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-3263 (((-776)) NIL T CONST)) (-3021 (((-1278) (-776)) 16)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 37 T CONST)) (-1796 (($) 84 T CONST)) (-2853 (((-112) $ $) 87)) (-2956 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2946 (($ $) 89) (($ $ $) NIL)) (-2935 (($ $ $) 63)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-1285 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3021 ((-1278) (-776))))) (-1055) (-855) (-798) (-955 |#1| |#3| |#2|) (-649 |#2|) (-649 (-776)) (-776)) (T -1285))
+((-2956 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-798)) (-14 *6 (-649 *3)) (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3)) (-14 *7 (-649 (-776))) (-14 *8 (-776)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-14 *8 (-649 *5)) (-5 *2 (-1278)) (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5)) (-14 *9 (-649 *3)) (-14 *10 *3))))
+(-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3021 ((-1278) (-776)))))
+((-2383 (((-112) $ $) NIL)) (-1544 (((-649 (-2 (|:| -4113 $) (|:| -1675 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1555 (((-649 $) (-649 |#4|)) 96)) (-3865 (((-649 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-2773 (((-112) $) NIL (|has| |#1| (-561)))) (-1680 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1624 ((|#4| |#4| $) NIL)) (-3246 (((-2 (|:| |under| $) (|:| -3312 $) (|:| |upper| $)) $ |#3|) NIL)) (-1610 (((-112) $ (-776)) NIL)) (-1391 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3863 (($) NIL T CONST)) (-2824 (((-112) $) NIL (|has| |#1| (-561)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2834 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2857 (((-112) $) NIL (|has| |#1| (-561)))) (-1635 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2783 (((-649 |#4|) (-649 |#4|) $) 28 (|has| |#1| (-561)))) (-2794 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4359 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3043 (($ (-649 |#4|)) NIL)) (-3414 (((-3 $ "failed") $) 78)) (-1590 ((|#4| |#4| $) 83)) (-3437 (($ $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-1678 (($ |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-2804 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1691 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1567 ((|#4| |#4| $) NIL)) (-3485 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4443))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4443))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-2 (|:| -4113 (-649 |#4|)) (|:| -1675 (-649 |#4|))) $) NIL)) (-2796 (((-649 |#4|) $) NIL (|has| $ (-6 -4443)))) (-1703 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2717 ((|#3| $) 84)) (-3799 (((-112) $ (-776)) NIL)) (-2912 (((-649 |#4|) $) 32 (|has| $ (-6 -4443)))) (-2060 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106))))) (-3053 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-649 |#4|)) 38)) (-3065 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4444)))) (-1324 (($ (-1 |#4| |#4|) $) NIL)) (-2917 (((-649 |#3|) $) NIL)) (-2908 (((-112) |#3| $) NIL)) (-1902 (((-112) $ (-776)) NIL)) (-2050 (((-1165) $) NIL)) (-1702 (((-3 |#4| "failed") $) NIL)) (-1730 (((-649 |#4|) $) 54)) (-1656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) 82)) (-1755 (((-112) $ $) 93)) (-2813 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-1667 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1614 ((|#4| |#4| $) NIL)) (-3461 (((-1126) $) NIL)) (-3401 (((-3 |#4| "failed") $) 77)) (-4316 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1521 (((-3 $ "failed") $ |#4|) NIL)) (-4295 (($ $ |#4|) NIL)) (-3983 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1679 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-1620 (((-112) $ $) NIL)) (-4196 (((-112) $) 75)) (-2825 (($) 46)) (-2091 (((-776) $) NIL)) (-3469 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4443)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-3885 (($ $) NIL)) (-1384 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3709 (($ (-649 |#4|)) NIL)) (-2876 (($ $ |#3|) NIL)) (-2898 (($ $ |#3|) NIL)) (-1577 (($ $) NIL)) (-2887 (($ $ |#3|) NIL)) (-2388 (((-867) $) NIL) (((-649 |#4|) $) 63)) (-1512 (((-776) $) NIL (|has| |#3| (-372)))) (-3040 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-649 |#4|)) 45)) (-3029 (((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-649 $) (-649 |#4|)) 74)) (-2040 (((-112) $ $) NIL)) (-1742 (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3201 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1645 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3996 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4443)))) (-1532 (((-649 |#3|) $) NIL)) (-1988 (((-112) |#3| $) NIL)) (-2853 (((-112) $ $) NIL)) (-2394 (((-776) $) NIL (|has| $ (-6 -4443)))))
+(((-1286 |#1| |#2| |#3| |#4|) (-13 (-1216 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3053 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3053 ((-3 $ "failed") (-649 |#4|))) (-15 -3040 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3040 ((-3 $ "failed") (-649 |#4|))) (-15 -3029 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3029 ((-649 $) (-649 |#4|))))) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1286))
+((-3053 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-3053 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-3040 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-3040 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1286 *6 *7 *8 *9))) (-5 *1 (-1286 *6 *7 *8 *9)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1286 *4 *5 *6 *7))) (-5 *1 (-1286 *4 *5 *6 *7)))))
+(-13 (-1216 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3053 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3053 ((-3 $ "failed") (-649 |#4|))) (-15 -3040 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3040 ((-3 $ "failed") (-649 |#4|))) (-15 -3029 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3029 ((-649 $) (-649 |#4|)))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-3863 (($) 18 T CONST)) (-3351 (((-3 $ "failed") $) 37)) (-2861 (((-112) $) 35)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
(((-1287 |#1|) (-140) (-1055)) (T -1287))
NIL
(-13 (-1055) (-111 |t#1| |t#1|) (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T))
-((-2986 (((-112) $ $) 67)) (-3626 (((-112) $) NIL)) (-4384 (((-646 |#1|) $) 52)) (-4397 (($ $ (-776)) 46)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4385 (($ $ (-776)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-4174 (($) NIL T CONST)) (-4389 (($ $ $) 70) (($ $ (-824 |#1|)) 56) (($ $ |#1|) 60)) (-3595 (((-3 (-824 |#1|) "failed") $) NIL)) (-3594 (((-824 |#1|) $) NIL)) (-4409 (($ $) 39)) (-3908 (((-3 $ "failed") $) NIL)) (-4401 (((-112) $) NIL)) (-4400 (($ $) NIL)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ (-824 |#1|) |#2|) 38)) (-4386 (($ $) 40)) (-4391 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 12)) (-4405 (((-824 |#1|) $) NIL)) (-4406 (((-824 |#1|) $) 41)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-4390 (($ $ $) 69) (($ $ (-824 |#1|)) 58) (($ $ |#1|) 62)) (-1927 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3313 (((-824 |#1|) $) 35)) (-3612 ((|#2| $) 37)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4398 (((-776) $) 43)) (-4403 (((-112) $) 47)) (-4402 ((|#2| $) NIL)) (-4396 (((-868) $) NIL) (($ (-824 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-551)) NIL)) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-824 |#1|)) NIL)) (-4404 ((|#2| $ $) 76) ((|#2| $ (-824 |#1|)) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 13 T CONST)) (-3085 (($) 19 T CONST)) (-3084 (((-646 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3473 (((-112) $ $) 44)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 28)) (** (($ $ (-776)) NIL) (($ $ (-925)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-824 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1288 |#1| |#2|) (-13 (-388 |#2| (-824 |#1|)) (-1295 |#1| |#2|)) (-855) (-1055)) (T -1288))
-NIL
-(-13 (-388 |#2| (-824 |#1|)) (-1295 |#1| |#2|))
-((-4392 ((|#3| |#3| (-776)) 30)) (-4393 ((|#3| |#3| (-776)) 36)) (-4377 ((|#3| |#3| |#3| (-776)) 37)))
-(((-1289 |#1| |#2| |#3|) (-10 -7 (-15 -4393 (|#3| |#3| (-776))) (-15 -4392 (|#3| |#3| (-776))) (-15 -4377 (|#3| |#3| |#3| (-776)))) (-13 (-1055) (-722 (-412 (-551)))) (-855) (-1295 |#2| |#1|)) (T -1289))
-((-4377 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4)))) (-4392 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4)))) (-4393 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4)))))
-(-10 -7 (-15 -4393 (|#3| |#3| (-776))) (-15 -4392 (|#3| |#3| (-776))) (-15 -4377 (|#3| |#3| |#3| (-776))))
-((-4382 (((-112) $) 15)) (-4383 (((-112) $) 14)) (-4378 (($ $) 19) (($ $ (-776)) 21)))
-(((-1290 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#1| (-776))) (-15 -4378 (|#1| |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4383 ((-112) |#1|))) (-1291 |#2|) (-367)) (T -1290))
-NIL
-(-10 -8 (-15 -4378 (|#1| |#1| (-776))) (-15 -4378 (|#1| |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4383 ((-112) |#1|)))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-2252 (((-2 (|:| -1957 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2251 (($ $) 46)) (-2249 (((-112) $) 44)) (-4382 (((-112) $) 104)) (-4379 (((-776)) 100)) (-1410 (((-3 $ "failed") $ $) 20)) (-4224 (($ $) 81)) (-4419 (((-410 $) $) 80)) (-1763 (((-112) $ $) 65)) (-4174 (($) 18 T CONST)) (-3595 (((-3 |#1| "failed") $) 111)) (-3594 ((|#1| $) 112)) (-2982 (($ $ $) 61)) (-3908 (((-3 $ "failed") $) 37)) (-2981 (($ $ $) 62)) (-3162 (((-2 (|:| -4404 (-646 $)) (|:| -2590 $)) (-646 $)) 57)) (-1951 (($ $ (-776)) 97 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4173 (((-112) $) 79)) (-4221 (((-837 (-925)) $) 94 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2591 (((-112) $) 35)) (-1760 (((-3 (-646 $) #1="failed") (-646 $) $) 58)) (-2079 (($ $ $) 52) (($ (-646 $)) 51)) (-3681 (((-1165) $) 10)) (-2824 (($ $) 78)) (-4381 (((-112) $) 103)) (-3682 (((-1126) $) 11)) (-3129 (((-1177 $) (-1177 $) (-1177 $)) 50)) (-3582 (($ $ $) 54) (($ (-646 $)) 53)) (-4182 (((-410 $) $) 82)) (-4380 (((-837 (-925))) 101)) (-1761 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2590 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3907 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-646 $) "failed") (-646 $) $) 56)) (-1762 (((-776) $) 64)) (-3300 (((-2 (|:| -2162 $) (|:| -3321 $)) $ $) 63)) (-1952 (((-3 (-776) "failed") $ $) 95 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4361 (((-134)) 109)) (-4398 (((-837 (-925)) $) 102)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ $) 49) (($ (-412 (-551))) 74) (($ |#1|) 110)) (-3123 (((-3 $ "failed") $) 93 (-3978 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-2250 (((-112) $ $) 45)) (-4383 (((-112) $) 105)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-4378 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-3473 (((-112) $ $) 6)) (-4399 (($ $ $) 73) (($ $ |#1|) 108)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36) (($ $ (-551)) 77)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ $ (-412 (-551))) 76) (($ (-412 (-551)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1291 |#1|) (-140) (-367)) (T -1291))
-((-4383 (*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-837 (-925))))) (-4380 (*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-837 (-925))))) (-4379 (*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-776)))) (-4378 (*1 *1 *1) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-367)) (-4 *2 (-372)))) (-4378 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-4 *3 (-372)))))
-(-13 (-367) (-1044 |t#1|) (-1280 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-407)) |%noBranch|) (-15 -4383 ((-112) $)) (-15 -4382 ((-112) $)) (-15 -4381 ((-112) $)) (-15 -4398 ((-837 (-925)) $)) (-15 -4380 ((-837 (-925)))) (-15 -4379 ((-776))) (IF (|has| |t#1| (-372)) (PROGN (-6 (-407)) (-15 -4378 ($ $)) (-15 -4378 ($ $ (-776)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-412 (-551))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3978 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #1#) . T) ((-621 (-551)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-868)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) -3978 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-457) . T) ((-562) . T) ((-651 #1#) . T) ((-651 (-551)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #1#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-927) . T) ((-1044 |#1|) . T) ((-1057 #1#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #1#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1227) . T) ((-1280 |#1|) . T))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4384 (((-646 |#1|) $) 47)) (-1410 (((-3 $ "failed") $ $) 20)) (-4385 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4174 (($) 18 T CONST)) (-4389 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-3595 (((-3 (-824 |#1|) "failed") $) 71)) (-3594 (((-824 |#1|) $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-4401 (((-112) $) 52)) (-4400 (($ $) 51)) (-2591 (((-112) $) 35)) (-4387 (((-112) $) 57)) (-4388 (($ (-824 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-4391 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-4405 (((-824 |#1|) $) 68)) (-4408 (($ (-1 |#2| |#2|) $) 48)) (-4390 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4403 (((-112) $) 54)) (-4402 ((|#2| $) 53)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-4404 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1292 |#1| |#2|) (-140) (-855) (-1055)) (T -1292))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4405 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))) (-4404 (*1 *2 *1 *3) (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-4404 (*1 *2 *1 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-4390 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-4390 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4389 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-4389 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4388 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3)) (-4 *3 (-1055)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4396 (*1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4403 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-4400 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4385 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)) (-4 *3 (-173)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-4 *4 (-173)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-646 *3)))))
-(-13 (-1055) (-1287 |t#2|) (-1044 (-824 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4405 ((-824 |t#1|) $)) (-15 -4391 ((-2 (|:| |k| (-824 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4404 (|t#2| $ (-824 |t#1|))) (-15 -4404 (|t#2| $ $)) (-15 -4390 ($ $ |t#1|)) (-15 -4390 ($ $ (-824 |t#1|))) (-15 -4390 ($ $ $)) (-15 -4389 ($ $ |t#1|)) (-15 -4389 ($ $ (-824 |t#1|))) (-15 -4389 ($ $ $)) (-15 -4388 ($ (-824 |t#1|) |t#2|)) (-15 -4387 ((-112) $)) (-15 -4386 ($ $)) (-15 -4396 ($ |t#1|)) (-15 -4403 ((-112) $)) (-15 -4402 (|t#2| $)) (-15 -4401 ((-112) $)) (-15 -4400 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -4385 ($ $ $)) (-15 -4385 ($ $ (-776)))) |%noBranch|) (-15 -4408 ($ (-1 |t#2| |t#2|) $)) (-15 -4384 ((-646 |t#1|) $)) (IF (|has| |t#2| (-6 -4436)) (-6 -4436) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 #1=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #1#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1287 |#2|) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4384 (((-646 |#1|) $) 98)) (-4397 (($ $ (-776)) 102)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4385 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-776)) NIL (|has| |#2| (-173)))) (-4174 (($) NIL T CONST)) (-4389 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-3595 (((-3 (-824 |#1|) #1="failed") $) NIL) (((-3 (-899 |#1|) #1#) $) NIL)) (-3594 (((-824 |#1|) $) NIL) (((-899 |#1|) $) NIL)) (-4409 (($ $) 101)) (-3908 (((-3 $ "failed") $) NIL)) (-4401 (((-112) $) 90)) (-4400 (($ $) 93)) (-4394 (($ $ $ (-776)) 103)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ (-824 |#1|) |#2|) NIL) (($ (-899 |#1|) |#2|) 29)) (-4386 (($ $) 120)) (-4391 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4405 (((-824 |#1|) $) NIL)) (-4406 (((-824 |#1|) $) NIL)) (-4408 (($ (-1 |#2| |#2|) $) NIL)) (-4390 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-4392 (($ $ (-776)) 113 (|has| |#2| (-722 (-412 (-551)))))) (-1927 (((-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3313 (((-899 |#1|) $) 83)) (-3612 ((|#2| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4393 (($ $ (-776)) 110 (|has| |#2| (-722 (-412 (-551)))))) (-4398 (((-776) $) 99)) (-4403 (((-112) $) 84)) (-4402 ((|#2| $) 88)) (-4396 (((-868) $) 69) (($ (-551)) NIL) (($ |#2|) 60) (($ (-824 |#1|)) NIL) (($ |#1|) 71) (($ (-899 |#1|)) NIL) (($ (-669 |#1| |#2|)) 48) (((-1288 |#1| |#2|) $) 76) (((-1297 |#1| |#2|) $) 81)) (-4267 (((-646 |#2|) $) NIL)) (-4127 ((|#2| $ (-899 |#1|)) NIL)) (-4404 ((|#2| $ (-824 |#1|)) NIL) ((|#2| $ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 21 T CONST)) (-3085 (($) 28 T CONST)) (-3084 (((-646 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4395 (((-3 (-669 |#1| |#2|) "failed") $) 119)) (-3473 (((-112) $ $) 77)) (-4287 (($ $) 112) (($ $ $) 111)) (-4289 (($ $ $) 20)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-899 |#1|)) NIL)))
-(((-1293 |#1| |#2|) (-13 (-1295 |#1| |#2|) (-388 |#2| (-899 |#1|)) (-10 -8 (-15 -4396 ($ (-669 |#1| |#2|))) (-15 -4396 ((-1288 |#1| |#2|) $)) (-15 -4396 ((-1297 |#1| |#2|) $)) (-15 -4395 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -4394 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-551)))) (PROGN (-15 -4393 ($ $ (-776))) (-15 -4392 ($ $ (-776)))) |%noBranch|))) (-855) (-173)) (T -1293))
-((-4396 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-1293 *3 *4)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4395 (*1 *2 *1) (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4394 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4393 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-551)))) (-4 *3 (-855)) (-4 *4 (-173)))) (-4392 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-551)))) (-4 *3 (-855)) (-4 *4 (-173)))))
-(-13 (-1295 |#1| |#2|) (-388 |#2| (-899 |#1|)) (-10 -8 (-15 -4396 ($ (-669 |#1| |#2|))) (-15 -4396 ((-1288 |#1| |#2|) $)) (-15 -4396 ((-1297 |#1| |#2|) $)) (-15 -4395 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -4394 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-551)))) (PROGN (-15 -4393 ($ $ (-776))) (-15 -4392 ($ $ (-776)))) |%noBranch|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-4384 (((-646 (-1183)) $) NIL)) (-4412 (($ (-1288 (-1183) |#1|)) NIL)) (-4397 (($ $ (-776)) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4385 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-776)) NIL (|has| |#1| (-173)))) (-4174 (($) NIL T CONST)) (-4389 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-3595 (((-3 (-824 (-1183)) "failed") $) NIL)) (-3594 (((-824 (-1183)) $) NIL)) (-3908 (((-3 $ "failed") $) NIL)) (-4401 (((-112) $) NIL)) (-4400 (($ $) NIL)) (-2591 (((-112) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ (-824 (-1183)) |#1|) NIL)) (-4386 (($ $) NIL)) (-4391 (((-2 (|:| |k| (-824 (-1183))) (|:| |c| |#1|)) $) NIL)) (-4405 (((-824 (-1183)) $) NIL)) (-4406 (((-824 (-1183)) $) NIL)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4413 (((-1288 (-1183) |#1|) $) NIL)) (-4398 (((-776) $) NIL)) (-4403 (((-112) $) NIL)) (-4402 ((|#1| $) NIL)) (-4396 (((-868) $) NIL) (($ (-551)) NIL) (($ |#1|) NIL) (($ (-824 (-1183))) NIL) (($ (-1183)) NIL)) (-4404 ((|#1| $ (-824 (-1183))) NIL) ((|#1| $ $) NIL)) (-3548 (((-776)) NIL T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) NIL T CONST)) (-4411 (((-646 (-2 (|:| |k| (-1183)) (|:| |c| $))) $) NIL)) (-3085 (($) NIL T CONST)) (-3473 (((-112) $ $) NIL)) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) NIL)) (** (($ $ (-925)) NIL) (($ $ (-776)) NIL)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1183) $) NIL)))
-(((-1294 |#1|) (-13 (-1295 (-1183) |#1|) (-10 -8 (-15 -4413 ((-1288 (-1183) |#1|) $)) (-15 -4412 ($ (-1288 (-1183) |#1|))) (-15 -4411 ((-646 (-2 (|:| |k| (-1183)) (|:| |c| $))) $)))) (-1055)) (T -1294))
-((-4413 (*1 *2 *1) (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1294 *3)) (-4 *3 (-1055)))) (-4412 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1294 *3)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |k| (-1183)) (|:| |c| (-1294 *3))))) (-5 *1 (-1294 *3)) (-4 *3 (-1055)))))
-(-13 (-1295 #1=(-1183) |#1|) (-10 -8 (-15 -4413 ((-1288 #1# |#1|) $)) (-15 -4412 ($ (-1288 #1# |#1|))) (-15 -4411 ((-646 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
-((-2986 (((-112) $ $) 7)) (-3626 (((-112) $) 17)) (-4384 (((-646 |#1|) $) 47)) (-4397 (($ $ (-776)) 80)) (-1410 (((-3 $ "failed") $ $) 20)) (-4385 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4174 (($) 18 T CONST)) (-4389 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-3595 (((-3 (-824 |#1|) "failed") $) 71)) (-3594 (((-824 |#1|) $) 72)) (-3908 (((-3 $ "failed") $) 37)) (-4401 (((-112) $) 52)) (-4400 (($ $) 51)) (-2591 (((-112) $) 35)) (-4387 (((-112) $) 57)) (-4388 (($ (-824 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-4391 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-4405 (((-824 |#1|) $) 68)) (-4406 (((-824 |#1|) $) 82)) (-4408 (($ (-1 |#2| |#2|) $) 48)) (-4390 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3681 (((-1165) $) 10)) (-3682 (((-1126) $) 11)) (-4398 (((-776) $) 81)) (-4403 (((-112) $) 54)) (-4402 ((|#2| $) 53)) (-4396 (((-868) $) 12) (($ (-551)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-4404 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3548 (((-776)) 32 T CONST)) (-3680 (((-112) $ $) 9)) (-3528 (($) 19 T CONST)) (-3085 (($) 34 T CONST)) (-3473 (((-112) $ $) 6)) (-4287 (($ $) 23) (($ $ $) 22)) (-4289 (($ $ $) 15)) (** (($ $ (-925)) 28) (($ $ (-776)) 36)) (* (($ (-925) $) 14) (($ (-776) $) 16) (($ (-551) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1295 |#1| |#2|) (-140) (-855) (-1055)) (T -1295))
-((-4406 (*1 *2 *1) (-12 (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-4397 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(-13 (-1292 |t#1| |t#2|) (-10 -8 (-15 -4406 ((-824 |t#1|) $)) (-15 -4398 ((-776) $)) (-15 -4397 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-551)) . T) ((-621 #1=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-868)) . T) ((-651 (-551)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #1#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1063) . T) ((-1118) . T) ((-1107) . T) ((-1287 |#2|) . T) ((-1292 |#1| |#2|) . T))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) NIL)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4174 (($) NIL T CONST)) (-3595 (((-3 |#2| "failed") $) NIL)) (-3594 ((|#2| $) NIL)) (-4409 (($ $) NIL)) (-3908 (((-3 $ "failed") $) 42)) (-4401 (((-112) $) 35)) (-4400 (($ $) 37)) (-2591 (((-112) $) NIL)) (-2599 (((-776) $) NIL)) (-3242 (((-646 $) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ |#2| |#1|) NIL)) (-4405 ((|#2| $) 24)) (-4406 ((|#2| $) 22)) (-4408 (($ (-1 |#1| |#1|) $) NIL)) (-1927 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3313 ((|#2| $) NIL)) (-3612 ((|#1| $) NIL)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4403 (((-112) $) 32)) (-4402 ((|#1| $) 33)) (-4396 (((-868) $) 65) (($ (-551)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4267 (((-646 |#1|) $) NIL)) (-4127 ((|#1| $ |#2|) NIL)) (-4404 ((|#1| $ |#2|) 28)) (-3548 (((-776)) 14 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 29 T CONST)) (-3085 (($) 11 T CONST)) (-3084 (((-646 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3473 (((-112) $ $) 30)) (-4399 (($ $ |#1|) 67 (|has| |#1| (-367)))) (-4287 (($ $) NIL) (($ $ $) NIL)) (-4289 (($ $ $) 50)) (** (($ $ (-925)) NIL) (($ $ (-776)) 52)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4407 (((-776) $) 16)))
-(((-1296 |#1| |#2|) (-13 (-1055) (-1287 |#1|) (-388 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4407 ((-776) $)) (-15 -4406 (|#2| $)) (-15 -4405 (|#2| $)) (-15 -4409 ($ $)) (-15 -4404 (|#1| $ |#2|)) (-15 -4403 ((-112) $)) (-15 -4402 (|#1| $)) (-15 -4401 ((-112) $)) (-15 -4400 ($ $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -4399 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4436)) (-6 -4436) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055) (-851)) (T -1296))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-4409 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4)) (-4 *4 (-851)))) (-4407 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-4406 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-4405 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-4404 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-4402 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-4400 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-4399 (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(-13 (-1055) (-1287 |#1|) (-388 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4407 ((-776) $)) (-15 -4406 (|#2| $)) (-15 -4405 (|#2| $)) (-15 -4409 ($ $)) (-15 -4404 (|#1| $ |#2|)) (-15 -4403 ((-112) $)) (-15 -4402 (|#1| $)) (-15 -4401 ((-112) $)) (-15 -4400 ($ $)) (-15 -4408 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -4399 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4436)) (-6 -4436) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
-((-2986 (((-112) $ $) 27)) (-3626 (((-112) $) NIL)) (-4384 (((-646 |#1|) $) 132)) (-4412 (($ (-1288 |#1| |#2|)) 50)) (-4397 (($ $ (-776)) 38)) (-1410 (((-3 $ "failed") $ $) NIL)) (-4385 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-776)) 52 (|has| |#2| (-173)))) (-4174 (($) NIL T CONST)) (-4389 (($ $ |#1|) 114) (($ $ (-824 |#1|)) 115) (($ $ $) 26)) (-3595 (((-3 (-824 |#1|) "failed") $) NIL)) (-3594 (((-824 |#1|) $) NIL)) (-3908 (((-3 $ "failed") $) 122)) (-4401 (((-112) $) 117)) (-4400 (($ $) 118)) (-2591 (((-112) $) NIL)) (-4387 (((-112) $) NIL)) (-4388 (($ (-824 |#1|) |#2|) 20)) (-4386 (($ $) NIL)) (-4391 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4405 (((-824 |#1|) $) 123)) (-4406 (((-824 |#1|) $) 126)) (-4408 (($ (-1 |#2| |#2|) $) 131)) (-4390 (($ $ |#1|) 112) (($ $ (-824 |#1|)) 113) (($ $ $) 62)) (-3681 (((-1165) $) NIL)) (-3682 (((-1126) $) NIL)) (-4413 (((-1288 |#1| |#2|) $) 94)) (-4398 (((-776) $) 129)) (-4403 (((-112) $) 81)) (-4402 ((|#2| $) 32)) (-4396 (((-868) $) 73) (($ (-551)) 87) (($ |#2|) 85) (($ (-824 |#1|)) 18) (($ |#1|) 84)) (-4404 ((|#2| $ (-824 |#1|)) 116) ((|#2| $ $) 28)) (-3548 (((-776)) 120 T CONST)) (-3680 (((-112) $ $) NIL)) (-3528 (($) 15 T CONST)) (-4411 (((-646 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3085 (($) 33 T CONST)) (-3473 (((-112) $ $) 14)) (-4287 (($ $) 98) (($ $ $) 101)) (-4289 (($ $ $) 61)) (** (($ $ (-925)) NIL) (($ $ (-776)) 55)) (* (($ (-925) $) NIL) (($ (-776) $) 53) (($ (-551) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1297 |#1| |#2|) (-13 (-1295 |#1| |#2|) (-10 -8 (-15 -4413 ((-1288 |#1| |#2|) $)) (-15 -4412 ($ (-1288 |#1| |#2|))) (-15 -4411 ((-646 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-855) (-1055)) (T -1297))
-((-4413 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-4412 (*1 *1 *2) (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *1 (-1297 *3 *4)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-646 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4))))) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(-13 (-1295 |#1| |#2|) (-10 -8 (-15 -4413 ((-1288 |#1| |#2|) $)) (-15 -4412 ($ (-1288 |#1| |#2|))) (-15 -4411 ((-646 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4414 (((-646 (-1160 |#1|)) (-1 (-646 (-1160 |#1|)) (-646 (-1160 |#1|))) (-551)) 20) (((-1160 |#1|) (-1 (-1160 |#1|) (-1160 |#1|))) 13)))
-(((-1298 |#1|) (-10 -7 (-15 -4414 ((-1160 |#1|) (-1 (-1160 |#1|) (-1160 |#1|)))) (-15 -4414 ((-646 (-1160 |#1|)) (-1 (-646 (-1160 |#1|)) (-646 (-1160 |#1|))) (-551)))) (-1222)) (T -1298))
-((-4414 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-646 (-1160 *5)) (-646 (-1160 *5)))) (-5 *4 (-551)) (-5 *2 (-646 (-1160 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1222)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-1 (-1160 *4) (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1298 *4)) (-4 *4 (-1222)))))
-(-10 -7 (-15 -4414 ((-1160 |#1|) (-1 (-1160 |#1|) (-1160 |#1|)))) (-15 -4414 ((-646 (-1160 |#1|)) (-1 (-646 (-1160 |#1|)) (-646 (-1160 |#1|))) (-551))))
-((-4416 (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|))) 174) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112)) 173) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112)) 172) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112) (-112)) 171) (((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-1052 |#1| |#2|)) 156)) (-4415 (((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|))) 85) (((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112)) 84) (((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112) (-112)) 83)) (-4419 (((-646 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|)) 73)) (-4417 (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|))) 140) (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112)) 139) (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112)) 138) (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112) (-112)) 137) (((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 132)) (-4418 (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|))) 145) (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112)) 144) (((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112)) 143) (((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 142)) (-4420 (((-646 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) 111) (((-1177 (-1030 (-412 |#1|))) (-1177 |#1|)) 102) (((-952 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|))) 109) (((-952 (-1030 (-412 |#1|))) (-952 |#1|)) 107) (((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|))) 33)))
-(((-1299 |#1| |#2| |#3|) (-10 -7 (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112))) (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-1052 |#1| |#2|))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)))) (-15 -4419 ((-646 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -4420 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -4420 ((-952 (-1030 (-412 |#1|))) (-952 |#1|))) (-15 -4420 ((-952 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -4420 ((-1177 (-1030 (-412 |#1|))) (-1177 |#1|))) (-15 -4420 ((-646 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) (-13 (-853) (-310) (-147) (-1026)) (-646 (-1183)) (-646 (-1183))) (T -1299))
-((-4420 (*1 *2 *3) (-12 (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-1177 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *6 (-646 (-1183))) (-5 *2 (-952 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-952 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *5 (-646 (-1183))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))) (-4419 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))) (-4418 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4418 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4418 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4417 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4417 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))) (-4416 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-646 (-952 *4))) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4416 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4416 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4416 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4416 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))) (-4415 (*1 *2 *3) (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))) (-4415 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))) (-4415 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183))))))
-(-10 -7 (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)) (-112))) (-15 -4415 ((-646 (-1052 |#1| |#2|)) (-646 (-952 |#1|)))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-1052 |#1| |#2|))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)) (-112))) (-15 -4416 ((-646 (-2 (|:| -1925 (-1177 |#1|)) (|:| -3662 (-646 (-952 |#1|))))) (-646 (-952 |#1|)))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112))) (-15 -4417 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112) (-112))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)) (-112))) (-15 -4418 ((-646 (-646 (-1030 (-412 |#1|)))) (-646 (-952 |#1|)))) (-15 -4419 ((-646 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -4420 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -4420 ((-952 (-1030 (-412 |#1|))) (-952 |#1|))) (-15 -4420 ((-952 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -4420 ((-1177 (-1030 (-412 |#1|))) (-1177 |#1|))) (-15 -4420 ((-646 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|))))))
-((-4423 (((-3 (-1272 (-412 (-551))) "failed") (-1272 |#1|) |#1|) 21)) (-4421 (((-112) (-1272 |#1|)) 12)) (-4422 (((-3 (-1272 (-551)) "failed") (-1272 |#1|)) 16)))
-(((-1300 |#1|) (-10 -7 (-15 -4421 ((-112) (-1272 |#1|))) (-15 -4422 ((-3 (-1272 (-551)) "failed") (-1272 |#1|))) (-15 -4423 ((-3 (-1272 (-412 (-551))) "failed") (-1272 |#1|) |#1|))) (-644 (-551))) (T -1300))
-((-4423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551))) (-5 *2 (-1272 (-412 (-551)))) (-5 *1 (-1300 *4)))) (-4422 (*1 *2 *3) (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551))) (-5 *2 (-1272 (-551))) (-5 *1 (-1300 *4)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551))) (-5 *2 (-112)) (-5 *1 (-1300 *4)))))
-(-10 -7 (-15 -4421 ((-112) (-1272 |#1|))) (-15 -4422 ((-3 (-1272 (-551)) "failed") (-1272 |#1|))) (-15 -4423 ((-3 (-1272 (-412 (-551))) "failed") (-1272 |#1|) |#1|)))
-((-2986 (((-112) $ $) NIL)) (-3626 (((-112) $) 11)) (-1410 (((-3 $ "failed") $ $) NIL)) (-3558 (((-776)) 8)) (-4174 (($) NIL T CONST)) (-3908 (((-3 $ "failed") $) 58)) (-3413 (($) 49)) (-2591 (((-112) $) 57)) (-3886 (((-3 $ "failed") $) 40)) (-2198 (((-925) $) 15)) (-3681 (((-1165) $) NIL)) (-3887 (($) 32 T CONST)) (-2581 (($ (-925)) 50)) (-3682 (((-1126) $) NIL)) (-4420 (((-551) $) 13)) (-4396 (((-868) $) 27) (($ (-551)) 24)) (-3548 (((-776)) 9 T CONST)) (-3680 (((-112) $ $) 60)) (-3528 (($) 29 T CONST)) (-3085 (($) 31 T CONST)) (-3473 (((-112) $ $) 38)) (-4287 (($ $) 52) (($ $ $) 47)) (-4289 (($ $ $) 35)) (** (($ $ (-925)) NIL) (($ $ (-776)) 54)) (* (($ (-925) $) NIL) (($ (-776) $) NIL) (($ (-551) $) 44) (($ $ $) 43)))
-(((-1301 |#1|) (-13 (-173) (-372) (-619 (-551)) (-1157)) (-925)) (T -1301))
-NIL
-(-13 (-173) (-372) (-619 (-551)) (-1157))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3216732 3216737 3216742 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3216717 3216722 3216727 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3216702 3216707 3216712 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3216687 3216692 3216697 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1301 3215830 3216562 3216639 "ZMOD" 3216644 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1300 3214940 3215104 3215313 "ZLINDEP" 3215662 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1299 3204240 3206008 3207980 "ZDSOLVE" 3213070 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1298 3203486 3203627 3203816 "YSTREAM" 3204086 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1297 3201260 3202787 3202991 "XRPOLY" 3203329 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1296 3197813 3199131 3199706 "XPR" 3200732 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1295 3195466 3196834 3196889 "XPOLYC" 3197177 NIL XPOLYC (NIL T T) -9 NIL 3197290 NIL) (-1294 3193196 3194806 3195010 "XPOLY" 3195306 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1293 3189574 3191713 3192101 "XPBWPOLY" 3192854 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1292 3184770 3186059 3186114 "XFALG" 3188286 NIL XFALG (NIL T T) -9 NIL 3189075 NIL) (-1291 3180467 3182760 3182802 "XF" 3183423 NIL XF (NIL T) -9 NIL 3183823 NIL) (-1290 3180088 3180176 3180345 "XF-" 3180350 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1289 3179221 3179325 3179530 "XEXPPKG" 3179980 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1288 3177330 3179071 3179167 "XDPOLY" 3179172 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3176137 3176737 3176780 "XALG" 3176785 NIL XALG (NIL T) -9 NIL 3176896 NIL) (-1286 3169606 3174114 3174608 "WUTSET" 3175729 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1285 3167862 3168658 3168981 "WP" 3169417 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1284 3167464 3167684 3167754 "WHILEAST" 3167814 T WHILEAST (NIL) -8 NIL NIL NIL) (-1283 3166936 3167181 3167275 "WHEREAST" 3167392 T WHEREAST (NIL) -8 NIL NIL NIL) (-1282 3165822 3166020 3166315 "WFFINTBS" 3166733 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1281 3163726 3164153 3164615 "WEIER" 3165394 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1280 3162772 3163222 3163264 "VSPACE" 3163400 NIL VSPACE (NIL T) -9 NIL 3163474 NIL) (-1279 3162610 3162637 3162728 "VSPACE-" 3162733 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1278 3162419 3162461 3162529 "VOID" 3162564 T VOID (NIL) -8 NIL NIL NIL) (-1277 3158843 3159482 3160219 "VIEWDEF" 3161704 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1276 3148147 3150391 3152564 "VIEW3D" 3156692 T VIEW3D (NIL) -8 NIL NIL NIL) (-1275 3140398 3142058 3143637 "VIEW2D" 3146590 T VIEW2D (NIL) -8 NIL NIL NIL) (-1274 3138534 3138893 3139299 "VIEW" 3140014 T VIEW (NIL) -7 NIL NIL NIL) (-1273 3137111 3137370 3137688 "VECTOR2" 3138264 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1272 3132464 3136881 3136973 "VECTOR" 3137054 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1271 3125938 3130245 3130288 "VECTCAT" 3131283 NIL VECTCAT (NIL T) -9 NIL 3131870 NIL) (-1270 3124952 3125206 3125596 "VECTCAT-" 3125601 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1269 3124406 3124603 3124723 "VARIABLE" 3124867 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1268 3124339 3124344 3124374 "UTYPE" 3124379 T UTYPE (NIL) -9 NIL NIL NIL) (-1267 3123169 3123323 3123585 "UTSODETL" 3124165 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1266 3120609 3121069 3121593 "UTSODE" 3122710 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1265 3111483 3116850 3116893 "UTSCAT" 3118005 NIL UTSCAT (NIL T) -9 NIL 3118763 NIL) (-1264 3108830 3109553 3110542 "UTSCAT-" 3110547 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1263 3108457 3108500 3108633 "UTS2" 3108781 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1262 3100294 3106083 3106572 "UTS" 3108026 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1261 3094521 3097132 3097175 "URAGG" 3099245 NIL URAGG (NIL T) -9 NIL 3099968 NIL) (-1260 3091463 3092325 3093447 "URAGG-" 3093452 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1259 3087179 3090098 3090563 "UPXSSING" 3091127 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1258 3080254 3087083 3087155 "UPXSCONS" 3087160 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1257 3070001 3076792 3076854 "UPXSCCA" 3077428 NIL UPXSCCA (NIL T T) -9 NIL 3077661 NIL) (-1256 3069639 3069724 3069898 "UPXSCCA-" 3069903 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1255 3059238 3065802 3065845 "UPXSCAT" 3066493 NIL UPXSCAT (NIL T) -9 NIL 3067102 NIL) (-1254 3058668 3058747 3058926 "UPXS2" 3059153 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1253 3050738 3057915 3058188 "UPXS" 3058453 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1252 3049395 3049647 3049997 "UPSQFREE" 3050482 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1251 3042816 3045873 3045928 "UPSCAT" 3047089 NIL UPSCAT (NIL T T) -9 NIL 3047863 NIL) (-1250 3042020 3042227 3042554 "UPSCAT-" 3042559 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1249 3041647 3041690 3041823 "UPOLYC2" 3041971 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1248 3027335 3035070 3035113 "UPOLYC" 3037214 NIL UPOLYC (NIL T) -9 NIL 3038435 NIL) (-1247 3018699 3021113 3024248 "UPOLYC-" 3024253 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1246 3018038 3018145 3018309 "UPMP" 3018588 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1245 3017591 3017672 3017811 "UPDIVP" 3017951 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1244 3016159 3016408 3016724 "UPDECOMP" 3017340 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1243 3015394 3015506 3015691 "UPCDEN" 3016043 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1242 3014913 3014982 3015131 "UP2" 3015319 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1241 3006764 3014596 3014725 "UP" 3014832 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1240 3005979 3006106 3006311 "UNISEG2" 3006607 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1239 3004446 3005183 3005460 "UNISEG" 3005737 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1238 3003506 3003686 3003912 "UNIFACT" 3004262 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1237 2991520 3003410 3003482 "ULSCONS" 3003487 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1236 2973555 2985524 2985586 "ULSCCAT" 2986224 NIL ULSCCAT (NIL T T) -9 NIL 2986512 NIL) (-1235 2972641 2972874 2973250 "ULSCCAT-" 2973255 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1234 2962017 2968495 2968538 "ULSCAT" 2969401 NIL ULSCAT (NIL T) -9 NIL 2970132 NIL) (-1233 2961447 2961526 2961705 "ULS2" 2961932 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1232 2945395 2960624 2960875 "ULS" 2961254 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1231 2944522 2945032 2945139 "UINT8" 2945250 T UINT8 (NIL) -8 NIL NIL 2945335) (-1230 2943648 2944158 2944265 "UINT64" 2944376 T UINT64 (NIL) -8 NIL NIL 2944461) (-1229 2942774 2943284 2943391 "UINT32" 2943502 T UINT32 (NIL) -8 NIL NIL 2943587) (-1228 2941900 2942410 2942517 "UINT16" 2942628 T UINT16 (NIL) -8 NIL NIL 2942713) (-1227 2940203 2941160 2941190 "UFD" 2941402 T UFD (NIL) -9 NIL 2941516 NIL) (-1226 2939997 2940043 2940138 "UFD-" 2940143 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1225 2939079 2939262 2939478 "UDVO" 2939803 T UDVO (NIL) -7 NIL NIL NIL) (-1224 2936895 2937304 2937775 "UDPO" 2938643 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1223 2936655 2936850 2936881 "TYPEAST" 2936886 T TYPEAST (NIL) -8 NIL NIL NIL) (-1222 2936588 2936593 2936623 "TYPE" 2936628 T TYPE (NIL) -9 NIL NIL NIL) (-1221 2935559 2935761 2936001 "TWOFACT" 2936382 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1220 2934582 2934968 2935203 "TUPLE" 2935359 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1219 2932273 2932792 2933331 "TUBETOOL" 2934065 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1218 2931122 2931327 2931568 "TUBE" 2932066 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1217 2919762 2923881 2923978 "TSETCAT" 2929247 NIL TSETCAT (NIL T T T T) -9 NIL 2930778 NIL) (-1216 2914494 2916094 2917985 "TSETCAT-" 2917990 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1215 2909223 2913466 2913749 "TS" 2914246 NIL TS (NIL T) -8 NIL NIL NIL) (-1214 2903862 2904709 2905638 "TRMANIP" 2908359 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1213 2903303 2903366 2903529 "TRIMAT" 2903794 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1212 2901169 2901406 2901763 "TRIGMNIP" 2903052 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1211 2900689 2900802 2900832 "TRIGCAT" 2901045 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1210 2900358 2900437 2900578 "TRIGCAT-" 2900583 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1209 2897204 2899216 2899497 "TREE" 2900112 NIL TREE (NIL T) -8 NIL NIL NIL) (-1208 2896478 2897006 2897036 "TRANFUN" 2897071 T TRANFUN (NIL) -9 NIL 2897137 NIL) (-1207 2895757 2895948 2896228 "TRANFUN-" 2896233 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1206 2895561 2895593 2895654 "TOPSP" 2895718 T TOPSP (NIL) -7 NIL NIL NIL) (-1205 2894909 2895024 2895178 "TOOLSIGN" 2895442 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1204 2893543 2894086 2894325 "TEXTFILE" 2894692 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1203 2893324 2893355 2893427 "TEX1" 2893506 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1202 2891236 2891777 2892206 "TEX" 2892917 T TEX (NIL) -8 NIL NIL NIL) (-1201 2890884 2890947 2891037 "TEMUTL" 2891168 T TEMUTL (NIL) -7 NIL NIL NIL) (-1200 2889038 2889318 2889643 "TBCMPPK" 2890607 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1199 2880817 2887198 2887254 "TBAGG" 2887654 NIL TBAGG (NIL T T) -9 NIL 2887865 NIL) (-1198 2875887 2877375 2879129 "TBAGG-" 2879134 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1197 2875271 2875378 2875523 "TANEXP" 2875776 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1196 2874683 2874782 2874920 "TABLEAU" 2875168 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1195 2868075 2874540 2874633 "TABLE" 2874638 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1194 2862683 2863903 2865151 "TABLBUMP" 2866861 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1193 2861905 2862052 2862233 "SYSTEM" 2862524 T SYSTEM (NIL) -8 NIL NIL NIL) (-1192 2858364 2859063 2859846 "SYSSOLP" 2861156 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1191 2858162 2858319 2858350 "SYSPTR" 2858355 T SYSPTR (NIL) -8 NIL NIL NIL) (-1190 2857206 2857711 2857830 "SYSNNI" 2858016 NIL SYSNNI (NIL NIL) -8 NIL NIL 2858101) (-1189 2856513 2856972 2857051 "SYSINT" 2857111 NIL SYSINT (NIL NIL) -8 NIL NIL 2857156) (-1188 2852857 2853791 2854501 "SYNTAX" 2855825 T SYNTAX (NIL) -8 NIL NIL NIL) (-1187 2850015 2850617 2851249 "SYMTAB" 2852247 T SYMTAB (NIL) -8 NIL NIL NIL) (-1186 2845288 2846184 2847161 "SYMS" 2849060 T SYMS (NIL) -8 NIL NIL NIL) (-1185 2842533 2844749 2844979 "SYMPOLY" 2845096 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1184 2842050 2842125 2842248 "SYMFUNC" 2842445 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1183 2838070 2839362 2840175 "SYMBOL" 2841259 T SYMBOL (NIL) -8 NIL NIL NIL) (-1182 2831609 2833298 2835018 "SWITCH" 2836372 T SWITCH (NIL) -8 NIL NIL NIL) (-1181 2824843 2830430 2830733 "SUTS" 2831364 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1180 2816913 2824090 2824363 "SUPXS" 2824628 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1179 2816072 2816199 2816416 "SUPFRACF" 2816781 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1178 2815693 2815752 2815865 "SUP2" 2816007 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1177 2807492 2815311 2815437 "SUP" 2815602 NIL SUP (NIL T) -8 NIL NIL NIL) (-1176 2805940 2806214 2806570 "SUMRF" 2807191 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1175 2805275 2805341 2805533 "SUMFS" 2805861 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1174 2789258 2804452 2804703 "SULS" 2805082 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1173 2788860 2789080 2789150 "SUCHTAST" 2789210 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1172 2788155 2788385 2788525 "SUCH" 2788768 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1171 2782021 2783061 2784020 "SUBSPACE" 2787243 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1170 2781451 2781541 2781705 "SUBRESP" 2781909 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1169 2775624 2776744 2777891 "STTFNC" 2780351 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1168 2768990 2770289 2771600 "STTF" 2774360 NIL STTF (NIL T) -7 NIL NIL NIL) (-1167 2760301 2762172 2763966 "STTAYLOR" 2767231 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1166 2753433 2760165 2760248 "STRTBL" 2760253 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1165 2748797 2753388 2753419 "STRING" 2753424 T STRING (NIL) -8 NIL NIL NIL) (-1164 2743658 2748170 2748200 "STRICAT" 2748259 T STRICAT (NIL) -9 NIL 2748321 NIL) (-1163 2743168 2743245 2743389 "STREAM3" 2743575 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1162 2742150 2742333 2742568 "STREAM2" 2742981 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1161 2741838 2741890 2741983 "STREAM1" 2742092 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1160 2734593 2739457 2740068 "STREAM" 2741262 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1159 2733609 2733790 2734021 "STINPROD" 2734409 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1158 2732796 2733098 2733246 "STEPAST" 2733483 T STEPAST (NIL) -8 NIL NIL NIL) (-1157 2732348 2732558 2732588 "STEP" 2732668 T STEP (NIL) -9 NIL 2732746 NIL) (-1156 2725782 2732247 2732324 "STBL" 2732329 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1155 2720910 2725003 2725046 "STAGG" 2725199 NIL STAGG (NIL T) -9 NIL 2725288 NIL) (-1154 2718618 2719218 2720088 "STAGG-" 2720093 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1153 2716765 2718388 2718480 "STACK" 2718561 NIL STACK (NIL T) -8 NIL NIL NIL) (-1152 2709487 2714906 2715362 "SREGSET" 2716395 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1151 2701912 2703281 2704794 "SRDCMPK" 2708093 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1150 2694829 2699352 2699382 "SRAGG" 2700685 T SRAGG (NIL) -9 NIL 2701293 NIL) (-1149 2693846 2694101 2694480 "SRAGG-" 2694485 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1148 2688310 2692793 2693214 "SQMATRIX" 2693472 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1147 2681996 2685028 2685755 "SPLTREE" 2687655 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1146 2677959 2678652 2679298 "SPLNODE" 2681422 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1145 2677006 2677239 2677269 "SPFCAT" 2677713 T SPFCAT (NIL) -9 NIL NIL NIL) (-1144 2675743 2675953 2676217 "SPECOUT" 2676764 T SPECOUT (NIL) -7 NIL NIL NIL) (-1143 2666853 2668725 2668755 "SPADXPT" 2673431 T SPADXPT (NIL) -9 NIL 2675595 NIL) (-1142 2666614 2666654 2666723 "SPADPRSR" 2666806 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1141 2664663 2666569 2666600 "SPADAST" 2666605 T SPADAST (NIL) -8 NIL NIL NIL) (-1140 2656608 2658381 2658424 "SPACEC" 2662797 NIL SPACEC (NIL T) -9 NIL 2664613 NIL) (-1139 2654738 2656540 2656589 "SPACE3" 2656594 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1138 2653490 2653661 2653952 "SORTPAK" 2654543 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1137 2651582 2651885 2652297 "SOLVETRA" 2653154 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1136 2650632 2650854 2651115 "SOLVESER" 2651355 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1135 2645936 2646824 2647819 "SOLVERAD" 2649684 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1134 2641751 2642360 2643089 "SOLVEFOR" 2645303 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1133 2636048 2641100 2641197 "SNTSCAT" 2641202 NIL SNTSCAT (NIL T T T T) -9 NIL 2641272 NIL) (-1132 2630154 2634371 2634762 "SMTS" 2635738 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1131 2624865 2630042 2630119 "SMP" 2630124 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1130 2623024 2623325 2623723 "SMITH" 2624562 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1129 2615735 2619927 2620030 "SMATCAT" 2621384 NIL SMATCAT (NIL NIL T T T) -9 NIL 2621934 NIL) (-1128 2612696 2613512 2614683 "SMATCAT-" 2614688 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1127 2610362 2611932 2611975 "SKAGG" 2612236 NIL SKAGG (NIL T) -9 NIL 2612371 NIL) (-1126 2606675 2609778 2609973 "SINT" 2610160 T SINT (NIL) -8 NIL NIL 2610333) (-1125 2606447 2606485 2606551 "SIMPAN" 2606631 T SIMPAN (NIL) -7 NIL NIL NIL) (-1124 2605306 2605520 2605788 "SIGNRF" 2606213 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1123 2604160 2604304 2604581 "SIGNEF" 2605142 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1122 2603466 2603743 2603867 "SIGAST" 2604058 T SIGAST (NIL) -8 NIL NIL NIL) (-1121 2602745 2603001 2603141 "SIG" 2603348 T SIG (NIL) -8 NIL NIL NIL) (-1120 2600435 2600889 2601395 "SHP" 2602286 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1119 2594294 2600336 2600412 "SHDP" 2600417 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1118 2593867 2594059 2594089 "SGROUP" 2594182 T SGROUP (NIL) -9 NIL 2594244 NIL) (-1117 2593725 2593751 2593824 "SGROUP-" 2593829 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1116 2590560 2591258 2591981 "SGCF" 2593024 T SGCF (NIL) -7 NIL NIL NIL) (-1115 2584955 2590007 2590104 "SFRTCAT" 2590109 NIL SFRTCAT (NIL T T T T) -9 NIL 2590148 NIL) (-1114 2578376 2579394 2580530 "SFRGCD" 2583938 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1113 2571502 2572575 2573761 "SFQCMPK" 2577309 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1112 2571122 2571211 2571322 "SFORT" 2571443 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1111 2570240 2570962 2571083 "SEXOF" 2571088 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1110 2565753 2566468 2566563 "SEXCAT" 2569500 NIL SEXCAT (NIL T T T T T) -9 NIL 2570078 NIL) (-1109 2564860 2565634 2565702 "SEX" 2565707 T SEX (NIL) -8 NIL NIL NIL) (-1108 2563090 2563577 2563880 "SETMN" 2564603 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1107 2562586 2562738 2562768 "SETCAT" 2562944 T SETCAT (NIL) -9 NIL 2563054 NIL) (-1106 2562278 2562356 2562486 "SETCAT-" 2562491 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1105 2558639 2560739 2560782 "SETAGG" 2561652 NIL SETAGG (NIL T) -9 NIL 2561992 NIL) (-1104 2558097 2558213 2558450 "SETAGG-" 2558455 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1103 2555250 2558031 2558079 "SET" 2558084 NIL SET (NIL T) -8 NIL NIL NIL) (-1102 2554693 2554946 2555047 "SEQAST" 2555171 T SEQAST (NIL) -8 NIL NIL NIL) (-1101 2553892 2554186 2554247 "SEGXCAT" 2554533 NIL SEGXCAT (NIL T T) -9 NIL 2554653 NIL) (-1100 2552871 2553085 2553128 "SEGCAT" 2553650 NIL SEGCAT (NIL T) -9 NIL 2553871 NIL) (-1099 2552492 2552551 2552664 "SEGBIND2" 2552806 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1098 2551424 2551855 2552063 "SEGBIND" 2552319 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1097 2550997 2551225 2551302 "SEGAST" 2551369 T SEGAST (NIL) -8 NIL NIL NIL) (-1096 2550216 2550342 2550546 "SEG2" 2550841 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1095 2549222 2549882 2550064 "SEG" 2550069 NIL SEG (NIL T) -8 NIL NIL NIL) (-1094 2548632 2549157 2549204 "SDVAR" 2549209 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1093 2541200 2548402 2548532 "SDPOL" 2548537 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1092 2539793 2540059 2540378 "SCPKG" 2540915 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1091 2538957 2539129 2539321 "SCOPE" 2539623 T SCOPE (NIL) -8 NIL NIL NIL) (-1090 2538177 2538311 2538490 "SCACHE" 2538812 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1089 2537823 2538009 2538039 "SASTCAT" 2538044 T SASTCAT (NIL) -9 NIL 2538057 NIL) (-1088 2537310 2537658 2537734 "SAOS" 2537769 T SAOS (NIL) -8 NIL NIL NIL) (-1087 2536875 2536910 2537083 "SAERFFC" 2537269 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1086 2536468 2536503 2536662 "SAEFACT" 2536834 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1085 2530416 2536365 2536445 "SAE" 2536450 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1084 2528737 2529051 2529452 "RURPK" 2530082 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1083 2527374 2527680 2527985 "RULESET" 2528571 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1082 2526986 2527168 2527251 "RULECOLD" 2527326 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1081 2524209 2524739 2525197 "RULE" 2526667 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1080 2523999 2524027 2524098 "RTVALUE" 2524160 T RTVALUE (NIL) -8 NIL NIL NIL) (-1079 2523470 2523716 2523810 "RSTRCAST" 2523927 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1078 2518318 2519113 2520033 "RSETGCD" 2522669 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1077 2507575 2512627 2512724 "RSETCAT" 2516843 NIL RSETCAT (NIL T T T T) -9 NIL 2517940 NIL) (-1076 2505502 2506041 2506865 "RSETCAT-" 2506870 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1075 2497888 2499264 2500784 "RSDCMPK" 2504101 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1074 2495867 2496334 2496408 "RRCC" 2497494 NIL RRCC (NIL T T) -9 NIL 2497838 NIL) (-1073 2495218 2495392 2495671 "RRCC-" 2495676 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1072 2494661 2494914 2495015 "RPTAST" 2495139 T RPTAST (NIL) -8 NIL NIL NIL) (-1071 2468543 2477869 2477936 "RPOLCAT" 2488600 NIL RPOLCAT (NIL T T T) -9 NIL 2491759 NIL) (-1070 2460077 2462405 2465515 "RPOLCAT-" 2465520 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1069 2451010 2458288 2458770 "ROUTINE" 2459617 T ROUTINE (NIL) -8 NIL NIL NIL) (-1068 2447810 2450636 2450776 "ROMAN" 2450892 T ROMAN (NIL) -8 NIL NIL NIL) (-1067 2446056 2446670 2446930 "ROIRC" 2447615 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1066 2442292 2444572 2444602 "RNS" 2444906 T RNS (NIL) -9 NIL 2445180 NIL) (-1065 2440801 2441184 2441718 "RNS-" 2441793 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1064 2439804 2440166 2440368 "RNGBIND" 2440652 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1063 2439207 2439615 2439645 "RNG" 2439650 T RNG (NIL) -9 NIL 2439671 NIL) (-1062 2438606 2438994 2439037 "RMODULE" 2439042 NIL RMODULE (NIL T) -9 NIL 2439069 NIL) (-1061 2437442 2437536 2437872 "RMCAT2" 2438507 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1060 2434292 2436788 2437085 "RMATRIX" 2437204 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1059 2427119 2429379 2429494 "RMATCAT" 2432853 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2433835 NIL) (-1058 2426494 2426641 2426948 "RMATCAT-" 2426953 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1057 2425895 2426116 2426159 "RLINSET" 2426353 NIL RLINSET (NIL T) -9 NIL 2426444 NIL) (-1056 2425462 2425537 2425665 "RINTERP" 2425814 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1055 2424520 2425074 2425104 "RING" 2425160 T RING (NIL) -9 NIL 2425252 NIL) (-1054 2424312 2424356 2424453 "RING-" 2424458 NIL RING- (NIL T) -8 NIL NIL NIL) (-1053 2423153 2423390 2423648 "RIDIST" 2424076 T RIDIST (NIL) -7 NIL NIL NIL) (-1052 2414469 2422621 2422827 "RGCHAIN" 2423001 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1051 2413819 2414225 2414266 "RGBCSPC" 2414324 NIL RGBCSPC (NIL T) -9 NIL 2414376 NIL) (-1050 2412977 2413358 2413399 "RGBCMDL" 2413631 NIL RGBCMDL (NIL T) -9 NIL 2413745 NIL) (-1049 2412623 2412686 2412789 "RFFACTOR" 2412908 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1048 2412348 2412383 2412480 "RFFACT" 2412582 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1047 2410465 2410829 2411211 "RFDIST" 2411988 T RFDIST (NIL) -7 NIL NIL NIL) (-1046 2407459 2408073 2408743 "RF" 2409829 NIL RF (NIL T) -7 NIL NIL NIL) (-1045 2406912 2407004 2407167 "RETSOL" 2407361 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1044 2406548 2406628 2406671 "RETRACT" 2406804 NIL RETRACT (NIL T) -9 NIL 2406891 NIL) (-1043 2406397 2406422 2406509 "RETRACT-" 2406514 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1042 2405999 2406219 2406289 "RETAST" 2406349 T RETAST (NIL) -8 NIL NIL NIL) (-1041 2398739 2405652 2405779 "RESULT" 2405894 T RESULT (NIL) -8 NIL NIL NIL) (-1040 2397330 2398008 2398207 "RESRING" 2398642 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1039 2396966 2397015 2397113 "RESLATC" 2397267 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1038 2396671 2396706 2396813 "REPSQ" 2396925 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1037 2396368 2396403 2396514 "REPDB" 2396630 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1036 2390268 2391657 2392880 "REP2" 2395180 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1035 2386645 2387326 2388134 "REP1" 2389495 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1034 2384067 2384647 2385249 "REP" 2386065 T REP (NIL) -7 NIL NIL NIL) (-1033 2376790 2382208 2382664 "REGSET" 2383697 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1032 2375555 2375938 2376188 "REF" 2376575 NIL REF (NIL T) -8 NIL NIL NIL) (-1031 2374932 2375035 2375202 "REDORDER" 2375439 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1030 2370931 2374145 2374372 "RECLOS" 2374760 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1029 2369983 2370164 2370379 "REALSOLV" 2370738 T REALSOLV (NIL) -7 NIL NIL NIL) (-1028 2366466 2367268 2368152 "REAL0Q" 2369148 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1027 2362067 2363055 2364116 "REAL0" 2365447 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1026 2361913 2361954 2361984 "REAL" 2361989 T REAL (NIL) -9 NIL 2362024 NIL) (-1025 2361384 2361630 2361724 "RDUCEAST" 2361841 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1024 2360789 2360861 2361068 "RDIV" 2361306 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1023 2359857 2360031 2360244 "RDIST" 2360611 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1022 2358454 2358741 2359113 "RDETRS" 2359565 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1021 2356266 2356720 2357258 "RDETR" 2357996 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1020 2354891 2355169 2355566 "RDEEFS" 2355982 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1019 2353400 2353706 2354131 "RDEEF" 2354579 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1018 2347470 2350381 2350411 "RCFIELD" 2351706 T RCFIELD (NIL) -9 NIL 2352437 NIL) (-1017 2345534 2346038 2346734 "RCFIELD-" 2346809 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1016 2341803 2343635 2343678 "RCAGG" 2344762 NIL RCAGG (NIL T) -9 NIL 2345227 NIL) (-1015 2341431 2341525 2341688 "RCAGG-" 2341693 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1014 2340766 2340878 2341043 "RATRET" 2341315 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1013 2340319 2340386 2340507 "RATFACT" 2340694 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1012 2339627 2339747 2339899 "RANDSRC" 2340189 T RANDSRC (NIL) -7 NIL NIL NIL) (-1011 2339361 2339405 2339478 "RADUTIL" 2339576 T RADUTIL (NIL) -7 NIL NIL NIL) (-1010 2332498 2338194 2338504 "RADIX" 2339085 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1009 2324128 2332340 2332470 "RADFF" 2332475 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1008 2323775 2323850 2323880 "RADCAT" 2324040 T RADCAT (NIL) -9 NIL NIL NIL) (-1007 2323557 2323605 2323705 "RADCAT-" 2323710 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1006 2321655 2323327 2323419 "QUEUE" 2323500 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1005 2321286 2321329 2321460 "QUATCT2" 2321606 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1004 2314742 2318080 2318122 "QUATCAT" 2318913 NIL QUATCAT (NIL T) -9 NIL 2319679 NIL) (-1003 2310902 2311932 2313315 "QUATCAT-" 2313411 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1002 2307446 2310835 2310883 "QUAT" 2310888 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1001 2304911 2306522 2306565 "QUAGG" 2306946 NIL QUAGG (NIL T) -9 NIL 2307121 NIL) (-1000 2304513 2304733 2304803 "QQUTAST" 2304863 T QQUTAST (NIL) -8 NIL NIL NIL) (-999 2303411 2303911 2304083 "QFORM" 2304385 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-998 2303049 2303092 2303219 "QFCAT2" 2303362 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2294070 2299293 2299333 "QFCAT" 2299991 NIL QFCAT (NIL T) -9 NIL 2300992 NIL) (-996 2289678 2290867 2292446 "QFCAT-" 2292540 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-995 2289138 2289248 2289378 "QEQUAT" 2289568 T QEQUAT (NIL) -8 NIL NIL NIL) (-994 2282284 2283357 2284541 "QCMPACK" 2288071 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-993 2281529 2281703 2281935 "QALGSET2" 2282104 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-992 2279084 2279530 2279956 "QALGSET" 2281186 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-991 2277774 2277998 2278315 "PWFFINTB" 2278857 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-990 2275973 2276141 2276495 "PUSHVAR" 2277588 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-989 2271891 2272945 2272986 "PTRANFN" 2274870 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-988 2270293 2270584 2270906 "PTPACK" 2271602 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-987 2269925 2269982 2270091 "PTFUNC2" 2270230 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-986 2264402 2268797 2268838 "PTCAT" 2269134 NIL PTCAT (NIL T) -9 NIL 2269287 NIL) (-985 2264060 2264095 2264219 "PSQFR" 2264361 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-984 2262655 2262953 2263287 "PSEUDLIN" 2263758 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-983 2249418 2251789 2254113 "PSETPK" 2260415 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-982 2242436 2245176 2245272 "PSETCAT" 2248293 NIL PSETCAT (NIL T T T T) -9 NIL 2249107 NIL) (-981 2240272 2240906 2241727 "PSETCAT-" 2241732 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-980 2239621 2239786 2239814 "PSCURVE" 2240082 T PSCURVE (NIL) -9 NIL 2240249 NIL) (-979 2235619 2237135 2237200 "PSCAT" 2238044 NIL PSCAT (NIL T T T) -9 NIL 2238284 NIL) (-978 2234682 2234898 2235298 "PSCAT-" 2235303 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-977 2233387 2234047 2234252 "PRTITION" 2234497 T PRTITION (NIL) -8 NIL NIL NIL) (-976 2232862 2233108 2233200 "PRTDAST" 2233315 T PRTDAST (NIL) -8 NIL NIL NIL) (-975 2221952 2224166 2226354 "PRS" 2230724 NIL PRS (NIL T T) -7 NIL NIL NIL) (-974 2219763 2221302 2221342 "PRQAGG" 2221525 NIL PRQAGG (NIL T) -9 NIL 2221627 NIL) (-973 2218967 2219272 2219300 "PROPLOG" 2219547 T PROPLOG (NIL) -9 NIL 2219713 NIL) (-972 2217148 2217714 2218011 "PROPFRML" 2218703 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-971 2216617 2216724 2216852 "PROPERTY" 2217040 T PROPERTY (NIL) -8 NIL NIL NIL) (-970 2210675 2214783 2215603 "PRODUCT" 2215843 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-969 2210471 2210503 2210562 "PRINT" 2210636 T PRINT (NIL) -7 NIL NIL NIL) (-968 2209811 2209928 2210080 "PRIMES" 2210351 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-967 2207876 2208277 2208743 "PRIMELT" 2209390 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-966 2207605 2207654 2207682 "PRIMCAT" 2207806 T PRIMCAT (NIL) -9 NIL NIL NIL) (-965 2206612 2206790 2207018 "PRIMARR2" 2207423 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-964 2202727 2206550 2206595 "PRIMARR" 2206600 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-963 2202370 2202426 2202537 "PREASSOC" 2202665 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-962 2199655 2201828 2202062 "PR" 2202181 NIL PR (NIL T T) -8 NIL NIL NIL) (-961 2199130 2199263 2199291 "PPCURVE" 2199496 T PPCURVE (NIL) -9 NIL 2199632 NIL) (-960 2198725 2198925 2199008 "PORTNUM" 2199067 T PORTNUM (NIL) -8 NIL NIL NIL) (-959 2196084 2196483 2197075 "POLYROOT" 2198306 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-958 2195467 2195525 2195759 "POLYLIFT" 2196020 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-957 2191742 2192191 2192820 "POLYCATQ" 2195012 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-956 2178468 2183582 2183647 "POLYCAT" 2187161 NIL POLYCAT (NIL T T T) -9 NIL 2189039 NIL) (-955 2171974 2173817 2176182 "POLYCAT-" 2176187 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-954 2171561 2171629 2171749 "POLY2UP" 2171900 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-953 2171193 2171250 2171359 "POLY2" 2171498 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-952 2165406 2170797 2170957 "POLY" 2171066 NIL POLY (NIL T) -8 NIL NIL NIL) (-951 2164091 2164330 2164606 "POLUTIL" 2165180 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-950 2162446 2162723 2163054 "POLTOPOL" 2163813 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-949 2157911 2162382 2162428 "POINT" 2162433 NIL POINT (NIL T) -8 NIL NIL NIL) (-948 2156098 2156455 2156830 "PNTHEORY" 2157556 T PNTHEORY (NIL) -7 NIL NIL NIL) (-947 2154556 2154853 2155252 "PMTOOLS" 2155796 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-946 2154149 2154227 2154344 "PMSYM" 2154472 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-945 2153659 2153728 2153902 "PMQFCAT" 2154074 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-944 2153052 2153138 2153300 "PMPREDFS" 2153560 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-943 2152407 2152517 2152673 "PMPRED" 2152929 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-942 2151071 2151279 2151657 "PMPLCAT" 2152169 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-941 2150603 2150682 2150834 "PMLSAGG" 2150986 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-940 2150076 2150152 2150334 "PMKERNEL" 2150521 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-939 2149693 2149768 2149881 "PMINS" 2149995 NIL PMINS (NIL T) -7 NIL NIL NIL) (-938 2149135 2149204 2149413 "PMFS" 2149618 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-937 2148363 2148481 2148686 "PMDOWN" 2149012 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-936 2147636 2147746 2147909 "PMASSFS" 2148250 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-935 2146803 2146961 2147142 "PMASS" 2147475 T PMASS (NIL) -7 NIL NIL NIL) (-934 2146458 2146526 2146620 "PLOTTOOL" 2146729 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-933 2142262 2143306 2144227 "PLOT3D" 2145557 T PLOT3D (NIL) -8 NIL NIL NIL) (-932 2141174 2141351 2141586 "PLOT1" 2142066 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-931 2135781 2136985 2138133 "PLOT" 2140046 T PLOT (NIL) -8 NIL NIL NIL) (-930 2111170 2115847 2120698 "PLEQN" 2131047 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-929 2110863 2110910 2111013 "PINTERPA" 2111117 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-928 2110181 2110303 2110483 "PINTERP" 2110728 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-927 2108478 2109453 2109481 "PID" 2109663 T PID (NIL) -9 NIL 2109797 NIL) (-926 2108229 2108266 2108341 "PICOERCE" 2108435 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-925 2107450 2107998 2108085 "PI" 2108125 T PI (NIL) -8 NIL NIL 2108192) (-924 2106770 2106909 2107085 "PGROEB" 2107306 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-923 2102357 2103171 2104076 "PGE" 2105885 T PGE (NIL) -7 NIL NIL NIL) (-922 2100480 2100727 2101093 "PGCD" 2102074 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-921 2099818 2099921 2100082 "PFRPAC" 2100364 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-920 2096460 2098366 2098719 "PFR" 2099497 NIL PFR (NIL T) -8 NIL NIL NIL) (-919 2094849 2095093 2095418 "PFOTOOLS" 2096207 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-918 2093382 2093621 2093972 "PFOQ" 2094606 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-917 2091883 2092095 2092451 "PFO" 2093166 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-916 2089217 2090488 2090516 "PFECAT" 2091101 T PFECAT (NIL) -9 NIL 2091485 NIL) (-915 2088662 2088816 2089030 "PFECAT-" 2089035 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-914 2087265 2087517 2087818 "PFBRU" 2088411 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-913 2085131 2085483 2085915 "PFBR" 2086916 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-912 2081686 2085020 2085089 "PF" 2085094 NIL PF (NIL NIL) -8 NIL NIL NIL) (-911 2076920 2077893 2078763 "PERMGRP" 2080849 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-910 2075026 2075983 2076024 "PERMCAT" 2076470 NIL PERMCAT (NIL T) -9 NIL 2076775 NIL) (-909 2074679 2074720 2074844 "PERMAN" 2074979 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-908 2070561 2072055 2072731 "PERM" 2074036 NIL PERM (NIL T) -8 NIL NIL NIL) (-907 2068051 2070226 2070348 "PENDTREE" 2070472 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-906 2066075 2066843 2066884 "PDRING" 2067541 NIL PDRING (NIL T) -9 NIL 2067827 NIL) (-905 2065178 2065396 2065758 "PDRING-" 2065763 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-904 2062393 2063171 2063839 "PDEPROB" 2064530 T PDEPROB (NIL) -8 NIL NIL NIL) (-903 2059938 2060442 2060997 "PDEPACK" 2061858 T PDEPACK (NIL) -7 NIL NIL NIL) (-902 2058850 2059040 2059291 "PDECOMP" 2059737 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-901 2056429 2057272 2057300 "PDECAT" 2058087 T PDECAT (NIL) -9 NIL 2058800 NIL) (-900 2056180 2056213 2056303 "PCOMP" 2056390 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-899 2054358 2054981 2055278 "PBWLB" 2055909 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-898 2053990 2054047 2054156 "PATTERN2" 2054295 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-897 2051747 2052135 2052592 "PATTERN1" 2053579 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-896 2044222 2045820 2047158 "PATTERN" 2050430 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-895 2043786 2043853 2043985 "PATRES2" 2044149 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-894 2041154 2041735 2042216 "PATRES" 2043351 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-893 2039037 2039442 2039849 "PATMATCH" 2040821 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-892 2038547 2038756 2038797 "PATMAB" 2038904 NIL PATMAB (NIL T) -9 NIL 2038987 NIL) (-891 2037065 2037401 2037659 "PATLRES" 2038352 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-890 2036611 2036734 2036775 "PATAB" 2036780 NIL PATAB (NIL T) -9 NIL 2036952 NIL) (-889 2034092 2034624 2035197 "PARTPERM" 2036058 T PARTPERM (NIL) -7 NIL NIL NIL) (-888 2033713 2033776 2033878 "PARSURF" 2034023 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-887 2033345 2033402 2033511 "PARSU2" 2033650 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-886 2033109 2033149 2033216 "PARSER" 2033298 T PARSER (NIL) -7 NIL NIL NIL) (-885 2032730 2032793 2032895 "PARSCURV" 2033040 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-884 2032362 2032419 2032528 "PARSC2" 2032667 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-883 2032001 2032059 2032156 "PARPCURV" 2032298 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-882 2031633 2031690 2031799 "PARPC2" 2031938 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-881 2030694 2031006 2031188 "PARAMAST" 2031471 T PARAMAST (NIL) -8 NIL NIL NIL) (-880 2030214 2030300 2030419 "PAN2EXPR" 2030595 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-879 2028991 2029335 2029563 "PALETTE" 2030006 T PALETTE (NIL) -8 NIL NIL NIL) (-878 2027384 2027996 2028356 "PAIR" 2028677 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-877 2021275 2026643 2026837 "PADICRC" 2027239 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-876 2014525 2020621 2020805 "PADICRAT" 2021123 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-875 2011637 2013199 2013239 "PADICCT" 2013820 NIL PADICCT (NIL NIL) -9 NIL 2014102 NIL) (-874 2009954 2011574 2011619 "PADIC" 2011624 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-873 2008911 2009111 2009379 "PADEPAC" 2009741 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-872 2008123 2008256 2008462 "PADE" 2008773 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-871 2006510 2007331 2007611 "OWP" 2007927 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-870 2006003 2006216 2006313 "OVERSET" 2006433 T OVERSET (NIL) -8 NIL NIL NIL) (-869 2005049 2005608 2005780 "OVAR" 2005871 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-868 1993921 1996158 1998358 "OUTFORM" 2002869 T OUTFORM (NIL) -8 NIL NIL NIL) (-867 1993257 1993518 1993645 "OUTBFILE" 1993814 T OUTBFILE (NIL) -8 NIL NIL NIL) (-866 1992564 1992729 1992757 "OUTBCON" 1993075 T OUTBCON (NIL) -9 NIL 1993241 NIL) (-865 1992165 1992277 1992434 "OUTBCON-" 1992439 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-864 1991429 1991550 1991711 "OUT" 1992024 T OUT (NIL) -7 NIL NIL NIL) (-863 1990809 1991158 1991247 "OSI" 1991360 T OSI (NIL) -8 NIL NIL NIL) (-862 1990339 1990677 1990705 "OSGROUP" 1990710 T OSGROUP (NIL) -9 NIL 1990732 NIL) (-861 1989084 1989311 1989596 "ORTHPOL" 1990086 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-860 1986649 1988919 1989040 "OREUP" 1989045 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-859 1984066 1986340 1986467 "ORESUP" 1986591 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-858 1981594 1982094 1982655 "OREPCTO" 1983555 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-857 1975287 1977481 1977522 "OREPCAT" 1979870 NIL OREPCAT (NIL T) -9 NIL 1980974 NIL) (-856 1972455 1973230 1974281 "OREPCAT-" 1974286 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-855 1971606 1971904 1971932 "ORDSET" 1972241 T ORDSET (NIL) -9 NIL 1972405 NIL) (-854 1971037 1971185 1971409 "ORDSET-" 1971414 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-853 1969602 1970393 1970421 "ORDRING" 1970623 T ORDRING (NIL) -9 NIL 1970748 NIL) (-852 1969247 1969341 1969485 "ORDRING-" 1969490 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-851 1968627 1969090 1969118 "ORDMON" 1969123 T ORDMON (NIL) -9 NIL 1969144 NIL) (-850 1967789 1967936 1968131 "ORDFUNS" 1968476 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-849 1967127 1967546 1967574 "ORDFIN" 1967639 T ORDFIN (NIL) -9 NIL 1967713 NIL) (-848 1966393 1966520 1966706 "ORDCOMP2" 1966987 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-847 1962959 1964979 1965388 "ORDCOMP" 1966017 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-846 1959540 1960450 1961264 "OPTPROB" 1962165 T OPTPROB (NIL) -8 NIL NIL NIL) (-845 1956342 1956981 1957685 "OPTPACK" 1958856 T OPTPACK (NIL) -7 NIL NIL NIL) (-844 1954029 1954795 1954823 "OPTCAT" 1955642 T OPTCAT (NIL) -9 NIL 1956292 NIL) (-843 1953413 1953706 1953811 "OPSIG" 1953944 T OPSIG (NIL) -8 NIL NIL NIL) (-842 1953181 1953220 1953286 "OPQUERY" 1953367 T OPQUERY (NIL) -7 NIL NIL NIL) (-841 1952555 1952781 1952822 "OPERCAT" 1953034 NIL OPERCAT (NIL T) -9 NIL 1953131 NIL) (-840 1952310 1952366 1952483 "OPERCAT-" 1952488 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-839 1949443 1950621 1951125 "OP" 1951839 NIL OP (NIL T) -8 NIL NIL NIL) (-838 1948748 1948863 1949037 "ONECOMP2" 1949315 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1945568 1947545 1947914 "ONECOMP" 1948412 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-836 1944987 1945093 1945223 "OMSERVER" 1945458 T OMSERVER (NIL) -7 NIL NIL NIL) (-835 1941849 1944427 1944467 "OMSAGG" 1944528 NIL OMSAGG (NIL T) -9 NIL 1944592 NIL) (-834 1940472 1940735 1941017 "OMPKG" 1941587 T OMPKG (NIL) -7 NIL NIL NIL) (-833 1939019 1940021 1940190 "OMLO" 1940353 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-832 1937979 1938126 1938346 "OMEXPR" 1938845 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-831 1937130 1937400 1937560 "OMERRK" 1937839 T OMERRK (NIL) -8 NIL NIL NIL) (-830 1936421 1936676 1936812 "OMERR" 1937014 T OMERR (NIL) -8 NIL NIL NIL) (-829 1935872 1936098 1936206 "OMENC" 1936333 T OMENC (NIL) -8 NIL NIL NIL) (-828 1929767 1930952 1932123 "OMDEV" 1934721 T OMDEV (NIL) -8 NIL NIL NIL) (-827 1928836 1929007 1929201 "OMCONN" 1929593 T OMCONN (NIL) -8 NIL NIL NIL) (-826 1928266 1928369 1928397 "OM" 1928696 T OM (NIL) -9 NIL NIL NIL) (-825 1926787 1927763 1927791 "OINTDOM" 1927796 T OINTDOM (NIL) -9 NIL 1927817 NIL) (-824 1924132 1925475 1925812 "OFMONOID" 1926482 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-823 1923543 1924069 1924114 "ODVAR" 1924119 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-822 1920968 1923288 1923443 "ODR" 1923448 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-821 1913590 1920744 1920870 "ODPOL" 1920875 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-820 1907419 1913462 1913567 "ODP" 1913572 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-819 1906185 1906400 1906675 "ODETOOLS" 1907193 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-818 1903152 1903810 1904526 "ODESYS" 1905518 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-817 1898034 1898942 1899967 "ODERTRIC" 1902227 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-816 1897460 1897542 1897736 "ODERED" 1897946 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-815 1894356 1894902 1895577 "ODERAT" 1896885 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-814 1891313 1891780 1892377 "ODEPRRIC" 1893885 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-813 1889256 1889852 1890338 "ODEPROB" 1890847 T ODEPROB (NIL) -8 NIL NIL NIL) (-812 1885776 1886261 1886908 "ODEPRIM" 1888735 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-811 1885025 1885127 1885387 "ODEPAL" 1885668 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-810 1881187 1881978 1882842 "ODEPACK" 1884181 T ODEPACK (NIL) -7 NIL NIL NIL) (-809 1880248 1880355 1880577 "ODEINT" 1881076 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-808 1874349 1875774 1877221 "ODEIFTBL" 1878821 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-807 1869761 1870543 1871491 "ODEEF" 1873512 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-806 1869110 1869199 1869422 "ODECONST" 1869666 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-805 1867235 1867896 1867924 "ODECAT" 1868529 T ODECAT (NIL) -9 NIL 1869060 NIL) (-804 1866873 1866916 1867043 "OCTCT2" 1867186 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-803 1863740 1866578 1866700 "OCT" 1866783 NIL OCT (NIL T) -8 NIL NIL NIL) (-802 1863092 1863560 1863588 "OCAMON" 1863593 T OCAMON (NIL) -9 NIL 1863614 NIL) (-801 1857748 1860176 1860216 "OC" 1861313 NIL OC (NIL T) -9 NIL 1862171 NIL) (-800 1854996 1855737 1856720 "OC-" 1856814 NIL OC- (NIL T T) -8 NIL NIL NIL) (-799 1854527 1854868 1854896 "OASGP" 1854901 T OASGP (NIL) -9 NIL 1854921 NIL) (-798 1853788 1854277 1854305 "OAMONS" 1854345 T OAMONS (NIL) -9 NIL 1854388 NIL) (-797 1853202 1853635 1853663 "OAMON" 1853668 T OAMON (NIL) -9 NIL 1853688 NIL) (-796 1852460 1852978 1853006 "OAGROUP" 1853011 T OAGROUP (NIL) -9 NIL 1853031 NIL) (-795 1852150 1852200 1852288 "NUMTUBE" 1852404 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-794 1845723 1847241 1848777 "NUMQUAD" 1850634 T NUMQUAD (NIL) -7 NIL NIL NIL) (-793 1841479 1842467 1843492 "NUMODE" 1844718 T NUMODE (NIL) -7 NIL NIL NIL) (-792 1838834 1839714 1839742 "NUMINT" 1840665 T NUMINT (NIL) -9 NIL 1841429 NIL) (-791 1837782 1837979 1838197 "NUMFMT" 1838636 T NUMFMT (NIL) -7 NIL NIL NIL) (-790 1824141 1827086 1829618 "NUMERIC" 1835289 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-789 1818538 1823590 1823685 "NTSCAT" 1823690 NIL NTSCAT (NIL T T T T) -9 NIL 1823729 NIL) (-788 1817732 1817897 1818090 "NTPOLFN" 1818377 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-787 1817364 1817421 1817530 "NSUP2" 1817669 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-786 1805486 1814189 1815001 "NSUP" 1816585 NIL NSUP (NIL T) -8 NIL NIL NIL) (-785 1795762 1805260 1805393 "NSMP" 1805398 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-784 1794194 1794495 1794852 "NREP" 1795450 NIL NREP (NIL T) -7 NIL NIL NIL) (-783 1792785 1793037 1793395 "NPCOEF" 1793937 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-782 1791851 1791966 1792182 "NORMRETR" 1792666 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-781 1789892 1790182 1790591 "NORMPK" 1791559 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-780 1789577 1789605 1789729 "NORMMA" 1789858 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-779 1789366 1789395 1789464 "NONE1" 1789541 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-778 1789166 1789323 1789352 "NONE" 1789357 T NONE (NIL) -8 NIL NIL NIL) (-777 1788663 1788725 1788904 "NODE1" 1789098 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-776 1786948 1787799 1788054 "NNI" 1788401 T NNI (NIL) -8 NIL NIL 1788636) (-775 1785368 1785681 1786045 "NLINSOL" 1786616 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-774 1781609 1782604 1783503 "NIPROB" 1784489 T NIPROB (NIL) -8 NIL NIL NIL) (-773 1780366 1780600 1780902 "NFINTBAS" 1781371 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-772 1779540 1780016 1780057 "NETCLT" 1780229 NIL NETCLT (NIL T) -9 NIL 1780311 NIL) (-771 1778248 1778479 1778760 "NCODIV" 1779308 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-770 1778010 1778047 1778122 "NCNTFRAC" 1778205 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-769 1776190 1776554 1776974 "NCEP" 1777635 NIL NCEP (NIL T) -7 NIL NIL NIL) (-768 1775048 1775814 1775842 "NASRING" 1775952 T NASRING (NIL) -9 NIL 1776032 NIL) (-767 1774843 1774887 1774981 "NASRING-" 1774986 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-766 1773950 1774475 1774503 "NARNG" 1774620 T NARNG (NIL) -9 NIL 1774711 NIL) (-765 1773642 1773709 1773843 "NARNG-" 1773848 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-764 1772521 1772728 1772963 "NAGSP" 1773427 T NAGSP (NIL) -7 NIL NIL NIL) (-763 1763793 1765477 1767150 "NAGS" 1770868 T NAGS (NIL) -7 NIL NIL NIL) (-762 1762341 1762649 1762980 "NAGF07" 1763482 T NAGF07 (NIL) -7 NIL NIL NIL) (-761 1756879 1758170 1759477 "NAGF04" 1761054 T NAGF04 (NIL) -7 NIL NIL NIL) (-760 1749847 1751461 1753094 "NAGF02" 1755266 T NAGF02 (NIL) -7 NIL NIL NIL) (-759 1745071 1746171 1747288 "NAGF01" 1748750 T NAGF01 (NIL) -7 NIL NIL NIL) (-758 1738699 1740265 1741850 "NAGE04" 1743506 T NAGE04 (NIL) -7 NIL NIL NIL) (-757 1729868 1731989 1734119 "NAGE02" 1736589 T NAGE02 (NIL) -7 NIL NIL NIL) (-756 1725821 1726768 1727732 "NAGE01" 1728924 T NAGE01 (NIL) -7 NIL NIL NIL) (-755 1723616 1724150 1724708 "NAGD03" 1725283 T NAGD03 (NIL) -7 NIL NIL NIL) (-754 1715366 1717294 1719248 "NAGD02" 1721682 T NAGD02 (NIL) -7 NIL NIL NIL) (-753 1709177 1710602 1712042 "NAGD01" 1713946 T NAGD01 (NIL) -7 NIL NIL NIL) (-752 1705386 1706208 1707045 "NAGC06" 1708360 T NAGC06 (NIL) -7 NIL NIL NIL) (-751 1703851 1704183 1704539 "NAGC05" 1705050 T NAGC05 (NIL) -7 NIL NIL NIL) (-750 1703227 1703346 1703490 "NAGC02" 1703727 T NAGC02 (NIL) -7 NIL NIL NIL) (-749 1702186 1702769 1702809 "NAALG" 1702888 NIL NAALG (NIL T) -9 NIL 1702949 NIL) (-748 1702021 1702050 1702140 "NAALG-" 1702145 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-747 1695971 1697079 1698266 "MULTSQFR" 1700917 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-746 1695290 1695365 1695549 "MULTFACT" 1695883 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-745 1688014 1691927 1691980 "MTSCAT" 1693050 NIL MTSCAT (NIL T T) -9 NIL 1693565 NIL) (-744 1687726 1687780 1687872 "MTHING" 1687954 NIL MTHING (NIL T) -7 NIL NIL NIL) (-743 1687518 1687551 1687611 "MSYSCMD" 1687686 T MSYSCMD (NIL) -7 NIL NIL NIL) (-742 1684587 1687079 1687120 "MSETAGG" 1687125 NIL MSETAGG (NIL T) -9 NIL 1687159 NIL) (-741 1680669 1683342 1683662 "MSET" 1684300 NIL MSET (NIL T) -8 NIL NIL NIL) (-740 1676512 1678048 1678793 "MRING" 1679969 NIL MRING (NIL T T) -8 NIL NIL NIL) (-739 1676078 1676145 1676276 "MRF2" 1676439 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-738 1675696 1675731 1675875 "MRATFAC" 1676037 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-737 1673308 1673603 1674034 "MPRFF" 1675401 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-736 1667631 1673162 1673259 "MPOLY" 1673264 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-735 1667121 1667156 1667364 "MPCPF" 1667590 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-734 1666635 1666678 1666862 "MPC3" 1667072 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1665830 1665911 1666132 "MPC2" 1666550 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-732 1664131 1664468 1664858 "MONOTOOL" 1665490 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-731 1663356 1663673 1663701 "MONOID" 1663920 T MONOID (NIL) -9 NIL 1664067 NIL) (-730 1662902 1663021 1663202 "MONOID-" 1663207 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-729 1653386 1659328 1659387 "MONOGEN" 1660061 NIL MONOGEN (NIL T T) -9 NIL 1660517 NIL) (-728 1650625 1651353 1652346 "MONOGEN-" 1652465 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-727 1649458 1649904 1649932 "MONADWU" 1650324 T MONADWU (NIL) -9 NIL 1650562 NIL) (-726 1648830 1648989 1649237 "MONADWU-" 1649242 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-725 1648189 1648433 1648461 "MONAD" 1648668 T MONAD (NIL) -9 NIL 1648780 NIL) (-724 1647874 1647952 1648084 "MONAD-" 1648089 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-723 1646163 1646787 1647066 "MOEBIUS" 1647627 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-722 1645441 1645845 1645885 "MODULE" 1645890 NIL MODULE (NIL T) -9 NIL 1645929 NIL) (-721 1645009 1645105 1645295 "MODULE-" 1645300 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-720 1642733 1643417 1643744 "MODRING" 1644833 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1639679 1640838 1641359 "MODOP" 1642262 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-718 1638267 1638746 1639023 "MODMONOM" 1639542 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-717 1628349 1636558 1636972 "MODMON" 1637904 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-716 1625531 1627217 1627493 "MODFIELD" 1628224 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1624508 1624812 1625002 "MMLFORM" 1625361 T MMLFORM (NIL) -8 NIL NIL NIL) (-714 1624034 1624077 1624256 "MMAP" 1624459 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-713 1622113 1622880 1622921 "MLO" 1623344 NIL MLO (NIL T) -9 NIL 1623586 NIL) (-712 1619479 1619995 1620597 "MLIFT" 1621594 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-711 1618870 1618954 1619108 "MKUCFUNC" 1619390 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-710 1618469 1618539 1618662 "MKRECORD" 1618793 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-709 1617516 1617678 1617906 "MKFUNC" 1618280 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-708 1616904 1617008 1617164 "MKFLCFN" 1617399 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-707 1616181 1616283 1616468 "MKBCFUNC" 1616797 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-706 1612890 1615735 1615871 "MINT" 1616065 T MINT (NIL) -8 NIL NIL NIL) (-705 1611702 1611945 1612222 "MHROWRED" 1612645 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-704 1607091 1610237 1610642 "MFLOAT" 1611317 T MFLOAT (NIL) -8 NIL NIL NIL) (-703 1606448 1606524 1606695 "MFINFACT" 1607003 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-702 1602783 1603626 1604505 "MESH" 1605589 T MESH (NIL) -7 NIL NIL NIL) (-701 1601173 1601485 1601838 "MDDFACT" 1602470 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-700 1597968 1600332 1600373 "MDAGG" 1600628 NIL MDAGG (NIL T) -9 NIL 1600771 NIL) (-699 1587726 1597261 1597468 "MCMPLX" 1597781 T MCMPLX (NIL) -8 NIL NIL NIL) (-698 1586867 1587013 1587213 "MCDEN" 1587575 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-697 1584757 1585027 1585407 "MCALCFN" 1586597 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-696 1583682 1583922 1584155 "MAYBE" 1584563 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-695 1581294 1581817 1582379 "MATSTOR" 1583153 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-694 1577250 1580666 1580914 "MATRIX" 1581079 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-693 1573014 1573723 1574459 "MATLIN" 1576607 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-692 1571608 1571761 1572094 "MATCAT2" 1572849 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-691 1561708 1564897 1564974 "MATCAT" 1569857 NIL MATCAT (NIL T T T) -9 NIL 1571274 NIL) (-690 1558064 1559085 1560441 "MATCAT-" 1560446 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-689 1556176 1556500 1556884 "MAPPKG3" 1557739 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-688 1555157 1555330 1555552 "MAPPKG2" 1556000 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-687 1553656 1553940 1554267 "MAPPKG1" 1554863 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-686 1552735 1553062 1553239 "MAPPAST" 1553499 T MAPPAST (NIL) -8 NIL NIL NIL) (-685 1552346 1552404 1552527 "MAPHACK3" 1552671 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-684 1551938 1551999 1552113 "MAPHACK2" 1552278 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-683 1551375 1551479 1551621 "MAPHACK1" 1551829 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-682 1549454 1550075 1550379 "MAGMA" 1551103 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-681 1548933 1549178 1549269 "MACROAST" 1549383 T MACROAST (NIL) -8 NIL NIL NIL) (-680 1545351 1547172 1547633 "M3D" 1548505 NIL M3D (NIL T) -8 NIL NIL NIL) (-679 1539459 1543720 1543761 "LZSTAGG" 1544543 NIL LZSTAGG (NIL T) -9 NIL 1544838 NIL) (-678 1535416 1536590 1538047 "LZSTAGG-" 1538052 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-677 1532503 1533307 1533794 "LWORD" 1534961 NIL LWORD (NIL T) -8 NIL NIL NIL) (-676 1532079 1532307 1532382 "LSTAST" 1532448 T LSTAST (NIL) -8 NIL NIL NIL) (-675 1525276 1531850 1531984 "LSQM" 1531989 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-674 1524500 1524639 1524867 "LSPP" 1525131 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-673 1521342 1521999 1522712 "LSMP1" 1523819 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-672 1519177 1519471 1519920 "LSMP" 1521038 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-671 1513056 1518344 1518385 "LSAGG" 1518447 NIL LSAGG (NIL T) -9 NIL 1518525 NIL) (-670 1509751 1510675 1511888 "LSAGG-" 1511893 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-669 1507350 1508895 1509144 "LPOLY" 1509546 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-668 1506932 1507017 1507140 "LPEFRAC" 1507259 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-667 1506584 1506696 1506724 "LOGIC" 1506835 T LOGIC (NIL) -9 NIL 1506916 NIL) (-666 1506446 1506469 1506540 "LOGIC-" 1506545 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-665 1505639 1505779 1505972 "LODOOPS" 1506302 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-664 1504177 1504412 1504765 "LODOF" 1505386 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-663 1500409 1502826 1502867 "LODOCAT" 1503305 NIL LODOCAT (NIL T) -9 NIL 1503516 NIL) (-662 1500142 1500200 1500327 "LODOCAT-" 1500332 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-661 1497476 1499983 1500101 "LODO2" 1500106 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-660 1494925 1497413 1497458 "LODO1" 1497463 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-659 1492362 1494841 1494907 "LODO" 1494912 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1491243 1491408 1491713 "LODEEF" 1492185 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-657 1489564 1490337 1490590 "LO" 1491075 NIL LO (NIL T T T) -8 NIL NIL NIL) (-656 1484803 1487694 1487735 "LNAGG" 1488682 NIL LNAGG (NIL T) -9 NIL 1489126 NIL) (-655 1483950 1484164 1484506 "LNAGG-" 1484511 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-654 1480086 1480875 1481514 "LMOPS" 1483365 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-653 1479489 1479877 1479918 "LMODULE" 1479923 NIL LMODULE (NIL T) -9 NIL 1479949 NIL) (-652 1476687 1479134 1479257 "LMDICT" 1479399 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-651 1476093 1476314 1476355 "LLINSET" 1476546 NIL LLINSET (NIL T) -9 NIL 1476637 NIL) (-650 1475792 1476001 1476061 "LITERAL" 1476066 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-649 1475317 1475391 1475530 "LIST3" 1475712 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-648 1473451 1473763 1474162 "LIST2MAP" 1474964 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-647 1472458 1472636 1472864 "LIST2" 1473269 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-646 1465623 1471392 1471696 "LIST" 1472187 NIL LIST (NIL T) -8 NIL NIL NIL) (-645 1465219 1465456 1465497 "LINSET" 1465502 NIL LINSET (NIL T) -9 NIL 1465536 NIL) (-644 1463880 1464550 1464591 "LINEXP" 1464846 NIL LINEXP (NIL T) -9 NIL 1464995 NIL) (-643 1462527 1462787 1463084 "LINDEP" 1463632 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-642 1459365 1460065 1460823 "LIMITRF" 1461801 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-641 1457691 1457980 1458382 "LIMITPS" 1459067 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-640 1456639 1457108 1457148 "LIECAT" 1457288 NIL LIECAT (NIL T) -9 NIL 1457439 NIL) (-639 1456480 1456507 1456595 "LIECAT-" 1456600 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-638 1450940 1455991 1456219 "LIE" 1456301 NIL LIE (NIL T T) -8 NIL NIL NIL) (-637 1443438 1450389 1450554 "LIB" 1450795 T LIB (NIL) -8 NIL NIL NIL) (-636 1439073 1439956 1440891 "LGROBP" 1442555 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-635 1437913 1438605 1438633 "LFCAT" 1438840 T LFCAT (NIL) -9 NIL 1438979 NIL) (-634 1435911 1436185 1436535 "LF" 1437634 NIL LF (NIL T T) -7 NIL NIL NIL) (-633 1432813 1433443 1434131 "LEXTRIPK" 1435275 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-632 1429557 1430383 1430886 "LEXP" 1432393 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-631 1429033 1429278 1429370 "LETAST" 1429485 T LETAST (NIL) -8 NIL NIL NIL) (-630 1427431 1427744 1428145 "LEADCDET" 1428715 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-629 1426621 1426695 1426924 "LAZM3PK" 1427352 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-628 1421552 1424698 1425236 "LAUPOL" 1426133 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-627 1421131 1421175 1421336 "LAPLACE" 1421502 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-626 1420125 1420709 1420750 "LALG" 1420812 NIL LALG (NIL T) -9 NIL 1420871 NIL) (-625 1419839 1419898 1420034 "LALG-" 1420039 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-624 1417778 1418940 1419191 "LA" 1419672 NIL LA (NIL T T T) -8 NIL NIL NIL) (-623 1417613 1417637 1417678 "KVTFROM" 1417740 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-622 1416536 1416980 1417165 "KTVLOGIC" 1417448 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-621 1416371 1416395 1416436 "KRCFROM" 1416498 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-620 1415275 1415462 1415761 "KOVACIC" 1416171 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-619 1415110 1415134 1415175 "KONVERT" 1415237 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-618 1414945 1414969 1415010 "KOERCE" 1415072 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-617 1414441 1414522 1414654 "KERNEL2" 1414859 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-616 1412271 1413034 1413411 "KERNEL" 1414097 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-615 1406041 1410810 1410864 "KDAGG" 1411241 NIL KDAGG (NIL T T) -9 NIL 1411447 NIL) (-614 1405570 1405694 1405899 "KDAGG-" 1405904 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1398720 1405231 1405386 "KAFILE" 1405448 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-612 1393180 1398231 1398459 "JORDAN" 1398541 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-611 1392559 1392829 1392950 "JOINAST" 1393079 T JOINAST (NIL) -8 NIL NIL NIL) (-610 1392405 1392464 1392519 "JAVACODE" 1392524 T JAVACODE (NIL) -8 NIL NIL NIL) (-609 1388657 1390610 1390664 "IXAGG" 1391593 NIL IXAGG (NIL T T) -9 NIL 1392052 NIL) (-608 1387576 1387882 1388301 "IXAGG-" 1388306 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-607 1383106 1387498 1387557 "IVECTOR" 1387562 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-606 1381872 1382109 1382375 "ITUPLE" 1382873 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-605 1380374 1380551 1380846 "ITRIGMNP" 1381694 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-604 1379119 1379323 1379606 "ITFUN3" 1380150 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-603 1378751 1378808 1378917 "ITFUN2" 1379056 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-602 1377910 1378231 1378405 "ITFORM" 1378597 T ITFORM (NIL) -8 NIL NIL NIL) (-601 1375871 1376930 1377208 "ITAYLOR" 1377665 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-600 1364816 1370008 1371171 "ISUPS" 1374741 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-599 1363920 1364060 1364296 "ISUMP" 1364663 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-598 1359295 1363865 1363906 "ISTRING" 1363911 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-597 1358771 1359016 1359108 "ISAST" 1359223 T ISAST (NIL) -8 NIL NIL NIL) (-596 1357980 1358062 1358278 "IRURPK" 1358685 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-595 1356916 1357117 1357357 "IRSN" 1357760 T IRSN (NIL) -7 NIL NIL NIL) (-594 1354987 1355342 1355771 "IRRF2F" 1356554 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-593 1354734 1354772 1354848 "IRREDFFX" 1354943 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-592 1353349 1353608 1353907 "IROOT" 1354467 NIL IROOT (NIL T) -7 NIL NIL NIL) (-591 1352554 1352842 1352993 "IRFORM" 1353218 T IRFORM (NIL) -8 NIL NIL NIL) (-590 1351654 1351767 1351981 "IR2F" 1352437 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-589 1349267 1349762 1350328 "IR2" 1351132 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-588 1345871 1346951 1347643 "IR" 1348607 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1345662 1345696 1345756 "IPRNTPK" 1345831 T IPRNTPK (NIL) -7 NIL NIL NIL) (-586 1342245 1345551 1345620 "IPF" 1345625 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-585 1340574 1342170 1342227 "IPADIC" 1342232 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-584 1339886 1340134 1340264 "IP4ADDR" 1340464 T IP4ADDR (NIL) -8 NIL NIL NIL) (-583 1339359 1339590 1339700 "IOMODE" 1339796 T IOMODE (NIL) -8 NIL NIL NIL) (-582 1338432 1338956 1339083 "IOBFILE" 1339252 T IOBFILE (NIL) -8 NIL NIL NIL) (-581 1337920 1338336 1338364 "IOBCON" 1338369 T IOBCON (NIL) -9 NIL 1338390 NIL) (-580 1337431 1337489 1337672 "INVLAPLA" 1337856 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-579 1327127 1329469 1331843 "INTTR" 1335107 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-578 1323462 1324204 1325069 "INTTOOLS" 1326312 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-577 1323048 1323139 1323256 "INTSLPE" 1323365 T INTSLPE (NIL) -7 NIL NIL NIL) (-576 1321001 1322971 1323030 "INTRVL" 1323035 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-575 1318603 1319115 1319690 "INTRF" 1320486 NIL INTRF (NIL T) -7 NIL NIL NIL) (-574 1318014 1318111 1318253 "INTRET" 1318501 NIL INTRET (NIL T) -7 NIL NIL NIL) (-573 1316011 1316400 1316870 "INTRAT" 1317622 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-572 1313274 1313857 1314476 "INTPM" 1315496 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-571 1310042 1310634 1311365 "INTPAF" 1312667 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-570 1305221 1306183 1307234 "INTPACK" 1309011 T INTPACK (NIL) -7 NIL NIL NIL) (-569 1304473 1304625 1304833 "INTHERTR" 1305063 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-568 1303912 1303992 1304180 "INTHERAL" 1304387 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-567 1301758 1302201 1302658 "INTHEORY" 1303475 T INTHEORY (NIL) -7 NIL NIL NIL) (-566 1293222 1294825 1296579 "INTG0" 1300128 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-565 1279495 1282860 1286245 "INTFTBL" 1289857 T INTFTBL (NIL) -8 NIL NIL NIL) (-564 1278744 1278882 1279055 "INTFACT" 1279354 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-563 1276177 1276621 1277176 "INTEF" 1278300 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-562 1274544 1275283 1275311 "INTDOM" 1275612 T INTDOM (NIL) -9 NIL 1275819 NIL) (-561 1273913 1274087 1274329 "INTDOM-" 1274334 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-560 1270301 1272229 1272283 "INTCAT" 1273082 NIL INTCAT (NIL T) -9 NIL 1273403 NIL) (-559 1269773 1269876 1270004 "INTBIT" 1270193 T INTBIT (NIL) -7 NIL NIL NIL) (-558 1268472 1268626 1268933 "INTALG" 1269618 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-557 1267955 1268045 1268202 "INTAF" 1268376 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-556 1261300 1267765 1267905 "INTABL" 1267910 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-555 1260641 1261107 1261172 "INT8" 1261206 T INT8 (NIL) -8 NIL NIL 1261251) (-554 1259981 1260447 1260512 "INT64" 1260546 T INT64 (NIL) -8 NIL NIL 1260591) (-553 1259321 1259787 1259852 "INT32" 1259886 T INT32 (NIL) -8 NIL NIL 1259931) (-552 1258661 1259127 1259192 "INT16" 1259226 T INT16 (NIL) -8 NIL NIL 1259271) (-551 1255611 1258458 1258567 "INT" 1258572 T INT (NIL) -8 NIL NIL NIL) (-550 1250523 1253234 1253262 "INS" 1254196 T INS (NIL) -9 NIL 1254861 NIL) (-549 1247763 1248534 1249508 "INS-" 1249581 NIL INS- (NIL T) -8 NIL NIL NIL) (-548 1246611 1246816 1247092 "INPSIGN" 1247538 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-547 1245729 1245846 1246043 "INPRODPF" 1246491 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-546 1244623 1244740 1244977 "INPRODFF" 1245609 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-545 1243623 1243775 1244035 "INNMFACT" 1244459 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-544 1242820 1242917 1243105 "INMODGCD" 1243522 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-543 1241328 1241573 1241897 "INFSP" 1242565 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-542 1240512 1240629 1240812 "INFPROD0" 1241208 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-541 1240122 1240182 1240280 "INFORM1" 1240447 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-540 1236977 1238187 1238702 "INFORM" 1239615 T INFORM (NIL) -8 NIL NIL NIL) (-539 1236500 1236589 1236703 "INFINITY" 1236883 T INFINITY (NIL) -7 NIL NIL NIL) (-538 1235676 1236220 1236321 "INETCLTS" 1236419 T INETCLTS (NIL) -8 NIL NIL NIL) (-537 1234292 1234542 1234863 "INEP" 1235424 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-536 1233541 1234189 1234254 "INDE" 1234259 NIL INDE (NIL T) -8 NIL NIL NIL) (-535 1233105 1233173 1233290 "INCRMAPS" 1233468 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-534 1231923 1232374 1232580 "INBFILE" 1232919 T INBFILE (NIL) -8 NIL NIL NIL) (-533 1227223 1228159 1229103 "INBFF" 1231011 NIL INBFF (NIL T) -7 NIL NIL NIL) (-532 1226131 1226400 1226428 "INBCON" 1226941 T INBCON (NIL) -9 NIL 1227207 NIL) (-531 1225383 1225606 1225882 "INBCON-" 1225887 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-530 1224862 1225107 1225198 "INAST" 1225312 T INAST (NIL) -8 NIL NIL NIL) (-529 1224289 1224541 1224647 "IMPTAST" 1224776 T IMPTAST (NIL) -8 NIL NIL NIL) (-528 1220734 1224133 1224237 "IMATRIX" 1224242 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-527 1219446 1219569 1219884 "IMATQF" 1220590 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-526 1217666 1217893 1218230 "IMATLIN" 1219202 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-525 1212246 1217590 1217648 "ILIST" 1217653 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-524 1210151 1212106 1212219 "IIARRAY2" 1212224 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-523 1205551 1210062 1210126 "IFF" 1210131 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-522 1204898 1205168 1205284 "IFAST" 1205455 T IFAST (NIL) -8 NIL NIL NIL) (-521 1199893 1204190 1204378 "IFARRAY" 1204755 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-520 1199073 1199797 1199870 "IFAMON" 1199875 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-519 1198657 1198722 1198776 "IEVALAB" 1198983 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-518 1198332 1198400 1198560 "IEVALAB-" 1198565 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-517 1197582 1198221 1198296 "IDPOAMS" 1198301 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-516 1196889 1197471 1197546 "IDPOAM" 1197551 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-515 1196520 1196803 1196866 "IDPO" 1196871 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1195579 1195855 1195908 "IDPC" 1196321 NIL IDPC (NIL T T) -9 NIL 1196470 NIL) (-513 1195048 1195471 1195544 "IDPAM" 1195549 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-512 1194424 1194940 1195013 "IDPAG" 1195018 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-511 1194069 1194260 1194335 "IDENT" 1194369 T IDENT (NIL) -8 NIL NIL NIL) (-510 1190324 1191172 1192067 "IDECOMP" 1193226 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-509 1183162 1184247 1185294 "IDEAL" 1189360 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-508 1182326 1182438 1182637 "ICDEN" 1183046 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-507 1181397 1181806 1181953 "ICARD" 1182199 T ICARD (NIL) -8 NIL NIL NIL) (-506 1179457 1179770 1180175 "IBPTOOLS" 1181074 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-505 1175064 1179077 1179190 "IBITS" 1179376 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-504 1171787 1172363 1173058 "IBATOOL" 1174481 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-503 1169566 1170028 1170561 "IBACHIN" 1171322 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-502 1167395 1169412 1169515 "IARRAY2" 1169520 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-501 1163501 1167321 1167378 "IARRAY1" 1167383 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-500 1157619 1161913 1162394 "IAN" 1163040 T IAN (NIL) -8 NIL NIL NIL) (-499 1157130 1157187 1157360 "IALGFACT" 1157556 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-498 1156658 1156771 1156799 "HYPCAT" 1157006 T HYPCAT (NIL) -9 NIL NIL NIL) (-497 1156196 1156313 1156499 "HYPCAT-" 1156504 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-496 1155791 1155991 1156074 "HOSTNAME" 1156133 T HOSTNAME (NIL) -8 NIL NIL NIL) (-495 1155636 1155673 1155714 "HOMOTOP" 1155719 NIL HOMOTOP (NIL T) -9 NIL 1155752 NIL) (-494 1152268 1153646 1153687 "HOAGG" 1154668 NIL HOAGG (NIL T) -9 NIL 1155347 NIL) (-493 1150862 1151261 1151787 "HOAGG-" 1151792 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-492 1144887 1150457 1150606 "HEXADEC" 1150733 T HEXADEC (NIL) -8 NIL NIL NIL) (-491 1143635 1143857 1144120 "HEUGCD" 1144664 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-490 1142711 1143472 1143602 "HELLFDIV" 1143607 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-489 1140890 1142488 1142576 "HEAP" 1142655 NIL HEAP (NIL T) -8 NIL NIL NIL) (-488 1140153 1140442 1140576 "HEADAST" 1140776 T HEADAST (NIL) -8 NIL NIL NIL) (-487 1134026 1140068 1140130 "HDP" 1140135 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-486 1128045 1133661 1133813 "HDMP" 1133927 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-485 1127369 1127509 1127673 "HB" 1127901 T HB (NIL) -7 NIL NIL NIL) (-484 1120757 1127215 1127319 "HASHTBL" 1127324 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-483 1120233 1120478 1120570 "HASAST" 1120685 T HASAST (NIL) -8 NIL NIL NIL) (-482 1118015 1119855 1120037 "HACKPI" 1120071 T HACKPI (NIL) -8 NIL NIL NIL) (-481 1113710 1117868 1117981 "GTSET" 1117986 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-480 1107127 1113588 1113686 "GSTBL" 1113691 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-479 1099407 1106158 1106423 "GSERIES" 1106918 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-478 1098548 1098965 1098993 "GROUP" 1099196 T GROUP (NIL) -9 NIL 1099330 NIL) (-477 1097914 1098073 1098324 "GROUP-" 1098329 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-476 1096281 1096602 1096989 "GROEBSOL" 1097591 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-475 1095195 1095483 1095534 "GRMOD" 1096063 NIL GRMOD (NIL T T) -9 NIL 1096231 NIL) (-474 1094963 1094999 1095127 "GRMOD-" 1095132 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-473 1090253 1091317 1092317 "GRIMAGE" 1093983 T GRIMAGE (NIL) -8 NIL NIL NIL) (-472 1088719 1088980 1089304 "GRDEF" 1089949 T GRDEF (NIL) -7 NIL NIL NIL) (-471 1088163 1088279 1088420 "GRAY" 1088598 T GRAY (NIL) -7 NIL NIL NIL) (-470 1087350 1087756 1087807 "GRALG" 1087960 NIL GRALG (NIL T T) -9 NIL 1088053 NIL) (-469 1087011 1087084 1087247 "GRALG-" 1087252 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-468 1083788 1086596 1086774 "GPOLSET" 1086918 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-467 1083142 1083199 1083457 "GOSPER" 1083725 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-466 1078874 1079580 1080106 "GMODPOL" 1082841 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-465 1077879 1078063 1078301 "GHENSEL" 1078686 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-464 1072035 1072878 1073898 "GENUPS" 1076963 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-463 1071732 1071783 1071872 "GENUFACT" 1071978 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-462 1071144 1071221 1071386 "GENPGCD" 1071650 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-461 1070618 1070653 1070866 "GENMFACT" 1071103 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-460 1069184 1069441 1069748 "GENEEZ" 1070361 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-459 1063361 1068795 1068957 "GDMP" 1069107 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-458 1052725 1057132 1058238 "GCNAALG" 1062344 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-457 1051052 1051914 1051942 "GCDDOM" 1052197 T GCDDOM (NIL) -9 NIL 1052354 NIL) (-456 1050522 1050649 1050864 "GCDDOM-" 1050869 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-455 1039138 1041468 1043860 "GBINTERN" 1048213 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-454 1036975 1037267 1037688 "GBF" 1038813 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-453 1035756 1035921 1036188 "GBEUCLID" 1036791 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-452 1034428 1034613 1034917 "GB" 1035535 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-451 1033777 1033902 1034051 "GAUSSFAC" 1034299 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-450 1032144 1032446 1032760 "GALUTIL" 1033496 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-449 1030452 1030726 1031050 "GALPOLYU" 1031871 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-448 1027817 1028107 1028514 "GALFACTU" 1030149 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-447 1019622 1021122 1022730 "GALFACT" 1026249 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-446 1017010 1017668 1017696 "FVFUN" 1018852 T FVFUN (NIL) -9 NIL 1019572 NIL) (-445 1016276 1016458 1016486 "FVC" 1016777 T FVC (NIL) -9 NIL 1016960 NIL) (-444 1015919 1016101 1016169 "FUNDESC" 1016228 T FUNDESC (NIL) -8 NIL NIL NIL) (-443 1015534 1015716 1015797 "FUNCTION" 1015871 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-442 1014325 1014835 1015038 "FTEM" 1015351 T FTEM (NIL) -8 NIL NIL NIL) (-441 1012081 1012656 1013119 "FT" 1013882 T FT (NIL) -8 NIL NIL NIL) (-440 1010372 1010661 1011058 "FSUPFACT" 1011772 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-439 1008769 1009058 1009390 "FST" 1010060 T FST (NIL) -8 NIL NIL NIL) (-438 1007968 1008074 1008262 "FSRED" 1008651 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-437 1006667 1006923 1007270 "FSPRMELT" 1007683 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-436 1003973 1004411 1004897 "FSPECF" 1006230 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-435 1003501 1003555 1003725 "FSINT" 1003914 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-434 1001793 1002494 1002797 "FSERIES" 1003280 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-433 1000835 1000951 1001175 "FSCINT" 1001673 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-432 999877 1000020 1000247 "FSAGG2" 1000688 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-431 996085 998821 998862 "FSAGG" 999232 NIL FSAGG (NIL T) -9 NIL 999491 NIL) (-430 993847 994448 995244 "FSAGG-" 995339 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-429 991529 991809 992356 "FS2UPS" 993565 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-428 990407 990578 990880 "FS2EXPXP" 991354 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-427 990041 990084 990213 "FS2" 990358 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-426 971708 980010 980051 "FS" 983935 NIL FS (NIL T) -9 NIL 986224 NIL) (-425 960432 963398 967428 "FS-" 967728 NIL FS- (NIL T T) -8 NIL NIL NIL) (-424 959858 959973 960125 "FRUTIL" 960312 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-423 954859 957501 957541 "FRNAALG" 958937 NIL FRNAALG (NIL T) -9 NIL 959544 NIL) (-422 950583 951642 952900 "FRNAALG-" 953650 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-421 950221 950264 950391 "FRNAAF2" 950534 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-420 948601 949075 949370 "FRMOD" 950033 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-419 947796 947883 948172 "FRIDEAL2" 948508 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-418 945547 946179 946496 "FRIDEAL" 947587 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-417 944687 945094 945135 "FRETRCT" 945140 NIL FRETRCT (NIL T) -9 NIL 945316 NIL) (-416 943820 944044 944388 "FRETRCT-" 944393 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-415 940908 942118 942177 "FRAMALG" 943059 NIL FRAMALG (NIL T T) -9 NIL 943351 NIL) (-414 939042 939497 940127 "FRAMALG-" 940350 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-413 938678 938735 938842 "FRAC2" 938979 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-412 932620 938153 938429 "FRAC" 938434 NIL FRAC (NIL T) -8 NIL NIL NIL) (-411 932256 932313 932420 "FR2" 932557 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-410 923784 927832 929163 "FR" 930957 NIL FR (NIL T) -8 NIL NIL NIL) (-409 918301 921190 921218 "FPS" 922337 T FPS (NIL) -9 NIL 922894 NIL) (-408 917750 917859 918023 "FPS-" 918169 NIL FPS- (NIL T) -8 NIL NIL NIL) (-407 915054 916721 916749 "FPC" 916974 T FPC (NIL) -9 NIL 917116 NIL) (-406 914847 914887 914984 "FPC-" 914989 NIL FPC- (NIL T) -8 NIL NIL NIL) (-405 913637 914335 914376 "FPATMAB" 914381 NIL FPATMAB (NIL T) -9 NIL 914533 NIL) (-404 911310 911813 912239 "FPARFRAC" 913274 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-403 906743 907241 907923 "FORTRAN" 910742 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-402 904419 904981 905009 "FORTFN" 906069 T FORTFN (NIL) -9 NIL 906693 NIL) (-401 904183 904233 904261 "FORTCAT" 904320 T FORTCAT (NIL) -9 NIL 904382 NIL) (-400 901899 902399 902938 "FORT" 903664 T FORT (NIL) -7 NIL NIL NIL) (-399 901687 901717 901786 "FORMULA1" 901863 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-398 899793 900303 900693 "FORMULA" 901317 T FORMULA (NIL) -8 NIL NIL NIL) (-397 899316 899368 899541 "FORDER" 899735 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-396 898412 898576 898769 "FOP" 899143 T FOP (NIL) -7 NIL NIL NIL) (-395 896993 897692 897866 "FNLA" 898294 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-394 895722 896137 896165 "FNCAT" 896625 T FNCAT (NIL) -9 NIL 896885 NIL) (-393 895261 895681 895709 "FNAME" 895714 T FNAME (NIL) -8 NIL NIL NIL) (-392 893824 894787 894815 "FMTC" 894820 T FMTC (NIL) -9 NIL 894856 NIL) (-391 892577 893760 893806 "FMONOID" 893811 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-390 889405 890573 890614 "FMONCAT" 891831 NIL FMONCAT (NIL T) -9 NIL 892436 NIL) (-389 886829 887475 887503 "FMFUN" 888647 T FMFUN (NIL) -9 NIL 889355 NIL) (-388 883908 884768 884822 "FMCAT" 886017 NIL FMCAT (NIL T T) -9 NIL 886512 NIL) (-387 883177 883358 883386 "FMC" 883676 T FMC (NIL) -9 NIL 883858 NIL) (-386 882043 882943 883043 "FM1" 883122 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-385 881235 881785 881934 "FM" 881939 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 879009 879425 879919 "FLOATRP" 880786 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-383 876447 876947 877525 "FLOATCP" 878476 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-382 870025 874176 874797 "FLOAT" 875846 T FLOAT (NIL) -8 NIL NIL NIL) (-381 868765 869603 869644 "FLINEXP" 869649 NIL FLINEXP (NIL T) -9 NIL 869742 NIL) (-380 867919 868154 868482 "FLINEXP-" 868487 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-379 866995 867139 867363 "FLASORT" 867771 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-378 864111 864979 865031 "FLALG" 866258 NIL FLALG (NIL T T) -9 NIL 866725 NIL) (-377 863153 863296 863523 "FLAGG2" 863964 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-376 856889 860639 860680 "FLAGG" 861942 NIL FLAGG (NIL T) -9 NIL 862594 NIL) (-375 855615 855954 856444 "FLAGG-" 856449 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-374 852466 853474 853533 "FINRALG" 854661 NIL FINRALG (NIL T T) -9 NIL 855169 NIL) (-373 851626 851855 852194 "FINRALG-" 852199 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-372 851006 851245 851273 "FINITE" 851469 T FINITE (NIL) -9 NIL 851576 NIL) (-371 843363 845550 845590 "FINAALG" 849257 NIL FINAALG (NIL T) -9 NIL 850710 NIL) (-370 838695 839745 840889 "FINAALG-" 842268 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-369 837353 837691 837745 "FILECAT" 838429 NIL FILECAT (NIL T T) -9 NIL 838645 NIL) (-368 836721 837108 837211 "FILE" 837283 NIL FILE (NIL T) -8 NIL NIL NIL) (-367 834439 835965 835993 "FIELD" 836033 T FIELD (NIL) -9 NIL 836113 NIL) (-366 833059 833444 833955 "FIELD-" 833960 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-365 830909 831694 832041 "FGROUP" 832745 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-364 829999 830163 830383 "FGLMICPK" 830741 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-363 825833 829924 829981 "FFX" 829986 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-362 825434 825495 825630 "FFSLPE" 825766 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-361 824938 824974 825183 "FFPOLY2" 825392 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-360 820928 821710 822506 "FFPOLY" 824174 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-359 816774 820847 820910 "FFP" 820915 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-358 811902 816117 816307 "FFNBX" 816628 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-357 806832 811037 811295 "FFNBP" 811756 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-356 801467 806116 806327 "FFNB" 806665 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-355 800299 800497 800812 "FFINTBAS" 801264 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-354 796370 798588 798616 "FFIELDC" 799236 T FFIELDC (NIL) -9 NIL 799612 NIL) (-353 795032 795403 795900 "FFIELDC-" 795905 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-352 794601 794647 794771 "FFHOM" 794974 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-351 792296 792783 793300 "FFF" 794116 NIL FFF (NIL T) -7 NIL NIL NIL) (-350 787916 792038 792139 "FFCGX" 792239 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-349 783540 787648 787755 "FFCGP" 787859 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-348 778725 783267 783375 "FFCG" 783476 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-347 778136 778179 778414 "FFCAT2" 778676 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 759541 768613 768699 "FFCAT" 773864 NIL FFCAT (NIL T T T) -9 NIL 775315 NIL) (-345 754738 755786 757100 "FFCAT-" 758330 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-344 750138 754649 754713 "FF" 754718 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-343 739463 743110 744330 "FEXPR" 748990 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-342 738463 738898 738939 "FEVALAB" 739023 NIL FEVALAB (NIL T) -9 NIL 739284 NIL) (-341 737622 737832 738170 "FEVALAB-" 738175 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-340 734642 735383 735498 "FDIVCAT" 737066 NIL FDIVCAT (NIL T T T T) -9 NIL 737503 NIL) (-339 734404 734431 734601 "FDIVCAT-" 734606 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-338 733624 733711 733988 "FDIV2" 734311 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-337 732190 733007 733210 "FDIV" 733523 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-336 731164 731485 731687 "FCTRDATA" 732008 T FCTRDATA (NIL) -8 NIL NIL NIL) (-335 729850 730109 730398 "FCPAK1" 730895 T FCPAK1 (NIL) -7 NIL NIL NIL) (-334 728949 729350 729491 "FCOMP" 729741 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-333 712654 716099 719637 "FC" 725431 T FC (NIL) -8 NIL NIL NIL) (-332 705019 709045 709085 "FAXF" 710887 NIL FAXF (NIL T) -9 NIL 711579 NIL) (-331 702295 702953 703778 "FAXF-" 704243 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-330 697347 701671 701847 "FARRAY" 702152 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-329 692248 694308 694361 "FAMR" 695384 NIL FAMR (NIL T T) -9 NIL 695844 NIL) (-328 691138 691440 691875 "FAMR-" 691880 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-327 690307 691060 691113 "FAMONOID" 691118 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-326 688093 688803 688856 "FAMONC" 689797 NIL FAMONC (NIL T T) -9 NIL 690183 NIL) (-325 686757 687847 687984 "FAGROUP" 687989 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-324 684552 684871 685274 "FACUTIL" 686438 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-323 683651 683836 684058 "FACTFUNC" 684362 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-322 676075 682954 683153 "EXPUPXS" 683507 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-321 673558 674098 674684 "EXPRTUBE" 675509 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-320 669829 670421 671151 "EXPRODE" 672897 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-319 664383 664970 665776 "EXPR2UPS" 669127 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-318 664015 664072 664181 "EXPR2" 664320 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-317 649561 662664 663093 "EXPR" 663619 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 640977 648714 649004 "EXPEXPAN" 649398 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-315 640457 640701 640792 "EXITAST" 640906 T EXITAST (NIL) -8 NIL NIL NIL) (-314 640257 640414 640443 "EXIT" 640448 T EXIT (NIL) -8 NIL NIL NIL) (-313 639884 639946 640059 "EVALCYC" 640189 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-312 639425 639543 639584 "EVALAB" 639754 NIL EVALAB (NIL T) -9 NIL 639858 NIL) (-311 638906 639028 639249 "EVALAB-" 639254 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-310 636274 637576 637604 "EUCDOM" 638159 T EUCDOM (NIL) -9 NIL 638509 NIL) (-309 634679 635121 635711 "EUCDOM-" 635716 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-308 634311 634368 634477 "ESTOOLS2" 634616 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-307 634062 634104 634184 "ESTOOLS1" 634263 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-306 621600 624360 627110 "ESTOOLS" 631332 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 621345 621377 621459 "ESCONT1" 621562 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-304 617719 618480 619260 "ESCONT" 620585 T ESCONT (NIL) -7 NIL NIL NIL) (-303 617394 617444 617544 "ES2" 617663 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-302 617024 617082 617191 "ES1" 617330 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-301 611061 612669 612697 "ES" 615465 T ES (NIL) -9 NIL 616875 NIL) (-300 606008 607295 609112 "ES-" 609276 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 605224 605353 605529 "ERROR" 605852 T ERROR (NIL) -7 NIL NIL NIL) (-298 598618 605083 605174 "EQTBL" 605179 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-297 598250 598307 598416 "EQ2" 598555 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-296 590753 593564 595013 "EQ" 596834 NIL -3977 (NIL T) -8 NIL NIL NIL) (-295 586043 587091 588184 "EP" 589692 NIL EP (NIL T) -7 NIL NIL NIL) (-294 584643 584934 585240 "ENV" 585757 T ENV (NIL) -8 NIL NIL NIL) (-293 583737 584291 584319 "ENTIRER" 584324 T ENTIRER (NIL) -9 NIL 584370 NIL) (-292 580260 581746 582116 "EMR" 583536 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-291 579404 579589 579643 "ELTAGG" 580023 NIL ELTAGG (NIL T T) -9 NIL 580234 NIL) (-290 579123 579185 579326 "ELTAGG-" 579331 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-289 578912 578941 578995 "ELTAB" 579079 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-288 578038 578184 578383 "ELFUTS" 578763 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-287 577780 577836 577864 "ELEMFUN" 577969 T ELEMFUN (NIL) -9 NIL NIL NIL) (-286 577650 577671 577739 "ELEMFUN-" 577744 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-285 572494 575750 575791 "ELAGG" 576731 NIL ELAGG (NIL T) -9 NIL 577194 NIL) (-284 570779 571213 571876 "ELAGG-" 571881 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-283 570091 570228 570384 "ELABOR" 570643 T ELABOR (NIL) -8 NIL NIL NIL) (-282 568752 569031 569325 "ELABEXPR" 569817 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 561743 563419 564246 "EFUPXS" 568028 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 555320 556994 557804 "EFULS" 561019 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 552805 553163 553635 "EFSTRUC" 554952 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 542596 544162 545710 "EF" 551320 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 541670 542081 542230 "EAB" 542467 T EAB (NIL) -8 NIL NIL NIL) (-276 540852 541629 541657 "E04UCFA" 541662 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 540034 540811 540839 "E04NAFA" 540844 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 539216 539993 540021 "E04MBFA" 540026 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 538398 539175 539203 "E04JAFA" 539208 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 537582 538357 538385 "E04GCFA" 538390 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 536766 537541 537569 "E04FDFA" 537574 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 535948 536725 536753 "E04DGFA" 536758 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 530121 531473 532837 "E04AGNT" 534604 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 528801 529307 529347 "DVARCAT" 529822 NIL DVARCAT (NIL T) -9 NIL 530021 NIL) (-267 528005 528217 528531 "DVARCAT-" 528536 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 521183 527804 527933 "DSMP" 527938 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 520848 520907 521005 "DROPT1" 521118 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-264 515963 517089 518226 "DROPT0" 519731 T DROPT0 (NIL) -7 NIL NIL NIL) (-263 510744 511908 512976 "DROPT" 514915 T DROPT (NIL) -8 NIL NIL NIL) (-262 509089 509414 509800 "DRAWPT" 510378 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 508722 508775 508893 "DRAWHACK" 509030 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-260 507453 507722 508013 "DRAWCX" 508451 T DRAWCX (NIL) -7 NIL NIL NIL) (-259 506968 507037 507188 "DRAWCURV" 507379 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-258 497436 499398 501513 "DRAWCFUN" 504873 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-257 492023 492946 494025 "DRAW" 496410 NIL DRAW (NIL T) -7 NIL NIL NIL) (-256 488787 490716 490757 "DQAGG" 491386 NIL DQAGG (NIL T) -9 NIL 491660 NIL) (-255 476947 483380 483463 "DPOLCAT" 485315 NIL DPOLCAT (NIL T T T T) -9 NIL 485860 NIL) (-254 471834 473166 475107 "DPOLCAT-" 475112 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 464963 471695 471793 "DPMO" 471798 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 457995 464743 464910 "DPMM" 464915 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 457473 457687 457785 "DOMTMPLT" 457917 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 456906 457275 457355 "DOMCTOR" 457413 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 456118 456386 456537 "DOMAIN" 456775 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 450137 455753 455905 "DMP" 456019 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 449737 449793 449937 "DLP" 450075 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 443561 449064 449254 "DLIST" 449579 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 440359 442414 442455 "DLAGG" 443005 NIL DLAGG (NIL T) -9 NIL 443235 NIL) (-244 439035 439699 439727 "DIVRING" 439819 T DIVRING (NIL) -9 NIL 439902 NIL) (-243 438272 438462 438762 "DIVRING-" 438767 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 436374 436731 437137 "DISPLAY" 437886 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 435222 435425 435690 "DIRPROD2" 436167 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-240 429117 435136 435199 "DIRPROD" 435204 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 417899 423898 423951 "DIRPCAT" 424361 NIL DIRPCAT (NIL NIL T) -9 NIL 425201 NIL) (-238 415225 415867 416748 "DIRPCAT-" 417085 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 414512 414672 414858 "DIOSP" 415059 T DIOSP (NIL) -7 NIL NIL NIL) (-236 411167 413424 413465 "DIOPS" 413899 NIL DIOPS (NIL T) -9 NIL 414128 NIL) (-235 410716 410830 411021 "DIOPS-" 411026 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 409539 410167 410195 "DIFRING" 410382 T DIFRING (NIL) -9 NIL 410492 NIL) (-233 409185 409262 409414 "DIFRING-" 409419 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 406921 408193 408234 "DIFEXT" 408597 NIL DIFEXT (NIL T) -9 NIL 408891 NIL) (-231 405206 405634 406300 "DIFEXT-" 406305 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 402481 404738 404779 "DIAGG" 404784 NIL DIAGG (NIL T) -9 NIL 404804 NIL) (-229 401865 402022 402274 "DIAGG-" 402279 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 397281 400824 401101 "DHMATRIX" 401634 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 392893 393802 394812 "DFSFUN" 396291 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 387976 391824 392136 "DFLOAT" 392601 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 386239 386520 386909 "DFINTTLS" 387684 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 383268 384260 384660 "DERHAM" 385905 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 381069 383043 383132 "DEQUEUE" 383212 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 380323 380456 380639 "DEGRED" 380931 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 376933 377633 378434 "DEFINTRF" 379596 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 374600 375041 375605 "DEFINTEF" 376480 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 373950 374220 374335 "DEFAST" 374505 T DEFAST (NIL) -8 NIL NIL NIL) (-218 367975 373545 373694 "DECIMAL" 373821 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 365487 365945 366451 "DDFACT" 367519 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 365083 365126 365277 "DBLRESP" 365438 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 362955 363316 363676 "DBASE" 364850 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 362197 362435 362581 "DATAARY" 362854 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 361303 362156 362184 "D03FAFA" 362189 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 360410 361262 361290 "D03EEFA" 361295 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 358360 358826 359315 "D03AGNT" 359941 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 357649 358319 358347 "D02EJFA" 358352 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 356938 357608 357636 "D02CJFA" 357641 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 356227 356897 356925 "D02BHFA" 356930 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 355516 356186 356214 "D02BBFA" 356219 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 348713 350302 351908 "D02AGNT" 353930 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 346481 347004 347550 "D01WGTS" 348187 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 345548 346440 346468 "D01TRNS" 346473 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 344616 345507 345535 "D01GBFA" 345540 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 343684 344575 344603 "D01FCFA" 344608 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 342752 343643 343671 "D01ASFA" 343676 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 341820 342711 342739 "D01AQFA" 342744 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 340888 341779 341807 "D01APFA" 341812 T D01APFA (NIL) -8 NIL NIL NIL) (-198 339956 340847 340875 "D01ANFA" 340880 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 339024 339915 339943 "D01AMFA" 339948 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 338092 338983 339011 "D01ALFA" 339016 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 337160 338051 338079 "D01AKFA" 338084 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 336228 337119 337147 "D01AJFA" 337152 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 329523 331076 332637 "D01AGNT" 334687 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 328860 328988 329140 "CYCLOTOM" 329391 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 325595 326308 327035 "CYCLES" 328153 T CYCLES (NIL) -7 NIL NIL NIL) (-190 324907 325041 325212 "CVMP" 325456 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 322748 323006 323375 "CTRIGMNP" 324635 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 322257 322479 322580 "CTORKIND" 322667 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 321548 321864 321892 "CTORCAT" 322074 T CTORCAT (NIL) -9 NIL 322187 NIL) (-186 321146 321257 321416 "CTORCAT-" 321421 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 320608 320820 320928 "CTORCALL" 321070 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 320044 320402 320475 "CTOR" 320555 T CTOR (NIL) -8 NIL NIL NIL) (-183 319418 319517 319670 "CSTTOOLS" 319941 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 315217 315874 316632 "CRFP" 318730 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 314692 314938 315030 "CRCEAST" 315145 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 313739 313924 314152 "CRAPACK" 314496 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 313123 313224 313428 "CPMATCH" 313615 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 312848 312876 312982 "CPIMA" 313089 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 309196 309868 310587 "COORDSYS" 312183 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 308608 308729 308871 "CONTOUR" 309074 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 304501 306611 307103 "CONTFRAC" 308148 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 304381 304402 304430 "CONDUIT" 304467 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 303469 304023 304051 "COMRING" 304056 T COMRING (NIL) -9 NIL 304108 NIL) (-172 302523 302827 303011 "COMPPROP" 303305 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 302184 302219 302347 "COMPLPAT" 302482 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 301820 301877 301984 "COMPLEX2" 302121 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 292129 301629 301738 "COMPLEX" 301743 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 291468 291589 291749 "COMPILER" 291989 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291186 291221 291319 "COMPFACT" 291427 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275275 285260 285300 "COMPCAT" 286304 NIL COMPCAT (NIL T) -9 NIL 287652 NIL) (-165 264808 267728 271348 "COMPCAT-" 271704 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264537 264565 264668 "COMMUPC" 264774 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264331 264365 264424 "COMMONOP" 264498 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263907 264135 264210 "COMMAAST" 264276 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263463 263658 263745 "COMM" 263840 T COMM (NIL) -8 NIL NIL NIL) (-160 262712 262906 262934 "COMBOPC" 263272 T COMBOPC (NIL) -9 NIL 263447 NIL) (-159 261608 261818 262060 "COMBINAT" 262502 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258065 258639 259266 "COMBF" 261030 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256823 257181 257416 "COLOR" 257850 T COLOR (NIL) -8 NIL NIL NIL) (-156 256299 256544 256636 "COLONAST" 256751 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255939 255986 256111 "CMPLXRT" 256246 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255387 255639 255738 "CLLCTAST" 255860 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250886 251917 252997 "CLIP" 254327 T CLIP (NIL) -7 NIL NIL NIL) (-152 249232 249992 250231 "CLIF" 250713 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245407 247378 247419 "CLAGG" 248348 NIL CLAGG (NIL T) -9 NIL 248884 NIL) (-150 243829 244286 244869 "CLAGG-" 244874 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243373 243458 243598 "CINTSLPE" 243738 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240874 241345 241893 "CHVAR" 242901 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240048 240602 240630 "CHARZ" 240635 T CHARZ (NIL) -9 NIL 240650 NIL) (-146 239802 239842 239920 "CHARPOL" 240002 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238860 239447 239475 "CHARNZ" 239522 T CHARNZ (NIL) -9 NIL 239578 NIL) (-144 236766 237514 237867 "CHAR" 238527 T CHAR (NIL) -8 NIL NIL NIL) (-143 236492 236553 236581 "CFCAT" 236692 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235737 235848 236030 "CDEN" 236376 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231702 234890 235170 "CCLASS" 235477 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230953 231110 231287 "CATEGORY" 231545 T -10 (NIL) -8 NIL NIL NIL) (-139 230526 230872 230920 "CATCTOR" 230925 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229977 230229 230327 "CATAST" 230448 T CATAST (NIL) -8 NIL NIL NIL) (-137 229453 229698 229790 "CASEAST" 229905 T CASEAST (NIL) -8 NIL NIL NIL) (-136 228561 228709 228930 "CARTEN2" 229300 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223570 224590 225343 "CARTEN" 227864 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 221886 222720 222977 "CARD" 223333 T CARD (NIL) -8 NIL NIL NIL) (-133 221462 221690 221765 "CAPSLAST" 221831 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220966 221174 221202 "CACHSET" 221334 T CACHSET (NIL) -9 NIL 221412 NIL) (-131 220436 220758 220786 "CABMON" 220836 T CABMON (NIL) -9 NIL 220892 NIL) (-130 219909 220140 220250 "BYTEORD" 220346 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 215259 219414 219586 "BYTEBUF" 219757 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214241 214793 214935 "BYTE" 215098 T BYTE (NIL) -8 NIL NIL 215220) (-127 211752 213933 214040 "BTREE" 214167 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209203 211400 211522 "BTOURN" 211662 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206575 208673 208714 "BTCAT" 208782 NIL BTCAT (NIL T) -9 NIL 208859 NIL) (-124 206242 206322 206471 "BTCAT-" 206476 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201507 205385 205413 "BTAGG" 205635 T BTAGG (NIL) -9 NIL 205796 NIL) (-122 200997 201122 201328 "BTAGG-" 201333 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197994 200275 200490 "BSTREE" 200814 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197132 197258 197442 "BRILL" 197850 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193785 195858 195899 "BRAGG" 196548 NIL BRAGG (NIL T) -9 NIL 196806 NIL) (-118 192317 192722 193276 "BRAGG-" 193281 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185567 191663 191847 "BPADICRT" 192165 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183884 185504 185549 "BPADIC" 185554 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183582 183612 183726 "BOUNDZRO" 183848 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 181363 181767 182242 "BOP1" 183140 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 176591 177789 178701 "BOP" 180471 T BOP (NIL) -8 NIL NIL NIL) (-112 175416 176165 176314 "BOOLEAN" 176462 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174695 175099 175153 "BMODULE" 175158 NIL BMODULE (NIL T T) -9 NIL 175223 NIL) (-110 170496 174493 174566 "BITS" 174642 T BITS (NIL) -8 NIL NIL NIL) (-109 169917 170036 170176 "BINDING" 170376 T BINDING (NIL) -8 NIL NIL NIL) (-108 163945 169514 169662 "BINARY" 169789 T BINARY (NIL) -8 NIL NIL NIL) (-107 161725 163200 163241 "BGAGG" 163501 NIL BGAGG (NIL T) -9 NIL 163638 NIL) (-106 161556 161588 161679 "BGAGG-" 161684 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160627 160940 161145 "BFUNCT" 161371 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159311 159492 159780 "BEZOUT" 160451 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155782 158163 158493 "BBTREE" 159014 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155516 155569 155597 "BASTYPE" 155716 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155368 155397 155470 "BASTYPE-" 155475 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154802 154878 155030 "BALFACT" 155279 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153658 154217 154403 "AUTOMOR" 154647 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153384 153389 153415 "ATTREG" 153420 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151636 152081 152433 "ATTRBUT" 153050 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151244 151464 151530 "ATTRAST" 151588 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150780 150893 150919 "ATRIG" 151120 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150589 150630 150717 "ATRIG-" 150722 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150234 150420 150446 "ASTCAT" 150451 T ASTCAT (NIL) -9 NIL 150481 NIL) (-92 149961 150020 150139 "ASTCAT-" 150144 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148110 149737 149825 "ASTACK" 149904 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146615 146912 147277 "ASSOCEQ" 147792 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145669 146274 146398 "ASP9" 146522 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 144559 145274 145416 "ASP80" 145558 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 144322 144507 144546 "ASP8" 144551 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 143298 143999 144117 "ASP78" 144235 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 142289 142978 143095 "ASP77" 143212 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 141223 141927 142058 "ASP74" 142189 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 140145 140858 140990 "ASP73" 141122 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 139065 139780 139912 "ASP7" 140044 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 138191 138891 138991 "ASP6" 138996 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137158 137868 137986 "ASP55" 138104 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136129 136832 136951 "ASP50" 137070 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135239 135830 135940 "ASP49" 136050 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 134045 134778 134946 "ASP42" 135128 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132843 133578 133748 "ASP41" 133932 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131953 132544 132654 "ASP4" 132764 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130925 131630 131748 "ASP35" 131866 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130690 130873 130912 "ASP34" 130917 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130427 130494 130570 "ASP33" 130645 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129342 130062 130194 "ASP31" 130326 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129107 129290 129329 "ASP30" 129334 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128842 128911 128987 "ASP29" 129062 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128607 128790 128829 "ASP28" 128834 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128372 128555 128594 "ASP27" 128599 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127478 128070 128181 "ASP24" 128292 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126576 127280 127392 "ASP20" 127397 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125540 126250 126369 "ASP19" 126488 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 125277 125344 125420 "ASP12" 125495 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 124151 124876 125020 "ASP10" 125164 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 123261 123852 123962 "ASP1" 124072 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 121112 123105 123196 "ARRAY2" 123201 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 120144 120317 120538 "ARRAY12" 120935 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115909 119792 119906 "ARRAY1" 120061 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 110221 112139 112214 "ARR2CAT" 114844 NIL ARR2CAT (NIL T T T) -9 NIL 115602 NIL) (-56 107655 108399 109353 "ARR2CAT-" 109358 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106972 107282 107407 "ARITY" 107548 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106199 "APPRULE" 106808 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104677 104800 104957 "ANY1" 105273 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 104031 104270 104390 "ANY" 104575 T ANY (NIL) -8 NIL NIL NIL) (-50 101561 102468 102795 "ANTISYM" 103755 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101053 101268 101364 "ANON" 101483 T ANON (NIL) -8 NIL NIL NIL) (-48 95311 99592 100046 "AN" 100617 T AN (NIL) -8 NIL NIL NIL) (-47 91209 92597 92648 "AMR" 93396 NIL AMR (NIL T T) -9 NIL 93996 NIL) (-46 90321 90542 90905 "AMR-" 90910 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74766 90238 90299 "ALIST" 90304 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71601 74360 74529 "ALGSC" 74684 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68156 68711 69318 "ALGPKG" 71041 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67433 67534 67718 "ALGMFACT" 68042 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63468 64047 64641 "ALGMANIP" 67017 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54849 63094 63244 "ALGFF" 63401 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54045 54176 54355 "ALGFACT" 54707 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52986 53586 53624 "ALGEBRA" 53629 NIL ALGEBRA (NIL T) -9 NIL 53670 NIL) (-37 52704 52763 52895 "ALGEBRA-" 52900 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34803 50706 50758 "ALAGG" 50894 NIL ALAGG (NIL T T) -9 NIL 51055 NIL) (-35 34339 34452 34478 "AHYP" 34679 T AHYP (NIL) -9 NIL NIL NIL) (-34 33270 33518 33544 "AGG" 34043 T AGG (NIL) -9 NIL 34322 NIL) (-33 32704 32866 33080 "AGG-" 33085 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30510 30933 31338 "AF" 32346 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29990 30235 30325 "ADDAST" 30438 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29258 29517 29673 "ACPLOT" 29852 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18637 26385 26423 "ACFS" 27030 NIL ACFS (NIL T) -9 NIL 27269 NIL) (-28 16664 17154 17916 "ACFS-" 17921 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14711 14737 "ACF" 15616 T ACF (NIL) -9 NIL 16029 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
+((-2383 (((-112) $ $) 67)) (-2789 (((-112) $) NIL)) (-2996 (((-649 |#1|) $) 52)) (-2082 (($ $ (-776)) 46)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1997 (($ $ (-776)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-3863 (($) NIL T CONST)) (-2030 (($ $ $) 70) (($ $ (-824 |#1|)) 56) (($ $ |#1|) 60)) (-4359 (((-3 (-824 |#1|) "failed") $) NIL)) (-3043 (((-824 |#1|) $) NIL)) (-1842 (($ $) 39)) (-3351 (((-3 $ "failed") $) NIL)) (-2111 (((-112) $) NIL)) (-2102 (($ $) NIL)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ (-824 |#1|) |#2|) 38)) (-2008 (($ $) 40)) (-2051 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 12)) (-2130 (((-824 |#1|) $) NIL)) (-2140 (((-824 |#1|) $) 41)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-2041 (($ $ $) 69) (($ $ (-824 |#1|)) 58) (($ $ |#1|) 62)) (-3578 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1808 (((-824 |#1|) $) 35)) (-1820 ((|#2| $) 37)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2091 (((-776) $) 43)) (-2121 (((-112) $) 47)) (-3600 ((|#2| $) NIL)) (-2388 (((-867) $) NIL) (($ (-824 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-569)) NIL)) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-824 |#1|)) NIL)) (-1406 ((|#2| $ $) 76) ((|#2| $ (-824 |#1|)) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 13 T CONST)) (-1796 (($) 19 T CONST)) (-2295 (((-649 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2853 (((-112) $ $) 44)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 28)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-824 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1288 |#1| |#2|) (-13 (-386 |#2| (-824 |#1|)) (-1294 |#1| |#2|)) (-855) (-1055)) (T -1288))
+NIL
+(-13 (-386 |#2| (-824 |#1|)) (-1294 |#1| |#2|))
+((-2616 ((|#3| |#3| (-776)) 30)) (-4367 ((|#3| |#3| (-776)) 36)) (-3066 ((|#3| |#3| |#3| (-776)) 37)))
+(((-1289 |#1| |#2| |#3|) (-10 -7 (-15 -4367 (|#3| |#3| (-776))) (-15 -2616 (|#3| |#3| (-776))) (-15 -3066 (|#3| |#3| |#3| (-776)))) (-13 (-1055) (-722 (-412 (-569)))) (-855) (-1294 |#2| |#1|)) (T -1289))
+((-3066 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))) (-2616 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))) (-4367 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))))
+(-10 -7 (-15 -4367 (|#3| |#3| (-776))) (-15 -2616 (|#3| |#3| (-776))) (-15 -3066 (|#3| |#3| |#3| (-776))))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2996 (((-649 |#1|) $) 47)) (-3798 (((-3 $ "failed") $ $) 20)) (-1997 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-3863 (($) 18 T CONST)) (-2030 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4359 (((-3 (-824 |#1|) "failed") $) 71)) (-3043 (((-824 |#1|) $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2111 (((-112) $) 52)) (-2102 (($ $) 51)) (-2861 (((-112) $) 35)) (-2019 (((-112) $) 57)) (-3236 (($ (-824 |#1|) |#2|) 58)) (-2008 (($ $) 56)) (-2051 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-2130 (((-824 |#1|) $) 68)) (-1324 (($ (-1 |#2| |#2|) $) 48)) (-2041 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2121 (((-112) $) 54)) (-3600 ((|#2| $) 53)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1406 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1290 |#1| |#2|) (-140) (-855) (-1055)) (T -1290))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))) (-1406 (*1 *2 *1 *3) (-12 (-5 *3 (-824 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-2041 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-2041 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2030 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-2030 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1290 *4 *3)) (-4 *3 (-1055)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-2008 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2388 (*1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-2102 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-1997 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)) (-4 *3 (-173)))) (-1997 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-4 *4 (-173)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-649 *3)))))
+(-13 (-1055) (-1287 |t#2|) (-1044 (-824 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2130 ((-824 |t#1|) $)) (-15 -2051 ((-2 (|:| |k| (-824 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1406 (|t#2| $ (-824 |t#1|))) (-15 -1406 (|t#2| $ $)) (-15 -2041 ($ $ |t#1|)) (-15 -2041 ($ $ (-824 |t#1|))) (-15 -2041 ($ $ $)) (-15 -2030 ($ $ |t#1|)) (-15 -2030 ($ $ (-824 |t#1|))) (-15 -2030 ($ $ $)) (-15 -3236 ($ (-824 |t#1|) |t#2|)) (-15 -2019 ((-112) $)) (-15 -2008 ($ $)) (-15 -2388 ($ |t#1|)) (-15 -2121 ((-112) $)) (-15 -3600 (|t#2| $)) (-15 -2111 ((-112) $)) (-15 -2102 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -1997 ($ $ $)) (-15 -1997 ($ $ (-776)))) |%noBranch|) (-15 -1324 ($ (-1 |t#2| |t#2|) $)) (-15 -2996 ((-649 |t#1|) $)) (IF (|has| |t#2| (-6 -4436)) (-6 -4436) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #0#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1287 |#2|) . T))
+((-1978 (((-112) $) 15)) (-1988 (((-112) $) 14)) (-3075 (($ $) 19) (($ $ (-776)) 21)))
+(((-1291 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#1| (-776))) (-15 -3075 (|#1| |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1988 ((-112) |#1|))) (-1292 |#2|) (-367)) (T -1291))
+NIL
+(-10 -8 (-15 -3075 (|#1| |#1| (-776))) (-15 -3075 (|#1| |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1988 ((-112) |#1|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2598 (((-2 (|:| -2591 $) (|:| -4430 $) (|:| |associate| $)) $) 47)) (-2586 (($ $) 46)) (-2564 (((-112) $) 44)) (-1978 (((-112) $) 104)) (-3085 (((-776)) 100)) (-3798 (((-3 $ "failed") $ $) 20)) (-4332 (($ $) 81)) (-2207 (((-423 $) $) 80)) (-4420 (((-112) $ $) 65)) (-3863 (($) 18 T CONST)) (-4359 (((-3 |#1| "failed") $) 111)) (-3043 ((|#1| $) 112)) (-2339 (($ $ $) 61)) (-3351 (((-3 $ "failed") $) 37)) (-2348 (($ $ $) 62)) (-3765 (((-2 (|:| -1406 (-649 $)) (|:| -2290 $)) (-649 $)) 57)) (-2525 (($ $ (-776)) 97 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3848 (((-112) $) 79)) (-4315 (((-838 (-927)) $) 94 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2861 (((-112) $) 35)) (-4391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1798 (($ $ $) 52) (($ (-649 $)) 51)) (-2050 (((-1165) $) 10)) (-1776 (($ $) 78)) (-1969 (((-112) $) 103)) (-3461 (((-1126) $) 11)) (-1547 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1830 (($ $ $) 54) (($ (-649 $)) 53)) (-3699 (((-423 $) $) 82)) (-3096 (((-838 (-927))) 101)) (-4398 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2290 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2374 (((-3 $ "failed") $ $) 48)) (-3753 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4409 (((-776) $) 64)) (-2636 (((-2 (|:| -4273 $) (|:| -2804 $)) $ $) 63)) (-2536 (((-3 (-776) "failed") $ $) 95 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2905 (((-134)) 109)) (-2091 (((-838 (-927)) $) 102)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-1488 (((-3 $ "failed") $) 93 (-2718 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-2574 (((-112) $ $) 45)) (-1988 (((-112) $) 105)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-3075 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2853 (((-112) $ $) 6)) (-2956 (($ $ $) 73) (($ $ |#1|) 108)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1292 |#1|) (-140) (-367)) (T -1292))
+((-1988 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-3096 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-3085 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-776)))) (-3075 (*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-367)) (-4 *2 (-372)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-4 *3 (-372)))))
+(-13 (-367) (-1044 |t#1|) (-1280 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-407)) |%noBranch|) (-15 -1988 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -1969 ((-112) $)) (-15 -2091 ((-838 (-927)) $)) (-15 -3096 ((-838 (-927)))) (-15 -3085 ((-776))) (IF (|has| |t#1| (-372)) (PROGN (-6 (-407)) (-15 -3075 ($ $)) (-15 -3075 ($ $ (-776)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2718 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) -2718 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T) ((-1280 |#1|) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2996 (((-649 |#1|) $) 98)) (-2082 (($ $ (-776)) 102)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1997 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-776)) NIL (|has| |#2| (-173)))) (-3863 (($) NIL T CONST)) (-2030 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-4359 (((-3 (-824 |#1|) "failed") $) NIL) (((-3 (-899 |#1|) "failed") $) NIL)) (-3043 (((-824 |#1|) $) NIL) (((-899 |#1|) $) NIL)) (-1842 (($ $) 101)) (-3351 (((-3 $ "failed") $) NIL)) (-2111 (((-112) $) 90)) (-2102 (($ $) 93)) (-2061 (($ $ $ (-776)) 103)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ (-824 |#1|) |#2|) NIL) (($ (-899 |#1|) |#2|) 29)) (-2008 (($ $) 120)) (-2051 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2130 (((-824 |#1|) $) NIL)) (-2140 (((-824 |#1|) $) NIL)) (-1324 (($ (-1 |#2| |#2|) $) NIL)) (-2041 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-2616 (($ $ (-776)) 113 (|has| |#2| (-722 (-412 (-569)))))) (-3578 (((-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1808 (((-899 |#1|) $) 83)) (-1820 ((|#2| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-4367 (($ $ (-776)) 110 (|has| |#2| (-722 (-412 (-569)))))) (-2091 (((-776) $) 99)) (-2121 (((-112) $) 84)) (-3600 ((|#2| $) 88)) (-2388 (((-867) $) 69) (($ (-569)) NIL) (($ |#2|) 60) (($ (-824 |#1|)) NIL) (($ |#1|) 71) (($ (-899 |#1|)) NIL) (($ (-669 |#1| |#2|)) 48) (((-1288 |#1| |#2|) $) 76) (((-1297 |#1| |#2|) $) 81)) (-3346 (((-649 |#2|) $) NIL)) (-1503 ((|#2| $ (-899 |#1|)) NIL)) (-1406 ((|#2| $ (-824 |#1|)) NIL) ((|#2| $ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 21 T CONST)) (-1796 (($) 28 T CONST)) (-2295 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2072 (((-3 (-669 |#1| |#2|) "failed") $) 119)) (-2853 (((-112) $ $) 77)) (-2946 (($ $) 112) (($ $ $) 111)) (-2935 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-899 |#1|)) NIL)))
+(((-1293 |#1| |#2|) (-13 (-1294 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -2388 ($ (-669 |#1| |#2|))) (-15 -2388 ((-1288 |#1| |#2|) $)) (-15 -2388 ((-1297 |#1| |#2|) $)) (-15 -2072 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2061 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4367 ($ $ (-776))) (-15 -2616 ($ $ (-776)))) |%noBranch|))) (-855) (-173)) (T -1293))
+((-2388 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-1293 *3 *4)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2072 (*1 *2 *1) (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2061 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))) (-2616 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
+(-13 (-1294 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -2388 ($ (-669 |#1| |#2|))) (-15 -2388 ((-1288 |#1| |#2|) $)) (-15 -2388 ((-1297 |#1| |#2|) $)) (-15 -2072 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2061 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4367 ($ $ (-776))) (-15 -2616 ($ $ (-776)))) |%noBranch|)))
+((-2383 (((-112) $ $) 7)) (-2789 (((-112) $) 17)) (-2996 (((-649 |#1|) $) 47)) (-2082 (($ $ (-776)) 80)) (-3798 (((-3 $ "failed") $ $) 20)) (-1997 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-3863 (($) 18 T CONST)) (-2030 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4359 (((-3 (-824 |#1|) "failed") $) 71)) (-3043 (((-824 |#1|) $) 72)) (-3351 (((-3 $ "failed") $) 37)) (-2111 (((-112) $) 52)) (-2102 (($ $) 51)) (-2861 (((-112) $) 35)) (-2019 (((-112) $) 57)) (-3236 (($ (-824 |#1|) |#2|) 58)) (-2008 (($ $) 56)) (-2051 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-2130 (((-824 |#1|) $) 68)) (-2140 (((-824 |#1|) $) 82)) (-1324 (($ (-1 |#2| |#2|) $) 48)) (-2041 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-2050 (((-1165) $) 10)) (-3461 (((-1126) $) 11)) (-2091 (((-776) $) 81)) (-2121 (((-112) $) 54)) (-3600 ((|#2| $) 53)) (-2388 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1406 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3263 (((-776)) 32 T CONST)) (-2040 (((-112) $ $) 9)) (-1786 (($) 19 T CONST)) (-1796 (($) 34 T CONST)) (-2853 (((-112) $ $) 6)) (-2946 (($ $) 23) (($ $ $) 22)) (-2935 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1294 |#1| |#2|) (-140) (-855) (-1055)) (T -1294))
+((-2140 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
+(-13 (-1290 |t#1| |t#2|) (-10 -8 (-15 -2140 ((-824 |t#1|) $)) (-15 -2091 ((-776) $)) (-15 -2082 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #0#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1287 |#2|) . T) ((-1290 |#1| |#2|) . T))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-2996 (((-649 (-1183)) $) NIL)) (-2160 (($ (-1288 (-1183) |#1|)) NIL)) (-2082 (($ $ (-776)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1997 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-776)) NIL (|has| |#1| (-173)))) (-3863 (($) NIL T CONST)) (-2030 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-4359 (((-3 (-824 (-1183)) "failed") $) NIL)) (-3043 (((-824 (-1183)) $) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-2111 (((-112) $) NIL)) (-2102 (($ $) NIL)) (-2861 (((-112) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ (-824 (-1183)) |#1|) NIL)) (-2008 (($ $) NIL)) (-2051 (((-2 (|:| |k| (-824 (-1183))) (|:| |c| |#1|)) $) NIL)) (-2130 (((-824 (-1183)) $) NIL)) (-2140 (((-824 (-1183)) $) NIL)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-2041 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1356 (((-1288 (-1183) |#1|) $) NIL)) (-2091 (((-776) $) NIL)) (-2121 (((-112) $) NIL)) (-3600 ((|#1| $) NIL)) (-2388 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-824 (-1183))) NIL) (($ (-1183)) NIL)) (-1406 ((|#1| $ (-824 (-1183))) NIL) ((|#1| $ $) NIL)) (-3263 (((-776)) NIL T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) NIL T CONST)) (-2151 (((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $) NIL)) (-1796 (($) NIL T CONST)) (-2853 (((-112) $ $) NIL)) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1183) $) NIL)))
+(((-1295 |#1|) (-13 (-1294 (-1183) |#1|) (-10 -8 (-15 -1356 ((-1288 (-1183) |#1|) $)) (-15 -2160 ($ (-1288 (-1183) |#1|))) (-15 -2151 ((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $)))) (-1055)) (T -1295))
+((-1356 (*1 *2 *1) (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1295 *3)) (-4 *3 (-1055)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1295 *3)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-1183)) (|:| |c| (-1295 *3))))) (-5 *1 (-1295 *3)) (-4 *3 (-1055)))))
+(-13 (-1294 (-1183) |#1|) (-10 -8 (-15 -1356 ((-1288 (-1183) |#1|) $)) (-15 -2160 ($ (-1288 (-1183) |#1|))) (-15 -2151 ((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $))))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3863 (($) NIL T CONST)) (-4359 (((-3 |#2| "failed") $) NIL)) (-3043 ((|#2| $) NIL)) (-1842 (($ $) NIL)) (-3351 (((-3 $ "failed") $) 42)) (-2111 (((-112) $) 35)) (-2102 (($ $) 37)) (-2861 (((-112) $) NIL)) (-2933 (((-776) $) NIL)) (-3316 (((-649 $) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ |#2| |#1|) NIL)) (-2130 ((|#2| $) 24)) (-2140 ((|#2| $) 22)) (-1324 (($ (-1 |#1| |#1|) $) NIL)) (-3578 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1808 ((|#2| $) NIL)) (-1820 ((|#1| $) NIL)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-2121 (((-112) $) 32)) (-3600 ((|#1| $) 33)) (-2388 (((-867) $) 65) (($ (-569)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3346 (((-649 |#1|) $) NIL)) (-1503 ((|#1| $ |#2|) NIL)) (-1406 ((|#1| $ |#2|) 28)) (-3263 (((-776)) 14 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 29 T CONST)) (-1796 (($) 11 T CONST)) (-2295 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2853 (((-112) $ $) 30)) (-2956 (($ $ |#1|) 67 (|has| |#1| (-367)))) (-2946 (($ $) NIL) (($ $ $) NIL)) (-2935 (($ $ $) 50)) (** (($ $ (-927)) NIL) (($ $ (-776)) 52)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2394 (((-776) $) 16)))
+(((-1296 |#1| |#2|) (-13 (-1055) (-1287 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2394 ((-776) $)) (-15 -2140 (|#2| $)) (-15 -2130 (|#2| $)) (-15 -1842 ($ $)) (-15 -1406 (|#1| $ |#2|)) (-15 -2121 ((-112) $)) (-15 -3600 (|#1| $)) (-15 -2111 ((-112) $)) (-15 -2102 ($ $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -2956 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4436)) (-6 -4436) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|))) (-1055) (-851)) (T -1296))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-1324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4)) (-4 *4 (-851)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-2140 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-2130 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-1406 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-3600 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-2102 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-851)))))
+(-13 (-1055) (-1287 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2394 ((-776) $)) (-15 -2140 (|#2| $)) (-15 -2130 (|#2| $)) (-15 -1842 ($ $)) (-15 -1406 (|#1| $ |#2|)) (-15 -2121 ((-112) $)) (-15 -3600 (|#1| $)) (-15 -2111 ((-112) $)) (-15 -2102 ($ $)) (-15 -1324 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -2956 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4436)) (-6 -4436) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|)))
+((-2383 (((-112) $ $) 27)) (-2789 (((-112) $) NIL)) (-2996 (((-649 |#1|) $) 132)) (-2160 (($ (-1288 |#1| |#2|)) 50)) (-2082 (($ $ (-776)) 38)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1997 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-776)) 52 (|has| |#2| (-173)))) (-3863 (($) NIL T CONST)) (-2030 (($ $ |#1|) 114) (($ $ (-824 |#1|)) 115) (($ $ $) 26)) (-4359 (((-3 (-824 |#1|) "failed") $) NIL)) (-3043 (((-824 |#1|) $) NIL)) (-3351 (((-3 $ "failed") $) 122)) (-2111 (((-112) $) 117)) (-2102 (($ $) 118)) (-2861 (((-112) $) NIL)) (-2019 (((-112) $) NIL)) (-3236 (($ (-824 |#1|) |#2|) 20)) (-2008 (($ $) NIL)) (-2051 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2130 (((-824 |#1|) $) 123)) (-2140 (((-824 |#1|) $) 126)) (-1324 (($ (-1 |#2| |#2|) $) 131)) (-2041 (($ $ |#1|) 112) (($ $ (-824 |#1|)) 113) (($ $ $) 62)) (-2050 (((-1165) $) NIL)) (-3461 (((-1126) $) NIL)) (-1356 (((-1288 |#1| |#2|) $) 94)) (-2091 (((-776) $) 129)) (-2121 (((-112) $) 81)) (-3600 ((|#2| $) 32)) (-2388 (((-867) $) 73) (($ (-569)) 87) (($ |#2|) 85) (($ (-824 |#1|)) 18) (($ |#1|) 84)) (-1406 ((|#2| $ (-824 |#1|)) 116) ((|#2| $ $) 28)) (-3263 (((-776)) 120 T CONST)) (-2040 (((-112) $ $) NIL)) (-1786 (($) 15 T CONST)) (-2151 (((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1796 (($) 33 T CONST)) (-2853 (((-112) $ $) 14)) (-2946 (($ $) 98) (($ $ $) 101)) (-2935 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) 53) (($ (-569) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1297 |#1| |#2|) (-13 (-1294 |#1| |#2|) (-10 -8 (-15 -1356 ((-1288 |#1| |#2|) $)) (-15 -2160 ($ (-1288 |#1| |#2|))) (-15 -2151 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-855) (-1055)) (T -1297))
+((-1356 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *1 (-1297 *3 *4)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4))))) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
+(-13 (-1294 |#1| |#2|) (-10 -8 (-15 -1356 ((-1288 |#1| |#2|) $)) (-15 -2160 ($ (-1288 |#1| |#2|))) (-15 -2151 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1522 (((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569)) 20) (((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|))) 13)))
+(((-1298 |#1|) (-10 -7 (-15 -1522 ((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|)))) (-15 -1522 ((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569)))) (-1223)) (T -1298))
+((-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 (-1163 *5)) (-649 (-1163 *5)))) (-5 *4 (-569)) (-5 *2 (-649 (-1163 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1223)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-1 (-1163 *4) (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1298 *4)) (-4 *4 (-1223)))))
+(-10 -7 (-15 -1522 ((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|)))) (-15 -1522 ((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569))))
+((-2180 (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 174) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 173) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 172) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 171) (((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-1052 |#1| |#2|)) 156)) (-2169 (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|))) 85) (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112)) 84) (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112)) 83)) (-2207 (((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|)) 73)) (-2189 (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|))) 140) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 139) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 138) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 137) (((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 132)) (-2198 (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|))) 145) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 144) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 143) (((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 142)) (-1384 (((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) 111) (((-1179 (-1030 (-412 |#1|))) (-1179 |#1|)) 102) (((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|))) 109) (((-958 (-1030 (-412 |#1|))) (-958 |#1|)) 107) (((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|))) 33)))
+(((-1299 |#1| |#2| |#3|) (-10 -7 (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-1052 |#1| |#2|))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2207 ((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -1384 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1384 ((-958 (-1030 (-412 |#1|))) (-958 |#1|))) (-15 -1384 ((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1384 ((-1179 (-1030 (-412 |#1|))) (-1179 |#1|))) (-15 -1384 ((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) (-13 (-853) (-310) (-147) (-1028)) (-649 (-1183)) (-649 (-1183))) (T -1299))
+((-1384 (*1 *2 *3) (-12 (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-1179 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183))) (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-2198 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2189 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2189 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2180 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2180 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2180 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-2169 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))))
+(-10 -7 (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2169 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-1052 |#1| |#2|))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2180 ((-649 (-2 (|:| -3557 (-1179 |#1|)) (|:| -1949 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2189 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2198 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2207 ((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -1384 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1384 ((-958 (-1030 (-412 |#1|))) (-958 |#1|))) (-15 -1384 ((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1384 ((-1179 (-1030 (-412 |#1|))) (-1179 |#1|))) (-15 -1384 ((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|))))))
+((-2237 (((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|) 21)) (-2218 (((-112) (-1273 |#1|)) 12)) (-2227 (((-3 (-1273 (-569)) "failed") (-1273 |#1|)) 16)))
+(((-1300 |#1|) (-10 -7 (-15 -2218 ((-112) (-1273 |#1|))) (-15 -2227 ((-3 (-1273 (-569)) "failed") (-1273 |#1|))) (-15 -2237 ((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|))) (-644 (-569))) (T -1300))
+((-2237 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1273 (-412 (-569)))) (-5 *1 (-1300 *4)))) (-2227 (*1 *2 *3) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1273 (-569))) (-5 *1 (-1300 *4)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112)) (-5 *1 (-1300 *4)))))
+(-10 -7 (-15 -2218 ((-112) (-1273 |#1|))) (-15 -2227 ((-3 (-1273 (-569)) "failed") (-1273 |#1|))) (-15 -2237 ((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|)))
+((-2383 (((-112) $ $) NIL)) (-2789 (((-112) $) 11)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3363 (((-776)) 8)) (-3863 (($) NIL T CONST)) (-3351 (((-3 $ "failed") $) 58)) (-3295 (($) 49)) (-2861 (((-112) $) 57)) (-3177 (((-3 $ "failed") $) 40)) (-3348 (((-927) $) 15)) (-2050 (((-1165) $) NIL)) (-2267 (($) 32 T CONST)) (-2114 (($ (-927)) 50)) (-3461 (((-1126) $) NIL)) (-1384 (((-569) $) 13)) (-2388 (((-867) $) 27) (($ (-569)) 24)) (-3263 (((-776)) 9 T CONST)) (-2040 (((-112) $ $) 60)) (-1786 (($) 29 T CONST)) (-1796 (($) 31 T CONST)) (-2853 (((-112) $ $) 38)) (-2946 (($ $) 52) (($ $ $) 47)) (-2935 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) 54)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 44) (($ $ $) 43)))
+(((-1301 |#1|) (-13 (-173) (-372) (-619 (-569)) (-1158)) (-927)) (T -1301))
+NIL
+(-13 (-173) (-372) (-619 (-569)) (-1158))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3226883 3226888 3226893 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3226868 3226873 3226878 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3226853 3226858 3226863 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3226838 3226843 3226848 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1301 3225981 3226713 3226790 "ZMOD" 3226795 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1300 3225091 3225255 3225464 "ZLINDEP" 3225813 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1299 3214391 3216159 3218131 "ZDSOLVE" 3223221 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1298 3213637 3213778 3213967 "YSTREAM" 3214237 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1297 3211411 3212938 3213142 "XRPOLY" 3213480 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1296 3207964 3209282 3209857 "XPR" 3210883 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1295 3205685 3207295 3207499 "XPOLY" 3207795 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1294 3203338 3204706 3204761 "XPOLYC" 3205049 NIL XPOLYC (NIL T T) -9 NIL 3205162 NIL) (-1293 3199714 3201855 3202243 "XPBWPOLY" 3202996 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1292 3195409 3197704 3197746 "XF" 3198367 NIL XF (NIL T) -9 NIL 3198767 NIL) (-1291 3195030 3195118 3195287 "XF-" 3195292 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1290 3190226 3191515 3191570 "XFALG" 3193742 NIL XFALG (NIL T T) -9 NIL 3194531 NIL) (-1289 3189359 3189463 3189668 "XEXPPKG" 3190118 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1288 3187468 3189209 3189305 "XDPOLY" 3189310 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3186275 3186875 3186918 "XALG" 3186923 NIL XALG (NIL T) -9 NIL 3187034 NIL) (-1286 3179717 3184252 3184746 "WUTSET" 3185867 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1285 3177973 3178769 3179092 "WP" 3179528 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1284 3177575 3177795 3177865 "WHILEAST" 3177925 T WHILEAST (NIL) -8 NIL NIL NIL) (-1283 3177047 3177292 3177386 "WHEREAST" 3177503 T WHEREAST (NIL) -8 NIL NIL NIL) (-1282 3175933 3176131 3176426 "WFFINTBS" 3176844 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1281 3173837 3174264 3174726 "WEIER" 3175505 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1280 3172883 3173333 3173375 "VSPACE" 3173511 NIL VSPACE (NIL T) -9 NIL 3173585 NIL) (-1279 3172721 3172748 3172839 "VSPACE-" 3172844 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1278 3172530 3172572 3172640 "VOID" 3172675 T VOID (NIL) -8 NIL NIL NIL) (-1277 3170666 3171025 3171431 "VIEW" 3172146 T VIEW (NIL) -7 NIL NIL NIL) (-1276 3167090 3167729 3168466 "VIEWDEF" 3169951 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1275 3156394 3158638 3160811 "VIEW3D" 3164939 T VIEW3D (NIL) -8 NIL NIL NIL) (-1274 3148645 3150305 3151884 "VIEW2D" 3154837 T VIEW2D (NIL) -8 NIL NIL NIL) (-1273 3143998 3148415 3148507 "VECTOR" 3148588 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1272 3142575 3142834 3143152 "VECTOR2" 3143728 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1271 3136049 3140356 3140399 "VECTCAT" 3141394 NIL VECTCAT (NIL T) -9 NIL 3141981 NIL) (-1270 3135063 3135317 3135707 "VECTCAT-" 3135712 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1269 3134517 3134714 3134834 "VARIABLE" 3134978 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1268 3134450 3134455 3134485 "UTYPE" 3134490 T UTYPE (NIL) -9 NIL NIL NIL) (-1267 3133280 3133434 3133696 "UTSODETL" 3134276 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1266 3130720 3131180 3131704 "UTSODE" 3132821 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1265 3122557 3128346 3128835 "UTS" 3130289 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1264 3113431 3118798 3118841 "UTSCAT" 3119953 NIL UTSCAT (NIL T) -9 NIL 3120711 NIL) (-1263 3110778 3111501 3112490 "UTSCAT-" 3112495 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1262 3110405 3110448 3110581 "UTS2" 3110729 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3104631 3107243 3107286 "URAGG" 3109356 NIL URAGG (NIL T) -9 NIL 3110079 NIL) (-1260 3101570 3102433 3103556 "URAGG-" 3103561 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1259 3097279 3100205 3100670 "UPXSSING" 3101234 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1258 3089345 3096526 3096799 "UPXS" 3097064 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1257 3082418 3089249 3089321 "UPXSCONS" 3089326 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1256 3072163 3078956 3079018 "UPXSCCA" 3079592 NIL UPXSCCA (NIL T T) -9 NIL 3079825 NIL) (-1255 3071801 3071886 3072060 "UPXSCCA-" 3072065 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1254 3061398 3067964 3068007 "UPXSCAT" 3068655 NIL UPXSCAT (NIL T) -9 NIL 3069264 NIL) (-1253 3060828 3060907 3061086 "UPXS2" 3061313 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1252 3059482 3059735 3060086 "UPSQFREE" 3060571 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1251 3052903 3055960 3056015 "UPSCAT" 3057176 NIL UPSCAT (NIL T T) -9 NIL 3057950 NIL) (-1250 3052107 3052314 3052641 "UPSCAT-" 3052646 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1249 3037762 3045530 3045573 "UPOLYC" 3047674 NIL UPOLYC (NIL T) -9 NIL 3048895 NIL) (-1248 3029090 3031516 3034663 "UPOLYC-" 3034668 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1247 3028717 3028760 3028893 "UPOLYC2" 3029041 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1246 3020528 3028400 3028529 "UP" 3028636 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1245 3019867 3019974 3020138 "UPMP" 3020417 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1244 3019420 3019501 3019640 "UPDIVP" 3019780 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1243 3017988 3018237 3018553 "UPDECOMP" 3019169 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1242 3017223 3017335 3017520 "UPCDEN" 3017872 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1241 3016742 3016811 3016960 "UP2" 3017148 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1240 3015209 3015946 3016223 "UNISEG" 3016500 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1239 3014424 3014551 3014756 "UNISEG2" 3015052 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1238 3013484 3013664 3013890 "UNIFACT" 3014240 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1237 2997416 3012661 3012912 "ULS" 3013291 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1236 2985414 2997320 2997392 "ULSCONS" 2997397 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1235 2967433 2979418 2979480 "ULSCCAT" 2980118 NIL ULSCCAT (NIL T T) -9 NIL 2980406 NIL) (-1234 2966483 2966728 2967116 "ULSCCAT-" 2967121 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 2955857 2962337 2962380 "ULSCAT" 2963243 NIL ULSCAT (NIL T) -9 NIL 2963974 NIL) (-1232 2955287 2955366 2955545 "ULS2" 2955772 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1231 2954414 2954924 2955031 "UINT8" 2955142 T UINT8 (NIL) -8 NIL NIL 2955227) (-1230 2953540 2954050 2954157 "UINT64" 2954268 T UINT64 (NIL) -8 NIL NIL 2954353) (-1229 2952666 2953176 2953283 "UINT32" 2953394 T UINT32 (NIL) -8 NIL NIL 2953479) (-1228 2951792 2952302 2952409 "UINT16" 2952520 T UINT16 (NIL) -8 NIL NIL 2952605) (-1227 2950095 2951052 2951082 "UFD" 2951294 T UFD (NIL) -9 NIL 2951408 NIL) (-1226 2949889 2949935 2950030 "UFD-" 2950035 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1225 2948971 2949154 2949370 "UDVO" 2949695 T UDVO (NIL) -7 NIL NIL NIL) (-1224 2946787 2947196 2947667 "UDPO" 2948535 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1223 2946720 2946725 2946755 "TYPE" 2946760 T TYPE (NIL) -9 NIL NIL NIL) (-1222 2946480 2946675 2946706 "TYPEAST" 2946711 T TYPEAST (NIL) -8 NIL NIL NIL) (-1221 2945451 2945653 2945893 "TWOFACT" 2946274 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1220 2944474 2944860 2945095 "TUPLE" 2945251 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1219 2942165 2942684 2943223 "TUBETOOL" 2943957 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1218 2941014 2941219 2941460 "TUBE" 2941958 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1217 2935743 2939986 2940269 "TS" 2940766 NIL TS (NIL T) -8 NIL NIL NIL) (-1216 2924383 2928502 2928599 "TSETCAT" 2933868 NIL TSETCAT (NIL T T T T) -9 NIL 2935399 NIL) (-1215 2919115 2920715 2922606 "TSETCAT-" 2922611 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1214 2913754 2914601 2915530 "TRMANIP" 2918251 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1213 2913195 2913258 2913421 "TRIMAT" 2913686 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1212 2911061 2911298 2911655 "TRIGMNIP" 2912944 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1211 2910581 2910694 2910724 "TRIGCAT" 2910937 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1210 2910250 2910329 2910470 "TRIGCAT-" 2910475 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1209 2907095 2909108 2909389 "TREE" 2910004 NIL TREE (NIL T) -8 NIL NIL NIL) (-1208 2906369 2906897 2906927 "TRANFUN" 2906962 T TRANFUN (NIL) -9 NIL 2907028 NIL) (-1207 2905648 2905839 2906119 "TRANFUN-" 2906124 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1206 2905452 2905484 2905545 "TOPSP" 2905609 T TOPSP (NIL) -7 NIL NIL NIL) (-1205 2904800 2904915 2905069 "TOOLSIGN" 2905333 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1204 2903434 2903977 2904216 "TEXTFILE" 2904583 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1203 2901346 2901887 2902316 "TEX" 2903027 T TEX (NIL) -8 NIL NIL NIL) (-1202 2901127 2901158 2901230 "TEX1" 2901309 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1201 2900775 2900838 2900928 "TEMUTL" 2901059 T TEMUTL (NIL) -7 NIL NIL NIL) (-1200 2898929 2899209 2899534 "TBCMPPK" 2900498 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1199 2890706 2897089 2897145 "TBAGG" 2897545 NIL TBAGG (NIL T T) -9 NIL 2897756 NIL) (-1198 2885776 2887264 2889018 "TBAGG-" 2889023 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1197 2885160 2885267 2885412 "TANEXP" 2885665 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1196 2878550 2885017 2885110 "TABLE" 2885115 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1195 2877962 2878061 2878199 "TABLEAU" 2878447 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1194 2872570 2873790 2875038 "TABLBUMP" 2876748 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1193 2871792 2871939 2872120 "SYSTEM" 2872411 T SYSTEM (NIL) -8 NIL NIL NIL) (-1192 2868251 2868950 2869733 "SYSSOLP" 2871043 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1191 2868049 2868206 2868237 "SYSPTR" 2868242 T SYSPTR (NIL) -8 NIL NIL NIL) (-1190 2867093 2867598 2867717 "SYSNNI" 2867903 NIL SYSNNI (NIL NIL) -8 NIL NIL 2867988) (-1189 2866400 2866859 2866938 "SYSINT" 2866998 NIL SYSINT (NIL NIL) -8 NIL NIL 2867043) (-1188 2862732 2863678 2864388 "SYNTAX" 2865712 T SYNTAX (NIL) -8 NIL NIL NIL) (-1187 2859890 2860492 2861124 "SYMTAB" 2862122 T SYMTAB (NIL) -8 NIL NIL NIL) (-1186 2855139 2856041 2857024 "SYMS" 2858929 T SYMS (NIL) -8 NIL NIL NIL) (-1185 2852374 2854597 2854827 "SYMPOLY" 2854944 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1184 2851891 2851966 2852089 "SYMFUNC" 2852286 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1183 2847911 2849203 2850016 "SYMBOL" 2851100 T SYMBOL (NIL) -8 NIL NIL NIL) (-1182 2841450 2843139 2844859 "SWITCH" 2846213 T SWITCH (NIL) -8 NIL NIL NIL) (-1181 2834684 2840271 2840574 "SUTS" 2841205 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1180 2826750 2833931 2834204 "SUPXS" 2834469 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1179 2818509 2826368 2826494 "SUP" 2826659 NIL SUP (NIL T) -8 NIL NIL NIL) (-1178 2817668 2817795 2818012 "SUPFRACF" 2818377 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1177 2817289 2817348 2817461 "SUP2" 2817603 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1176 2815737 2816011 2816367 "SUMRF" 2816988 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1175 2815072 2815138 2815330 "SUMFS" 2815658 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1174 2799039 2814249 2814500 "SULS" 2814879 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1173 2798641 2798861 2798931 "SUCHTAST" 2798991 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1172 2797936 2798166 2798306 "SUCH" 2798549 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1171 2791802 2792842 2793801 "SUBSPACE" 2797024 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1170 2791232 2791322 2791486 "SUBRESP" 2791690 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1169 2784598 2785897 2787208 "STTF" 2789968 NIL STTF (NIL T) -7 NIL NIL NIL) (-1168 2778771 2779891 2781038 "STTFNC" 2783498 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1167 2770082 2771953 2773747 "STTAYLOR" 2777012 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1166 2763212 2769946 2770029 "STRTBL" 2770034 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1165 2758576 2763167 2763198 "STRING" 2763203 T STRING (NIL) -8 NIL NIL NIL) (-1164 2753437 2757949 2757979 "STRICAT" 2758038 T STRICAT (NIL) -9 NIL 2758100 NIL) (-1163 2746190 2751056 2751667 "STREAM" 2752861 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1162 2745700 2745777 2745921 "STREAM3" 2746107 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1161 2744682 2744865 2745100 "STREAM2" 2745513 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1160 2744370 2744422 2744515 "STREAM1" 2744624 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1159 2743386 2743567 2743798 "STINPROD" 2744186 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1158 2742938 2743148 2743178 "STEP" 2743258 T STEP (NIL) -9 NIL 2743336 NIL) (-1157 2742125 2742427 2742575 "STEPAST" 2742812 T STEPAST (NIL) -8 NIL NIL NIL) (-1156 2735557 2742024 2742101 "STBL" 2742106 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1155 2730683 2734778 2734821 "STAGG" 2734974 NIL STAGG (NIL T) -9 NIL 2735063 NIL) (-1154 2728385 2728987 2729859 "STAGG-" 2729864 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1153 2726532 2728155 2728247 "STACK" 2728328 NIL STACK (NIL T) -8 NIL NIL NIL) (-1152 2719227 2724673 2725129 "SREGSET" 2726162 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1151 2711652 2713021 2714534 "SRDCMPK" 2717833 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1150 2704569 2709092 2709122 "SRAGG" 2710425 T SRAGG (NIL) -9 NIL 2711033 NIL) (-1149 2703586 2703841 2704220 "SRAGG-" 2704225 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1148 2698046 2702533 2702954 "SQMATRIX" 2703212 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1147 2691731 2694764 2695491 "SPLTREE" 2697391 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1146 2687694 2688387 2689033 "SPLNODE" 2691157 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1145 2686741 2686974 2687004 "SPFCAT" 2687448 T SPFCAT (NIL) -9 NIL NIL NIL) (-1144 2685478 2685688 2685952 "SPECOUT" 2686499 T SPECOUT (NIL) -7 NIL NIL NIL) (-1143 2676588 2678460 2678490 "SPADXPT" 2683166 T SPADXPT (NIL) -9 NIL 2685330 NIL) (-1142 2676349 2676389 2676458 "SPADPRSR" 2676541 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1141 2674398 2676304 2676335 "SPADAST" 2676340 T SPADAST (NIL) -8 NIL NIL NIL) (-1140 2666343 2668116 2668159 "SPACEC" 2672532 NIL SPACEC (NIL T) -9 NIL 2674348 NIL) (-1139 2664473 2666275 2666324 "SPACE3" 2666329 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1138 2663225 2663396 2663687 "SORTPAK" 2664278 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1137 2661317 2661620 2662032 "SOLVETRA" 2662889 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1136 2660367 2660589 2660850 "SOLVESER" 2661090 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1135 2655671 2656559 2657554 "SOLVERAD" 2659419 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1134 2651486 2652095 2652824 "SOLVEFOR" 2655038 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1133 2645756 2650835 2650932 "SNTSCAT" 2650937 NIL SNTSCAT (NIL T T T T) -9 NIL 2651007 NIL) (-1132 2639862 2644079 2644470 "SMTS" 2645446 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1131 2634547 2639750 2639827 "SMP" 2639832 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1130 2632706 2633007 2633405 "SMITH" 2634244 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1129 2625419 2629615 2629718 "SMATCAT" 2631069 NIL SMATCAT (NIL NIL T T T) -9 NIL 2631619 NIL) (-1128 2622359 2623182 2624360 "SMATCAT-" 2624365 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1127 2620025 2621595 2621638 "SKAGG" 2621899 NIL SKAGG (NIL T) -9 NIL 2622034 NIL) (-1126 2616336 2619441 2619636 "SINT" 2619823 T SINT (NIL) -8 NIL NIL 2619996) (-1125 2616108 2616146 2616212 "SIMPAN" 2616292 T SIMPAN (NIL) -7 NIL NIL NIL) (-1124 2615387 2615643 2615783 "SIG" 2615990 T SIG (NIL) -8 NIL NIL NIL) (-1123 2614225 2614446 2614721 "SIGNRF" 2615146 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1122 2613058 2613209 2613493 "SIGNEF" 2614054 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1121 2612364 2612641 2612765 "SIGAST" 2612956 T SIGAST (NIL) -8 NIL NIL NIL) (-1120 2610054 2610508 2611014 "SHP" 2611905 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1119 2603906 2609955 2610031 "SHDP" 2610036 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1118 2603479 2603671 2603701 "SGROUP" 2603794 T SGROUP (NIL) -9 NIL 2603856 NIL) (-1117 2603337 2603363 2603436 "SGROUP-" 2603441 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1116 2600172 2600870 2601593 "SGCF" 2602636 T SGCF (NIL) -7 NIL NIL NIL) (-1115 2594540 2599619 2599716 "SFRTCAT" 2599721 NIL SFRTCAT (NIL T T T T) -9 NIL 2599760 NIL) (-1114 2587961 2588979 2590115 "SFRGCD" 2593523 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1113 2581087 2582160 2583346 "SFQCMPK" 2586894 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1112 2580707 2580796 2580907 "SFORT" 2581028 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1111 2579825 2580547 2580668 "SEXOF" 2580673 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1110 2578932 2579706 2579774 "SEX" 2579779 T SEX (NIL) -8 NIL NIL NIL) (-1109 2574445 2575160 2575255 "SEXCAT" 2578192 NIL SEXCAT (NIL T T T T T) -9 NIL 2578770 NIL) (-1108 2571598 2574379 2574427 "SET" 2574432 NIL SET (NIL T) -8 NIL NIL NIL) (-1107 2569822 2570311 2570616 "SETMN" 2571339 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1106 2569318 2569470 2569500 "SETCAT" 2569676 T SETCAT (NIL) -9 NIL 2569786 NIL) (-1105 2569010 2569088 2569218 "SETCAT-" 2569223 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1104 2565371 2567471 2567514 "SETAGG" 2568384 NIL SETAGG (NIL T) -9 NIL 2568724 NIL) (-1103 2564829 2564945 2565182 "SETAGG-" 2565187 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1102 2564272 2564525 2564626 "SEQAST" 2564750 T SEQAST (NIL) -8 NIL NIL NIL) (-1101 2563471 2563765 2563826 "SEGXCAT" 2564112 NIL SEGXCAT (NIL T T) -9 NIL 2564232 NIL) (-1100 2562477 2563137 2563319 "SEG" 2563324 NIL SEG (NIL T) -8 NIL NIL NIL) (-1099 2561456 2561670 2561713 "SEGCAT" 2562235 NIL SEGCAT (NIL T) -9 NIL 2562456 NIL) (-1098 2560388 2560819 2561027 "SEGBIND" 2561283 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1097 2560009 2560068 2560181 "SEGBIND2" 2560323 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1096 2559582 2559810 2559887 "SEGAST" 2559954 T SEGAST (NIL) -8 NIL NIL NIL) (-1095 2558801 2558927 2559131 "SEG2" 2559426 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1094 2558211 2558736 2558783 "SDVAR" 2558788 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1093 2550738 2557981 2558111 "SDPOL" 2558116 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1092 2549331 2549597 2549916 "SCPKG" 2550453 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1091 2548495 2548667 2548859 "SCOPE" 2549161 T SCOPE (NIL) -8 NIL NIL NIL) (-1090 2547715 2547849 2548028 "SCACHE" 2548350 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1089 2547361 2547547 2547577 "SASTCAT" 2547582 T SASTCAT (NIL) -9 NIL 2547595 NIL) (-1088 2546848 2547196 2547272 "SAOS" 2547307 T SAOS (NIL) -8 NIL NIL NIL) (-1087 2546413 2546448 2546621 "SAERFFC" 2546807 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1086 2540352 2546310 2546390 "SAE" 2546395 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1085 2539945 2539980 2540139 "SAEFACT" 2540311 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1084 2538266 2538580 2538981 "RURPK" 2539611 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1083 2536903 2537209 2537514 "RULESET" 2538100 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1082 2534126 2534656 2535114 "RULE" 2536584 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1081 2533738 2533920 2534003 "RULECOLD" 2534078 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1080 2533528 2533556 2533627 "RTVALUE" 2533689 T RTVALUE (NIL) -8 NIL NIL NIL) (-1079 2532999 2533245 2533339 "RSTRCAST" 2533456 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1078 2527847 2528642 2529562 "RSETGCD" 2532198 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1077 2517077 2522156 2522253 "RSETCAT" 2526372 NIL RSETCAT (NIL T T T T) -9 NIL 2527469 NIL) (-1076 2515004 2515543 2516367 "RSETCAT-" 2516372 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1075 2507390 2508766 2510286 "RSDCMPK" 2513603 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1074 2505369 2505836 2505910 "RRCC" 2506996 NIL RRCC (NIL T T) -9 NIL 2507340 NIL) (-1073 2504720 2504894 2505173 "RRCC-" 2505178 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1072 2504163 2504416 2504517 "RPTAST" 2504641 T RPTAST (NIL) -8 NIL NIL NIL) (-1071 2478014 2487371 2487438 "RPOLCAT" 2498102 NIL RPOLCAT (NIL T T T) -9 NIL 2501261 NIL) (-1070 2469512 2471852 2474974 "RPOLCAT-" 2474979 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1069 2460443 2467723 2468205 "ROUTINE" 2469052 T ROUTINE (NIL) -8 NIL NIL NIL) (-1068 2457241 2460069 2460209 "ROMAN" 2460325 T ROMAN (NIL) -8 NIL NIL NIL) (-1067 2455485 2456101 2456361 "ROIRC" 2457046 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1066 2451717 2454001 2454031 "RNS" 2454335 T RNS (NIL) -9 NIL 2454609 NIL) (-1065 2450226 2450609 2451143 "RNS-" 2451218 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1064 2449629 2450037 2450067 "RNG" 2450072 T RNG (NIL) -9 NIL 2450093 NIL) (-1063 2448632 2448994 2449196 "RNGBIND" 2449480 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1062 2448031 2448419 2448462 "RMODULE" 2448467 NIL RMODULE (NIL T) -9 NIL 2448494 NIL) (-1061 2446867 2446961 2447297 "RMCAT2" 2447932 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1060 2443717 2446213 2446510 "RMATRIX" 2446629 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1059 2436544 2438804 2438919 "RMATCAT" 2442278 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2443260 NIL) (-1058 2435919 2436066 2436373 "RMATCAT-" 2436378 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1057 2435320 2435541 2435584 "RLINSET" 2435778 NIL RLINSET (NIL T) -9 NIL 2435869 NIL) (-1056 2434887 2434962 2435090 "RINTERP" 2435239 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1055 2433945 2434499 2434529 "RING" 2434585 T RING (NIL) -9 NIL 2434677 NIL) (-1054 2433737 2433781 2433878 "RING-" 2433883 NIL RING- (NIL T) -8 NIL NIL NIL) (-1053 2432578 2432815 2433073 "RIDIST" 2433501 T RIDIST (NIL) -7 NIL NIL NIL) (-1052 2423867 2432046 2432252 "RGCHAIN" 2432426 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1051 2423217 2423623 2423664 "RGBCSPC" 2423722 NIL RGBCSPC (NIL T) -9 NIL 2423774 NIL) (-1050 2422375 2422756 2422797 "RGBCMDL" 2423029 NIL RGBCMDL (NIL T) -9 NIL 2423143 NIL) (-1049 2419369 2419983 2420653 "RF" 2421739 NIL RF (NIL T) -7 NIL NIL NIL) (-1048 2419015 2419078 2419181 "RFFACTOR" 2419300 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1047 2418740 2418775 2418872 "RFFACT" 2418974 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1046 2416857 2417221 2417603 "RFDIST" 2418380 T RFDIST (NIL) -7 NIL NIL NIL) (-1045 2416310 2416402 2416565 "RETSOL" 2416759 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1044 2415946 2416026 2416069 "RETRACT" 2416202 NIL RETRACT (NIL T) -9 NIL 2416289 NIL) (-1043 2415795 2415820 2415907 "RETRACT-" 2415912 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1042 2415397 2415617 2415687 "RETAST" 2415747 T RETAST (NIL) -8 NIL NIL NIL) (-1041 2408135 2415050 2415177 "RESULT" 2415292 T RESULT (NIL) -8 NIL NIL NIL) (-1040 2406726 2407404 2407603 "RESRING" 2408038 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1039 2406362 2406411 2406509 "RESLATC" 2406663 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1038 2406067 2406102 2406209 "REPSQ" 2406321 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1037 2403489 2404069 2404671 "REP" 2405487 T REP (NIL) -7 NIL NIL NIL) (-1036 2403186 2403221 2403332 "REPDB" 2403448 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1035 2397086 2398475 2399698 "REP2" 2401998 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1034 2393463 2394144 2394952 "REP1" 2396313 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1033 2386159 2391604 2392060 "REGSET" 2393093 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1032 2384924 2385307 2385557 "REF" 2385944 NIL REF (NIL T) -8 NIL NIL NIL) (-1031 2384301 2384404 2384571 "REDORDER" 2384808 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1030 2380269 2383514 2383741 "RECLOS" 2384129 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1029 2379321 2379502 2379717 "REALSOLV" 2380076 T REALSOLV (NIL) -7 NIL NIL NIL) (-1028 2379167 2379208 2379238 "REAL" 2379243 T REAL (NIL) -9 NIL 2379278 NIL) (-1027 2375650 2376452 2377336 "REAL0Q" 2378332 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1026 2371251 2372239 2373300 "REAL0" 2374631 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1025 2370722 2370968 2371062 "RDUCEAST" 2371179 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1024 2370127 2370199 2370406 "RDIV" 2370644 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1023 2369195 2369369 2369582 "RDIST" 2369949 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1022 2367792 2368079 2368451 "RDETRS" 2368903 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1021 2365604 2366058 2366596 "RDETR" 2367334 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1020 2364229 2364507 2364904 "RDEEFS" 2365320 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1019 2362738 2363044 2363469 "RDEEF" 2363917 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1018 2356799 2359719 2359749 "RCFIELD" 2361044 T RCFIELD (NIL) -9 NIL 2361775 NIL) (-1017 2354863 2355367 2356063 "RCFIELD-" 2356138 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1016 2351132 2352964 2353007 "RCAGG" 2354091 NIL RCAGG (NIL T) -9 NIL 2354556 NIL) (-1015 2350760 2350854 2351017 "RCAGG-" 2351022 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1014 2350095 2350207 2350372 "RATRET" 2350644 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1013 2349648 2349715 2349836 "RATFACT" 2350023 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1012 2348956 2349076 2349228 "RANDSRC" 2349518 T RANDSRC (NIL) -7 NIL NIL NIL) (-1011 2348690 2348734 2348807 "RADUTIL" 2348905 T RADUTIL (NIL) -7 NIL NIL NIL) (-1010 2341806 2347523 2347833 "RADIX" 2348414 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1009 2333425 2341648 2341778 "RADFF" 2341783 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1008 2333072 2333147 2333177 "RADCAT" 2333337 T RADCAT (NIL) -9 NIL NIL NIL) (-1007 2332854 2332902 2333002 "RADCAT-" 2333007 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1006 2330952 2332624 2332716 "QUEUE" 2332797 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1005 2327489 2330885 2330933 "QUAT" 2330938 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1004 2327120 2327163 2327294 "QUATCT2" 2327440 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1003 2320569 2323914 2323956 "QUATCAT" 2324747 NIL QUATCAT (NIL T) -9 NIL 2325513 NIL) (-1002 2316708 2317745 2319135 "QUATCAT-" 2319231 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1001 2314173 2315784 2315827 "QUAGG" 2316208 NIL QUAGG (NIL T) -9 NIL 2316383 NIL) (-1000 2313775 2313995 2314065 "QQUTAST" 2314125 T QQUTAST (NIL) -8 NIL NIL NIL) (-999 2312673 2313173 2313345 "QFORM" 2313647 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-998 2303678 2308917 2308957 "QFCAT" 2309615 NIL QFCAT (NIL T) -9 NIL 2310616 NIL) (-997 2299250 2300451 2302042 "QFCAT-" 2302136 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-996 2298888 2298931 2299058 "QFCAT2" 2299201 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-995 2298348 2298458 2298588 "QEQUAT" 2298778 T QEQUAT (NIL) -8 NIL NIL NIL) (-994 2291494 2292567 2293751 "QCMPACK" 2297281 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-993 2289043 2289491 2289919 "QALGSET" 2291149 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-992 2288288 2288462 2288694 "QALGSET2" 2288863 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-991 2286978 2287202 2287519 "PWFFINTB" 2288061 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-990 2285160 2285328 2285682 "PUSHVAR" 2286792 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-989 2281078 2282132 2282173 "PTRANFN" 2284057 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-988 2279480 2279771 2280093 "PTPACK" 2280789 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-987 2279112 2279169 2279278 "PTFUNC2" 2279417 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-986 2273589 2277984 2278025 "PTCAT" 2278321 NIL PTCAT (NIL T) -9 NIL 2278474 NIL) (-985 2273247 2273282 2273406 "PSQFR" 2273548 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-984 2271842 2272140 2272474 "PSEUDLIN" 2272945 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-983 2258605 2260976 2263300 "PSETPK" 2269602 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-982 2251623 2254363 2254459 "PSETCAT" 2257480 NIL PSETCAT (NIL T T T T) -9 NIL 2258294 NIL) (-981 2249459 2250093 2250914 "PSETCAT-" 2250919 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-980 2248808 2248973 2249001 "PSCURVE" 2249269 T PSCURVE (NIL) -9 NIL 2249436 NIL) (-979 2244806 2246322 2246387 "PSCAT" 2247231 NIL PSCAT (NIL T T T) -9 NIL 2247471 NIL) (-978 2243869 2244085 2244485 "PSCAT-" 2244490 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-977 2242574 2243234 2243439 "PRTITION" 2243684 T PRTITION (NIL) -8 NIL NIL NIL) (-976 2242049 2242295 2242387 "PRTDAST" 2242502 T PRTDAST (NIL) -8 NIL NIL NIL) (-975 2231139 2233353 2235541 "PRS" 2239911 NIL PRS (NIL T T) -7 NIL NIL NIL) (-974 2228950 2230489 2230529 "PRQAGG" 2230712 NIL PRQAGG (NIL T) -9 NIL 2230814 NIL) (-973 2228154 2228459 2228487 "PROPLOG" 2228734 T PROPLOG (NIL) -9 NIL 2228900 NIL) (-972 2226335 2226901 2227198 "PROPFRML" 2227890 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-971 2225804 2225911 2226039 "PROPERTY" 2226227 T PROPERTY (NIL) -8 NIL NIL NIL) (-970 2219862 2223970 2224790 "PRODUCT" 2225030 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-969 2217140 2219320 2219554 "PR" 2219673 NIL PR (NIL T T) -8 NIL NIL NIL) (-968 2216936 2216968 2217027 "PRINT" 2217101 T PRINT (NIL) -7 NIL NIL NIL) (-967 2216276 2216393 2216545 "PRIMES" 2216816 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-966 2214341 2214742 2215208 "PRIMELT" 2215855 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-965 2214070 2214119 2214147 "PRIMCAT" 2214271 T PRIMCAT (NIL) -9 NIL NIL NIL) (-964 2210185 2214008 2214053 "PRIMARR" 2214058 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-963 2209192 2209370 2209598 "PRIMARR2" 2210003 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-962 2208835 2208891 2209002 "PREASSOC" 2209130 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-961 2208310 2208443 2208471 "PPCURVE" 2208676 T PPCURVE (NIL) -9 NIL 2208812 NIL) (-960 2207905 2208105 2208188 "PORTNUM" 2208247 T PORTNUM (NIL) -8 NIL NIL NIL) (-959 2205264 2205663 2206255 "POLYROOT" 2207486 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-958 2199446 2204868 2205028 "POLY" 2205137 NIL POLY (NIL T) -8 NIL NIL NIL) (-957 2198829 2198887 2199121 "POLYLIFT" 2199382 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-956 2195104 2195553 2196182 "POLYCATQ" 2198374 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-955 2181816 2186944 2187009 "POLYCAT" 2190523 NIL POLYCAT (NIL T T T) -9 NIL 2192401 NIL) (-954 2175265 2177127 2179511 "POLYCAT-" 2179516 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-953 2174852 2174920 2175040 "POLY2UP" 2175191 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-952 2174484 2174541 2174650 "POLY2" 2174789 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-951 2173169 2173408 2173684 "POLUTIL" 2174258 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-950 2171524 2171801 2172132 "POLTOPOL" 2172891 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-949 2166989 2171460 2171506 "POINT" 2171511 NIL POINT (NIL T) -8 NIL NIL NIL) (-948 2165176 2165533 2165908 "PNTHEORY" 2166634 T PNTHEORY (NIL) -7 NIL NIL NIL) (-947 2163634 2163931 2164330 "PMTOOLS" 2164874 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-946 2163227 2163305 2163422 "PMSYM" 2163550 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-945 2162737 2162806 2162980 "PMQFCAT" 2163152 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-944 2162092 2162202 2162358 "PMPRED" 2162614 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-943 2161485 2161571 2161733 "PMPREDFS" 2161993 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-942 2160149 2160357 2160735 "PMPLCAT" 2161247 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-941 2159681 2159760 2159912 "PMLSAGG" 2160064 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-940 2159154 2159230 2159412 "PMKERNEL" 2159599 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-939 2158771 2158846 2158959 "PMINS" 2159073 NIL PMINS (NIL T) -7 NIL NIL NIL) (-938 2158213 2158282 2158491 "PMFS" 2158696 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-937 2157441 2157559 2157764 "PMDOWN" 2158090 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-936 2156608 2156766 2156947 "PMASS" 2157280 T PMASS (NIL) -7 NIL NIL NIL) (-935 2155881 2155991 2156154 "PMASSFS" 2156495 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-934 2155536 2155604 2155698 "PLOTTOOL" 2155807 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-933 2150143 2151347 2152495 "PLOT" 2154408 T PLOT (NIL) -8 NIL NIL NIL) (-932 2145947 2146991 2147912 "PLOT3D" 2149242 T PLOT3D (NIL) -8 NIL NIL NIL) (-931 2144859 2145036 2145271 "PLOT1" 2145751 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-930 2120248 2124925 2129776 "PLEQN" 2140125 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-929 2119566 2119688 2119868 "PINTERP" 2120113 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-928 2119259 2119306 2119409 "PINTERPA" 2119513 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-927 2118480 2119028 2119115 "PI" 2119155 T PI (NIL) -8 NIL NIL 2119222) (-926 2116777 2117752 2117780 "PID" 2117962 T PID (NIL) -9 NIL 2118096 NIL) (-925 2116528 2116565 2116640 "PICOERCE" 2116734 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-924 2115848 2115987 2116163 "PGROEB" 2116384 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-923 2111435 2112249 2113154 "PGE" 2114963 T PGE (NIL) -7 NIL NIL NIL) (-922 2109558 2109805 2110171 "PGCD" 2111152 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-921 2108896 2108999 2109160 "PFRPAC" 2109442 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-920 2105536 2107444 2107797 "PFR" 2108575 NIL PFR (NIL T) -8 NIL NIL NIL) (-919 2103925 2104169 2104494 "PFOTOOLS" 2105283 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-918 2102458 2102697 2103048 "PFOQ" 2103682 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-917 2100959 2101171 2101527 "PFO" 2102242 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-916 2097512 2100848 2100917 "PF" 2100922 NIL PF (NIL NIL) -8 NIL NIL NIL) (-915 2094846 2096117 2096145 "PFECAT" 2096730 T PFECAT (NIL) -9 NIL 2097114 NIL) (-914 2094291 2094445 2094659 "PFECAT-" 2094664 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-913 2092894 2093146 2093447 "PFBRU" 2094040 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-912 2090760 2091112 2091544 "PFBR" 2092545 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-911 2086642 2088136 2088812 "PERM" 2090117 NIL PERM (NIL T) -8 NIL NIL NIL) (-910 2081876 2082849 2083719 "PERMGRP" 2085805 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-909 2079982 2080939 2080980 "PERMCAT" 2081426 NIL PERMCAT (NIL T) -9 NIL 2081731 NIL) (-908 2079635 2079676 2079800 "PERMAN" 2079935 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-907 2077123 2079300 2079422 "PENDTREE" 2079546 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-906 2075147 2075915 2075956 "PDRING" 2076613 NIL PDRING (NIL T) -9 NIL 2076899 NIL) (-905 2074250 2074468 2074830 "PDRING-" 2074835 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-904 2071465 2072243 2072911 "PDEPROB" 2073602 T PDEPROB (NIL) -8 NIL NIL NIL) (-903 2069010 2069514 2070069 "PDEPACK" 2070930 T PDEPACK (NIL) -7 NIL NIL NIL) (-902 2067922 2068112 2068363 "PDECOMP" 2068809 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-901 2065501 2066344 2066372 "PDECAT" 2067159 T PDECAT (NIL) -9 NIL 2067872 NIL) (-900 2065252 2065285 2065375 "PCOMP" 2065462 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-899 2063430 2064053 2064350 "PBWLB" 2064981 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-898 2055903 2057503 2058841 "PATTERN" 2062113 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-897 2055535 2055592 2055701 "PATTERN2" 2055840 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-896 2053292 2053680 2054137 "PATTERN1" 2055124 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-895 2050660 2051241 2051722 "PATRES" 2052857 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-894 2050224 2050291 2050423 "PATRES2" 2050587 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-893 2048107 2048512 2048919 "PATMATCH" 2049891 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-892 2047617 2047826 2047867 "PATMAB" 2047974 NIL PATMAB (NIL T) -9 NIL 2048057 NIL) (-891 2046135 2046471 2046729 "PATLRES" 2047422 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-890 2045681 2045804 2045845 "PATAB" 2045850 NIL PATAB (NIL T) -9 NIL 2046022 NIL) (-889 2043162 2043694 2044267 "PARTPERM" 2045128 T PARTPERM (NIL) -7 NIL NIL NIL) (-888 2042783 2042846 2042948 "PARSURF" 2043093 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-887 2042415 2042472 2042581 "PARSU2" 2042720 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-886 2042179 2042219 2042286 "PARSER" 2042368 T PARSER (NIL) -7 NIL NIL NIL) (-885 2041800 2041863 2041965 "PARSCURV" 2042110 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-884 2041432 2041489 2041598 "PARSC2" 2041737 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-883 2041071 2041129 2041226 "PARPCURV" 2041368 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-882 2040703 2040760 2040869 "PARPC2" 2041008 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-881 2039764 2040076 2040258 "PARAMAST" 2040541 T PARAMAST (NIL) -8 NIL NIL NIL) (-880 2039284 2039370 2039489 "PAN2EXPR" 2039665 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-879 2038061 2038405 2038633 "PALETTE" 2039076 T PALETTE (NIL) -8 NIL NIL NIL) (-878 2036454 2037066 2037426 "PAIR" 2037747 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-877 2030324 2035713 2035907 "PADICRC" 2036309 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-876 2023553 2029670 2029854 "PADICRAT" 2030172 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-875 2021868 2023490 2023535 "PADIC" 2023540 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-874 2018978 2020542 2020582 "PADICCT" 2021163 NIL PADICCT (NIL NIL) -9 NIL 2021445 NIL) (-873 2017935 2018135 2018403 "PADEPAC" 2018765 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-872 2017147 2017280 2017486 "PADE" 2017797 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-871 2015534 2016355 2016635 "OWP" 2016951 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-870 2015027 2015240 2015337 "OVERSET" 2015457 T OVERSET (NIL) -8 NIL NIL NIL) (-869 2014073 2014632 2014804 "OVAR" 2014895 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-868 2013337 2013458 2013619 "OUT" 2013932 T OUT (NIL) -7 NIL NIL NIL) (-867 2002209 2004446 2006646 "OUTFORM" 2011157 T OUTFORM (NIL) -8 NIL NIL NIL) (-866 2001545 2001806 2001933 "OUTBFILE" 2002102 T OUTBFILE (NIL) -8 NIL NIL NIL) (-865 2000852 2001017 2001045 "OUTBCON" 2001363 T OUTBCON (NIL) -9 NIL 2001529 NIL) (-864 2000453 2000565 2000722 "OUTBCON-" 2000727 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-863 1999833 2000182 2000271 "OSI" 2000384 T OSI (NIL) -8 NIL NIL NIL) (-862 1999363 1999701 1999729 "OSGROUP" 1999734 T OSGROUP (NIL) -9 NIL 1999756 NIL) (-861 1998108 1998335 1998620 "ORTHPOL" 1999110 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-860 1995659 1997943 1998064 "OREUP" 1998069 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-859 1993062 1995350 1995477 "ORESUP" 1995601 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-858 1990590 1991090 1991651 "OREPCTO" 1992551 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-857 1984276 1986477 1986518 "OREPCAT" 1988866 NIL OREPCAT (NIL T) -9 NIL 1989970 NIL) (-856 1981423 1982205 1983263 "OREPCAT-" 1983268 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-855 1980574 1980872 1980900 "ORDSET" 1981209 T ORDSET (NIL) -9 NIL 1981373 NIL) (-854 1980005 1980153 1980377 "ORDSET-" 1980382 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-853 1978570 1979361 1979389 "ORDRING" 1979591 T ORDRING (NIL) -9 NIL 1979716 NIL) (-852 1978215 1978309 1978453 "ORDRING-" 1978458 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-851 1977595 1978058 1978086 "ORDMON" 1978091 T ORDMON (NIL) -9 NIL 1978112 NIL) (-850 1976757 1976904 1977099 "ORDFUNS" 1977444 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-849 1976095 1976514 1976542 "ORDFIN" 1976607 T ORDFIN (NIL) -9 NIL 1976681 NIL) (-848 1972654 1974681 1975090 "ORDCOMP" 1975719 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-847 1971920 1972047 1972233 "ORDCOMP2" 1972514 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-846 1968501 1969411 1970225 "OPTPROB" 1971126 T OPTPROB (NIL) -8 NIL NIL NIL) (-845 1965303 1965942 1966646 "OPTPACK" 1967817 T OPTPACK (NIL) -7 NIL NIL NIL) (-844 1962990 1963756 1963784 "OPTCAT" 1964603 T OPTCAT (NIL) -9 NIL 1965253 NIL) (-843 1962374 1962667 1962772 "OPSIG" 1962905 T OPSIG (NIL) -8 NIL NIL NIL) (-842 1962142 1962181 1962247 "OPQUERY" 1962328 T OPQUERY (NIL) -7 NIL NIL NIL) (-841 1959273 1960453 1960957 "OP" 1961671 NIL OP (NIL T) -8 NIL NIL NIL) (-840 1958647 1958873 1958914 "OPERCAT" 1959126 NIL OPERCAT (NIL T) -9 NIL 1959223 NIL) (-839 1958402 1958458 1958575 "OPERCAT-" 1958580 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-838 1955215 1957199 1957568 "ONECOMP" 1958066 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-837 1954520 1954635 1954809 "ONECOMP2" 1955087 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1953939 1954045 1954175 "OMSERVER" 1954410 T OMSERVER (NIL) -7 NIL NIL NIL) (-835 1950801 1953379 1953419 "OMSAGG" 1953480 NIL OMSAGG (NIL T) -9 NIL 1953544 NIL) (-834 1949424 1949687 1949969 "OMPKG" 1950539 T OMPKG (NIL) -7 NIL NIL NIL) (-833 1948854 1948957 1948985 "OM" 1949284 T OM (NIL) -9 NIL NIL NIL) (-832 1947401 1948403 1948572 "OMLO" 1948735 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-831 1946361 1946508 1946728 "OMEXPR" 1947227 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-830 1945652 1945907 1946043 "OMERR" 1946245 T OMERR (NIL) -8 NIL NIL NIL) (-829 1944803 1945073 1945233 "OMERRK" 1945512 T OMERRK (NIL) -8 NIL NIL NIL) (-828 1944254 1944480 1944588 "OMENC" 1944715 T OMENC (NIL) -8 NIL NIL NIL) (-827 1938149 1939334 1940505 "OMDEV" 1943103 T OMDEV (NIL) -8 NIL NIL NIL) (-826 1937218 1937389 1937583 "OMCONN" 1937975 T OMCONN (NIL) -8 NIL NIL NIL) (-825 1935739 1936715 1936743 "OINTDOM" 1936748 T OINTDOM (NIL) -9 NIL 1936769 NIL) (-824 1933077 1934427 1934764 "OFMONOID" 1935434 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-823 1932488 1933014 1933059 "ODVAR" 1933064 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-822 1929911 1932233 1932388 "ODR" 1932393 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-821 1922492 1929687 1929813 "ODPOL" 1929818 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-820 1916314 1922364 1922469 "ODP" 1922474 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-819 1915080 1915295 1915570 "ODETOOLS" 1916088 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-818 1912047 1912705 1913421 "ODESYS" 1914413 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-817 1906929 1907837 1908862 "ODERTRIC" 1911122 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-816 1906355 1906437 1906631 "ODERED" 1906841 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-815 1903243 1903791 1904468 "ODERAT" 1905778 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-814 1900200 1900667 1901264 "ODEPRRIC" 1902772 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-813 1898143 1898739 1899225 "ODEPROB" 1899734 T ODEPROB (NIL) -8 NIL NIL NIL) (-812 1894663 1895148 1895795 "ODEPRIM" 1897622 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-811 1893912 1894014 1894274 "ODEPAL" 1894555 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-810 1890074 1890865 1891729 "ODEPACK" 1893068 T ODEPACK (NIL) -7 NIL NIL NIL) (-809 1889135 1889242 1889464 "ODEINT" 1889963 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-808 1883236 1884661 1886108 "ODEIFTBL" 1887708 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-807 1878634 1879420 1880372 "ODEEF" 1882395 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-806 1877983 1878072 1878295 "ODECONST" 1878539 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-805 1876108 1876769 1876797 "ODECAT" 1877402 T ODECAT (NIL) -9 NIL 1877933 NIL) (-804 1872963 1875813 1875935 "OCT" 1876018 NIL OCT (NIL T) -8 NIL NIL NIL) (-803 1872601 1872644 1872771 "OCTCT2" 1872914 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-802 1867250 1869685 1869725 "OC" 1870822 NIL OC (NIL T) -9 NIL 1871680 NIL) (-801 1864477 1865225 1866215 "OC-" 1866309 NIL OC- (NIL T T) -8 NIL NIL NIL) (-800 1863829 1864297 1864325 "OCAMON" 1864330 T OCAMON (NIL) -9 NIL 1864351 NIL) (-799 1863360 1863701 1863729 "OASGP" 1863734 T OASGP (NIL) -9 NIL 1863754 NIL) (-798 1862621 1863110 1863138 "OAMONS" 1863178 T OAMONS (NIL) -9 NIL 1863221 NIL) (-797 1862035 1862468 1862496 "OAMON" 1862501 T OAMON (NIL) -9 NIL 1862521 NIL) (-796 1861293 1861811 1861839 "OAGROUP" 1861844 T OAGROUP (NIL) -9 NIL 1861864 NIL) (-795 1860983 1861033 1861121 "NUMTUBE" 1861237 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-794 1854556 1856074 1857610 "NUMQUAD" 1859467 T NUMQUAD (NIL) -7 NIL NIL NIL) (-793 1850312 1851300 1852325 "NUMODE" 1853551 T NUMODE (NIL) -7 NIL NIL NIL) (-792 1847667 1848547 1848575 "NUMINT" 1849498 T NUMINT (NIL) -9 NIL 1850262 NIL) (-791 1846615 1846812 1847030 "NUMFMT" 1847469 T NUMFMT (NIL) -7 NIL NIL NIL) (-790 1832974 1835919 1838451 "NUMERIC" 1844122 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-789 1827344 1832423 1832518 "NTSCAT" 1832523 NIL NTSCAT (NIL T T T T) -9 NIL 1832562 NIL) (-788 1826538 1826703 1826896 "NTPOLFN" 1827183 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-787 1814615 1823363 1824175 "NSUP" 1825759 NIL NSUP (NIL T) -8 NIL NIL NIL) (-786 1814247 1814304 1814413 "NSUP2" 1814552 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-785 1804475 1814021 1814154 "NSMP" 1814159 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-784 1802907 1803208 1803565 "NREP" 1804163 NIL NREP (NIL T) -7 NIL NIL NIL) (-783 1801498 1801750 1802108 "NPCOEF" 1802650 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-782 1800564 1800679 1800895 "NORMRETR" 1801379 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-781 1798605 1798895 1799304 "NORMPK" 1800272 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-780 1798290 1798318 1798442 "NORMMA" 1798571 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-779 1798090 1798247 1798276 "NONE" 1798281 T NONE (NIL) -8 NIL NIL NIL) (-778 1797879 1797908 1797977 "NONE1" 1798054 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-777 1797376 1797438 1797617 "NODE1" 1797811 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-776 1795661 1796512 1796767 "NNI" 1797114 T NNI (NIL) -8 NIL NIL 1797349) (-775 1794081 1794394 1794758 "NLINSOL" 1795329 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-774 1790322 1791317 1792216 "NIPROB" 1793202 T NIPROB (NIL) -8 NIL NIL NIL) (-773 1789079 1789313 1789615 "NFINTBAS" 1790084 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-772 1788253 1788729 1788770 "NETCLT" 1788942 NIL NETCLT (NIL T) -9 NIL 1789024 NIL) (-771 1786961 1787192 1787473 "NCODIV" 1788021 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-770 1786723 1786760 1786835 "NCNTFRAC" 1786918 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-769 1784903 1785267 1785687 "NCEP" 1786348 NIL NCEP (NIL T) -7 NIL NIL NIL) (-768 1783754 1784527 1784555 "NASRING" 1784665 T NASRING (NIL) -9 NIL 1784745 NIL) (-767 1783549 1783593 1783687 "NASRING-" 1783692 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-766 1782656 1783181 1783209 "NARNG" 1783326 T NARNG (NIL) -9 NIL 1783417 NIL) (-765 1782348 1782415 1782549 "NARNG-" 1782554 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-764 1781227 1781434 1781669 "NAGSP" 1782133 T NAGSP (NIL) -7 NIL NIL NIL) (-763 1772499 1774183 1775856 "NAGS" 1779574 T NAGS (NIL) -7 NIL NIL NIL) (-762 1771047 1771355 1771686 "NAGF07" 1772188 T NAGF07 (NIL) -7 NIL NIL NIL) (-761 1765585 1766876 1768183 "NAGF04" 1769760 T NAGF04 (NIL) -7 NIL NIL NIL) (-760 1758553 1760167 1761800 "NAGF02" 1763972 T NAGF02 (NIL) -7 NIL NIL NIL) (-759 1753777 1754877 1755994 "NAGF01" 1757456 T NAGF01 (NIL) -7 NIL NIL NIL) (-758 1747405 1748971 1750556 "NAGE04" 1752212 T NAGE04 (NIL) -7 NIL NIL NIL) (-757 1738574 1740695 1742825 "NAGE02" 1745295 T NAGE02 (NIL) -7 NIL NIL NIL) (-756 1734527 1735474 1736438 "NAGE01" 1737630 T NAGE01 (NIL) -7 NIL NIL NIL) (-755 1732322 1732856 1733414 "NAGD03" 1733989 T NAGD03 (NIL) -7 NIL NIL NIL) (-754 1724072 1726000 1727954 "NAGD02" 1730388 T NAGD02 (NIL) -7 NIL NIL NIL) (-753 1717883 1719308 1720748 "NAGD01" 1722652 T NAGD01 (NIL) -7 NIL NIL NIL) (-752 1714092 1714914 1715751 "NAGC06" 1717066 T NAGC06 (NIL) -7 NIL NIL NIL) (-751 1712557 1712889 1713245 "NAGC05" 1713756 T NAGC05 (NIL) -7 NIL NIL NIL) (-750 1711933 1712052 1712196 "NAGC02" 1712433 T NAGC02 (NIL) -7 NIL NIL NIL) (-749 1710892 1711475 1711515 "NAALG" 1711594 NIL NAALG (NIL T) -9 NIL 1711655 NIL) (-748 1710727 1710756 1710846 "NAALG-" 1710851 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-747 1704677 1705785 1706972 "MULTSQFR" 1709623 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-746 1703996 1704071 1704255 "MULTFACT" 1704589 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-745 1696720 1700633 1700686 "MTSCAT" 1701756 NIL MTSCAT (NIL T T) -9 NIL 1702271 NIL) (-744 1696432 1696486 1696578 "MTHING" 1696660 NIL MTHING (NIL T) -7 NIL NIL NIL) (-743 1696224 1696257 1696317 "MSYSCMD" 1696392 T MSYSCMD (NIL) -7 NIL NIL NIL) (-742 1692306 1694979 1695299 "MSET" 1695937 NIL MSET (NIL T) -8 NIL NIL NIL) (-741 1689375 1691867 1691908 "MSETAGG" 1691913 NIL MSETAGG (NIL T) -9 NIL 1691947 NIL) (-740 1685216 1686754 1687499 "MRING" 1688675 NIL MRING (NIL T T) -8 NIL NIL NIL) (-739 1684782 1684849 1684980 "MRF2" 1685143 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-738 1684400 1684435 1684579 "MRATFAC" 1684741 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-737 1682012 1682307 1682738 "MPRFF" 1684105 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-736 1676309 1681866 1681963 "MPOLY" 1681968 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-735 1675799 1675834 1676042 "MPCPF" 1676268 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-734 1675313 1675356 1675540 "MPC3" 1675750 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1674508 1674589 1674810 "MPC2" 1675228 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-732 1672809 1673146 1673536 "MONOTOOL" 1674168 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-731 1672034 1672351 1672379 "MONOID" 1672598 T MONOID (NIL) -9 NIL 1672745 NIL) (-730 1671580 1671699 1671880 "MONOID-" 1671885 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-729 1662055 1668006 1668065 "MONOGEN" 1668739 NIL MONOGEN (NIL T T) -9 NIL 1669195 NIL) (-728 1659273 1660008 1661008 "MONOGEN-" 1661127 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-727 1658106 1658552 1658580 "MONADWU" 1658972 T MONADWU (NIL) -9 NIL 1659210 NIL) (-726 1657478 1657637 1657885 "MONADWU-" 1657890 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-725 1656837 1657081 1657109 "MONAD" 1657316 T MONAD (NIL) -9 NIL 1657428 NIL) (-724 1656522 1656600 1656732 "MONAD-" 1656737 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-723 1654811 1655435 1655714 "MOEBIUS" 1656275 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-722 1654089 1654493 1654533 "MODULE" 1654538 NIL MODULE (NIL T) -9 NIL 1654577 NIL) (-721 1653657 1653753 1653943 "MODULE-" 1653948 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-720 1651337 1652021 1652348 "MODRING" 1653481 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1648281 1649442 1649963 "MODOP" 1650866 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-718 1646869 1647348 1647625 "MODMONOM" 1648144 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-717 1636911 1645160 1645574 "MODMON" 1646506 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-716 1634067 1635755 1636031 "MODFIELD" 1636786 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1633044 1633348 1633538 "MMLFORM" 1633897 T MMLFORM (NIL) -8 NIL NIL NIL) (-714 1632570 1632613 1632792 "MMAP" 1632995 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-713 1630649 1631416 1631457 "MLO" 1631880 NIL MLO (NIL T) -9 NIL 1632122 NIL) (-712 1628015 1628531 1629133 "MLIFT" 1630130 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-711 1627406 1627490 1627644 "MKUCFUNC" 1627926 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-710 1627005 1627075 1627198 "MKRECORD" 1627329 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-709 1626052 1626214 1626442 "MKFUNC" 1626816 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-708 1625440 1625544 1625700 "MKFLCFN" 1625935 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-707 1624717 1624819 1625004 "MKBCFUNC" 1625333 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-706 1621424 1624271 1624407 "MINT" 1624601 T MINT (NIL) -8 NIL NIL NIL) (-705 1620236 1620479 1620756 "MHROWRED" 1621179 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-704 1615616 1618771 1619176 "MFLOAT" 1619851 T MFLOAT (NIL) -8 NIL NIL NIL) (-703 1614973 1615049 1615220 "MFINFACT" 1615528 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-702 1611288 1612136 1613020 "MESH" 1614109 T MESH (NIL) -7 NIL NIL NIL) (-701 1609678 1609990 1610343 "MDDFACT" 1610975 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-700 1606473 1608837 1608878 "MDAGG" 1609133 NIL MDAGG (NIL T) -9 NIL 1609276 NIL) (-699 1596213 1605766 1605973 "MCMPLX" 1606286 T MCMPLX (NIL) -8 NIL NIL NIL) (-698 1595354 1595500 1595700 "MCDEN" 1596062 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-697 1593244 1593514 1593894 "MCALCFN" 1595084 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-696 1592169 1592409 1592642 "MAYBE" 1593050 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-695 1589781 1590304 1590866 "MATSTOR" 1591640 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-694 1585738 1589153 1589401 "MATRIX" 1589566 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-693 1581502 1582211 1582947 "MATLIN" 1585095 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-692 1571608 1574794 1574871 "MATCAT" 1579751 NIL MATCAT (NIL T T T) -9 NIL 1581168 NIL) (-691 1567964 1568985 1570341 "MATCAT-" 1570346 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-690 1566558 1566711 1567044 "MATCAT2" 1567799 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-689 1564670 1564994 1565378 "MAPPKG3" 1566233 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-688 1563651 1563824 1564046 "MAPPKG2" 1564494 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-687 1562150 1562434 1562761 "MAPPKG1" 1563357 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-686 1561229 1561556 1561733 "MAPPAST" 1561993 T MAPPAST (NIL) -8 NIL NIL NIL) (-685 1560840 1560898 1561021 "MAPHACK3" 1561165 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-684 1560432 1560493 1560607 "MAPHACK2" 1560772 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-683 1559869 1559973 1560115 "MAPHACK1" 1560323 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-682 1557948 1558569 1558873 "MAGMA" 1559597 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-681 1557427 1557672 1557763 "MACROAST" 1557877 T MACROAST (NIL) -8 NIL NIL NIL) (-680 1553845 1555666 1556127 "M3D" 1556999 NIL M3D (NIL T) -8 NIL NIL NIL) (-679 1547951 1552214 1552255 "LZSTAGG" 1553037 NIL LZSTAGG (NIL T) -9 NIL 1553332 NIL) (-678 1543908 1545082 1546539 "LZSTAGG-" 1546544 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-677 1540995 1541799 1542286 "LWORD" 1543453 NIL LWORD (NIL T) -8 NIL NIL NIL) (-676 1540571 1540799 1540874 "LSTAST" 1540940 T LSTAST (NIL) -8 NIL NIL NIL) (-675 1533737 1540342 1540476 "LSQM" 1540481 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-674 1532961 1533100 1533328 "LSPP" 1533592 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-673 1530773 1531074 1531530 "LSMP" 1532650 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-672 1527552 1528226 1528956 "LSMP1" 1530075 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-671 1521429 1526719 1526760 "LSAGG" 1526822 NIL LSAGG (NIL T) -9 NIL 1526900 NIL) (-670 1518124 1519048 1520261 "LSAGG-" 1520266 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-669 1515723 1517268 1517517 "LPOLY" 1517919 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-668 1515305 1515390 1515513 "LPEFRAC" 1515632 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-667 1513626 1514399 1514652 "LO" 1515137 NIL LO (NIL T T T) -8 NIL NIL NIL) (-666 1513278 1513390 1513418 "LOGIC" 1513529 T LOGIC (NIL) -9 NIL 1513610 NIL) (-665 1513140 1513163 1513234 "LOGIC-" 1513239 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-664 1512333 1512473 1512666 "LODOOPS" 1512996 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-663 1509756 1512249 1512315 "LODO" 1512320 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-662 1508294 1508529 1508882 "LODOF" 1509503 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-661 1504512 1506943 1506984 "LODOCAT" 1507422 NIL LODOCAT (NIL T) -9 NIL 1507633 NIL) (-660 1504245 1504303 1504430 "LODOCAT-" 1504435 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-659 1501565 1504086 1504204 "LODO2" 1504209 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-658 1499000 1501502 1501547 "LODO1" 1501552 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-657 1497881 1498046 1498351 "LODEEF" 1498823 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-656 1493120 1496011 1496052 "LNAGG" 1496999 NIL LNAGG (NIL T) -9 NIL 1497443 NIL) (-655 1492267 1492481 1492823 "LNAGG-" 1492828 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-654 1488403 1489192 1489831 "LMOPS" 1491682 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-653 1487806 1488194 1488235 "LMODULE" 1488240 NIL LMODULE (NIL T) -9 NIL 1488266 NIL) (-652 1485004 1487451 1487574 "LMDICT" 1487716 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-651 1484410 1484631 1484672 "LLINSET" 1484863 NIL LLINSET (NIL T) -9 NIL 1484954 NIL) (-650 1484109 1484318 1484378 "LITERAL" 1484383 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-649 1477272 1483043 1483347 "LIST" 1483838 NIL LIST (NIL T) -8 NIL NIL NIL) (-648 1476797 1476871 1477010 "LIST3" 1477192 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-647 1475804 1475982 1476210 "LIST2" 1476615 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-646 1473938 1474250 1474649 "LIST2MAP" 1475451 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-645 1473534 1473771 1473812 "LINSET" 1473817 NIL LINSET (NIL T) -9 NIL 1473851 NIL) (-644 1472195 1472865 1472906 "LINEXP" 1473161 NIL LINEXP (NIL T) -9 NIL 1473310 NIL) (-643 1470842 1471102 1471399 "LINDEP" 1471947 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-642 1467609 1468328 1469105 "LIMITRF" 1470097 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-641 1465912 1466208 1466617 "LIMITPS" 1467304 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-640 1460340 1465423 1465651 "LIE" 1465733 NIL LIE (NIL T T) -8 NIL NIL NIL) (-639 1459288 1459757 1459797 "LIECAT" 1459937 NIL LIECAT (NIL T) -9 NIL 1460088 NIL) (-638 1459129 1459156 1459244 "LIECAT-" 1459249 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-637 1451625 1458578 1458743 "LIB" 1458984 T LIB (NIL) -8 NIL NIL NIL) (-636 1447260 1448143 1449078 "LGROBP" 1450742 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-635 1445258 1445532 1445882 "LF" 1446981 NIL LF (NIL T T) -7 NIL NIL NIL) (-634 1444098 1444790 1444818 "LFCAT" 1445025 T LFCAT (NIL) -9 NIL 1445164 NIL) (-633 1441000 1441630 1442318 "LEXTRIPK" 1443462 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-632 1437744 1438570 1439073 "LEXP" 1440580 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-631 1437220 1437465 1437557 "LETAST" 1437672 T LETAST (NIL) -8 NIL NIL NIL) (-630 1435618 1435931 1436332 "LEADCDET" 1436902 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-629 1434808 1434882 1435111 "LAZM3PK" 1435539 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-628 1429725 1432885 1433423 "LAUPOL" 1434320 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-627 1429304 1429348 1429509 "LAPLACE" 1429675 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-626 1427243 1428405 1428656 "LA" 1429137 NIL LA (NIL T T T) -8 NIL NIL NIL) (-625 1426237 1426821 1426862 "LALG" 1426924 NIL LALG (NIL T) -9 NIL 1426983 NIL) (-624 1425951 1426010 1426146 "LALG-" 1426151 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-623 1425786 1425810 1425851 "KVTFROM" 1425913 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-622 1424709 1425153 1425338 "KTVLOGIC" 1425621 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-621 1424544 1424568 1424609 "KRCFROM" 1424671 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-620 1423448 1423635 1423934 "KOVACIC" 1424344 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-619 1423283 1423307 1423348 "KONVERT" 1423410 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-618 1423118 1423142 1423183 "KOERCE" 1423245 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-617 1420948 1421711 1422088 "KERNEL" 1422774 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-616 1420444 1420525 1420657 "KERNEL2" 1420862 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-615 1414214 1418983 1419037 "KDAGG" 1419414 NIL KDAGG (NIL T T) -9 NIL 1419620 NIL) (-614 1413743 1413867 1414072 "KDAGG-" 1414077 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1406891 1413404 1413559 "KAFILE" 1413621 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-612 1401319 1406402 1406630 "JORDAN" 1406712 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-611 1400698 1400968 1401089 "JOINAST" 1401218 T JOINAST (NIL) -8 NIL NIL NIL) (-610 1400544 1400603 1400658 "JAVACODE" 1400663 T JAVACODE (NIL) -8 NIL NIL NIL) (-609 1396796 1398749 1398803 "IXAGG" 1399732 NIL IXAGG (NIL T T) -9 NIL 1400191 NIL) (-608 1395715 1396021 1396440 "IXAGG-" 1396445 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-607 1391245 1395637 1395696 "IVECTOR" 1395701 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-606 1390011 1390248 1390514 "ITUPLE" 1391012 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-605 1388513 1388690 1388985 "ITRIGMNP" 1389833 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-604 1387258 1387462 1387745 "ITFUN3" 1388289 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-603 1386890 1386947 1387056 "ITFUN2" 1387195 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-602 1386049 1386370 1386544 "ITFORM" 1386736 T ITFORM (NIL) -8 NIL NIL NIL) (-601 1384010 1385069 1385347 "ITAYLOR" 1385804 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-600 1372955 1378147 1379310 "ISUPS" 1382880 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-599 1372059 1372199 1372435 "ISUMP" 1372802 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-598 1367434 1372004 1372045 "ISTRING" 1372050 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-597 1366910 1367155 1367247 "ISAST" 1367362 T ISAST (NIL) -8 NIL NIL NIL) (-596 1366119 1366201 1366417 "IRURPK" 1366824 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-595 1365055 1365256 1365496 "IRSN" 1365899 T IRSN (NIL) -7 NIL NIL NIL) (-594 1363126 1363481 1363910 "IRRF2F" 1364693 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-593 1362873 1362911 1362987 "IRREDFFX" 1363082 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-592 1361488 1361747 1362046 "IROOT" 1362606 NIL IROOT (NIL T) -7 NIL NIL NIL) (-591 1358092 1359172 1359864 "IR" 1360828 NIL IR (NIL T) -8 NIL NIL NIL) (-590 1357297 1357585 1357736 "IRFORM" 1357961 T IRFORM (NIL) -8 NIL NIL NIL) (-589 1354910 1355405 1355971 "IR2" 1356775 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-588 1354010 1354123 1354337 "IR2F" 1354793 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1353801 1353835 1353895 "IPRNTPK" 1353970 T IPRNTPK (NIL) -7 NIL NIL NIL) (-586 1350382 1353690 1353759 "IPF" 1353764 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-585 1348709 1350307 1350364 "IPADIC" 1350369 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-584 1348021 1348269 1348399 "IP4ADDR" 1348599 T IP4ADDR (NIL) -8 NIL NIL NIL) (-583 1347494 1347725 1347835 "IOMODE" 1347931 T IOMODE (NIL) -8 NIL NIL NIL) (-582 1346567 1347091 1347218 "IOBFILE" 1347387 T IOBFILE (NIL) -8 NIL NIL NIL) (-581 1346055 1346471 1346499 "IOBCON" 1346504 T IOBCON (NIL) -9 NIL 1346525 NIL) (-580 1345566 1345624 1345807 "INVLAPLA" 1345991 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-579 1335214 1337568 1339954 "INTTR" 1343230 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-578 1331549 1332291 1333156 "INTTOOLS" 1334399 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-577 1331135 1331226 1331343 "INTSLPE" 1331452 T INTSLPE (NIL) -7 NIL NIL NIL) (-576 1329088 1331058 1331117 "INTRVL" 1331122 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-575 1326690 1327202 1327777 "INTRF" 1328573 NIL INTRF (NIL T) -7 NIL NIL NIL) (-574 1326101 1326198 1326340 "INTRET" 1326588 NIL INTRET (NIL T) -7 NIL NIL NIL) (-573 1324098 1324487 1324957 "INTRAT" 1325709 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-572 1321361 1321944 1322563 "INTPM" 1323583 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-571 1318106 1318705 1319443 "INTPAF" 1320747 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-570 1313285 1314247 1315298 "INTPACK" 1317075 T INTPACK (NIL) -7 NIL NIL NIL) (-569 1310233 1313082 1313191 "INT" 1313196 T INT (NIL) -8 NIL NIL NIL) (-568 1309485 1309637 1309845 "INTHERTR" 1310075 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-567 1308924 1309004 1309192 "INTHERAL" 1309399 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-566 1306770 1307213 1307670 "INTHEORY" 1308487 T INTHEORY (NIL) -7 NIL NIL NIL) (-565 1298176 1299797 1301569 "INTG0" 1305122 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-564 1278749 1283539 1288349 "INTFTBL" 1293386 T INTFTBL (NIL) -8 NIL NIL NIL) (-563 1277998 1278136 1278309 "INTFACT" 1278608 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-562 1275425 1275871 1276428 "INTEF" 1277552 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-561 1273792 1274531 1274559 "INTDOM" 1274860 T INTDOM (NIL) -9 NIL 1275067 NIL) (-560 1273161 1273335 1273577 "INTDOM-" 1273582 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-559 1269549 1271477 1271531 "INTCAT" 1272330 NIL INTCAT (NIL T) -9 NIL 1272651 NIL) (-558 1269021 1269124 1269252 "INTBIT" 1269441 T INTBIT (NIL) -7 NIL NIL NIL) (-557 1267720 1267874 1268181 "INTALG" 1268866 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-556 1267203 1267293 1267450 "INTAF" 1267624 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-555 1260546 1267013 1267153 "INTABL" 1267158 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-554 1259887 1260353 1260418 "INT8" 1260452 T INT8 (NIL) -8 NIL NIL 1260497) (-553 1259227 1259693 1259758 "INT64" 1259792 T INT64 (NIL) -8 NIL NIL 1259837) (-552 1258567 1259033 1259098 "INT32" 1259132 T INT32 (NIL) -8 NIL NIL 1259177) (-551 1257907 1258373 1258438 "INT16" 1258472 T INT16 (NIL) -8 NIL NIL 1258517) (-550 1252817 1255530 1255558 "INS" 1256492 T INS (NIL) -9 NIL 1257157 NIL) (-549 1250057 1250828 1251802 "INS-" 1251875 NIL INS- (NIL T) -8 NIL NIL NIL) (-548 1248832 1249059 1249357 "INPSIGN" 1249810 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-547 1247950 1248067 1248264 "INPRODPF" 1248712 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-546 1246844 1246961 1247198 "INPRODFF" 1247830 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-545 1245844 1245996 1246256 "INNMFACT" 1246680 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-544 1245041 1245138 1245326 "INMODGCD" 1245743 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-543 1243549 1243794 1244118 "INFSP" 1244786 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-542 1242733 1242850 1243033 "INFPROD0" 1243429 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-541 1239588 1240798 1241313 "INFORM" 1242226 T INFORM (NIL) -8 NIL NIL NIL) (-540 1239198 1239258 1239356 "INFORM1" 1239523 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-539 1238721 1238810 1238924 "INFINITY" 1239104 T INFINITY (NIL) -7 NIL NIL NIL) (-538 1237897 1238441 1238542 "INETCLTS" 1238640 T INETCLTS (NIL) -8 NIL NIL NIL) (-537 1236513 1236763 1237084 "INEP" 1237645 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-536 1235762 1236410 1236475 "INDE" 1236480 NIL INDE (NIL T) -8 NIL NIL NIL) (-535 1235326 1235394 1235511 "INCRMAPS" 1235689 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-534 1234144 1234595 1234801 "INBFILE" 1235140 T INBFILE (NIL) -8 NIL NIL NIL) (-533 1229444 1230380 1231324 "INBFF" 1233232 NIL INBFF (NIL T) -7 NIL NIL NIL) (-532 1228352 1228621 1228649 "INBCON" 1229162 T INBCON (NIL) -9 NIL 1229428 NIL) (-531 1227604 1227827 1228103 "INBCON-" 1228108 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-530 1227083 1227328 1227419 "INAST" 1227533 T INAST (NIL) -8 NIL NIL NIL) (-529 1226510 1226762 1226868 "IMPTAST" 1226997 T IMPTAST (NIL) -8 NIL NIL NIL) (-528 1222956 1226354 1226458 "IMATRIX" 1226463 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-527 1221668 1221791 1222106 "IMATQF" 1222812 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-526 1219888 1220115 1220452 "IMATLIN" 1221424 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-525 1214466 1219812 1219870 "ILIST" 1219875 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-524 1212371 1214326 1214439 "IIARRAY2" 1214444 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-523 1207769 1212282 1212346 "IFF" 1212351 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-522 1207116 1207386 1207502 "IFAST" 1207673 T IFAST (NIL) -8 NIL NIL NIL) (-521 1202111 1206408 1206596 "IFARRAY" 1206973 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-520 1201291 1202015 1202088 "IFAMON" 1202093 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-519 1200875 1200940 1200994 "IEVALAB" 1201201 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-518 1200550 1200618 1200778 "IEVALAB-" 1200783 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-517 1200181 1200464 1200527 "IDPO" 1200532 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-516 1199431 1200070 1200145 "IDPOAMS" 1200150 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-515 1198738 1199320 1199395 "IDPOAM" 1199400 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-514 1197797 1198073 1198126 "IDPC" 1198539 NIL IDPC (NIL T T) -9 NIL 1198688 NIL) (-513 1197266 1197689 1197762 "IDPAM" 1197767 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-512 1196642 1197158 1197231 "IDPAG" 1197236 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-511 1196287 1196478 1196553 "IDENT" 1196587 T IDENT (NIL) -8 NIL NIL NIL) (-510 1192542 1193390 1194285 "IDECOMP" 1195444 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-509 1185380 1186465 1187512 "IDEAL" 1191578 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-508 1184544 1184656 1184855 "ICDEN" 1185264 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-507 1183615 1184024 1184171 "ICARD" 1184417 T ICARD (NIL) -8 NIL NIL NIL) (-506 1181675 1181988 1182393 "IBPTOOLS" 1183292 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-505 1177282 1181295 1181408 "IBITS" 1181594 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-504 1174005 1174581 1175276 "IBATOOL" 1176699 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-503 1171784 1172246 1172779 "IBACHIN" 1173540 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-502 1169613 1171630 1171733 "IARRAY2" 1171738 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-501 1165719 1169539 1169596 "IARRAY1" 1169601 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-500 1159828 1164131 1164612 "IAN" 1165258 T IAN (NIL) -8 NIL NIL NIL) (-499 1159339 1159396 1159569 "IALGFACT" 1159765 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-498 1158867 1158980 1159008 "HYPCAT" 1159215 T HYPCAT (NIL) -9 NIL NIL NIL) (-497 1158405 1158522 1158708 "HYPCAT-" 1158713 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-496 1158000 1158200 1158283 "HOSTNAME" 1158342 T HOSTNAME (NIL) -8 NIL NIL NIL) (-495 1157845 1157882 1157923 "HOMOTOP" 1157928 NIL HOMOTOP (NIL T) -9 NIL 1157961 NIL) (-494 1154477 1155855 1155896 "HOAGG" 1156877 NIL HOAGG (NIL T) -9 NIL 1157556 NIL) (-493 1153071 1153470 1153996 "HOAGG-" 1154001 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-492 1147075 1152666 1152815 "HEXADEC" 1152942 T HEXADEC (NIL) -8 NIL NIL NIL) (-491 1145823 1146045 1146308 "HEUGCD" 1146852 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-490 1144899 1145660 1145790 "HELLFDIV" 1145795 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-489 1143078 1144676 1144764 "HEAP" 1144843 NIL HEAP (NIL T) -8 NIL NIL NIL) (-488 1142341 1142630 1142764 "HEADAST" 1142964 T HEADAST (NIL) -8 NIL NIL NIL) (-487 1136207 1142256 1142318 "HDP" 1142323 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-486 1130195 1135842 1135994 "HDMP" 1136108 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-485 1129519 1129659 1129823 "HB" 1130051 T HB (NIL) -7 NIL NIL NIL) (-484 1122905 1129365 1129469 "HASHTBL" 1129474 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-483 1122381 1122626 1122718 "HASAST" 1122833 T HASAST (NIL) -8 NIL NIL NIL) (-482 1120159 1122003 1122185 "HACKPI" 1122219 T HACKPI (NIL) -8 NIL NIL NIL) (-481 1115827 1120012 1120125 "GTSET" 1120130 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-480 1109242 1115705 1115803 "GSTBL" 1115808 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-479 1101520 1108273 1108538 "GSERIES" 1109033 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-478 1100661 1101078 1101106 "GROUP" 1101309 T GROUP (NIL) -9 NIL 1101443 NIL) (-477 1100027 1100186 1100437 "GROUP-" 1100442 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-476 1098394 1098715 1099102 "GROEBSOL" 1099704 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-475 1097308 1097596 1097647 "GRMOD" 1098176 NIL GRMOD (NIL T T) -9 NIL 1098344 NIL) (-474 1097076 1097112 1097240 "GRMOD-" 1097245 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-473 1092366 1093430 1094430 "GRIMAGE" 1096096 T GRIMAGE (NIL) -8 NIL NIL NIL) (-472 1090832 1091093 1091417 "GRDEF" 1092062 T GRDEF (NIL) -7 NIL NIL NIL) (-471 1090276 1090392 1090533 "GRAY" 1090711 T GRAY (NIL) -7 NIL NIL NIL) (-470 1089463 1089869 1089920 "GRALG" 1090073 NIL GRALG (NIL T T) -9 NIL 1090166 NIL) (-469 1089124 1089197 1089360 "GRALG-" 1089365 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-468 1085901 1088709 1088887 "GPOLSET" 1089031 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-467 1085255 1085312 1085570 "GOSPER" 1085838 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-466 1080987 1081693 1082219 "GMODPOL" 1084954 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-465 1079992 1080176 1080414 "GHENSEL" 1080799 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-464 1074148 1074991 1076011 "GENUPS" 1079076 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-463 1073845 1073896 1073985 "GENUFACT" 1074091 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-462 1073257 1073334 1073499 "GENPGCD" 1073763 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-461 1072731 1072766 1072979 "GENMFACT" 1073216 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-460 1071297 1071554 1071861 "GENEEZ" 1072474 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-459 1065443 1070908 1071070 "GDMP" 1071220 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-458 1054785 1059214 1060320 "GCNAALG" 1064426 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-457 1053112 1053974 1054002 "GCDDOM" 1054257 T GCDDOM (NIL) -9 NIL 1054414 NIL) (-456 1052582 1052709 1052924 "GCDDOM-" 1052929 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-455 1051254 1051439 1051743 "GB" 1052361 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-454 1039870 1042200 1044592 "GBINTERN" 1048945 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-453 1037707 1037999 1038420 "GBF" 1039545 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-452 1036488 1036653 1036920 "GBEUCLID" 1037523 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-451 1035837 1035962 1036111 "GAUSSFAC" 1036359 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-450 1034204 1034506 1034820 "GALUTIL" 1035556 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-449 1032512 1032786 1033110 "GALPOLYU" 1033931 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-448 1029877 1030167 1030574 "GALFACTU" 1032209 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-447 1021682 1023182 1024790 "GALFACT" 1028309 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-446 1019070 1019728 1019756 "FVFUN" 1020912 T FVFUN (NIL) -9 NIL 1021632 NIL) (-445 1018336 1018518 1018546 "FVC" 1018837 T FVC (NIL) -9 NIL 1019020 NIL) (-444 1017979 1018161 1018229 "FUNDESC" 1018288 T FUNDESC (NIL) -8 NIL NIL NIL) (-443 1017594 1017776 1017857 "FUNCTION" 1017931 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-442 1015338 1015916 1016382 "FT" 1017148 T FT (NIL) -8 NIL NIL NIL) (-441 1014129 1014639 1014842 "FTEM" 1015155 T FTEM (NIL) -8 NIL NIL NIL) (-440 1012420 1012709 1013106 "FSUPFACT" 1013820 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-439 1010817 1011106 1011438 "FST" 1012108 T FST (NIL) -8 NIL NIL NIL) (-438 1010016 1010122 1010310 "FSRED" 1010699 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-437 1008715 1008971 1009318 "FSPRMELT" 1009731 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-436 1006021 1006459 1006945 "FSPECF" 1008278 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-435 987659 995990 996031 "FS" 999915 NIL FS (NIL T) -9 NIL 1002204 NIL) (-434 976302 979295 983352 "FS-" 983652 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 975830 975884 976054 "FSINT" 976243 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 974122 974823 975126 "FSERIES" 975609 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 973164 973280 973504 "FSCINT" 974002 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 969372 972108 972149 "FSAGG" 972519 NIL FSAGG (NIL T) -9 NIL 972778 NIL) (-429 967134 967735 968531 "FSAGG-" 968626 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-428 966176 966319 966546 "FSAGG2" 966987 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-427 963858 964138 964685 "FS2UPS" 965894 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 963492 963535 963664 "FS2" 963809 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-425 962370 962541 962843 "FS2EXPXP" 963317 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-424 961796 961911 962063 "FRUTIL" 962250 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-423 953209 957291 958649 "FR" 960470 NIL FR (NIL T) -8 NIL NIL NIL) (-422 948178 950852 950892 "FRNAALG" 952288 NIL FRNAALG (NIL T) -9 NIL 952895 NIL) (-421 943851 944927 946202 "FRNAALG-" 946952 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-420 943489 943532 943659 "FRNAAF2" 943802 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-419 941869 942343 942638 "FRMOD" 943301 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-418 939620 940252 940569 "FRIDEAL" 941660 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-417 938815 938902 939191 "FRIDEAL2" 939527 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 937948 938362 938403 "FRETRCT" 938408 NIL FRETRCT (NIL T) -9 NIL 938584 NIL) (-415 937060 937291 937642 "FRETRCT-" 937647 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-414 934148 935358 935417 "FRAMALG" 936299 NIL FRAMALG (NIL T T) -9 NIL 936591 NIL) (-413 932282 932737 933367 "FRAMALG-" 933590 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-412 926203 931757 932033 "FRAC" 932038 NIL FRAC (NIL T) -8 NIL NIL NIL) (-411 925839 925896 926003 "FRAC2" 926140 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 925475 925532 925639 "FR2" 925776 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-409 919988 922881 922909 "FPS" 924028 T FPS (NIL) -9 NIL 924585 NIL) (-408 919437 919546 919710 "FPS-" 919856 NIL FPS- (NIL T) -8 NIL NIL NIL) (-407 916739 918408 918436 "FPC" 918661 T FPC (NIL) -9 NIL 918803 NIL) (-406 916532 916572 916669 "FPC-" 916674 NIL FPC- (NIL T) -8 NIL NIL NIL) (-405 915322 916020 916061 "FPATMAB" 916066 NIL FPATMAB (NIL T) -9 NIL 916218 NIL) (-404 912995 913498 913924 "FPARFRAC" 914959 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-403 908389 908887 909569 "FORTRAN" 912427 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-402 906105 906605 907144 "FORT" 907870 T FORT (NIL) -7 NIL NIL NIL) (-401 903781 904343 904371 "FORTFN" 905431 T FORTFN (NIL) -9 NIL 906055 NIL) (-400 903545 903595 903623 "FORTCAT" 903682 T FORTCAT (NIL) -9 NIL 903744 NIL) (-399 901651 902161 902551 "FORMULA" 903175 T FORMULA (NIL) -8 NIL NIL NIL) (-398 901439 901469 901538 "FORMULA1" 901615 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-397 900962 901014 901187 "FORDER" 901381 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-396 900058 900222 900415 "FOP" 900789 T FOP (NIL) -7 NIL NIL NIL) (-395 898639 899338 899512 "FNLA" 899940 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-394 897368 897783 897811 "FNCAT" 898271 T FNCAT (NIL) -9 NIL 898531 NIL) (-393 896907 897327 897355 "FNAME" 897360 T FNAME (NIL) -8 NIL NIL NIL) (-392 895470 896433 896461 "FMTC" 896466 T FMTC (NIL) -9 NIL 896502 NIL) (-391 894216 895406 895452 "FMONOID" 895457 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-390 891044 892212 892253 "FMONCAT" 893470 NIL FMONCAT (NIL T) -9 NIL 894075 NIL) (-389 890236 890786 890935 "FM" 890940 NIL FM (NIL T T) -8 NIL NIL NIL) (-388 887660 888306 888334 "FMFUN" 889478 T FMFUN (NIL) -9 NIL 890186 NIL) (-387 886929 887110 887138 "FMC" 887428 T FMC (NIL) -9 NIL 887610 NIL) (-386 884008 884868 884922 "FMCAT" 886117 NIL FMCAT (NIL T T) -9 NIL 886612 NIL) (-385 882874 883774 883874 "FM1" 883953 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-384 880648 881064 881558 "FLOATRP" 882425 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-383 874222 878377 878998 "FLOAT" 880047 T FLOAT (NIL) -8 NIL NIL NIL) (-382 871660 872160 872738 "FLOATCP" 873689 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-381 870400 871238 871279 "FLINEXP" 871284 NIL FLINEXP (NIL T) -9 NIL 871377 NIL) (-380 869554 869789 870117 "FLINEXP-" 870122 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-379 868630 868774 868998 "FLASORT" 869406 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-378 865746 866614 866666 "FLALG" 867893 NIL FLALG (NIL T T) -9 NIL 868360 NIL) (-377 859482 863232 863273 "FLAGG" 864535 NIL FLAGG (NIL T) -9 NIL 865187 NIL) (-376 858208 858547 859037 "FLAGG-" 859042 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-375 857250 857393 857620 "FLAGG2" 858061 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 854101 855109 855168 "FINRALG" 856296 NIL FINRALG (NIL T T) -9 NIL 856804 NIL) (-373 853261 853490 853829 "FINRALG-" 853834 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-372 852641 852880 852908 "FINITE" 853104 T FINITE (NIL) -9 NIL 853211 NIL) (-371 844998 847185 847225 "FINAALG" 850892 NIL FINAALG (NIL T) -9 NIL 852345 NIL) (-370 840330 841380 842524 "FINAALG-" 843903 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-369 839698 840085 840188 "FILE" 840260 NIL FILE (NIL T) -8 NIL NIL NIL) (-368 838356 838694 838748 "FILECAT" 839432 NIL FILECAT (NIL T T) -9 NIL 839648 NIL) (-367 836072 837600 837628 "FIELD" 837668 T FIELD (NIL) -9 NIL 837748 NIL) (-366 834692 835077 835588 "FIELD-" 835593 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-365 832542 833327 833674 "FGROUP" 834378 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-364 831632 831796 832016 "FGLMICPK" 832374 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-363 827464 831557 831614 "FFX" 831619 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-362 827065 827126 827261 "FFSLPE" 827397 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-361 823055 823837 824633 "FFPOLY" 826301 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-360 822559 822595 822804 "FFPOLY2" 823013 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-359 818403 822478 822541 "FFP" 822546 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-358 813801 818314 818378 "FF" 818383 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-357 808927 813144 813334 "FFNBX" 813655 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-356 803855 808062 808320 "FFNBP" 808781 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-355 798488 803139 803350 "FFNB" 803688 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-354 797320 797518 797833 "FFINTBAS" 798285 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-353 793389 795609 795637 "FFIELDC" 796257 T FFIELDC (NIL) -9 NIL 796633 NIL) (-352 792051 792422 792919 "FFIELDC-" 792924 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-351 791620 791666 791790 "FFHOM" 791993 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-350 789315 789802 790319 "FFF" 791135 NIL FFF (NIL T) -7 NIL NIL NIL) (-349 784933 789057 789158 "FFCGX" 789258 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-348 780555 784665 784772 "FFCGP" 784876 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-347 775738 780282 780390 "FFCG" 780491 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-346 757134 766215 766301 "FFCAT" 771466 NIL FFCAT (NIL T T T) -9 NIL 772917 NIL) (-345 752331 753379 754693 "FFCAT-" 755923 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-344 751742 751785 752020 "FFCAT2" 752282 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 741065 744714 745934 "FEXPR" 750594 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-342 740065 740500 740541 "FEVALAB" 740625 NIL FEVALAB (NIL T) -9 NIL 740886 NIL) (-341 739224 739434 739772 "FEVALAB-" 739777 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-340 737790 738607 738810 "FDIV" 739123 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-339 734810 735551 735666 "FDIVCAT" 737234 NIL FDIVCAT (NIL T T T T) -9 NIL 737671 NIL) (-338 734572 734599 734769 "FDIVCAT-" 734774 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-337 733792 733879 734156 "FDIV2" 734479 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-336 732766 733087 733289 "FCTRDATA" 733610 T FCTRDATA (NIL) -8 NIL NIL NIL) (-335 731452 731711 732000 "FCPAK1" 732497 T FCPAK1 (NIL) -7 NIL NIL NIL) (-334 730551 730952 731093 "FCOMP" 731343 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-333 714256 717701 721239 "FC" 727033 T FC (NIL) -8 NIL NIL NIL) (-332 706619 710647 710687 "FAXF" 712489 NIL FAXF (NIL T) -9 NIL 713181 NIL) (-331 703895 704553 705378 "FAXF-" 705843 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-330 698947 703271 703447 "FARRAY" 703752 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-329 693841 695908 695961 "FAMR" 696984 NIL FAMR (NIL T T) -9 NIL 697444 NIL) (-328 692731 693033 693468 "FAMR-" 693473 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-327 691900 692653 692706 "FAMONOID" 692711 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-326 689686 690396 690449 "FAMONC" 691390 NIL FAMONC (NIL T T) -9 NIL 691776 NIL) (-325 688350 689440 689577 "FAGROUP" 689582 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-324 686145 686464 686867 "FACUTIL" 688031 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-323 685244 685429 685651 "FACTFUNC" 685955 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-322 677666 684547 684746 "EXPUPXS" 685100 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-321 675149 675689 676275 "EXPRTUBE" 677100 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-320 671420 672012 672742 "EXPRODE" 674488 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-319 656905 670069 670498 "EXPR" 671024 NIL EXPR (NIL T) -8 NIL NIL NIL) (-318 651459 652046 652852 "EXPR2UPS" 656203 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-317 651091 651148 651257 "EXPR2" 651396 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-316 642481 650244 650534 "EXPEXPAN" 650928 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-315 642281 642438 642467 "EXIT" 642472 T EXIT (NIL) -8 NIL NIL NIL) (-314 641761 642005 642096 "EXITAST" 642210 T EXITAST (NIL) -8 NIL NIL NIL) (-313 641388 641450 641563 "EVALCYC" 641693 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-312 640929 641047 641088 "EVALAB" 641258 NIL EVALAB (NIL T) -9 NIL 641362 NIL) (-311 640410 640532 640753 "EVALAB-" 640758 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-310 637778 639080 639108 "EUCDOM" 639663 T EUCDOM (NIL) -9 NIL 640013 NIL) (-309 636183 636625 637215 "EUCDOM-" 637220 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-308 623721 626481 629231 "ESTOOLS" 633453 T ESTOOLS (NIL) -7 NIL NIL NIL) (-307 623353 623410 623519 "ESTOOLS2" 623658 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-306 623104 623146 623226 "ESTOOLS1" 623305 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-305 617141 618749 618777 "ES" 621545 T ES (NIL) -9 NIL 622955 NIL) (-304 612088 613375 615192 "ES-" 615356 NIL ES- (NIL T) -8 NIL NIL NIL) (-303 608462 609223 610003 "ESCONT" 611328 T ESCONT (NIL) -7 NIL NIL NIL) (-302 608207 608239 608321 "ESCONT1" 608424 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-301 607882 607932 608032 "ES2" 608151 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 607512 607570 607679 "ES1" 607818 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 606728 606857 607033 "ERROR" 607356 T ERROR (NIL) -7 NIL NIL NIL) (-298 600120 606587 606678 "EQTBL" 606683 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-297 592623 595434 596883 "EQ" 598704 NIL -2071 (NIL T) -8 NIL NIL NIL) (-296 592255 592312 592421 "EQ2" 592560 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-295 587545 588593 589686 "EP" 591194 NIL EP (NIL T) -7 NIL NIL NIL) (-294 586145 586436 586742 "ENV" 587259 T ENV (NIL) -8 NIL NIL NIL) (-293 585239 585793 585821 "ENTIRER" 585826 T ENTIRER (NIL) -9 NIL 585872 NIL) (-292 581706 583194 583564 "EMR" 585038 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-291 580850 581035 581089 "ELTAGG" 581469 NIL ELTAGG (NIL T T) -9 NIL 581680 NIL) (-290 580569 580631 580772 "ELTAGG-" 580777 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-289 580358 580387 580441 "ELTAB" 580525 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-288 579484 579630 579829 "ELFUTS" 580209 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-287 579226 579282 579310 "ELEMFUN" 579415 T ELEMFUN (NIL) -9 NIL NIL NIL) (-286 579096 579117 579185 "ELEMFUN-" 579190 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-285 573940 577196 577237 "ELAGG" 578177 NIL ELAGG (NIL T) -9 NIL 578640 NIL) (-284 572225 572659 573322 "ELAGG-" 573327 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-283 571537 571674 571830 "ELABOR" 572089 T ELABOR (NIL) -8 NIL NIL NIL) (-282 570198 570477 570771 "ELABEXPR" 571263 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 563062 564865 565692 "EFUPXS" 569474 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 556512 558313 559123 "EFULS" 562338 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 553997 554355 554827 "EFSTRUC" 556144 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 543788 545354 546902 "EF" 552512 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 542862 543273 543422 "EAB" 543659 T EAB (NIL) -8 NIL NIL NIL) (-276 542044 542821 542849 "E04UCFA" 542854 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 541226 542003 542031 "E04NAFA" 542036 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 540408 541185 541213 "E04MBFA" 541218 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 539590 540367 540395 "E04JAFA" 540400 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 538774 539549 539577 "E04GCFA" 539582 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 537958 538733 538761 "E04FDFA" 538766 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 537140 537917 537945 "E04DGFA" 537950 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 531313 532665 534029 "E04AGNT" 535796 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 529993 530499 530539 "DVARCAT" 531014 NIL DVARCAT (NIL T) -9 NIL 531213 NIL) (-267 529197 529409 529723 "DVARCAT-" 529728 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 522334 528996 529125 "DSMP" 529130 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 517115 518279 519347 "DROPT" 521286 T DROPT (NIL) -8 NIL NIL NIL) (-264 516780 516839 516937 "DROPT1" 517050 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 511895 513021 514158 "DROPT0" 515663 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510240 510565 510951 "DRAWPT" 511529 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 504827 505750 506829 "DRAW" 509214 NIL DRAW (NIL T) -7 NIL NIL NIL) (-260 504460 504513 504631 "DRAWHACK" 504768 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 503191 503460 503751 "DRAWCX" 504189 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 502706 502775 502926 "DRAWCURV" 503117 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 493174 495136 497251 "DRAWCFUN" 500611 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 489938 491867 491908 "DQAGG" 492537 NIL DQAGG (NIL T) -9 NIL 492811 NIL) (-255 478062 484531 484614 "DPOLCAT" 486466 NIL DPOLCAT (NIL T T T T) -9 NIL 487011 NIL) (-254 472898 474247 476205 "DPOLCAT-" 476210 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 466020 472759 472857 "DPMO" 472862 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 459045 465800 465967 "DPMM" 465972 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 458523 458737 458835 "DOMTMPLT" 458967 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 457956 458325 458405 "DOMCTOR" 458463 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 457168 457436 457587 "DOMAIN" 457825 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 451156 456803 456955 "DMP" 457069 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 450756 450812 450956 "DLP" 451094 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 444578 450083 450273 "DLIST" 450598 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 441375 443431 443472 "DLAGG" 444022 NIL DLAGG (NIL T) -9 NIL 444252 NIL) (-244 440051 440715 440743 "DIVRING" 440835 T DIVRING (NIL) -9 NIL 440918 NIL) (-243 439288 439478 439778 "DIVRING-" 439783 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 437390 437747 438153 "DISPLAY" 438902 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 431278 437304 437367 "DIRPROD" 437372 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-240 430126 430329 430594 "DIRPROD2" 431071 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 418901 424907 424960 "DIRPCAT" 425370 NIL DIRPCAT (NIL NIL T) -9 NIL 426210 NIL) (-238 416227 416869 417750 "DIRPCAT-" 418087 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 415514 415674 415860 "DIOSP" 416061 T DIOSP (NIL) -7 NIL NIL NIL) (-236 412169 414426 414467 "DIOPS" 414901 NIL DIOPS (NIL T) -9 NIL 415130 NIL) (-235 411718 411832 412023 "DIOPS-" 412028 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 410541 411169 411197 "DIFRING" 411384 T DIFRING (NIL) -9 NIL 411494 NIL) (-233 410187 410264 410416 "DIFRING-" 410421 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 407923 409195 409236 "DIFEXT" 409599 NIL DIFEXT (NIL T) -9 NIL 409893 NIL) (-231 406208 406636 407302 "DIFEXT-" 407307 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 403483 405740 405781 "DIAGG" 405786 NIL DIAGG (NIL T) -9 NIL 405806 NIL) (-229 402867 403024 403276 "DIAGG-" 403281 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 398284 401826 402103 "DHMATRIX" 402636 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 393896 394805 395815 "DFSFUN" 397294 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 388975 392827 393139 "DFLOAT" 393604 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 387238 387519 387908 "DFINTTLS" 388683 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 384267 385259 385659 "DERHAM" 386904 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 382068 384042 384131 "DEQUEUE" 384211 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 381322 381455 381638 "DEGRED" 381930 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 377752 378497 379343 "DEFINTRF" 380550 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 375307 375776 376368 "DEFINTEF" 377271 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 374657 374927 375042 "DEFAST" 375212 T DEFAST (NIL) -8 NIL NIL NIL) (-218 368661 374252 374401 "DECIMAL" 374528 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 366173 366631 367137 "DDFACT" 368205 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 365769 365812 365963 "DBLRESP" 366124 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 363641 364002 364362 "DBASE" 365536 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 362883 363121 363267 "DATAARY" 363540 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 361989 362842 362870 "D03FAFA" 362875 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 361096 361948 361976 "D03EEFA" 361981 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 359046 359512 360001 "D03AGNT" 360627 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 358335 359005 359033 "D02EJFA" 359038 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 357624 358294 358322 "D02CJFA" 358327 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 356913 357583 357611 "D02BHFA" 357616 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 356202 356872 356900 "D02BBFA" 356905 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 349399 350988 352594 "D02AGNT" 354616 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 347167 347690 348236 "D01WGTS" 348873 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 346234 347126 347154 "D01TRNS" 347159 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 345302 346193 346221 "D01GBFA" 346226 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 344370 345261 345289 "D01FCFA" 345294 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 343438 344329 344357 "D01ASFA" 344362 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 342506 343397 343425 "D01AQFA" 343430 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 341574 342465 342493 "D01APFA" 342498 T D01APFA (NIL) -8 NIL NIL NIL) (-198 340642 341533 341561 "D01ANFA" 341566 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 339710 340601 340629 "D01AMFA" 340634 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 338778 339669 339697 "D01ALFA" 339702 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 337846 338737 338765 "D01AKFA" 338770 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 336914 337805 337833 "D01AJFA" 337838 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 330209 331762 333323 "D01AGNT" 335373 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 329546 329674 329826 "CYCLOTOM" 330077 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 326281 326994 327721 "CYCLES" 328839 T CYCLES (NIL) -7 NIL NIL NIL) (-190 325593 325727 325898 "CVMP" 326142 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 323434 323692 324061 "CTRIGMNP" 325321 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 322870 323228 323301 "CTOR" 323381 T CTOR (NIL) -8 NIL NIL NIL) (-187 322379 322601 322702 "CTORKIND" 322789 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 321670 321986 322014 "CTORCAT" 322196 T CTORCAT (NIL) -9 NIL 322309 NIL) (-185 321268 321379 321538 "CTORCAT-" 321543 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 320730 320942 321050 "CTORCALL" 321192 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 320104 320203 320356 "CSTTOOLS" 320627 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 315903 316560 317318 "CRFP" 319416 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 315378 315624 315716 "CRCEAST" 315831 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 314425 314610 314838 "CRAPACK" 315182 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 313809 313910 314114 "CPMATCH" 314301 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 313534 313562 313668 "CPIMA" 313775 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 309882 310554 311273 "COORDSYS" 312869 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 309294 309415 309557 "CONTOUR" 309760 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 305185 307297 307789 "CONTFRAC" 308834 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 305065 305086 305114 "CONDUIT" 305151 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 304153 304707 304735 "COMRING" 304740 T COMRING (NIL) -9 NIL 304792 NIL) (-172 303207 303511 303695 "COMPPROP" 303989 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 302868 302903 303031 "COMPLPAT" 303166 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 293159 302677 302786 "COMPLEX" 302791 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-169 292795 292852 292959 "COMPLEX2" 293096 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 292134 292255 292415 "COMPILER" 292655 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291852 291887 291985 "COMPFACT" 292093 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275932 285926 285966 "COMPCAT" 286970 NIL COMPCAT (NIL T) -9 NIL 288318 NIL) (-165 265444 268371 271998 "COMPCAT-" 272354 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265173 265201 265304 "COMMUPC" 265410 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264967 265001 265060 "COMMONOP" 265134 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264523 264718 264805 "COMM" 264900 T COMM (NIL) -8 NIL NIL NIL) (-161 264099 264327 264402 "COMMAAST" 264468 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263348 263542 263570 "COMBOPC" 263908 T COMBOPC (NIL) -9 NIL 264083 NIL) (-159 262244 262454 262696 "COMBINAT" 263138 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258701 259275 259902 "COMBF" 261666 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257459 257817 258052 "COLOR" 258486 T COLOR (NIL) -8 NIL NIL NIL) (-156 256935 257180 257272 "COLONAST" 257387 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256575 256622 256747 "CMPLXRT" 256882 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256023 256275 256374 "CLLCTAST" 256496 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251522 252553 253633 "CLIP" 254963 T CLIP (NIL) -7 NIL NIL NIL) (-152 249868 250628 250867 "CLIF" 251349 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246043 248014 248055 "CLAGG" 248984 NIL CLAGG (NIL T) -9 NIL 249520 NIL) (-150 244465 244922 245505 "CLAGG-" 245510 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244009 244094 244234 "CINTSLPE" 244374 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241510 241981 242529 "CHVAR" 243537 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240684 241238 241266 "CHARZ" 241271 T CHARZ (NIL) -9 NIL 241286 NIL) (-146 240438 240478 240556 "CHARPOL" 240638 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239496 240083 240111 "CHARNZ" 240158 T CHARNZ (NIL) -9 NIL 240214 NIL) (-144 237402 238150 238503 "CHAR" 239163 T CHAR (NIL) -8 NIL NIL NIL) (-143 237128 237189 237217 "CFCAT" 237328 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236373 236484 236666 "CDEN" 237012 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232338 235526 235806 "CCLASS" 236113 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231589 231746 231923 "CATEGORY" 232181 T -10 (NIL) -8 NIL NIL NIL) (-139 231162 231508 231556 "CATCTOR" 231561 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230613 230865 230963 "CATAST" 231084 T CATAST (NIL) -8 NIL NIL NIL) (-137 230089 230334 230426 "CASEAST" 230541 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225098 226118 226871 "CARTEN" 229392 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224206 224354 224575 "CARTEN2" 224945 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222522 223356 223613 "CARD" 223969 T CARD (NIL) -8 NIL NIL NIL) (-133 222098 222326 222401 "CAPSLAST" 222467 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221602 221810 221838 "CACHSET" 221970 T CACHSET (NIL) -9 NIL 222048 NIL) (-131 221072 221394 221422 "CABMON" 221472 T CABMON (NIL) -9 NIL 221528 NIL) (-130 220545 220776 220886 "BYTEORD" 220982 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219527 220079 220221 "BYTE" 220384 T BYTE (NIL) -8 NIL NIL 220506) (-128 214877 219032 219204 "BYTEBUF" 219375 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212386 214569 214676 "BTREE" 214803 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209835 212034 212156 "BTOURN" 212296 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207205 209305 209346 "BTCAT" 209414 NIL BTCAT (NIL T) -9 NIL 209491 NIL) (-124 206872 206952 207101 "BTCAT-" 207106 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202137 206015 206043 "BTAGG" 206265 T BTAGG (NIL) -9 NIL 206426 NIL) (-122 201627 201752 201958 "BTAGG-" 201963 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198622 200905 201120 "BSTREE" 201444 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197760 197886 198070 "BRILL" 198478 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194412 196486 196527 "BRAGG" 197176 NIL BRAGG (NIL T) -9 NIL 197434 NIL) (-118 192941 193347 193902 "BRAGG-" 193907 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186170 192287 192471 "BPADICRT" 192789 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184485 186107 186152 "BPADIC" 186157 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184183 184213 184327 "BOUNDZRO" 184449 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179411 180609 181521 "BOP" 183291 T BOP (NIL) -8 NIL NIL NIL) (-113 177192 177596 178071 "BOP1" 178969 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176017 176766 176915 "BOOLEAN" 177063 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175296 175700 175754 "BMODULE" 175759 NIL BMODULE (NIL T T) -9 NIL 175824 NIL) (-110 171097 175094 175167 "BITS" 175243 T BITS (NIL) -8 NIL NIL NIL) (-109 170518 170637 170777 "BINDING" 170977 T BINDING (NIL) -8 NIL NIL NIL) (-108 164525 170115 170263 "BINARY" 170390 T BINARY (NIL) -8 NIL NIL NIL) (-107 162305 163780 163821 "BGAGG" 164081 NIL BGAGG (NIL T) -9 NIL 164218 NIL) (-106 162136 162168 162259 "BGAGG-" 162264 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161207 161520 161725 "BFUNCT" 161951 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159897 160075 160363 "BEZOUT" 161031 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156366 158749 159079 "BBTREE" 159600 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156100 156153 156181 "BASTYPE" 156300 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155952 155981 156054 "BASTYPE-" 156059 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155386 155462 155614 "BALFACT" 155863 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154242 154801 154987 "AUTOMOR" 155231 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153968 153973 153999 "ATTREG" 154004 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152220 152665 153017 "ATTRBUT" 153634 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151828 152048 152114 "ATTRAST" 152172 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151364 151477 151503 "ATRIG" 151704 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151173 151214 151301 "ATRIG-" 151306 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150818 151004 151030 "ASTCAT" 151035 T ASTCAT (NIL) -9 NIL 151065 NIL) (-92 150545 150604 150723 "ASTCAT-" 150728 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148694 150321 150409 "ASTACK" 150488 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147199 147496 147861 "ASSOCEQ" 148376 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146231 146858 146982 "ASP9" 147106 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145994 146179 146218 "ASP8" 146223 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144862 145599 145741 "ASP80" 145883 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143760 144497 144629 "ASP7" 144761 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142714 143437 143555 "ASP78" 143673 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141683 142394 142511 "ASP77" 142628 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140595 141321 141452 "ASP74" 141583 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139495 140230 140362 "ASP73" 140494 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138599 139321 139421 "ASP6" 139426 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137544 138276 138394 "ASP55" 138512 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136493 137218 137337 "ASP50" 137456 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135581 136194 136304 "ASP4" 136414 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134669 135282 135392 "ASP49" 135502 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133453 134208 134376 "ASP42" 134558 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132229 132986 133156 "ASP41" 133340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131179 131906 132024 "ASP35" 132142 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130944 131127 131166 "ASP34" 131171 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130681 130748 130824 "ASP33" 130899 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129574 130316 130448 "ASP31" 130580 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129339 129522 129561 "ASP30" 129566 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129074 129143 129219 "ASP29" 129294 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128839 129022 129061 "ASP28" 129066 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128604 128787 128826 "ASP27" 128831 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127688 128302 128413 "ASP24" 128524 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126764 127490 127602 "ASP20" 127607 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125852 126465 126575 "ASP1" 126685 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124794 125526 125645 "ASP19" 125764 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124531 124598 124674 "ASP12" 124749 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123383 124130 124274 "ASP10" 124418 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121234 123227 123318 "ARRAY2" 123323 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116999 120882 120996 "ARRAY1" 121151 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116031 116204 116425 "ARRAY12" 116822 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110343 112261 112336 "ARR2CAT" 114966 NIL ARR2CAT (NIL T T T) -9 NIL 115724 NIL) (-56 107777 108521 109475 "ARR2CAT-" 109480 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107094 107404 107529 "ARITY" 107670 T ARITY (NIL) -8 NIL NIL NIL) (-54 105870 106022 106321 "APPRULE" 106930 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105521 105569 105688 "APPLYORE" 105816 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104875 105114 105234 "ANY" 105419 T ANY (NIL) -8 NIL NIL NIL) (-51 104153 104276 104433 "ANY1" 104749 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101683 102590 102917 "ANTISYM" 103877 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101175 101390 101486 "ANON" 101605 T ANON (NIL) -8 NIL NIL NIL) (-48 95424 99714 100168 "AN" 100739 T AN (NIL) -8 NIL NIL NIL) (-47 91322 92710 92761 "AMR" 93509 NIL AMR (NIL T T) -9 NIL 94109 NIL) (-46 90434 90655 91018 "AMR-" 91023 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74873 90351 90412 "ALIST" 90417 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74467 74636 "ALGSC" 74791 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 614feeea..5bd5381b 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,11788 +1,14571 @@
-(724846 . 3477490101)
+(733159 . 3477887509)
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539))))
+ ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1106)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551)))
- (-5 *2 (-1272 (-412 (-551)))) (-5 *1 (-1300 *4)))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-909 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-666))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551)))
- (-5 *2 (-1272 (-551))) (-5 *1 (-1300 *4)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-644 (-551))) (-5 *2 (-112))
- (-5 *1 (-1300 *4)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3))
+ (-4 *3 (-1223)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
+ (-4 *3 (-561))))
+ ((*1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1208))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-4 *1 (-909 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-666))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-454 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-896 *4)) (-5 *1 (-171 *4 *5 *3))
- (-4 *4 (-1107)) (-4 *3 (-166 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-1095 (-847 (-382)))))
- (-5 *2 (-646 (-1095 (-847 (-226))))) (-5 *1 (-306))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-398))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-415 *3 *4))
- (-4 *4 (-1248 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3))
- (-5 *2 (-1272 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-423 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-410 *1)) (-4 *1 (-426 *3)) (-4 *3 (-562)) (-4 *3 (-1107))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1109)) (-5 *1 (-540))))
- ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5))
- (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855))))
- ((*1 *1 *2)
- (-3978
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
- (-5 *1 (-1075 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
- (-5 *1 (-1151 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1109)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-1188))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-1202))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-551)) (-5 *1 (-1202))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *5 (-646 (-1183))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-952 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *6 (-646 (-1183))) (-5 *2 (-952 (-1030 (-412 *4))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-1177 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))
- (-4 *4 (-13 (-853) (-310) (-147) (-1026))) (-14 *6 (-646 (-1183)))
- (-5 *2 (-646 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3))
- (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-410 (-1177 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1177 *7))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183))
+ (-14 *6 *4)))
((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-410 *1)) (-4 *1 (-956 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-410 *3))
- (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-410 (-1177 (-412 *7)))) (-5 *1 (-1179 *4 *5 *6 *7))
- (-5 *3 (-1177 (-412 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1227))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-410 *3)) (-5 *1 (-1252 *4 *3))
- (-4 *3 (-13 (-1248 *4) (-562) (-10 -8 (-15 -3582 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *5 (-646 (-1183)))
- (-5 *2 (-646 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183))))))
+ (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (-5 *2 (-848 *4)) (-5 *1 (-1259 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183))
+ (-14 *6 *4))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-310))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1)))
+ (-4 *1 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-646 (-1030 (-412 *4)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-646 (-1183)))
- (-5 *2 (-646 (-646 (-382)))) (-5 *1 (-1029)) (-5 *5 (-382))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *5 (-646 (-1183))) (-5 *2 (-646 (-646 (-1030 (-412 *4)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-646 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-14 *5 (-646 (-1183)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4))))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183)))
- (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183)))
- (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183)))
- (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4))))))
- (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-646 (-952 *4))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-646 (-1183))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-1052 *5 *6)))
- (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1026))) (-5 *2 (-646 (-1052 *5 *6)))
- (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-646 (-1183))) (-14 *7 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1026)))
- (-5 *2 (-646 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-646 (-1183))) (-14 *6 (-646 (-1183))))))
+ (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-927))
+ (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4445 "*")))))
+ (-5 *1 (-908 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1160 *4) (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1298 *4))
- (-4 *4 (-1222))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-646 (-1160 *5)) (-646 (-1160 *5)))) (-5 *4 (-551))
- (-5 *2 (-646 (-1160 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1222)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-4 *6 (-562)) (-5 *2 (-646 (-317 *6)))
- (-5 *1 (-222 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1055))))
- ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1208)))
- (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-646 *5))
- (-5 *1 (-590 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-588 (-412 (-952 *4))))
- (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-646 (-317 *4)))
- (-5 *1 (-594 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
- (-4 *2 (-1155 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1258 *4 *5 *6))
+ (|:| |%expon| (-322 *4 *5 *6))
+ (|:| |%expTerms|
+ (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4))))))
+ (|:| |%type| (-1165))))
+ (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3)))
+ (-14 *5 (-1183)) (-14 *6 *4))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1294 *3)) (-4 *3 (-1055))))
+ (-12 (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-4 *2 (-310))
+ (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1294 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *1 (-1297 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |k| (-1183)) (|:| |c| (-1294 *3)))))
- (-5 *1 (-1294 *3)) (-4 *3 (-1055))))
+ (-12 (-4 *3 (-561)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1)))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4)))))
- (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-925))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-157))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208))) (-5 *1 (-228 *3))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-731))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-731))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1118)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1118)) (-4 *2 (-1222))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-388 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1107))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-4407 *3) (-776)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6))
- (-2 (|:| -2581 *5) (|:| -2582 *6))))
- (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855))
- (-4 *2 (-956 *4 *6 (-869 *3)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-540)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-4 *7 (-1107)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-691 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-376 *3))
- (-4 *4 (-376 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-691 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *2 (-376 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-725))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-562))
- (-5 *1 (-975 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-4 *1 (-1118)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4))
- (-4 *5 (-239 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
- (-4 *2 (-239 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
- (-4 *2 (-956 *3 (-536 *4) *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-731))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-731))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-551)) (-4 *1 (-1271 *3)) (-4 *3 (-1222)) (-4 *3 (-21))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
- ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-646 (-1183)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-646 (-1183)))))
- ((*1 *1 *1) (-12 (-4 *1 (-388 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1107))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-646 (-1183))) (-4 *3 (-173)) (-4 *5 (-239 (-4407 *2) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *4) (|:| -2582 *5))
- (-2 (|:| -2581 *4) (|:| -2582 *5))))
- (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855))
- (-4 *7 (-956 *3 *5 (-869 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-855))))
- ((*1 *1 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055)) (-4 *3 (-731))))
- ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-646 (-1183)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-551))
- (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8))
- (-5 *1 (-136 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-173)) (-4 *6 (-173))
- (-5 *2 (-169 *6)) (-5 *1 (-170 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1055) (-855)))
- (-5 *1 (-224 *3 *4)) (-14 *4 (-646 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1222))
- (-4 *7 (-1222)) (-5 *2 (-240 *5 *7)) (-5 *1 (-241 *5 *6 *7))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-296 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-296 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-296 *6)) (-5 *1 (-297 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-616 *1)) (-4 *1 (-301))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-616 *6)) (-4 *6 (-301))
- (-4 *2 (-1222)) (-5 *1 (-302 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-616 *5)) (-4 *5 (-301)) (-4 *2 (-301))
- (-5 *1 (-303 *5 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-5 *2 (-694 *6)) (-5 *1 (-308 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-317 *6)) (-5 *1 (-318 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-337 *5 *6 *7 *8)) (-4 *5 (-367))
- (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *9 (-367)) (-4 *10 (-1248 *9)) (-4 *11 (-1248 (-412 *10)))
- (-5 *2 (-337 *9 *10 *11 *12)) (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-346 *9 *10 *11))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227)) (-4 *6 (-1248 *5))
- (-4 *7 (-1248 (-412 *6))) (-4 *9 (-1248 *8)) (-4 *2 (-346 *8 *9 *10))
- (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7))
- (-4 *10 (-1248 (-412 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *2 (-376 *6))
- (-5 *1 (-377 *5 *4 *6 *2)) (-4 *4 (-376 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-1107))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-410 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-562)) (-4 *6 (-562))
- (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-562)) (-4 *6 (-562))
- (-5 *2 (-412 *6)) (-5 *1 (-413 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310))
- (-4 *6 (-997 *5)) (-4 *7 (-1248 *6)) (-4 *8 (-13 (-415 *6 *7) (-1044 *6)))
- (-4 *9 (-310)) (-4 *10 (-997 *9)) (-4 *11 (-1248 *10))
- (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-419 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-415 *10 *11) (-1044 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-423 *6))
- (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-426 *6))
- (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-426 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-431 *6))
- (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-431 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-855))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-367)) (-4 *6 (-367))
- (-5 *2 (-588 *6)) (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2328 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367))
- (-4 *6 (-367)) (-5 *2 (-2 (|:| -2328 *6) (|:| |coeff| *6)))
- (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367))
- (-4 *2 (-367)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-367)) (-4 *6 (-367))
+ (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
+ (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
+ (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1278)) (-5 *1 (-868)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1071 *6 *7 *8))
(-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7))
- (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-606 *8))
- (-5 *1 (-604 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1160 *6)) (-5 *5 (-606 *7))
- (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8))
- (-5 *1 (-604 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1160 *7))
- (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8))
- (-5 *1 (-604 *6 *7 *8))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-646 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-646 *6)) (-5 *1 (-647 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-646 *6)) (-5 *5 (-646 *7))
- (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-646 *8))
- (-5 *1 (-649 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-376 *5))
- (-4 *7 (-376 *5)) (-4 *2 (-691 *8 *9 *10))
- (-5 *1 (-692 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-691 *5 *6 *7))
- (-4 *9 (-376 *8)) (-4 *10 (-376 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055))
- (-4 *8 (-1055)) (-4 *6 (-376 *5)) (-4 *7 (-376 *5)) (-4 *2 (-691 *8 *9 *10))
- (-5 *1 (-692 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-691 *5 *6 *7))
- (-4 *9 (-376 *8)) (-4 *10 (-376 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562)) (-4 *6 (-1248 *5))
- (-4 *2 (-1248 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1248 (-412 *6))) (-4 *8 (-1248 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055)) (-4 *5 (-855))
- (-4 *6 (-798)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-798)) (-4 *4 (-956 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798))
- (-4 *9 (-1055)) (-4 *2 (-956 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-798)) (-4 *4 (-956 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-5 *2 (-786 *6)) (-5 *1 (-787 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-801 *6))
- (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-801 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-837 *6)) (-5 *1 (-838 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1107))
- (-4 *6 (-1107)) (-5 *1 (-838 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-847 *6)) (-5 *1 (-848 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-847 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-1107))
- (-4 *6 (-1107)) (-5 *1 (-848 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-894 *5 *6)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-4 *7 (-1107)) (-5 *2 (-894 *5 *7)) (-5 *1 (-895 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-896 *6)) (-5 *1 (-898 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-5 *2 (-952 *6)) (-5 *1 (-953 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1055))
- (-4 *6 (-798))
- (-4 *2
- (-13 (-1107)
- (-10 -8 (-15 -4289 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))))))
- (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-964 *6)) (-5 *1 (-965 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1055)) (-4 *2 (-956 (-952 *4) *5 *6))
- (-4 *5 (-798))
- (-4 *6
- (-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-4 *2 (-997 *6))
- (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-997 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1004 *6))
- (-5 *1 (-1005 *4 *5 *2 *6)) (-4 *4 (-1004 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055)) (-14 *5 (-776))
- (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7))
- (-4 *2 (-1059 *5 *6 *10 *11 *12))
- (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10))
- (-4 *12 (-239 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-853)) (-4 *5 (-1222))
- (-4 *6 (-1222)) (-5 *2 (-646 *6)) (-5 *1 (-1096 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-1098 *6)) (-5 *1 (-1099 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
- (-4 *2 (-1155 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-1160 *6)) (-5 *1 (-1162 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1160 *6)) (-5 *5 (-1160 *7))
- (-4 *6 (-1222)) (-4 *7 (-1222)) (-4 *8 (-1222)) (-5 *2 (-1160 *8))
- (-5 *1 (-1163 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1107))
- (-4 *4 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1233 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1183))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-1239 *6)) (-5 *1 (-1240 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5)) (-4 *5 (-853)) (-4 *5 (-1222))
- (-4 *6 (-1222)) (-5 *2 (-1160 *6)) (-5 *1 (-1240 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1183))
- (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1241 *7 *8))
- (-5 *1 (-1242 *5 *6 *7 *8)) (-14 *7 (-1183))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1248 *6))
- (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1248 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1254 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1183))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1265 *6))
- (-5 *1 (-1263 *5 *6 *4 *2)) (-4 *4 (-1265 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-1222)) (-4 *6 (-1222))
- (-5 *2 (-1272 *6)) (-5 *1 (-1273 *5 *6))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
+ (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1272 *5))
- (-4 *5 (-1222)) (-4 *6 (-1222)) (-5 *2 (-1272 *6)) (-5 *1 (-1273 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4))
- (-4 *4 (-851)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-34)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-551))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
+ (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
+ (-5 *2
+ (-649
+ (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 (-170 *4)))))))
+ (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855))
- (-4 *2 (-173))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3))))
+ (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1107)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5))
- (-4 *4 (-1107))))
- ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935))))
- ((*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
- ((*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
- ((*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-367))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-226))))
- ((*1 *1 *1 *1)
- (-3978 (-12 (-5 *1 (-296 *2)) (-4 *2 (-367)) (-4 *2 (-1222)))
- (-12 (-5 *1 (-296 *2)) (-4 *2 (-478)) (-4 *2 (-1222)))))
- ((*1 *1 *1 *1) (-4 *1 (-367)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-382))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1131 *3 (-616 *1))) (-4 *3 (-562)) (-4 *3 (-1107))
- (-4 *1 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-478)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-540)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-173)) (-5 *1 (-624 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-731) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-173)) (-5 *1 (-624 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-731) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-173)) (-4 *2 (-367))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-173)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-722 *4))
- (-4 *3 (|SubsetCategory| (-731) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-173)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-722 *4))
- (-4 *2 (|SubsetCategory| (-731) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)) (-4 *2 (-367))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1055))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-776))) (-14 *5 (-776))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2))
- (-4 *6 (-239 *3 *2)) (-4 *2 (-367))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-798))
- (-14 *6 (-646 *3)) (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-956 *2 *4 *3)) (-14 *7 (-646 (-776))) (-14 *8 (-776))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-551)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *8)) (-5 *4 (-646 *6)) (-4 *6 (-855))
- (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055)) (-5 *2 (-646 (-776)))
- (-5 *1 (-324 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-925))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-551)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 (-776)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-776))))
+ (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3))
+ (-5 *2 (-412 (-569))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *2 (-797))))
+ (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
+ (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6))
+ (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776))))
+ (-12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1)))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1265 *3))
- (-5 *2 (-551))))
+ (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-731) *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1234 *3))
- (-5 *2 (-412 (-551)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-837 (-925)))))
+ (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-731) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-776)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-367)) (-14 *6 (-1272 (-694 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3971 'X) (-3971) (-704))) (-5 *1 (-61 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'JINT 'X 'ELAM) (-3971) (-704))))
- (-5 *1 (-62 *3)) (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 'XC) (-704)))) (-5 *1 (-64 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3971) (-3971 'XC) (-704))) (-5 *1 (-66 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'X) (-3971 '-4414) (-704)))) (-5 *1 (-71 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 'X) (-704)))) (-5 *1 (-74 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3971) (-3971 'X) (-704))) (-5 *1 (-75 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'X 'EPS) (-3971 '-4414) (-704))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'EPS) (-3971 'YA 'YB) (-704))))
- (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3971) (-3971 'X) (-704))) (-5 *1 (-78 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 'XC) (-704)))) (-5 *1 (-79 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971) (-3971 'X) (-704)))) (-5 *1 (-80 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'X) (-3971 '-4414) (-704)))) (-5 *1 (-82 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'X '-4414) (-3971) (-704)))) (-5 *1 (-83 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3971 'X '-4414) (-3971) (-704)))) (-5 *1 (-84 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3971 'X) (-3971) (-704)))) (-5 *1 (-85 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-343 (-3971 'X) (-3971) (-704)))) (-5 *1 (-86 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3971 'XL 'XR 'ELAM) (-3971) (-704))))
- (-5 *1 (-88 *3)) (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3971 'X) (-3971 '-4414) (-704))) (-5 *1 (-89 *3))
- (-14 *3 (-1183))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))
- (-14 *4 (-776)) (-4 *5 (-173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))
- (-14 *4 (-776))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-694 *4))) (-4 *4 (-173))
- (-5 *2 (-1272 (-694 (-412 (-952 *4))))) (-5 *1 (-190 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1098 (-317 *4))) (-4 *4 (-13 (-855) (-562) (-619 (-382))))
- (-5 *2 (-1098 (-382))) (-5 *1 (-261 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-277))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1248 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173))
- (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3)))
- (-14 *5 (-1183)) (-14 *6 *4)
- (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457)))
- (-5 *1 (-316 *3 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-317 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183)))
- (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *2 (-332 *4)) (-5 *1 (-352 *3 *4 *2))
- (-4 *3 (-332 *4))))
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *2 (-332 *4)) (-5 *1 (-352 *2 *4 *3))
- (-4 *3 (-332 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *2 (-1297 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *2 (-1288 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-389))))
- ((*1 *2 *3) (-12 (-5 *2 (-398)) (-5 *1 (-399 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-402))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-169 (-382))))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void")))
- (-14 *5 (-646 (-1183))) (-14 *6 (-1187))))
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226)))
+ (-5 *1 (-308)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1) (-4 *1 (-287)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-382)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5))
+ (-14 *5 (-927))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4))
+ (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-766))))
+(((*1 *1 *1) (-5 *1 (-541))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055))
+ (-4 *2 (-1233 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223))))
((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-551)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-169 (-382)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-382))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-551))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-296 (-317 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5))
+ (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392))
+ (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183)))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-646 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1187))))
+ (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-412 (-952 (-412 *3)))) (-4 *3 (-562)) (-4 *3 (-1107))
- (-4 *1 (-426 *3))))
+ (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 (-412 *3))) (-4 *3 (-562)) (-4 *3 (-1107))
- (-4 *1 (-426 *3))))
+ (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-412 *3)) (-4 *3 (-562)) (-4 *3 (-1107)) (-4 *1 (-426 *3))))
+ (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-1131 *3 (-616 *1))) (-4 *3 (-1055)) (-4 *3 (-1107))
- (-4 *1 (-426 *3))))
+ (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-434 *3 *4))
- (-4 *3 (-13 (-173) (-38 (-412 (-551)))))))
+ (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *1 (-434 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-551)))))
- (-4 *3 (-13 (-855) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-439))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-4 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-704))) (-4 *1 (-445))))
+ (|partial| -12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -1788 (-646 (-333)))))
- (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-412 (-952 *3)))) (-4 *3 (-173))
- (-14 *6 (-1272 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-925))
- (-14 *5 (-646 (-1183)))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-473))))
+ (|partial| -12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5))
+ (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7))
+ (-4 *3 (-1249 *6)) (-14 *7 (-927))))
((*1 *1 *2)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3)
- (-5 *1 (-479 *3 *4 *5))))
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *1 (-982 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1223))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507))))
+ (|partial| -2718
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-38 (-412 (-569)))))
+ (-1728 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-550))) (-1728 (-4 *3 (-38 (-412 (-569)))))
+ (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569))))
+ (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))))
((*1 *1 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-529))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-611))))
- ((*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925))))
- ((*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-638 *3 *2)) (-4 *2 (-749 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1107)) (-5 *1 (-680 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-686))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *2)) (-4 *4 (-376 *3))
- (-4 *2 (-376 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-169 (-382))) (-5 *1 (-699))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-706))) (-5 *1 (-699))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-704))) (-5 *1 (-699))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-551))) (-5 *1 (-699))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-382))) (-5 *1 (-699))))
- ((*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704))))
- ((*1 *2 *1) (-12 (-5 *2 (-382)) (-5 *1 (-704))))
- ((*1 *2 *3) (-12 (-5 *3 (-317 (-551))) (-5 *2 (-317 (-706))) (-5 *1 (-706))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| -4404 *3) (|:| -4388 *4)))) (-4 *3 (-1055))
- (-4 *4 (-731)) (-5 *1 (-740 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-768))))
+ (|partial| -2718
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+(((*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-766))))
+(((*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-452 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-797))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1254 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1108 *4)) (-4 *4 (-1106)) (-5 *2 (-1 *4))
+ (-5 *1 (-1023 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
+ (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
+(((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *1 *1 *1) (-4 *1 (-766))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) ((*1 *1) (-4 *1 (-550)))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226)))))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
- (-5 *1 (-774))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-569))))
+ (-4 *4 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1830 ($ $ $)))))
+ (-4 *3 (-561)) (-5 *1 (-1252 *3 *4)))))
+(((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
+ (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
(-5 *2
- (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226)))))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *1 (-774))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| -3604 (-776)) (|:| |curves| (-776))
+ (|:| |polygons| (-776)) (|:| |constructs| (-776)))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-226))
(-5 *2
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *1 (-774))))
- ((*1 *2 *3) (-12 (-5 *2 (-778)) (-5 *1 (-779 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |brans| (-649 (-649 (-949 *4))))
+ (|:| |xValues| (-1100 *4)) (|:| |yValues| (-1100 *4))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *1))))
+ (-4 *1 (-1077 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1227)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-1252 *3 *2))
+ (-4 *2 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1830 ($ $ $))))))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855))
+ (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
(-5 *2
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *1 (-813))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-831))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |particular| (-3 (-1273 (-412 *8)) "failed"))
+ (|:| -3371 (-649 (-1273 (-412 *8))))))
+ (-5 *1 (-674 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
+(((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1110))
+ (-5 *1 (-764))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-569))) (-5 *2 (-1110))
+ (-5 *1 (-764)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-933))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))
- (-5 *1 (-846))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))
- (-5 *1 (-846))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
(-5 *2
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (-5 *1 (-846))))
- ((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-863))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-551))) (-5 *1 (-880))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 (-48)))) (-5 *2 (-317 (-551))) (-5 *1 (-880))))
- ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
- ((*1 *1 *2)
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131))
+ (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| -1406 *3) (|:| -3236 *4))))
+ (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-1163 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367))
+ (-5 *2 (-112)) (-5 *1 (-672 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-112))
+ (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |pde| (-646 (-317 (-226))))
- (|:| |constraints|
- (-646
- (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776))
- (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226)))
- (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *1 (-904))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-908 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-908 *3))) (-4 *3 (-1107)) (-5 *1 (-911 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 (-410 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310))))
+ (-5 *3
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383))))
+ (-5 *2 (-1041)) (-5 *1 (-308)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1240 (-569))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1223)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927))))
((*1 *2 *3)
- (-12 (-5 *3 (-482)) (-5 *2 (-317 *4)) (-5 *1 (-926 *4)) (-4 *4 (-562))))
- ((*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1222))))
- ((*1 *2 *3) (-12 (-5 *3 (-314)) (-5 *1 (-1039 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-646 *2))))
- ((*1 *2 *3) (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-1046 *3)) (-4 *3 (-562))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
- (-4 *2 (-956 *3 (-536 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4))
- (-4 *4 (-956 *3 (-536 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150))))
- ((*1 *2 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3)
- (-5 *1 (-1181 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1195 (-1183) (-441))) (-5 *1 (-1187))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1196 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3) (-12 (-5 *2 (-1202)) (-5 *1 (-1203 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1055)) (-5 *1 (-1215 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1215 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-1222)) (-5 *1 (-1239 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3)
- (-5 *1 (-1262 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1275)) (-5 *1 (-1274))))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1275))))
- ((*1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367)))
+ (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *7 (-346 *4 *5 *6))
+ (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
((*1 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
+ (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055))
+ (-4 *3 (-855))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855))
+ (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
+ (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
+ (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569))))
+ (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776))
+ (-5 *1 (-918 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367))
+ (-4 *7 (-1249 *6)) (-4 *4 (-1249 (-412 *7))) (-4 *8 (-346 *6 *7 *4))
+ (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776))
+ (-5 *1 (-1024 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561))
+ (-5 *2 (-776))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1179 *4))) (-5 *3 (-1179 *4))
+ (-4 *4 (-915)) (-5 *1 (-668 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1163 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3396
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1041)) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-444))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-843))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1121))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1124)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-855))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1208)))
+ (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-588 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-591 (-412 (-958 *3))))
+ (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-594 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -3252 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-649 (-694 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1273 (-1273 *5))) (-4 *5 (-367)) (-4 *5 (-1055))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-649 (-694 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1150))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1100 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
+ (-5 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5))
+ (|:| |c2| (-412 *5)) (|:| |deg| (-776))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+(((*1 *1 *1) (-4 *1 (-1066)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
+(((*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
+ (-4 *2 (-661 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
+ (-5 *2 (-1041)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
+ (-5 *2 (-1041)) (-5 *1 (-308)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1106))
+ (-5 *1 (-683 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1249 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1249 (-412 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-855))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310))
+ (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1048 *4)))))
+(((*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1055)) (-4 *3 (-367))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
+ (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
(-4 *4 (-173))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *1 (-1293 *3 *4)))))
+ (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3))
+ (-4 *4 (-377 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1249 *5))
+ (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1249 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-1249 *4)) (-4 *4 (-1055))
+ (-5 *2 (-1273 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
+ (-4 *2 (-661 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *1 (-669 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173))))
+ (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4))
+ (-14 *3 (-776)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-776)) (-4 *3 (-1223)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1) (-5 *1 (-172)))
+ ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394))))
+ ((*1 *1) (-5 *1 (-399)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106))
+ (-4 *4 (-671 *3))))
+ ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055))))
+ ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055))))
+ ((*1 *1 *1) (-5 *1 (-1183))) ((*1 *1) (-5 *1 (-1183)))
+ ((*1 *1) (-5 *1 (-1203))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
+ (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-5 *2 (-1179 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183))
+ (-14 *5 *3) (-5 *1 (-322 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5))))
+ (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| -1963 *3) (|:| -2179 *4))))
+ (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *1 (-1199 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2
+ (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4))
+ (|:| |genIdeal| (-509 *4 *5 *6 *7))))
+ (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
+ (-5 *2 (-2 (|:| -1406 (-412 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1055)) (-4 *1 (-1249 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1046)))))
+(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3))
+ (|:| |genIdeal| (-509 *3 *4 *5 *6))))
+ (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1106))
+ (-4 *5 (-1223)) (-5 *1 (-896 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4))))
+ (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1106))
+ (-4 *5 (-1223)) (-5 *1 (-896 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1183)))
+ (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1106)) (-4 *6 (-1223))
+ (-5 *1 (-896 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1) (-4 *1 (-287)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-5 *1 (-632 *3 *4 *5))
- (-14 *5 (-925))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1223)) (-4 *4 (-1106))
+ (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855))
- (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-551))))
- (-4 *3 (-855)) (-4 *4 (-173)))))
+ (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-4 *4 (-1106))
+ (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1223))
+ (-5 *2 (-319 (-569))) (-5 *1 (-944 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1223))
+ (-5 *2 (-319 (-569))) (-5 *1 (-944 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1 (-112) (-649 *6)))
+ (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1082 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4))))
+ (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1) (-4 *1 (-287)))
+ (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34)))
+ (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
+ (-14 *3 (-649 (-1183))))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-955 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1)))
+ (-4 *1 (-1249 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1147 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
+ (-5 *2 (-418 *4 (-412 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))
+ (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310))
+ (-5 *1 (-418 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1183)) (-5 *6 (-112))
+ (-4 *7 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-1208) (-965) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-1055))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1249 *4)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 *4))))
+ (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3))
+ (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-236 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106))
+ (-5 *1 (-742 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
((*1 *2 *3)
- (-12 (-5 *3 (-410 *4)) (-4 *4 (-562))
- (-5 *2 (-646 (-2 (|:| -4404 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-955 *5 *4 *2))
+ (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *6)) (-15 -4378 (*6 $))
+ (-15 -4390 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-1183)) (-5 *1 (-1049 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-1082 *3 *4 *5))) (-4 *3 (-1106))
+ (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
+ (-5 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1106)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5))
+ (-4 *4 (-1106)) (-14 *5 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34)))
+ (-5 *1 (-1147 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-1146 *3 *4))) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183)))
+ (-4 *6 (-13 (-561) (-1044 *5))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1045 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1106))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-1106)) (-5 *1 (-654 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855))
- (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-551))))
- (-4 *3 (-855)) (-4 *4 (-173)))))
+ (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112))
+ (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-583))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
+(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-377 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1183)))
+ (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-1172 (-649 (-958 *4)) (-649 (-297 (-958 *4)))))
+ (-5 *1 (-509 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1249 *2))
+ (-4 *2 (-173))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1249 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4))
+ (-4 *3 (-414 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1249 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4))
+ (-4 *4 (-414 *2 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-388 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1107))))
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
+(((*1 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4))
+ (-4 *4 (-1106))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *2 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *4 (-1183)) (-5 *2 (-933)) (-5 *1 (-931 *3))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731))))
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-215 *4))
+ (-4 *4
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $))
+ (-15 -4170 (*2 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855))
- (-4 *3 (-13 (-173) (-722 (-412 (-551))))) (-14 *4 (-925))))
- ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
+ (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $))
+ (-15 -4170 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353))
+ (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -2650 *3))))
+ (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2))
+ (-4 *2 (-13 (-1106) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-827)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-4 *4 (-173))))
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1106))
+ (-5 *1 (-1112 *5 *4)) (-4 *4 (-435 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055))
+ (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *7)))
+ (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1249 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-353))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569)))))))
+ (-5 *1 (-217 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)) (-4 *3 (-173)))))
+ (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-646 (-1183))) (-5 *1 (-211)) (-5 *3 (-1183))))
+ (-12 (-5 *3 (-649 (-1273 *5))) (-5 *4 (-569)) (-5 *2 (-1273 *5))
+ (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-694 (-1179 *8))) (-4 *5 (-1055)) (-4 *8 (-1055))
+ (-4 *6 (-1249 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8))
+ (-4 *7 (-1249 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1249 (-412 *2)))
+ (-4 *2 (-1249 *5)) (-5 *1 (-216 *5 *2 *6 *3))
+ (-4 *3 (-346 *5 *2 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))
+ (-4 *3 (-561))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372))
+ (-4 *6 (-1055)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1035 *6))
+ (-5 *3 (-649 (-694 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055))
+ (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1035 *4))
+ (-5 *3 (-649 (-694 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-226))) (-5 *4 (-776)) (-5 *2 (-646 (-1183)))
- (-5 *1 (-269))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-646 *3))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-649 (-694 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-649 (-694 *5))))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1146 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-646 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1217 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *3 (-855))
- (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 (*2 $))
+ (-15 -4170 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-399))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1203))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1203)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1179 *7))
+ (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5))
+ (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
+ (|:| |tol| (-226))))
+ (-5 *2 (-112)) (-5 *1 (-211)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367))
+ (-4 *5 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055))
+ (-5 *2 (-112)) (-5 *1 (-1035 *4)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-361 *4)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1106) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055))
+ (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7))
+ (-4 *6 (-1249 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055))
+ (-4 *4 (-1249 *5)) (-5 *2 (-1179 *7)) (-5 *1 (-506 *5 *4 *6 *7))
+ (-4 *6 (-1249 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
+ (-5 *1 (-211)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| -1406 *4) (|:| -4273 *3) (|:| -2804 *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-1071 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| -1406 *3) (|:| -4273 *1) (|:| -2804 *1)))
+ (-4 *1 (-1249 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569))
+ (-5 *2 (-694 *6)) (-5 *1 (-1035 *6)) (-4 *6 (-367)) (-4 *6 (-1055))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4))
+ (-4 *4 (-367)) (-4 *4 (-1055))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5))
+ (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-365 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-654 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-925)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4))))
+ (-12
+ (-5 *2
+ (-1273 (-649 (-2 (|:| -2150 (-916 *3)) (|:| -2114 (-1126))))))
+ (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927))))
((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-837 (-925))) (-5 *1 (-331 *3 *4))
- (-4 *3 (-332 *4))))
- ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-925))))
- ((*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-837 (-925))))))
-(((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4))))
- ((*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-5 *2 (-776)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-332 *3)) (-4 *5 (-1248 *4))
- (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1248 *5)) (-14 *6 (-925))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1291 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
- ((*1 *1 *1) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-367)) (-4 *2 (-372)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-551))))) (-4 *5 (-855))
- (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1295 *5 *4)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126))))))
+ (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126))))))
+ (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *1) (-5 *1 (-333))))
+(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 (-1286 *4 *5 *6 *7)))
- (-5 *1 (-1286 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1249 *4))
+ (-5 *2 (-2 (|:| -2503 (-628 *4 *5)) (|:| -2494 (-412 *5))))
+ (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1055))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-457)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1249 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1273 *5)) (-4 *5 (-310))
+ (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106))
+ (-4 *6 (-1223)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106))
+ (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798)) (-4 *8 (-855))
- (-5 *2 (-646 (-1286 *6 *7 *8 *9))) (-5 *1 (-1286 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1106))
+ (-4 *5 (-1223)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106))
+ (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6))
+ (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-646 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
+ (-14 *4
+ (-3 (-1179 *3)
+ (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-927)))))
+(((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1165))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7))
- (-4 *4 (-1055)) (-14 *5 (-646 (-1183))) (-14 *6 (-646 *3)) (-14 *7 *3)))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1245 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055))
+ (-5 *2 (-1273 (-1273 *5))) (-5 *1 (-1035 *5)) (-5 *4 (-1273 *5)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 *4)) (-5 *1 (-1147 *3 *4))
+ (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *1)) (-5 *4 (-1273 *1)) (-4 *1 (-644 *5))
+ (-4 *5 (-1055))
+ (-5 *2 (-2 (|:| -4368 (-694 *5)) (|:| |vec| (-1273 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
- (-14 *8 (-646 *5)) (-5 *2 (-1278)) (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-956 *4 *6 *5)) (-14 *9 (-646 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1107) (-34))) (-5 *1 (-1146 *3 *2))
- (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
+ (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055))
+ (-5 *2 (-694 *4)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3))
- (-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
+ (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))
+ (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
+ (-14 *4
+ (-3 (-1179 *3)
+ (-1273 (-649 (-2 (|:| -2150 *3) (|:| -2114 (-1126)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-927)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055))
+ (-5 *1 (-1035 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367))
+ (-4 *5 (-561)) (-5 *2 (-1273 *5)) (-5 *1 (-643 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5))
+ (-1728 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1273 (-412 *5)))
+ (-5 *1 (-643 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353))
+ (-5 *2 (-649 (-2 (|:| -3699 (-569)) (|:| -2777 (-569))))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-776))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-1273 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4))
+ (-5 *1 (-1035 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
+ (-5 *2 (-1273 *4)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1196 (-927) (-776))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-694 *2)) (-5 *4 (-569))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-1244 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4))
+ (-5 *1 (-1034 *5)) (-4 *5 (-1055))))
((*1 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-1248 *3))
- (-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-5 *1 (-773 *4 *5)) (-4 *5 (-415 *3 *4))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1034 *4))
+ (-4 *4 (-1055))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569))
+ (-5 *2 (-649 (-694 *4))) (-5 *1 (-1034 *5)) (-4 *5 (-1055))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 *3))
+ (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-1034 *4)) (-4 *4 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
+ (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(((*1 *1) (-4 *1 (-353))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-694 *2)) (-5 *4 (-776))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
(-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 *3))
+ (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
+ (-5 *1 (-206)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3))
+ (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
(-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3))
+ (-3 (-848 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
+ "failed"))
+ (-5 *1 (-641 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1165))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457))
(-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1248 (-551)))
+ (-3 (-848 (-412 (-958 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-457))
(-5 *2
- (-2 (|:| -2200 (-694 (-551))) (|:| |basisDen| (-551))
- (|:| |basisInv| (-694 (-551)))))
- (-5 *1 (-773 *3 *4)) (-4 *4 (-415 (-551) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 *4))
+ (-3 (-848 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
+ "failed"))
+ (-5 *1 (-642 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1165))
+ (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3))
+ (-5 *1 (-642 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *1 *1) (-5 *1 (-226)))
+ ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1145))) ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1249 *5))
(-5 *2
- (-2 (|:| -2200 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4))))
- (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 *4))
+ (-649
+ (-2 (|:| -3371 (-694 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-694 *6)))))
+ (-5 *1 (-503 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -3371 (-694 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-694 *6))))
+ (-4 *7 (-1249 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-319 (-226))))
(-5 *2
- (-2 (|:| -2200 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4))))
- (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1215 *6))
- (-5 *2 (-1 (-1160 *4) (-1160 *4))) (-5 *1 (-1281 *6)) (-5 *5 (-1160 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-646 (-1215 *5)))
- (-5 *1 (-1281 *5)) (-5 *4 (-1215 *5)))))
+ (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
+ (-5 *1 (-206)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1177 (-952 *4)) (-952 *4)))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
+ (|partial| -12 (-4 *4 (-13 (-561) (-147)))
+ (-5 *2 (-2 (|:| -4375 *3) (|:| -4386 *3))) (-5 *1 (-1243 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1055))
+ (-5 *1 (-1034 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1055))
+ (-5 *1 (-1034 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1160 (-1160 (-952 *5))))
- (-5 *1 (-1281 *5)) (-5 *4 (-1160 (-952 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1160 (-952 *4)) (-1160 (-952 *4))))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
+ (|partial| -12 (-5 *4 (-297 (-838 *3)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457))
+ (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5))
+ (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1160 (-952 *4)) (-1160 (-952 *4))))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
-(((*1 *2)
- (-12 (-14 *4 (-776)) (-4 *5 (-1222)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5))
- (-4 *3 (-239 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-173))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-551))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2 (-551)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-925))))
- ((*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
-(((*1 *1) (-5 *1 (-1278))))
-(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-226)) (-5 *1 (-1277))))
- ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1277)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277))))
- ((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1277)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1276)))))
-(((*1 *1) (-5 *1 (-1276))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-646 (-263))) (-5 *1 (-1276))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1276))))
- ((*1 *1 *1) (-5 *1 (-1276))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1276))))
- ((*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1276)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4)) (-4 *4 (-1055))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1275))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1276))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-263))) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-646 (-263))) (-5 *1 (-264))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *2)
- (-12
+ (-12 (-5 *3 (-927))
(-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *1 (-263))))
+ (-3 (-1179 *4)
+ (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126)))))))
+ (-5 *1 (-350 *4)) (-4 *4 (-353)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227))))
((*1 *2 *3 *2)
+ (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
+ (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *3 (-646 (-263))) (-5 *1 (-264))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-551)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1 *3)
+ (-649
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-569)))))
+ (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1249 *3))
+ (-5 *2 (-649 (-1179 *3))) (-5 *1 (-503 *3 *5 *6))
+ (-4 *6 (-1249 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1243 *3 *2))
+ (-4 *2 (-1249 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1034 *4))
+ (-4 *4 (-1055)))))
+(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1) (-5 *1 (-637))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-927))
+ (-5 *2 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))
+ (-5 *1 (-350 *4)) (-4 *4 (-353)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1)
- (-12
+ (-2 (|:| |det| *12) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569)))))
+ (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9))))
+ (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569))
+ (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10))
+ (-4 *10 (-13 (-855) (-619 (-1183)))) (-4 *11 (-798))
(-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4297 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *1 (-1276))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1276))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1276))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1276)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-949 (-226)))) (-5 *1 (-1275)))))
-(((*1 *1) (-5 *1 (-1275))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-646 (-263))) (-5 *1 (-1275))))
- ((*1 *1 *1) (-5 *1 (-1275))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-925)) (-5 *4 (-226)) (-5 *5 (-551)) (-5 *6 (-879))
- (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1)
+ (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12))
+ (|:| |wcond| (-649 (-958 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *9))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *9)))))))))
+ (-5 *1 (-930 *9 *10 *11 *12)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1183)) (-5 *1 (-541)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4445 "*")))
+ (-4 *4 (-1055)) (-5 *1 (-1034 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927))
+ (|has| *4 (-6 (-4445 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457))
+ (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))
+ (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-226)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046))))
+ ((*1 *1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-569)) (-5 *1 (-205)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353))
+ (-5 *2 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))
+ (-5 *1 (-350 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
+ ((*1 *1 *1) (-4 *1 (-853)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
+ ((*1 *1 *1) (-4 *1 (-1066))) ((*1 *1 *1) (-4 *1 (-1145))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798))
(-5 *2
- (-1272
- (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226))
- (|:| |deltaY| (-226)) (|:| -4300 (-551)) (|:| -4298 (-551))
- (|:| |spline| (-551)) (|:| -4329 (-551)) (|:| |axesColor| (-879))
- (|:| -4301 (-551)) (|:| |unitsColor| (-879)) (|:| |showing| (-551)))))
- (-5 *1 (-1275)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551))))
- ((*1 *2 *1) (-12 (-5 *2 (-1272 (-3 (-473) "undefined"))) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-473)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-925)) (-5 *2 (-473)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 (-382))) (-5 *3 (-646 (-263))) (-5 *1 (-264))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-473))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-382)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-473)) (-5 *4 (-925)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-925))
- (-5 *6 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-1274))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-646 (-263)))
- (-5 *2 (-1275)) (-5 *1 (-1274)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-925))
- (-5 *6 (-646 (-263))) (-5 *2 (-473)) (-5 *1 (-1274))))
+ (-649
+ (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
+ (-4 *4 (-1223)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-649 (-226))) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-377 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1274))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4)))
+ (-5 *1 (-698 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-646 (-263))) (-5 *2 (-473))
- (-5 *1 (-1274)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-59 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1107)) (|has| *1 (-6 -4443))
- (-4 *1 (-151 *2)) (-4 *2 (-1222))))
+ (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5))
+ (-5 *2 (-2 (|:| -4289 *7) (|:| |rh| (-649 (-412 *6)))))
+ (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6)))
+ (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1242 *4 *5 *3))
+ (-4 *3 (-1249 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1126)))
+ (-5 *1 (-350 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
+ (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147)))
+ (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-112))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
+ (-4 *4 (-1223)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-2 (|:| -3818 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-377 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-4 *2 (-377 *4))
+ (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561))
+ (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-1242 *3 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457))
+ (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1183))) (-5 *1 (-636 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-1179 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-927)))))
+(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2))
- (-4 *2 (-1222))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1223))
+ (-4 *3 (-1106))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2))
- (-4 *2 (-1222))))
+ (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
+ (-5 *2 (-569))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223))
+ (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-2 (|:| -2192 (-1177 *4)) (|:| |deg| (-925))))
- (-5 *1 (-222 *4 *5)) (-5 *3 (-1177 *4)) (-4 *5 (-562))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-776))
- (-4 *6 (-1222)) (-4 *2 (-1222)) (-5 *1 (-241 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1248 *4))
- (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-562)) (-4 *2 (-1107))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1248 *2))
- (-4 *4 (-1248 (-412 *3))) (-4 *5 (-346 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-377 *5 *4 *2 *6)) (-4 *4 (-376 *5)) (-4 *6 (-376 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1107)) (-4 *2 (-1107))
- (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2))))
- ((*1 *1 *1) (-5 *1 (-500)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-646 *5)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-647 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055)) (-4 *6 (-376 *5))
- (-4 *7 (-376 *5)) (-4 *8 (-376 *2)) (-4 *9 (-376 *2))
- (-5 *1 (-692 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-691 *5 *6 *7))
- (-4 *10 (-691 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-367))
- (-4 *3 (-173)) (-4 *1 (-729 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-965 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-646 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055)) (-14 *5 (-776))
- (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7))
- (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2))
- (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1160 *5)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-1162 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1217 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *2 (-1071 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1272 *5)) (-4 *5 (-1222)) (-4 *2 (-1222))
- (-5 *1 (-1273 *5 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1222)) (-4 *5 (-1222))
- (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-776))
- (-4 *7 (-1222)) (-4 *5 (-1222)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-241 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1222)) (-4 *5 (-1222)) (-4 *2 (-376 *5))
- (-5 *1 (-377 *6 *4 *5 *2)) (-4 *4 (-376 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1107)) (-4 *5 (-1107)) (-4 *2 (-431 *5))
- (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-431 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-646 *6)) (-4 *6 (-1222)) (-4 *5 (-1222))
- (-5 *2 (-646 *5)) (-5 *1 (-647 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1222)) (-4 *5 (-1222))
- (-5 *2 (-964 *5)) (-5 *1 (-965 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1160 *6)) (-4 *6 (-1222)) (-4 *3 (-1222))
- (-5 *2 (-1160 *3)) (-5 *1 (-1162 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1272 *6)) (-4 *6 (-1222)) (-4 *5 (-1222))
- (-5 *2 (-1272 *5)) (-5 *1 (-1273 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1272 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-215 *2))
- (-4 *2
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $))
- (-15 -2153 ((-1278) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-25)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-25)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-540)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-25)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1222)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-215 *2))
- (-4 *2
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $))
- (-15 -2153 ((-1278) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1222)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1055)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1222)) (-4 *3 (-1055)) (-5 *2 (-694 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1055)))))
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4))))
- ((*1 *1 *1) (-4 *1 (-550)))
- ((*1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-925)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1222)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1008)) (-4 *2 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1222)) (-4 *2 (-1008)) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
+ (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-377 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3))
+ (-4 *5 (-377 *2)) (-4 *3 (-377 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *4)) (-4 *4 (-998 *2)) (-4 *2 (-561))
+ (-5 *1 (-698 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-1242 *2 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265)))
+ (-5 *1 (-263))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-646 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1222)) (-5 *2 (-1183)) (-5 *1 (-1064 *3 *4))
- (-4 *3 (-1100 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6))
+ (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-1273 *6))
+ (-5 *1 (-636 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4))
+ (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
+ (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-412 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-562)) (-4 *4 (-1055))
- (-4 *2 (-1265 *4)) (-5 *1 (-1267 *4 *5 *6 *2)) (-4 *6 (-663 *5)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4))
+ (-4 *4 (-1249 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-1248 *4)) (-5 *2 (-1 *6 (-646 *6)))
- (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-663 *5)) (-4 *6 (-1265 *4)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-193)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561))
+ (-4 *3 (-1055)) (-4 *2 (-797))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1179 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-561))
+ (-4 *3 (-1055))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1246 *4 *3)) (-14 *4 (-1183))
+ (-4 *3 (-1055)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569))))
+ (-5 *1 (-1037)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1183)))
+ (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1248 *5))
- (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-663 *2)) (-4 *3 (-1265 *5)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| -3904 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *7)))))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *3 (-1248 *4)) (-4 *2 (-1265 *4))
- (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-663 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-193)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1223)))))
+(((*1 *1) (-5 *1 (-141))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 (-1 *6 (-646 *6))))
- (-4 *5 (-38 (-412 (-551)))) (-4 *6 (-1265 *5)) (-5 *2 (-646 *6))
- (-5 *1 (-1266 *5 *6)))))
+ (-12 (-5 *4 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037))
+ (-5 *3 (-319 (-569))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
+ (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
+ (-4 *6 (-457))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
+ (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
+ (-4 *6 (-457)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1227)) (-4 *5 (-1249 *3)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-646 *2))) (-5 *4 (-646 *5)) (-4 *5 (-38 (-412 (-551))))
- (-4 *2 (-1265 *5)) (-5 *1 (-1266 *5 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1266 *4 *2))
- (-4 *4 (-38 (-412 (-551)))))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| -3904 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *7)))))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-193)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1266 *4 *2))
- (-4 *4 (-38 (-412 (-551)))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1266 *3 *2)) (-4 *2 (-1265 *3)))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-569))
+ (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569)))))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-569))
+ (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569)))))))
+ (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-646 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551))))
- (-5 *2 (-1 (-1160 *4) (-646 (-1160 *4)))) (-5 *1 (-1266 *4 *5)))))
+ (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
+ (-5 *2
+ (-649
+ (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569))
+ (|:| |radvect| (-649 (-694 (-319 (-569))))))))
+ (-5 *1 (-1037)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183)))
+ (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3))
+ (-4 *3 (-955 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551))))
- (-5 *2 (-1 (-1160 *4) (-1160 *4) (-1160 *4))) (-5 *1 (-1266 *4 *5)))))
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-38 (-412 (-551))))
- (-5 *2 (-1 (-1160 *4) (-1160 *4))) (-5 *1 (-1266 *4 *5)))))
+ (-12 (-5 *2 (-423 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4)))))
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3))
+ (-4 *3 (-1249 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4)))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-412 (-551))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-296 *3)) (-5 *5 (-412 (-551)))
- (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-551))) (-5 *4 (-296 *6))
- (-4 *6 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-551)))
- (-4 *7 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-551)))
- (-4 *3 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-412 (-551)))) (-5 *4 (-296 *8))
- (-5 *5 (-1239 (-412 (-551)))) (-5 *6 (-412 (-551)))
- (-4 *8 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-412 (-551))))
- (-5 *7 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *8)))
- (-4 *8 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-4 *3 (-1055))
- (-5 *1 (-600 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-4 *3 (-1055))
- (-4 *1 (-1234 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-5 *3 (-1160 (-2 (|:| |k| (-412 (-551))) (|:| |c| *4))))
- (-4 *4 (-1055)) (-4 *1 (-1255 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-4 *1 (-1265 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1160 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1055))
- (-4 *1 (-1265 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-646 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-646 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-646 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-646 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1055)) (-5 *2 (-1160 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-551))) (-4 *3 (-1055)) (-5 *1 (-600 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-551))) (-4 *1 (-1234 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-551))) (-4 *1 (-1265 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855))
- (-5 *2 (-952 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855))
- (-5 *2 (-952 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1265 *4)) (-4 *4 (-1055)) (-5 *2 (-952 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1265 *4)) (-4 *4 (-1055)) (-5 *2 (-952 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 (-551))) (-4 *4 (-1044 (-551))) (-4 *4 (-562))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-426 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-134)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-226)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-551))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 (-551))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1265 *4))
- (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1236 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 (-551))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1234 *4))
- (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1257 *4 *5)) (-4 *6 (-989 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-287)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-365 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *1) (-5 *1 (-382)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-551))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-551)) (-4 *4 (-354)) (-5 *1 (-533 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-540))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-540))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1107)) (-5 *1 (-687 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-4 *3 (-367))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *5))
- (-4 *5 (-653 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-839 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-551)) (-5 *1 (-839 *4)) (-4 *4 (-1055))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-551)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-925))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-847 *3))) (-4 *3 (-13 (-1208) (-966) (-29 *5)))
- (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3)))
- (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
- (-5 *1 (-220 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-847 *3))) (-5 *5 (-1165))
- (-4 *3 (-13 (-1208) (-966) (-29 *6)))
- (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3))) (|:| |fail| #1#)
- (|:| |pole| #2#)))
- (-5 *1 (-220 *6 *3))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1098 (-847 (-317 *5))))
- (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-3 (|:| |f1| (-847 (-317 *5))) (|:| |f2| (-646 (-847 (-317 *5))))
- (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
- (-5 *1 (-221 *5))))
+ (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-412 (-952 *6))) (-5 *4 (-1098 (-847 (-317 *6))))
- (-5 *5 (-1165)) (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
+ (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3))
+ (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3))
+ (-4 *3 (-1249 (-412 (-569))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1096))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-314))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1121))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-649 (-1183))) (-4 *5 (-457))
(-5 *2
- (-3 (|:| |f1| (-847 (-317 *6))) (|:| |f2| (-646 (-847 (-317 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-221 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-847 (-412 (-952 *5))))) (-5 *3 (-412 (-952 *5)))
- (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
+ (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569)))))
+ (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
+ (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -4368 (-694 (-412 (-958 *4))))
+ (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3904 (-776))
+ (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798))
(-5 *2
- (-3 (|:| |f1| (-847 (-317 *5))) (|:| |f2| (-646 (-847 (-317 *5))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-221 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-847 (-412 (-952 *6))))) (-5 *5 (-1165))
- (-5 *3 (-412 (-952 *6)))
- (-4 *6 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *4)))))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-649 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183)))
+ (-4 *5 (-457))
(-5 *2
- (-3 (|:| |f1| (-847 (-317 *6))) (|:| |f2| (-646 (-847 (-317 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-221 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-3 *3 (-646 *3))) (-5 *1 (-435 *5 *3))
- (-4 *3 (-13 (-1208) (-966) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382))
- (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382))
- (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *5 (-382))
- (-5 *2 (-1041)) (-5 *1 (-570))))
+ (-2 (|:| |gblist| (-649 (-248 *4 *5)))
+ (|:| |gvlist| (-649 (-569)))))
+ (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055))
+ (-5 *2 (-776)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
+ (-14 *4 *2) (-4 *5 (-173))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927))))
+ ((*1 *2)
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-5 *2 (-927))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-1095 (-847 (-382)))) (-5 *2 (-1041))
- (-5 *1 (-570))))
+ (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367))
+ (-5 *2 (-776)) (-5 *1 (-672 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382)))))
- (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382)))))
- (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382)))))
- (-5 *5 (-382)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-1095 (-847 (-382)))))
- (-5 *5 (-382)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-382))) (-5 *4 (-1098 (-847 (-382))))
- (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-382))) (-5 *4 (-1098 (-847 (-382))))
- (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-776))
+ (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4))
- (-5 *2 (-588 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-3 (-317 *5) (-646 (-317 *5)))) (-5 *1 (-594 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))
- (-4 *3 (-38 (-412 (-551))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-412 (-551))))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-4 *2 (-855))
- (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-956 *3 (-536 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055))
- (-5 *1 (-1167 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1215 *3)) (-4 *3 (-38 (-412 (-551))))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3978
- (-12 (-5 *2 (-1183)) (-4 *1 (-1234 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-551))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1234 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -3503 ((-646 *2) *3)))
- (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551))))))
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
+ (-5 *2 (-776)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *4)))))))
+ (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569))))
+ (-5 *1 (-191)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4))
+ (-4 *4 (-874 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1253 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3978
- (-12 (-5 *2 (-1183)) (-4 *1 (-1255 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-551))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1255 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -3503 ((-646 *2) *3)))
- (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551))))))))
+ (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-1264 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551))))))
+ (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1264 *2)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
+ (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1106))
+ (-5 *1 (-578 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| -3904 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *8)))))
+ (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-1055))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1183)))
+ (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1055))
+ (-4 *5 (-239 (-2394 *3) (-776)))))
((*1 *1 *1 *2)
- (-3978
- (-12 (-5 *2 (-1183)) (-4 *1 (-1265 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-551))) (-4 *3 (-966)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-551))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1265 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -3503 ((-646 *2) *3)))
- (|has| *3 (-15 -4262 (*3 *3 *2))) (-4 *3 (-38 (-412 (-551))))))))
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569))))
+ (-5 *1 (-191)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055))
+ (-4 *2 (-1264 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-172))) ((*1 *1 *1) (-4 *1 (-550)))
+ ((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
((*1 *1 *1)
- (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-551)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1181 *4 *5 *6))
- (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1262 *4 *5 *6))
- (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
- ((*1 *1 *1) (-4 *1 (-234)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855))))
- ((*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))))
+ (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-661 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4289 *3) (|:| -3818 (-649 *5))))
+ (-5 *1 (-1031 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
- (-4 *4 (-1248 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1248 *2))))
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561))
+ (-5 *2 (-412 (-958 *4)))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-367))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 (-776))) (-4 *1 (-906 *4))
- (-4 *4 (-1107))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1107))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1232 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1248 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1253 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1262 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183))
- (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1262 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183))
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-1055)) (-5 *1 (-1167 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-551)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183))
- (-14 *5 *3))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-306))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-1041))) (-5 *2 (-1041)) (-5 *1 (-306))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *1) (-5 *1 (-1069)))
+ (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561))
+ (-5 *2 (-412 (-958 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-569)) (-14 *4 (-776)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1067 (-1030 *4) (-1179 (-1030 *4)))) (-5 *3 (-867))
+ (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1028))))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
+ (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1161 *4))
- (-4 *4 (-1222))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1107)) (-4 *3 (-855)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-4 *2 (-1222)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))
+ (-5 *2 (-649 (-1183))) (-5 *1 (-269))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-649 *5))
+ (-5 *1 (-324 *4 *5 *6 *7))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2))
- (-4 *5 (-376 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-376 *2))
- (-4 *5 (-376 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 (-551))) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-551)) (-14 *5 (-776))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-776))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-776))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-776))))
+ (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-392))))
((*1 *2 *1)
- (-12 (-4 *2 (-173)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-551)) (-14 *4 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4))
- (-4 *4
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ *3)) (-15 -4067 ((-1278) $))
- (-15 -2153 ((-1278) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-995)) (-5 *1 (-215 *3))
+ (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-1183)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-649 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 ((-1278) $))
- (-15 -2153 ((-1278) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1248 *3))
- (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 *1)) (-4 *1 (-301))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1248 *2))
- (-4 *4 (-1248 (-412 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-423 *2)) (-4 *2 (-173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-51)) (-5 *1 (-637))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-646 (-551))) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-646 (-896 *4))) (-5 *1 (-896 *4))
- (-4 *4 (-1107))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-908 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-925)) (-4 *2 (-367))
- (-5 *1 (-999 *4 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055))
- (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2))
- (-4 *7 (-239 *4 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-925)) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *2))
- (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-925)) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1083 *4 *5 *2))
- (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107))
- (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107))
- (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107))))
- ((*1 *1 *1 *1) (-4 *1 (-1150)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-412 *1)) (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-412 *1)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-4 *3 (-562))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1217 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102))))
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $)))))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))))
- ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1222)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1222))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
+ (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-4 *5 (-855)) (-5 *2 (-649 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1183)))
+ (-5 *1 (-1049 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
+ ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-5 *1 (-554)))
+ ((*1 *1) (-4 *1 (-731))) ((*1 *1) (-5 *1 (-1183)))
+ ((*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-927))))
+ ((*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
+ ((*1 *1) (-5 *1 (-1228))) ((*1 *1) (-5 *1 (-1229)))
+ ((*1 *1) (-5 *1 (-1230))) ((*1 *1) (-5 *1 (-1231))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2))
- (-4 *5 (-376 *2))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
+ (-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
((*1 *1 *1 *2 *1)
(-12 (-5 *2 "right") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3))
- (-4 *3 (-1222))))
+ (-4 *3 (-1223))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3)) (-4 *3 (-1222))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4444)) (-4 *1 (-119 *3))
+ (-4 *3 (-1223))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1107))
- (-4 *2 (-1222))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1183)) (-5 *1 (-637))))
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106))
+ (-4 *2 (-1223))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1183)) (-5 *1 (-637))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1239 (-551))) (|has| *1 (-6 -4444)) (-4 *1 (-656 *2))
- (-4 *2 (-1222))))
+ (-12 (-5 *3 (-1240 (-569))) (|has| *1 (-6 -4444)) (-4 *1 (-656 *2))
+ (-4 *2 (-1223))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-646 (-551))) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *2 *1 *3 *2)
(-12 (-5 *3 "value") (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2))
- (-4 *2 (-1222))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107))))
+ (-4 *2 (-1223))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106))))
((*1 *2 *1 *3 *2)
(-12 (-5 *3 "last") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2))
- (-4 *2 (-1222))))
+ (-4 *2 (-1223))))
((*1 *1 *1 *2 *1)
(-12 (-5 *2 "rest") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3))
- (-4 *3 (-1222))))
+ (-4 *3 (-1223))))
((*1 *2 *1 *3 *2)
(-12 (-5 *3 "first") (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2))
- (-4 *2 (-1222)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1160 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (|has| *1 (-6 -4444)) (-4 *1 (-1261 *3))
- (-4 *3 (-1222)))))
+ (-4 *2 (-1223)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457)))
- (-5 *2 (-847 *4)) (-5 *1 (-316 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457)))
- (-5 *2 (-847 *4)) (-5 *1 (-1259 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1208) (-426 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
+ (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1179 (-1030 *3))))
+ (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-435 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305))))
+ ((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-1106)) (-5 *2 (-112))
+ (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-551)) (-644 (-551)) (-457)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1253 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6))
- (|:| |%expTerms| (-646 (-2 (|:| |k| (-412 (-551))) (|:| |c| *4))))))
- (|:| |%type| (-1165))))
- (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-426 *3)))
- (-14 *5 (-1183)) (-14 *6 *4))))
+ (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-763)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4)))))
+ (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
+ (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7))
+ (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569))
+ (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173))
+ (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
+ (-4 *8 (-1055)) (-4 *2 (-955 *9 *7 *5))
+ (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798))
+ (-4 *4 (-955 *8 *6 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1179 (-412 (-1179 *2)))) (-5 *4 (-617 *2))
+ (-4 *2 (-13 (-435 *5) (-27) (-1208)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1106))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *3 (-855))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1055)) (-4 *1 (-955 *4 *5 *3))
+ (-4 *5 (-798)) (-4 *3 (-855))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-1179 *2))) (-4 *5 (-798)) (-4 *4 (-855))
+ (-4 *6 (-1055))
+ (-4 *2
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $)))))
+ (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-1179 (-412 (-958 *5))))) (-5 *4 (-1183))
+ (-5 *2 (-412 (-958 *5))) (-5 *1 (-1049 *5)) (-4 *5 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457))
+ (-5 *2
+ (-2 (|:| |dpolys| (-649 (-248 *5 *6)))
+ (|:| |coords| (-649 (-569)))))
+ (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569)))
+ (-5 *1 (-191)))))
+(((*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4)))))
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-412 (-551))) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))
+ (-5 *4 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *5 *3))))
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-412 (-569)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-296 *3)) (-5 *5 (-412 (-551)))
- (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-412 (-551)))) (-5 *4 (-296 *8))
- (-5 *5 (-1239 (-412 (-551)))) (-5 *6 (-412 (-551)))
- (-4 *8 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-412 (-551))))
- (-5 *7 (-412 (-551))) (-4 *3 (-13 (-27) (-1208) (-426 *8)))
- (-4 *8 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-412 (-551))) (-4 *4 (-1055)) (-4 *1 (-1257 *4 *3))
- (-4 *3 (-1234 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1234 *3))
- (-5 *2 (-412 (-551))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4)))))
+ (-12 (-5 *5 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4375 *5) (|:| -4386 *5)))) (-5 *1 (-1026 *3))
+ (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4375 *5) (|:| -4386 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4)))))
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4))) (-5 *2 (-51))
- (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))
+ (-5 *4 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-551)) (-5 *2 (-51))
- (-5 *1 (-319 *6 *3))))
+ (-12 (-5 *4 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4375 *4) (|:| -4386 *4)))) (-5 *1 (-1027 *3))
+ (-4 *3 (-1249 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-551)))
- (-4 *7 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-551)))
- (-4 *3 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-551)) (-4 *4 (-1055)) (-4 *1 (-1236 *4 *3))
- (-4 *3 (-1265 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1234 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-925)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-4 *1 (-1255 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *5 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4375 *5) (|:| -4386 *5)))) (-5 *1 (-1027 *3))
+ (-4 *3 (-1249 *5)) (-5 *4 (-2 (|:| -4375 *5) (|:| -4386 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1183)))
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-551))))
- (-4 *4 (-13 (-1248 *3) (-562) (-10 -8 (-15 -3582 ($ $ $))))) (-4 *3 (-562))
- (-5 *1 (-1252 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *1))))
- (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1227)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-1252 *3 *2))
- (-4 *2 (-13 (-1248 *3) (-562) (-10 -8 (-15 -3582 ($ $ $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131))
- (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| -4404 *3) (|:| -4388 *4)))) (-5 *1 (-740 *3 *4))
- (-4 *3 (-1055)) (-4 *4 (-731))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-1160 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-242))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-646 (-1165))) (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *1 (-242))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))))
+ (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
+ (-5 *1 (-633 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-337 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367)))
- (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-4 *7 (-346 *4 *5 *6))
- (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-837 (-925)))))
- ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-551)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1248 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4))
- (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-776))
- (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-762)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3))
+ (-4 *3 (-955 *4 *6 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6))
- (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-1248 (-412 *4)))
- (-4 *6 (-346 (-412 (-551)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-337 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367))
- (-4 *7 (-1248 *6)) (-4 *4 (-1248 (-412 *7))) (-4 *8 (-346 *6 *7 *4))
- (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1024 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-4 *3 (-562)) (-5 *2 (-776))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *1 *1) (-4 *1 (-1066)))
- ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-551))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-551))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-412 (-551))) (-5 *1 (-877 *4 *5)) (-5 *3 (-551))
- (-4 *5 (-875 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1248 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3)))
- (|has| *2 (-15 -4396 (*2 (-1183)))) (-4 *2 (-1055)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-175 *3)) (-4 *3 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-679 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-855))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1248 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1248 *3))))
+ (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4))))
+ (-5 *1 (-930 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-412 (-551)))) (-5 *2 (-412 (-551))) (-5 *1 (-191))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-694 (-317 (-226)))) (-5 *3 (-646 (-1183)))
- (-5 *4 (-1272 (-317 (-226)))) (-5 *1 (-206))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-296 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1107))
- (-4 *3 (-1222)) (-5 *1 (-296 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-312 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)) (-5 *1 (-296 *2))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-646 *1))) (-4 *1 (-301))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4))))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6))
+ (-4 *6 (-457)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927))
+ (-4 *2 (-367)) (-14 *5 (-999 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855))
+ (-4 *6 (-239 (-2394 *4) (-776)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6))
+ (-2 (|:| -2114 *5) (|:| -2777 *6))))
+ (-14 *4 (-649 (-1183))) (-4 *2 (-173))
+ (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4))
+ (-4 *4 (-1249 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5))
+ (-4 *4 (-1055)) (-4 *5 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 (-1 *1 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055))
+ (-4 *2 (-855))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-646 *1))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6))
+ (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-301))))
+ (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *2 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-1 *1 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-296 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-296 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-551))) (-5 *4 (-1185 (-412 (-551)))) (-5 *1 (-313 *2))
- (-4 *2 (-38 (-412 (-551))))))
+ (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-979 *4 *5 *6))
+ (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855))
- (-4 *5 (-173))))
- ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-426 *5))
- (-4 *5 (-1107)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-646 *1)))
- (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-776)))
- (-5 *4 (-646 (-1 *1 (-646 *1)))) (-4 *1 (-426 *5)) (-4 *5 (-1107))
- (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-646 (-776))) (-5 *4 (-646 (-1 *1 *1)))
- (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-113))) (-5 *3 (-646 *1)) (-5 *4 (-1183))
- (-4 *1 (-426 *5)) (-4 *5 (-1107)) (-4 *5 (-619 (-540)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1183)) (-4 *1 (-426 *4)) (-4 *4 (-1107))
- (-4 *4 (-619 (-540)))))
- ((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-619 (-540)))))
+ (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797))
+ (-4 *2 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1026 *4))
+ (-4 *4 (-1249 (-569))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
+ (-5 *1 (-633 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1273 *4))
+ (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
+ (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-1183))) (-4 *1 (-426 *3)) (-4 *3 (-1107))
- (-4 *3 (-619 (-540)))))
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107))
- (-4 *3 (-619 (-540)))))
- ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1107))
- (-4 *5 (-1222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-837 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1107))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-412 (-952 *4))) (-5 *3 (-1183)) (-4 *4 (-562))
- (-5 *1 (-1046 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1183))) (-5 *4 (-646 (-412 (-952 *5))))
- (-5 *2 (-412 (-952 *5))) (-4 *5 (-562)) (-5 *1 (-1046 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-296 (-412 (-952 *4)))) (-5 *2 (-412 (-952 *4))) (-4 *4 (-562))
- (-5 *1 (-1046 *4))))
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-762)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8))))
+ (-5 *5 (-776)) (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147)))
+ (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1183))))
+ (-4 *10 (-798))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-649
+ (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11))
+ (|:| |wcond| (-649 (-958 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *8))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *8))))))))))
+ (|:| |rgsz| (-569))))
+ (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457))
+ (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7))
+ (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -1968 (-649 (-1183))) (|:| -1977 (-649 (-1183)))))
+ (-5 *1 (-1225)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))
+ (-5 *2 (-412 (-569))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-296 (-412 (-952 *4))))) (-5 *2 (-412 (-952 *4)))
- (-4 *4 (-562)) (-5 *1 (-1046 *4))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1160 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1248 *4)) (-4 *4 (-1055)) (-5 *2 (-1272 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1055)) (-5 *2 (-1177 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1055)) (-4 *1 (-1248 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-956 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1)))
- (-4 *1 (-1248 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1248 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1248 *3)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)))))
-(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1248 *2))
- (-4 *2 (-173))))
- ((*1 *2)
- (-12 (-4 *4 (-1248 *2)) (-4 *2 (-173)) (-5 *1 (-414 *3 *2 *4))
- (-4 *3 (-415 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173))))
- ((*1 *2)
- (-12 (-4 *3 (-1248 *2)) (-5 *2 (-551)) (-5 *1 (-773 *3 *4))
- (-4 *4 (-415 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *3 (-173))))
- ((*1 *2 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *3 (-173))))
- ((*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1248 *3)) (-4 *3 (-1055))
- (-4 *3 (-562))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1055)) (-4 *2 (-562)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -4404 *4) (|:| -2162 *3) (|:| -3321 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-1071 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -4404 *3) (|:| -2162 *1) (|:| -3321 *1)))
- (-4 *1 (-1248 *3)))))
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-455 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-455 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
+ (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *4 (-562)) (-4 *5 (-1248 *4))
- (-5 *2 (-2 (|:| -1949 (-628 *4 *5)) (|:| -1948 (-412 *5))))
- (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-457)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1248 *3)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1246 *4 *2))
- (-4 *2 (-1248 *4)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3)))
- (-5 *1 (-1245 *4 *3)) (-4 *3 (-1248 *4)))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367))
+ (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
+ (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569)))
+ (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-147))) (-5 *2 (-646 *3)) (-5 *1 (-1244 *4 *3))
- (-4 *3 (-1248 *4)))))
+ (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
+ (|:| |wcond| (-649 (-958 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *4))))))))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *1) (-5 *1 (-473))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-147)))
- (-5 *2 (-2 (|:| -3560 *3) (|:| -3559 *3))) (-5 *1 (-1244 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1244 *3 *2))
- (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-562) (-147)))
- (-5 *1 (-1244 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-562) (-147)))
- (-5 *1 (-1244 *4 *2)) (-4 *2 (-1248 *4)))))
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-997 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-376 *5))))
+ (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1273 *6)) (-5 *4 (-1273 (-569))) (-5 *5 (-569))
+ (-4 *6 (-1106)) (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457))
+ (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
+ (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-997 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3))
- (-4 *6 (-376 *4)) (-4 *3 (-376 *5))))
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3371 (-649 *6)))
+ *7 *6))
+ (-4 *6 (-367)) (-4 *7 (-661 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1273 *6) "failed"))
+ (|:| -3371 (-649 (-1273 *6)))))
+ (-5 *1 (-818 *6 *7)) (-5 *4 (-1273 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
+ (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-5 *2 (-649 (-649 (-949 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055))
+ (-4 *1 (-1140 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1055))
+ (-4 *1 (-1140 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1140 *4)) (-4 *4 (-1055))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1140 *4)) (-4 *4 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172)))
+ (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172)))
+ (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-762)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *5))))))))))
+ (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6))
+ (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *4 (-649 (-927))) (-5 *1 (-473))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))
+ ((*1 *1 *1) (-5 *1 (-473))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855))
+ (-4 *3 (-1106)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -2150 *4) (|:| -2341 (-569)))))
+ (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112))
+ (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1183)))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-997 *4)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5))))
+ (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457))
+ (-14 *5 (-649 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| A (-694 *5))
+ (|:| |eqs|
+ (-649
+ (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)) (|:| -4289 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5))
+ (-4 *6 (-661 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5))
- (-5 *2 (-2 (|:| -3705 *7) (|:| |rh| (-646 (-412 *6)))))
- (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-646 (-412 *6))) (-4 *7 (-663 *6))
- (-4 *3 (-663 (-412 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-997 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1243 *4 *5 *3))
- (-4 *3 (-1248 *5)))))
+ (-12 (-4 *5 (-367)) (-4 *6 (-661 *5))
+ (-5 *2 (-2 (|:| -4368 (-694 *6)) (|:| |vec| (-1273 *5))))
+ (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *4 (-997 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-376 *4))))
+ (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
+ (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1183))) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-997 *4)) (-4 *2 (-376 *4))
- (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-376 *5))))
+ (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *6 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
+ (|:| |wcond| (-649 (-958 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *4))))))))))
+ (-5 *1 (-930 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7))
+ (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183))))
+ (-4 *8 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
+ (|:| |wcond| (-649 (-958 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *6))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *6))))))))))
+ (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-927))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
+ (|:| |wcond| (-649 (-958 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *6))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *6))))))))))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
+ (|:| -3371 (-649 (-1273 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1165))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-1165))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
+ (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927))
+ (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
+ (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1183))) (-5 *5 (-927))
+ (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
+ (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1165))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 *4))))
+ (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106))
+ (-4 *7 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-1109 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1106))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-997 *4)) (-4 *4 (-562)) (-5 *2 (-694 *4))
- (-5 *1 (-698 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *4 (-997 *3)) (-5 *1 (-1243 *3 *4 *2))
- (-4 *2 (-1248 *4)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1106)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1022 *4 *5))
+ (-5 *3 (-412 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-376 *4))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5)))
+ (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569)))))
+ (-14 *6 (-927)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
+ (-5 *5 (-1 (-423 *7) *7))
+ (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
+ (-5 *5 (-1 (-423 *7) *7))
+ (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-508 *2 *4 *5 *3))
- (-4 *5 (-376 *2)) (-4 *3 (-376 *4))))
+ (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
+ (-4 *6 (-1249 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 *4)) (-4 *4 (-997 *2)) (-4 *2 (-562))
- (-5 *1 (-698 *2 *4))))
+ (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
+ (-4 *6 (-1249 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-5 *2 (-649 (-649 (-649 (-776))))))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-686))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-976))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-1079))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1124)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1249 *4))
+ (-5 *1 (-928 *4 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *3 (-649 (-265)))
+ (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173))
+ (-5 *2 (-1273 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6)
+ (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3566 *6)))
+ (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4))))
+ (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5))
+ (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4289 *3))))
+ (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
+ (-4 *7 (-661 (-412 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5))
+ (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4289 (-659 *6 (-412 *6))))))
+ (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-5 *2 (-649 (-649 (-649 (-949 *3))))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
+ (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1406 (-649 *1)) (|:| -2290 *1)))
+ (-5 *3 (-649 *1)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927))
+ (-5 *2 (-1278)) (-5 *1 (-473))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927))
+ (-5 *2 (-1278)) (-5 *1 (-473)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867)))
+ (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867)))
+ (|:| |args| (-649 (-867)))))
+ (-5 *1 (-1183)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1249 *6))
+ (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-569))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -4289
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1021 *6 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-649 *7) *7 (-1179 *7))) (-5 *5 (-1 (-423 *7) *7))
+ (-4 *7 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4289 *3))))
+ (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7))
+ (-4 *8 (-661 (-412 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2
+ (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4289 (-659 *6 (-412 *6))))))
+ (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-172)))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1223)) (-4 *1 (-239 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
+ ((*1 *1 *1) (-4 *1 (-550)))
+ ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1223)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008))
+ (-4 *2 (-1055)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4))
+ (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *7 (-1249 *5)) (-4 *4 (-729 *5 *7))
+ (-5 *2 (-2 (|:| -4368 (-694 *6)) (|:| |vec| (-1273 *5))))
+ (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2671 (-649 (-2 (|:| |irr| *10) (|:| -2727 (-569)))))))
+ (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310))
+ (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798))
+ (-5 *2
+ (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-649 (-1179 *3)))))
+ (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1179 *3))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457))
+ (-5 *1 (-924 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *1 (-473)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
((*1 *2 *3)
- (-12 (-4 *4 (-997 *2)) (-4 *2 (-562)) (-5 *1 (-1243 *2 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-786 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-962 *3 *2)) (-4 *2 (-131)) (-4 *3 (-562)) (-4 *3 (-1055))
- (-4 *2 (-797))))
- ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1177 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-562))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1183)) (-4 *3 (-1055)))))
-(((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-5 *1 (-1239 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1100 *3)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2) (-12 (-5 *1 (-1239 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1222)))))
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6))
+ (|:| -3566 *6)))
+ (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855))
+ (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8))
+ (-4 *8 (-955 *3 *7 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1249 *4))
+ (-5 *1 (-815 *4 *2))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1208) (-965))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457))
+ (-5 *1 (-924 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226)))
+ (-5 *1 (-473)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1223)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3))
+ (-4 *3 (-679 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1183))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-649 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1208) (-27) (-435 *8)))
+ (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569))
+ (-5 *2 (-649 *4)) (-5 *1 (-1020 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *2 (-1115 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
(-5 *2
- (-2 (|:| |contp| (-551))
- (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551)))))))
- (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-815 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-2 (|:| -3371 (-649 (-412 *6))) (|:| -4368 (-694 *5))))
+ (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
(-5 *2
- (-2 (|:| |contp| (-551))
- (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551)))))))
- (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-410 *3)) (-5 *1 (-217 *4 *3))
- (-4 *3 (-1248 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-815 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-2 (|:| -3371 (-649 (-412 *6))) (|:| -4368 (-694 *5))))
+ (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1055))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-686))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1124)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
+ ((*1 *1 *1) (-4 *1 (-1008)))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1018))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-927))))
+ ((*1 *1 *1) (-4 *1 (-1018))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-679 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-151 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-649 (-2 (|:| -2777 (-776)) (|:| -2132 *4) (|:| |num| *4))))
+ (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-5 *3 (-649 (-1183))) (-5 *4 (-112)) (-5 *1 (-442))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1163 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4))
+ (-4 *4 (-173))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4))
+ (-4 *4 (-173))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4))
+ (-4 *4 (-173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1106))
+ (-5 *1 (-680 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1106))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *3))
+ (-2 (|:| -2114 *2) (|:| -2777 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-843))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 *4))))
+ (-4 *4 (-1106)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-776))) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1106) (-34)))
+ (-5 *2 (-649 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5))
+ (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3550 *5))))
+ (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34)))
+ (-5 *2 (-649 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3550 *4)))
+ (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34)))
+ (-5 *1 (-1146 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1106) (-34)))
+ (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1146 *2 *3))) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3))
+ (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1183))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-649 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1208) (-27) (-435 *8)))
+ (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -4386 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1019 *8 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *3 (-1249 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3))
+ (-4 *5 (-661 (-412 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-412 *5))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4))
+ (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227))
+ (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1) (-5 *1 (-867)))
((*1 *2 *3)
- (-12 (-5 *2 (-410 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1248 (-412 (-551))))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))))
+ (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776))
+ (-5 *1 (-1171 *4 *5)) (-14 *4 (-927))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
+ (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383))))
+ (-5 *1 (-808)))))
+(((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1248 (-48)))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48)))))
+ (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1249 (-48)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-410 *3))
- (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5))))
+ (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798))
+ (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-48))) (-4 *5 (-855)) (-4 *6 (-798))
- (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-42 *5 *6 *7))
- (-5 *3 (-1177 *7))))
+ (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798))
+ (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1179 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3))
+ (-4 *3 (-1249 (-170 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-410 *3)) (-5 *1 (-217 *4 *3))
- (-4 *3 (-1248 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551)))))
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3))
+ (-4 *3 (-1249 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-776))) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-646 (-776))) (-5 *5 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3))
+ (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-410 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551)))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1249 (-569)))))
((*1 *2 *3)
- (-12 (-5 *2 (-410 (-169 (-551)))) (-5 *1 (-451)) (-5 *3 (-169 (-551)))))
+ (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451))
+ (-5 *3 (-170 (-569)))))
((*1 *2 *3)
(-12
(-4 *4
(-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))))
- (-4 *5 (-798)) (-4 *7 (-562)) (-5 *2 (-410 *3))
- (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-562)) (-4 *3 (-956 *7 *5 *4))))
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3))
+ (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561))
+ (-4 *3 (-955 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-5 *2 (-410 (-1177 *4))) (-5 *1 (-463 *4))
- (-5 *3 (-1177 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-410 *3))
- (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1248 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-410 (-1177 *7)) (-1177 *7))) (-4 *7 (-13 (-310) (-147)))
- (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-410 *3)) (-5 *1 (-545 *5 *6 *7 *3))
- (-4 *3 (-956 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-410 (-1177 *7)) (-1177 *7))) (-4 *7 (-13 (-310) (-147)))
- (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-956 *7 *6 *5))
- (-5 *2 (-410 (-1177 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1177 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *6 (-1248 *5)) (-5 *2 (-646 (-660 (-412 *6)))) (-5 *1 (-664 *5 *6))
- (-5 *3 (-660 (-412 *6)))))
+ (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1179 *4))) (-5 *1 (-463 *4))
+ (-5 *3 (-1179 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3))
+ (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1249 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7)))
+ (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798))
+ (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3))
+ (-4 *3 (-955 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7)))
+ (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798))
+ (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1179 *8)))
+ (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1179 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5)) (-5 *2 (-649 (-658 (-412 *6))))
+ (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *5 (-1248 *4)) (-5 *2 (-646 (-660 (-412 *5)))) (-5 *1 (-664 *4 *5))
- (-5 *3 (-660 (-412 *5)))))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5))))
+ (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-646 (-677 *4)))
+ (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4)))
(-5 *1 (-677 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-5 *2 (-646 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1248 *4))))
+ (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3))
+ (-4 *3 (-1249 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-354)) (-5 *2 (-410 *3))
- (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
+ (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3))
+ (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-354)) (-4 *7 (-956 *6 *5 *4))
- (-5 *2 (-410 (-1177 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1177 *7))))
+ (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-798))
(-4 *5
(-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ "failed") (-1183))))))
- (-4 *6 (-310)) (-5 *2 (-410 *3)) (-5 *1 (-735 *4 *5 *6 *3))
- (-4 *3 (-956 (-952 *6) *4 *5))))
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3))
+ (-4 *3 (-955 (-958 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)))))
- (-4 *6 (-562)) (-5 *2 (-410 *3)) (-5 *1 (-737 *4 *5 *6 *3))
- (-4 *3 (-956 (-412 (-952 *6)) *4 *5))))
+ (-12 (-4 *4 (-798))
+ (-4 *5 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *6 (-561))
+ (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3))
+ (-4 *3 (-955 (-412 (-958 *6)) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147)))
- (-5 *2 (-410 *3)) (-5 *1 (-738 *4 *5 *6 *3))
- (-4 *3 (-956 (-412 *6) *4 *5))))
+ (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3))
+ (-4 *3 (-955 (-412 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147)))
- (-5 *2 (-410 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
+ (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3))
+ (-4 *3 (-955 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-410 (-1177 *7))) (-5 *1 (-746 *4 *5 *6 *7))
- (-5 *3 (-1177 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-410 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1248 (-412 (-551))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-410 *3)) (-5 *1 (-1048 *3))
- (-4 *3 (-1248 (-412 (-952 (-551)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1248 (-412 (-551))))
- (-4 *5 (-13 (-367) (-147) (-729 (-412 (-551)) *4))) (-5 *2 (-410 *3))
- (-5 *1 (-1086 *4 *5 *3)) (-4 *3 (-1248 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1248 (-412 (-952 (-551)))))
- (-4 *5 (-13 (-367) (-147) (-729 (-412 (-952 (-551))) *4))) (-5 *2 (-410 *3))
- (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1248 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-410 (-1177 (-412 *7)))) (-5 *1 (-1179 *4 *5 *6 *7))
- (-5 *3 (-1177 (-412 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1227))))
- ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-551))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-876 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-551))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-551)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-875 *3))))
- ((*1 *1 *1) (-12 (-14 *2 (-551)) (-5 *1 (-877 *2 *3)) (-4 *3 (-875 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-551)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-1265 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1265 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-426 *4)))))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-51)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-296 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-551))) (-5 *4 (-296 *6))
- (-4 *6 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-551))) (-5 *4 (-296 *7)) (-5 *5 (-1239 (-776)))
- (-4 *7 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-296 *3)) (-5 *6 (-1239 (-776)))
- (-4 *3 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-51))
- (-5 *1 (-464 *7 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1265 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1234 *4)) (-4 *4 (-1055)) (-4 *4 (-562))
- (-5 *2 (-412 (-952 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1234 *4)) (-4 *4 (-1055)) (-4 *4 (-562))
- (-5 *2 (-412 (-952 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-128)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925))))
- ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
- ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
-(((*1 *1 *1 *1) (-5 *1 (-128)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925))))
- ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
- ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173))))
- ((*1 *1) (-5 *1 (-552))) ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-5 *1 (-554)))
- ((*1 *1) (-5 *1 (-555))) ((*1 *1) (-4 *1 (-731))) ((*1 *1) (-5 *1 (-1183)))
- ((*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-925))))
- ((*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-925)))) ((*1 *1) (-5 *1 (-1228)))
- ((*1 *1) (-5 *1 (-1229))) ((*1 *1) (-5 *1 (-1230))) ((*1 *1) (-5 *1 (-1231))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-551))) (-5 *2 (-112)) (-5 *1 (-451))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3))
+ (-4 *3 (-1249 (-412 (-569))))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551)))))
- (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-550))))
- ((*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3666 (-646 (-1183))) (|:| -3667 (-646 (-1183)))))
- (-5 *1 (-1225)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2))
- (-4 *2 (-1107))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1047 *3))
+ (-4 *3 (-1249 (-412 (-958 (-569)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-855)) (-5 *1 (-1224 *2)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1107)) (-5 *2 (-112))
- (-5 *1 (-1224 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3667 (-646 *3)) (|:| -3666 (-646 *3))))
- (-5 *1 (-1224 *3)) (-4 *3 (-1107)))))
+ (-12 (-4 *4 (-1249 (-412 (-569))))
+ (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4)))
+ (-5 *2 (-423 *3)) (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1249 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1249 (-412 (-958 (-569)))))
+ (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4)))
+ (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1249 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7))))
+ (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-5 *2 (-1278)) (-5 *1 (-1224 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))))
+ (-12 (-4 *4 (-13 (-367) (-853)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2671 (-423 *3))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1274)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-4 *5 (-354)) (-5 *2 (-410 (-1177 (-1177 *5))))
- (-5 *1 (-1221 *5)) (-5 *3 (-1177 (-1177 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-410 (-1177 (-1177 *4)))) (-5 *1 (-1221 *4))
- (-5 *3 (-1177 (-1177 *4))))))
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5))
+ (-5 *2 (-649 (-2 (|:| -3600 *5) (|:| -4289 *3))))
+ (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
+ (-4 *7 (-661 (-412 *6))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-410 (-1177 (-1177 *4)))) (-5 *1 (-1221 *4))
- (-5 *3 (-1177 (-1177 *4))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3))
- (-4 *3 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1217 *4 *5 *3 *2)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-646 (-646 (-226)))) (-5 *4 (-226)) (-5 *2 (-646 (-949 *4)))
- (-5 *1 (-1219)) (-5 *3 (-949 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-551)) (-5 *2 (-646 (-646 (-226)))) (-5 *1 (-1219)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
+ (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4))
+ (-14 *3 (-927)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-925)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055)) (-4 *4 (-1222))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-4407 *3) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *5))
- (-2 (|:| -2581 *2) (|:| -2582 *5))))
- (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855))
- (-4 *7 (-956 *4 *5 (-869 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-473))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-226)) (-5 *5 (-551)) (-5 *2 (-1218 *3)) (-5 *1 (-795 *3))
- (-4 *3 (-980))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1218 *2))
- (-4 *2 (-980)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
+ (-12
+ (-5 *2
+ (-649
+ (-2
+ (|:| -1963
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226))))
+ (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226)))
+ (|:| |g| (-319 (-226))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2179
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383)))))))
+ (-5 *1 (-808)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1249 (-170 *2))))))
+(((*1 *1) (-5 *1 (-1274))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1830 (-787 *3)) (|:| |coef1| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1830 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106))))
+ ((*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4))
+ (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4289 *5))))
+ (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5))
+ (-4 *6 (-661 (-412 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2)))
+ (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5))
+ (-4 *3 (-346 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
+ (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055))
+ (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 (-569)))) (-5 *1 (-471)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2738 (-649 (-867))) (|:| -3576 (-649 (-867)))
+ (|:| |presup| (-649 (-867))) (|:| -2728 (-649 (-867)))
+ (|:| |args| (-649 (-867)))))
+ (-5 *1 (-1183))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1274))))
+ ((*1 *1 *1) (-5 *1 (-1274))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3))
+ (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1249 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1830 (-787 *3)) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798)) (-4 *8 (-855))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3766 (-646 *9)))) (-5 *3 (-646 *9))
- (-4 *1 (-1217 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3766 (-646 *8)))) (-5 *3 (-646 *8))
- (-4 *1 (-1217 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *6)))))
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1830 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1071 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-2 (|:| -4311 (-646 *6)) (|:| -1880 (-646 *6)))))))
+ (-12 (-4 *1 (-700 *3)) (-4 *3 (-1106))
+ (-5 *2 (-649 (-2 (|:| -2179 *3) (|:| -3469 (-776))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1249 *4)) (-5 *1 (-814 *4 *2 *3 *5))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *5 (-661 (-412 *2))))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2)))
+ (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5))
+ (-4 *3 (-346 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
+ (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055))
+ (-5 *1 (-1171 *4 *5)) (-14 *4 (-927))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
+ (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
+(((*1 *1) (-5 *1 (-808))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 (-1273 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112))))
+ (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106))
+ (-4 *4 (-561)) (-5 *2 (-412 (-1179 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-1179 (-412 (-1179 *3)))) (-5 *1 (-565 *6 *3 *7))
+ (-5 *5 (-1179 *3)) (-4 *7 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055))
+ (-5 *2 (-1246 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-1179 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1179 *1))
+ (-4 *1 (-955 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1179 *3)))
+ (-5 *1 (-956 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1179 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $)))))
+ (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855))
+ (-4 *6 (-1055)) (-5 *1 (-956 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-4 *5 (-561))
+ (-5 *2 (-412 (-1179 (-412 (-958 *5))))) (-5 *1 (-1049 *5))
+ (-5 *3 (-412 (-958 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1249 (-170 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1249 (-170 *2))))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879))
+ (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *7 (-906 *6))
+ (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7))
+ (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4443)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *3 *5))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *5 (-661 (-412 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *5 *3))
+ (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-661 *2))
+ (-4 *3 (-661 (-412 *2))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1217 *5 *6 *7 *3)) (-4 *5 (-562))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1227))
+ (-4 *6 (-1249 (-412 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-346 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1055)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1183))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1208) (-965)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3371 (-649 *4))))
+ (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-1249 (-170 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1217 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-646 *7))) (-4 *1 (-1217 *4 *5 *6 *7))
- (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-646 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8))
- (-4 *1 (-1217 *5 *6 *7 *8)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1217 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *5 (-1071 *2 *3 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5)))))
+ (-12
+ (-5 *2
+ (-1273
+ (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3604 (-569))
+ (|:| -3582 (-569)) (|:| |spline| (-569)) (|:| -2595 (-569))
+ (|:| |axesColor| (-879)) (|:| -3051 (-569))
+ (|:| |unitsColor| (-879)) (|:| |showing| (-569)))))
+ (-5 *1 (-1274)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 *10))
- (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8))
- (-4 *10 (-1115 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-633 *5 *6))))
+ (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183)))
+ (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-646 (-1183)))
- (-5 *2 (-646 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
- (-5 *1 (-633 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8)))
- (-5 *1 (-1033 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8)))
- (-5 *1 (-1033 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-1052 *5 *6))))
+ (-12 (-4 *5 (-1106)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6))
+ (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2132 *5) (|:| -3387 *5))))
+ (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5))
+ (-4 *6 (-661 (-412 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-1077 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8)))
- (-5 *1 (-1152 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8)))
- (-5 *1 (-1152 *5 *6 *7 *8))))
+ (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2132 *4) (|:| -3387 *4))))
+ (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4))
+ (-4 *6 (-661 (-412 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1217 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-646 (-2 (|:| -4311 *1) (|:| -1880 (-646 *7))))) (-5 *3 (-646 *7))
- (-4 *1 (-1217 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1217 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-646 (-1183)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 (-925))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-925)) (-14 *5 (-999 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-317 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-131))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-388 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-562)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1248 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *5)) (-5 *3 (-646 (-776))) (-4 *1 (-745 *4 *5))
- (-4 *4 (-1055)) (-4 *5 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 (-776))) (-4 *1 (-956 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *2 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-956 *4 (-536 *5) *5)) (-5 *1 (-1132 *4 *5 *2))
- (-4 *4 (-1055)) (-4 *5 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-952 *4)) (-5 *1 (-1215 *4)) (-4 *4 (-1055)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-551))))
- (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5))
- (-4 *5 (-956 *4 (-536 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1215 *4))) (-5 *3 (-1183)) (-5 *1 (-1215 *4))
- (-4 *4 (-38 (-412 (-551)))) (-4 *4 (-1055)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-619 (-896 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457))
- (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-896 *3))) (-4 *2 (-892 *3))
- (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855))
- (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-551))) (-5 *1 (-1125))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-426 *3) (-1208))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-169 (-317 *4)))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4))))))
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2132 *5) (|:| -3387 *5))))
+ (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5))
+ (-4 *3 (-661 (-412 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2132 *4) (|:| -3387 *4))))
+ (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4))
+ (-4 *3 (-661 (-412 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1249 *5))
+ (-4 *7 (-1249 (-412 *6))) (-5 *2 (-649 (-958 *5)))
+ (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-169 *3))
- (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))))
+ (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
+ (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *4 (-367))
+ (-5 *2 (-649 (-958 *4))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1055)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-112))
- (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-317 *4))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-317 *4))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 (-169 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *4 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *1 (-189 *4 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
+ (-12 (-4 *1 (-805))
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-1041)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-114))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-114)) (-5 *1 (-163))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4))
+ (-4 *4 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305))))
+ ((*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-5 *2 (-114)) (-4 *4 (-1106)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-13 (-435 *3) (-1008) (-1208)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1273 (-3 (-473) "undefined"))) (-5 *1 (-1274)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *3 (-906 *6))
+ (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3))
+ (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4443)))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1249 *5))
+ (-5 *1 (-812 *5 *2 *3 *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
+ (-4 *3 (-661 *2)) (-4 *6 (-661 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1249 *5))
+ (-5 *1 (-812 *5 *2 *3 *6))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *6 (-661 (-412 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
+ (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6))
+ (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1005 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1041))) (-5 *2 (-1041)) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *1) (-5 *1 (-1069)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1160 *4))
+ (-4 *4 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
+ (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-1249 (-170 *3))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3))
+ (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7))
+ (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-811 *5 *6 *7 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-1209 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-646 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1107)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))))
+ (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-896 *4 *5)) (-4 *5 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853)))
+ (-5 *2 (-649 (-2 (|:| -2671 (-649 *3)) (|:| -3534 *5))))
+ (-5 *1 (-182 *5 *3)) (-4 *3 (-1249 (-170 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-367) (-853)))
+ (-5 *2 (-649 (-2 (|:| -2671 (-649 *3)) (|:| -3534 *4))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1274)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1106)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3))
+ (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4443)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1107)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562))))
- ((*1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1208))))
-(((*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1055))
+ (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1249 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055))
+ (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055))
+ (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1106))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-551)) (-5 *1 (-1205 *4)) (-4 *4 (-1055)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-551)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-551))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-908 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4))
- (-5 *2 (-551))))
+ (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3))
+ (-4 *3 (-619 (-383)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-1044 *2) (-644 *2) (-457)))
- (-5 *2 (-551)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-847 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-562) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-551))
- (-5 *1 (-1123 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165))
- (-4 *6 (-13 (-562) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-551))
- (-5 *1 (-1123 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *6)))))
+ (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383)))
+ (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-457)) (-5 *2 (-551))
- (-5 *1 (-1124 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-847 (-412 (-952 *6))))
- (-5 *3 (-412 (-952 *6))) (-4 *6 (-457)) (-5 *2 (-551)) (-5 *1 (-1124 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-412 (-952 *6))) (-5 *4 (-1183)) (-5 *5 (-1165))
- (-4 *6 (-457)) (-5 *2 (-551)) (-5 *1 (-1124 *6))))
- ((*1 *2 *3) (|partial| -12 (-5 *2 (-551)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-368 *2)) (-4 *2 (-1107))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-113))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-646 (-868)))) (-5 *1 (-113))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-868) (-646 (-868)))) (-5 *1 (-113))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $))
- (-15 -2153 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-398))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-398))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1202))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1202)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-776)) (-4 *3 (-1222)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3))))
- ((*1 *1) (-5 *1 (-172)))
- ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1107))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394))))
- ((*1 *1) (-5 *1 (-398)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *1)
- (-12 (-4 *3 (-1107)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1107))
- (-4 *4 (-671 *3))))
- ((*1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107))))
- ((*1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055))))
- ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055))))
- ((*1 *1 *1) (-5 *1 (-1183))) ((*1 *1) (-5 *1 (-1183)))
- ((*1 *1) (-5 *1 (-1202))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1202)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-1201)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-285 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-285 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -4310
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| -2264
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1613
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-565))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -4310
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (|:| -2264
- (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382))
- (|:| |expense| (-382)) (|:| |accuracy| (-382))
- (|:| |intermediateResults| (-382))))))
- (-5 *1 (-808))))
+ (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383)))
+ (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1107)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1107))
- (-4 *5 (-1107)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1107))
- (-4 *5 (-1107)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| -4310 *3) (|:| -2264 *4)))) (-4 *3 (-1107))
- (-4 *4 (-1107)) (-4 *1 (-1199 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
+ (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383)))
+ (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383)))
+ (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-5 *2 (-1177 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-367)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-646 (-646 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-646 (-646 *5)))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-646 *3))) (-5 *1 (-1196 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-1196 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855))
- (-5 *2
- (-2 (|:| |f1| (-646 *4)) (|:| |f2| (-646 (-646 (-646 *4))))
- (|:| |f3| (-646 (-646 *4))) (|:| |f4| (-646 (-646 (-646 *4))))))
- (-5 *1 (-1194 *4)) (-5 *3 (-646 (-646 (-646 *4)))))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-855)) (-5 *3 (-646 *6)) (-5 *5 (-646 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-646 *5)) (|:| |f3| *5) (|:| |f4| (-646 *5))))
- (-5 *1 (-1194 *6)) (-5 *4 (-646 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5))))
+ (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1249 (-170 (-569)))) (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-4 *7 (-997 *4)) (-4 *2 (-691 *7 *8 *9))
- (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-691 *4 *5 *6))
- (-4 *8 (-376 *7)) (-4 *9 (-376 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)) (-4 *2 (-367))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-646 (-646 *4))) (-5 *1 (-1194 *4))
- (-5 *3 (-646 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-1196 (-646 *4))) (-5 *1 (-1194 *4))
- (-5 *3 (-646 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-646 (-646 (-646 *4)))) (-5 *1 (-1194 *4))
- (-5 *3 (-646 (-646 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1196 (-646 *4))) (-4 *4 (-855)) (-5 *2 (-646 (-646 *4)))
- (-5 *1 (-1194 *4)))))
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4))
+ (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-646 *4)))) (-5 *2 (-646 (-646 *4)))
- (-5 *1 (-1194 *4)) (-4 *4 (-855)))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-688 *4 *5)) (-4 *4 (-1106))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-646 *4)))) (-5 *2 (-646 (-646 *4))) (-4 *4 (-855))
- (-5 *1 (-1194 *4)))))
+ (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776)))
+ (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-1273 *3))
+ (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4443)))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-390 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6))
+ (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 (-646 (-646 *4)))) (-5 *3 (-646 *4)) (-4 *4 (-855))
- (-5 *1 (-1194 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-646 (-646 (-646 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-646 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))))
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1)))
+ (-4 *1 (-857 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
+ ((*1 *1 *1 *1) (-4 *1 (-798))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6))
+ (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055))
+ (-5 *1 (-695 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-646 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-646 *4))))
- (-5 *1 (-1194 *6)) (-5 *5 (-646 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-952 *5)))) (-5 *1 (-1192 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 (-551)))))
- (-5 *2 (-646 (-646 (-296 (-952 *4))))) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-296 (-412 (-952 (-551))))))
- (-5 *2 (-646 (-646 (-296 (-952 *4))))) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367)))))
+ (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1183)))
+ (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5))
+ (-4 *5 (-13 (-853) (-367)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 (-551)))) (-5 *2 (-646 (-296 (-952 *4))))
- (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))
+ (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1183))) (-4 *6 (-367))
+ (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
+ (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1274))
+ (-5 *1 (-1277))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-412 (-952 (-551))))) (-5 *2 (-646 (-296 (-952 *4))))
- (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
+ (-5 *2 (-1274)) (-5 *1 (-1277)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1183))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1208) (-966)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2200 (-646 *4))))
- (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-663 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-663 *2))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4))))
+ (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569))))))
+ (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-170 *5))))
+ (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-4 *2 (-457))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2))
+ (-4 *4 (-1249 (-412 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-457))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-1249 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-457))
+ (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367))
+ (-4 *5 (-13 (-367) (-853))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
+ (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473))
+ (-5 *1 (-1277))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-4 *7 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-5 *2 (-646 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2200 (-646 *7)))))
- (-5 *1 (-672 *5 *6 *7 *3)) (-5 *4 (-646 *7)) (-4 *3 (-691 *5 *6 *7))))
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
+ (-5 *2 (-473)) (-5 *1 (-1277)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-511)) (-4 *4 (-1106)) (-5 *1 (-935 *4 *2))
+ (-4 *2 (-435 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1272 *5) #2="failed"))
- (|:| -2200 (-646 (-1272 *5)))))
- (-5 *1 (-673 *5)) (-5 *4 (-1272 *5))))
+ (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-319 (-569)))
+ (-5 *1 (-936)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569))))))
+ (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-646 *5))) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1272 *5) #2#)) (|:| -2200 (-646 (-1272 *5)))))
- (-5 *1 (-673 *5)) (-5 *4 (-1272 *5))))
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569)))))))
+ (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2
- (-646
- (-2 (|:| |particular| (-3 (-1272 *5) #2#))
- (|:| -2200 (-646 (-1272 *5))))))
- (-5 *1 (-673 *5)) (-5 *4 (-646 (-1272 *5)))))
+ (-12 (-5 *3 (-412 (-958 (-170 (-569)))))
+ (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-646 *5))) (-4 *5 (-367))
+ (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569))))))
+ (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-367) (-853))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *3 (-779)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-646
- (-2 (|:| |particular| (-3 (-1272 *5) #2#))
- (|:| -2200 (-646 (-1272 *5))))))
- (-5 *1 (-673 *5)) (-5 *4 (-646 (-1272 *5)))))
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
+ (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-775 *5))))
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
+ (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *1) (-5 *1 (-144)))
((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-775 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-966)))))
+ (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-265)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1223))
+ (-4 *5 (-1223)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7)))))
- (-5 *1 (-807 *6 *7)) (-5 *4 (-1272 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183))
- (-4 *6 (-13 (-29 *5) (-1208) (-966)))
- (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-1272 *6))) (-5 *1 (-807 *5 *6))))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776))
+ (-4 *7 (-1223)) (-4 *5 (-1223)) (-5 *2 (-241 *6 *5))
+ (-5 *1 (-240 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-646 (-296 *7))) (-5 *4 (-646 (-113))) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7)))))
- (-5 *1 (-807 *6 *7))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1223)) (-4 *5 (-1223))
+ (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-646 *7)) (-5 *4 (-646 (-113))) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-2 (|:| |particular| (-1272 *7)) (|:| -2200 (-646 (-1272 *7)))))
- (-5 *1 (-807 *6 *7))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1106)) (-4 *5 (-1106))
+ (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 *7)) (-5 *4 (-113)) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2200 (-646 *7))) *7 #3="failed"))
- (-5 *1 (-807 *6 *7))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1223))
+ (-4 *5 (-1223)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-113)) (-5 *5 (-1183))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2200 (-646 *3))) *3 #3#))
- (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-966)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-296 *2)) (-5 *4 (-113)) (-5 *5 (-646 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-966))) (-5 *1 (-807 *6 *2))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-296 *2)) (-5 *5 (-646 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-966)))
- (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *1 (-807 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382)))
- (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1272 (-317 (-382)))) (-5 *4 (-382)) (-5 *5 (-646 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382)))
- (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1272 (-317 *4))) (-5 *5 (-646 (-382))) (-5 *6 (-317 (-382)))
- (-5 *4 (-382)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1223))
+ (-4 *5 (-1223)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2200 (-646 *6))) "failed") *7 *6))
- (-4 *6 (-367)) (-4 *7 (-663 *6))
- (-5 *2 (-2 (|:| |particular| (-1272 *6)) (|:| -2200 (-694 *6))))
- (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1272 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-776)) (-5 *6 (-646 (-646 (-317 *3)))) (-5 *7 (-1165))
- (-5 *8 (-226)) (-5 *5 (-646 (-317 (-382)))) (-5 *3 (-382)) (-5 *2 (-1041))
- (-5 *1 (-903))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-776)) (-5 *6 (-646 (-646 (-317 *3)))) (-5 *7 (-1165))
- (-5 *5 (-646 (-317 (-382)))) (-5 *3 (-382)) (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *2 (-646 (-382))) (-5 *1 (-1029))
- (-5 *4 (-382))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-551))) (-5 *2 (-646 (-382))) (-5 *1 (-1029))
- (-5 *4 (-382))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-317 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1137 *4))
- (-5 *3 (-296 (-317 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1137 *5))
- (-5 *3 (-296 (-317 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-317 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1183)))
- (-4 *5 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-646 (-646 (-296 (-317 *5))))) (-5 *1 (-1137 *5))
- (-5 *3 (-646 (-296 (-317 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-1192 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1183))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-1192 *5))
- (-5 *3 (-646 (-296 (-412 (-952 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-412 (-952 *4)))) (-4 *4 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-1192 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 (-646 (-296 (-412 (-952 *4))))))
- (-5 *1 (-1192 *4)) (-5 *3 (-646 (-296 (-412 (-952 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *5)))))
- (-5 *1 (-1192 *5)) (-5 *3 (-412 (-952 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *5)))))
- (-5 *1 (-1192 *5)) (-5 *3 (-296 (-412 (-952 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *4))))) (-5 *1 (-1192 *4))
- (-5 *3 (-412 (-952 *4)))))
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1163 *6)) (-4 *6 (-1223))
+ (-4 *3 (-1223)) (-5 *2 (-1163 *3)) (-5 *1 (-1161 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1273 *6)) (-4 *6 (-1223))
+ (-4 *5 (-1223)) (-5 *2 (-1273 *5)) (-5 *1 (-1272 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299))))
((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 (-296 (-412 (-952 *4))))) (-5 *1 (-1192 *4))
- (-5 *3 (-296 (-412 (-952 *4)))))))
-(((*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-551))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1097))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-315))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1158))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1122))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-1188)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1188))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-1188))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-551) (-226) (-511) (-1165) (-1188))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-646 (-282))) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3276)) (-5 *2 (-112)) (-5 *1 (-622))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2407)) (-5 *2 (-112)) (-5 *1 (-622))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3275)) (-5 *2 (-112)) (-5 *1 (-622))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2534)) (-5 *2 (-112)) (-5 *1 (-696 *4))
- (-4 *4 (-618 (-868)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-868))) (-5 *2 (-112))
- (-5 *1 (-696 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-551))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-315)) (-5 *1 (-299))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1165))) (-5 *3 (-1165)) (-5 *2 (-315))
+ (-5 *1 (-299)))))
+(((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-2 (|:| -2669 (-1163 *4)) (|:| -2680 (-1163 *4))))
+ (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-541)) (-5 *1 (-540 *4))
+ (-4 *4 (-1223)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-551))) (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-294))) ((*1 *1) (-5 *1 (-868)))
- ((*1 *1)
- (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *1) (-5 *1 (-1186))) ((*1 *1) (-5 *1 (-1187))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-441)) (-5 *3 (-646 (-1183))) (-5 *4 (-1183)) (-5 *1 (-1186))))
- ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1186))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1183)) (-5 *1 (-1187))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-441)) (-5 *3 (-646 (-1183))) (-5 *1 (-1187)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-441)) (-5 *1 (-1187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1187)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-439))
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-2 (|:| -2534 (-1163 *4)) (|:| -2545 (-1163 *4))))
+ (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-646
- (-3 (|:| -3991 (-1183))
- (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551)))))))))
- (-5 *1 (-1187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1187)))))
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-383)))
+ ((*1 *1) (-5 *1 (-383))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *1 (-1167 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *2 (-1106)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008))
+ (-4 *2 (-1055)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
+(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-383))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1163 *4))) (-4 *4 (-367))
+ (-4 *4 (-1055)) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-646
- (-646
- (-3 (|:| -3991 (-1183))
- (|:| -3663 (-646 (-3 (|:| S (-1183)) (|:| P (-952 (-551))))))))))
- (-5 *1 (-1187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-1187)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 (-441)))))
- (-5 *1 (-1187)))))
-(((*1 *1) (-5 *1 (-1186))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1106)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1106)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void"))) (-5 *2 (-1278))
- (-5 *1 (-1186))))
+ (-12 (-5 *3 (-412 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-561))
+ (-4 *4 (-1055)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *5 *6 *2))
+ (-4 *6 (-661 *5)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))
- (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -4360 #1#)))
- (-5 *2 (-1278)) (-5 *1 (-1186)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
+ (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383)))
+ (-5 *2 (-1041)) (-5 *1 (-845)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *1 (-1167 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1223))
+ (-4 *2 (-1223)) (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (|has| *1 (-6 -4443))
+ (-4 *1 (-151 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2))
+ (-4 *2 (-1223))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *2))
+ (-4 *2 (-1223))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1055))
+ (-5 *2 (-2 (|:| -3280 (-1179 *4)) (|:| |deg| (-927))))
+ (-5 *1 (-222 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-561))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776))
+ (-4 *6 (-1223)) (-4 *2 (-1223)) (-5 *1 (-240 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1249 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1106))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1249 *2))
+ (-4 *4 (-1249 (-412 *3))) (-4 *5 (-346 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1223)) (-4 *2 (-1223))
+ (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1106)) (-4 *2 (-1106))
+ (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2))))
+ ((*1 *1 *1) (-5 *1 (-500)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1223))
+ (-4 *2 (-1223)) (-5 *1 (-647 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055))
+ (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2))
+ (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-367))
+ (-4 *3 (-173)) (-4 *1 (-729 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1223))
+ (-4 *2 (-1223)) (-5 *1 (-963 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
+ (-14 *6 (-649 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055))
+ (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7))
+ (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2))
+ (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1223))
+ (-4 *2 (-1223)) (-5 *1 (-1161 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1216 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *2 (-1071 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1273 *5)) (-4 *5 (-1223))
+ (-4 *2 (-1223)) (-5 *1 (-1272 *5 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1179 *6)) (-1179 *6)))
+ (-4 *6 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |outval| *7) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 *7))))))
+ (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-1249 *4)) (-5 *2 (-1 *6 (-649 *6)))
+ (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1264 *4)))))
+(((*1 *1 *1) (-5 *1 (-1069))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-844))
+ (-5 *3
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *2 (-1041))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-844))
+ (-5 *3
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))
+ (-5 *2 (-1041)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055))
+ (-5 *3 (-412 (-569))) (-5 *1 (-1167 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2150 *4) (|:| -3534 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1208)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-1179 (-412 (-1179 *6)))) (-5 *1 (-565 *5 *6 *7))
+ (-5 *3 (-1179 *6)) (-4 *7 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1179 *11)) (-5 *6 (-649 *10))
+ (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855))
+ (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10))
+ (-5 *2 (-649 (-1179 *5))) (-5 *1 (-747 *9 *10 *11 *5))
+ (-5 *3 (-1179 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6))
+ (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2)))))
+(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6))
+ (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1183)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 "void")))
- (-5 *1 (-1186)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
+ (-4 *3 (-1106)) (-5 *2 (-776))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
+ (-4 *4 (-1223)) (-5 *2 (-776)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1249 *5))
+ (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1264 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
+ (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
+ (-4 *2 (-692 *3 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-1055)) (-5 *2 (-1272 *4))
- (-5 *1 (-1184 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-5 *2 (-1272 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1126)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793)))))
(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1106))))
((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165))))
((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-443 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488))))
- ((*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1106))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1082 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1122)))) ((*1 *1 *1) (-5 *1 (-1183))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12
+ ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1081 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1121))))
+ ((*1 *1 *1) (-5 *1 (-1183))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1179 *4))
+ (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055)) (-4 *3 (-1249 *4)) (-4 *2 (-1264 *4))
+ (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-855))
(-5 *2
- (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868)))
- (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868)))
- (|:| |args| (-646 (-868)))))
- (-5 *1 (-1183)))))
-(((*1 *1 *1 *2)
- (-12
+ (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4))))
+ (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4))))))
+ (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 (-649 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-55)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
+ (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
+ (-4 *2 (-692 *3 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1163 *3))) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-569))
+ (-5 *6
+ (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))))
+ (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-569))
+ (-5 *6
+ (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2013 (-383))))
+ (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793)))))
+(((*1 *1) (-4 *1 (-353)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147)))
(-5 *2
- (-2 (|:| -3002 (-646 (-868))) (|:| -2823 (-646 (-868)))
- (|:| |presup| (-646 (-868))) (|:| -3000 (-646 (-868)))
- (|:| |args| (-646 (-868)))))
- (-5 *1 (-1183))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-646 (-868)))) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-1183)))))
-(((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107))))
- ((*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))))
-(((*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-1183)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1179 *5)))
+ (|:| |prim| (-1179 *5))))
+ (-5 *1 (-437 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-561) (-147)))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1179 *3))
+ (|:| |pol2| (-1179 *3)) (|:| |prim| (-1179 *3))))
+ (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147)))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569))
+ (|:| |prim| (-1179 *5))))
+ (-5 *1 (-966 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-13 (-367) (-147)))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 *5)))
+ (|:| |prim| (-1179 *5))))
+ (-5 *1 (-966 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-5 *5 (-1183))
+ (-4 *6 (-13 (-367) (-147)))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| -1406 (-649 (-569))) (|:| |poly| (-649 (-1179 *6)))
+ (|:| |prim| (-1179 *6))))
+ (-5 *1 (-966 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-933))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
- (-12
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2 *2)
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *1) (-5 *1 (-1182)))
- ((*1 *1 *2)
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226))))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-3 (|:| I (-317 (-551))) (|:| -3514 (-317 (-382)))
- (|:| CF (-317 (-169 (-382)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-551)) (-5 *2 (-868))
- (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1107)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-868)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-99 *3))
- (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-1177 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1095 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855))
- (-4 *7 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-551))))
- (-5 *1 (-599 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-562))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-551)))) (-5 *1 (-599 *5 *4 *6 *3))
- (-4 *3 (-956 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868)))
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6))))
+ (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1264 *5)) (-5 *2 (-649 *6))
+ (-5 *1 (-1266 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-383)) (-5 *1 (-1069)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2))
+ (-4 *2 (-692 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223))
+ (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4))
+ (-4 *4 (-1055)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *1 (-591 *2)) (-4 *2 (-1044 *3))
+ (-4 *2 (-367))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-1008) (-1208)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208)))
+ (-4 *4 (-561)) (-5 *1 (-635 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1183))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-965)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))))
+(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5))
+ (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1264 *5))
+ (-5 *1 (-1266 *5 *2)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4))
+ (-4 *4 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
+ ((*1 *1 *1) (-4 *1 (-234)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855))))
+ ((*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
+ (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3))
+ (-4 *3 (-1249 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2))
+ (-5 *3 (-1183))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4))
+ (-4 *4 (-1106))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
+ (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-5 *1 (-793)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))))
+(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2))
+ (-4 *4 (-38 (-412 (-569)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1273 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1106))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-426 *4) (-160) (-27) (-1208)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1106))
+ (-5 *1 (-113 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-426 *4) (-160) (-27) (-1208)))
- (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-1175 *4 *2))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
+ (-5 *1 (-719 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561))
+ (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1055))
+ (-5 *1 (-1167 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-792)) (-5 *2 (-1041))
+ (-5 *3
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-792)) (-5 *2 (-1041))
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
+ (-4 *3 (-955 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| (-649 *3))))
+ (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776))
+ (-4 *8
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *3)) (-15 -4378 (*3 $)) (-15 -4390 (*3 $))))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))))
+(((*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
+ ((*1 *1 *1) (-5 *1 (-1126))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2))
+ (-4 *4 (-38 (-412 (-569)))))))
+(((*1 *1) (-5 *1 (-1069))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
+ (-5 *1 (-719 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4))
+ (-4 *4 (-173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *3 (-855))
+ (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1223)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
+ (-4 *8 (-955 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *3) (|:| |radicand| *3)))
+ (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *8)) (-15 -4378 (*8 $)) (-15 -4390 (*8 $))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1179 *1))
+ (-4 *1 (-332 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4))
+ (-5 *1 (-533 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-412 (-569))))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
+ ((*1 *1 *1 *1) (-5 *1 (-1126))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1266 *3 *2))
+ (-4 *2 (-1264 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-1069)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2))
+ (-4 *2 (-653 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704))))
+ ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-4 *4 (-1223)) (-5 *1 (-1063 *3 *4))
+ (-4 *3 (-1099 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1100 *4)) (-4 *4 (-1223))
+ (-5 *1 (-1098 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *9) (|:| |radicand| *9)))
+ (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776))
+ (-4 *9
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *8)) (-15 -4378 (*8 $)) (-15 -4390 (*8 $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))))
+(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-112))
+ (-5 *1 (-265)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
+ ((*1 *1 *1 *1) (-5 *1 (-1126))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3)
+ (-248 *3 (-412 (-569)))))
+ (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1264 *4))
+ (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-1 (-1163 *4) (-649 (-1163 *4)))) (-5 *1 (-1266 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1068))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4))
+ (-4 *4 (-653 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (|has| *1 (-6 -4444)) (-4 *1 (-377 *3))
+ (-4 *3 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
+ (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561))
+ (-4 *7 (-955 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2777 (-776)) (|:| -1406 *8) (|:| |radicand| *8)))
+ (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776))
+ (-4 *8
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $)) (-15 -4390 (*7 $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1273 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310))
+ (-4 *3 (-561)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1273 *1))
+ (-4 *1 (-332 *4))))
+ ((*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *1))
+ (-4 *1 (-414 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
+ (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6))
+ (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
+ (-5 *2 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))
+ (-4 *6 (-414 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-422 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 *4))) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))))
+(((*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551))))
- (-5 *2 (-412 (-952 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-952 *5))))
+ (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3))
+ (-4 *3 (-619 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2))
+ (-5 *2 (-383)) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551))))
- (-5 *2 (-3 (-412 (-952 *5)) (-317 *5))) (-5 *1 (-1176 *5))
- (-5 *3 (-412 (-952 *5)))))
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2))
+ (-5 *2 (-383)) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-952 *5))) (-5 *3 (-952 *5))
- (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-412 *3)) (-5 *1 (-1176 *5))))
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)))) (-5 *2 (-3 *3 (-317 *5)))
- (-5 *1 (-1176 *5)))))
+ (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-897 *4 *5)) (-4 *5 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-151 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| -2582 (-776)) (|:| -4222 *4) (|:| |num| *4))))
- (-4 *4 (-1248 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1="void")))
- (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-112)) (-5 *1 (-441))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 #1#))) (-5 *3 (-646 (-1183)))
- (-5 *4 (-112)) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-173))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1264 *4))
+ (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-1 (-1163 *4) (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-377 *2)) (-4 *2 (-1223))
+ (-4 *2 (-855))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-646 (-646 *3)))) (-4 *3 (-1107)) (-5 *1 (-680 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1107))
- (-14 *4
- (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *3))
- (-2 (|:| -2581 *2) (|:| -2582 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1121)) (-5 *1 (-843))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1222)) (-4 *3 (-1222))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 *4)))) (-4 *4 (-1107))
- (-5 *1 (-894 *3 *4)) (-4 *3 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *5)) (-4 *5 (-13 (-1107) (-34)))
- (-5 *2 (-646 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5))
- (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| |val| *4) (|:| -1718 *5))))
- (-4 *4 (-13 (-1107) (-34))) (-4 *5 (-13 (-1107) (-34)))
- (-5 *2 (-646 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1718 *4))) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1146 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-13 (-1107) (-34))) (-5 *1 (-1147 *2 *3))
- (-4 *2 (-13 (-1107) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1146 *2 *3))) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))) (-5 *1 (-1147 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3))
- (-4 *2 (-13 (-1107) (-34))) (-4 *3 (-13 (-1107) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4444))
+ (-4 *1 (-377 *3)) (-4 *3 (-1223)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776))
+ (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3))))
- (-5 *1 (-1081 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131))
+ (-5 *2 (-776))))
+ ((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
+ ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-776))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-430 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3))))
- (-5 *1 (-1081 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-776))
+ (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
+ (-5 *3 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1222)) (-5 *2 (-646 *1)) (-4 *1 (-1016 *3))))
+ (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2777 (-569)))) (-4 *1 (-435 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -2777 (-898 *3))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2777 (-569))))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $))
+ (-15 -4390 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-376 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-361 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-646 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4)))
+ (-5 *1 (-1266 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4))
+ (-5 *1 (-424 *4))))
+ ((*1 *1 *1) (-5 *1 (-932)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *1) (-5 *1 (-933)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))
+ (-5 *4 (-412 (-569))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))
+ (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))
+ (-5 *4 (-412 (-569))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569)))))
+ (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1278)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-371 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367))
+ (-14 *4 (-999 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727)))
+ ((*1 *1 *1) (|partial| -4 *1 (-731)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367)))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4))
- (-14 *3 (-925)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-925)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925)) (-4 *5 (-1055)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-925)) (-4 *5 (-1055)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055)))))
+ (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569))))
+ (-4 *1 (-435 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569))))
+ (-4 *1 (-435 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -2777 (-569))))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -2777 (-776))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -2777 (-776))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2777 (-569))))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $))
+ (-15 -4390 (*7 $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-927))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1163 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-731))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-5 *2 (-1163 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055))
+ (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
+ (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-649 *1))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $))
+ (-15 -4390 (*7 $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226)))
+ (-5 *2 (-1275)) (-5 *1 (-259)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1249 (-170 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-418 *3 *2 *4 *5))
+ (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1044 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3))
+ (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4))
+ (-14 *6 (-1273 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-649 (-617 (-500))))
+ (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353))
+ (-5 *1 (-533 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1249 *4))
+ (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1249 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1106)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112))
+ (-5 *1 (-1163 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927))
+ (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-315))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-649 *1))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1106))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925)) (-4 *4 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-925)) (-4 *3 (-1055)))))
+ (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $))
+ (-15 -4390 (*7 $))))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1126)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226)))
+ (-5 *5 (-112)) (-5 *2 (-1275)) (-5 *1 (-259)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-600 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1233 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1264 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1106)) (-4 *6 (-1106))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1106)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -4291 (-776)) (|:| |period| (-776))))
+ (-5 *1 (-1163 *4)) (-4 *4 (-1223)) (-5 *3 (-776)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2))
+ (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383))
+ (-5 *1 (-790 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-1055)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-457))))
+ (-12 (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *1))
+ (-4 *1 (-386 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-731))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-955 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-776)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226)))
+ (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098 (-848 *3))) (-4 *3 (-13 (-1208) (-965) (-29 *5)))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098 (-848 *3))) (-5 *5 (-1165))
+ (-4 *3 (-13 (-1208) (-965) (-29 *6)))
+ (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1098 (-848 (-319 *5))))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1098 (-848 (-319 *6))))
+ (-5 *5 (-1165))
+ (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098 (-848 (-412 (-958 *6))))) (-5 *5 (-1165))
+ (-5 *3 (-412 (-958 *6)))
+ (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3))
+ (-4 *3 (-13 (-1208) (-965) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
+ (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383))))
+ (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383))))
+ (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4))
+ (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5))))
((*1 *1 *1)
- (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1248 *2))
- (-4 *4 (-1248 (-412 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))
+ (-4 *3 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-4 *3 (-1055))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-4 *2 (-855))
+ (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055))
+ (-5 *1 (-1167 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-4 *3 (-1055))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *3 (-457))))
+ (-2718
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055))
+ (-12 (|has| *3 (-15 -3865 ((-649 *2) *3)))
+ (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-2718
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055))
+ (-12 (|has| *3 (-15 -3865 ((-649 *2) *3)))
+ (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2718
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055))
+ (-12 (|has| *3 (-15 -3865 ((-649 *2) *3)))
+ (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1163 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-5 *2 (-776)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1273 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-353))
+ (-5 *1 (-533 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-223 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-256 *3))))
+ ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1181 *4 *5 *6))
+ (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1265 *4 *5 *6))
+ (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-569)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1106)) (-4 *4 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106))
+ (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353))))
+ ((*1 *1) (-4 *1 (-372)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353))))
+ ((*1 *1 *1) (-4 *1 (-550))) ((*1 *1) (-4 *1 (-550)))
+ ((*1 *1 *1) (-5 *1 (-776)))
+ ((*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4))
+ (-4 *4 (-1106))))
+ ((*1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-550)) (-4 *2 (-561)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-867)) (-5 *1 (-1163 *3)) (-4 *3 (-1106))
+ (-4 *3 (-1223)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-776)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492))))
+ ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1106)) (-4 *5 (-1106))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106))
+ (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3)) (-4 *3 (-1106))
+ (-4 *3 (-1223)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))
(-4 *2 (-457))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-4 *3 (-562)) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1249 (-569))) (-5 *2 (-649 (-569)))
+ (-5 *1 (-491 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-457)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4))
+ (-5 *1 (-533 *4)))))
+(((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1164))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1) (-4 *1 (-498)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-62 *3)) (-14 *3 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1278))))
+ ((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-402))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
+(((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1106)) (-4 *5 (-1106))
+ (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))))
+(((*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1183)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2))
+ (-4 *2 (-1264 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
+ (-4 *5 (-1249 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2))
+ (-4 *2 (-1264 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
+ (-5 *1 (-547 *4 *2)) (-4 *2 (-1264 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1159 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367))
+ (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1249 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2150 *4) (|:| -2114 (-1126))))))
+ (-4 *4 (-353)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1) (-4 *1 (-498)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-14 *4 *2))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776))
+ (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550))))
+ ((*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4))
+ (-4 *3 (-802 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-997 *3 *4))
+ (-4 *3 (-998 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1002 *3 *4))
+ (-4 *3 (-1003 *4))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018))))
+ ((*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1106))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-367)) (-14 *5 (-999 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1) (-4 *1 (-498)))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561))
+ (-4 *3 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776))
+ (-5 *1 (-951 *4 *5)) (-4 *5 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1) (-4 *1 (-498)))
+ (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5))
+ (-14 *3 (-776)) (-14 *4 (-776)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1106))
+ (-5 *1 (-683 *2))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1106)) (-5 *1 (-687 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))))
+(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-4 *6 (-1071 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3312 *1) (|:| |upper| *1)))
+ (-4 *1 (-982 *4 *5 *3 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1) (-4 *1 (-498)))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -4168 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569)) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3))
+ (-4 *3 (-1055))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1290 *4 *3))
+ (-4 *3 (-1055)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
+ (-5 *1 (-1167 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
+ (-14 *4 (-1183)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569))
+ (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1106)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1055)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1) (-4 *1 (-498)))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1264 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-226)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1 *1) (-5 *1 (-382)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1265 *3)) (-5 *1 (-280 *3 *4 *2))
- (-4 *2 (-1236 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *4 (-1234 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1257 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-38 (-412 (-551)))) (-5 *1 (-1169 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-412 (-551))))
- (-5 *2 (-2 (|:| -3931 (-1160 *4)) (|:| -3932 (-1160 *4))))
- (-5 *1 (-1168 *4)) (-5 *3 (-1160 *4)))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4168 *3) (|:| |coef1| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-412 (-551))))
- (-5 *2 (-2 (|:| -4088 (-1160 *4)) (|:| -4084 (-1160 *4))))
- (-5 *1 (-1168 *4)) (-5 *3 (-1160 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-14 *4 *2))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-551))) (-5 *5 (-1 (-1160 *4))) (-4 *4 (-367))
- (-4 *4 (-1055)) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-4 *2 (-1106)) (-5 *1 (-685 *5 *6 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055))
- (-5 *3 (-412 (-551))) (-5 *1 (-1167 *4)))))
+ (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| -1963 (-1183)) (|:| -2179 (-442)))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4))
- (-4 *4 (-38 (-412 (-551)))) (-4 *4 (-1055)))))
+ (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1055))) (-5 *2 (-1165))
+ (-5 *1 (-831 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1055)))
+ (-5 *2 (-1165)) (-5 *1 (-831 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1055)))
+ (-5 *2 (-1278)) (-5 *1 (-831 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1165))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1165))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1278))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1278)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1157)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4168 *3) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-13 (-457) (-147)))
+ (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
+ (-5 *1 (-1167 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
+ (-14 *4 (-1183)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1222))) (-5 *3 (-1222)) (-5 *1 (-686)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1160 *3))) (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3))
- (-4 *3 (-38 (-412 (-551)))) (-4 *3 (-1055)))))
+ (-12 (-5 *3 (-694 (-412 (-569))))
+ (-5 *2
+ (-649
+ (-2 (|:| |outval| *4) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 *4))))))
+ (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-1160 *4))) (-5 *2 (-1160 *4)) (-5 *1 (-1167 *4))
- (-4 *4 (-1055)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1248 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160 *4)) (-5 *3 (-1 *4 (-551))) (-4 *4 (-1055))
- (-5 *1 (-1167 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-966)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))))
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5))
+ (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
+ (-5 *1 (-1167 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
+ (-14 *4 (-1183)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-958 (-569)))) (-5 *2 (-333))
+ (-5 *1 (-335))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055))
+ (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1157)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4))
+ (-4 *4 (-13 (-367) (-853))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
- (-5 *3 (-551)))))
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
+ (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055))
+ (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055))
+ (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1158))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-173)) (-4 *2 (-1249 *4)) (-5 *1 (-178 *4 *2 *3))
+ (-4 *3 (-729 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1183))
+ (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4))
+ (-5 *1 (-295 *4)) (-4 *4 (-457))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
+ (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4))
+ (-4 *4 (-13 (-367) (-853)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1183))
+ (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5))
+ (-4 *5 (-13 (-367) (-853)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569))))
+ (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1183))
+ (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5))
+ (-4 *5 (-13 (-367) (-853))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
- (-5 *3 (-551)))))
+ (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
+ (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-925)) (-4 *3 (-367))
- (-14 *4 (-999 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1248 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *1) (|partial| -4 *1 (-727))) ((*1 *1 *1) (|partial| -4 *1 (-731)))
+ (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
+ (-4 *4 (-268 *3)) (-4 *5 (-798)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1100 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798))
+ (-4 *4 (-855)) (-4 *7 (-561))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569))))
+ (-5 *1 (-599 *6 *4 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4))
- (-4 *4 (-1077 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367)))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
- (-4 *2 (-562))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-562)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)) (-4 *2 (-562))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-776)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-562))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
+ (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569))))
+ (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1) (-5 *1 (-867)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-562))
- (-5 *1 (-975 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055))
- (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-562))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-1107)) (-4 *4 (-1222)) (-5 *2 (-112))
- (-5 *1 (-1160 *4)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3013 (-776)) (|:| |period| (-776))))
- (-5 *1 (-1160 *4)) (-4 *4 (-1222)) (-5 *3 (-776)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1160 *3))) (-5 *1 (-1160 *3)) (-4 *3 (-1222)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1160 *2)) (-4 *2 (-1222)))))
-(((*1 *1) (-5 *1 (-583)))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-864))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-864))))
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208)))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1175 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-868)) (-5 *2 (-1278)) (-5 *1 (-864))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1160 *4)) (-4 *4 (-1107))
- (-4 *4 (-1222)))))
+ (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569))))
+ (-5 *2 (-412 (-958 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-958 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569))))
+ (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1176 *5))
+ (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098 (-958 *5))) (-5 *3 (-958 *5))
+ (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 *3))
+ (-5 *1 (-1176 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 *3 (-319 *5)))
+ (-5 *1 (-1176 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5))
+ (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
+ (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7))
+ (-4 *3 (-1249 *6)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-1160 *3)) (-4 *3 (-1107)) (-4 *3 (-1222)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3)) (-4 *3 (-1107)) (-4 *3 (-1222)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1272 (-646 (-551)))) (-5 *1 (-485))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-606 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1222)) (-5 *1 (-1160 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-13 (-562) (-147))) (-5 *1 (-542 *4 *2))
- (-4 *2 (-1265 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1248 *4))
- (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1265 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
- (-5 *1 (-547 *4 *2)) (-4 *2 (-1265 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1160 *4)) (-5 *3 (-551)) (-4 *4 (-13 (-562) (-147)))
- (-5 *1 (-1159 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-4 *4 (-1248 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1265 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-551)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1265 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-562) (-147))) (-5 *1 (-1159 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1158)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))))
- ((*1 *1) (-4 *1 (-1157))))
-(((*1 *1 *1) (|partial| -4 *1 (-1157))))
-(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-1153 *3)))))
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1249 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310))
+ (-4 *10 (-955 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-649 (-1179 *10)))
+ (|:| |dterm|
+ (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10))))
+ (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1179 *10)) (-5 *4 (-649 *6))
+ (-5 *5 (-649 *10)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
+ (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
+(((*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1273 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-830)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-646 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3))
+ (-5 *2 (-649 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3))
(-4 *3 (-1071 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-646 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
(-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *2 (-1071 *3 *4 *5))))
+ (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
((*1 *2 *3 *1 *4 *4 *4 *4 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-646 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3))
+ (-5 *2 (-649 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3))
(-4 *3 (-1071 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5))
+ (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6))
+ (-14 *7 (-927)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
+ (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))))
+(((*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1106)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1223))
+ (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055))
+ (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1183))) (-5 *1 (-830)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1033 *5 *6 *7 *8)))
- (-5 *1 (-1033 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-646 (-1152 *5 *6 *7 *8)))
- (-5 *1 (-1152 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4))))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-776))
+ (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569))))))
+ (-5 *1 (-247 *3)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1223))
+ (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055))
+ (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))))
(((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
(-4 *8 (-1071 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-646 *8)) (|:| |towers| (-646 (-1033 *5 *6 *7 *8)))))
- (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-646 *8))))
+ (-5 *2
+ (-2 (|:| |val| (-649 *8))
+ (|:| |towers| (-649 (-1033 *5 *6 *7 *8)))))
+ (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
(-4 *8 (-1071 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-646 *8)) (|:| |towers| (-646 (-1152 *5 *6 *7 *8)))))
- (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-646 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *4 (-776))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
- (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *4 (-776))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
- (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+ (-5 *2
+ (-2 (|:| |val| (-649 *8))
+ (|:| |towers| (-649 (-1152 *5 *6 *7 *8)))))
+ (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278))
+ (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1077 *6 *7 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1163 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)) (-4 *2 (-310))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-646 *11))
- (|:| |todo| (-646 (-2 (|:| |val| *3) (|:| -1718 *11))))))
- (-5 *6 (-776)) (-5 *2 (-646 (-2 (|:| |val| (-646 *10)) (|:| -1718 *11))))
- (-5 *3 (-646 *10)) (-5 *4 (-646 *11)) (-4 *10 (-1071 *7 *8 *9))
- (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855))
- (-5 *1 (-1075 *7 *8 *9 *10 *11))))
+ (-2 (|:| |done| (-649 *11))
+ (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3550 *11))))))
+ (-5 *6 (-776))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3550 *11))))
+ (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9))
+ (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-5 *1 (-1075 *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-646 *11))
- (|:| |todo| (-646 (-2 (|:| |val| *3) (|:| -1718 *11))))))
- (-5 *6 (-776)) (-5 *2 (-646 (-2 (|:| |val| (-646 *10)) (|:| -1718 *11))))
- (-5 *3 (-646 *10)) (-5 *4 (-646 *11)) (-4 *10 (-1071 *7 *8 *9))
- (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855))
- (-5 *1 (-1151 *7 *8 *9 *10 *11)))))
+ (-2 (|:| |done| (-649 *11))
+ (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3550 *11))))))
+ (-5 *6 (-776))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3550 *11))))
+ (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9))
+ (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-5 *1 (-1151 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *1 *1) (-5 *1 (-383)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
+ (-5 *2 (-776)))))
+(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1183))
+ (|:| |arrayIndex| (-649 (-958 (-569))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1183)) (|:| |rand| (-867))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333))
+ (|:| |elseClause| (-333))))
+ (|:| |returnBranch|
+ (-2 (|:| -4196 (-112))
+ (|:| -2150
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2555 (-867))))))
+ (|:| |blockBranch| (-649 (-333)))
+ (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165))
+ (|:| |forBranch|
+ (-2 (|:| -3396 (-1098 (-958 (-569))))
+ (|:| |span| (-958 (-569))) (|:| -3473 (-333))))
+ (|:| |labelBranch| (-1126))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3473 (-333))))
+ (|:| |commonBranch|
+ (-2 (|:| -3458 (-1183)) (|:| |contents| (-649 (-1183)))))
+ (|:| |printBranch| (-649 (-867)))))
+ (-5 *1 (-333)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
(-5 *2
- (-2 (|:| -2505 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| -4238 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3511 (-412 *6)) (|:| |special| (-412 *6))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -3252 (-412 *6))
+ (|:| |special| (-412 *6))))
(-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-902 *3 *4))
- (-4 *3 (-1248 *4))))
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4))
+ (-4 *3 (-1249 *4))))
((*1 *2 *3 *4 *4)
(|partial| -12 (-5 *4 (-776)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -3560 *3) (|:| -3559 *3))) (-5 *1 (-902 *3 *5))
- (-4 *3 (-1248 *5))))
+ (-5 *2 (-2 (|:| -4375 *3) (|:| -4386 *3))) (-5 *1 (-902 *3 *5))
+ (-4 *3 (-1249 *5))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112))
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
(-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
(-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112))
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
(-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
(-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112))
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
(-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457))
(-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-646 *9)) (-5 *3 (-646 *8)) (-5 *4 (-112))
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
(-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457))
(-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *2 (-1071 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3))
+ (-4 *3 (-1077 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-330 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-521 *3 *4))
+ (-14 *4 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-242))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-569)) (-5 *1 (-242)))))
+(((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4444)) (-4 *4 (-367)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4444)) (-4 *4 (-561)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *8 (-377 *7))
+ (-4 *9 (-377 *7)) (-5 *2 (-649 *6))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *10 (-692 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
+ (-5 *2 (-649 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1273 *4))) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-649 (-1273 *3))))))
(((*1 *2 *3 *4 *5 *6)
(-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
(-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1075 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
(-4 *3 (-1071 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
(-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1151 *7 *8 *9 *3 *4)) (-4 *4 (-1115 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
(-4 *3 (-1071 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538)))
+ (-5 *1 (-538))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-960)) (-4 *3 (-1106)) (-5 *2 (-696 *1))
+ (-4 *1 (-772 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-192)) (-5 *3 (-569))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223))
+ (-14 *4 (-569)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))))
+(((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-776)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1246 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1183))
+ (-4 *5 (-367)) (-5 *1 (-929 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1179 *5))
+ (-5 *1 (-929 *4 *5)) (-14 *4 (-1183))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367))
+ (-5 *2 (-412 (-958 *6))) (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
+(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-1179 *3)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
(-4 *3 (-1071 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
(-4 *3 (-1071 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
- (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
- (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-646 *4))
- (|:| |todo| (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))))
(-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-551)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *6)) (-4 *5 (-1107)) (-4 *6 (-1222))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-4 *5 (-1107)) (-4 *2 (-1222))
- (-5 *1 (-648 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 *5)) (-4 *6 (-1107)) (-4 *5 (-1222))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-648 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-4 *5 (-1107)) (-4 *2 (-1222))
- (-5 *1 (-648 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-646 *5)) (-5 *4 (-646 *6)) (-4 *5 (-1107))
- (-4 *6 (-1222)) (-5 *1 (-648 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-646 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1107))
- (-4 *2 (-1222)) (-5 *1 (-648 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1239 (-551))))))
-(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-1107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-551))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-376 *4)) (-4 *4 (-1222))
- (-5 *2 (-551))))
- ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-551)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-855))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1249 *4))
+ (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1249 *5)) (-14 *6 (-927))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-367)) (-4 *2 (-372)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
+ (-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106))
+ (-4 *2 (-1223)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1053)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3458 (-1165))))
+ (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-1179 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
((*1 *2 *2)
- (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1208)))
- (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-590 *3 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223))
+ (-14 *4 (-569)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-958 (-569))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-649 (-1183)))
+ (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed"))
+ (|:| |hom| (-649 (-1273 (-776))))))
+ (-5 *1 (-237)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *3))
+ (-4 *3 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112))
+ (-5 *1 (-677 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-827)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055))
+ (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367))))
((*1 *2 *2)
- (-12 (-5 *2 (-588 (-412 (-952 *3))))
- (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-594 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -3511 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5))
- (-5 *3 (-646 (-694 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1272 (-1272 *5))) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5))
- (-5 *3 (-646 (-694 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-646 *1)) (-4 *1 (-1150))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-646 *1)) (-4 *1 (-1150)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776))
- (-4 *5 (-173))))
+ (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173))))
+ (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055))))
((*1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *1 (-691 *3 *2 *4)) (-4 *2 (-376 *3))
- (-4 *4 (-376 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))))
+ (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353))
+ (-5 *1 (-533 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-855)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-236 *3))))
+ ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1106)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4))
- (-14 *3 (-776)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4)))) (-5 *1 (-1147 *3 *4))
- (-4 *3 (-13 (-1107) (-34))) (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1107) (-34)))
- (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1107) (-34))) (-4 *6 (-13 (-1107) (-34))) (-5 *2 (-112))
- (-5 *1 (-1147 *5 *6)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222))
- (-4 *2 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3))
- (-4 *3 (-1222))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-551)) (-4 *4 (-1107))
- (-5 *1 (-741 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-741 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3))
- (-4 *3 (-1107))))
- ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-236 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-551)) (-4 *4 (-1107))
- (-5 *1 (-741 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-741 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1107) (-34))) (-4 *5 (-13 (-1107) (-34)))
- (-5 *1 (-1147 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-1146 *3 *4))) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1286 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))))
+(((*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4))
+ (-5 *3 (-649 *4)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6)))
+ (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1106))
+ (-4 *8 (-13 (-1055) (-619 (-898 *6)) (-1044 *7)))
+ (-5 *2 (-895 *6 *8)) (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5))
+ (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
+ (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2))
+ (-14 *4 (-649 *2)) (-4 *5 (-392))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5))
+ (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446))))
((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-649 (-1100 (-848 (-226)))))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+ (-5 *1 (-774))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-863))))
- ((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-971))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995))))
- ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1222))))
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *1 (-813))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1107) (-34))) (-5 *1 (-1146 *2 *3))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226))))
+ (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-649 (-319 (-226))))
+ (|:| -2267 (-649 (-226)))))))
+ (-5 *1 (-846))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113)))
- ((*1 *1 *1) (-5 *1 (-172))) ((*1 *1 *1) (-4 *1 (-550)))
- ((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *2 (-13 (-1107) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1107) (-34)))
- (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1107) (-34)))
- (-4 *3 (-13 (-1107) (-34))))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1107) (-34))) (-4 *6 (-13 (-1107) (-34))) (-5 *2 (-112))
- (-5 *1 (-1146 *5 *6)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1107) (-34))) (-5 *2 (-112))
- (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1107) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *1 *1) (-5 *1 (-226))) ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))) ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-169 (-226))) (-5 *3 (-776)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *1 *1 *1) (-5 *1 (-226)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-4 *1 (-853)))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-4 *1 (-1066))) ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-63 *3)) (-14 *3 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183))))
- ((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-400))))
- ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1278))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-868))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-1188))) (-5 *1 (-1142)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-646 *1)) (-4 *1 (-1140 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055))
- (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-646 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-949 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-646 (-646 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055))
- (-4 *1 (-1140 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-646 (-949 *3)))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-646 (-646 (-646 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4))
- (-4 *4 (-1055))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-646 (-646 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4))
- (-4 *4 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-646 (-646 *5)))) (-5 *3 (-646 (-172))) (-5 *4 (-172))
- (-4 *1 (-1140 *5)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-646 (-949 *5)))) (-5 *3 (-646 (-172))) (-5 *4 (-172))
- (-4 *1 (-1140 *5)) (-4 *5 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-949 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-646 (-776))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
- (-5 *2 (-646 (-646 (-646 (-949 *3))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-646 (-172)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-646 (-172))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-12
(-5 *2
- (-2 (|:| -4300 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776))
- (|:| |constructs| (-776)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -4182 (-1177 *6)) (|:| -2582 (-551)))))
- (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-1138 *4 *2))
- (-4 *2 (-13 (-609 (-551) *4) (-10 -7 (-6 -4443) (-6 -4444))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-855)) (-4 *3 (-1222)) (-5 *1 (-1138 *3 *2))
- (-4 *2 (-13 (-609 (-551) *3) (-10 -7 (-6 -4443) (-6 -4444)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-1138 *4 *2))
- (-4 *2 (-13 (-609 (-551) *4) (-10 -7 (-6 -4443) (-6 -4444))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-855)) (-4 *3 (-1222)) (-5 *1 (-1138 *3 *2))
- (-4 *2 (-13 (-609 (-551) *3) (-10 -7 (-6 -4443) (-6 -4444)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-1055)) (-4 *2 (-1248 *4))
- (-5 *1 (-449 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-412 (-1177 (-317 *5)))) (-5 *3 (-1272 (-317 *5)))
- (-5 *4 (-551)) (-4 *5 (-562)) (-5 *1 (-1136 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-412 (-1177 (-317 *3)))) (-4 *3 (-562)) (-5 *1 (-1136 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-412 (-952 *5)))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-1172 (-646 (-317 *5)) (-646 (-296 (-317 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-1172 (-646 (-317 *5)) (-646 (-296 (-317 *5)))))
- (-5 *1 (-1135 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-646 (-317 *5))) (-5 *1 (-1135 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-317 *5))))
- (-5 *1 (-1135 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-646 (-296 (-317 *5)))) (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1135 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-412 (-952 *5)))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-296 (-317 *5))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-296 (-412 (-952 *4)))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-646 (-296 (-317 *4)))) (-5 *1 (-1135 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 *5)))) (-5 *4 (-646 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-412 (-952 *4)))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-646 (-646 (-296 (-317 *4))))) (-5 *1 (-1135 *4))))
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
+ (|:| |tol| (-226))))
+ (-5 *1 (-904))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2)
+ (-2718
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-38 (-412 (-569)))))
+ (-1728 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-550))) (-1728 (-4 *3 (-38 (-412 (-569)))))
+ (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 *3))
+ (-12 (-1728 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569))))
+ (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)))))
+ ((*1 *1 *2)
+ (-2718
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)))))
+(((*1 *1) (-5 *1 (-511))))
+(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1286 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-296 (-412 (-952 *5))))) (-5 *4 (-646 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-646 (-646 (-296 (-317 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-296 (-412 (-952 *4))))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-646 (-646 (-296 (-317 *4))))) (-5 *1 (-1135 *4)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053))
+ (-5 *3 (-569)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1165)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
+ (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5))
+ (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4))
+ (-4 *4 (-1106))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
+ (-4 *6 (-13 (-1106) (-1044 *3))) (-4 *3 (-892 *5))
+ (-5 *1 (-937 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106))
+ (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1044 (-617 $))))
+ (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5)))
+ (-5 *1 (-938 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550))
+ (-5 *1 (-939 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1106))
+ (-4 *6 (-13 (-1106) (-1044 (-617 $)) (-619 *4) (-892 *5)))
+ (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
+ (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3)))
+ (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6))
+ (-4 *6 (-1106)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4)))
+ (-4 *7 (-798)) (-4 *9 (-13 (-1055) (-892 *6)))
+ (-5 *1 (-942 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106))
+ (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5))
+ (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-13 (-1055) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-998 *6))
+ (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5))
+ (-5 *1 (-945 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-898 *5))
+ (-4 *5 (-1106)) (-5 *1 (-946 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9)))
+ (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1106))
+ (-4 *9 (-13 (-1055) (-619 (-898 *7)) (-1044 *8)))
+ (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1055))
+ (-5 *1 (-947 *7 *8 *9)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-14 *5 (-776))
+ (-5 *1 (-510 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1286 *4 *5 *6 *7)))
+ (-5 *1 (-1286 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561))
+ (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1286 *6 *7 *8 *9)))
+ (-5 *1 (-1286 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))))
+(((*1 *1 *1) (-4 *1 (-174)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))))
+ (-12 (-4 *4 (-855)) (-5 *2 (-1195 (-649 *4))) (-5 *1 (-1194 *4))
+ (-5 *3 (-649 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1106) (-1044 *5)))
+ (-4 *5 (-892 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-937 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *2 (-646 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1248 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
+ (-12 (-14 *4 (-649 (-1183))) (-14 *5 (-776))
(-5 *2
- (-2 (|:| |solns| (-646 *5))
- (|:| |maps| (-646 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1134 *3 *5)) (-4 *3 (-1248 *5)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-376 *4) (-10 -7 (-6 -4444))))
- (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))) (-5 *1 (-672 *4 *5 *2 *3))
- (-4 *3 (-691 *4 *5 *2))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1272 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367))
- (-5 *1 (-673 *4))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-646 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367))
- (-5 *1 (-819 *2 *3)) (-4 *3 (-663 *2))))
+ (-649
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569))))))
+ (-5 *1 (-510 *4 *5))
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569))))))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7))
+ (-4 *4 (-1055)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-551)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-1160 *7))) (-4 *6 (-855))
- (-4 *7 (-956 *5 (-536 *6) *6)) (-4 *5 (-1055)) (-5 *2 (-1 (-1160 *7) *7))
- (-5 *1 (-1132 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-310)) (-4 *6 (-376 *5)) (-4 *4 (-376 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4)))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
+ (-14 *8 (-649 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5))
+ (-14 *9 (-649 *3)) (-14 *10 *3))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927))
+ (-4 *2 (-1106)))))
+(((*1 *1) (-5 *1 (-1091))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8)))
+ (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798))
+ (-5 *2
+ (-2 (|:| |upol| (-1179 *8)) (|:| |Lval| (-649 *8))
+ (|:| |Lfact|
+ (-649 (-2 (|:| -3699 (-1179 *8)) (|:| -2777 (-569)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-747 *6 *7 *8 *9)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-779)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-971)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-5 *2 (-1165)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
+ (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4))))
+ (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3))
- (-4 *3 (-691 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 *1)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6))
- (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
- (-4 *2 (-239 *3 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-925)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
- ((*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-925)) (-4 *4 (-354)) (-5 *1 (-533 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2))
- (-4 *2 (-1055)))))
+ (-12 (-5 *3 (-649 (-649 (-949 (-226)))))
+ (-5 *2 (-649 (-1100 (-226)))) (-5 *1 (-934)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 *2)) (-4 *4 (-1248 *2))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-415 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2))
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2))
+ (-4 *5 (-377 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *2 (-1106)) (-5 *1 (-214 *4 *2))
+ (-14 *4 (-927))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7))
+ (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-569))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3)
+ (-5 *3 (-569))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5))
+ (-5 *3 (-569)) (-4 *5 (-874 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2388 (*2 (-1183))))
(-4 *2 (-1055)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855))
+ (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-649 (-2 (|:| -3699 (-1179 *9)) (|:| -2777 (-569)))))))
+ (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)))))
+(((*1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-367))
- (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5))))
+ (-12 (-5 *3 (-1195 (-649 *4))) (-4 *4 (-855))
+ (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-211))
+ (-5 *3 (-1183))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1183)))
+ (-5 *1 (-269))))
((*1 *2 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2))
- (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-173))
- (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5))))
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *2 (-649 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2))
- (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *3 (-376 *2)) (-4 *4 (-376 *2))
- (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-376 *2)) (-4 *5 (-376 *2)) (-4 *2 (-173))
- (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-691 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2))
- (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551))))
- ((*1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551))))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-551))))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1121)) (-5 *1 (-1122)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-444))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-843))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-646 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1121))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1122)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-686))))
- ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-976))))
- ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1079))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1121)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-686))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-1121)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183))
- (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183))
- (-5 *2 (-551)) (-5 *1 (-1120 *4 *5)))))
+ (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-649 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
+(((*1 *1) (-5 *1 (-1088))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310))
+ (-4 *9 (-955 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3280 (-1179 *9)) (|:| |polval| (-1179 *8))))
+ (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)) (-5 *4 (-1179 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+(((*1 *1) (-5 *1 (-187))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551))
- (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-551))
- (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 *4))
- (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 (-1241 *5 *4)))
- (-5 *1 (-1120 *4 *5)) (-5 *3 (-1241 *5 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-646 (-1241 *5 *4)))
- (-5 *1 (-1120 *4 *5)) (-5 *3 (-1241 *5 *4)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1116)) (-5 *3 (-551)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1116)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1272 (-551))) (-5 *3 (-551)) (-5 *1 (-1116))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1272 (-551))) (-5 *3 (-646 (-551))) (-5 *4 (-551))
- (-5 *1 (-1116)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *3 (-112)) (-5 *1 (-1116)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-694 (-551))) (-5 *3 (-646 (-551))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1116)))))
+ (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
+ (-5 *1 (-1194 *4)) (-4 *4 (-855)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-1116)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-646 (-551))) (-5 *3 (-694 (-551))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4))
- (-4 *4 (-1077 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-1249 *3))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-649 *3))
+ (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1115 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4))
- (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4))
- (-4 *4 (-1077 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5))))))
+ (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4))))))
+ (-5 *1 (-1084 *4 *5)) (-5 *3 (-649 (-958 *4)))
+ (-14 *5 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5))))))
+ (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1183))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
- (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *5 (-112))
- (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457))
- (-4 *7 (-798)) (-4 *4 (-855))
- (-5 *2 (-646 (-2 (|:| |val| *8) (|:| -1718 *9))))
- (-5 *1 (-1114 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353))
+ (-4 *2
+ (-13 (-407)
+ (-10 -7 (-15 -2388 (*2 *4)) (-15 -3348 ((-927) *2))
+ (-15 -3371 ((-1273 *2) (-927))) (-15 -3075 (*2 *2)))))
+ (-5 *1 (-360 *2 *4)))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
+ (-4 *4 (-855)) (-5 *1 (-1194 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-983 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383))))
+ ((*1 *1 *1 *1) (-4 *1 (-550)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569))))
+ (-4 *5 (-1249 *4))
+ (-5 *2 (-2 (|:| -2209 (-412 *5)) (|:| |coeff| (-412 *5))))
+ (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1183))
+ (-5 *5 (-848 *7))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1179 *6)) (-5 *4 (-848 *6))
+ (-4 *6 (-13 (-1208) (-29 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-225 *5 *6)))))
(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-4 *4 (-1249 *3))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *9 (-1071 *6 *7 *8))
- (-5 *2 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *4) (|:| |ineq| (-646 *9))))
- (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-646 *9))
- (-4 *4 (-1077 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *9 (-1071 *6 *7 *8))
- (-5 *2 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *4) (|:| |ineq| (-646 *9))))
- (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-646 *9))
- (-4 *4 (-1077 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-646 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
+ (-12 (-4 *3 (-1249 (-569)))
(-5 *2
- (-646 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *10) (|:| |ineq| (-646 *9)))))
- (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-646 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-646 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
+ (-2 (|:| -3371 (-694 (-569))) (|:| |basisDen| (-569))
+ (|:| |basisInv| (-694 (-569)))))
+ (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-694 *4))))
+ (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4))
(-5 *2
- (-646 (-2 (|:| -3705 (-646 *9)) (|:| -1718 *10) (|:| |ineq| (-646 *9)))))
- (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-646 *9)))))
+ (-2 (|:| -3371 (-694 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-694 *4))))
+ (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
+ (-5 *2 (-649 (-1183))) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3699 (-1179 *6)) (|:| -2777 (-569)))))
+ (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1179 *4))) (-5 *1 (-361 *4))
+ (-5 *3 (-1179 *4)))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855))
+ (-5 *1 (-1194 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
+ (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-646 (-2 (|:| |val| (-646 *6)) (|:| -1718 *7))))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-646 (-2 (|:| |val| (-646 *6)) (|:| -1718 *7))))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
+ (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3))
+ (-4 *3 (-13 (-367) (-147) (-1044 (-569)))) (-5 *1 (-573 *3 *4)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1208) (-29 *6)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-225 *6 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1217 *6))
+ (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1281 *6))
+ (-5 *5 (-1163 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-646 *7)) (|:| -1718 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
(-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-994 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-994 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1113 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3))
- (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3))
- (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-994 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-646 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-1278)) (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-994 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1113 *4 *5 *6 *7 *8))
- (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1107)) (-5 *1 (-1112 *5 *4))
- (-4 *4 (-426 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-551)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *7 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| -4310 (-1183)) (|:| -2264 *4))))
- (-5 *1 (-894 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-4 *7 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-1110 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *2 *4 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-551)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *2 *5 *6)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-925)) (-4 *1 (-409))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-551)) (-4 *1 (-409))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *2 *6)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *5 *6 *2)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-1107)) (-4 *2 (-1107)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *2 (-1107)) (-4 *3 (-1107))
- (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1110 *2 *3 *4 *5 *6)) (-4 *2 (-1107)) (-4 *3 (-1107))
- (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107)))))
+ (-5 *1 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569))))
+ (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-848 *2)) (-4 *2 (-1145))
+ (-4 *2 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
+ (-5 *1 (-572 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-925)) (-5 *1 (-1108 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-925)) (-5 *1 (-1108 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-676))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925))
- (-14 *4 (-925)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-925))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925))
- (-14 *4 (-925)))))
-(((*1 *2)
- (-12 (-5 *2 (-1272 (-1108 *3 *4))) (-5 *1 (-1108 *3 *4)) (-14 *3 (-925))
- (-14 *4 (-925)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-4 *3 (-1107))
- (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-911 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-925)) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-776)) (-5 *1 (-1108 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-1165)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-1105 *3))))
- ((*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-1105 *3))))
- ((*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-4 *2 (-367))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 (-616 *4))) (-4 *4 (-426 *3)) (-4 *3 (-1107))
- (-5 *1 (-578 *3 *4))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1102)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1100 *3)) (-4 *3 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1222)) (-5 *2 (-551)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995))))
+ (-2718 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223)))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223)))))
+ ((*1 *1 *1 *1) (-4 *1 (-367)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-478)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-541)))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-4 *4 (-1222)) (-5 *1 (-1064 *3 *4))
- (-4 *3 (-1100 *4))))
+ (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-731) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-731) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1095 *4)) (-4 *4 (-1222)) (-5 *1 (-1098 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1097)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-263))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1272 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1272 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1248 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1248 *4)) (-5 *2 (-1272 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1248 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3))
- (-5 *2 (-1272 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-423 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2 (-1272 *5)) (-5 *1 (-1092 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-1272 (-694 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1272 (-694 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-1272 (-694 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1183))) (-4 *5 (-367))
- (-5 *2 (-1272 (-694 (-412 (-952 *5))))) (-5 *1 (-1092 *5))
- (-5 *4 (-694 (-412 (-952 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1183))) (-4 *5 (-367)) (-5 *2 (-1272 (-694 (-952 *5))))
- (-5 *1 (-1092 *5)) (-5 *4 (-694 (-952 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1272 (-694 *4)))
- (-5 *1 (-1092 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-176))) (-5 *1 (-1091)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))))
-(((*1 *1) (-5 *1 (-1091))))
-(((*1 *1) (-5 *1 (-1091))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-551) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))))
-(((*1 *2) (-12 (-5 *2 (-646 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(((*1 *1) (-5 *1 (-1088))))
+ (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4))
+ (-4 *3 (|SubsetCategory| (-731) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4))
+ (-4 *2 (|SubsetCategory| (-731) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367))
+ (-4 *2 (-1055)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-776)))
+ (-14 *5 (-776))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055))
+ (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855))
+ (-4 *4 (-798)) (-14 *6 (-649 *3))
+ (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3))
+ (-14 *7 (-649 (-776))) (-14 *8 (-776))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055))
+ (-4 *3 (-851)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-646 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3))
- (-4 *3 (-1115 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5))))))
- (-5 *1 (-1084 *5 *6)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *4)) (|:| -3662 (-646 (-952 *4))))))
- (-5 *1 (-1084 *4 *5)) (-5 *3 (-646 (-952 *4))) (-14 *5 (-646 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-646 (-2 (|:| -1925 (-1177 *5)) (|:| -3662 (-646 (-952 *5))))))
- (-5 *1 (-1084 *5 *6)) (-5 *3 (-646 (-952 *5))) (-14 *6 (-646 (-1183))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-1081 *3 *4 *5))) (-4 *3 (-1107))
- (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))
- (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3))))
- (-5 *1 (-1083 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))
- (-5 *2 (-646 (-1081 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5))
- (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *2))
- (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))
- (-5 *1 (-1081 *3 *4 *2))
- (-4 *2 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-896 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1107)) (-4 *5 (-1222))
- (-5 *1 (-897 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-896 *4)) (-5 *3 (-646 (-1 (-112) *5))) (-4 *4 (-1107))
- (-4 *5 (-1222)) (-5 *1 (-897 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-896 *5)) (-5 *3 (-646 (-1183))) (-5 *4 (-1 (-112) (-646 *6)))
- (-4 *5 (-1107)) (-4 *6 (-1222)) (-5 *1 (-897 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1222))
- (-5 *2 (-317 (-551))) (-5 *1 (-943 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-646 (-1 (-112) *5))) (-4 *5 (-1222))
- (-5 *2 (-317 (-551))) (-5 *1 (-943 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1222)) (-4 *4 (-1107))
- (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-426 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-1 (-112) *5))) (-4 *5 (-1222)) (-4 *4 (-1107))
- (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-426 *4))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-1 (-112) (-646 *6)))
- (-4 *6 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-1081 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2)))
- (-5 *2 (-896 *3)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *5 (-13 (-426 *4) (-892 *3) (-619 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1107)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-896 *3))))
- (-5 *2 (-646 (-1183))) (-5 *1 (-1081 *3 *4 *5))
- (-4 *5 (-13 (-426 *4) (-892 *3) (-619 (-896 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-315))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))))
+ (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-649 (-1217 *5)))
+ (-5 *1 (-1281 *5)) (-5 *4 (-1217 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
(-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4))))
+ (-5 *1 (-1194 *6)) (-5 *5 (-649 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
+ (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7))
+ (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 *4)) (-5 *1 (-1078 *5 *6 *7 *3 *4))
- (-4 *4 (-1077 *5 *6 *7 *3)))))
+ (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569))))
+ (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
+ (-14 *3 (-649 (-1183))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1179 (-958 *4)) (-958 *4)))
+ (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-215 *2))
+ (-4 *2
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $))
+ (-15 -4170 ((-1278) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4))))
(-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-742 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106))))
+ ((*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
+ (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| -3262 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
+ (-14 *4 (-649 (-1183))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1163 (-1163 (-958 *5))))
+ (-5 *1 (-1281 *5)) (-5 *4 (-1163 (-958 *5))))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-215 *2))
+ (-4 *2
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $))
+ (-15 -4170 ((-1278) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2))
+ (-4 *2 (-1249 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-541)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-25)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
(-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-731)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6))
+ (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367))
+ (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5)))
+ (-5 *1 (-873 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367))
+ (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5)))
+ (-5 *1 (-873 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))
+ (-4 *2 (-13 (-855) (-21))))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-1183))
+ (-4 *4 (-13 (-435 *7) (-27) (-1208)))
+ (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1055) (-855)))
+ (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4))))
+ (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
(-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4))
+ (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6))
+ (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))
+ (-4 *2 (-13 (-855) (-21))))))
+(((*1 *1) (-4 *1 (-973))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183)))
+ (-4 *2 (-13 (-435 *5) (-27) (-1208)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4))))
+ (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
(((*1 *2 *3 *3 *4 *5 *5)
(-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
+ (-4 *3 (-1071 *6 *7 *8))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
(-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-2 (|:| |val| (-646 *8)) (|:| -1718 *9)))) (-5 *5 (-112))
- (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457))
- (-4 *7 (-798)) (-4 *4 (-855))
- (-5 *2 (-646 (-2 (|:| |val| *8) (|:| -1718 *9))))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
+ (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3550 *9))))
(-5 *1 (-1078 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 (-958 *6))) (-4 *6 (-561))
+ (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2))
+ (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1208) (-29 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))))
+(((*1 *2)
+ (-12 (-14 *4 (-776)) (-4 *5 (-1223)) (-5 *2 (-134))
+ (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-173))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-927))))
+ ((*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-646 *3)) (|:| -1718 *4))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))
(-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4))
+ (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $)))))
+ (-4 *6 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1192 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-617 *3))
+ (-4 *3 (-13 (-435 *5) (-27) (-1208)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3)))
+ (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1276))))
+ ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1276)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798))
+ (-4 *5 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *6 (-561))
+ (-5 *2 (-2 (|:| -3576 (-958 *6)) (|:| -2532 (-958 *6))))
+ (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-372)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569))))))
+ (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4))))
+ (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1183))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1208) (-965)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3371 (-649 *4))))
+ (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
+ (|:| -3371 (-649 (-1273 *5)))))
+ (-5 *1 (-672 *5)) (-5 *4 (-1273 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
+ (|:| -3371 (-649 (-1273 *5)))))
+ (-5 *1 (-672 *5)) (-5 *4 (-1273 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
+ (|:| -3371 (-649 (-1273 *5))))))
+ (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
+ (|:| -3371 (-649 (-1273 *5))))))
+ (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4444))))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3371 (-649 *7)))))
+ (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7))
+ (-4 *3 (-692 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-965)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183))
+ (-4 *7 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7)))))
+ (-5 *1 (-807 *6 *7)) (-5 *4 (-1273 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183))
+ (-4 *6 (-13 (-29 *5) (-1208) (-965)))
+ (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-1273 *6))) (-5 *1 (-807 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114)))
+ (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7)))))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114)))
+ (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1273 *7)) (|:| -3371 (-649 (-1273 *7)))))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1183))
+ (-4 *7 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -3371 (-649 *7))) *7 "failed"))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1183))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -3371 (-649 *3))) *3 "failed"))
+ (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-965)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-5 *1 (-807 *6 *2))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1208) (-965)))
+ (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-807 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -3371 (-649 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-367)) (-4 *7 (-661 *6))
+ (-5 *2 (-2 (|:| |particular| (-1273 *6)) (|:| -3371 (-694 *6))))
+ (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165))
+ (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383))
+ (-5 *2 (-1041)) (-5 *1 (-903))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165))
+ (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041))
+ (-5 *1 (-903))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383)))
+ (-5 *1 (-1029)) (-5 *4 (-383))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1029))
+ (-5 *4 (-383))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))
+ (-5 *3 (-319 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))
+ (-5 *3 (-297 (-319 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5))
+ (-5 *3 (-297 (-319 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5))
+ (-5 *3 (-319 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1183)))
+ (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5))
+ (-5 *3 (-649 (-297 (-319 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5))))))
+ (-5 *1 (-1192 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5))
+ (-5 *3 (-649 (-297 (-412 (-958 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4))))))
+ (-5 *1 (-1192 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-4 *5 (-561))
+ (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5))
+ (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-4 *5 (-561))
+ (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5))
+ (-5 *3 (-297 (-412 (-958 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
+ (-5 *1 (-1192 *4)) (-5 *3 (-412 (-958 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
+ (-5 *1 (-1192 *4)) (-5 *3 (-297 (-412 (-958 *4)))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1110)) (-5 *1 (-282)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
+ ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1249 *5))
+ (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1106)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1188))) (-5 *1 (-1188)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-4 *7 (-1249 (-412 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2200 *3)))
+ (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |answer| (-412 *6)) (|:| -2200 (-412 *6))
+ (|:| |specpart| (-412 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -3252 (-423 *3)) (|:| |special| (-423 *3))))
+ (-5 *1 (-732 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))
+ (-14 *4 (-1183)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-4 *2 (-13 (-27) (-1208) (-435 *3) (-10 -8 (-15 -2388 ($ *4)))))
+ (-4 *4 (-853))
+ (-4 *5
+ (-13 (-1251 *2 *4) (-367) (-1208)
+ (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $)))))
+ (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -2388 ($ *7)))))
+ (-4 *7 (-853))
+ (-4 *8
+ (-13 (-1251 *3 *7) (-367) (-1208)
+ (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
+ (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
+ (-14 *10 (-1183)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1165) (-1188)))
+ (-5 *1 (-1188)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1223)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-3 (-112) (-646 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1)))
+ (-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1273 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
+ (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1249 *5))
+ (-5 *2 (-694 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -2388 ($ *7)))))
+ (-4 *7 (-853))
+ (-4 *8
+ (-13 (-1251 *3 *7) (-367) (-1208)
+ (-10 -8 (-15 -3430 ($ $)) (-15 -3313 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
+ (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
+ (-14 *10 (-1183)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-333)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-412 (-569)))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *1))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *1))))
(-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-968)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383))))
+ (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1041))
+ (-5 *1 (-845))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383)))
+ (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-845))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1041))
+ (-5 *1 (-845))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383)))
+ (-5 *2 (-1041)) (-5 *1 (-845)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-316 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
+ (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-14 *6 (-1183)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4)))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| -1406 (-569)) (|:| |var| (-617 *1))))
+ (-4 *1 (-435 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-294)))
+ ((*1 *1) (-5 *1 (-867)))
+ ((*1 *1)
+ (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
+ (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1091)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
+ (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *1) (-5 *1 (-1186))) ((*1 *1) (-5 *1 (-1187))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1183))
+ (-4 *2 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *5 *2)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208)))
+ (-5 *1 (-228 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
+ (-4 *6 (-239 (-2394 *3) (-776)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6))
+ (-2 (|:| -2114 *5) (|:| -2777 *6))))
+ (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855))
+ (-4 *2 (-955 *4 *6 (-869 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-541)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-689 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-377 *3))
+ (-4 *4 (-377 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *2 (-377 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-725))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561))
+ (-5 *1 (-975 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064))))
+ ((*1 *1 *1 *1) (-4 *1 (-1118)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4))
+ (-4 *5 (-239 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
+ (-4 *2 (-239 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
+ (-4 *2 (-955 *3 (-536 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-3 *3 (-646 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-562)) (-4 *2 (-1055))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1)))
+ (-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-442)) (-5 *1 (-1187)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1055))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562))))
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *1))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *1))))
(-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227))
+ (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173))
+ (-4 *1 (-371 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173))
+ (-4 *1 (-374 *4 *5)) (-4 *5 (-1249 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3)))
+ (|:| |vals| (-649 *3))))
+ (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-5 *3 (-646 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))))
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
(-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-646 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *3)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
+ ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
+ ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
+ (-5 *2 (-649 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-439))
+ (-5 *2
+ (-649
+ (-3 (|:| -3458 (-1183))
+ (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-4 *3 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3))
+ (-4 *3 (-13 (-435 *4) (-1008))))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
((*1 *2 *1)
(-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4))
- (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
+ ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
+ ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1183)) (-5 *1 (-541))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3))
+ (-4 *3 (-619 (-541))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-4 *3 (-561)))))
+(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-435 *4) (-1008))) (-4 *4 (-561))
+ (-5 *1 (-278 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-561))
+ (-5 *2 (-2 (|:| -4368 (-694 *5)) (|:| |vec| (-1273 (-649 (-927))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4))
+ (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1258 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
+ (-14 *4 (-1183)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1106)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2114 *3) (|:| -2777 *2))
+ (-2 (|:| -2114 *3) (|:| -2777 *2)))))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-649
+ (-649
+ (-3 (|:| -3458 (-1183))
+ (|:| -1958 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
(-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310))
+ (-5 *1 (-180 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *8))
+ (-5 *4
+ (-649
+ (-2 (|:| -3371 (-694 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-694 *7)))))
+ (-5 *5 (-776)) (-4 *8 (-1249 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-353))
+ (-5 *2
+ (-2 (|:| -3371 (-694 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-694 *7))))
+ (-5 *1 (-503 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4))
- (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-649 (-649 (-949 (-226))))))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-1179 *4))
+ (-4 *4 (-13 (-435 *7) (-27) (-1208)))
+ (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1179 *4)))
+ (-4 *4 (-13 (-435 *7) (-27) (-1208)))
+ (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1044 (-551))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-426 *3))))
+ (-12 (-4 *3 (-1044 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-435 *3))))
((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1177 *4)) (-5 *1 (-165 *3 *4))
+ (-12 (-4 *4 (-173)) (-5 *2 (-1179 *4)) (-5 *1 (-165 *3 *4))
(-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-301))))
- ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1177 *3))))
- ((*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-305))))
+ ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3))))
+ ((*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1248 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 (-551))) (-5 *2 (-646 *1)) (-4 *1 (-1018))))
+ (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367)))
+ (-4 *2 (-1249 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1249 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-170 (-383)))))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-569)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-170 (-383)))))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-699)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-704)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-706)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-1179 *2))
+ (-4 *2 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183)))
+ (-5 *5 (-412 (-1179 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
((*1 *2 *3)
- (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *2 (-646 *1)) (-4 *1 (-1018))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1018)) (-5 *2 (-646 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1177 (-551))) (-5 *2 (-646 *1)) (-4 *1 (-1018))))
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-412 (-551)))) (-5 *2 (-646 *1)) (-4 *1 (-1018))))
- ((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-1018)) (-5 *2 (-646 *1))))
+ (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1248 *4)) (-5 *2 (-646 *1))
+ (-12 (-5 *3 (-1179 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-649 *1))
(-4 *1 (-1074 *4 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1177 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *2)) (-5 *4 (-1183)) (-4 *2 (-426 *5)) (-5 *1 (-32 *5 *2))
- (-4 *5 (-562))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1249 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4))
+ (-4 *4 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
+ ((*1 *1 *1) (-4 *1 (-234)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3))
+ (-4 *3 (-1249 *2))))
+ ((*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4))
+ (-4 *4 (-1106))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *1) (-5 *1 (-1186))))
+(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
+ ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1) (-4 *1 (-874 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-4 *4 (-855)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1179 *3))
+ (-4 *3 (-13 (-435 *7) (-27) (-1208)))
+ (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
+ (-5 *6 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1208)))
+ (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1099 *3)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1100 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *2)) (-5 *4 (-1183)) (-4 *2 (-435 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-561))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1177 *1)) (-5 *3 (-925)) (-4 *1 (-1018))))
+ (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-4 *1 (-1018))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1177 *1)) (-5 *3 (-925)) (-5 *4 (-868))
- (-4 *1 (-1018))))
+ (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-5 *4 (-867))
+ (-4 *1 (-1018))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-925)) (-4 *4 (-13 (-853) (-367)))
- (-4 *1 (-1074 *4 *2)) (-4 *2 (-1248 *4)))))
+ (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *1 (-1074 *4 *2)) (-4 *2 (-1249 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1249 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310))
+ (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *6 (-414 *4 *5))
+ (-14 *7 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-998 *3))
+ (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-977)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3)))
+ (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3)))
+ (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1030 *3))
- (-4 *3 (-13 (-853) (-367) (-1026)))))
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1030 *3))
+ (-4 *3 (-13 (-853) (-367) (-1028)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-1249 *2))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1248 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1141))) (-5 *1 (-1072)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219))))
- ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
+ (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1249 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-646 (-1183)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-317 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *1) (-12 (-4 *1 (-388 *2 *3)) (-4 *3 (-1107)) (-4 *2 (-1055))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-646 (-1183))) (-4 *5 (-239 (-4407 *3) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *4) (|:| -2582 *5))
- (-2 (|:| -2581 *4) (|:| -2582 *5))))
- (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855))
- (-4 *7 (-956 *2 *5 (-869 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1107))))
- ((*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))))
+ (-12 (-4 *2 (-310)) (-4 *3 (-998 *2)) (-4 *4 (-1249 *3))
+ (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1248 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -3321 *1)))
- (-4 *1 (-1071 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -3321 *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-977))
+ (-5 *3 (-649 (-569))))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1208)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -4404 *3) (|:| |gap| (-776)) (|:| -2162 (-786 *3))
- (|:| -3321 (-786 *3))))
- (-5 *1 (-786 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -2162 *1) (|:| -3321 *1)))
- (-4 *1 (-1071 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -4404 *1) (|:| |gap| (-776)) (|:| -2162 *1) (|:| -3321 *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2 (-2 (|:| |polnum| (-786 *3)) (|:| |polden| *3) (|:| -3922 (-776))))
- (-5 *1 (-786 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3922 (-776))))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-382))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-412 (-952 (-382)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-317 (-382))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-551))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-412 (-952 (-551)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-317 (-551))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 *2))
- (-14 *4 (-646 *2)) (-4 *5 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-694 (-412 (-952 (-551))))) (-4 *1 (-389))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-694 (-412 (-952 (-382))))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-952 (-551)))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-952 (-382)))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-317 (-551)))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-317 (-382)))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-551)))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-952 (-382)))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-551))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-382))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-551))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-382))) (-4 *1 (-402))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1272 (-412 (-952 (-551))))) (-4 *1 (-446))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1272 (-412 (-952 (-382))))) (-4 *1 (-446))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-952 (-551)))) (-4 *1 (-446))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-952 (-382)))) (-4 *1 (-446))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-317 (-551)))) (-4 *1 (-446))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1272 (-317 (-382)))) (-4 *1 (-446))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-354)) (-4 *5 (-332 *4)) (-4 *6 (-1248 *5))
- (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1248 *6))
- (-14 *7 (-925))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (|partial| -3978
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-3764 (-4 *3 (-38 (-551))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-550))) (-3764 (-4 *3 (-38 (-412 (-551)))))
- (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-997 (-551)))) (-4 *3 (-38 (-412 (-551))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))))
- ((*1 *1 *2)
- (|partial| -3978
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382)))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-412 (-952 (-382)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-382))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-382))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-382)))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551)))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-412 (-952 (-551)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-551))) (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))
- (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-551))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-551)))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 *2))
- (-14 *4 (-646 *2)) (-4 *5 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5))
- (-14 *3 (-646 (-1183))) (-14 *4 (-646 (-1183)))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-952 (-551))))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-952 (-382))))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-952 (-551)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-952 (-382)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-317 (-551)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-694 (-317 (-382)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-551)))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 (-952 (-382)))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 (-551))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 (-382))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-412 (-952 (-551))))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-412 (-952 (-382))))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-952 (-551)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-952 (-382)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-317 (-551)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 (-317 (-382)))) (-4 *1 (-446))))
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855))))
((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226)))))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
- (-5 *1 (-774))))
+ (-649
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226)))))
+ (-5 *1 (-564))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *1 (-813))))
+ (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-5 *2 (-649 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))
- (-5 *1 (-846))))
- ((*1 *2 *1)
+ (-649
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226)))))
+ (-5 *1 (-808)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1249 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-1273 *2)) (-4 *5 (-310))
+ (-4 *6 (-998 *5)) (-4 *2 (-13 (-414 *6 *7) (-1044 *6)))
+ (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1249 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-977)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-646 (-317 (-226))))
- (|:| |constraints|
- (-646
- (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776))
- (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226)))
- (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *1 (-904))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1222))))
- ((*1 *1 *2)
- (-3978
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-3764 (-4 *3 (-38 (-551))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-550))) (-3764 (-4 *3 (-38 (-412 (-551)))))
- (-4 *3 (-38 (-551))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3764 (-4 *3 (-997 (-551)))) (-4 *3 (-38 (-412 (-551))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)))))
- ((*1 *1 *2)
- (-3978
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-3764 (-4 *3 (-38 (-412 (-551))))) (-4 *3 (-38 (-551)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-952 (-551))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)))))
+ (-649
+ (-2
+ (|:| -1963
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2179
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1163 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3396
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-564)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+(((*1 *1 *1) (-5 *1 (-1182)))
((*1 *1 *2)
- (-12 (-5 *2 (-952 (-412 (-551)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-551)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562)))))
-(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3582 (-786 *3)) (|:| |coef1| (-786 *3)) (|:| |coef2| (-786 *3))))
- (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -3582 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3582 (-786 *3)) (|:| |coef1| (-786 *3))))
- (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -3582 *1) (|:| |coef1| *1))) (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3582 (-786 *3)) (|:| |coef2| (-786 *3))))
- (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -3582 *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-646 *1)) (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *3 (-562)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *3 (-562)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-457))))
- ((*1 *1 *1 *1) (-4 *1 (-457)))
- ((*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1248 (-551)))))
- ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-776)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2))
- (-4 *2 (-956 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-1177 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
- (-5 *2 (-1177 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-925)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-776)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *2 (-457)))))
-(((*1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-382)) (-5 *1 (-1069)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-382)) (-5 *1 (-1069)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-382)) (-5 *1 (-1069)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))))
-(((*1 *1) (-5 *1 (-1069))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-1069)))))
-(((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1068))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1222)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5))
- (-4 *3 (-239 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)) (-5 *2 (-776))))
+ (-12 (-4 *2 (-353)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1107))))
- ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1107)) (-5 *2 (-776))))
+ (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))
+ (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1107)) (-5 *2 (-776)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23))
- (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5))
- (-4 *3 (-729 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-562)) (-5 *2 (-410 *4))
- (-5 *1 (-424 *4))))
- ((*1 *1 *1) (-5 *1 (-931)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *1) (-5 *1 (-933)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))
- (-5 *4 (-412 (-551))) (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))
- (-5 *4 (-412 (-551))) (-5 *1 (-1028 *3)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))
- (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551))))))
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-5 *2 (-694 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4168 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-564)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *1) (-5 *1 (-1275))))
+(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219))))
+ ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-616 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-616 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-48))) (-5 *3 (-646 (-616 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-48))) (-5 *3 (-616 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1248 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-925)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
- ((*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1248 *2)) (-4 *2 (-173))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1248 *2)) (-4 *2 (-997 *3)) (-5 *1 (-418 *3 *2 *4 *5))
- (-4 *3 (-310)) (-4 *5 (-13 (-415 *2 *4) (-1044 *2)))))
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-1248 *2)) (-4 *2 (-997 *3)) (-5 *1 (-420 *3 *2 *4 *5 *6))
- (-4 *3 (-310)) (-4 *5 (-415 *2 *4)) (-14 *6 (-1272 *5))))
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-5 *2 (-694 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-4 *5 (-1055))
- (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
- (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1248 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-616 (-500)))) (-5 *1 (-500))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-616 (-500))) (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-500))) (-5 *3 (-646 (-616 (-500)))) (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-500))) (-5 *3 (-616 (-500))) (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-925)) (-4 *4 (-354)) (-5 *1 (-533 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1248 *4))
- (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1248 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-550))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-550))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-492))))
- ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1222)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5))
- (-4 *3 (-239 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1107)) (-5 *2 (-776)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550))))
- ((*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-800 *3 *4)) (-4 *3 (-801 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1003 *3 *4)) (-4 *3 (-1004 *4))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018))))
- ((*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5))
- (-14 *3 (-776)) (-14 *4 (-776)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1055)) (-4 *1 (-691 *3 *4 *5))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-868)))) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-925))
- (-4 *4 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 (-646 *5))) (-4 *5 (-1055)) (-4 *1 (-1059 *3 *4 *5 *6 *7))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-551))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))))
+ (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278))
+ (-5 *1 (-1186))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278))
+ (-5 *1 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4168 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1) (-5 *1 (-564))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1275))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1275))))
+ ((*1 *1 *1) (-5 *1 (-1275))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-5 *2 (-1278)) (-5 *1 (-1186))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183))
+ (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *2 (-1278))
+ (-5 *1 (-1186))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1183))
+ (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *2 (-1278))
+ (-5 *1 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-551))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))))
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-551))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))))
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
+(((*1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-551))))
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 (-569)))))
+ (-5 *1 (-365 *3)) (-4 *3 (-1106))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-551)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-776))))
+ (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106))
+ (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4367 (-776)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-776))))
+ (-12 (-5 *2 (-649 (-2 (|:| -3699 *3) (|:| -2777 (-569)))))
+ (-5 *1 (-423 *3)) (-4 *3 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1) (-4 *1 (-498)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4))
+ (-4 *4 (-1055))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278))
+ (-5 *1 (-1275)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *4 (-1183))
+ (-5 *1 (-1186))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1187))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *1 (-1187)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-649 (-1179 *13))) (-5 *3 (-1179 *13))
+ (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13))
+ (-5 *7 (-649 (-649 (-2 (|:| -4167 (-776)) (|:| |pcoef| *13)))))
+ (-5 *8 (-649 (-776))) (-5 *9 (-1273 (-649 (-1179 *10))))
+ (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12))
+ (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1183))
+ (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void"))) (-5 *1 (-1186)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2))
+ (-4 *2 (-1249 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-649 (-617 *3)))
+ (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3)))
+ (-5 *1 (-562 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3))
+ (-4 *3 (-1249 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1179 *9)))
+ (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776)))
+ (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11))
+ (-4 *10 (-798)) (-5 *2 (-649 (-1179 *12)))
+ (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1179 *12)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-975 *2 *4))
+ (-4 *4 (-1249 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-376 *2))
- (-4 *5 (-376 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-1107)) (-5 *1 (-214 *4 *2)) (-14 *4 (-925))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1222))))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2))
- (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1222)) (-4 *5 (-376 *4))
- (-4 *2 (-376 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055))
- (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-649 (-1179 *11))) (-5 *3 (-1179 *11))
+ (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776)))
+ (-5 *7 (-1273 (-649 (-1179 *8)))) (-4 *10 (-855))
+ (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798))
+ (-5 *1 (-712 *9 *10 *8 *11)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1222)) (-4 *5 (-376 *4))
- (-4 *2 (-376 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055))
- (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))))
+ (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-423 *4)) (-4 *4 (-561)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-310))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4273 (-776)) (|:| -2804 (-776))))
+ (-5 *1 (-776))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1099 *3)) (-4 *3 (-1223)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-4 *7 (-997 *4))
- (-4 *2 (-691 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-691 *4 *5 *6)) (-4 *8 (-376 *7)) (-4 *9 (-376 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)) (-4 *2 (-310))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7))
+ (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223))
+ (-4 *7 (-1223))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6))
+ (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1) (-4 *1 (-305)))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-226)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
- (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551)) (-14 *4 *2)
- (-4 *5 (-173))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-925)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-925))))
- ((*1 *2)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-925))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776))
- (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-776))
- (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1 *1) (-5 *1 (-383)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4))
+ (-5 *1 (-1184 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-5 *2 (-776))
- (-5 *1 (-673 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-776))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
+ (-12 (-5 *4 (-927)) (-5 *2 (-1273 *3)) (-5 *1 (-1184 *3))
+ (-4 *3 (-1055)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2600 *4))) (-5 *1 (-975 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-562 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *1 (-265))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *2 (-1278)) (-5 *1 (-1275))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-776)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3573 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *1 (-1275))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)) (-5 *2 (-776))
- (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-776))))
+ (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6))
+ (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1) (-4 *1 (-287)))
((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
+ (-12 (-5 *3 (-423 *4)) (-4 *4 (-561))
+ (-5 *2 (-649 (-2 (|:| -1406 (-776)) (|:| |logand| *4))))
+ (-5 *1 (-323 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-776)))))
+ (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4))
+ (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2600 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1072)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2209 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-105)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226)))
+ (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4444)) (-4 *4 (-367)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-646 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4444)) (-4 *4 (-562)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-4 *7 (-997 *4)) (-4 *8 (-376 *7)) (-4 *9 (-376 *7)) (-5 *2 (-646 *6))
- (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-691 *4 *5 *6))
- (-4 *10 (-691 *7 *8 *9))))
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3))
+ (-4 *3 (-1249 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995))))
((*1 *2 *1)
- (-12 (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-4 *3 (-562)) (-5 *2 (-646 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-646 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-691 *4 *5 *6))))
+ (-12 (-4 *4 (-1223)) (-5 *2 (-1183)) (-5 *1 (-1063 *3 *4))
+ (-4 *3 (-1099 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1223))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5))
- (-4 *7 (-239 *3 *5)) (-4 *5 (-562)) (-5 *2 (-646 *7)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-540))) ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1063))))
- ((*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-646 *5)) (-14 *4 (-1183)) (-4 *5 (-367))
- (-5 *1 (-928 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *5)) (-4 *5 (-367)) (-5 *2 (-1177 *5)) (-5 *1 (-928 *4 *5))
- (-14 *4 (-1183))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-952 *6)))
- (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1053)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-551))) (-5 *1 (-1053))
- (-5 *3 (-551)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1103 *4)) (-4 *4 (-1107)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4))))
- ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 (-551))) (-5 *2 (-1 (-551))) (-5 *1 (-1053)))))
-(((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -2591 *1) (|:| -4430 *1) (|:| |associate| *1)))
+ (-4 *1 (-561)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-410 (-952 *4))))
- (-5 *1 (-1049 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-382))) (-5 *1 (-1047)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3)
- (-5 *1 (-322 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-382))) (-5 *1 (-1047)) (-5 *3 (-382)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-382)) (-5 *1 (-1047)))))
-(((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))))
-(((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))))
-(((*1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-1047)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1177 (-412 (-1177 *2)))) (-5 *4 (-616 *2))
- (-4 *2 (-13 (-426 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1107))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *3 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1055)) (-4 *1 (-956 *4 *5 *3))
- (-4 *5 (-798)) (-4 *3 (-855))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-1177 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055))
- (-4 *2
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $)))))
- (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-1177 (-412 (-952 *5))))) (-5 *4 (-1183))
- (-5 *2 (-412 (-952 *5))) (-5 *1 (-1046 *5)) (-4 *5 (-562)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-616 *1)) (-4 *1 (-426 *4)) (-4 *4 (-1107)) (-4 *4 (-562))
- (-5 *2 (-412 (-1177 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-1177 (-412 (-1177 *3)))) (-5 *1 (-566 *6 *3 *7)) (-5 *5 (-1177 *3))
- (-4 *7 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055))
- (-5 *2 (-1241 *5 (-952 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-952 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-1177 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1177 *1))
- (-4 *1 (-956 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *5 *4))
- (-5 *2 (-412 (-1177 *3))) (-5 *1 (-957 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1177 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $)))))
- (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055))
- (-5 *1 (-957 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-562)) (-5 *2 (-412 (-1177 (-412 (-952 *5)))))
- (-5 *1 (-1046 *5)) (-5 *3 (-412 (-952 *5))))))
+ (-12 (-5 *3 (-1183))
+ (-5 *2
+ (-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226)))
+ (|:| |singularities| (-1163 (-226)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-956 *5 *4 *2))
- (-4 *2 (-855)) (-5 *1 (-957 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *6)) (-15 -3417 (*6 $)) (-15 -3416 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-1183))
- (-5 *1 (-1046 *4)))))
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1071 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))
- (-5 *2 (-646 (-1183))) (-5 *1 (-269))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1055)) (-5 *2 (-646 *5)) (-5 *1 (-324 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-392))))
- ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-5 *2 (-646 (-1183)))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-646 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-646 *5)) (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855))
- (-5 *2 (-646 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-5 *2 (-646 (-1183)))
- (-5 *1 (-1046 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183)))
- (-4 *6 (-13 (-562) (-1044 *5))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *6)))))) (-5 *1 (-1045 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-616 *6)) (-4 *6 (-13 (-426 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-1177 (-412 (-1177 *6)))) (-5 *1 (-566 *5 *6 *7)) (-5 *3 (-1177 *6))
- (-4 *7 (-1107))))
- ((*1 *2 *1) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
- ((*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1177 *11)) (-5 *6 (-646 *10)) (-5 *7 (-646 (-776)))
- (-5 *8 (-646 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798))
- (-4 *5 (-956 *11 *9 *10)) (-5 *2 (-646 (-1177 *5)))
- (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1177 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *3 (-367))
- (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-646 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *1 (-1038 *2))
- (-4 *2 (-13 (-1107) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7))
+ (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223))
+ (-4 *7 (-1223)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-975 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *1 *1) (-4 *1 (-561))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-925)) (-5 *1 (-1037 *2))
- (-4 *2 (-13 (-1107) (-10 -8 (-15 -4289 ($ $ $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1272 *5))) (-5 *4 (-551)) (-5 *2 (-1272 *5))
- (-5 *1 (-1036 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-551)) (-4 *6 (-367)) (-4 *6 (-372))
- (-4 *6 (-1055)) (-5 *2 (-646 (-646 (-694 *6)))) (-5 *1 (-1036 *6))
- (-5 *3 (-646 (-694 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055))
- (-5 *2 (-646 (-646 (-694 *4)))) (-5 *1 (-1036 *4))
- (-5 *3 (-646 (-694 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
- (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5))
- (-5 *3 (-646 (-694 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
- (-5 *2 (-646 (-646 (-694 *5)))) (-5 *1 (-1036 *5))
- (-5 *3 (-646 (-694 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-551)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-112)) (-5 *1 (-1036 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-112))
- (-5 *1 (-1036 *4)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-646 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-551)) (-5 *2 (-694 *6))
- (-5 *1 (-1036 *6)) (-4 *6 (-367)) (-4 *6 (-1055))))
+ (-12 (-5 *3 (-927)) (-5 *1 (-1036 *2))
+ (-4 *2 (-13 (-1106) (-10 -8 (-15 -2935 ($ $ $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))))
+(((*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-975 *4 *3))
+ (-4 *3 (-1249 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3)))
+ (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1036 *4))
- (-4 *4 (-367)) (-4 *4 (-1055))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-551)) (-5 *2 (-694 *5))
- (-5 *1 (-1036 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-694 *5))) (-5 *4 (-1272 *5)) (-4 *5 (-310))
- (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1036 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055))
- (-5 *2 (-1272 (-1272 *5))) (-5 *1 (-1036 *5)) (-5 *4 (-1272 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-646 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055))
- (-5 *1 (-1036 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-1272 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4))
- (-5 *1 (-1036 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-908 (-551))) (-5 *4 (-551)) (-5 *2 (-694 *4))
- (-5 *1 (-1035 *5)) (-4 *5 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-694 (-551))) (-5 *1 (-1035 *4))
- (-4 *4 (-1055))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-908 (-551)))) (-5 *4 (-551)) (-5 *2 (-646 (-694 *4)))
- (-5 *1 (-1035 *5)) (-4 *5 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-551)))) (-5 *2 (-646 (-694 (-551))))
- (-5 *1 (-1035 *4)) (-4 *4 (-1055)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1035 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1035 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1035 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1035 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-925)) (-4 *4 (-1055)) (-5 *1 (-1035 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-694 *4))) (-5 *3 (-925)) (-4 *4 (-1055))
- (-5 *1 (-1035 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-694 (-952 *4))) (-5 *1 (-1035 *4))
- (-4 *4 (-1055)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-925)) (|has| *4 (-6 (-4445 "*")))
- (-4 *4 (-1055)) (-5 *1 (-1035 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-694 *4))) (-5 *3 (-925)) (|has| *4 (-6 (-4445 "*")))
- (-4 *4 (-1055)) (-5 *1 (-1035 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-694 (-317 (-551)))))
- (-5 *1 (-1034)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 (-694 (-317 (-551))))) (-5 *1 (-1034)))))
-(((*1 *2 *2) (-12 (-5 *2 (-694 (-317 (-551)))) (-5 *1 (-1034)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 (-412 (-952 (-551)))))
- (-5 *2 (-694 (-317 (-551)))) (-5 *1 (-1034)))))
+ (-12 (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-705 *3))
+ (-4 *3 (-310)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-866))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-317 (-551))))
- (-5 *1 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694 (-412 (-952 (-551))))) (-5 *2 (-646 (-694 (-317 (-551)))))
- (-5 *1 (-1034)) (-5 *3 (-317 (-551))))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4180 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-952 (-551)))))
- (-5 *2
- (-646
- (-2 (|:| |radval| (-317 (-551))) (|:| |radmult| (-551))
- (|:| |radvect| (-646 (-694 (-317 (-551))))))))
- (-5 *1 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1222)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-663 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -3705 *3) (|:| -2920 (-646 *5))))
- (-5 *1 (-1031 *5 *3)) (-5 *4 (-646 *5)) (-4 *3 (-663 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1067 (-1030 *4) (-1177 (-1030 *4)))) (-5 *3 (-868))
- (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1026))))))
+ (-12 (-5 *3 (-569)) (|has| *1 (-6 -4434)) (-4 *1 (-409))
+ (-5 *2 (-927)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867))
+ (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1106)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-867)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1177 (-1030 *3))))
- (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1026))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551)))
- (-5 *4 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551))) (-5 *4 (-412 (-551)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *5) (|:| -3559 *5))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1248 (-551)))
- (-5 *4 (-2 (|:| -3560 *5) (|:| -3559 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *1 (-1028 *3)) (-4 *3 (-1248 (-412 (-551))))
- (-5 *4 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *4) (|:| -3559 *4))))
- (-5 *1 (-1028 *3)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-412 (-551))) (-5 *2 (-646 (-2 (|:| -3560 *5) (|:| -3559 *5))))
- (-5 *1 (-1028 *3)) (-4 *3 (-1248 *5))
- (-5 *4 (-2 (|:| -3560 *5) (|:| -3559 *5))))))
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *2)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *2 (-646 (-412 (-551)))) (-5 *1 (-1027 *4)) (-4 *4 (-1248 (-551))))))
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4180 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3))
+ (-4 *3 (-13 (-409) (-1208)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551)))))
- (-5 *2 (-412 (-551))) (-5 *1 (-1027 *4)) (-4 *4 (-1248 (-551))))))
+ (-12 (-5 *3 (-569)) (|has| *1 (-6 -4434)) (-4 *1 (-409))
+ (-5 *2 (-927)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4)) (-4 *4 (-426 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-113))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-113))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-113))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-158 *3 *4)) (-4 *4 (-426 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-113)) (-5 *1 (-163))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-278 *3 *4))
- (-4 *4 (-13 (-426 *3) (-1008)))))
- ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-300 *3)) (-4 *3 (-301))))
- ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *4 (-1107)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-436 *3 *4)) (-4 *4 (-426 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-616 *3)) (-4 *3 (-1107))))
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1830 *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))))
+(((*1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-562)) (-5 *1 (-634 *3 *4))
- (-4 *4 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1272 *6)) (-5 *4 (-1272 (-551))) (-5 *5 (-551)) (-4 *6 (-1107))
- (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -3844 *4) (|:| -1629 (-551))))) (-4 *4 (-1107))
- (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4))
- (-5 *2 (-646 (-412 *5))) (-5 *1 (-1022 *4 *5)) (-5 *3 (-412 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6))
- (|:| |c2| (-412 *6)) (|:| -3515 *6)))
- (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1248 *6))
- (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-551))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -3705
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1021 *6 *3)))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1) (-4 *1 (-1211))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4))
- (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3515 *6)))
- (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1183))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-646 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1208) (-27) (-426 *8)))
- (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-551))
- (-5 *2 (-646 *4)) (-5 *1 (-1020 *8 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1183))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-646 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1208) (-27) (-426 *8)))
- (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-551))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3559 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1019 *8 *4)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1830 *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776))))
+ ((*1 *1 *1) (-4 *1 (-407))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1830 *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -2804 *1)))
+ (-4 *1 (-1071 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -2804 *1)))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147)))
+ (-5 *1 (-404 *3 *4)))))
+(((*1 *1) (-5 *1 (-1278))))
(((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551))))
- ((*1 *1 *1) (-4 *1 (-1008))) ((*1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-1018))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-4 *1 (-1018))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-925))))
- ((*1 *1 *1) (-4 *1 (-1018))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-868)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1177 *1)) (-4 *1 (-1018)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1177 *1)) (-4 *1 (-1018)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-868)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-868)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1222)) (-5 *2 (-646 *1)) (-4 *1 (-1016 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-646 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-5 *2 (-551)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -1406 *3) (|:| |gap| (-776)) (|:| -4273 (-787 *3))
+ (|:| -2804 (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2
+ (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -4273 *1)
+ (|:| -2804 *1)))
+ (-4 *1 (-1071 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2
+ (-2 (|:| -1406 *1) (|:| |gap| (-776)) (|:| -4273 *1)
+ (|:| -2804 *1)))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-1 (-226) (-226) (-226) (-226)))
+ (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1249 *3)) (-5 *1 (-404 *3 *2))
+ (-4 *3 (-13 (-367) (-147))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 *1)) (|has| *1 (-6 -4444)) (-4 *1 (-1016 *3))
- (-4 *3 (-1222)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1222)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-410 *3)) (-4 *3 (-550))
- (-4 *3 (-562))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-837 *3)) (-4 *3 (-550))
- (-4 *3 (-1107))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-847 *3)) (-4 *3 (-550))
- (-4 *3 (-1107))))
+ (-12 (-4 *3 (-13 (-367) (-147)))
+ (-5 *2 (-649 (-2 (|:| -2777 (-776)) (|:| -2132 *4) (|:| |num| *4))))
+ (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-551)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-412 (-551))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
+ (-12 (-4 *1 (-1109 *3 *4 *5 *2 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-550)) (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-550)) (-4 *3 (-1107))))
+ (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-550)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-551)))))))
+ (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1055)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
+ (-4 *3 (-561)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-410 *3)) (-4 *3 (-550)) (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-801 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-837 *3)) (-4 *3 (-550)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-847 *3)) (-4 *3 (-550)) (-4 *3 (-1107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1004 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-551)))))
- ((*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-1012)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-551))) (-5 *4 (-551)) (-5 *2 (-51)) (-5 *1 (-1011)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-1010 *3)) (-14 *3 (-551)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 *5)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *5) (|:| |radicand| (-646 *5))))
- (-5 *1 (-323 *5)) (-5 *4 (-776))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-551)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-1006 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *1 *1 *1) (-4 *1 (-478)))
- ((*1 *1 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-889))))
- ((*1 *1 *1) (-5 *1 (-977)))
- ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-173)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-925)) (-4 *4 (-367))
- (-5 *1 (-999 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6))
- (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *3 (-1107)) (-5 *2 (-1131 *3 (-616 *1)))
- (-4 *1 (-426 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-624 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-731) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-657 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-731) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-997 *2)) (-4 *4 (-1248 *3)) (-4 *2 (-310))
- (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1044 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1107)) (-5 *2 (-1131 *3 (-616 *1)))
- (-4 *1 (-426 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131 (-551) (-616 (-500)))) (-5 *1 (-500))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
- (-5 *1 (-624 *3 *4 *2)) (-4 *3 (-38 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
- (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-722 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))))
-(((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))))
-(((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)) (-4 *2 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354))))
- ((*1 *1) (-4 *1 (-372)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354))))
- ((*1 *1 *1) (-4 *1 (-550))) ((*1 *1) (-4 *1 (-550)))
- ((*1 *1 *1) (-5 *1 (-776)))
- ((*1 *2 *1) (-12 (-5 *2 (-908 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-5 *2 (-908 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1107))))
- ((*1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-550)) (-4 *2 (-562)))))
-(((*1 *2 *2)
+ (-12 (-4 *2 (-1223)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1223))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-992 (-412 (-551)) (-869 *3) (-240 *4 (-776)) (-248 *3 (-412 (-551)))))
- (-14 *3 (-646 (-1183))) (-14 *4 (-776)) (-5 *1 (-993 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855))
- (-4 *6 (-798)) (-5 *1 (-992 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855))
- (-4 *5 (-798)) (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))))
+ (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -3508 (-776))))
+ (-5 *1 (-787 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3508 (-776))))
+ (-4 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-402)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-646 *6))
- (-5 *1 (-992 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569))))
+ (-4 *7 (-1249 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2))
+ (-4 *2 (-346 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
+ (-4 *3 (-561)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-702))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226)))
+ (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
+ (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183)))))
+ (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110))
+ (-5 *1 (-402))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183)))))
+ (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110))
+ (-5 *1 (-402))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-649 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183))
+ (-5 *2 (-1110)) (-5 *1 (-402)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569))))
+ (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3))
+ (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-457))
- (-4 *4 (-855)) (-4 *5 (-798)))))
+ (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798))
+ (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6))
+ (-4 *6 (-955 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-992 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1248 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-991 *4 *2 *3 *5))
- (-4 *4 (-354)) (-4 *5 (-729 *2 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)))))
- (-4 *5 (-562)) (-5 *1 (-737 *4 *3 *5 *2))
- (-4 *2 (-956 (-412 (-952 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $))
- (-15 -4281 ((-3 $ #1="failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-956 (-952 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *6))
- (-4 *6
- (-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183))))))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
- (-4 *2 (-956 (-952 *4) *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)))))
- (-4 *5 (-562)) (-5 *1 (-737 *4 *3 *5 *2))
- (-4 *2 (-956 (-412 (-952 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $))
- (-15 -4281 ((-3 $ #1="failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-956 (-952 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *6))
- (-4 *6
- (-13 (-855)
- (-10 -8 (-15 -4420 ((-1183) $)) (-15 -4281 ((-3 $ #1#) (-1183))))))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
- (-4 *2 (-956 (-952 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3)))
+ (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
+ (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1249 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-879))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367))
- (-5 *2 (-646 (-2 (|:| C (-694 *5)) (|:| |g| (-1272 *5))))) (-5 *1 (-984 *5))
- (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-925)) (-5 *1 (-704))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
- (-5 *1 (-984 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367))
- (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6))))
- (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310))
- (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310))
- (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310))
- (-4 *3 (-562)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-562))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569))))
+ (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3))
+ (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-646 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-646 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *1 (-983 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-646 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-798))
- (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -2650 *5))))
+ (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5))
+ (-5 *1 (-217 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-2 (|:| -3699 *5) (|:| -2091 (-569)))))
+ (-5 *4 (-569)) (-4 *5 (-1249 *4)) (-5 *2 (-649 *5))
+ (-5 *1 (-701 *5)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106))
+ (-4 *4 (-671 *3))))
+ ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055))
+ (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1179 *3) (-1179 *3)))
+ (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3))
+ (-5 *1 (-556 *6 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3766 (-646 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226))))
+ (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-649 (-319 (-226))))
+ (|:| -2267 (-649 (-226)))))))
+ (-5 *2 (-649 (-1165))) (-5 *1 (-269)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| -4273 *1) (|:| -2804 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055))
+ (-5 *2 (-2 (|:| -4273 *3) (|:| -2804 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3699 *3) (|:| -2091 *4))))
+ (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055))
+ (-4 *5 (-855)) (-5 *2 (-958 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055))
+ (-4 *5 (-855)) (-5 *2 (-958 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055))
+ (-5 *2 (-958 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055))
+ (-5 *2 (-958 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-798)) (-4 *2 (-268 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2))
+ (-4 *2 (-1249 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1830 (-787 *3)) (|:| |coef1| (-787 *3))
+ (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1830 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1071 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))
- ((*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-646 *7)) (|:| |badPols| (-646 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-646 *8)) (|:| |badPols| (-646 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-646 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-646 *8))) (-5 *3 (-646 *8)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-562)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *3))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-646 *7) (-646 *7))) (-5 *2 (-646 *7))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-983 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-646 *3))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-646 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *5 (-1071 *3 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *5 (-1071 *3 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *5 (-1071 *3 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-376 *3)) (-4 *3 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3552 *1) (|:| |upper| *1)))
- (-4 *1 (-982 *4 *5 *3 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4168 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-569)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-646 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-646 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-646 (-646 (-949 (-226)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-646 (-646 (-949 (-226))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1095 (-226)))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1095 (-226)))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))))
-(((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1095 (-226))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
- ((*1 *2 *1) (-12 (-4 *1 (-388 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1107))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-4407 *3) (-776)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6))
- (-2 (|:| -2581 *5) (|:| -2582 *6))))
- (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855))
- (-4 *8 (-956 *4 *6 (-869 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1055))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-646 (-925))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-925))
- (-4 *2 (-367)) (-14 *5 (-999 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-4407 *4) (-776)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *6))
- (-2 (|:| -2581 *5) (|:| -2582 *6))))
- (-14 *4 (-646 (-1183))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-956 *2 *6 (-869 *4)))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-562)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1248 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *5)) (-5 *3 (-646 (-776))) (-4 *1 (-745 *4 *5))
- (-4 *4 (-1055)) (-4 *5 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 (-776))) (-4 *1 (-956 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *2 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *6)) (-5 *3 (-646 *5)) (-4 *1 (-979 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797)) (-4 *2 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855))
- (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
- ((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551))))
- ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1) (-4 *1 (-875 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-977)))))
+ (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-646 (-646 (-551)))) (-5 *1 (-977)) (-5 *3 (-646 (-551))))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-977)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4206 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4206 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *3 (-562)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-562)) (-5 *1 (-975 *2 *4)) (-4 *4 (-1248 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-310))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1107)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
- (-4 *1 (-390 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2162 (-776)) (|:| -3321 (-776)))) (-5 *1 (-776))))
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3297 *4))) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3297 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-562)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 (-776))) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1248 *4)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4168 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4207 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4168 *4)))
+ (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1055)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4207 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3582 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3582 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3582 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3))
- (-4 *3 (-1248 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-562)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3))
- (-4 *3 (-1248 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1248 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-562)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4206 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4206 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4206 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1248 *4)))))
+ (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
+ (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2))
+ (-4 *4 (-692 *2 *5 *6)))))
(((*1 *1)
- (-12 (-4 *1 (-409)) (-3764 (|has| *1 (-6 -4434)))
- (-3764 (|has| *1 (-6 -4426)))))
- ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-855))))
+ (-12 (-4 *1 (-409)) (-1728 (|has| *1 (-6 -4434)))
+ (-1728 (|has| *1 (-6 -4426)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855))))
((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855)))
((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-855))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
-(((*1 *1) (-4 *1 (-973))))
-(((*1 *1) (-4 *1 (-973))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1107)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-778))) (-5 *1 (-113))))
- ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-778)) (-5 *1 (-113))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1109)) (-5 *1 (-971)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1107)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-868))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1278)) (-5 *1 (-969)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-646 *3)) (-5 *1 (-968 *3)) (-4 *3 (-550)))))
-(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-550)))))
-(((*1 *1) (-4 *1 (-354)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-562) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-646 (-1177 *5)))
- (|:| |prim| (-1177 *5))))
- (-5 *1 (-437 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-562) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1177 *3)) (|:| |pol2| (-1177 *3))
- (|:| |prim| (-1177 *3))))
- (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-426 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-551)) (|:| |coef2| (-551)) (|:| |prim| (-1177 *5))))
- (-5 *1 (-967 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183)))
- (-4 *5 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 *5)))
- (|:| |prim| (-1177 *5))))
- (-5 *1 (-967 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183))) (-5 *5 (-1183))
- (-4 *6 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| -4404 (-646 (-551))) (|:| |poly| (-646 (-1177 *6)))
- (|:| |prim| (-1177 *6))))
- (-5 *1 (-967 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *1 (-588 *2)) (-4 *2 (-1044 *3)) (-4 *2 (-367))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-367))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-634 *4 *2))
- (-4 *2 (-13 (-426 *4) (-1008) (-1208)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-426 *4) (-1008) (-1208)))
- (-4 *4 (-562)) (-5 *1 (-634 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1183))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-966)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-925)) (-4 *5 (-562)) (-5 *2 (-694 *5))
- (-5 *1 (-963 *5 *3)) (-4 *3 (-663 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562)) (-4 *3 (-956 *7 *5 *6))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| (-646 *3))))
- (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776))
- (-4 *8
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *3)) (-15 -3417 (*3 $)) (-15 -3416 (*3 $))))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562))
- (-4 *8 (-956 *7 *5 *6))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| *3)))
- (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *8)) (-15 -3417 (*8 $)) (-15 -3416 (*8 $))))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-551))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-562))
- (-4 *8 (-956 *7 *5 *6))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *9) (|:| |radicand| *9)))
- (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776))
- (-4 *9
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *8)) (-15 -3417 (*8 $)) (-15 -3416 (*8 $))))))))
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776))
+ (-5 *2 (-694 (-226))) (-5 *1 (-269)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-562)) (-4 *7 (-956 *3 *5 *6))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *8) (|:| |radicand| *8)))
- (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776))
- (-4 *8
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1107))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2582 (-551)))) (-4 *1 (-426 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-896 *3)) (|:| -2582 (-896 *3))))
- (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2582 (-551))))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1107))
- (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1055)) (-4 *4 (-1107))
- (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1107))
- (-5 *2 (-2 (|:| |var| (-616 *1)) (|:| -2582 (-551)))) (-4 *1 (-426 *3))))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9))))
+ (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
+ (-5 *1 (-1075 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9))))
+ (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
+ (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-756)))))
+(((*1 *1 *1) (-4 *1 (-666))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1055))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2290 *1)))
+ (-4 *1 (-857 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
+ (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2))
+ (-4 *4 (-692 *2 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4443)) (-4 *1 (-34)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-896 *3)) (|:| -2582 (-776))))
- (-5 *1 (-896 *3)) (-4 *3 (-1107))))
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-569))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -2582 (-776))))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-756)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-14 *6 (-1273 (-694 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'JINT 'X 'ELAM) (-3709) (-704))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 'XC) (-704))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 (-3709 'X) (-3709) (-704))) (-5 *1 (-64 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 (-3709) (-3709 'XC) (-704))) (-5 *1 (-66 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'X) (-3709 '-1522) (-704))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 'X) (-704))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'X 'EPS) (-3709 '-1522) (-704))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183))
+ (-14 *5 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'EPS) (-3709 'YA 'YB) (-704))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183))
+ (-14 *5 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 (-3709) (-3709 'X) (-704))) (-5 *1 (-77 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 (-3709) (-3709 'X) (-704))) (-5 *1 (-78 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 'XC) (-704))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709) (-3709 'X) (-704))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'X '-1522) (-3709) (-704))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-694 (-343 (-3709 'X '-1522) (-3709) (-704))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-694 (-343 (-3709 'X) (-3709) (-704)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'X) (-3709) (-704))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-343 (-3709 'X) (-3709 '-1522) (-704))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-694 (-343 (-3709 'XL 'XR 'ELAM) (-3709) (-704))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 (-3709 'X) (-3709 '-1522) (-704))) (-5 *1 (-89 *3))
+ (-14 *3 (-1183))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-569)) (-14 *4 (-776))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2582 (-551))))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1107)) (-5 *2 (-646 *1))
- (-4 *1 (-426 *3))))
+ (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173))
+ (-5 *2 (-1273 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 (-319 *4)))
+ (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1098 (-383)))
+ (-5 *1 (-260 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
+ (-12 (-4 *2 (-1249 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1258 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3)))
+ (-14 *5 (-1183)) (-14 *6 *4)
+ (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (-5 *1 (-316 *3 *4 *5 *6))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5))))
+ (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5))
+ (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-646 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1107)) (-5 *2 (-646 *1))
- (-4 *1 (-426 *3))))
+ (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2))
+ (-4 *3 (-332 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3))
+ (-4 *3 (-332 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *2 (-1297 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-646 *1)) (-4 *1 (-956 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-646 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-646 *1)) (-4 *1 (-388 *3 *4))))
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *2 (-1288 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-4 *1 (-387))))
+ ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388))))
+ ((*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
+ (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6))
+ (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
+ (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21)))
+ (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569)))))
+ (-4 *3 (-13 (-855) (-21)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-1055)) (-4 *3 (-1106))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-4 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 (-704))) (-4 *1 (-445))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3102 (-649 (-333)))))
+ (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 (-412 (-958 *3)))) (-4 *3 (-173))
+ (-14 *6 (-1273 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-14 *4 (-927)) (-14 *5 (-649 (-1183)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183))
+ (-14 *5 *3) (-5 *1 (-479 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1055))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-731))))
+ (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-956 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-646 (-776)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-776)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-776))))
+ (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-776)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *1))
- (-4 *1 (-956 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)) (-4 *2 (-457))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-1248 (-551))) (-5 *2 (-646 (-551)))
- (-5 *1 (-491 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855))
- (-4 *3 (-457)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-551)) (-4 *5 (-853)) (-4 *5 (-367))
- (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1248 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776))
- (-5 *1 (-951 *4 *5)) (-4 *5 (-1248 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-951 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-646 *3)) (-5 *1 (-951 *4 *3))
- (-4 *3 (-1248 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5))
- (-5 *1 (-950 *4 *5)) (-14 *4 (-646 (-1183))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-952 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-952 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5))
- (-5 *1 (-950 *4 *5)) (-14 *4 (-646 (-1183))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1177 (-551))) (-5 *2 (-551)) (-5 *1 (-948)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-192)) (-5 *3 (-551))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-567)) (-5 *3 (-551))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-948)) (-5 *3 (-551)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 (-896 *6)))
- (-5 *5 (-1 (-894 *6 *8) *8 (-896 *6) (-894 *6 *8))) (-4 *6 (-1107))
- (-4 *8 (-13 (-1055) (-619 (-896 *6)) (-1044 *7))) (-5 *2 (-894 *6 *8))
- (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *3)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *3 (-166 *6))
- (-4 (-952 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173)))
- (-5 *1 (-179 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-894 *4 *1)) (-5 *3 (-896 *4)) (-4 *1 (-892 *4))
- (-4 *4 (-1107))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *6)) (-5 *4 (-896 *5)) (-4 *5 (-1107))
- (-4 *6 (-13 (-1107) (-1044 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107))
- (-4 *3 (-13 (-426 *6) (-619 *4) (-892 *5) (-1044 (-616 $))))
- (-5 *4 (-896 *5)) (-4 *6 (-13 (-562) (-892 *5))) (-5 *1 (-938 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 (-551) *3)) (-5 *4 (-896 (-551))) (-4 *3 (-550))
- (-5 *1 (-939 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *6)) (-5 *3 (-616 *6)) (-4 *5 (-1107))
- (-4 *6 (-13 (-1107) (-1044 (-616 $)) (-619 *4) (-892 *5))) (-5 *4 (-896 *5))
- (-5 *1 (-940 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-896 *5)) (-4 *5 (-1107))
- (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-894 *6 *3) *8 (-896 *6) (-894 *6 *3))) (-4 *8 (-855))
- (-5 *2 (-894 *6 *3)) (-5 *4 (-896 *6)) (-4 *6 (-1107))
- (-4 *3 (-13 (-956 *9 *7 *8) (-619 *4))) (-4 *7 (-798))
- (-4 *9 (-13 (-1055) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107))
- (-4 *3 (-13 (-956 *8 *6 *7) (-619 *4))) (-5 *4 (-896 *5)) (-4 *7 (-892 *5))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1055) (-892 *5)))
- (-5 *1 (-942 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *3)) (-4 *5 (-1107)) (-4 *3 (-997 *6))
- (-4 *6 (-13 (-562) (-892 *5) (-619 *4))) (-5 *4 (-896 *5))
- (-5 *1 (-945 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-896 *5))
- (-4 *5 (-1107)) (-5 *1 (-946 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-646 (-896 *7))) (-5 *5 (-1 *9 (-646 *9)))
- (-5 *6 (-1 (-894 *7 *9) *9 (-896 *7) (-894 *7 *9))) (-4 *7 (-1107))
- (-4 *9 (-13 (-1055) (-619 (-896 *7)) (-1044 *8))) (-5 *2 (-894 *7 *9))
- (-5 *3 (-646 *9)) (-4 *8 (-1055)) (-5 *1 (-947 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1107) (-1044 *5)))
- (-4 *5 (-892 *4)) (-4 *4 (-1107)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-937 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935))))
- ((*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-317 (-551))) (-5 *1 (-935))))
- ((*1 *2 *2) (-12 (-4 *3 (-1107)) (-5 *1 (-936 *3 *2)) (-4 *2 (-426 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-113))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-317 (-551))) (-5 *1 (-935))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-511)) (-4 *4 (-1107)) (-5 *1 (-936 *4 *2)) (-4 *2 (-426 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-646 (-1095 (-226))))
- (-5 *1 (-934)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-931))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-931))))
- ((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-933)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-646 (-1 (-226) (-226)))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-931))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1 (-226) (-226)))) (-5 *3 (-1095 (-226)))
- (-5 *1 (-931))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3))
- (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3))
- (-4 *3 (-619 (-540)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-933)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095 (-226))) (-5 *1 (-933)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-226)))) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-933)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-931))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1095 (-226))) (-5 *1 (-931))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1095 (-226))) (-5 *2 (-931)) (-5 *1 (-932 *3))
- (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-931)) (-5 *1 (-932 *3)) (-4 *3 (-619 (-540))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112))
- (-5 *1 (-930 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3))
+ (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1106))
+ (-5 *1 (-680 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-686))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3))
+ (-4 *2 (-377 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699))))
+ ((*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699))))
+ ((*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699))))
+ ((*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699))))
+ ((*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699))))
+ ((*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704))))
+ ((*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
- (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| -1406 *3) (|:| -3236 *4))))
+ (-4 *3 (-1055)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))
- (-5 *4 (-694 *12)) (-5 *5 (-646 (-412 (-952 *9)))) (-5 *6 (-646 (-646 *12)))
- (-5 *7 (-776)) (-5 *8 (-551)) (-4 *9 (-13 (-310) (-147)))
- (-4 *12 (-956 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1183))))
- (-4 *11 (-798))
- (-5 *2
- (-2 (|:| |eqzro| (-646 *12)) (|:| |neqzro| (-646 *12))
- (|:| |wcond| (-646 (-952 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *9))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *9)))))))))
- (-5 *1 (-930 *9 *10 *11 *12)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *7)) (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
(-5 *2
- (-646
- (-2 (|:| |det| *8) (|:| |rows| (-646 (-551)))
- (|:| |cols| (-646 (-551))))))
- (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-646 *8))) (-5 *3 (-646 *8)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-646 (-646 (-551)))) (-5 *1 (-930 *4 *5 *6 *7))
- (-5 *3 (-551)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 (-646 *6))) (-4 *6 (-956 *3 *5 *4))
- (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
- (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))))
-(((*1 *2 *3)
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-649 (-1100 (-848 (-226)))))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+ (-5 *1 (-774))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-646
- (-2 (|:| -3531 (-776))
- (|:| |eqns|
- (-646
- (-2 (|:| |det| *7) (|:| |rows| (-646 (-551)))
- (|:| |cols| (-646 (-551))))))
- (|:| |fgb| (-646 *7)))))
- (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3)
+ (-5 *2
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *1 (-774))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-646
- (-2 (|:| -3531 (-776))
- (|:| |eqns|
- (-646
- (-2 (|:| |det| *7) (|:| |rows| (-646 (-551)))
- (|:| |cols| (-646 (-551))))))
- (|:| |fgb| (-646 *7)))))
- (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-646 *3)) (-5 *1 (-930 *4 *5 *6 *3))
- (-4 *3 (-956 *4 *6 *5)))))
-(((*1 *2 *3)
+ (-5 *2
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *1 (-774))))
+ ((*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| -1758 (-694 (-412 (-952 *4)))) (|:| |vec| (-646 (-412 (-952 *4))))
- (|:| -3531 (-776)) (|:| |rows| (-646 (-551))) (|:| |cols| (-646 (-551)))))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798))
(-5 *2
- (-2 (|:| |partsol| (-1272 (-412 (-952 *4))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *4)))))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *2 *3)
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *1 (-813))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-829))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1272 (-412 (-952 *4))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *4)))))))
- (-5 *3 (-646 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-956 *4 *6 *5))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147)))
- (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798))
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226))))
+ (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-649 (-319 (-226))))
+ (|:| -2267 (-649 (-226)))))))
+ (-5 *1 (-846))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-646
- (-2 (|:| -3531 (-776))
- (|:| |eqns|
- (-646
- (-2 (|:| |det| *8) (|:| |rows| (-646 (-551)))
- (|:| |cols| (-646 (-551))))))
- (|:| |fgb| (-646 *8)))))
- (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-4 *7 (-956 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-646 *7)) (|:| |n0| (-646 *7))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-646 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-956 *4 *6 *5))
- (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2 (-646 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7))
- (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-412 (-952 *4))) (-5 *1 (-930 *4 *5 *6 *3))
- (-4 *3 (-956 *4 *6 *5))))
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))
+ (-5 *1 (-846))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *1 (-846))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2 (-694 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2 (-646 (-412 (-952 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-694 *11)) (-5 *4 (-646 (-412 (-952 *8)))) (-5 *5 (-776))
- (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-956 *8 *10 *9))
- (-4 *9 (-13 (-855) (-619 (-1183)))) (-4 *10 (-798))
- (-5 *2
- (-2
- (|:| |rgl|
- (-646
- (-2 (|:| |eqzro| (-646 *11)) (|:| |neqzro| (-646 *11))
- (|:| |wcond| (-646 (-952 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *8))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *8))))))))))
- (|:| |rgsz| (-551))))
- (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-551)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *7)) (|:| |neqzro| (-646 *7))
- (|:| |wcond| (-646 (-952 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *4))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *4))))))))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569)))
+ (-5 *1 (-880))))
+ ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-646
- (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8))
- (|:| |wcond| (-646 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *5))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *5))))))))))
- (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-956 *5 *7 *6))
- (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-551))
- (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-310) (-147)))
- (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798))
(-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8))
- (|:| |wcond| (-646 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *5))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-646 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-646 (-1183))) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8))
- (|:| |wcond| (-646 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *5))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8))))
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
+ (|:| |tol| (-226))))
+ (-5 *1 (-904))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *7)) (|:| |neqzro| (-646 *7))
- (|:| |wcond| (-646 (-952 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *4))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *4))))))))))
- (-5 *1 (-930 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *5 (-925)) (-4 *9 (-956 *6 *8 *7))
- (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183))))
- (-4 *8 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *9)) (|:| |neqzro| (-646 *9))
- (|:| |wcond| (-646 (-952 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *6))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *6))))))))))
- (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-646 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 (-1183))) (-5 *5 (-925))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *9)) (|:| |neqzro| (-646 *9))
- (|:| |wcond| (-646 (-952 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *6))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *6))))))))))
- (-5 *1 (-930 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-925)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
- (-5 *2
- (-646
- (-2 (|:| |eqzro| (-646 *8)) (|:| |neqzro| (-646 *8))
- (|:| |wcond| (-646 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1272 (-412 (-952 *5))))
- (|:| -2200 (-646 (-1272 (-412 (-952 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 *9)) (-5 *5 (-1165))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-551))
- (-5 *1 (-930 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-646 (-1183))) (-5 *5 (-1165))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-551))
- (-5 *1 (-930 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-694 *10)) (-5 *4 (-646 *10)) (-5 *5 (-925)) (-5 *6 (-1165))
- (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
- (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-551))
- (-5 *1 (-930 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-694 *10)) (-5 *4 (-646 (-1183))) (-5 *5 (-925)) (-5 *6 (-1165))
- (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
- (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-551))
- (-5 *1 (-930 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-925)) (-5 *5 (-1165)) (-4 *9 (-956 *6 *8 *7))
- (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183))))
- (-4 *8 (-798)) (-5 *2 (-551)) (-5 *1 (-930 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-367)) (-4 *2 (-1248 *4))
- (-5 *1 (-929 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -4404 (-646 *1)) (|:| -2590 *1)))
- (-5 *3 (-646 *1)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-646 *1)) (-4 *1 (-927)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-952 *4))) (-5 *3 (-646 (-1183))) (-4 *4 (-457))
- (-5 *1 (-924 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-952 *4))) (-5 *3 (-646 (-1183))) (-4 *4 (-457))
- (-5 *1 (-924 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-925))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-911 (-551))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-911 (-551))) (-5 *1 (-923)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2))
- (-4 *2 (-956 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4))
+ (-4 *4 (-561))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1039 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
+ (-14 *6 (-649 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-410 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-51)) (-5 *1 (-921 *5))))
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1049 *3)) (-4 *3 (-561))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
+ (-4 *2 (-955 *3 (-536 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4))
+ (-4 *4 (-955 *3 (-536 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183))
+ (-14 *5 *3) (-5 *1 (-1181 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196 (-1183) (-442))) (-5 *1 (-1187))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1195 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1203)) (-5 *1 (-1202 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-5 *1 (-1217 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1100 *3)) (-4 *3 (-1223)) (-5 *1 (-1240 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
+ (-4 *3 (-1055)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183))
+ (-14 *5 *3) (-5 *1 (-1265 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1274))))
+ ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1274)) (-5 *1 (-1277))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *1 (-1293 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1071 *6 *7 *8))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-410 (-952 *6))) (-5 *5 (-1183)) (-5 *3 (-952 *6))
- (-4 *6 (-13 (-310) (-147))) (-5 *2 (-51)) (-5 *1 (-921 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3550 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
+ (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3550 *9))))
+ (-5 *1 (-1114 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226))
+ (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-756)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1248 (-412 (-551)))) (-5 *1 (-919 *3 *2))
- (-4 *2 (-1248 (-412 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *3))
- (-4 *3 (-1248 (-412 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551)))))
- (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *5))
- (-4 *5 (-1248 (-412 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1248 (-412 (-551))))
- (-5 *2 (-2 (|:| |den| (-551)) (|:| |gcdnum| (-551)))) (-5 *1 (-919 *3 *4))
- (-4 *4 (-1248 (-412 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1248 (-412 *2))) (-5 *2 (-551)) (-5 *1 (-919 *4 *3))
- (-4 *3 (-1248 (-412 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-1248 (-412 *3))) (-5 *2 (-925))
- (-5 *1 (-919 *4 *5)) (-4 *5 (-1248 (-412 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4))
- (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *4 (-13 (-562) (-1044 (-551))))
- (-5 *2 (-2 (|:| -4221 (-776)) (|:| -2564 *8)))
- (-5 *1 (-917 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6))
- (-4 *4 (-1248 (-412 (-551)))) (-4 *5 (-1248 (-412 *4)))
- (-4 *6 (-346 (-412 (-551)) *4 *5))
- (-5 *2 (-2 (|:| -4221 (-776)) (|:| -2564 *6))) (-5 *1 (-918 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-337 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1248 *5))
- (-4 *7 (-1248 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-112))
- (-5 *1 (-917 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-337 (-412 (-551)) *4 *5 *6)) (-4 *4 (-1248 (-412 (-551))))
- (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 (-412 (-551)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-918 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-457))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855))
- (-4 *5 (-916)) (-5 *1 (-462 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-916)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-410 (-1177 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1177 *1))
- (-4 *4 (-457)) (-4 *4 (-562)) (-4 *4 (-1107))))
- ((*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-410 (-1177 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1177 *1))
- (-4 *4 (-457)) (-4 *4 (-562)) (-4 *4 (-1107))))
- ((*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))))
-(((*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-410 (-1177 *1))) (-5 *3 (-1177 *1)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 *5))) (-5 *3 (-1177 *5)) (-4 *5 (-166 *4))
- (-4 *4 (-550)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-1248 *4))
- (-4 *4 (-354)) (-5 *1 (-362 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 (-551)))) (-5 *3 (-1177 (-551)))
- (-5 *1 (-577))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-367))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1055))
+ (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5))
+ (-4 *7 (-239 *3 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-4 *2 (-561))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-561)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055))
+ (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-776)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-561))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 *1))) (-5 *3 (-1177 *1)) (-4 *1 (-916)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-354)) (-5 *2 (-1272 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-916))
- (-5 *2 (-1272 *1)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-354)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-916)))))
+ (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561))
+ (-5 *1 (-975 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055))
+ (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *1 (-269)))))
+(((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3))))
+ (-5 *1 (-824 *3)) (-4 *3 (-855))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4))
+ (-5 *1 (-269)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855))
+ (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1125))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-855)) (-4 *5 (-916)) (-4 *6 (-798))
- (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-410 (-1177 *8))) (-5 *1 (-913 *5 *6 *7 *8))
- (-5 *4 (-1177 *8))))
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1115 *5 *6 *7 *8))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-596 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4))
+ (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))))
+ (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798))
+ (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))))
(((*1 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-916)) (-5 *1 (-462 *3 *4 *2 *5))
- (-4 *5 (-956 *2 *3 *4))))
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-916)) (-5 *1 (-913 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1248 *2)))))
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6))
- (-5 *2 (-410 (-1177 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1177 *7))))
+ (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569)))
+ (-5 *2 (-694 (-569))) (-5 *1 (-595))))
((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-595))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569))))
+ (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-956 *4 *5 *6))
- (-5 *2 (-410 (-1177 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1177 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1248 *4)) (-5 *2 (-410 (-1177 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1177 *5)))))
+ (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *2))
+ (-4 *3 (-13 (-1106) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 *7))) (-5 *3 (-1177 *7))
- (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-913 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 *5))) (-5 *3 (-1177 *5))
- (-4 *5 (-1248 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-646 (-1177 *7))) (-5 *3 (-1177 *7))
- (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-798)) (-4 *4 (-855))
- (-5 *1 (-913 *5 *6 *4 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-646 *6))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))) ((*1 *1) (-4 *1 (-550)))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-908 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-646 (-776)))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-908 *3))) (-4 *3 (-1107)) (-5 *1 (-911 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1107)) (-5 *2 (-1103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1107)) (-5 *2 (-1103 (-646 *4))) (-5 *1 (-911 *4))
- (-5 *3 (-646 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1107)) (-5 *2 (-1103 (-1103 *4))) (-5 *1 (-911 *4))
- (-5 *3 (-1103 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1103 (-1103 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-646 (-776)))
- (-5 *1 (-911 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-908 *4)) (-4 *4 (-1107)) (-5 *2 (-646 (-776)))
- (-5 *1 (-911 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1107)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-911 *4)) (-4 *4 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-911 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-910 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-4 *1 (-910 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-925))
- (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4445 "*"))))) (-5 *1 (-909 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-646 *3)) (|:| |image| (-646 *3))))
- (-5 *1 (-908 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-646 *3))) (-4 *3 (-1107)) (-5 *1 (-908 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 (-551))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 (-551))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1103 *3)) (-5 *1 (-908 *3)) (-4 *3 (-372)) (-4 *3 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-908 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
- ((*1 *1 *1) (-4 *1 (-234)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
- (-4 *4 (-1248 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1248 *2))))
- ((*1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 *4)) (-5 *3 (-646 (-776))) (-4 *1 (-906 *4))
- (-4 *4 (-1107))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1107))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1107)))))
+ (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4289 (-649 *9)) (|:| -3550 *4) (|:| |ineq| (-649 *9))))
+ (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
+ (-4 *4 (-1077 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4289 (-649 *9)) (|:| -3550 *4) (|:| |ineq| (-649 *9))))
+ (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
+ (-4 *4 (-1077 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
(((*1 *2 *3)
(-12 (-5 *3 (-774))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
(-5 *1 (-570))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-774)) (-5 *4 (-1069))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
(-5 *1 (-570))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-792)) (-5 *3 (-1069))
(-5 *4
- (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226)))))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))
+ (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))
(|:| |extra| (-1041))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-792)) (-5 *3 (-1069))
(-5 *4
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))
+ (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))
(|:| |extra| (-1041))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-805)) (-5 *3 (-1069))
(-5 *4
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))))))
+ (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))))))
((*1 *2 *3)
(-12 (-5 *3 (-813))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-810))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-813)) (-5 *4 (-1069))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-810))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-844)) (-5 *3 (-1069))
- (-5 *4 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))
- (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))))))
+ (-5 *4
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))
+ (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-844)) (-5 *3 (-1069))
(-5 *4
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))))))
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2267 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))))))
((*1 *2 *3)
(-12 (-5 *3 (-846))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-845))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-846)) (-5 *4 (-1069))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-845))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-901)) (-5 *3 (-1069))
(-5 *4
- (-2 (|:| |pde| (-646 (-317 (-226))))
+ (-2 (|:| |pde| (-649 (-319 (-226))))
(|:| |constraints|
- (-646
- (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776))
- (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226)))
- (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165))
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
(|:| |tol| (-226))))
- (-5 *2 (-2 (|:| -3089 (-382)) (|:| |explanations| (-1165))))))
+ (-5 *2 (-2 (|:| -2329 (-383)) (|:| |explanations| (-1165))))))
((*1 *2 *3)
(-12 (-5 *3 (-904))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-903))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-904)) (-5 *4 (-1069))
(-5 *2
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
+ (-2 (|:| -2329 (-383)) (|:| -3458 (-1165))
+ (|:| |explanations| (-649 (-1165)))))
(-5 *1 (-903)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-170 (-319 *4)))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-170 *3)) (-5 *1 (-1212 *4 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *5))
+ (-5 *1 (-594 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *9 (-1071 *6 *7 *8))
+ (-5 *2
+ (-649
+ (-2 (|:| -4289 (-649 *9)) (|:| -3550 *10) (|:| |ineq| (-649 *9)))))
+ (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *9 (-1071 *6 *7 *8))
+ (-5 *2
+ (-649
+ (-2 (|:| -4289 (-649 *9)) (|:| -3550 *10) (|:| |ineq| (-649 *9)))))
+ (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-756)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1248 *4)))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4))
+ (-4 *2 (-1249 *4)))))
+(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1208)))
+ (-5 *1 (-588 *4 *2))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 (-412 (-958 *4))))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-594 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3550 *7))))
+ (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3550 *7))))
+ (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226)))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1248 *3)))))
+ (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3))
+ (-4 *2 (-1249 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+(((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-593 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8)))
+ (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8)))
+ (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1165))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1041))
+ (-5 *1 (-755)))))
(((*1 *2 *3)
(-12 (-4 *1 (-901))
(-5 *3
- (-2 (|:| |pde| (-646 (-317 (-226))))
+ (-2 (|:| |pde| (-649 (-319 (-226))))
(|:| |constraints|
- (-646
- (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776))
- (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226)))
- (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165))
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
(|:| |tol| (-226))))
(-5 *2 (-1041)))))
-(((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-540))) ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-4 *1 (-731)))
- ((*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107))))
- ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569))))
+ (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-5 *1 (-994 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107))
- (-5 *2 (-646 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |k| (-899 *3)) (|:| |c| *4))))
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4))))
(-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-1055)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569))))
+ (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367))
+ (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-4 *2 (-346 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-173))))
+ ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1113 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
(((*1 *2 *1)
(-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-646 (-1183)))))
+ (-14 *4 (-649 (-1183)))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1222))))
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1223))))
((*1 *2 *1)
(-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183)))))
+ (-14 *4 (-649 (-1183)))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-646 *5)) (-5 *1 (-897 *4 *5))
- (-4 *5 (-1222)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1222)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-5 *2 (-112))
- (-5 *1 (-894 *4 *5)) (-4 *5 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3))
- (-4 *3 (-1222))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-896 *5)) (-4 *5 (-1107)) (-4 *6 (-1222))
- (-5 *2 (-112)) (-5 *1 (-897 *5 *6)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| -2920 (-113)) (|:| |arg| (-646 (-896 *3)))))
- (-5 *1 (-896 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-646 (-896 *4))) (-5 *1 (-896 *4))
- (-4 *4 (-1107)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-226))) (-5 *1 (-306))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |num| (-896 *3)) (|:| |den| (-896 *3))))
- (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-896 *4)) (-4 *4 (-1107)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-51)) (-5 *1 (-896 *4)) (-4 *4 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-646 (-1183))) (|:| |pred| (-51))))
- (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-51))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-646 (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1107))
- (-4 *5 (-671 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-894 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *1)
- (-12 (-4 *3 (-1107)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1107))
- (-4 *4 (-671 *3))))
- ((*1 *1) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-896 *4)) (-4 *4 (-1107)) (-4 *2 (-1107))
- (-5 *1 (-894 *4 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-896 *4)) (-4 *4 (-1107)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-646 *6)))
- (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-646 *6)) (-4 *4 (-619 (-896 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-5 *2 (-646 (-296 *3))) (-5 *1 (-893 *5 *3 *4))
- (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-896 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-5 *2 (-646 (-296 (-952 *3)))) (-5 *1 (-893 *5 *3 *4))
- (-4 *3 (-1055)) (-3764 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5))
- (-4 *4 (-619 (-896 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-5 *2 (-894 *5 *3)) (-5 *1 (-893 *5 *3 *4))
- (-3764 (-4 *3 (-1044 (-1183)))) (-3764 (-4 *3 (-1055))) (-4 *3 (-892 *5))
- (-4 *4 (-619 (-896 *5))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1183)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-113)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-616 *4)) (-4 *4 (-1107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-616 *4)) (-4 *4 (-1107))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1107)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5))
- (-4 *4 (-619 (-896 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2))
+ (-4 *2 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2))
+ (-4 *2 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2))
+ (-4 *2 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
+ (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
+ (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1107)) (-5 *2 (-112))
- (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-896 *5))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-894 *4 *5)) (-5 *3 (-894 *4 *6)) (-4 *4 (-1107))
- (-4 *5 (-1107)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1107)) (-5 *2 (-894 *3 *4)) (-5 *1 (-891 *3 *4 *5))
- (-4 *3 (-1107)) (-4 *5 (-671 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1107)) (-5 *2 (-894 *3 *5)) (-5 *1 (-891 *3 *4 *5))
- (-4 *3 (-1107)) (-4 *5 (-671 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))))
+ (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1249 *5))
+ (-5 *1 (-449 *5 *2)) (-4 *5 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551)))))
+ (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1041)) (-5 *1 (-754))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-393)) (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-649 *5))
+ (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3699 *4) (|:| -2091 (-569)))))
+ (-4 *4 (-1249 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *3 (-646 (-551))) (-5 *1 (-889)))))
+ (-12 (-5 *3 (-423 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1055))
+ (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193))))
+ ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-303))))
+ ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-308)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-646 (-551))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551))))
- ((*1 *2 *3) (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1160 (-646 (-551)))) (-5 *1 (-889)) (-5 *3 (-551)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-1188))) (-5 *1 (-886)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *2 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165))))
- ((*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1222)) (-4 *3 (-1222)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-117 *3)) (-14 *3 (-551))))
- ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-175 (-551))) (-5 *1 (-770 *3)) (-4 *3 (-409))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-876 *3)) (-14 *3 (-551))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-551)) (-5 *2 (-175 (-412 (-551)))) (-5 *1 (-877 *3 *4))
- (-4 *4 (-875 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
- ((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925))))
- ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1160 (-551))))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-896 *4 *3))
+ (-4 *3 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1248 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1248 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))))
-(((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-551)))))
-(((*1 *1 *1) (-4 *1 (-875 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-551))) (-5 *3 (-551)) (-4 *1 (-875 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6))
- (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1265 *5)) (-4 *6 (-1248 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1262 *5 *6 *7)) (-4 *5 (-367))
- (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1241 *6 *5)))
- (-5 *1 (-873 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1262 *5 *6 *7)) (-4 *5 (-367))
- (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1241 *6 *5)))
- (-5 *1 (-873 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6))
- (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1265 *5)) (-4 *6 (-1248 *5)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222))
- (-5 *2 (-646 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-741 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-444))) (-5 *1 (-870)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208)))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1222)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-776))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-616 *3)) (-4 *3 (-1107))))
- ((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551))))
- (-5 *4 (-317 (-169 (-382)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-382)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-551)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-169 (-382))))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-382)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-551)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-169 (-382))))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-382)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-551)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-169 (-382)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-382))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-551))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-699)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-704)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-952 (-551)))) (-5 *4 (-317 (-706)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-699)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-704)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-317 (-706)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-699)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-704)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-317 (-706)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-317 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301)))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3))))
- (-5 *1 (-824 *3)) (-4 *3 (-855))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-128))) (-5 *3 (-128)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-555))) (-5 *3 (-555)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-776)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-51))) (-5 *2 (-1278)) (-5 *1 (-864)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-551))))
- (-4 *2 (-173)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3)))
- (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2162 *1) (|:| -3321 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-423 *3)) (-4 *3 (-173))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055)) (-5 *1 (-858 *2 *3))
- (-4 *3 (-857 *2)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055)) (-5 *1 (-858 *5 *2))
- (-4 *2 (-857 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1)))
- (-4 *1 (-857 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1)))
- (-4 *1 (-857 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1)
- (-12 (-4 *1 (-409)) (-3764 (|has| *1 (-6 -4434)))
- (-3764 (|has| *1 (-6 -4426)))))
- ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))) ((*1 *1) (-4 *1 (-849)))
- ((*1 *1 *1 *1) (-4 *1 (-855))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5))
- (-14 *4 (-776)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5))
- (-14 *4 (-776)))))
+ (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *1) (-4 *1 (-1158))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4344 *3) (|:| -2777 (-776)))) (-5 *1 (-592 *3))
+ (-4 *3 (-550)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-1273 (-319 (-383))))
+ (-5 *1 (-308)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1272 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5))
- (-14 *4 (-776)))))
-(((*1 *2) (-12 (-5 *2 (-847 (-551))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-1107)))))
-(((*1 *2) (-12 (-5 *2 (-847 (-551))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1107))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-847 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-317 (-382)))) (-5 *4 (-646 (-382))) (-5 *2 (-1041))
- (-5 *1 (-845)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-646 (-382))) (-5 *5 (-646 (-847 (-382))))
- (-5 *6 (-646 (-317 (-382)))) (-5 *3 (-317 (-382))) (-5 *2 (-1041))
- (-5 *1 (-845))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-382))) (-5 *5 (-646 (-847 (-382))))
- (-5 *2 (-1041)) (-5 *1 (-845))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1041))
+ (-5 *1 (-754)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-112))
+ (-5 *1 (-895 *4 *5)) (-4 *5 (-1106))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-382))) (-5 *4 (-646 (-382))) (-5 *2 (-1041))
- (-5 *1 (-845))))
+ (-12 (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *2 (-112))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1223))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-317 (-382)))) (-5 *4 (-646 (-382))) (-5 *2 (-1041))
- (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-844))
- (-5 *3
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (-5 *2 (-1041))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-844))
- (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))
- (-5 *2 (-1041)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
-(((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1107)) (-5 *2 (-55)))))
-(((*1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3))
- (-4 *3 (-691 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-646 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1107))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-646 *4))) (-4 *4 (-1107))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1107)) (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-646 *4))) (-5 *1 (-114 *4))
- (-4 *4 (-1107))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
- (-5 *1 (-719 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-839 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
- (-5 *1 (-719 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-839 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-113)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-839 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-365 (-113))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4))
- (-4 *4 (-653 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-365 (-113))) (-5 *1 (-839 *2)) (-4 *2 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-837 (-551))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))))
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1223)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-827)) (-5 *4 (-51)) (-5 *2 (-1278)) (-5 *1 (-836)))))
-(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-51)) (-5 *1 (-836)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-834)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-51)) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-51)) (-5 *1 (-834)))))
-(((*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-833 *2 *3)) (-4 *2 (-713 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1165))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1165))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-828)) (-5 *2 (-1278))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-826)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1278))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-826) (-1055))) (-5 *2 (-1165))
- (-5 *1 (-832 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1055)))
- (-5 *2 (-1165)) (-5 *1 (-832 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-828)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-826) (-1055)))
- (-5 *2 (-1278)) (-5 *1 (-832 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-828)) (-5 *4 (-317 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-826) (-1055))) (-5 *2 (-1278)) (-5 *1 (-832 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-830)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-831)) (-5 *3 (-646 (-1183))) (-5 *1 (-830)))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-828)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3991 (-1165)))) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-828)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-827)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-827)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-646 *4)) (-4 *4 (-367)) (-5 *2 (-1272 *4))
- (-5 *1 (-819 *4 *3)) (-4 *3 (-663 *4)))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5))
- (-4 *5 (-663 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5))
- (-5 *1 (-819 *5 *6)) (-4 *6 (-663 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-952 *5))) (-5 *4 (-646 (-1183))) (-4 *5 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *5)))))) (-5 *1 (-775 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-562))
- (-5 *2 (-646 (-646 (-296 (-412 (-952 *4)))))) (-5 *1 (-775 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2200 (-646 *6))) *7 *6))
- (-4 *6 (-367)) (-4 *7 (-663 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1272 *6) "failed"))
- (|:| -2200 (-646 (-1272 *6)))))
- (-5 *1 (-818 *6 *7)) (-5 *4 (-1272 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367))
- (-5 *2
- (-2 (|:| A (-694 *5))
- (|:| |eqs|
- (-646
- (-2 (|:| C (-694 *5)) (|:| |g| (-1272 *5)) (|:| -3705 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1272 *5))
- (-4 *6 (-663 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-663 *5))
- (-5 *2 (-2 (|:| -1758 (-694 *6)) (|:| |vec| (-1272 *5))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1272 *5)))))
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3818 (-114)) (|:| |arg| (-649 (-898 *3)))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4)))
+ (-5 *1 (-898 *4)) (-4 *4 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1273 (-704))) (-5 *1 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1209 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-649 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *6 (-1248 *5)) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-660 (-412 *7))) (-5 *4 (-1 (-646 *6) *7))
- (-5 *5 (-1 (-410 *7) *7))
- (-4 *6 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *7 (-1248 *6)) (-5 *2 (-646 (-412 *7))) (-5 *1 (-817 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *6 (-1248 *5)) (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-661 *7 (-412 *7))) (-5 *4 (-1 (-646 *6) *7))
- (-5 *5 (-1 (-410 *7) *7))
- (-4 *6 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *7 (-1248 *6)) (-5 *2 (-646 (-412 *7))) (-5 *1 (-817 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-660 (-412 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-412 *5))) (-5 *1 (-817 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-27))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-661 *5 (-412 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-412 *5))) (-5 *1 (-817 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-27))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-412 *6))) (-5 *1 (-817 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5))
- (-5 *2 (-646 (-2 (|:| |poly| *6) (|:| -3705 *3))))
- (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-663 *6)) (-4 *7 (-663 (-412 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *6 (-1248 *5))
- (-5 *2 (-646 (-2 (|:| |poly| *6) (|:| -3705 (-661 *6 (-412 *6))))))
- (-5 *1 (-817 *5 *6)) (-5 *3 (-661 *6 (-412 *6))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-646 *7) *7 (-1177 *7))) (-5 *5 (-1 (-410 *7) *7))
- (-4 *7 (-1248 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-2 (|:| |frac| (-412 *7)) (|:| -3705 *3))))
- (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-663 *7)) (-4 *8 (-663 (-412 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-646 (-2 (|:| |frac| (-412 *6)) (|:| -3705 (-661 *6 (-412 *6))))))
- (-5 *1 (-817 *5 *6)) (-5 *3 (-661 *6 (-412 *6))))))
+ (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569)))
+ (-5 *2 (-1273 (-412 (-569)))) (-5 *1 (-1300 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *7 (-1248 *5)) (-4 *4 (-729 *5 *7))
- (-5 *2 (-2 (|:| -1758 (-694 *6)) (|:| |vec| (-1272 *5))))
- (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-663 *5)) (-4 *3 (-663 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-660 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-815 *4 *2))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))))
+ (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-569))
+ (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1249 *5))
+ (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))))
((*1 *2 *3)
- (-12 (-5 *3 (-661 *2 (-412 *2))) (-4 *2 (-1248 *4)) (-5 *1 (-815 *4 *2))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 (-412 *6))) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-2 (|:| -2200 (-646 (-412 *6))) (|:| -1758 (-694 *5))))
- (-5 *1 (-815 *5 *6)) (-5 *4 (-646 (-412 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2200 (-646 *4))))
- (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 *6 (-412 *6))) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-2 (|:| -2200 (-646 (-412 *6))) (|:| -1758 (-694 *5))))
- (-5 *1 (-815 *5 *6)) (-5 *4 (-646 (-412 *6))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-1248 *4))
- (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-663 *3)) (-4 *5 (-663 (-412 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551)))))
- (-4 *5 (-1248 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-663 *5))
- (-4 *6 (-663 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-646 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *6 (-1248 *5))
- (-5 *2 (-646 (-2 (|:| -4402 *5) (|:| -3705 *3)))) (-5 *1 (-814 *5 *6 *3 *7))
- (-4 *3 (-663 *6)) (-4 *7 (-663 (-412 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4))
- (-5 *2 (-646 (-2 (|:| |deg| (-776)) (|:| -3705 *5))))
- (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-663 *5)) (-4 *6 (-663 (-412 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1248 *4)) (-5 *1 (-814 *4 *2 *3 *5))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2))
- (-4 *5 (-663 (-412 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1248 *4)) (-5 *1 (-812 *4 *2 *3 *5))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2))
- (-4 *5 (-663 (-412 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1248 *4)) (-5 *1 (-812 *4 *2 *5 *3))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-663 *2))
- (-4 *3 (-663 (-412 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4))
- (-5 *2 (-646 (-2 (|:| -4222 *5) (|:| -3664 *5)))) (-5 *1 (-812 *4 *5 *3 *6))
- (-4 *3 (-663 *5)) (-4 *6 (-663 (-412 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *4 (-1248 *5))
- (-5 *2 (-646 (-2 (|:| -4222 *4) (|:| -3664 *4)))) (-5 *1 (-812 *5 *4 *3 *6))
- (-4 *3 (-663 *4)) (-4 *6 (-663 (-412 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *5 (-1248 *4))
- (-5 *2 (-646 (-2 (|:| -4222 *5) (|:| -3664 *5)))) (-5 *1 (-812 *4 *5 *6 *3))
- (-4 *6 (-663 *5)) (-4 *3 (-663 (-412 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *4 (-1248 *5))
- (-5 *2 (-646 (-2 (|:| -4222 *4) (|:| -3664 *4)))) (-5 *1 (-812 *5 *4 *6 *3))
- (-4 *6 (-663 *4)) (-4 *3 (-663 (-412 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1248 *5))
- (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551)))))
- (-4 *3 (-663 *2)) (-4 *6 (-663 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-412 *2))) (-4 *2 (-1248 *5)) (-5 *1 (-812 *5 *2 *3 *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-551))))) (-4 *3 (-663 *2))
- (-4 *6 (-663 (-412 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 *4)) (-4 *4 (-346 *5 *6 *7))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *6 (-1248 *5)) (-4 *7 (-1248 (-412 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-811 *5 *6 *7 *4)))))
+ (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1249 *4))
+ (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1208) (-966))))))
+ (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-1205 *4))
+ (-4 *4 (-1055)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-966))))))
+ (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2
- (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382))
- (|:| |expense| (-382)) (|:| |accuracy| (-382))
- (|:| |intermediateResults| (-382))))
- (-5 *1 (-808)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-646
- (-2
- (|:| -4310
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (|:| -2264
- (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382))
- (|:| |expense| (-382)) (|:| |accuracy| (-382))
- (|:| |intermediateResults| (-382)))))))
- (-5 *1 (-808)))))
-(((*1 *2 *1)
(-12
- (-5 *2
- (-646
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226)))))
- (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-646 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226)))))
- (-5 *1 (-808)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))))
-(((*1 *1) (-5 *1 (-808))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-551)) (-644 (-551)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1208) (-966)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2200 (-646 *4))))
- (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-663 *4)))))
+ (-5 *3
+ (-649 (-2 (|:| -4375 (-412 (-569))) (|:| -4386 (-412 (-569))))))
+ (-5 *2 (-649 (-226))) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-805))
+ (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569)))
+ (-5 *2 (-1273 (-569))) (-5 *1 (-1300 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-5 *1 (-994 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1249 *4))
+ (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *2 *3 *4)
+ (-12
(-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-1041)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-173)) (-5 *1 (-803 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)))))
-(((*1 *1 *1) (-4 *1 (-244)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *2))
- (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-3978 (-12 (-5 *1 (-296 *2)) (-4 *2 (-367)) (-4 *2 (-1222)))
- (-12 (-5 *1 (-296 *2)) (-4 *2 (-478)) (-4 *2 (-1222)))))
- ((*1 *1 *1) (-4 *1 (-478)))
- ((*1 *2 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-354)) (-5 *1 (-533 *3))))
+ (-649
+ (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *2))
+ (|:| |logand| (-1179 *2)))))
+ (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-367)) (-5 *1 (-591 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112))
+ (-5 *1 (-1300 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-801 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208)))))
- ((*1 *1 *1 *1) (-4 *1 (-798))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-382) (-382))) (-5 *4 (-382))
- (-5 *2
- (-2 (|:| -3844 *4) (|:| -1714 *4) (|:| |totalpts| (-551))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-551)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382)))
- (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-551))
- (-5 *6 (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))))
- (-5 *7 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382)))
- (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-551))
- (-5 *6 (-2 (|:| |try| (-382)) (|:| |did| (-382)) (|:| -1582 (-382))))
- (-5 *7 (-1 (-1278) (-1272 *5) (-1272 *5) (-382))) (-5 *3 (-1272 (-382)))
- (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382)))
- (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382)))
- (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-551)) (-5 *6 (-1 (-1278) (-1272 *5) (-1272 *5) (-382)))
- (-5 *3 (-1272 (-382))) (-5 *5 (-382)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-792)) (-5 *2 (-1041))
- (-5 *3
- (-2 (|:| |fn| (-317 (-226))) (|:| -1613 (-646 (-1095 (-847 (-226)))))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-792)) (-5 *2 (-1041))
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226)))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-925)) (-5 *1 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1165)) (-5 *1 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-925)) (-5 *1 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1165)) (-5 *1 (-791)))))
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-173))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
+ (-12 (-4 *4 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-952 (-169 *4)))) (-4 *4 (-562))
- (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-952 (-169 *5)))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855))
- (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
+ (-12 (-5 *4 (-927)) (-4 *5 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1249 *4)) (-5 *2 (-569))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-562)) (-4 *4 (-855))
- (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-855)) (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382)))
- (-5 *1 (-790 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2))
- (-5 *2 (-382)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055))
- (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5))))
+ (|partial| -12 (-4 *4 (-13 (-561) (-1044 *2) (-644 *2) (-457)))
+ (-5 *2 (-569)) (-5 *1 (-1122 *4 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569))
+ (-5 *1 (-1122 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165))
+ (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569))
+ (-5 *1 (-1122 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 *2))
- (-5 *2 (-382)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5))))
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569))
+ (-5 *1 (-1123 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 (-412 (-958 *6))))
+ (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569))
+ (-5 *1 (-1123 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1183))
+ (-5 *5 (-1165)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855))
- (-4 *4 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855))
- (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))))
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-169 (-382))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-382)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-5 *2 (-169 (-382))) (-5 *1 (-790 *3))
- (-4 *3 (-619 (-382)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-169 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 *5)) (-5 *4 (-925)) (-4 *5 (-173)) (-4 *5 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569))))
+ (-5 *1 (-308)))))
+(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))
((*1 *2 *3)
- (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-173))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 (-169 *4)))) (-4 *4 (-562)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 (-169 *5)))) (-5 *4 (-925)) (-4 *5 (-562))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 (-382)))
- (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5))))
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-562)) (-4 *4 (-855))
- (-4 *4 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855))
- (-4 *5 (-619 (-382))) (-5 *2 (-169 (-382))) (-5 *1 (-790 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-382)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-5 *2 (-382)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2))))
+ (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-382))
- (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-925)) (-4 *5 (-1055)) (-4 *5 (-619 *2))
- (-5 *2 (-382)) (-5 *1 (-790 *5))))
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7))))
+ (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227))))
((*1 *2 *3)
- (-12 (-5 *3 (-412 (-952 *4))) (-4 *4 (-562)) (-4 *4 (-619 *2)) (-5 *2 (-382))
- (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-619 *2))
- (-5 *2 (-382)) (-5 *1 (-790 *5))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1252 *4 *3))
+ (-4 *3 (-13 (-1249 *4) (-561) (-10 -8 (-15 -1830 ($ $ $)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-562)) (-4 *4 (-855)) (-4 *4 (-619 *2))
- (-5 *2 (-382)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-925)) (-4 *5 (-562)) (-4 *5 (-855))
- (-4 *5 (-619 *2)) (-5 *2 (-382)) (-5 *1 (-790 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-551))))
- (-4 *2 (-173)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-551))))
- (-4 *2 (-173)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-646 (-786 *3))) (-5 *1 (-786 *3)) (-4 *3 (-562))
- (-4 *3 (-1055)))))
-(((*1 *2 *1 *1)
+ (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-14 *5 (-649 (-1183)))
+ (-5 *2
+ (-649 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))))
+ (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))))
+(((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
+ (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1249 *4))
+ (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1)
(-12
- (-5 *2 (-2 (|:| -4206 *3) (|:| |coef1| (-786 *3)) (|:| |coef2| (-786 *3))))
- (-5 *1 (-786 *3)) (-4 *3 (-562)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4206 *3) (|:| |coef1| (-786 *3)))) (-5 *1 (-786 *3))
- (-4 *3 (-562)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4206 *3) (|:| |coef2| (-786 *3)))) (-5 *1 (-786 *3))
- (-4 *3 (-562)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-551))))
(-5 *2
- (-646
- (-2 (|:| |outval| *4) (|:| |outmult| (-551))
- (|:| |outvect| (-646 (-694 *4))))))
- (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *2 (-646 *4)) (-5 *1 (-784 *4))
- (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))
+ (-649
+ (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *3))
+ (|:| |logand| (-1179 *3)))))
+ (-5 *1 (-591 *3)) (-4 *3 (-367)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-319 (-226))))
+ (-5 *2
+ (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569))
+ (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))))
+ (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4)))))
+ (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
((*1 *2 *3)
- (-12 (-4 *4 (-173)) (-4 *2 (-1248 *4)) (-5 *1 (-178 *4 *2 *3))
- (-4 *3 (-729 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-952 *5)))) (-5 *4 (-1183)) (-5 *2 (-952 *5))
- (-5 *1 (-295 *5)) (-4 *5 (-457))))
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1108 (-776))) (-5 *6 (-776))
+ (-5 *2
+ (-2 (|:| |contp| (-569))
+ (|:| -2671 (-649 (-2 (|:| |irr| *3) (|:| -2727 (-569)))))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-591 *3)) (-4 *3 (-367)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2267 (-649 (-226)))))
+ (-5 *2 (-383)) (-5 *1 (-269))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-295 *4))
- (-4 *4 (-457))))
- ((*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1248 *3))))
+ (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1183)))
+ (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1029)) (-5 *5 (-383))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *2 (-952 (-169 (-412 (-551)))))
- (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *4 (-1183))
- (-5 *2 (-952 (-169 (-412 (-551))))) (-5 *1 (-769 *5))
- (-4 *5 (-13 (-367) (-853)))))
+ (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4)))))
+ (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *2 (-952 (-412 (-551))))
- (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-551)))) (-5 *4 (-1183))
- (-5 *2 (-952 (-412 (-551)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))))
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))))
+(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-646 (-776)))
- (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1248 *6)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1248 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310))
- (-4 *10 (-956 *9 *7 *8))
+ (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-14 *5 (-649 (-1183)))
(-5 *2
- (-2 (|:| |deter| (-646 (-1177 *10)))
- (|:| |dterm| (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-646 *6)) (|:| |nlead| (-646 *10))))
- (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1177 *10)) (-5 *4 (-646 *6))
- (-5 *5 (-646 *10)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *5 (-332 *4)) (-4 *6 (-1248 *5)) (-5 *2 (-646 *3))
- (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1248 *6)) (-14 *7 (-925)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| (-112)) (|:| -1718 *4))))
- (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278)) (-5 *1 (-781 *6 *7 *8 *4 *5))
- (-4 *5 (-1077 *6 *7 *8 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4)))))
- ((*1 *1 *1) (-5 *1 (-382)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-646 (-2 (|:| |val| *3) (|:| -1718 *4))))
- (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1071 *4 *5 *6))
- (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1077 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-382))))
- ((*1 *1 *1 *1) (-4 *1 (-550)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-776)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-960)) (-4 *3 (-1107)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-169 (-412 (-551)))))
+ (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4))))))
+ (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
(-5 *2
- (-646
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-551))
- (|:| |outvect| (-646 (-694 (-169 *4)))))))
- (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-169 (-412 (-551))))) (-5 *2 (-646 (-169 *4)))
- (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-952 (-551)))) (-5 *1 (-441))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1109)) (-5 *1 (-764))))
+ (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5))))))
+ (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5))))))
+ (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-551))) (-5 *2 (-1109)) (-5 *1 (-764)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-169 (-226))) (-5 *6 (-1165)) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *2 (-1041))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *2 (-1041))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-226))) (-5 *5 (-551)) (-5 *6 (-1165)) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551)))
- (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-169 (-226)))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-112)) (-5 *5 (-694 (-169 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-760))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-169 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-169 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-169 (-226)))) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *3 (-551))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-646 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551)))
- (-5 *7 (-226)) (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-694 (-551))) (-5 *5 (-112)) (-5 *7 (-694 (-226)))
- (-5 *3 (-551)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-646 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-551)))
- (-5 *3 (-551)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
- *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226))
- (-5 *7 (-694 (-551))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-551))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
- *8)
- (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-551)))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-551))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1041))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1041))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1041))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1041))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-551)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
- (-5 *7 (-694 (-551))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *6 (-226))
- (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
- (-5 *7 (-694 (-551))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-551))) (-5 *3 (-551))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-551))) (-5 *6 (-226))
- (-5 *3 (-551)) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
- *4)
- (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226)))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *5 (-1165))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1041))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 G JACOBG JACGEP))))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1041))
- (-5 *1 (-754))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-62 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-393))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1041))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-551)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-551)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 FCN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-551)) (-5 *2 (-1041)) (-5 *1 (-753)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *5)) (|:| -1949 (-649 (-958 *5))))))
+ (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2
+ (-649 (-2 (|:| -3557 (-1179 *4)) (|:| -1949 (-649 (-958 *4))))))
+ (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-649 (-958 *4)))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1163 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3396
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
(-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-649 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
(-5 *1 (-753)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1295 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *1 (-1297 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
(-5 *1 (-753)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-848 (-383)))) (-5 *2 (-1100 (-848 (-226))))
+ (-5 *1 (-308)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-1183)) (|:| |c| (-1295 *3)))))
+ (-5 *1 (-1295 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4)))))
+ (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-971))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *2 *3))
+ (-4 *3 (-13 (-1106) (-34))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-898 *4))
+ (-4 *4 (-1106)))))
(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 G)))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
(-5 *1 (-753)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))))
+(((*1 *1) (-5 *1 (-583))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-824 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))
+ (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-52)) (-5 *1 (-898 *4))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367))
+ (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)))))
+ (-5 *1 (-984 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-1165))) (-5 *3 (-569)) (-5 *4 (-1165))
+ (-5 *1 (-242))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-824 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-551)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *3 (-226))
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649)))) (-5 *3 (-226))
(-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-367)) (-5 *1 (-984 *5)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-580 *4 *2))
+ (-4 *2 (-13 (-1208) (-965) (-1145) (-29 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-851)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))
+ (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2683 (-569)) (|:| -2671 (-649 *3))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-455 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367))
+ (-5 *2
+ (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6))))
+ (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1106))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *3))
+ (-2 (|:| -2114 *2) (|:| -2777 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-579 *5 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1183))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-851)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))
+ (-5 *2 (-1041)) (-5 *1 (-753)))))
+(((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3699 *4) (|:| -2091 (-569)))))
+ (-4 *4 (-1249 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-1163 (-226))) (-5 *1 (-193))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183)))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183)))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1082 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
+ (-5 *1 (-1082 *3 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-1201)))))
+(((*1 *1)
+ (-12 (-4 *1 (-409)) (-1728 (|has| *1 (-6 -4434)))
+ (-1728 (|has| *1 (-6 -4426)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855))))
+ ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855))))
+ ((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-628 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -4386 *4) (|:| |sol?| (-112)))
+ (-569) *4))
+ (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *1 (-579 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27))
+ (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183)))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855))
+ (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055))
+ (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-4 *2 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3))
+ (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-676))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927)))))
(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1963
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2179
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1163 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3396
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-564))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1963
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (|:| -2179
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383))))))
+ (-5 *1 (-808))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2209 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1249 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183))
+ (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927)))))
(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1106)) (-4 *5 (-671 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-569)))))
+ (-4 *2 (-561)) (-5 *1 (-423 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-569))
+ (|:| -2671 (-649 (-2 (|:| |irr| *4) (|:| -2727 (-569)))))))
+ (-4 *4 (-1249 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1106)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1106))
+ (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
+ (-5 *1 (-1082 *3 *4 *2))
+ (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7)))
+ (-4 *7 (-1249 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-579 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-112)) (-5 *1 (-303)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *1 (-669 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4))
+ (-4 *3 (-855)) (-4 *4 (-173)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-319 (-569))) (|:| -1649 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
+ (-5 *1 (-1182)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1273 (-1107 *3 *4))) (-5 *1 (-1107 *3 *4))
+ (-14 *3 (-927)) (-14 *4 (-927)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-4 *2 (-1106))
+ (-5 *1 (-895 *4 *2)))))
(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
(-5 *1 (-752)))))
+(((*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1106))
+ (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
+ (-5 *1 (-1082 *3 *4 *2))
+ (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -2209 (-412 *6)) (|:| |coeff| (-412 *6))))
+ (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-4 *1 (-305))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
+ (-4 *3 (-1106)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-112))
+ (-5 *1 (-910 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-752)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-412 (-569)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569)))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6))
+ (-4 *6 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569)))
+ (-4 *7 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569)))
+ (-4 *3 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8))
+ (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569)))
+ (-4 *8 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569))))
+ (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8)))
+ (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-4 *3 (-1055)) (-5 *1 (-600 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-4 *3 (-1055)) (-4 *1 (-1233 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-776))
+ (-5 *3 (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4))))
+ (-4 *4 (-1055)) (-4 *1 (-1254 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-4 *1 (-1264 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163 (-2 (|:| |k| (-776)) (|:| |c| *3))))
+ (-4 *3 (-1055)) (-4 *1 (-1264 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -4386 *7) (|:| |sol?| (-112)))
+ (-569) *7))
+ (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7))
+ (-5 *3 (-412 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-579 *7 *8)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1165)))))
(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-752)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-91 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-983 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2209 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7))
+ (-5 *3 (-412 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-579 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1106)))))
(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-752)))))
+(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-441)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |minor| (-649 (-927))) (|:| -4289 *3)
+ (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3))
+ (-4 *3 (-1071 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4386 *6) (|:| |sol?| (-112))) (-569)
+ *6))
+ (-4 *6 (-367)) (-4 *7 (-1249 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
+ (-2 (|:| -2209 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6)))
+ (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4))
+ (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 (-958 *3))))
+ (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1055))
+ (-1728 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5))
+ (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4))
+ (-1728 (-4 *3 (-1044 (-1183)))) (-1728 (-4 *3 (-1055)))
+ (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2513 "void")))
+ (-5 *1 (-442)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278))
+ (-5 *1 (-473))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-983 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2209 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-367)) (-4 *7 (-1249 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
+ (-2 (|:| -2209 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1044 (-569)))
+ (-4 *4 (-561)) (-5 *2 (-1179 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-617 *1)) (-4 *1 (-1055)) (-4 *1 (-305))
+ (-5 *2 (-1179 *1)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-59 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-731))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-617 *4))
+ (-4 *4 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4))
+ (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1106))
+ (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5))
+ (-4 *4 (-1106)) (-4 *5 (-1106)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367))
+ (-4 *7 (-1249 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-1249 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1249 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1223))
+ (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855))
+ (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927))))
+ ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5))
+ (-4 *4 (-1106)) (-4 *5 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-1142)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4386 *6) (|:| |sol?| (-112))) (-569)
+ *6))
+ (-4 *6 (-367)) (-4 *7 (-1249 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055)) (-4 *4 (-173))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))
+ (-4 *3 (-173)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2)
+ (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3201 (-649 *7))))
+ (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2209 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-367)) (-4 *7 (-1249 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1216 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-591 *3) *3 (-1183)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1183)))
+ (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1044 *4)) (-4 *3 (-435 *7))
+ (-5 *4 (-1183)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457))
+ (-4 *7 (-892 (-569))) (-4 *7 (-1106)) (-5 *2 (-591 *3))
+ (-5 *1 (-578 *7 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
(-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1041))
(-5 *1 (-751)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569))))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-5 *2 (-1179 *3)) (-5 *1 (-1197 *3))
+ (-4 *3 (-367)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1106))
+ (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-551)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
(-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1041))
(-5 *1 (-751)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-551))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 -3514)))) (-5 *2 (-1041))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-112)) (-5 *2 (-1041))
- (-5 *1 (-750)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-551)) (-5 *5 (-112)) (-5 *2 (-1041))
- (-5 *1 (-750)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *3 (-649 (-569)))
+ (-5 *1 (-889)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1274))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1275)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6))
+ (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-983 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *6)) (-5 *3 (-551)) (-4 *6 (-310)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-4 *7 (-855))
- (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-646 (-776)))
- (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-551)) (-5 *4 (-410 *2)) (-4 *2 (-956 *7 *5 *6))
- (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-5 *5 (-646 (-646 *8)))
- (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798))
- (-5 *2
- (-2 (|:| |upol| (-1177 *8)) (|:| |Lval| (-646 *8))
- (|:| |Lfact| (-646 (-2 (|:| -4182 (-1177 *8)) (|:| -2582 (-551)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-747 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-646 *7)) (-5 *5 (-646 (-646 *8))) (-4 *7 (-855)) (-4 *8 (-310))
- (-4 *6 (-798)) (-4 *9 (-956 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart| (-646 (-2 (|:| -4182 (-1177 *9)) (|:| -2582 (-551)))))))
- (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1177 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-551)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310))
- (-4 *9 (-956 *8 *6 *7))
- (-5 *2 (-2 (|:| -2192 (-1177 *9)) (|:| |polval| (-1177 *8))))
- (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1177 *9)) (-5 *4 (-1177 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3))
- (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -4182 (-1177 *6)) (|:| -2582 (-551)))))
- (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-551))
- (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-410 *3))
- (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-741 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-741 *2)) (-4 *2 (-1107))))
- ((*1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-1107)))))
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-4 *4 (-1106))
+ (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561))
+ (-4 *3 (-1223)))))
+(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
+ ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1096)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1649))))
+ (-5 *2 (-1041)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569))))))
+(((*1 *1) (-5 *1 (-442))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-776))))
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107)) (-5 *2 (-776))))
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5)))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2))
- (-5 *3 (-412 (-952 *6))) (-4 *5 (-798))
- (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 (-952 *6))) (-4 *6 (-562))
- (-4 *2 (-956 (-412 (-952 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2))
- (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *2)) (-4 *2 (-956 (-412 (-952 *6)) *5 *4))
- (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798))
- (-4 *4 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $))))) (-4 *6 (-562)))))
+ (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -4420 ((-1183) $)))))
- (-4 *6 (-562)) (-5 *2 (-2 (|:| -2823 (-952 *6)) (|:| -2246 (-952 *6))))
- (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-956 (-412 (-952 *6)) *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-551))
- (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8))
- (-5 *1 (-136 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
- (-4 *8 (-1055)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-798)) (-4 *4 (-956 *8 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1248 *5))
- (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -3511 (-410 *3)) (|:| |special| (-410 *3))))
- (-5 *1 (-732 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-1183)) (-4 *6 (-435 *5))
+ (-4 *5 (-1106)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-457))
+ (-5 *2
+ (-649
+ (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))
+ (|:| |eigmult| (-776))
+ (|:| |eigvec| (-649 (-694 (-412 (-958 *4))))))))
+ (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
+ ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-646 (-1183)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183)))))
- ((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *2 (-346 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-173))))
- ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1272 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
- (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1248 *5)) (-5 *2 (-694 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-925))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562))))
- ((*1 *1 *1) (|partial| -4 *1 (-727))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-562))))
- ((*1 *1 *1) (|partial| -4 *1 (-727))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1248 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
- (-14 *4 (-1183)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-410 *3)) (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-704))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1107)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855))
- (-14 *4
- (-1 (-112) (-2 (|:| -2581 *3) (|:| -2582 *2))
- (-2 (|:| -2581 *3) (|:| -2582 *2)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-925)) (-4 *1 (-372))))
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1273 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354))))
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-1273 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1249 *4)) (-5 *2 (-1273 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1107))
- (-14 *4
- (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *3))
- (-2 (|:| -2581 *2) (|:| -2582 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-1272 *3)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1248 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1248 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-1272 *3)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1248 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1248 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1248 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1165)) (-5 *1 (-715)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-646 (-1177 *13))) (-5 *3 (-1177 *13))
- (-5 *4 (-646 *12)) (-5 *5 (-646 *10)) (-5 *6 (-646 *13))
- (-5 *7 (-646 (-646 (-2 (|:| -3498 (-776)) (|:| |pcoef| *13)))))
- (-5 *8 (-646 (-776))) (-5 *9 (-1272 (-646 (-1177 *10)))) (-4 *12 (-855))
- (-4 *10 (-310)) (-4 *13 (-956 *10 *11 *12)) (-4 *11 (-798))
- (-5 *1 (-712 *11 *12 *10 *13)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-646 *11)) (-5 *5 (-646 (-1177 *9))) (-5 *6 (-646 *9))
- (-5 *7 (-646 *12)) (-5 *8 (-646 (-776))) (-4 *11 (-855)) (-4 *9 (-310))
- (-4 *12 (-956 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-646 (-1177 *12)))
- (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1177 *12)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-646 (-1177 *11))) (-5 *3 (-1177 *11))
- (-5 *4 (-646 *10)) (-5 *5 (-646 *8)) (-5 *6 (-646 (-776)))
- (-5 *7 (-1272 (-646 (-1177 *8)))) (-4 *10 (-855)) (-4 *8 (-310))
- (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7))
- (-4 *3 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *7 (-1222))))
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-5 *2 (-1273 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6))
- (-4 *3 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)))))
+ (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2 (-1273 *5)) (-5 *1 (-1092 *5)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
+ (-5 *2 (-1041)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-1195 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6))
- (-4 *4 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4))
- (-4 *3 (-1222)) (-4 *4 (-1222)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-646 (-1183))) (-5 *3 (-1183)) (-5 *1 (-540))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-646 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3))
- (-4 *3 (-619 (-540))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3))
- (-4 *3 (-619 (-540)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3))
- (-4 *3 (-619 (-540))))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1183)) (-5 *2 (-617 *6))
+ (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *1 (-578 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7))
- (-4 *4 (-619 (-540))) (-4 *5 (-1222)) (-4 *6 (-1222)) (-4 *7 (-1222)))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-706))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-706)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-693 *3 *4 *5 *6))
- (-4 *6 (-691 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2162 *3) (|:| -3321 *3))) (-5 *1 (-705 *3))
- (-4 *3 (-310)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-551))))
- ((*1 *2 *1) (-12 (-5 *2 (-551)) (-5 *1 (-704)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704))))
- ((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-704)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))))
-(((*1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704))))
- ((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-704)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-1 (-226) (-226) (-226) (-226)))
- (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226)))
- (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
- (-5 *5 (-1095 (-226))) (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-702)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
- (-5 *5 (-1095 (-226))) (-5 *6 (-646 (-263))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-702))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-226)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-702))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226)))
- (-5 *4 (-1095 (-226))) (-5 *5 (-646 (-263))) (-5 *1 (-702)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3)))))
+ (-12 (-4 *4 (-457))
+ (-5 *2
+ (-649
+ (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))
+ (|:| |geneigvec| (-649 (-694 (-412 (-958 *4))))))))
+ (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| |deg| (-776)) (|:| -2993 *5)))) (-4 *5 (-1248 *4))
- (-4 *4 (-354)) (-5 *2 (-646 *5)) (-5 *1 (-217 *4 *5))))
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-1273 (-694 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 (-694 *3)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-2 (|:| -4182 *5) (|:| -4398 (-551))))) (-5 *4 (-551))
- (-4 *5 (-1248 *4)) (-5 *2 (-646 *5)) (-5 *1 (-701 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-5 *2 (-646 (-2 (|:| -4182 *3) (|:| -4398 *4))))
- (-5 *1 (-701 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-701 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1222)) (-4 *2 (-1107))))
- ((*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-700 *3)) (-4 *3 (-1107))
- (-5 *2 (-646 (-2 (|:| -2264 *3) (|:| -2135 (-776))))))))
+ (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367))
+ (-5 *2 (-1273 (-694 (-412 (-958 *5))))) (-5 *1 (-1092 *5))
+ (-5 *4 (-694 (-412 (-958 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367))
+ (-5 *2 (-1273 (-694 (-958 *5)))) (-5 *1 (-1092 *5))
+ (-5 *4 (-694 (-958 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367))
+ (-5 *2 (-1273 (-694 *4))) (-5 *1 (-1092 *4)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
+ (-5 *2 (-1041)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1044 (-48)))
+ (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 (-1179 (-48)))) (-5 *1 (-440 *4 *5 *3))
+ (-4 *3 (-1249 *5)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5)
+ (|:| |f4| (-649 *5))))
+ (-5 *1 (-1194 *6)) (-5 *4 (-649 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1106)) (-5 *2 (-617 *5))
+ (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-1107)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7))
- (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-376 *7))
- (-4 *4 (-13 (-376 *6) (-10 -7 (-6 -4443)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *4 (-646 (-1183)))
- (-5 *2 (-694 (-317 (-226)))) (-5 *1 (-206))))
+ (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1172 (-1183) (-958 *6))))
+ (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6)))))
+ (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6))))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6))
- (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-376 *6))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-1107)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3))
- (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-376 *3))
- (-4 *4 (-13 (-376 *6) (-10 -7 (-6 -4443)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3))
- (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-376 *3))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5))))
+ (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4))))
+ (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
+ (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1223))
+ (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1179 (-412 (-569))))
+ (|:| |overan| (-1179 (-48))) (|:| -2457 (-112))))
+ (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))
+ ((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1107)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3))
- (-4 *5 (-376 *2)) (-4 *3 (-13 (-376 *4) (-10 -7 (-6 -4443)))))))
+ (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1183)) (-4 *5 (-435 *4))
+ (-4 *4 (-1106)) (-5 *1 (-578 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4))
- (-4 *3 (-376 *2)) (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))))
+ (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5))))
+ (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
+ (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 (-1179 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3))
+ (-4 *3 (-1249 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1107)) (-4 *3 (-906 *5)) (-5 *2 (-1272 *3))
- (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-376 *3))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4443)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868))))))
-(((*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-868))))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3))))
- ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *3 (-173)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-551)) (-4 *3 (-173)) (-4 *5 (-376 *3)) (-4 *6 (-376 *3))
- (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-691 *3 *5 *6)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-551)) (-4 *3 (-173)) (-4 *5 (-376 *3)) (-4 *6 (-376 *3))
- (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-691 *3 *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-173)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4))
- (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-691 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-691 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-551)) (-4 *1 (-691 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)))))
+ (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2))
+ (-4 *2 (-1106))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-855))
+ (-5 *1 (-1224 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-561) (-1044 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| -2209 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5)))))
+ (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1107)))))
+ (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457))
+ (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))))
+ (-5 *1 (-295 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855))
+ (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310))
+ (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1107)) (-4 *6 (-1107)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1107)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))))
+ (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-886)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 (-412 (-958 *6))))
+ (-5 *3 (-412 (-958 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-575 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1091))) (-5 *1 (-294)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-649 (-1082 *4 *5 *2))) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-649 (-1082 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1106))
+ (-4 *6 (-13 (-1055) (-892 *5) (-619 (-898 *5))))
+ (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1) (-5 *1 (-1091))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1107)) (-4 *4 (-1107)) (-4 *6 (-1107))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6))
+ (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-310)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1106)) (-5 *2 (-112))
+ (-5 *1 (-1224 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-688 *4 *5)))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183))
+ (-4 *4 (-13 (-561) (-1044 (-569)) (-147))) (-5 *1 (-575 *4)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1110))) (-5 *1 (-294)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1977 (-649 *3)) (|:| -1968 (-649 *3))))
+ (-5 *1 (-1224 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1107)) (-4 *5 (-1107)) (-5 *2 (-1 *5))
- (-5 *1 (-688 *4 *5)))))
+ (-12 (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1208) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147)))
+ (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5))
+ (-5 *3 (-412 (-958 *5))))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-172))))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1107))
- (-4 *3 (-1107)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1107))
- (-5 *1 (-683 *2))))
- ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1107)) (-5 *1 (-687 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1107))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-646 *5) (-646 *5))) (-5 *4 (-551)) (-5 *2 (-646 *5))
- (-5 *1 (-687 *5)) (-4 *5 (-1107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-646 (-1223))) (-5 *3 (-1223)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1107)) (-4 *6 (-1107))
- (-4 *2 (-1107)) (-5 *1 (-685 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1107)) (-5 *1 (-683 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-952 (-551)))) (-5 *2 (-333))
- (-5 *1 (-335))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1107)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1107)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1272 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1222)) (-5 *2 (-776)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278))
+ (-5 *1 (-1224 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278))
+ (-5 *1 (-1224 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-925)) (-4 *5 (-855))
- (-5 *2 (-58 (-646 (-677 *5)))) (-5 *1 (-677 *5)))))
+ (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3699 (-1179 *6)) (|:| -2777 (-569)))))
+ (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-761)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569))))
+ (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *5)) (-5 *4 (-925)) (-4 *5 (-855)) (-5 *2 (-646 (-677 *5)))
- (-5 *1 (-677 *5)))))
+ (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1179 (-1179 *5))))
+ (-5 *1 (-1221 *5)) (-5 *3 (-1179 (-1179 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 *7)) (-4 *7 (-855))
- (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-798))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1272 (-412 *8)) "failed"))
- (|:| -2200 (-646 (-1272 (-412 *8))))))
- (-5 *1 (-674 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-376 *5) (-10 -7 (-6 -4444))))
- (-4 *4 (-13 (-376 *5) (-10 -7 (-6 -4444)))) (-5 *2 (-112))
- (-5 *1 (-672 *5 *6 *4 *3)) (-4 *3 (-691 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-5 *4 (-1272 *5)) (-4 *5 (-367)) (-5 *2 (-112))
- (-5 *1 (-673 *5)))))
+ (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6))
+ (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-573 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-1177 *4))) (-5 *3 (-1177 *4)) (-4 *4 (-916))
- (-5 *1 (-668 *4)))))
-(((*1 *1 *1) (-4 *1 (-667))))
-(((*1 *1 *1 *1) (-4 *1 (-667))))
-(((*1 *1 *1 *1) (-4 *1 (-667))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-665 *4 *2))
- (-4 *2 (-663 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-663 *3)) (-4 *3 (-1055)) (-4 *3 (-367))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-665 *5 *2))
- (-4 *2 (-663 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-665 *4 *2))
- (-4 *2 (-663 *4)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2))
+ (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4443) (-6 -4444))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2))
+ (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4443) (-6 -4444)))))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-761)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
+ ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))
+ ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1163 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *5 (-1248 *4)) (-5 *2 (-646 (-660 (-412 *5)))) (-5 *1 (-664 *4 *5))
- (-5 *3 (-660 (-412 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-656 *3)) (-4 *3 (-1222)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-656 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-656 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4))))
- (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 *4)))) (-4 *3 (-1107))
- (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-365 *3)) (-4 *3 (-1107))))
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4))))
+ (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2))
+ (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4443) (-6 -4444))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2))
+ (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4443) (-6 -4444)))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-761)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1249 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1278))
+ (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4))))
+ (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-867)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-29 *4))))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1273 *4)) (-4 *4 (-1055)) (-4 *2 (-1249 *4))
+ (-5 *1 (-449 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-412 (-1179 (-319 *5)))) (-5 *3 (-1273 (-319 *5)))
+ (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1136 *5)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-569)))
+ (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5))
+ (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1179 (-412 (-569))))
+ (-5 *1 (-438 *5 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226))
+ (-5 *2 (-649 (-949 *4))) (-5 *1 (-1219)) (-5 *3 (-949 *4)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
+ (-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2))
+ (-4 *5 (-377 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1223))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-390 *4)) (-4 *4 (-1107)) (-5 *2 (-776))))
+ (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 (-569)) (-14 *5 (-776))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-776))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-776))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-776))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1107))
- (-14 *5 *2))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1107))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-365 *2)) (-4 *2 (-1107))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-4 *1 (-390 *2)) (-4 *2 (-1107))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562))))
+ (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569))
+ (-14 *4 (-776))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-1107)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23))
- (-14 *5 *4))))
-(((*1 *1 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-1222))))
- ((*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-376 *2)) (-4 *2 (-1222))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1107)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1107)) (-4 *4 (-23))
- (-14 *5 *4))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-551) (-551))) (-5 *1 (-365 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5))
- (-4 *3 (-1107)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-365 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23))
- (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1107)))))
-(((*1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-1222)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1107)) (-4 *2 (-1222)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *1)) (-5 *4 (-1272 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -1758 (-694 *5)) (|:| |vec| (-1272 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055)) (-5 *2 (-694 *4)))))
+ (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4))
+ (-4 *4
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ *3)) (-15 -4138 ((-1278) $))
+ (-15 -4170 ((-1278) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-995)) (-5 *1 (-215 *3))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1852 ((-1165) $ (-1183))) (-15 -4138 ((-1278) $))
+ (-15 -4170 ((-1278) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1249 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2))
+ (-4 *4 (-1249 (-412 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-637))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4))
+ (-4 *4 (-1106))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4))
+ (-4 *4 (-1106))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367))
+ (-5 *1 (-999 *4 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055))
+ (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7))
+ (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1082 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-1106))
+ (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1083 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1109 *3 *4 *5 *6 *7))
+ (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106))
+ (-4 *7 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106))
+ (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-412 *1)) (-4 *1 (-1249 *2)) (-4 *2 (-1055))
+ (-4 *2 (-367))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))
+ (-4 *3 (-561))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-4 *5 (-1249 *4)) (-5 *2 (-1179 (-412 *5))) (-5 *1 (-620 *4 *5))
+ (-5 *3 (-412 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5))
+ (-4 *5 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-5 *2 (-1179 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367))
- (-4 *5 (-562)) (-5 *2 (-1272 *5)) (-5 *1 (-643 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1272 *4)) (-4 *4 (-644 *5)) (-3764 (-4 *5 (-367)))
- (-4 *5 (-562)) (-5 *2 (-1272 (-412 *5))) (-5 *1 (-643 *5 *4)))))
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1163 *4))) (-5 *1 (-288 *4 *5))
+ (-5 *3 (-1163 *4)) (-4 *5 (-1264 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-412 (-1179 (-319 *3)))) (-4 *3 (-561))
+ (-5 *1 (-1136 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-761)))))
+(((*1 *1 *1) (-4 *1 (-874 *2))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1272 *5)) (-4 *5 (-644 *4)) (-4 *4 (-562))
- (-5 *2 (-1272 *4)) (-5 *1 (-643 *4 *5)))))
+ (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1219)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
+ (-14 *3 (-649 (-1183)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-649 (-1183))) (-4 *3 (-173))
+ (-4 *5 (-239 (-2394 *2) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *4) (|:| -2777 *5))
+ (-2 (|:| -2114 *4) (|:| -2777 *5))))
+ (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855))
+ (-4 *7 (-955 *3 *5 (-869 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055))
+ (-4 *3 (-731))))
+ ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))))
+(((*1 *1) (-4 *1 (-973))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *5)) (-4 *5 (-644 *4)) (-4 *4 (-562)) (-5 *2 (-112))
- (-5 *1 (-643 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 (-847 *3))) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-3 (-847 *3)
- (-2 (|:| |leftHandLimit| (-3 (-847 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-847 *3) #1#)))
- "failed"))
- (-5 *1 (-641 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-296 *3)) (-5 *5 (-1165))
- (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-847 *3))
- (-5 *1 (-641 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 (-847 (-952 *5)))) (-4 *5 (-457))
- (-5 *2
- (-3 (-847 (-412 (-952 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-847 (-412 (-952 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-847 (-412 (-952 *5))) #2#)))
- #3="failed"))
- (-5 *1 (-642 *5)) (-5 *3 (-412 (-952 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-457))
- (-5 *2
- (-3 (-847 *3)
- (-2 (|:| |leftHandLimit| (-3 (-847 *3) #2#))
- (|:| |rightHandLimit| (-3 (-847 *3) #2#)))
- #3#))
- (-5 *1 (-642 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-296 (-412 (-952 *6)))) (-5 *5 (-1165))
- (-5 *3 (-412 (-952 *6))) (-4 *6 (-457)) (-5 *2 (-847 *3))
- (-5 *1 (-642 *6)))))
+ (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1106)) (-4 *2 (-1106))
+ (-5 *1 (-616 *2 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-296 (-837 *3)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-837 *3))
- (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 (-837 (-952 *5)))) (-4 *5 (-457))
- (-5 *2 (-837 (-412 (-952 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-952 *5)))))
+ (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147)))
+ (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-296 (-412 (-952 *5)))) (-5 *3 (-412 (-952 *5))) (-4 *5 (-457))
- (-5 *2 (-837 *3)) (-5 *1 (-642 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))))
-(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1107))))
- ((*1 *1 *1) (-5 *1 (-637))))
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147)))
+ (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1135 *5)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041))
+ (-5 *1 (-761)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-646 (-1183))) (-4 *5 (-457))
- (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-646 (-1183)))
- (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-646 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-646 (-1183)))
- (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-248 *5 *6))) (-4 *6 (-457))
- (-5 *2 (-248 *5 *6)) (-14 *5 (-646 (-1183))) (-5 *1 (-636 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-263))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-646 (-263)))
- (-5 *1 (-264))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-646 (-1183)))
- (-4 *6 (-457)) (-5 *2 (-1272 *6)) (-5 *1 (-636 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 (-486 *3 *4))) (-14 *3 (-646 (-1183))) (-4 *4 (-457))
- (-5 *1 (-636 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-646 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-646 (-1183)))
- (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457))))
+ (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-569))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055))
+ (-4 *4 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
+ (-4 *5 (-239 (-2394 *3) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *5))
+ (-2 (|:| -2114 *2) (|:| -2777 *5))))
+ (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855))
+ (-4 *7 (-955 *4 *5 (-869 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))))
+(((*1 *1) (-5 *1 (-583)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-868))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-646 (-1183)))
- (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-486 *4 *5))) (-14 *4 (-646 (-1183))) (-4 *5 (-457))
- (-5 *2 (-646 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))))
+ (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-868))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1163 *4))
+ (-4 *4 (-1106)) (-4 *4 (-1223)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
+ ((*1 *1 *1 *1) (-4 *1 (-457)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-776)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
+ (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
+ (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1179 *7))) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310)) (-5 *2 (-1179 *7)) (-5 *1 (-922 *4 *5 *6 *7))
+ (-4 *7 (-955 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-927)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-955 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-646 (-1183))) (-4 *5 (-457))
- (-5 *2 (-2 (|:| |glbase| (-646 (-248 *4 *5))) (|:| |glval| (-646 (-551)))))
- (-5 *1 (-636 *4 *5)) (-5 *3 (-646 (-248 *4 *5))))))
+ (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5)))
+ (-5 *1 (-1135 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5))))
+ (-5 *1 (-1135 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1041)) (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-486 *4 *5))) (-14 *4 (-646 (-1183))) (-4 *5 (-457))
- (-5 *2 (-2 (|:| |gblist| (-646 (-248 *4 *5))) (|:| |gvlist| (-646 (-551)))))
- (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-634 *3 *2))
- (-4 *2 (-13 (-426 *3) (-1008) (-1208)))))
- ((*1 *1 *1) (-4 *1 (-635))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798))
+ (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3))
+ (-5 *1 (-467 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1044 (-412 (-569))) (-367)
+ (-10 -8 (-15 -2388 ($ *7)) (-15 -4378 (*7 $))
+ (-15 -4390 (*7 $))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1218 *3))
+ (-5 *1 (-795 *3)) (-4 *3 (-980))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112))
+ (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4))
+ (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-649 (-1183))) (-4 *5 (-239 (-2394 *3) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *4) (|:| -2777 *5))
+ (-2 (|:| -2114 *4) (|:| -2777 *5))))
+ (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855))
+ (-4 *7 (-955 *2 *5 (-869 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855))
+ (-4 *3 (-731))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855))
+ (-4 *2 (-1055))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *2 (-855)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208))))
+ ((*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3))
+ (-4 *3 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-426 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5))
- (-4 *5 (-426 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5))
- (-4 *5 (-13 (-426 *4) (-1008)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))
- ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-113)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *5 (-1107)) (-5 *2 (-112)) (-5 *1 (-425 *4 *5))
- (-4 *4 (-426 *5))))
+ (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5))
- (-4 *5 (-426 *4))))
+ (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1183)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-634 *4 *5))
- (-4 *5 (-13 (-426 *4) (-1008) (-1208))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-646 (-1183)))
- (-5 *2 (-646 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
- (-5 *1 (-633 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-646 (-1183))) (-5 *2 (-646 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 (-952 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 *4)))))
+ (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4)))))
+ (-5 *1 (-1135 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-760)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1163 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *2))
+ (-2 (|:| -2114 *5) (|:| -2777 *2))))
+ (-4 *2 (-239 (-2394 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
+ (-4 *6 (-239 (-2394 *3) (-776)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *6))
+ (-2 (|:| -2114 *5) (|:| -2777 *6))))
+ (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2))
+ (-4 *3 (-1055))))
((*1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-646 (-785 *3 (-869 *4)))) (-4 *3 (-457))
- (-14 *4 (-646 (-1183))) (-5 *1 (-633 *3 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-646 (-952 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4))
- (-14 *4 (-646 (-1183)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-646 (-785 *3 (-869 *4)))) (-4 *3 (-457))
- (-14 *4 (-646 (-1183))) (-5 *1 (-633 *3 *4)))))
+ (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-4 *4 (-855)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-952 *4))) (-4 *4 (-457)) (-5 *2 (-112))
- (-5 *1 (-364 *4 *5)) (-14 *5 (-646 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-785 *4 (-869 *5)))) (-4 *4 (-457))
- (-14 *5 (-646 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-760))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-855)) (-5 *2 (-646 (-669 *4 *5)))
- (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-551)))))
- (-14 *6 (-925)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |k| (-677 *3)) (|:| |c| *4))))
- (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))))
+ (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
+ (-4 *5 (-239 (-2394 *3) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *2) (|:| -2777 *5))
+ (-2 (|:| -2114 *2) (|:| -2777 *5))))
+ (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-955 *4 *5 (-869 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
+ ((*1 *1 *1 *1) (-4 *1 (-457))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-646 (-296 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-551))))) (-14 *5 (-925)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1964 (-646 (-2 (|:| |irr| *10) (|:| -2576 (-551)))))))
- (-5 *6 (-646 *3)) (-5 *7 (-646 *8)) (-4 *8 (-855)) (-4 *3 (-310))
- (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-798))
- (-5 *2
- (-2 (|:| |polfac| (-646 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-646 (-1177 *3)))))
- (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-646 (-1177 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-776)) (-5 *5 (-646 *3)) (-4 *3 (-310)) (-4 *6 (-855))
- (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8))
- (-4 *8 (-956 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1077 *3 *4 *5 *6))
- (-4 *2 (-1115 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-966) (-29 *4))))))
-(((*1 *1) (-5 *1 (-622))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-4 *5 (-1248 *4)) (-5 *2 (-1177 (-412 *5))) (-5 *1 (-620 *4 *5))
- (-5 *3 (-412 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-147) (-27) (-1044 (-551)) (-1044 (-412 (-551)))))
- (-5 *2 (-1177 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-616 *4)) (-4 *4 (-1107)) (-4 *2 (-1107))
- (-5 *1 (-617 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-616 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-646 *1)) (-4 *1 (-301))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-113))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-616 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-113)) (-5 *3 (-646 *5)) (-5 *4 (-776)) (-4 *5 (-1107))
- (-5 *1 (-616 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-616 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))))
+(((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-4 *1 (-727)))
+ ((*1 *1) (-4 *1 (-731)))
+ ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-964 (-185 (-139)))) (-5 *1 (-336))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-611)))))
+ (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-649 (-1183))) (-4 *2 (-173))
+ (-4 *4 (-239 (-2394 *5) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *3) (|:| -2777 *4))
+ (-2 (|:| -2114 *3) (|:| -2777 *4))))
+ (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855))
+ (-4 *7 (-955 *2 *4 (-869 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-541)))
+ ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064))))
+ ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-646
+ (-649
(-2
- (|:| -4310
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
+ (|:| -1963
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
- (|:| -2264
+ (|:| -2179
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -11795,4553 +14578,3757 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
+ (-3 (|:| |str| (-1163 (-226)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1613
+ (|:| -3396
(-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-565))))
+ (-5 *1 (-564))))
((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-646 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
+ (-5 *2 (-649 *4)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-367)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3)))
+ (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1249 *2))
+ (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6))
+ (-4 *6 (-346 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3)))
+ (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *1 (-339 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-649 (-1183))) (-4 *2 (-173))
+ (-4 *3 (-239 (-2394 *4) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2114 *5) (|:| -2777 *3))
+ (-2 (|:| -2114 *5) (|:| -2777 *3))))
+ (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855))
+ (-4 *7 (-955 *2 *3 (-869 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1222)) (-5 *2 (-646 *3)))))
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1218 *3))
+ (-4 *3 (-980)))))
+(((*1 *1 *1) (-4 *1 (-244)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-2718 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223)))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223)))))
+ ((*1 *1 *1) (-4 *1 (-478)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2919)) (-5 *2 (-112)) (-5 *1 (-622))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -1585)) (-5 *2 (-112)) (-5 *1 (-622))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -1840)) (-5 *2 (-112)) (-5 *1 (-622))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3311)) (-5 *2 (-112)) (-5 *1 (-696 *4))
+ (-4 *4 (-618 (-867)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112))
+ (-5 *1 (-696 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1188)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1107))
- (-4 *3 (-1222)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1222)) (-4 *2 (-1107)) (-4 *2 (-855)))))
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1222)) (-4 *2 (-1107)) (-4 *2 (-855)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-376 *2))
- (-4 *4 (-376 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1107))
- (-4 *2 (-1222)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1107))
- (-4 *4 (-1222)) (-5 *2 (-1278)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-646 (-616 *2))) (-5 *4 (-646 (-1183)))
- (-4 *2 (-13 (-426 (-169 *5)) (-1008) (-1208))) (-4 *5 (-562))
- (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-426 *5) (-1008) (-1208))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-169 *5)) (-5 *1 (-605 *4 *5 *3))
- (-4 *5 (-13 (-426 *4) (-1008) (-1208)))
- (-4 *3 (-13 (-426 (-169 *4)) (-1008) (-1208))))))
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
+ (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *2 (-13 (-426 (-169 *4)) (-1008) (-1208)))
- (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-426 *4) (-1008) (-1208))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *2 (-13 (-426 *4) (-1008) (-1208)))
- (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-426 (-169 *4)) (-1008) (-1208))))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-426 *4) (-1008) (-1208))) (-4 *4 (-562))
- (-4 *2 (-13 (-426 (-169 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-602))) (-5 *1 (-602)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1032 (-847 (-551))))
- (-5 *3 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *4)))) (-4 *4 (-1055))
- (-5 *1 (-600 *4)))))
+ (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1249 *4))
+ (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1126))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4444)) (-4 *1 (-1016 *3))
+ (-4 *3 (-1223)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1032 (-847 (-551)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
+ (-5 *2 (-649 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *3)))) (-5 *1 (-600 *3))
- (-4 *3 (-1055)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1160 (-2 (|:| |k| (-551)) (|:| |c| *6))))
- (-5 *4 (-1032 (-847 (-551)))) (-5 *5 (-1183)) (-5 *7 (-412 (-551)))
- (-4 *6 (-1055)) (-5 *2 (-868)) (-5 *1 (-600 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-551)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-1115 *5 *6 *7 *8))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-551))) (-5 *4 (-908 (-551))) (-5 *2 (-694 (-551)))
- (-5 *1 (-595))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *6 (-346 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1249 *5))
+ (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-595))))
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-551))) (-5 *4 (-646 (-908 (-551))))
- (-5 *2 (-646 (-694 (-551)))) (-5 *1 (-595)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-551))) (-5 *2 (-776)) (-5 *1 (-595)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-433 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4)))))
+ (-12 (-5 *4 (-412 (-569)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-317 *5))
- (-5 *1 (-594 *5)))))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569)))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8))
+ (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569)))
+ (-4 *8 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569))))
+ (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8)))
+ (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1055)) (-4 *1 (-1256 *4 *3))
+ (-4 *3 (-1233 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1106))
+ (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *6 (-346 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1208))) (-5 *1 (-590 *4 *2))
- (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-588 (-412 (-952 *4))))
- (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *2 (-317 *4))
- (-5 *1 (-594 *4)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-593 *4)) (-4 *4 (-354)))))
-(((*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550))))
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| -2582 (-776)))) (-5 *1 (-592 *3))
- (-4 *3 (-550)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-591)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-646
- (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 *2))
- (|:| |logand| (-1177 *2)))))
- (-5 *4 (-646 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367))
- (-5 *1 (-588 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-367)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |scalar| (-412 (-551))) (|:| |coeff| (-1177 *3))
- (|:| |logand| (-1177 *3)))))
- (-5 *1 (-588 *3)) (-4 *3 (-367)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-588 *3)) (-4 *3 (-367)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-367)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))))
-(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-128))) (-5 *1 (-584)))))
-(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-540) (-646 (-540)))) (-5 *1 (-113))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-540) (-646 (-540)))) (-5 *1 (-113))))
- ((*1 *1) (-5 *1 (-583))))
-(((*1 *1) (-5 *1 (-583))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1208) (-966) (-1145) (-29 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |ir| (-588 (-412 *6))) (|:| |specpart| (-412 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-628 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3559 *4) (|:| |sol?| (-112))) (-551) *4))
- (-4 *4 (-367)) (-4 *5 (-1248 *4)) (-5 *1 (-579 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3 (-1 (-3 (-2 (|:| -2328 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-646 (-412 *7))) (-4 *7 (-1248 *6))
- (-5 *3 (-412 *7)) (-4 *6 (-367))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-579 *6 *7)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -2328 (-412 *6)) (|:| |coeff| (-412 *6))))
- (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3559 *7) (|:| |sol?| (-112))) (-551) *7))
- (-5 *6 (-646 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1248 *7)) (-5 *3 (-412 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-579 *7 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2328 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-646 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1248 *7)) (-5 *3 (-412 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-579 *7 *8)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3559 *6) (|:| |sol?| (-112))) (-551) *6))
- (-4 *6 (-367)) (-4 *7 (-1248 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
- (-2 (|:| -2328 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2328 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-367)) (-4 *7 (-1248 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
- (-2 (|:| -2328 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-646 *6) "failed") (-551) *6 *6))
- (-4 *6 (-367)) (-4 *7 (-1248 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3559 *6) (|:| |sol?| (-112))) (-551) *6))
- (-4 *6 (-367)) (-4 *7 (-1248 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2328 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-367)) (-4 *7 (-1248 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-588 *3) *3 (-1183)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1183)))
- (-4 *3 (-287)) (-4 *3 (-635)) (-4 *3 (-1044 *4)) (-4 *3 (-426 *7))
- (-5 *4 (-1183)) (-4 *7 (-619 (-896 (-551)))) (-4 *7 (-457))
- (-4 *7 (-892 (-551))) (-4 *7 (-1107)) (-5 *2 (-588 *3))
- (-5 *1 (-578 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1107)) (-5 *1 (-578 *4 *2))
- (-4 *2 (-287)) (-4 *2 (-426 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-4 *4 (-1107)) (-5 *1 (-578 *4 *2))
- (-4 *2 (-426 *4)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-1183)) (-4 *6 (-426 *5)) (-4 *5 (-1107))
- (-5 *2 (-646 (-616 *6))) (-5 *1 (-578 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-646 (-616 *6))) (-5 *4 (-1183)) (-5 *2 (-616 *6))
- (-4 *6 (-426 *5)) (-4 *5 (-1107)) (-5 *1 (-578 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-616 *5))) (-4 *4 (-1107)) (-5 *2 (-616 *5))
- (-5 *1 (-578 *4 *5)) (-4 *5 (-426 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-616 *5))) (-5 *3 (-1183)) (-4 *5 (-426 *4))
- (-4 *4 (-1107)) (-5 *1 (-578 *4 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-147)))
- (-5 *2 (-2 (|:| -2328 (-412 (-952 *5))) (|:| |coeff| (-412 (-952 *5)))))
- (-5 *1 (-575 *5)) (-5 *3 (-412 (-952 *5))))))
+ (-12 (-5 *4 (-649 *5)) (-4 *5 (-1249 *3)) (-4 *3 (-310))
+ (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 (-412 (-952 *6))))
- (-5 *3 (-412 (-952 *6))) (-4 *6 (-13 (-562) (-1044 (-551)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-575 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-412 (-952 *4))) (-5 *3 (-1183))
- (-4 *4 (-13 (-562) (-1044 (-551)) (-147))) (-5 *1 (-575 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-588 *3)) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5)))))
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3201 (-649 *9))))
+ (-5 *3 (-649 *9)) (-4 *1 (-1216 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-147)))
- (-5 *2 (-588 (-412 (-952 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-952 *5))))))
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3201 (-649 *8))))
+ (-5 *3 (-649 *8)) (-4 *1 (-1216 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-551)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-646 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-551))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-573 *5 *6)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-551)))) (-4 *5 (-1248 *4))
- (-5 *2 (-2 (|:| -2328 (-412 *5)) (|:| |coeff| (-412 *5))))
- (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3))
- (-4 *3 (-13 (-367) (-147) (-1044 (-551)))) (-5 *1 (-573 *3 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-896 (-551))))
- (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3))
- (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-847 *2)) (-4 *2 (-1145))
- (-4 *2 (-13 (-27) (-1208) (-426 *5))) (-4 *5 (-619 (-896 (-551))))
- (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551))))
- (-5 *1 (-572 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-896 (-551))))
- (-4 *5 (-892 (-551))) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3))
- (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-1044 (-551)) (-457) (-644 (-551))))
- (-5 *2 (-2 (|:| -2507 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-616 *4)) (-5 *6 (-1183)) (-4 *4 (-13 (-426 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-616 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183)))
- (-4 *2 (-13 (-426 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1107)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3))
- (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1107)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6))
- (-4 *6 (-1107)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-616 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3))
- (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1107)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-4 *7 (-1248 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2327 *3)))
- (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7))))
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |answer| (-412 *6)) (|:| -2327 (-412 *6))
- (|:| |specpart| (-412 *6)) (|:| |polypart| *6)))
- (-5 *1 (-569 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-551)) (-5 *3 (-776)) (-5 *1 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *3) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-567)) (-5 *3 (-551)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-567)) (-5 *3 (-551)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-646 (-646 *4))) (-5 *2 (-646 *4)) (-4 *4 (-310))
- (-5 *1 (-180 *4))))
+ (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4)))
+ (-5 *2 (-52)) (-5 *1 (-318 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 *8))
- (-5 *4
- (-646
- (-2 (|:| -2200 (-694 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-694 *7)))))
- (-5 *5 (-776)) (-4 *8 (-1248 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-354))
- (-5 *2
- (-2 (|:| -2200 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))
- (-5 *1 (-503 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-567)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-616 *4)) (-5 *6 (-1177 *4))
- (-4 *4 (-13 (-426 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2200 (-646 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-616 *4)) (-5 *6 (-412 (-1177 *4)))
- (-4 *4 (-13 (-426 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2200 (-646 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-663 *4)) (-4 *3 (-1107)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-616 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1183))) (-5 *5 (-1177 *2))
- (-4 *2 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1107))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-616 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1183)))
- (-5 *5 (-412 (-1177 *2))) (-4 *2 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1107)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3)) (-5 *6 (-1177 *3))
- (-4 *3 (-13 (-426 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1107))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-646 *3)) (-5 *6 (-412 (-1177 *3)))
- (-4 *3 (-13 (-426 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1107)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-1177 *3))
- (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7))
- (-4 *7 (-1107))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-616 *3)) (-5 *5 (-412 (-1177 *3)))
- (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551))))
- (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7))
- (-4 *7 (-1107)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-616 *3)) (-5 *5 (-1177 *3))
- (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-616 *3)) (-5 *5 (-412 (-1177 *3)))
- (-4 *3 (-13 (-426 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-147) (-644 (-551)))) (-5 *2 (-588 *3))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1107)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1613
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-565)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1613
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-565)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-646
- (-2
- (|:| -4310
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| -2264
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1613
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-565)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-565)))))
-(((*1 *1) (-5 *1 (-565))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-564 *3)) (-4 *3 (-550)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-646 (-616 *3))) (-5 *5 (-616 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *7)))
- (-4 *7 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-563 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-588 *3)) (-5 *1 (-563 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-646 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *6)))
- (-4 *6 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-646 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-563 *6 *3)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1183))
- (-4 *5 (-13 (-457) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-2 (|:| -2328 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1957 *1) (|:| -4430 *1) (|:| |associate| *1)))
- (-4 *1 (-562)))))
-(((*1 *1 *1) (-4 *1 (-562))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-412 (-551))) (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208)))))
- ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-112)) (-5 *1 (-559)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-559)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-559)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1248 *5))
- (-4 *5 (-13 (-27) (-426 *4))) (-4 *4 (-13 (-562) (-1044 (-551))))
- (-4 *7 (-1248 (-412 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2))
- (-4 *2 (-346 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-13 (-27) (-426 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)))) (-4 *8 (-1248 (-412 *7)))
- (-5 *2 (-588 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1248 *6)) (-4 *6 (-13 (-27) (-426 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)))) (-4 *8 (-1248 (-412 *7)))
- (-5 *2 (-588 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-616 *3)) (-5 *5 (-1 (-1177 *3) (-1177 *3)))
- (-4 *3 (-13 (-27) (-426 *6))) (-4 *6 (-562)) (-5 *2 (-588 *3))
- (-5 *1 (-557 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-551) #1="failed") *5)) (-4 *5 (-1055))
- (-5 *2 (-551)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1248 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-551) #1#) *4)) (-4 *4 (-1055)) (-5 *2 (-551))
- (-5 *1 (-548 *4 *3)) (-4 *3 (-1248 *4))))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-569))
+ (-5 *2 (-52)) (-5 *1 (-318 *6 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-551) #1#) *4)) (-4 *4 (-1055)) (-5 *2 (-551))
- (-5 *1 (-548 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1248 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776)))
- (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1248 *3)))))
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569)))
+ (-4 *7 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569)))
+ (-4 *3 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-569)) (-4 *4 (-1055)) (-4 *1 (-1235 *4 *3))
+ (-4 *3 (-1264 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
+ (-4 *3 (-561))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
+ (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
+ (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3))
+ (-4 *3 (-1044 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106))
+ (-4 *2 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-544 *4 *2 *5 *6))
- (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-544 *4 *2 *5 *6))
- (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *6)) (-5 *4 (-646 (-1183))) (-4 *6 (-367))
- (-5 *2 (-646 (-296 (-952 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457))
- (-4 *7 (-13 (-367) (-853))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-646 (-952 *6))) (-5 *4 (-646 (-1183))) (-4 *6 (-457))
- (-5 *2 (-646 (-646 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367))
- (-4 *5 (-13 (-367) (-853))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-457)) (-5 *2 (-646 *6))
- (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-457)) (-5 *2 (-646 *6))
- (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-540))))
- ((*1 *2 *3) (-12 (-5 *3 (-540)) (-5 *1 (-541 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-540)) (-5 *1 (-541 *4)) (-4 *4 (-1222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-540))) (-5 *1 (-540)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-540)))))
-(((*1 *1 *1) (-5 *1 (-540))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-540)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-540)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-540))) (-5 *2 (-1183)) (-5 *1 (-540)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-646 (-540))) (-5 *1 (-540)))))
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
+ (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
+ (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-410 (-1177 *6)) (-1177 *6)))
- (-4 *6 (-367))
- (-5 *2
- (-646
- (-2 (|:| |outval| *7) (|:| |outmult| (-551))
- (|:| |outvect| (-646 (-694 *7))))))
- (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-367)) (-5 *2 (-646 *6))
- (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+ (|partial| -12 (-5 *5 (-1273 (-649 *3))) (-4 *4 (-310))
+ (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1249 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1177 *4))
- (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-925)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1177 *1))
- (-4 *1 (-332 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1177 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1248 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)))))
-(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1272 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1272 *4)) (-4 *4 (-423 *3)) (-4 *3 (-310)) (-4 *3 (-562))
- (-5 *1 (-43 *3 *4))))
+ (-12 (-5 *3 (-1183))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-4 *4 (-367)) (-5 *2 (-1272 *1)) (-4 *1 (-332 *4))))
- ((*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1272 *1)) (-4 *1 (-332 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-173)) (-4 *4 (-1248 *3)) (-5 *2 (-1272 *1))
- (-4 *1 (-415 *3 *4))))
+ (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-52)) (-5 *1 (-318 *5 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-297 *3)) (-5 *5 (-776))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6))
+ (-4 *6 (-13 (-27) (-1208) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3))
+ (-4 *3 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-776)))
+ (-4 *7 (-13 (-27) (-1208) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-776)))
+ (-4 *3 (-13 (-27) (-1208) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-464 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *1) (-5 *1 (-1126))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106))))
((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6))
- (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106))))
((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-5 *2 (-1272 *6))
- (-5 *1 (-420 *3 *4 *5 *6 *7)) (-4 *6 (-415 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1272 *1)) (-4 *1 (-423 *3))))
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1272 (-1272 *4))) (-5 *1 (-533 *4))
- (-4 *4 (-354)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-569)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-360 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-533 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-925)) (-5 *1 (-533 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-551)) (-4 *4 (-354)) (-5 *1 (-533 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1126)) (-4 *4 (-354)) (-5 *1 (-533 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-533 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1272 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-354))
- (-5 *1 (-533 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *4)) (-4 *4 (-354)) (-5 *2 (-1177 *4)) (-5 *1 (-533 *4)))))
+ (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106))
+ (-4 *2 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1188) (-776)))) (-5 *1 (-336)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-776))
+ (-4 *5 (-13 (-457) (-1044 (-569)))) (-4 *5 (-561))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *5 (-617 $)) $))
+ (-15 -4390 ((-1131 *5 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *5 (-617 $))))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))
- (-4 *4 (-354)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-128))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-555))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-553))))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-129)) (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1223))) (-5 *1 (-529)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-376 *3)) (-4 *5 (-376 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-691 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-330 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-521 *3 *4)) (-14 *4 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1222))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 (-551)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-330 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1222))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1222)) (-14 *4 (-551)))))
-(((*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-855)))))
-(((*1 *1) (-5 *1 (-511))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776))
- (-4 *5 (-173))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776))
- (-4 *5 (-173))))
- ((*1 *2 *2 *3)
- (-12
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
(-5 *2
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551)))))
- (-5 *3 (-646 (-869 *4))) (-14 *4 (-646 (-1183))) (-14 *5 (-776))
- (-5 *1 (-510 *4 *5)))))
+ (-2 (|:| |solns| (-649 *5))
+ (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1134 *3 *5)) (-4 *3 (-1249 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1183)) (-5 *3 (-958 *6))
+ (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1249 *4))
+ (-5 *2 (-1273 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-646 (-1183))) (-14 *5 (-776))
- (-5 *2
- (-646
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))))
- (-5 *1 (-510 *4 *5))
- (-5 *3
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551))))))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *1) (-5 *1 (-333))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4113 (-649 *6)) (|:| -1675 (-649 *6)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
+ (-4 *3 (-561))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
+ (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
+ (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1223)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1106))
+ (-4 *2 (-1223)))))
+(((*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-509 (-412 (-551)) (-240 *4 (-776)) (-869 *3) (-248 *3 (-412 (-551)))))
- (-14 *3 (-646 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551)))))
- (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-509 (-412 (-551)) (-240 *5 (-776)) (-869 *4) (-248 *4 (-412 (-551)))))
- (-14 *4 (-646 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5)))))
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $))))))))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-5 *2 (-2 (|:| -1963 *3) (|:| -2179 *4))))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1273 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367))
+ (-5 *1 (-672 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-367))
+ (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4444))))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4444))))
+ (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367))
+ (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-310))
+ (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095 (-847 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
- (-5 *1 (-306))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2))
- (-4 *2 (-956 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4)))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2
- (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4))
- (|:| |genIdeal| (-509 *4 *5 *6 *7))))
- (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3))
- (|:| |genIdeal| (-509 *3 *4 *5 *6))))
- (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))
- (-4 *6 (-956 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5))
- (-4 *5 (-956 *2 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
- (-5 *2 (-418 *4 (-412 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 *6)) (-4 *6 (-13 (-415 *4 *5) (-1044 *4)))
- (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-4 *3 (-310))
- (-5 *1 (-418 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-646 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6))))
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2))
- (-4 *2 (-956 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-619 (-1183)))
- (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-1172 (-646 (-952 *4)) (-646 (-296 (-952 *4)))))
- (-5 *1 (-509 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2)))
+ (-5 *2 (-898 *3)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1278)) (-5 *1 (-215 *4))
- (-4 *4
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $))
- (-15 -2153 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -4249 ((-1165) $ (-1183))) (-15 -4067 (*2 $))
- (-15 -2153 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *6 (-1248 *5))
- (-5 *2 (-1177 (-1177 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1248 *6)))))
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1223)) (-5 *2 (-1278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $))))))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1177 *8)))
- (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-1248 *5)) (-5 *2 (-694 *6))
- (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1248 *6)))))
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1163 *7))) (-4 *6 (-855))
+ (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1055))
+ (-5 *2 (-1 (-1163 *7) *7)) (-5 *1 (-1132 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3371 (-649 *1))))
+ (-4 *1 (-371 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-458 *3 *4 *5 *6))
+ (|:| -3371 (-649 (-458 *3 *4 *5 *6)))))
+ (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1216 *5 *6 *7 *3))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1012)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1183)))
+ (-4 *2 (-13 (-435 (-170 *5)) (-1008) (-1208))) (-4 *5 (-561))
+ (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1008) (-1208))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1177 *7))
- (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1248 *5))
- (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1248 *2)))))
+ (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $))))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1177 *7)) (-4 *5 (-1055)) (-4 *7 (-1055))
- (-4 *2 (-1248 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1248 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *4 (-1248 *5))
- (-5 *2 (-1177 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1248 *4)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -2200 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3))))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *4 (-1248 *3))
- (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $)))))
- (-4 *4 (-1248 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-694 *2)) (-5 *4 (-551))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *5 (-1248 *2))
- (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-415 *2 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-694 *2)) (-5 *4 (-776))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -4419 ((-410 $) $))))) (-4 *5 (-1248 *2))
- (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-415 *2 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-354)) (-4 *6 (-1248 *5))
+ (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5))
(-5 *2
- (-646
- (-2 (|:| -2200 (-694 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-694 *6)))))
- (-5 *1 (-503 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2200 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))
- (-4 *7 (-1248 *6)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3371 (-649 *4))))
+ (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3371 (-649 *1))))
+ (-4 *1 (-371 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-458 *3 *4 *5 *6))
+ (|:| -3371 (-649 (-458 *3 *4 *5 *6)))))
+ (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-551)))))
- (-5 *1 (-410 *3)) (-4 *3 (-562))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-776)) (-4 *3 (-354)) (-4 *5 (-1248 *3))
- (-5 *2 (-646 (-1177 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1248 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-376 *3)) (-4 *5 (-376 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *3))
- (-4 *3 (-1222)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
- (-4 *4 (-1222)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
- (-4 *4 (-1222)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222)) (-4 *3 (-1107))
- (-5 *2 (-776))))
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4443)) (-4 *1 (-494 *4))
- (-4 *4 (-1222)) (-5 *2 (-776)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-376 *3))
- (-4 *5 (-376 *3)) (-5 *2 (-646 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-494 *3)) (-4 *3 (-1222))
- (-5 *2 (-646 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-492)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-551)) (-5 *1 (-491 *4))
- (-4 *4 (-1248 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1248 (-551))) (-5 *1 (-491 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1248 (-551))) (-5 *1 (-491 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1248 (-551))))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-881))) (-5 *1 (-488)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-511))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-881))) (-5 *1 (-488)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-5 *1 (-248 *3 *4)) (-14 *3 (-646 (-1183)))
- (-4 *4 (-1055))))
+ (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1249 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569)))
+ (-5 *1 (-191))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1183)))
+ (-5 *4 (-1273 (-319 (-226)))) (-5 *1 (-206))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-14 *3 (-646 (-1183))) (-5 *1 (-459 *3 *4 *5))
- (-4 *4 (-1055)) (-4 *5 (-239 (-4407 *3) (-776)))))
+ (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1106))
+ (-4 *3 (-1223)) (-5 *1 (-297 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-312 *2)) (-4 *2 (-1106)) (-4 *2 (-1223))
+ (-5 *1 (-297 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1))))
+ (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 (-649 *1))))
+ (-4 *1 (-305))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-5 *1 (-486 *3 *4)) (-14 *3 (-646 (-1183)))
- (-4 *4 (-1055)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-551)) (-5 *2 (-112)) (-5 *1 (-485)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-485)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-869 *5))) (-14 *5 (-646 (-1183))) (-4 *6 (-457))
- (-5 *2 (-2 (|:| |dpolys| (-646 (-248 *5 *6))) (|:| |coords| (-646 (-551)))))
- (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-646 (-248 *5 *6))) (-4 *7 (-457)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-646 (-486 *4 *5))) (-5 *3 (-646 (-869 *4)))
- (-14 *4 (-646 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6))
- (-4 *6 (-457)))))
+ (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1185 (-412 (-569))))
+ (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5))
+ (-4 *4 (-855)) (-4 *5 (-173))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1)))
+ (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776)))
+ (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1106))
+ (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776)))
+ (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106))
+ (-4 *5 (-1055))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1183))
+ (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-619 (-541)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1183)) (-4 *1 (-435 *4)) (-4 *4 (-1106))
+ (-4 *4 (-619 (-541)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-619 (-541)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-1183))) (-4 *1 (-435 *3)) (-4 *3 (-1106))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1223))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5))
+ (-4 *4 (-1106)) (-4 *5 (-1223))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-561))
+ (-5 *1 (-1049 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1183))) (-5 *4 (-649 (-412 (-958 *5))))
+ (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1049 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4)))
+ (-4 *4 (-561)) (-5 *1 (-1049 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4)))
+ (-4 *4 (-561)) (-5 *1 (-1049 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1163 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1223))
+ (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3))
+ (-4 *3 (-1223))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106))
+ (-5 *1 (-742 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3))
+ (-4 *5 (-13 (-435 *4) (-1008) (-1208)))
+ (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1165)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1106))
+ (-4 *4 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-869 *5))) (-14 *5 (-646 (-1183))) (-4 *6 (-457))
- (-5 *2 (-646 (-646 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7))
- (-5 *3 (-646 (-248 *5 *6))) (-4 *7 (-457)))))
-(((*1 *1) (-5 *1 (-473))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879)))
- (-5 *4 (-646 (-925))) (-5 *5 (-646 (-263))) (-5 *1 (-473))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879)))
- (-5 *4 (-646 (-925))) (-5 *1 (-473))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473))))
- ((*1 *1 *1) (-5 *1 (-473))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *1 (-473)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *3 (-646 (-263))) (-5 *1 (-264))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-473)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-925)) (-5 *2 (-1278))
- (-5 *1 (-473))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-925))
- (-5 *2 (-1278)) (-5 *1 (-473)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 (-646 (-949 (-226))))) (-5 *3 (-646 (-879)))
- (-5 *1 (-473)))))
+ (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-646 (-949 (-226))))) (-5 *2 (-646 (-226)))
- (-5 *1 (-473)))))
-(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-1179 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $))
+ (-15 -4390 ((-1131 *4 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *4 (-617 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1272 (-1272 (-551)))) (-5 *1 (-471)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1272 (-1272 (-551)))) (-5 *3 (-925)) (-5 *1 (-471)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-562))
- (-4 *7 (-956 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1044 (-412 (-551))) (-367)
- (-10 -8 (-15 -4396 ($ *7)) (-15 -3417 (*7 $)) (-15 -3416 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *2))
- (-2 (|:| -2581 *5) (|:| -2582 *2))))
- (-4 *2 (-239 (-4407 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-855)) (-4 *7 (-956 *4 *2 (-869 *3))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-646 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-4407 *3) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *2) (|:| -2582 *5))
- (-2 (|:| -2581 *2) (|:| -2582 *5))))
- (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-956 *4 *5 (-869 *3))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-646 (-1183))) (-4 *2 (-173)) (-4 *4 (-239 (-4407 *5) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *3) (|:| -2582 *4))
- (-2 (|:| -2581 *3) (|:| -2582 *4))))
- (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855))
- (-4 *7 (-956 *2 *4 (-869 *5))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-646 (-1183))) (-4 *2 (-173)) (-4 *3 (-239 (-4407 *4) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2581 *5) (|:| -2582 *3))
- (-2 (|:| -2581 *5) (|:| -2582 *3))))
- (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855))
- (-4 *7 (-956 *2 *3 (-869 *4))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-646 *3)) (-5 *5 (-925)) (-4 *3 (-1248 *4)) (-4 *4 (-310))
- (-5 *1 (-465 *4 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-925)) (-4 *5 (-310)) (-4 *3 (-1248 *5))
- (-5 *2 (-2 (|:| |plist| (-646 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3))
- (-5 *4 (-646 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *5)) (-4 *5 (-1248 *3)) (-4 *3 (-310)) (-5 *2 (-112))
- (-5 *1 (-460 *3 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1272 (-646 *3))) (-4 *4 (-310)) (-5 *2 (-646 *3))
- (-5 *1 (-460 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1248 *4))
- (-5 *2 (-1272 (-646 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-646 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-310)) (-5 *2 (-776))
- (-5 *1 (-460 *5 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2200 (-646 *1)))) (-4 *1 (-371 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-458 *3 *4 *5 *6))
- (|:| -2200 (-646 (-458 *3 *4 *5 *6)))))
- (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925))
- (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-173))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2200 (-646 *1)))) (-4 *1 (-371 *3))))
- ((*1 *2)
- (|partial| -12
+ (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
(-5 *2
- (-2 (|:| |particular| (-458 *3 *4 *5 *6))
- (|:| -2200 (-646 (-458 *3 *4 *5 *6)))))
- (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-925))
- (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3))))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1272 (-1183))) (-5 *3 (-1272 (-458 *4 *5 *6 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-925))
- (-14 *6 (-646 (-1183))) (-14 *7 (-1272 (-694 *4)))))
+ (-12 (-5 *2 (-1273 (-1183))) (-5 *3 (-1273 (-458 *4 *5 *6 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
+ (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1272 (-458 *4 *5 *6 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-925)) (-14 *6 (-646 *2))
- (-14 *7 (-1272 (-694 *4)))))
+ (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-458 *4 *5 *6 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
+ (-14 *6 (-649 *2)) (-14 *7 (-1273 (-694 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3)))))
+ (-12 (-5 *2 (-1273 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))
+ (-14 *6 (-1273 (-694 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-1183))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-925)) (-14 *5 (-646 (-1183))) (-14 *6 (-1272 (-694 *3)))))
+ (-12 (-5 *2 (-1273 (-1183))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))
+ (-14 *6 (-1273 (-694 *3)))))
((*1 *1 *2)
(-12 (-5 *2 (-1183)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-925)) (-14 *5 (-646 *2)) (-14 *6 (-1272 (-694 *3)))))
+ (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1273 (-694 *3)))))
((*1 *1)
- (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-925))
- (-14 *4 (-646 (-1183))) (-14 *5 (-1272 (-694 *2))))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1177 (-952 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-4 *3 (-367))
- (-5 *2 (-1177 (-952 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
+ (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927))
+ (-14 *4 (-649 (-1183))) (-14 *5 (-1273 (-694 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1208) (-1008))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
+ (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
+ (-4 *4 (-13 (-1106) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52))
+ (-5 *1 (-1011)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208)))
+ (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1008) (-1208))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $))
+ (-15 -4390 ((-1131 *4 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *4 (-617 $)))))))
+ (-4 *4 (-561)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-617 *2)))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *4 (-617 $)) $))
+ (-15 -4390 ((-1131 *4 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *4 (-617 $)))))))
+ (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-760)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1177 (-952 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
+ (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-4 *3 (-367))
- (-5 *2 (-1177 (-952 *3)))))
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-5 *2 (-1179 (-958 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1177 (-412 (-952 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
+ (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-412 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3))))))
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-646 (-952 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-646 (-952 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-646 (-952 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-646 (-952 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-562))
- (-4 *3 (-173)) (-14 *4 (-925)) (-14 *5 (-646 (-1183)))
- (-14 *6 (-1272 (-694 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-458 *4 *5 *6 *7))) (-5 *2 (-646 (-952 *4)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-173)) (-14 *5 (-925))
- (-14 *6 (-646 (-1183))) (-14 *7 (-1272 (-694 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *1)) (-4 *1 (-457))))
- ((*1 *1 *1 *1) (-4 *1 (-457))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -2192 *4))) (-5 *5 (-776))
- (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
- (-5 *1 (-455 *6 *7 *8 *4)))))
+ (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1008) (-1208)))
+ (-5 *1 (-605 *4 *2 *3))
+ (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4378 ((-1131 *3 (-617 $)) $))
+ (-15 -4390 ((-1131 *3 (-617 $)) $))
+ (-15 -2388 ($ (-1131 *3 (-617 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-798)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-1278)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1179 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1216 *4 *5 *6 *7))
+ (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-551))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-798)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
- (-5 *1 (-455 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-551))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-798)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
- (-5 *1 (-455 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208)))
+ (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208)))
+ (-5 *1 (-605 *4 *5 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *3 (-958 (-569)))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *1 (-333)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *2 (-1278))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1249 (-412 *5))) (-14 *7 *6))))
(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-551))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
+ (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-798)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
- (-5 *1 (-455 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1216 *5 *6 *7 *8)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-798)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2))
- (-4 *4 (-457)) (-4 *6 (-855)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-646 (-2 (|:| |totdeg| (-776)) (|:| -2192 *3)))) (-5 *4 (-776))
- (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *1 (-455 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *2))
- (-4 *2 (-956 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-455 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-798)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855))
- (-5 *1 (-455 *4 *3 *5 *6)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041))
+ (-5 *1 (-759)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-798)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
- (-5 *1 (-455 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-646
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-798)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *1 (-455 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-798)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-551)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7))
- (-5 *3 (-646 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8))
- (-5 *3 (-646 *8))))
+ (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *1 (-919 *3 *2))
+ (-4 *2 (-1249 (-412 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7))
- (-5 *3 (-646 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8))
- (-5 *3 (-646 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-646 (-646 *7))) (-5 *1 (-454 *4 *5 *6 *7))
- (-5 *3 (-646 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-646 (-646 *8))) (-5 *1 (-454 *5 *6 *7 *8))
- (-5 *3 (-646 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-646 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-453 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-310))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-646 *7)) (-5 *3 (-1165)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-310))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-453 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-451)) (-5 *3 (-551)))))
+ (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-551)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-551)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-551)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-410 *6)) (-4 *6 (-1248 *5)) (-4 *5 (-1055))
- (-5 *2 (-646 *6)) (-5 *1 (-449 *5 *6)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-925)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-925)) (-5 *4 (-776)) (-5 *1 (-447 *2))
- (-4 *2 (-1248 (-551)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *1 (-447 *2))
- (-4 *2 (-1248 (-551)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *5 (-776))
- (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-925)) (-5 *4 (-646 (-776))) (-5 *5 (-776))
- (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1248 (-551)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-925)) (-5 *4 (-410 *2)) (-4 *2 (-1248 *5)) (-5 *1 (-449 *5 *2))
- (-4 *5 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -4182 *4) (|:| -4398 (-551)))))
- (-4 *4 (-1248 (-551))) (-5 *2 (-741 (-776))) (-5 *1 (-447 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-410 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-1055))
- (-5 *2 (-741 (-776))) (-5 *1 (-449 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1248 *3)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6))
+ (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))))
+ (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
+ (-4 *3 (-1249 (-412 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-5 *2 (-1179 (-958 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
+ (-4 *2 (-239 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4)))))
+ (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))
+ (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5))
+ (-4 *5 (-1249 (-412 *4))))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1) (-5 *1 (-333))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *5 *3 *6))
- (-4 *3 (-1248 *5)) (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
+ (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1044 *4)) (-4 *3 (-561)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-925)) (-4 *5 (-1055))
- (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
- (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1248 *5)))))
+ (-12 (-5 *3 (-694 *2)) (-4 *4 (-1249 *2))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -2207 ((-423 $) $)))))
+ (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-551)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1248 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1103 (-776))) (-5 *6 (-776))
- (-5 *2
- (-2 (|:| |contp| (-551))
- (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551)))))))
- (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2996 (-551)) (|:| -1964 (-646 *3)))) (-5 *1 (-447 *3))
- (-4 *3 (-1248 (-551))))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-410 *3)) (-4 *3 (-562))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -4182 *4) (|:| -4398 (-551)))))
- (-4 *4 (-1248 (-551))) (-5 *2 (-776)) (-5 *1 (-447 *4)))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-447 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-646
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-551)))))
- (-4 *2 (-562)) (-5 *1 (-410 *2))))
+ (-12 (-4 *3 (-1249 (-412 (-569))))
+ (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))
+ (-5 *1 (-919 *3 *4)) (-4 *4 (-1249 (-412 *3)))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-551))
- (|:| -1964 (-646 (-2 (|:| |irr| *4) (|:| -2576 (-551)))))))
- (-4 *4 (-1248 (-551))) (-5 *2 (-410 *4)) (-5 *1 (-447 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-442))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-442)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-442)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-442)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-442)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -4360 "void"))) (-5 *1 (-441)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-441)))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1044 (-48))) (-4 *4 (-13 (-562) (-1044 (-551))))
- (-4 *5 (-426 *4)) (-5 *2 (-410 (-1177 (-48)))) (-5 *1 (-440 *4 *5 *3))
- (-4 *3 (-1248 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4))
- (-5 *2
- (-3 (|:| |overq| (-1177 (-412 (-551)))) (|:| |overan| (-1177 (-48)))
- (|:| -3059 (-112))))
- (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4))
- (-5 *2 (-410 (-1177 (-412 (-551))))) (-5 *1 (-440 *4 *5 *3))
- (-4 *3 (-1248 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-4 *5 (-426 *4)) (-5 *2 (-410 *3))
- (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1248 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)))) (-5 *2 (-1278)) (-5 *1 (-438 *3 *4))
- (-4 *4 (-426 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1044 (-551)))) (-5 *2 (-412 (-551)))
- (-5 *1 (-438 *4 *3)) (-4 *3 (-426 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-616 *3)) (-4 *3 (-426 *5)) (-4 *5 (-13 (-562) (-1044 (-551))))
- (-5 *2 (-1177 (-412 (-551)))) (-5 *1 (-438 *5 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-436 *3 *2)) (-4 *2 (-426 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-434 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-551)))))
- (-4 *2 (-13 (-855) (-21))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-434 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-551)))))
- (-4 *2 (-13 (-855) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-588 *3)) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1107)) (-5 *2 (-776)))))
-(((*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1107)) (-4 *2 (-372)))))
-(((*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-372)) (-4 *2 (-1107)))))
+ (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
+ (-4 *3 (-1249 (-412 *4))))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-426 *3)))
- (-14 *4 (-1183)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-4 *2 (-13 (-27) (-1208) (-426 *3) (-10 -8 (-15 -4396 ($ *4)))))
- (-4 *4 (-853))
- (-4 *5
- (-13 (-1251 *2 *4) (-367) (-1208)
- (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $)))))
- (-5 *1 (-429 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-4 *3 (-13 (-27) (-1208) (-426 *6) (-10 -8 (-15 -4396 ($ *7)))))
- (-4 *7 (-853))
- (-4 *8
- (-13 (-1251 *3 *7) (-367) (-1208)
- (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-429 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
- (-14 *10 (-1183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-4 *3 (-13 (-27) (-1208) (-426 *6) (-10 -8 (-15 -4396 ($ *7)))))
- (-4 *7 (-853))
- (-4 *8
- (-13 (-1251 *3 *7) (-367) (-1208)
- (-10 -8 (-15 -4260 ($ $)) (-15 -4262 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-429 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
- (-14 *10 (-1183)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551))))
+ (-12 (-5 *3 (-423 *5)) (-4 *5 (-561))
(-5 *2
- (-3 (|:| |%expansion| (-316 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-426 *5)))
- (-14 *6 (-1183)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1107)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-646 *1)) (-4 *1 (-426 *4)) (-4 *4 (-1107))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-426 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1107))
- (-5 *2 (-2 (|:| -4404 (-551)) (|:| |var| (-616 *1)))) (-4 *1 (-426 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1248 *4)) (-4 *4 (-1227))
- (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1248 (-412 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1272 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1272 *4)) (-5 *3 (-1272 *1)) (-4 *4 (-173))
- (-4 *1 (-374 *4 *5)) (-4 *5 (-1248 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-415 *3 *4))
- (-4 *4 (-1248 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1272 *3)) (-4 *3 (-173)) (-4 *1 (-423 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
- ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2))))
- ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
- ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2))))
- ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+ (-2 (|:| -2777 (-776)) (|:| -1406 *5) (|:| |radicand| (-649 *5))))
+ (-5 *1 (-323 *5)) (-5 *4 (-776))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-569)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-294)))))
+(((*1 *1) (-5 *1 (-622))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310))
- (-4 *4 (-997 *3)) (-4 *5 (-1248 *4)) (-4 *6 (-415 *4 *5))
- (-14 *7 (-1272 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-997 *3))
- (-4 *5 (-1248 *4)) (-4 *3 (-310)) (-5 *1 (-420 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-310)) (-4 *3 (-997 *2)) (-4 *4 (-1248 *3))
- (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1044 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-1272 *2)) (-4 *5 (-310)) (-4 *6 (-997 *5))
- (-4 *2 (-13 (-415 *6 *7) (-1044 *6))) (-5 *1 (-418 *5 *6 *7 *2))
- (-4 *7 (-1248 *6)))))
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561))
+ (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1248 *4)) (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-4 *5 (-1248 *4)) (-5 *2 (-694 *4))
- (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3))
- (-5 *2 (-694 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1272 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1248 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1248 *3))
- (-5 *2 (-694 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 (-551))))) (-5 *1 (-365 *3))
- (-4 *3 (-1107))))
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367))
+ (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-1107))
- (-5 *2 (-646 (-2 (|:| |gen| *3) (|:| -4393 (-776)))))))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
+ (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
+ (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-646 (-2 (|:| -4182 *3) (|:| -2582 (-551))))) (-5 *1 (-410 *3))
- (-4 *3 (-562)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-410 *3)) (-4 *3 (-562)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-410 *4)) (-4 *4 (-562)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-551)) (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-551)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-382))) (-5 *1 (-263))))
- ((*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-562)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-925)) (|has| *1 (-6 -4434)) (-4 *1 (-409))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-925)))))
+ (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-551)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-925)))))
+ (-12 (-5 *3 (-569)) (-4 *4 (-1249 (-412 *3))) (-5 *2 (-927))
+ (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-551)) (|has| *1 (-6 -4434)) (-4 *1 (-409)) (-5 *2 (-925)))))
-(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-776))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776))))
- ((*1 *1 *1) (-4 *1 (-407))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
+ (|:| -3396 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1163 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3396
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-412 *4)) (-4 *4 (-1248 *3)) (-4 *3 (-13 (-367) (-147)))
- (-5 *1 (-404 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1248 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-367) (-147)))
- (-5 *2 (-646 (-2 (|:| -2582 (-776)) (|:| -4222 *4) (|:| |num| *4))))
- (-5 *1 (-404 *3 *4)) (-4 *4 (-1248 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-400)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-646 (-646 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-646 (-3 (|:| |array| (-646 *3)) (|:| |scalar| (-1183)))))
- (-5 *6 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1109)) (-5 *1 (-400))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-646 (-646 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-646 (-3 (|:| |array| (-646 *3)) (|:| |scalar| (-1183)))))
- (-5 *6 (-646 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1109)) (-5 *1 (-400))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-646 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183)) (-5 *2 (-1109))
- (-5 *1 (-400)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-398)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))))
-(((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776))
- (-4 *5 (-173)))))
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1006 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1032 (-848 (-569))))
+ (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1055))
+ (-5 *1 (-600 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1179 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776))
- (-4 *5 (-173)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1107)))))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
+ (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
+ (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4445 "*"))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226)))
+ (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1041))
+ (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
+ (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
+ (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569))))
+ (-5 *2 (-2 (|:| -4315 (-776)) (|:| -2785 *8)))
+ (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5))
+ (-5 *2 (-2 (|:| -4315 (-776)) (|:| -2785 *6)))
+ (-5 *1 (-918 *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1107)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-390 *3)))))
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-550))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *1 *1 *1) (-4 *1 (-478)))
+ ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889))))
+ ((*1 *1 *1) (-5 *1 (-977)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-388 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1107))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-412 (-952 (-551))))) (-5 *4 (-646 (-1183)))
- (-5 *2 (-646 (-646 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 (-551)))) (-5 *2 (-646 *4)) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 (-169 (-551))))) (-5 *2 (-646 (-169 *4)))
- (-5 *1 (-383 *4)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-412 (-952 (-169 (-551)))))) (-5 *4 (-646 (-1183)))
- (-5 *2 (-646 (-646 (-169 *5)))) (-5 *1 (-383 *5))
- (-4 *5 (-13 (-367) (-853))))))
+ (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1183))
+ (-5 *4 (-1100 (-412 (-569)))) (-5 *1 (-30)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226)))
+ (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5))
+ (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
+ (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-918 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-412 (-952 (-169 (-551))))))
- (-5 *2 (-646 (-646 (-296 (-952 (-169 *4)))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-367) (-853)))))
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10))
+ (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8))
+ (-4 *10 (-1115 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-296 (-412 (-952 (-169 (-551)))))))
- (-5 *2 (-646 (-646 (-296 (-952 (-169 *4)))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-367) (-853)))))
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
+ (-5 *1 (-633 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-952 (-169 (-551)))))
- (-5 *2 (-646 (-296 (-952 (-169 *4))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-367) (-853)))))
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1183)))
+ (-5 *2
+ (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
+ (-5 *1 (-633 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
+ (-5 *1 (-1052 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-412 (-952 (-169 (-551))))))
- (-5 *2 (-646 (-296 (-952 (-169 *4))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-551)) (-5 *1 (-382)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-226))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-226))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-382))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-551))) (-5 *1 (-382)))))
-(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-382)))
- ((*1 *1) (-5 *1 (-382))))
-(((*1 *1 *1) (-5 *1 (-226)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-646 (-1183))) (-14 *3 (-646 (-1183)))
- (-4 *4 (-392))))
- ((*1 *1 *1) (-5 *1 (-382))) ((*1 *1) (-5 *1 (-382))))
-(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-382))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-382)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-382)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1222)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-376 *4) (-10 -7 (-6 -4444)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))))
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1077 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1216 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-376 *3)) (-4 *3 (-1222)) (-4 *3 (-855)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-376 *4)) (-4 *4 (-1222))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-333)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183))
+ (-5 *1 (-264 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-52))
+ (-5 *1 (-265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27))
+ (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226)))
+ (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112))
+ (-5 *2 (-1041)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-457))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-915)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1071 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| -4113 *1) (|:| -1675 (-649 *7)))))
+ (-5 *3 (-649 *7)) (-4 *1 (-1216 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (|has| *1 (-6 -4444)) (-4 *1 (-376 *3)) (-4 *3 (-1222)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-376 *2)) (-4 *2 (-1222)) (-4 *2 (-855))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4444)) (-4 *1 (-376 *3))
- (-4 *3 (-1222)))))
-(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1272 *1)) (-4 *1 (-371 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1177 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1177 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-1121)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-758)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-646 (-1272 *4))) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562))
- (-5 *2 (-646 (-1272 *3))))))
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562)) (-5 *2 (-1177 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-562)) (-5 *2 (-1177 *3)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-562)) (-4 *2 (-173)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1165)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1107)) (-4 *4 (-1107))))
- ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1165)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)))))
-(((*1 *1 *1) (-4 *1 (-174)))
- ((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-1107)))))
+ (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
+ (-5 *2 (-649 (-1082 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
+ ((*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107)) (-5 *2 (-1165)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1107)) (-4 *2 (-1107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354))
- (-4 *2
- (-13 (-407)
- (-10 -7 (-15 -4396 (*2 *4)) (-15 -2198 ((-925) *2))
- (-15 -2200 ((-1272 *2) (-925))) (-15 -4378 (*2 *2)))))
- (-5 *1 (-361 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-964 (-1177 *4))) (-5 *1 (-360 *4))
- (-5 *3 (-1177 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-354)) (-5 *1 (-360 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))))
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
+(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
+ (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226))
+ (-5 *7 (-694 (-569)))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-925)) (-5 *2 (-1177 *4)) (-5 *1 (-360 *4)) (-4 *4 (-354)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))))
-(((*1 *2 *2) (-12 (-5 *2 (-925)) (-5 *1 (-360 *3)) (-4 *3 (-354)))))
-(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-360 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 (-912 *3)) (|:| -2581 (-1126))))))
- (-5 *1 (-356 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925))))
- ((*1 *2)
- (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126))))))
- (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1177 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126))))))
- (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))))
-(((*1 *2)
- (-12 (-5 *2 (-694 (-912 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-925))
- (-14 *4 (-925))))
- ((*1 *2)
- (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354))
- (-14 *4
- (-3 (-1177 *3) (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-694 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))))
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))
- (-4 *4 (-354)) (-5 *2 (-776)) (-5 *1 (-351 *4))))
+ (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-649 (-958 *4)))))
((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-14 *3 (-925)) (-14 *4 (-925))))
+ (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354))
- (-14 *4
- (-3 (-1177 *3) (-1272 (-646 (-2 (|:| -3844 *3) (|:| -2581 (-1126)))))))))
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3)))))
((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-925)))))
-(((*1 *2)
- (-12 (-4 *1 (-354))
- (-5 *2 (-646 (-2 (|:| -4182 (-551)) (|:| -2582 (-551))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-354)) (-5 *3 (-551)) (-5 *2 (-1195 (-925) (-776))))))
-(((*1 *1) (-4 *1 (-354))))
-(((*1 *2)
- (-12 (-4 *1 (-354)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-925))
- (-5 *2
- (-3 (-1177 *4) (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126)))))))
- (-5 *1 (-351 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-925))
- (-5 *2 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))
- (-5 *1 (-351 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))
- (-4 *4 (-354)) (-5 *2 (-694 *4)) (-5 *1 (-351 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354))
- (-5 *2 (-1272 (-646 (-2 (|:| -3844 *4) (|:| -2581 (-1126))))))
- (-5 *1 (-351 *4)))))
+ (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173))
+ (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-354)) (-5 *2 (-964 (-1126)))
- (-5 *1 (-351 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-14 *3 (-925))
- (-14 *4 (-925))))
- ((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-1177 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-925)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-776)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 (-1163 *4) (-1163 *4))) (-5 *2 (-1163 *4))
+ (-5 *1 (-1298 *4)) (-4 *4 (-1223))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-649 (-1163 *5)) (-649 (-1163 *5)))) (-5 *4 (-569))
+ (-5 *2 (-649 (-1163 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1223)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3))
+ (-4 *3 (-367)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1227)) (-4 *5 (-1248 *3)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
+ (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569)))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4))
- (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4))
- (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372))
+ (-5 *2 (-776)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *6))))
+ (-5 *4 (-1032 (-848 (-569)))) (-5 *5 (-1183)) (-5 *7 (-412 (-569)))
+ (-4 *6 (-1055)) (-5 *2 (-867)) (-5 *1 (-600 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1179 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4))
- (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *3 (-1227)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)))))
+ (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
+ (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
+ (-5 *2 (-1041)) (-5 *1 (-758)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1249 *5))
+ (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1179 (-569)))) (-5 *3 (-1179 (-569)))
+ (-5 *1 (-577))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1179 *1))) (-5 *3 (-1179 *1))
+ (-4 *1 (-915)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -3280 *4))) (-5 *5 (-776))
+ (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-454 *6 *7 *8 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1248 *4))
- (-4 *5 (-1248 (-412 *3))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-927)) (-14 *5 (-999 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4))
+ (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4))
+ (-4 *4 (-1249 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5))
+ (-4 *4 (-1055)) (-4 *5 (-855))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055))
+ (-4 *2 (-855))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6))
+ (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055))
+ (-4 *5 (-798)) (-4 *2 (-855))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5))
+ (-5 *1 (-1132 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-855))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1217 *4))
+ (-4 *4 (-1055)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1179 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1272 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-2 (|:| |num| (-1272 *4)) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-2 (|:| |num| (-1272 *4)) (|:| |den| *4))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1272 *3)) (-4 *3 (-1248 *4)) (-4 *4 (-1227))
- (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1248 (-412 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
- (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 (-412 *2))) (-4 *2 (-1248 *4))
- (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
- (-4 *4 (-1248 (-412 *2))) (-4 *2 (-1248 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 (-412 *2))) (-4 *2 (-1248 *4))
- (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
- (-4 *4 (-1248 (-412 *2))) (-4 *2 (-1248 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-1227))
- (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
- (-4 *1 (-346 *4 *5 *6)))))
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1179 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
+ (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1041)) (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1248 *5))
- (-4 *7 (-1248 (-412 *6))) (-5 *2 (-646 (-952 *5)))
- (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1273 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
- (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5))) (-4 *4 (-367))
- (-5 *2 (-646 (-952 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4)) (-4 *6 (-1248 (-412 *5)))
- (-5 *2 (-646 (-646 *4))) (-5 *1 (-345 *3 *4 *5 *6))
- (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-646 (-646 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183)))
- (-14 *4 (-646 (-1183))) (-4 *5 (-392))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-646 (-1183)))
- (-14 *4 (-646 (-1183))) (-4 *5 (-392)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-367)) (-4 *3 (-1248 *4)) (-4 *5 (-1248 (-412 *3)))
- (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *2 (-367)) (-4 *4 (-1248 *2))
- (-4 *5 (-1248 (-412 *4))) (-4 *1 (-340 *2 *4 *5 *6))
- (-4 *6 (-346 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-367)) (-4 *3 (-1248 *2)) (-4 *4 (-1248 (-412 *3)))
- (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))
- (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367))
- (-4 *1 (-340 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1248 *3))
- (-4 *5 (-1248 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-1272 *6)) (-5 *1 (-337 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-1248 *3)) (-4 *5 (-1248 (-412 *4)))
- (-5 *2 (-1272 *6)) (-5 *1 (-337 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-878 (-1188) (-776)))) (-5 *1 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-952 (-551))) (-5 *2 (-333)) (-5 *1 (-335)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1098 (-952 (-551)))) (-5 *3 (-952 (-551))) (-5 *1 (-333))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-952 (-551)))) (-5 *1 (-333)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-1165))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-382)))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-551))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-382))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-704))) (-5 *1 (-333))))
- ((*1 *1) (-5 *1 (-333))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-333))) (-5 *1 (-333)))))
-(((*1 *1) (-5 *1 (-333))))
-(((*1 *1) (-5 *1 (-333))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-868))) (-5 *1 (-333)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-646 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))))
-(((*1 *2 *1)
+ (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915))
+ (-5 *2 (-1273 *1)))))
+(((*1 *2 *3 *3)
(-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
- (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
- (|:| |Goto| "goto") (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-333)))))
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-646 (-952 (-551))))
- (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1183)) (|:| |rand| (-868))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333))
- (|:| |elseClause| (-333))))
- (|:| |returnBranch|
- (-2 (|:| -3845 (-112))
- (|:| -3844 (-2 (|:| |ints2Floats?| (-112)) (|:| -3692 (-868))))))
- (|:| |blockBranch| (-646 (-333))) (|:| |commentBranch| (-646 (-1165)))
- (|:| |callBranch| (-1165))
- (|:| |forBranch|
- (-2 (|:| -1613 (-1098 (-952 (-551)))) (|:| |span| (-952 (-551)))
- (|:| -3671 (-333))))
- (|:| |labelBranch| (-1126))
- (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3671 (-333))))
- (|:| |commonBranch|
- (-2 (|:| -3991 (-1183)) (|:| |contents| (-646 (-1183)))))
- (|:| |printBranch| (-646 (-868)))))
- (-5 *1 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-333)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))))
+ (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-569))))
+ (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5))
+ (-4 *5 (-955 *4 (-536 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1217 *4))) (-5 *3 (-1183)) (-5 *1 (-1217 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1177 *3)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
- (-5 *2 (-1177 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1177 *3)))))
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1055)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-797)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
+ (-5 *2 (-649 *4)) (-5 *1 (-1120 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1041)) (-5 *1 (-758)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-353)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *1 *1 *2 *3 *1)
(-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4)))
+ (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1041)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798))
+ (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1179 *8)))
+ (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1179 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278))
+ (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
+ (-4 *4 (-268 *3)) (-4 *5 (-798)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-4 *3 (-173)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-797)) (-4 *3 (-173)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1008)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4)))
+ (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))))
+(((*1 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
+ (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
+ (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1249 *2)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-569))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
+ (-5 *1 (-454 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367))
+ (-5 *1 (-999 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1107)) (-4 *2 (-131)))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1106))
+ (-4 *2 (-131)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-710 *3 *4)) (-4 *3 (-1223)) (-4 *4 (-1223)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-569))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
+ (-5 *1 (-454 *5 *6 *7 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1044 (-569))) (-4 *4 (-561))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-134)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-226)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3))
+ (-4 *5 (-1264 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1235 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3))
+ (-4 *5 (-1233 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1256 *4 *5))
+ (-4 *6 (-989 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-287)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *1) (-5 *1 (-383)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1106))
+ (-4 *3 (-1118))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353))
+ (-5 *1 (-533 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1106))
+ (-5 *1 (-687 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055))
+ (-5 *1 (-695 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4))
+ (-4 *4 (-653 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1055))
+ (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1055))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-569)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055))
+ (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1168 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-131)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1107)) (-4 *3 (-131)) (-4 *3 (-797)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-131)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7)))
+ (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-551)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055))
- (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5)))))
+ (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131))
+ (-4 *3 (-797)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *7)) (-5 *3 (-551)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *1 (-324 *4 *5 *6 *7)))))
+ (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7))
+ (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5))
+ (-4 *5 (-1249 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-1177 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1055)) (-5 *2 (-1177 *6)) (-5 *1 (-324 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 *9)) (-5 *4 (-646 *7)) (-5 *5 (-646 *8)) (-4 *7 (-855))
- (-4 *8 (-1055)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1177 *8))
- (-5 *1 (-324 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-551))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
- (-14 *4 (-1183)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226)))
- (-5 *6 (-551)) (-5 *2 (-1218 (-933))) (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226)))
- (-5 *6 (-551)) (-5 *7 (-1165)) (-5 *2 (-1218 (-933))) (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226)))
- (-5 *6 (-226)) (-5 *7 (-551)) (-5 *2 (-1218 (-933))) (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-317 (-551))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1095 (-226)))
- (-5 *6 (-226)) (-5 *7 (-551)) (-5 *8 (-1165)) (-5 *2 (-1218 (-933)))
- (-5 *1 (-321)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-296 *6)) (-5 *4 (-113)) (-4 *6 (-426 *5))
- (-4 *5 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-296 *7)) (-5 *4 (-113)) (-5 *5 (-646 *7)) (-4 *7 (-426 *6))
- (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-646 (-296 *7))) (-5 *4 (-646 (-113))) (-5 *5 (-296 *7))
- (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51))
- (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-646 (-296 *8))) (-5 *4 (-646 (-113))) (-5 *5 (-296 *8))
- (-5 *6 (-646 *8)) (-4 *8 (-426 *7)) (-4 *7 (-13 (-562) (-619 (-540))))
- (-5 *2 (-51)) (-5 *1 (-320 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-646 *7)) (-5 *4 (-646 (-113))) (-5 *5 (-296 *7))
- (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51))
- (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-646 *8)) (-5 *4 (-646 (-113))) (-5 *6 (-646 (-296 *8)))
- (-4 *8 (-426 *7)) (-5 *5 (-296 *8)) (-4 *7 (-13 (-562) (-619 (-540))))
- (-5 *2 (-51)) (-5 *1 (-320 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-296 *5)) (-5 *4 (-113)) (-4 *5 (-426 *6))
- (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-4 *3 (-426 *6))
- (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-4 *3 (-426 *6))
- (-4 *6 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-113)) (-5 *5 (-296 *3)) (-5 *6 (-646 *3)) (-4 *3 (-426 *7))
- (-4 *7 (-13 (-562) (-619 (-540)))) (-5 *2 (-51)) (-5 *1 (-320 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-562)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-551)) (-5 *1 (-317 *3)) (-4 *3 (-562)) (-4 *3 (-1107)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-310))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2590 *1)))
- (-4 *1 (-310)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-646 *1)) (-4 *1 (-310)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-853)) (-5 *1 (-307 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226)))
- (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-412 (-551))) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-317 (-382))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 (-226))) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 (-226))) (-5 *2 (-317 (-382))) (-5 *1 (-306)))))
+ (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |stiffness| (-382)) (|:| |stability| (-382))
- (|:| |expense| (-382)) (|:| |accuracy| (-382))
- (|:| |intermediateResults| (-382))))
- (-5 *2 (-1041)) (-5 *1 (-306)))))
+ (-5 *2
+ (-993 (-412 (-569)) (-869 *3) (-241 *4 (-776))
+ (-248 *3 (-412 (-569)))))
+ (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-992 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055))
+ (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1116)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7))
+ (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798))
+ (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457))
+ (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-993 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-5 *1 (-324 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-569)) (-5 *1 (-1116))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569))
+ (-5 *1 (-1116)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *2 *2)
(-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1160 (-226)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1613
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1041)) (-5 *1 (-306)))))
+ (-5 *2
+ (-649
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-779)) (-5 *1 (-114)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855))
+ (-4 *5 (-798)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-1179 *7)) (-5 *1 (-324 *4 *5 *6 *7))
+ (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855))
+ (-4 *2 (-173))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-824 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-855))
+ (-4 *2 (-1055))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
+(((*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *4 *2 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1116)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
+ (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165)))))
- (-5 *2 (-1041)) (-5 *1 (-306))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2))
+ (-4 *4 (-457)) (-4 *6 (-855)))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1223)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3089 (-382)) (|:| -3991 (-1165))
- (|:| |explanations| (-646 (-1165))) (|:| |extra| (-1041))))
- (-5 *2 (-1041)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1165)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-304))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-304))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 (-847 (-226)))) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-193))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-193))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-304))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-646 (-1165))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1165)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193))))
- ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-304))))
- ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *2 (-1272 (-317 (-382))))
- (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-317 (-382))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1272 (-704))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-2 (|:| -3560 (-412 (-551))) (|:| -3559 (-412 (-551))))))
- (-5 *2 (-646 (-226))) (-5 *1 (-306)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1095 (-847 (-226)))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-226))) (-5 *2 (-317 (-412 (-551)))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-317 (-226))))
- (-5 *2
- (-2 (|:| |additions| (-551)) (|:| |multiplications| (-551))
- (|:| |exponentiations| (-551)) (|:| |functionCalls| (-551))))
- (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))
- (-5 *2 (-382)) (-5 *1 (-269))))
- ((*1 *2 *3) (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *2 (-382)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-412 (-551))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-551))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-847 (-382)))) (-5 *2 (-1095 (-847 (-226))))
- (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-847 (-382))) (-5 *2 (-847 (-226))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-382))) (-5 *2 (-317 (-226))) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-226)) (-5 *1 (-306)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-952 (-412 (-551)))) (-5 *4 (-1183))
- (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-646 (-226))) (-5 *1 (-304)))))
+ (-12 (-4 *4 (-1055))
+ (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6))
+ (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-1160 (-226))) (-5 *1 (-193))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-226))) (-5 *4 (-646 (-1183)))
- (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1272 (-317 (-226)))) (-5 *4 (-646 (-1183)))
- (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-226))) (-5 *4 (-646 (-1183)))
- (-5 *5 (-1095 (-847 (-226)))) (-5 *2 (-1160 (-226))) (-5 *1 (-304)))))
+ (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-1179 *6))
+ (-5 *1 (-324 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-226))) (-5 *4 (-1183)) (-5 *5 (-1095 (-847 (-226))))
- (-5 *2 (-646 (-226))) (-5 *1 (-193))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-226))) (-5 *4 (-1183)) (-5 *5 (-1095 (-847 (-226))))
- (-5 *2 (-646 (-226))) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-112)) (-5 *1 (-304)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-301)) (-4 *2 (-1222))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-646 (-616 *1))) (-5 *3 (-646 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-646 (-296 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-296 *1)) (-4 *1 (-301)))))
-(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-616 *1)) (-4 *1 (-301)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-616 *1))) (-4 *1 (-301)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-616 *1))) (-4 *1 (-301)))))
-(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-646 (-113))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1183)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-616 *5)) (-4 *5 (-426 *4)) (-4 *4 (-1044 (-551)))
- (-4 *4 (-562)) (-5 *2 (-1177 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-616 *1)) (-4 *1 (-1055)) (-4 *1 (-301)) (-5 *2 (-1177 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-314)) (-5 *1 (-299))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 (-1165))) (-5 *3 (-1165)) (-5 *2 (-314)) (-5 *1 (-299)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1055)) (-4 *4 (-1248 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1248 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-21)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-296 *2)) (-4 *2 (-731)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-296 *2)) (-4 *2 (-731)) (-4 *2 (-1222)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 (-296 *3))) (-5 *1 (-296 *3)) (-4 *3 (-562))
- (-4 *3 (-1222)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457))
- (-5 *2
- (-646
- (-2 (|:| |eigval| (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4))))
- (|:| |eigmult| (-776)) (|:| |eigvec| (-646 (-694 (-412 (-952 *4))))))))
- (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-952 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457))
- (-5 *2
- (-646
- (-2 (|:| |eigval| (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4))))
- (|:| |geneigvec| (-646 (-694 (-412 (-952 *4))))))))
- (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-952 *4)))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-412 (-952 *6)) (-1172 (-1183) (-952 *6)))) (-5 *5 (-776))
- (-4 *6 (-457)) (-5 *2 (-646 (-694 (-412 (-952 *6))))) (-5 *1 (-295 *6))
- (-5 *4 (-694 (-412 (-952 *6))))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-412 (-952 *5)) (-1172 (-1183) (-952 *5))))
- (|:| |eigmult| (-776)) (|:| |eigvec| (-646 *4))))
- (-4 *5 (-457)) (-5 *2 (-646 (-694 (-412 (-952 *5))))) (-5 *1 (-295 *5))
- (-5 *4 (-694 (-412 (-952 *5)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-412 (-952 *5)) (-1172 (-1183) (-952 *5)))) (-4 *5 (-457))
- (-5 *2 (-646 (-694 (-412 (-952 *5))))) (-5 *1 (-295 *5))
- (-5 *4 (-694 (-412 (-952 *5)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-952 *4)))) (-4 *4 (-457))
- (-5 *2 (-646 (-3 (-412 (-952 *4)) (-1172 (-1183) (-952 *4)))))
- (-5 *1 (-295 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1091))) (-5 *1 (-294)))))
-(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1109))) (-5 *1 (-294)))))
-(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1109)) (-5 *1 (-294)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-646 (-971))) (-5 *1 (-294)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-971))) (-5 *1 (-294)))))
-(((*1 *1) (-5 *1 (-294))))
-(((*1 *1) (-5 *1 (-294))))
-(((*1 *1) (-5 *1 (-294))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-551)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1222)) (-4 *4 (-376 *2))
- (-4 *5 (-376 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1107))
- (-4 *2 (-1222)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-367)) (-5 *2 (-646 (-1160 *4))) (-5 *1 (-288 *4 *5))
- (-5 *3 (-1160 *4)) (-4 *5 (-1265 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1265 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1239 (-551))) (-4 *1 (-285 *3)) (-4 *3 (-1222))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-261 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-261 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-261 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-5 *1 (-261 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-314))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-236 *3))
- (-4 *3 (-1107))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1222)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-591)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))))
-(((*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-283)))))
-(((*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))))
-(((*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1109)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-412 (-551))) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-616 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4)))
- (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *4 *2)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-646 (-616 *2))) (-5 *4 (-1183))
- (-4 *2 (-13 (-27) (-1208) (-426 *5)))
- (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *5 *2)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4443)) (-4 *1 (-151 *3))
+ (-4 *3 (-1223))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1216 *4 *5 *3 *2)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226))
+ (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -3280 *3))))
+ (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-426 *3)))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-562) (-1044 (-551)) (-644 (-551))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-426 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-562) (-1044 (-551)) (-644 (-551))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-646 (-616 *3))) (|:| |vals| (-646 *3))))
- (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-426 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3))
- (-4 *3 (-13 (-426 *4) (-1008))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-646 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-426 *4) (-1008))) (-4 *4 (-562)) (-5 *1 (-278 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
+ ((*1 *1 *1) (-4 *1 (-160))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4))
+ (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1106)) (-4 *3 (-166 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1100 (-848 (-383)))))
+ (-5 *2 (-649 (-1100 (-848 (-226))))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
+ (-4 *4 (-1249 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-5 *2 (-1273 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561))
+ (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-541))))
+ ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5))
+ (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855))))
+ ((*1 *1 *2)
+ (-2718
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-1728 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
+ (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
+ (-4 *4 (-798)) (-4 *5 (-855))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8)))
+ (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
+ (-5 *1 (-1075 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3550 *8)))
+ (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
+ (-5 *1 (-1151 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1188))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-785 *4 (-869 *5)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183)))
+ (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-785 *4 (-869 *6)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183)))
+ (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
+ (-5 *2 (-1179 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183)))
+ (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6))
+ (-14 *5 (-649 (-1183))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-993 *3 *4 *5 *2))
+ (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8))
+ (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *9 (-955 *8 *6 *7))
+ (-4 *6 (-798)) (-5 *2 (-1179 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1109 *3 *2 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
+ (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-426 *3) (-1008))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-426 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-562)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-551))) (-5 *1 (-277)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
+ (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
+ (-14 *4 (-1183)) (-14 *5 *3))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
+ ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
+ ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-646 (-317 (-226)))) (|:| -3887 (-646 (-226)))))))
- (-5 *2 (-646 (-1165))) (-5 *1 (-269)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 (-317 (-226)))) (-5 *1 (-269)))))
-(((*1 *2 *2) (-12 (-5 *2 (-646 (-317 (-226)))) (-5 *1 (-269)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-1116)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-1108 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-649 *4))) (-5 *1 (-910 *4))
+ (-5 *3 (-649 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-1108 *4))) (-5 *1 (-910 *4))
+ (-5 *3 (-1108 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226)))
- (-5 *1 (-269)))))
-(((*1 *2 *3) (-12 (-5 *3 (-646 (-317 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-226))) (-5 *1 (-269)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-226))) (-5 *1 (-269)))))
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-454 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-317 (-226))) (|:| -3887 (-646 (-226)))
- (|:| |lb| (-646 (-847 (-226)))) (|:| |cf| (-646 (-317 (-226))))
- (|:| |ub| (-646 (-847 (-226))))))
- (-5 *1 (-269)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1249 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-991 *4 *2 *3 *5))
+ (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *2 (-1218 (-932)))
+ (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *7 (-1165))
+ (-5 *2 (-1218 (-932))) (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569))
+ (-5 *2 (-1218 (-932))) (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1165))
+ (-5 *2 (-1218 (-932))) (-5 *1 (-321)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
+ ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
+ ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-847 (-226)))) (-5 *4 (-226)) (-5 *2 (-646 *4))
- (-5 *1 (-269)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4))
- (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6))))
+ (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6)))
+ (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1055))))
+ ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561))))
((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798))
- (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-113))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-113))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *2 (-51))
- (-5 *1 (-263))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *1 (-265 *2))
- (-4 *2 (-1222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-263))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-925)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-263))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-646 (-263))) (-5 *1 (-264)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-931))
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-931)) (-5 *4 (-412 (-551)))
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153))))
+ (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1208)))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 *5))
+ (-5 *1 (-588 *4 *5))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153)) (-5 *3 (-646 (-949 (-226))))))
+ (-12 (-5 *3 (-591 (-412 (-958 *4))))
+ (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
+ (-4 *2 (-1155 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1295 *3)) (-4 *3 (-1055))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1116)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1108 (-1108 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153)) (-5 *3 (-646 (-646 (-949 (-226)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263)))))
-(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-263)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-263)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-412 (-551))))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 (-1095 (-382)))) (-5 *1 (-263)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-263))) (-5 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-263)))))
+ (-649
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *4 *3 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-798))
+ (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *5 (-561))
+ (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *6))
+ (-4 *6
+ (-13 (-855)
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
+ (-4 *2 (-955 (-958 *4) *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1275))
- (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107)))))
+ (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1274)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1275)) (-5 *1 (-257 *3))
- (-4 *3 (-13 (-619 (-540)) (-1107)))))
+ (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1274)) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263)))
- (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1275)) (-5 *1 (-257 *6))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-382)))
- (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1275)) (-5 *1 (-257 *5))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263)))
- (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *6))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-382)))
- (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *5))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1276))
- (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107)))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1276)) (-5 *1 (-257 *3))
- (-4 *3 (-13 (-619 (-540)) (-1107)))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263)))
- (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *6))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-382)))
- (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1276)) (-5 *1 (-257 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *5 (-646 (-263)))
- (-5 *2 (-1275)) (-5 *1 (-258))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1275))
- (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1275)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
+ (-5 *2 (-1275)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-1183)) (-5 *5 (-649 (-265)))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1044 (-569))))
+ (-5 *2 (-1274)) (-5 *1 (-258 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1275)) (-5 *1 (-258))))
+ (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274))
+ (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1275))
- (-5 *1 (-258))))
+ (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1274)) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1106)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274))
+ (-5 *1 (-261 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276))
- (-5 *1 (-258))))
+ (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274))
+ (-5 *1 (-261 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-5 *1 (-261 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276))
- (-5 *1 (-258))))
+ (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-5 *1 (-261 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258))))
+ (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275))
+ (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382))) (-5 *2 (-1276))
- (-5 *1 (-258))))
+ (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1275)) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1106)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-5 *1 (-261 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1276)) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1276)) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1276)) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-296 *7)) (-5 *4 (-1183)) (-5 *5 (-646 (-263)))
- (-4 *7 (-426 *6)) (-4 *6 (-13 (-562) (-855) (-1044 (-551)))) (-5 *2 (-1275))
- (-5 *1 (-259 *6 *7))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1275)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-5 *1 (-261 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1274)) (-5 *1 (-262))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-646 (-226))) (-5 *4 (-646 (-263))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1274))
(-5 *1 (-262))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *2 (-1275)) (-5 *1 (-262))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1274)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-949 (-226)))) (-5 *4 (-646 (-263))) (-5 *2 (-1275))
- (-5 *1 (-262))))
- ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-646 (-226))) (-5 *2 (-1276)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265)))
+ (-5 *2 (-1274)) (-5 *1 (-262))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275)) (-5 *1 (-262))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-646 (-226))) (-5 *4 (-646 (-263))) (-5 *2 (-1276))
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1275))
(-5 *1 (-262)))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-260)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-260)))))
-(((*1 *2 *2) (-12 (-5 *2 (-551)) (-5 *1 (-260)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1095 (-226)))
- (-5 *2 (-1276)) (-5 *1 (-260)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1095 (-226)))
- (-5 *5 (-112)) (-5 *2 (-1276)) (-5 *1 (-260)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226)))
- (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-258)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263)))
- (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-257 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-382)))
- (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-257 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-257 *3)) (-4 *3 (-13 (-619 (-540)) (-1107)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1098 (-382))) (-5 *2 (-1139 (-226))) (-5 *1 (-257 *3))
- (-4 *3 (-13 (-619 (-540)) (-1107)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-382))) (-5 *5 (-646 (-263)))
- (-4 *6 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-257 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-382)))
- (-4 *5 (-13 (-619 (-540)) (-1107))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-257 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *5 (-646 (-263))) (-5 *2 (-1139 (-226))) (-5 *1 (-258))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1095 (-382)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-258)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-223 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-256 *3))))
- ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-646 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-646 (-776)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-646 (-776))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-798))
- (-4 *2 (-268 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
- (-4 *4 (-268 *3)) (-4 *5 (-798)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
- (-4 *4 (-268 *3)) (-4 *5 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
-(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
- ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
- ((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))))
-(((*1 *2 *1) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))))
-(((*1 *1 *2) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-776))
- (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-551))))))
- (-5 *1 (-247 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-245 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-551)) (-5 *1 (-242))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-551)) (-5 *1 (-242)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242))))
- ((*1 *2 *3) (-12 (-5 *3 (-646 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-551)) (-5 *1 (-242)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-4 *4 (-1222)) (-4 *1 (-239 *3 *4)))))
+(((*1 *1 *1) (-5 *1 (-226)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
+ (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ ((*1 *1 *1) (-5 *1 (-383))) ((*1 *1) (-5 *1 (-383))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-1055))
+ (-5 *2 (-694 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776)))
+ (-5 *1 (-910 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-296 (-952 (-551))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |varOrder| (-646 (-1183)))
- (|:| |inhom| (-3 (-646 (-1272 (-776))) "failed"))
- (|:| |hom| (-646 (-1272 (-776))))))
- (-5 *1 (-237)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-4 *1 (-236 *3))))
- ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1107)))))
-(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1183))
- (-5 *5 (-847 *7)) (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1177 *6)) (-5 *4 (-847 *6))
- (-4 *6 (-13 (-1208) (-29 *5)))
- (-4 *5 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-225 *5 *6)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-847 *4)) (-5 *3 (-616 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1208) (-29 *6)))
- (-4 *6 (-13 (-457) (-1044 (-551)) (-644 (-551)))) (-5 *1 (-225 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-457) (-1044 (-551)) (-644 (-551))))
- (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-646 (-1183)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-646 (-1183))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-646 (-1183)))))
+ (-649
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-646 (-1183))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4))
- (-14 *4 (-646 (-1183))))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-798))
+ (-4 *3 (-13 (-855) (-10 -8 (-15 -1384 ((-1183) $))))) (-4 *5 (-561))
+ (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1055)) (-4 *5 (-798))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *6))
+ (-4 *6
+ (-13 (-855)
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
+ (-4 *2 (-955 (-958 *4) *5 *6)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-646 (-1183))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *6 (-112))
- (-4 *7 (-13 (-310) (-147) (-1044 (-551)) (-644 (-551))))
- (-4 *3 (-13 (-1208) (-966) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-847 *3)) (|:| |f2| (-646 (-847 *3))) (|:| |fail| "failed")
- (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *7 *3)) (-5 *5 (-847 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-551))) (-5 *1 (-218)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-354)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1248 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-646 (-2 (|:| |deg| (-776)) (|:| -2993 *3))))
- (-5 *1 (-217 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-354))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1964 (-646 (-2 (|:| |irr| *3) (|:| -2576 (-551)))))))
- (-5 *1 (-217 *5 *3)) (-4 *3 (-1248 *5)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5))
+ (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8))
+ (-5 *6 (-649 *8)) (-4 *8 (-435 *7))
+ (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8)))
+ (-4 *8 (-435 *7)) (-5 *5 (-297 *8))
+ (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3))
+ (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1106))
+ (-5 *1 (-617 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1248 (-412 *2)))
- (-4 *2 (-1248 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-925)) (-4 *2 (-1107)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-646 (-317 (-226))))
- (|:| |constraints|
- (-646
- (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776))
- (|:| |boundaryType| (-551)) (|:| |dStart| (-694 (-226)))
- (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-646 (-646 (-317 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *2 (-112)) (-5 *1 (-211)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-646 (-317 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
- (-5 *1 (-211)))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-226))) (-5 *1 (-211)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1272 (-317 (-226)))) (|:| |yinit| (-646 (-226)))
- (|:| |intvals| (-646 (-226))) (|:| |g| (-317 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))))
- (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-317 (-226))))
- (-5 *2 (-2 (|:| |stiffnessFactor| (-382)) (|:| |stabilityFactor| (-382))))
- (-5 *1 (-206)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694 (-317 (-226)))) (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-206))))
- ((*1 *2 *2 *3) (-12 (-5 *3 (-646 (-382))) (-5 *2 (-382)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-551)) (-5 *1 (-205)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-646 (-226))) (-5 *1 (-205)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-2 (|:| -2920 (-113)) (|:| |w| (-226)))) (-5 *1 (-205)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-382)) (-5 *1 (-193)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular| "There is a singularity at the lower end point")
- (|:| |upperSingular| "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-193)))))
-(((*1 *2 *3)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776)))
+ (-5 *1 (-910 *4)))))
+(((*1 *2 *3 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-317 (-226)))
- (|:| -1613 (-1095 (-847 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-193)))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 (-1177 (-551)))) (-5 *1 (-192)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-646 (-1177 (-551)))) (-5 *1 (-192)) (-5 *3 (-551)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-551))) (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1185 (-412 (-551)))) (-5 *2 (-412 (-551))) (-5 *1 (-191)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-551)))) (-5 *1 (-191)) (-5 *3 (-551)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1272 (-694 *4))) (-4 *4 (-173))
- (-5 *2 (-1272 (-694 (-952 *4)))) (-5 *1 (-190 *4)))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-646 (-112))))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-646 (-870))))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-1188))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(((*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-184))) (-5 *1 (-184)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1222)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1222)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1222)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-853)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1964 (-410 *3)))) (-5 *1 (-182 *4 *3))
- (-4 *3 (-1248 (-169 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1248 (-169 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853)))
- (-4 *3 (-1248 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1248 (-169 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1248 (-169 *2))))))
+ (-649
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *1 (-454 *4 *5 *6 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-1248 (-169 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-797))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-649 (-1183)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-410 *3)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-1248 (-169 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-1248 (-169 *3))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853)))
- (-5 *2 (-646 (-2 (|:| -1964 (-646 *3)) (|:| -1714 *5))))
- (-5 *1 (-182 *5 *3)) (-4 *3 (-1248 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-367) (-853)))
- (-5 *2 (-646 (-2 (|:| -1964 (-646 *3)) (|:| -1714 *4))))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-646 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1248 (-169 (-551)))) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-646 (-169 *4)))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569))
+ (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173))
+ (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173))
+ (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1055) (-855)))
+ (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-5 *2 (-241 *5 *7))
+ (-5 *1 (-240 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-297 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-617 *6))
+ (-4 *6 (-305)) (-4 *2 (-1223)) (-5 *1 (-300 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305))
+ (-4 *2 (-305)) (-5 *1 (-301 *5 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367))
+ (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
+ (-4 *9 (-367)) (-4 *10 (-1249 *9)) (-4 *11 (-1249 (-412 *10)))
+ (-5 *2 (-340 *9 *10 *11 *12))
+ (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-346 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227))
+ (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *9 (-1249 *8))
+ (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1249 (-412 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1223)) (-4 *6 (-1223))
+ (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1055))
+ (-4 *4 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561))
+ (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561))
+ (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310))
+ (-4 *6 (-998 *5)) (-4 *7 (-1249 *6))
+ (-4 *8 (-13 (-414 *6 *7) (-1044 *6))) (-4 *9 (-310))
+ (-4 *10 (-998 *9)) (-4 *11 (-1249 *10))
+ (-5 *2 (-418 *9 *10 *11 *12))
+ (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-414 *10 *11) (-1044 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
+ (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
+ (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106))
+ (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-855))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367))
+ (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -2209 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-367)) (-4 *6 (-367))
+ (-5 *2 (-2 (|:| -2209 *6) (|:| |coeff| *6)))
+ (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-367)) (-4 *6 (-367))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-606 *8))
+ (-5 *1 (-604 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-606 *7))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
+ (-5 *1 (-604 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1163 *7))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
+ (-5 *1 (-604 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-649 *8))
+ (-5 *1 (-648 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055))
+ (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10))
+ (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7))
+ (-4 *9 (-377 *8)) (-4 *10 (-377 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055))
+ (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5))
+ (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561))
+ (-4 *6 (-1249 *5)) (-4 *2 (-1249 (-412 *8)))
+ (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1249 (-412 *6)))
+ (-4 *8 (-1249 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055))
+ (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5))
+ (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798))
+ (-4 *4 (-955 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798))
+ (-4 *9 (-1055)) (-4 *2 (-955 *9 *8 *6))
+ (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798))
+ (-4 *4 (-955 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7))
+ (-5 *1 (-739 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4))
+ (-4 *4 (-731))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
+ (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-837 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5))
+ (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-847 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-895 *5 *7))
+ (-5 *1 (-894 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
+ (-4 *6 (-1106)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-646 (-169 *4)))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1248 (-169 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-646 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855))
+ (-4 *8 (-1055)) (-4 *6 (-798))
+ (-4 *2
+ (-13 (-1106)
+ (-10 -8 (-15 -2935 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))))))
+ (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1055))
+ (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798))
+ (-4 *6
+ (-13 (-855)
+ (-10 -8 (-15 -1384 ((-1183) $))
+ (-15 -2599 ((-3 $ "failed") (-1183))))))
+ (-5 *1 (-990 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561))
+ (-4 *2 (-998 *6)) (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-998 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
+ (-4 *2 (-1003 *6)) (-5 *1 (-1004 *4 *5 *2 *6)) (-4 *4 (-1003 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7))
+ (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7))
+ (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055))
+ (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7))
+ (-4 *9 (-239 *5 *7)) (-4 *2 (-1059 *5 *6 *10 *11 *12))
+ (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10))
+ (-4 *12 (-239 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-1100 *6)) (-5 *1 (-1095 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-853))
+ (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6))
+ (-5 *1 (-1095 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-1098 *6)) (-5 *1 (-1097 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
+ (-4 *2 (-1155 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-1163 *7))
+ (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
+ (-5 *1 (-1162 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1106))
+ (-4 *4 (-1106))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1232 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1183))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-1240 *6)) (-5 *1 (-1239 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-853))
+ (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6))
+ (-5 *1 (-1239 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1246 *5 *6)) (-14 *5 (-1183))
+ (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1246 *7 *8))
+ (-5 *1 (-1241 *5 *6 *7 *8)) (-14 *7 (-1183))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
+ (-4 *2 (-1249 *6)) (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1249 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1258 *5 *7 *9)) (-4 *5 (-1055))
+ (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1258 *6 *8 *10)) (-5 *1 (-1253 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1183))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
+ (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *6 *4 *2)) (-4 *4 (-1264 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223))
+ (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1273 *5))
+ (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6))
+ (-5 *1 (-1272 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1055))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4))
+ (-4 *4 (-851)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-109))) (-5 *1 (-176)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-646 (-696 (-283)))) (-5 *1 (-168)))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-1273 (-649 (-569)))) (-5 *1 (-485))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-161)))
- ((*1 *1 *2) (-12 (-5 *2 (-551)) (-5 *1 (-161)))))
-(((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
- ((*1 *1 *1) (-4 *1 (-160))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *1 (-158 *4 *2)) (-4 *2 (-426 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-646 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))))
+ (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *2)) (-4 *2 (-426 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-158 *3 *2)) (-4 *2 (-426 *3)))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *2) (-12 (-5 *2 (-925)) (-5 *1 (-157)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-226))
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 *4)))) (|:| |xValues| (-1095 *4))
- (|:| |yValues| (-1095 *4))))
- (-5 *1 (-153)) (-5 *3 (-646 (-646 (-949 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-931))
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-931)) (-5 *4 (-412 (-551)))
- (-5 *2
- (-2 (|:| |brans| (-646 (-646 (-949 (-226)))))
- (|:| |xValues| (-1095 (-226))) (|:| |yValues| (-1095 (-226)))))
- (-5 *1 (-153)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-925)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367))
- (-14 *5 (-999 *3 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4443)) (-4 *1 (-151 *2)) (-4 *2 (-1222))
- (-4 *2 (-1107)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5))
- (|:| |c2| (-412 *5)) (|:| |deg| (-776))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1248 (-412 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1248 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1248 (-412 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1248 *5))
- (-5 *2 (-2 (|:| -2582 (-776)) (|:| -4404 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1248 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1248 *4))
- (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1248 (-412 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1248 *4))
- (-5 *2 (-2 (|:| -4404 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3))
- (-4 *3 (-1248 (-412 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-843))) (-5 *1 (-140)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-185 (-139)))) (-5 *1 (-140)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-185 (-139)))) (-5 *1 (-140)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 (-551))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))
- (-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-551)) (-14 *3 (-776)) (-4 *4 (-173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-646 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))
- (-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-551))
- (-14 *4 (-776)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1107))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551)))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1248 (-551))))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1222)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-119 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-551))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1248 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1107)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-646 (-1 *4 (-646 *4)))) (-4 *4 (-1107))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1107)) (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-646 (-1 *4 (-646 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-646 (-971))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-778))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-113))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-778)) (-5 *1 (-113))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-778)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-778))) (-5 *1 (-113)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-646 (-971))) (-5 *1 (-109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-4 *1 (-107 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1222)))))
-(((*1 *2) (-12 (-5 *2 (-646 (-1183))) (-5 *1 (-105)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-5 *2
- (-2 (|:| |zeros| (-1160 (-226))) (|:| |ones| (-1160 (-226)))
- (|:| |singularities| (-1160 (-226)))))
- (-5 *1 (-105)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-376 *2)) (-4 *6 (-376 *2))
- (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1248 *2))
- (-4 *4 (-691 *2 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4445 "*"))) (-4 *5 (-376 *2)) (-4 *6 (-376 *2))
- (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1248 *2))
- (-4 *4 (-691 *2 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-691 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
- (-4 *3 (-1248 *4)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-691 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
- (-4 *3 (-1248 *4)) (-4 *5 (-376 *4)) (-4 *6 (-376 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-103 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1107)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1107)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-646 *2) *2 *2 *2)) (-4 *2 (-1107)) (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1107)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-410 *3)) (-5 *1 (-100 *4 *3))
- (-4 *3 (-1248 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-646 *3)) (-4 *3 (-1248 *5)) (-4 *5 (-13 (-457) (-147)))
- (-5 *2 (-410 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-551))) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-382)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))))
-(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-97)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-1165)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-382)) (-5 *3 (-1165)) (-5 *1 (-97)))))
-(((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1107)) (-5 *1 (-91 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *5 (-562))
- (-5 *2
- (-2 (|:| |minor| (-646 (-925))) (|:| -3705 *3)
- (|:| |minors| (-646 (-646 (-925)))) (|:| |ops| (-646 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-925)) (-4 *3 (-663 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-1272 (-694 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-694 *4)) (-4 *5 (-663 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-562))
- (-5 *2 (-2 (|:| -1758 (-694 *5)) (|:| |vec| (-1272 (-646 (-925))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-925)) (-4 *3 (-663 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-58 *3)) (-4 *3 (-1222))))
- ((*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-1222)) (-5 *1 (-58 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-551)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-376 *4))
- (-4 *5 (-376 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-551)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1222)) (-4 *5 (-376 *4))
- (-4 *3 (-376 *4)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-1183))) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-646 (-1081 *4 *5 *2))) (-4 *4 (-1107))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-896 *4))))
- (-4 *2 (-13 (-426 *5) (-892 *4) (-619 (-896 *4)))) (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-646 (-1081 *5 *6 *2))) (-5 *4 (-925)) (-4 *5 (-1107))
- (-4 *6 (-13 (-1055) (-892 *5) (-619 (-896 *5))))
- (-4 *2 (-13 (-426 *6) (-892 *5) (-619 (-896 *5)))) (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *3 (-778)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1109)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-778)) (-5 *1 (-51)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-646 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-646 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-113)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-551))))
- (-4 *5 (-562)) (-5 *1 (-41 *5 *2)) (-4 *2 (-426 *5))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *5 (-616 $)) $))
- (-15 -3416 ((-1131 *5 (-616 $)) $))
- (-15 -4396 ($ (-1131 *5 (-616 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-426 *3))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-426 *3))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-551)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-426 *3))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $))))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-1177 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $))
- (-15 -3416 ((-1131 *4 (-616 $)) $))
- (-15 -4396 ($ (-1131 *4 (-616 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 *2))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $))
- (-15 -3416 ((-1131 *4 (-616 $)) $))
- (-15 -4396 ($ (-1131 *4 (-616 $)))))))
- (-4 *4 (-562)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-646 (-616 *2)))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *4 (-616 $)) $))
- (-15 -3416 ((-1131 *4 (-616 $)) $))
- (-15 -4396 ($ (-1131 *4 (-616 $)))))))
- (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-367) (-301)
- (-10 -8 (-15 -3417 ((-1131 *3 (-616 $)) $))
- (-15 -3416 ((-1131 *3 (-616 $)) $))
- (-15 -4396 ($ (-1131 *3 (-616 $))))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1248 *4)) (-5 *2 (-1278))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1248 (-412 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1248 (-48))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1107)) (-4 *4 (-1107))
- (-5 *2 (-2 (|:| -4310 *3) (|:| -2264 *4))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-551)) (-4 *2 (-426 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1044 *4))
- (-4 *3 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-646 *5)) (-4 *5 (-426 *4)) (-4 *4 (-562)) (-5 *2 (-868))
- (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1177 *2)) (-4 *2 (-426 *4)) (-4 *4 (-562))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-952 (-551))) (-5 *3 (-1183)) (-5 *4 (-1095 (-412 (-551))))
- (-5 *1 (-30)))))
+ (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-646 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-646 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1177 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))))
-((-1306 . 724544) (-1307 . 724148) (-1308 . 724027) (-1309 . 723925)
- (-1310 . 723812) (-1311 . 723695) (-1312 . 723626) (-1313 . 723572)
- (-1314 . 723437) (-1315 . 723361) (-1316 . 723205) (-1317 . 722977)
- (-1318 . 722013) (-1319 . 721766) (-1320 . 721481) (-1321 . 721196)
- (-1322 . 720911) (-1323 . 720590) (-1324 . 720498) (-1325 . 720406)
- (-1326 . 720314) (-1327 . 720222) (-1328 . 720130) (-1329 . 720038)
- (-1330 . 719943) (-1331 . 719848) (-1332 . 719756) (-1333 . 719664)
- (-1334 . 719572) (-1335 . 719480) (-1336 . 719388) (-1337 . 719286)
- (-1338 . 719184) (-1339 . 719082) (-1340 . 718990) (-1341 . 718939)
- (-1342 . 718887) (-1343 . 718817) (-1344 . 718393) (-1345 . 718198)
- (-1346 . 718171) (-1347 . 718048) (-1348 . 717925) (-1349 . 717781)
- (-1350 . 717611) (-1351 . 717487) (-1352 . 717248) (-1353 . 717175)
- (-1354 . 717034) (-1355 . 716983) (-1356 . 716934) (-1357 . 716864)
- (-1358 . 716729) (-1359 . 716594) (-1360 . 716366) (-1361 . 716118)
- (-1362 . 715938) (-1363 . 715767) (-1364 . 715690) (-1365 . 715616)
- (-1366 . 715461) (-1367 . 715306) (-1368 . 715120) (-1369 . 714937)
- (-1370 . 714760) (-1371 . 714703) (-1372 . 714647) (-1373 . 714591)
- (-1374 . 714517) (-1375 . 714440) (-1376 . 714409) (-1377 . 714340)
- (-1378 . 714195) (-1379 . 714086) (-1380 . 714016) (-1381 . 713942)
- (-1382 . 713868) (-1383 . 713816) (-1384 . 713764) (-1385 . 713712)
- (-1386 . 713589) (-1387 . 713267) (-1388 . 713196) (-1389 . 713115)
- (-1390 . 712994) (-1391 . 712913) (-1392 . 712832) (-1393 . 712675)
- (-1394 . 712524) (-1395 . 712446) (-1396 . 712388) (-1397 . 712315)
- (-1398 . 712250) (-1399 . 712185) (-1400 . 712123) (-1401 . 712050)
- (-1402 . 711934) (-1403 . 711882) (-1404 . 711827) (-1405 . 711775)
- (-1406 . 711723) (-1407 . 711695) (-1408 . 711667) (-1409 . 711639)
- (-1410 . 711595) (-1411 . 711524) (-1412 . 711472) (-1413 . 711423)
- (-1414 . 711371) (-1415 . 711319) (-1416 . 711203) (-1417 . 711087)
- (-1418 . 710995) (-1419 . 710903) (-1420 . 710780) (-1421 . 710714)
- (-1422 . 710648) (-1423 . 710589) (-1424 . 710561) (-1425 . 710533)
- (-1426 . 710505) (-1427 . 710477) (-1428 . 710367) (-1429 . 710315)
- (-1430 . 710263) (-1431 . 710211) (-1432 . 710159) (-1433 . 710107)
- (-1434 . 710055) (-1435 . 710027) (-1436 . 709924) (-1437 . 709872)
- (-1438 . 709706) (-1439 . 709522) (-1440 . 709311) (-1441 . 709196)
- (-1442 . 708963) (-1443 . 708864) (-1444 . 708770) (-1445 . 708655)
- (-1446 . 708257) (-1447 . 708039) (-1448 . 707990) (-1449 . 707962)
- (-1450 . 707886) (-1451 . 707787) (-1452 . 707688) (-1453 . 707589)
- (-1454 . 707490) (-1455 . 707391) (-1456 . 707292) (-1457 . 707134)
- (-1458 . 707058) (-1459 . 706891) (-1460 . 706833) (-1461 . 706775)
- (-1462 . 706466) (-1463 . 706212) (-1464 . 706128) (-1465 . 705995)
- (-1466 . 705937) (-1467 . 705885) (-1468 . 705803) (-1469 . 705728)
- (-1470 . 705657) (-1471 . 705602) (-1472 . 705550) (-1473 . 705476)
- (-1474 . 705402) (-1475 . 705321) (-1476 . 705240) (-1477 . 705185)
- (-1478 . 705111) (-1479 . 705037) (-1480 . 704963) (-1481 . 704886)
- (-1482 . 704831) (-1483 . 704772) (-1484 . 704672) (-1485 . 704572)
- (-1486 . 704472) (-1487 . 704372) (-1488 . 704272) (-1489 . 704172)
- (-1490 . 704072) (-1491 . 703957) (-1492 . 703842) (-1493 . 703727)
- (-1494 . 703612) (-1495 . 703497) (-1496 . 703382) (-1497 . 703264)
- (-1498 . 703188) (-1499 . 703112) (-1500 . 702725) (-1501 . 702379)
- (-1502 . 702277) (-1503 . 702015) (-1504 . 701913) (-1505 . 701708)
- (-1506 . 701595) (-1507 . 701493) (-1508 . 701336) (-1509 . 701247)
- (-1510 . 701153) (-1511 . 701073) (-1512 . 700999) (-1513 . 700921)
- (-1514 . 700862) (-1515 . 700803) (-1516 . 700701) (-7 . 700673) (-8 . 700645)
- (-9 . 700617) (-1520 . 700498) (-1521 . 700416) (-1522 . 700334)
- (-1523 . 700252) (-1524 . 700170) (-1525 . 700088) (-1526 . 699994)
- (-1527 . 699924) (-1528 . 699854) (-1529 . 699763) (-1530 . 699669)
- (-1531 . 699587) (-1532 . 699505) (-1533 . 699014) (-1534 . 698461)
- (-1535 . 698251) (-1536 . 698176) (-1537 . 697922) (-1538 . 697695)
- (-1539 . 697485) (-1540 . 697355) (-1541 . 697274) (-1542 . 697125)
- (-1543 . 696770) (-1544 . 696478) (-1545 . 696186) (-1546 . 695894)
- (-1547 . 695602) (-1548 . 695543) (-1549 . 695436) (-1550 . 695008)
- (-1551 . 694910) (-1552 . 694750) (-1553 . 694551) (-1554 . 694415)
- (-1555 . 694315) (-1556 . 694215) (-1557 . 694121) (-1558 . 694062)
- (-1559 . 693727) (-1560 . 693626) (-1561 . 693507) (-1562 . 693291)
- (-1563 . 693110) (-1564 . 692950) (-1565 . 692745) (-1566 . 692323)
- (-1567 . 692214) (-1568 . 692099) (-1569 . 692030) (-1570 . 691961)
- (-1571 . 691892) (-1572 . 691826) (-1573 . 691701) (-1574 . 691484)
- (-1575 . 691406) (-1576 . 691356) (-1577 . 691285) (-1578 . 691142)
- (-1579 . 691001) (-1580 . 690920) (-1581 . 690839) (-1582 . 690783)
- (-1583 . 690727) (-1584 . 690654) (-1585 . 690514) (-1586 . 690461)
- (-1587 . 690402) (-1588 . 690343) (-1589 . 690188) (-1590 . 690136)
- (-1591 . 690018) (-1592 . 689900) (-1593 . 689782) (-1594 . 689649)
- (-1595 . 689368) (-1596 . 689232) (-1597 . 689176) (-1598 . 689120)
- (-1599 . 689061) (-1600 . 689002) (-1601 . 688946) (-1602 . 688890)
- (-1603 . 688693) (-1604 . 686351) (-1605 . 686224) (-1606 . 686078)
- (-1607 . 685950) (-1608 . 685898) (-1609 . 685846) (-1610 . 685794)
- (-1611 . 681755) (-1612 . 681660) (-1613 . 681521) (-1614 . 681312)
- (-1615 . 681210) (-1616 . 681108) (-1617 . 680192) (-1618 . 680115)
- (-1619 . 679986) (-1620 . 679859) (-1621 . 679782) (-1622 . 679705)
- (-1623 . 679578) (-1624 . 679451) (-1625 . 679285) (-1626 . 679158)
- (-1627 . 679031) (-1628 . 678814) (-1629 . 678376) (-1630 . 678010)
- (-1631 . 677903) (-1632 . 677684) (-1633 . 677615) (-1634 . 677556)
- (-1635 . 677475) (-1636 . 677364) (-1637 . 677298) (-1638 . 677232)
- (-1639 . 677158) (-1640 . 677086) (-1641 . 676709) (-1642 . 676657)
- (-1643 . 676598) (-1644 . 676509) (-1645 . 676420) (-1646 . 676328)
- (-1647 . 676236) (-1648 . 676144) (-1649 . 676052) (-1650 . 675960)
- (-1651 . 675868) (-1652 . 675776) (-1653 . 675684) (-1654 . 675592)
- (-1655 . 675500) (-1656 . 675408) (-1657 . 675316) (-1658 . 675224)
- (-1659 . 675132) (-1660 . 675040) (-1661 . 674948) (-1662 . 674856)
- (-1663 . 674764) (-1664 . 674672) (-1665 . 674580) (-1666 . 674488)
- (-1667 . 674396) (-1668 . 674304) (-1669 . 674212) (-1670 . 674120)
- (-1671 . 674028) (-1672 . 673864) (-1673 . 673754) (-1674 . 673510)
- (-1675 . 673221) (-1676 . 673025) (-1677 . 672868) (-1678 . 672707)
- (-1679 . 672655) (-1680 . 672593) (-1681 . 672541) (-1682 . 672478)
- (-1683 . 672425) (-1684 . 672373) (-1685 . 672321) (-1686 . 672269)
- (-1687 . 672179) (-1688 . 671990) (-1689 . 671836) (-1690 . 671756)
- (-1691 . 671676) (-1692 . 671596) (-1693 . 671466) (-1694 . 671234)
- (-1695 . 671206) (-1696 . 671178) (-1697 . 671150) (-1698 . 671070)
- (-1699 . 670993) (-1700 . 670916) (-1701 . 670835) (-1702 . 670775)
- (-1703 . 670617) (-1704 . 670424) (-1705 . 669939) (-1706 . 669697)
- (-1707 . 669435) (-1708 . 669334) (-1709 . 669253) (-1710 . 669172)
- (-1711 . 669102) (-1712 . 669032) (-1713 . 668873) (-1714 . 668569)
- (-1715 . 668339) (-1716 . 668215) (-1717 . 668156) (-1718 . 668094)
- (-1719 . 668032) (-1720 . 667967) (-1721 . 667905) (-1722 . 667626)
- (-1723 . 667416) (-1724 . 667142) (-1725 . 666602) (-1726 . 666088)
- (-1727 . 665943) (-1728 . 665876) (-1729 . 665795) (-1730 . 665714)
- (-1731 . 665612) (-1732 . 665538) (-1733 . 665457) (-1734 . 665383)
- (-1735 . 665174) (-1736 . 664961) (-1737 . 664871) (-1738 . 664804)
- (-1739 . 664668) (-1740 . 664601) (-1741 . 664519) (-1742 . 664438)
- (-1743 . 664336) (-1744 . 664136) (-1745 . 664068) (-1746 . 663826)
- (-1747 . 663575) (-1748 . 663333) (-1749 . 663091) (-1750 . 663023)
- (-1751 . 662687) (-1752 . 661686) (-1753 . 661466) (-1754 . 661385)
- (-1755 . 661311) (-1756 . 661237) (-1757 . 661163) (-1758 . 661059)
- (-1759 . 660986) (-1760 . 660918) (-1761 . 660708) (-1762 . 660656)
- (-1763 . 660601) (-1764 . 660510) (-1765 . 660422) (-1766 . 658665)
- (-1767 . 658586) (-1768 . 657841) (-1769 . 657724) (-1770 . 657517)
- (-1771 . 657355) (-1772 . 657193) (-1773 . 657032) (-1774 . 656893)
- (-1775 . 656799) (-1776 . 656701) (-1777 . 656607) (-1778 . 656492)
- (-1779 . 656407) (-1780 . 656309) (-1781 . 656113) (-1782 . 656022)
- (-1783 . 655928) (-1784 . 655861) (-1785 . 655808) (-1786 . 655755)
- (-1787 . 655702) (-1788 . 654564) (-1789 . 654054) (-1790 . 653975)
- (-1791 . 653916) (-1792 . 653888) (-1793 . 653860) (-1794 . 653801)
- (-1795 . 653688) (-1796 . 653311) (-1797 . 653258) (-1798 . 653147)
- (-1799 . 653094) (-1800 . 653041) (-1801 . 652985) (-1802 . 652929)
- (-1803 . 652764) (-1804 . 652694) (-1805 . 652599) (-1806 . 652504)
- (-1807 . 652409) (-1808 . 652357) (-1809 . 652298) (-1810 . 652224)
- (-1811 . 652172) (-1812 . 652015) (-1813 . 651858) (-1814 . 651705)
- (-1815 . 650947) (-1816 . 650694) (-1817 . 650383) (-1818 . 650031)
- (-1819 . 649814) (-1820 . 649551) (-1821 . 649175) (-1822 . 648991)
- (-1823 . 648857) (-1824 . 648691) (-1825 . 648525) (-1826 . 648391)
- (-1827 . 648257) (-1828 . 648123) (-1829 . 647989) (-1830 . 647858)
- (-1831 . 647727) (-1832 . 647596) (-1833 . 647213) (-1834 . 647086)
- (-1835 . 646958) (-1836 . 646706) (-1837 . 646582) (-1838 . 646330)
- (-1839 . 646206) (-1840 . 645954) (-1841 . 645830) (-1842 . 645545)
- (-1843 . 645272) (-1844 . 644999) (-1845 . 644701) (-1846 . 644599)
- (-1847 . 644454) (-1848 . 644313) (-1849 . 644162) (-1850 . 644001)
- (-1851 . 643913) (-1852 . 643885) (-1853 . 643803) (-1854 . 643706)
- (-1855 . 643238) (-1856 . 642887) (-1857 . 642454) (-1858 . 642313)
- (-1859 . 642243) (-1860 . 642173) (-1861 . 642103) (-1862 . 642012)
- (-1863 . 641921) (-1864 . 641830) (-1865 . 641739) (-1866 . 641648)
- (-1867 . 641562) (-1868 . 641476) (-1869 . 641390) (-1870 . 641304)
- (-1871 . 641218) (-1872 . 641144) (-1873 . 641039) (-1874 . 640813)
- (-1875 . 640735) (-1876 . 640660) (-1877 . 640567) (-1878 . 640463)
- (-1879 . 640367) (-1880 . 640198) (-1881 . 640121) (-1882 . 640044)
- (-1883 . 639953) (-1884 . 639862) (-1885 . 639662) (-1886 . 639507)
- (-1887 . 639352) (-1888 . 639197) (-1889 . 639042) (-1890 . 638887)
- (-1891 . 638732) (-1892 . 638665) (-1893 . 638510) (-1894 . 638355)
- (-1895 . 638200) (-1896 . 638045) (-1897 . 637890) (-1898 . 637735)
- (-1899 . 637580) (-1900 . 637425) (-1901 . 637351) (-1902 . 637277)
- (-1903 . 637222) (-1904 . 637167) (-1905 . 637112) (-1906 . 637057)
- (-1907 . 636986) (-1908 . 636781) (-1909 . 636680) (-1910 . 636489)
- (-1911 . 636396) (-1912 . 636259) (-1913 . 636122) (-1914 . 635985)
- (-1915 . 635917) (-1916 . 635801) (-1917 . 635685) (-1918 . 635569)
- (-1919 . 635516) (-1920 . 635319) (-1921 . 635234) (-1922 . 634926)
- (-1923 . 634871) (-1924 . 634219) (-1925 . 633904) (-1926 . 633620)
- (-1927 . 633501) (-1928 . 633382) (-1929 . 633323) (-1930 . 633264)
- (-1931 . 633212) (-1932 . 633160) (-1933 . 633108) (-1934 . 633055)
- (-1935 . 633002) (-1936 . 632943) (-1937 . 632830) (-1938 . 632717)
- (-1939 . 632659) (-1940 . 632601) (-1941 . 632551) (-1942 . 632416)
- (-1943 . 632366) (-1944 . 632303) (-1945 . 632243) (-1946 . 631646)
- (-1947 . 631586) (-1948 . 631419) (-1949 . 631327) (-1950 . 631214)
- (-1951 . 631130) (-1952 . 631015) (-1953 . 630924) (-1954 . 630833)
- (-1955 . 630644) (-1956 . 630589) (-1957 . 630402) (-1958 . 630279)
- (-1959 . 630206) (-1960 . 630133) (-1961 . 630013) (-1962 . 629940)
- (-1963 . 629867) (-1964 . 629527) (-1965 . 629454) (-1966 . 629234)
- (-1967 . 628901) (-1968 . 628717) (-1969 . 628573) (-1970 . 628212)
- (-1971 . 628044) (-1972 . 627876) (-1973 . 627620) (-1974 . 627364)
- (-1975 . 627169) (-1976 . 626974) (-1977 . 626380) (-1978 . 626304)
- (-1979 . 626165) (-1980 . 625758) (-1981 . 625630) (-1982 . 625470)
- (-1983 . 625151) (-1984 . 624669) (-1985 . 624187) (-1986 . 623683)
- (-1987 . 623615) (-1988 . 623544) (-1989 . 623473) (-1990 . 623300)
- (-1991 . 623181) (-1992 . 623062) (-1993 . 622986) (-1994 . 622910)
- (-1995 . 622635) (-1996 . 622520) (-1997 . 622468) (-1998 . 622416)
- (-1999 . 622364) (-2000 . 622312) (-2001 . 622260) (-2002 . 622118)
- (-2003 . 621944) (-2004 . 621711) (-2005 . 621523) (-2006 . 621495)
- (-2007 . 621467) (-2008 . 621439) (-2009 . 621411) (-2010 . 621383)
- (-2011 . 621355) (-2012 . 621327) (-2013 . 621275) (-2014 . 621185)
- (-2015 . 621135) (-2016 . 621066) (-2017 . 620997) (-2018 . 620892)
- (-2019 . 620521) (-2020 . 620370) (-2021 . 620219) (-2022 . 620014)
- (-2023 . 619892) (-2024 . 619817) (-2025 . 619739) (-2026 . 619664)
- (-2027 . 619586) (-2028 . 619508) (-2029 . 619433) (-2030 . 619355)
- (-2031 . 619121) (-2032 . 618966) (-2033 . 618667) (-2034 . 618512)
- (-2035 . 618186) (-2036 . 618046) (-2037 . 617906) (-2038 . 617825)
- (-2039 . 617744) (-2040 . 617479) (-2041 . 616746) (-2042 . 616609)
- (-2043 . 616518) (-2044 . 616381) (-2045 . 616313) (-2046 . 616244)
- (-2047 . 616156) (-2048 . 616068) (-2049 . 615897) (-2050 . 615823)
- (-2051 . 615679) (-2052 . 615219) (-2053 . 614839) (-2054 . 614075)
- (-2055 . 613931) (-2056 . 613787) (-2057 . 613625) (-2058 . 613387)
- (-2059 . 613246) (-2060 . 613099) (-2061 . 612860) (-2062 . 612624)
- (-2063 . 612385) (-2064 . 612193) (-2065 . 612070) (-2066 . 611866)
- (-2067 . 611643) (-2068 . 611404) (-2069 . 611263) (-2070 . 611125)
- (-2071 . 610986) (-2072 . 610733) (-2073 . 610477) (-2074 . 610320)
- (-2075 . 610166) (-2076 . 609925) (-2077 . 609640) (-2078 . 609502)
- (-2079 . 609415) (-2080 . 608749) (-2081 . 608573) (-2082 . 608391)
- (-2083 . 608215) (-2084 . 608033) (-2085 . 607854) (-2086 . 607675)
- (-2087 . 607488) (-2088 . 607106) (-2089 . 606927) (-2090 . 606748)
- (-2091 . 606561) (-2092 . 606179) (-2093 . 605186) (-2094 . 604802)
- (-2095 . 604418) (-2096 . 604300) (-2097 . 604143) (-2098 . 604001)
- (-2099 . 603883) (-2100 . 603701) (-2101 . 603577) (-2102 . 603287)
- (-2103 . 602997) (-2104 . 602713) (-2105 . 602429) (-2106 . 602150)
- (-2107 . 602062) (-2108 . 601977) (-2109 . 601878) (-2110 . 601779)
- (-2111 . 601555) (-2112 . 601455) (-2113 . 601352) (-2114 . 601274)
- (-2115 . 600949) (-2116 . 600657) (-2117 . 600584) (-2118 . 600199)
- (-2119 . 600171) (-2120 . 599972) (-2121 . 599798) (-2122 . 599557)
- (-2123 . 599502) (-2124 . 599426) (-2125 . 599055) (-2126 . 598940)
- (-2127 . 598863) (-2128 . 598790) (-2129 . 598709) (-2130 . 598628)
- (-2131 . 598547) (-2132 . 598446) (-2133 . 598387) (-2134 . 598168)
- (-2135 . 597929) (-2136 . 597805) (-2137 . 597681) (-2138 . 597454)
- (-2139 . 597401) (-2140 . 597346) (-2141 . 597014) (-2142 . 596690)
- (-2143 . 596502) (-2144 . 596311) (-2145 . 596147) (-2146 . 595812)
- (-2147 . 595645) (-2148 . 595404) (-2149 . 595076) (-2150 . 594884)
- (-2151 . 594667) (-2152 . 594494) (-2153 . 594072) (-2154 . 593845)
- (-2155 . 593574) (-2156 . 593436) (-2157 . 593295) (-2158 . 592817)
- (-2159 . 592694) (-2160 . 592458) (-2161 . 592204) (-2162 . 591954)
- (-2163 . 591659) (-2164 . 591518) (-2165 . 591174) (-2166 . 591033)
- (-2167 . 590840) (-2168 . 590647) (-2169 . 590472) (-2170 . 590198)
- (-2171 . 589763) (-2172 . 589735) (-2173 . 589661) (-2174 . 589500)
- (-2175 . 589337) (-2176 . 589176) (-2177 . 589009) (-2178 . 588956)
- (-2179 . 588903) (-2180 . 588774) (-2181 . 588714) (-2182 . 588661)
- (-2183 . 588591) (-2184 . 588531) (-2185 . 588472) (-2186 . 588412)
- (-2187 . 588353) (-2188 . 588293) (-2189 . 588234) (-2190 . 588175)
- (-2191 . 588033) (-2192 . 587938) (-2193 . 587847) (-2194 . 587731)
- (-2195 . 587637) (-2196 . 587539) (-2197 . 587445) (-2198 . 587304)
- (-2199 . 587039) (-2200 . 586182) (-2201 . 586026) (-2202 . 585657)
- (-2203 . 585601) (-2204 . 585549) (-2205 . 585446) (-2206 . 585361)
- (-2207 . 585273) (-2208 . 585127) (-2209 . 584978) (-2210 . 584688)
- (-2211 . 584610) (-2212 . 584535) (-2213 . 584482) (-2214 . 584429)
- (-2215 . 584398) (-2216 . 584335) (-2217 . 584216) (-2218 . 584127)
- (-2219 . 584007) (-2220 . 583712) (-2221 . 583518) (-2222 . 583330)
- (-2223 . 583185) (-2224 . 583040) (-2225 . 582754) (-2226 . 582309)
- (-2227 . 582275) (-2228 . 582238) (-2229 . 582201) (-2230 . 582164)
- (-2231 . 582127) (-2232 . 582096) (-2233 . 582065) (-2234 . 582034)
- (-2235 . 582000) (-2236 . 581966) (-2237 . 581911) (-2238 . 581735)
- (-2239 . 581500) (-2240 . 581265) (-2241 . 581035) (-2242 . 580983)
- (-2243 . 580928) (-2244 . 580858) (-2245 . 580769) (-2246 . 580700)
- (-2247 . 580628) (-2248 . 580398) (-2249 . 580346) (-2250 . 580291)
- (-2251 . 580260) (-2252 . 580154) (-2253 . 579928) (-2254 . 579617)
- (-2255 . 579442) (-2256 . 579259) (-2257 . 578987) (-2258 . 578914)
- (-2259 . 578849) (-2260 . 578821) (-2261 . 578771) (-2262 . 577348)
- (-2263 . 576200) (-2264 . 575062) (-2265 . 574584) (-2266 . 574020)
- (-2267 . 573292) (-2268 . 572729) (-2269 . 572099) (-2270 . 571520)
- (-2271 . 571446) (-2272 . 571394) (-2273 . 571342) (-2274 . 571268)
- (-2275 . 571213) (-2276 . 571161) (-2277 . 571109) (-2278 . 571057)
- (-2279 . 570987) (-2280 . 570539) (-2281 . 570332) (-2282 . 570082)
- (-2283 . 569747) (-2284 . 569492) (-2285 . 569189) (-2286 . 568985)
- (-2287 . 568695) (-2288 . 568145) (-2289 . 568007) (-2290 . 567804)
- (-2291 . 567523) (-2292 . 567437) (-2293 . 567102) (-2294 . 566960)
- (-2295 . 566668) (-2296 . 566447) (-2297 . 566321) (-2298 . 566196)
- (-2299 . 566049) (-2300 . 565905) (-2301 . 565789) (-2302 . 565658)
- (-2303 . 565285) (-2304 . 565025) (-2305 . 564750) (-2306 . 564510)
- (-2307 . 564180) (-2308 . 563835) (-2309 . 563427) (-2310 . 563004)
- (-2311 . 562807) (-2312 . 562532) (-2313 . 562364) (-2314 . 562163)
- (-2315 . 561941) (-2316 . 561786) (-2317 . 561600) (-2318 . 561497)
- (-2319 . 561469) (-2320 . 561290) (-2321 . 561216) (-2322 . 561155)
- (-2323 . 561102) (-2324 . 561033) (-2325 . 560963) (-2326 . 560844)
- (-2327 . 560666) (-2328 . 560611) (-2329 . 560365) (-2330 . 560292)
- (-2331 . 560222) (-2332 . 560152) (-2333 . 560062) (-2334 . 559872)
- (-2335 . 559799) (-2336 . 559729) (-2337 . 559664) (-2338 . 559609)
- (-2339 . 559518) (-2340 . 559225) (-2341 . 558897) (-2342 . 558823)
- (-2343 . 558501) (-2344 . 558294) (-2345 . 558208) (-2346 . 558122)
- (-2347 . 558036) (-2348 . 557950) (-2349 . 557864) (-2350 . 557778)
- (-2351 . 557692) (-2352 . 557606) (-2353 . 557520) (-2354 . 557434)
- (-2355 . 557348) (-2356 . 557262) (-2357 . 557176) (-2358 . 557090)
- (-2359 . 557004) (-2360 . 556918) (-2361 . 556832) (-2362 . 556746)
- (-2363 . 556660) (-2364 . 556574) (-2365 . 556488) (-2366 . 556402)
- (-2367 . 556316) (-2368 . 556230) (-2369 . 556144) (-2370 . 556058)
- (-2371 . 555955) (-2372 . 555866) (-2373 . 555656) (-2374 . 555597)
- (-2375 . 555541) (-2376 . 555452) (-2377 . 555340) (-2378 . 555252)
- (-2379 . 555104) (-2380 . 555042) (-2381 . 555014) (-2382 . 554986)
- (-2383 . 554958) (-2384 . 554930) (-2385 . 554759) (-2386 . 554606)
- (-2387 . 554453) (-2388 . 554279) (-2389 . 554069) (-2390 . 553945)
- (-2391 . 553737) (-2392 . 553645) (-2393 . 553553) (-2394 . 553417)
- (-2395 . 553322) (-2396 . 553227) (-2397 . 551711) (-2398 . 551587)
- (-2399 . 551497) (-2400 . 551402) (-2401 . 551320) (-2402 . 551011)
- (-2403 . 550815) (-2404 . 550720) (-2405 . 550612) (-2406 . 550194)
- (-2407 . 550166) (-2408 . 550001) (-2409 . 549924) (-2410 . 549735)
- (-2411 . 549555) (-2412 . 549131) (-2413 . 548979) (-2414 . 548799)
- (-2415 . 548626) (-2416 . 548364) (-2417 . 548112) (-2418 . 547301)
- (-2419 . 547132) (-2420 . 546913) (-2421 . 546071) (-2422 . 545939)
- (-2423 . 545807) (-2424 . 545675) (-2425 . 545543) (-2426 . 545411)
- (-2427 . 545279) (-2428 . 545084) (-2429 . 544890) (-2430 . 544747)
- (-2431 . 544432) (-2432 . 544317) (-2433 . 543977) (-2434 . 543817)
- (-2435 . 543678) (-2436 . 543539) (-2437 . 543410) (-2438 . 543325)
- (-2439 . 543273) (-2440 . 542792) (-2441 . 541528) (-2442 . 541413)
- (-2443 . 541284) (-2444 . 540977) (-2445 . 540726) (-2446 . 540651)
- (-2447 . 540576) (-2448 . 540501) (-2449 . 540442) (-2450 . 540371)
- (-2451 . 540318) (-2452 . 540256) (-2453 . 540185) (-2454 . 539822)
- (-2455 . 539535) (-2456 . 539424) (-2457 . 539331) (-2458 . 539238)
- (-2459 . 539151) (-2460 . 538931) (-2461 . 538711) (-2462 . 538293)
- (-2463 . 538021) (-2464 . 537878) (-2465 . 537785) (-2466 . 537642)
- (-2467 . 537490) (-2468 . 537336) (-2469 . 537265) (-2470 . 537056)
- (-2471 . 536878) (-2472 . 536668) (-2473 . 536490) (-2474 . 536456)
- (-2475 . 536422) (-2476 . 536391) (-2477 . 536273) (-2478 . 535958)
- (-2479 . 535680) (-2480 . 535559) (-2481 . 535432) (-2482 . 535347)
- (-2483 . 535274) (-2484 . 535184) (-2485 . 535113) (-2486 . 535057)
- (-2487 . 535001) (-2488 . 534945) (-2489 . 534874) (-2490 . 534803)
- (-2491 . 534732) (-2492 . 534653) (-2493 . 534575) (-2494 . 534490)
- (-2495 . 534230) (-2496 . 534141) (-2497 . 533843) (-2498 . 533745)
- (-2499 . 533667) (-2500 . 533589) (-2501 . 533446) (-2502 . 533367)
- (-2503 . 533295) (-2504 . 533092) (-2505 . 533036) (-2506 . 532848)
- (-2507 . 532749) (-2508 . 532631) (-2509 . 532510) (-2510 . 532367)
- (-2511 . 532224) (-2512 . 532084) (-2513 . 531944) (-2514 . 531801)
- (-2515 . 531674) (-2516 . 531544) (-2517 . 531420) (-2518 . 531296)
- (-2519 . 531190) (-2520 . 531084) (-2521 . 530981) (-2522 . 530831)
- (-2523 . 530678) (-2524 . 530525) (-2525 . 530381) (-2526 . 530227)
- (-2527 . 530150) (-2528 . 530070) (-2529 . 529915) (-2530 . 529835)
- (-2531 . 529755) (-2532 . 529675) (-2533 . 529572) (-2534 . 529513)
- (-2535 . 529451) (-2536 . 529276) (-2537 . 529123) (-2538 . 528970)
- (-2539 . 528796) (-2540 . 528604) (-2541 . 528305) (-2542 . 528110)
- (-2543 . 527995) (-2544 . 527869) (-2545 . 527792) (-2546 . 527660)
- (-2547 . 527354) (-2548 . 527171) (-2549 . 526626) (-2550 . 526406)
- (-2551 . 526232) (-2552 . 526062) (-2553 . 525963) (-2554 . 525864)
- (-2555 . 525646) (-2556 . 525544) (-2557 . 525471) (-2558 . 525395)
- (-2559 . 525316) (-2560 . 525019) (-2561 . 524920) (-2562 . 524758)
- (-2563 . 524524) (-2564 . 524082) (-2565 . 523952) (-2566 . 523812)
- (-2567 . 523503) (-2568 . 523201) (-2569 . 522885) (-2570 . 522479)
- (-2571 . 522411) (-2572 . 522343) (-2573 . 522275) (-2574 . 522180)
- (-2575 . 522072) (-2576 . 521964) (-2577 . 521862) (-2578 . 521760)
- (-2579 . 521658) (-2580 . 521580) (-2581 . 521256) (-2582 . 520788)
- (-2583 . 520161) (-2584 . 520097) (-2585 . 519978) (-2586 . 519859)
- (-2587 . 519751) (-2588 . 519643) (-2589 . 519487) (-2590 . 518885)
- (-2591 . 518598) (-2592 . 518430) (-2593 . 518308) (-2594 . 517910)
- (-2595 . 517674) (-2596 . 517473) (-2597 . 517265) (-2598 . 517072)
- (-2599 . 516802) (-2600 . 516623) (-2601 . 516554) (-2602 . 516478)
- (-2603 . 516337) (-2604 . 516134) (-2605 . 515990) (-2606 . 515740)
- (-2607 . 515432) (-2608 . 515076) (-2609 . 514917) (-2610 . 514711)
- (-2611 . 514551) (-2612 . 514478) (-2613 . 514359) (-2614 . 514240)
- (-2615 . 514080) (-2616 . 513900) (-2617 . 513717) (-2618 . 513619)
- (-2619 . 513521) (-2620 . 513420) (-2621 . 513316) (-2622 . 513190)
- (-2623 . 513064) (-2624 . 512935) (-2625 . 512803) (-2626 . 512705)
- (-2627 . 512607) (-2628 . 512506) (-2629 . 512405) (-2630 . 512239)
- (-2631 . 512073) (-2632 . 511879) (-2633 . 511713) (-2634 . 511545)
- (-2635 . 511374) (-2636 . 511209) (-2637 . 511044) (-2638 . 510944)
- (-2639 . 510752) (-2640 . 510651) (-2641 . 510456) (-2642 . 510206)
- (-2643 . 509961) (-2644 . 509639) (-2645 . 509251) (-2646 . 509050)
- (-2647 . 508786) (-2648 . 508243) (-2649 . 507949) (-2650 . 507812)
- (-2651 . 507566) (-2652 . 507362) (-2653 . 507255) (-2654 . 507154)
- (-2655 . 507044) (-2656 . 506934) (-2657 . 506806) (-2658 . 506699)
- (-2659 . 506595) (-2660 . 506439) (-2661 . 506305) (-2662 . 506171)
- (-2663 . 506061) (-2664 . 505942) (-2665 . 505765) (-2666 . 505631)
- (-2667 . 505494) (-2668 . 505363) (-2669 . 505253) (-2670 . 505131)
- (-2671 . 505006) (-2672 . 504905) (-2673 . 504721) (-2674 . 504547)
- (-2675 . 504348) (-2676 . 504174) (-2677 . 504058) (-2678 . 503933)
- (-2679 . 503805) (-2680 . 503686) (-2681 . 503461) (-2682 . 503290)
- (-2683 . 503119) (-2684 . 502942) (-2685 . 502790) (-2686 . 502513)
- (-2687 . 502121) (-2688 . 501990) (-2689 . 501785) (-2690 . 501602)
- (-2691 . 501418) (-2692 . 501289) (-2693 . 501185) (-2694 . 501044)
- (-2695 . 500912) (-2696 . 500798) (-2697 . 500650) (-2698 . 500511)
- (-2699 . 500410) (-2700 . 500306) (-2701 . 500199) (-2702 . 500089)
- (-2703 . 499988) (-2704 . 499881) (-2705 . 499774) (-2706 . 499661)
- (-2707 . 499554) (-2708 . 499441) (-2709 . 499310) (-2710 . 499161)
- (-2711 . 498623) (-2712 . 498480) (-2713 . 498330) (-2714 . 498207)
- (-2715 . 498103) (-2716 . 497999) (-2717 . 497892) (-2718 . 497754)
- (-2719 . 497647) (-2720 . 497516) (-2721 . 497360) (-2722 . 497087)
- (-2723 . 496940) (-2724 . 496737) (-2725 . 496636) (-2726 . 496482)
- (-2727 . 496362) (-2728 . 496233) (-2729 . 496138) (-2730 . 496050)
- (-2731 . 495962) (-2732 . 495874) (-2733 . 495786) (-2734 . 495698)
- (-2735 . 495604) (-2736 . 495516) (-2737 . 495428) (-2738 . 495340)
- (-2739 . 495252) (-2740 . 495164) (-2741 . 495076) (-2742 . 494988)
- (-2743 . 494900) (-2744 . 494812) (-2745 . 494724) (-2746 . 494586)
- (-2747 . 494448) (-2748 . 494328) (-2749 . 494208) (-2750 . 494067)
- (-2751 . 493979) (-2752 . 493891) (-2753 . 493803) (-2754 . 493715)
- (-2755 . 493577) (-2756 . 493439) (-2757 . 493351) (-2758 . 493263)
- (-2759 . 493175) (-2760 . 493087) (-2761 . 492999) (-2762 . 492911)
- (-2763 . 492820) (-2764 . 492726) (-2765 . 492632) (-2766 . 492535)
- (-2767 . 492485) (-2768 . 492435) (-2769 . 492382) (-2770 . 492128)
- (-2771 . 492079) (-2772 . 492029) (-2773 . 491995) (-2774 . 491930)
- (-2775 . 491893) (-2776 . 491756) (-2777 . 491518) (-2778 . 491447)
- (-2779 . 491261) (-2780 . 491012) (-2781 . 490854) (-2782 . 490327)
- (-2783 . 490128) (-2784 . 489913) (-2785 . 489751) (-2786 . 489352)
- (-2787 . 489185) (-2788 . 488110) (-2789 . 487987) (-2790 . 487770)
- (-2791 . 487639) (-2792 . 487508) (-2793 . 487350) (-2794 . 487246)
- (-2795 . 487187) (-2796 . 487128) (-2797 . 487022) (-2798 . 486916)
- (-2799 . 485998) (-2800 . 483869) (-2801 . 483053) (-2802 . 481248)
- (-2803 . 481180) (-2804 . 481112) (-2805 . 481044) (-2806 . 480976)
- (-2807 . 480908) (-2808 . 480830) (-2809 . 480428) (-2810 . 480072)
- (-2811 . 479890) (-2812 . 479361) (-2813 . 479185) (-2814 . 478963)
- (-2815 . 478741) (-2816 . 478519) (-2817 . 478300) (-2818 . 478081)
- (-2819 . 477862) (-2820 . 477643) (-2821 . 477424) (-2822 . 477205)
- (-2823 . 477104) (-2824 . 476371) (-2825 . 476316) (-2826 . 476261)
- (-2827 . 476206) (-2828 . 476151) (-2829 . 476000) (-2830 . 475707)
- (-2831 . 475458) (-2832 . 475430) (-2833 . 475380) (-2834 . 474788)
- (-2835 . 474254) (-2836 . 473805) (-2837 . 473643) (-2838 . 473462)
- (-2839 . 473173) (-2840 . 472785) (-2841 . 471909) (-2842 . 471567)
- (-2843 . 471398) (-2844 . 471175) (-2845 . 470924) (-2846 . 470574)
- (-2847 . 469556) (-2848 . 469241) (-2849 . 469029) (-2850 . 468462)
- (-2851 . 467946) (-2852 . 466168) (-2853 . 465696) (-2854 . 465097)
- (-2855 . 464847) (-2856 . 464713) (-2857 . 464498) (-2858 . 464445)
- (-2859 . 464392) (-2860 . 464340) (-2861 . 464288) (-2862 . 464196)
- (-2863 . 464125) (-2864 . 464051) (-2865 . 463980) (-2866 . 463927)
- (-2867 . 463856) (-2868 . 463803) (-2869 . 463750) (-2870 . 463697)
- (-2871 . 463644) (-2872 . 463591) (-2873 . 463538) (-2874 . 463485)
- (-2875 . 463432) (-2876 . 463379) (-2877 . 463326) (-2878 . 463273)
- (-2879 . 463220) (-2880 . 463167) (-2881 . 463114) (-2882 . 463043)
- (-2883 . 462972) (-2884 . 462900) (-2885 . 462828) (-2886 . 462753)
- (-2887 . 462700) (-2888 . 462647) (-2889 . 462594) (-2890 . 462541)
- (-2891 . 462488) (-2892 . 462435) (-2893 . 462382) (-2894 . 462329)
- (-2895 . 462276) (-2896 . 462223) (-2897 . 462170) (-2898 . 462117)
- (-2899 . 462064) (-2900 . 462011) (-2901 . 461959) (-2902 . 461907)
- (-2903 . 461854) (-2904 . 461801) (-2905 . 461710) (-2906 . 461657)
- (-2907 . 461629) (-2908 . 461601) (-2909 . 461573) (-2910 . 461545)
- (-2911 . 461467) (-2912 . 461407) (-2913 . 461355) (-2914 . 461303)
- (-2915 . 461251) (-2916 . 461199) (-2917 . 461147) (-2918 . 460371)
- (-2919 . 460294) (-2920 . 460217) (-2921 . 460151) (-2922 . 460084)
- (-2923 . 460017) (-2924 . 459960) (-2925 . 459884) (-2926 . 459816)
- (-2927 . 459745) (-2928 . 459674) (-2929 . 459608) (-2930 . 459521)
- (-2931 . 459449) (-2932 . 459342) (-2933 . 459156) (-2934 . 458987)
- (-2935 . 458807) (-2936 . 458216) (-2937 . 458053) (-2938 . 457475)
- (-2939 . 457405) (-2940 . 457330) (-2941 . 456964) (-2942 . 456285)
- (-2943 . 456107) (-2944 . 456035) (-2945 . 455895) (-2946 . 455705)
- (-2947 . 455598) (-2948 . 455491) (-2949 . 455375) (-2950 . 455259)
- (-2951 . 455143) (-2952 . 454865) (-2953 . 454714) (-2954 . 454570)
- (-2955 . 454496) (-2956 . 454410) (-2957 . 454336) (-2958 . 454262)
- (-2959 . 454188) (-2960 . 454044) (-2961 . 453893) (-2962 . 453718)
- (-2963 . 453567) (-2964 . 453416) (-2965 . 453289) (-2966 . 452900)
- (-2967 . 452614) (-2968 . 452328) (-2969 . 451917) (-2970 . 451631)
- (-2971 . 451558) (-2972 . 451411) (-2973 . 451305) (-2974 . 451231)
- (-2975 . 451161) (-2976 . 451082) (-2977 . 451005) (-2978 . 450928)
- (-2979 . 450776) (-2980 . 450673) (-2981 . 450576) (-2982 . 450479)
- (-2983 . 450319) (-2984 . 450232) (-2985 . 450145) (-2986 . 450058)
- (-2987 . 449999) (-2988 . 449940) (-2989 . 449807) (-2990 . 449748)
- (-2991 . 449578) (-2992 . 449490) (-2993 . 449393) (-2994 . 449359)
- (-2995 . 449328) (-2996 . 449244) (-2997 . 449188) (-2998 . 449126)
- (-2999 . 449092) (-3000 . 449058) (-3001 . 449024) (-3002 . 448990)
- (-3003 . 448956) (-3004 . 446203) (-3005 . 446169) (-3006 . 446135)
- (-3007 . 446101) (-3008 . 445989) (-3009 . 445955) (-3010 . 445903)
- (-3011 . 445869) (-3012 . 445772) (-3013 . 445710) (-3014 . 445619)
- (-3015 . 445528) (-3016 . 445473) (-3017 . 445421) (-3018 . 445369)
- (-3019 . 445317) (-3020 . 445265) (-3021 . 444840) (-3022 . 444674)
- (-3023 . 444621) (-3024 . 444552) (-3025 . 444499) (-3026 . 444269)
- (-3027 . 444113) (-3028 . 443592) (-3029 . 443451) (-3030 . 443417)
- (-3031 . 443362) (-3032 . 442651) (-3033 . 442336) (-3034 . 441831)
- (-3035 . 441753) (-3036 . 441701) (-3037 . 441649) (-3038 . 441465)
- (-3039 . 441413) (-3040 . 441361) (-3041 . 441285) (-3042 . 441223)
- (-3043 . 441005) (-3044 . 440750) (-3045 . 440683) (-3046 . 440589)
- (-3047 . 440495) (-3048 . 440312) (-3049 . 440230) (-3050 . 440108)
- (-3051 . 439986) (-3052 . 439840) (-3053 . 439180) (-3054 . 438473)
- (-3055 . 438369) (-3056 . 438268) (-3057 . 438167) (-3058 . 438056)
- (-3059 . 437888) (-3060 . 437682) (-3061 . 437589) (-3062 . 437512)
- (-3063 . 437456) (-3064 . 437385) (-3065 . 437265) (-3066 . 437164)
- (-3067 . 437066) (-3068 . 436986) (-3069 . 436906) (-3070 . 436829)
- (-3071 . 436758) (-3072 . 436687) (-3073 . 436616) (-3074 . 436545)
- (-3075 . 436474) (-3076 . 436403) (-3077 . 436310) (-3078 . 436115)
- (-3079 . 435871) (-3080 . 435499) (-3081 . 435330) (-3082 . 435214)
- (-3083 . 434710) (-3084 . 434328) (-3085 . 434082) (-3086 . 433653)
- (-3087 . 433561) (-3088 . 433464) (-3089 . 430174) (-3090 . 429354)
- (-3091 . 429241) (-3092 . 429167) (-3093 . 429075) (-3094 . 428881)
- (-3095 . 428687) (-3096 . 428616) (-3097 . 428545) (-3098 . 428464)
- (-3099 . 428383) (-3100 . 428258) (-3101 . 428124) (-3102 . 428043)
- (-3103 . 427969) (-3104 . 427804) (-3105 . 427645) (-3106 . 427414)
- (-3107 . 427266) (-3108 . 427162) (-3109 . 427058) (-3110 . 426973)
- (-3111 . 426605) (-3112 . 426524) (-3113 . 426437) (-3114 . 426356)
- (-3115 . 426110) (-3116 . 425890) (-3117 . 425703) (-3118 . 425381)
- (-3119 . 425088) (-3120 . 424795) (-3121 . 424485) (-3122 . 424168)
- (-3123 . 424039) (-3124 . 423851) (-3125 . 423378) (-3126 . 423296)
- (-3127 . 423080) (-3128 . 422864) (-3129 . 422605) (-3130 . 422181)
- (-3131 . 421667) (-3132 . 421537) (-3133 . 421263) (-3134 . 421084)
- (-3135 . 420969) (-3136 . 420865) (-3137 . 420810) (-3138 . 420733)
- (-3139 . 420663) (-3140 . 420590) (-3141 . 420535) (-3142 . 420462)
- (-3143 . 420407) (-3144 . 420052) (-3145 . 419644) (-3146 . 419491)
- (-3147 . 419338) (-3148 . 419257) (-3149 . 419104) (-3150 . 418951)
- (-3151 . 418816) (-3152 . 418681) (-3153 . 418546) (-3154 . 418411)
- (-3155 . 418276) (-3156 . 418141) (-3157 . 418085) (-3158 . 417932)
- (-3159 . 417821) (-3160 . 417710) (-3161 . 417642) (-3162 . 417532)
- (-3163 . 417429) (-3164 . 413278) (-3165 . 412830) (-3166 . 412403)
- (-3167 . 411786) (-3168 . 411185) (-3169 . 410967) (-3170 . 410789)
- (-3171 . 410529) (-3172 . 410118) (-3173 . 409824) (-3174 . 409381)
- (-3175 . 409203) (-3176 . 408810) (-3177 . 408417) (-3178 . 408232)
- (-3179 . 408025) (-3180 . 407804) (-3181 . 407498) (-3182 . 407299)
- (-3183 . 406670) (-3184 . 406513) (-3185 . 406122) (-3186 . 406070)
- (-3187 . 406021) (-3188 . 405969) (-3189 . 405920) (-3190 . 405868)
- (-3191 . 405722) (-3192 . 405670) (-3193 . 405524) (-3194 . 405472)
- (-3195 . 405326) (-3196 . 405274) (-3197 . 404899) (-3198 . 404847)
- (-3199 . 404798) (-3200 . 404746) (-3201 . 404697) (-3202 . 404645)
- (-3203 . 404596) (-3204 . 404544) (-3205 . 404495) (-3206 . 404443)
- (-3207 . 404394) (-3208 . 404328) (-3209 . 404210) (-3210 . 403048)
- (-3211 . 402631) (-3212 . 402523) (-3213 . 402280) (-3214 . 402130)
- (-3215 . 401980) (-3216 . 401813) (-3217 . 399598) (-3218 . 399334)
- (-3219 . 399180) (-3220 . 399034) (-3221 . 398888) (-3222 . 398669)
- (-3223 . 398537) (-3224 . 398462) (-3225 . 398387) (-3226 . 398252)
- (-3227 . 398122) (-3228 . 397992) (-3229 . 397865) (-3230 . 397738)
- (-3231 . 397611) (-3232 . 397484) (-3233 . 397381) (-3234 . 397281)
- (-3235 . 397187) (-3236 . 397057) (-3237 . 396906) (-3238 . 396527)
- (-3239 . 396412) (-3240 . 396169) (-3241 . 395706) (-3242 . 395393)
- (-3243 . 394824) (-3244 . 394253) (-3245 . 393238) (-3246 . 392694)
- (-3247 . 392381) (-3248 . 392043) (-3249 . 391712) (-3250 . 391392)
- (-3251 . 391339) (-3252 . 391212) (-3253 . 390707) (-3254 . 389564)
- (-3255 . 389509) (-3256 . 389454) (-3257 . 389378) (-3258 . 389259)
- (-3259 . 389184) (-3260 . 389109) (-3261 . 389031) (-3262 . 388806)
- (-3263 . 388747) (-3264 . 388688) (-3265 . 388585) (-3266 . 388482)
- (-3267 . 388379) (-3268 . 388276) (-3269 . 388195) (-3270 . 388121)
- (-3271 . 388087) (-3272 . 388053) (-3273 . 387956) (-3274 . 387859)
- (-3275 . 387831) (-3276 . 387803) (-3277 . 387585) (-3278 . 387307)
- (-3279 . 387157) (-3280 . 387027) (-3281 . 386897) (-3282 . 386797)
- (-3283 . 386620) (-3284 . 386460) (-3285 . 386360) (-3286 . 386183)
- (-3287 . 386023) (-3288 . 385864) (-3289 . 385725) (-3290 . 385575)
- (-3291 . 385445) (-3292 . 385315) (-3293 . 385168) (-3294 . 385041)
- (-3295 . 384938) (-3296 . 384831) (-3297 . 384734) (-3298 . 384569)
- (-3299 . 384421) (-3300 . 384006) (-3301 . 383906) (-3302 . 383803)
- (-3303 . 383715) (-3304 . 383635) (-3305 . 383485) (-3306 . 383355)
- (-3307 . 383303) (-3308 . 383213) (-3309 . 383101) (-3310 . 382788)
- (-3311 . 382607) (-3312 . 380996) (-3313 . 380363) (-3314 . 380303)
- (-3315 . 380185) (-3316 . 380067) (-3317 . 379923) (-3318 . 379768)
- (-3319 . 379607) (-3320 . 379446) (-3321 . 379238) (-3322 . 379049)
- (-3323 . 378894) (-3324 . 378736) (-3325 . 378578) (-3326 . 378423)
- (-3327 . 378283) (-3328 . 377857) (-3329 . 377729) (-3330 . 377601)
- (-3331 . 377473) (-3332 . 377330) (-3333 . 377187) (-3334 . 377045)
- (-3335 . 376900) (-3336 . 376147) (-3337 . 375987) (-3338 . 375799)
- (-3339 . 375642) (-3340 . 375402) (-3341 . 375155) (-3342 . 374908)
- (-3343 . 374697) (-3344 . 374558) (-3345 . 374347) (-3346 . 374057)
- (-3347 . 373846) (-3348 . 373707) (-3349 . 373496) (-3350 . 373190)
- (-3351 . 373045) (-3352 . 372903) (-3353 . 372679) (-3354 . 372537)
- (-3355 . 372312) (-3356 . 372113) (-3357 . 371956) (-3358 . 371626)
- (-3359 . 371466) (-3360 . 371306) (-3361 . 371146) (-3362 . 370974)
- (-3363 . 370802) (-3364 . 370627) (-3365 . 370275) (-3366 . 370081)
- (-3367 . 369919) (-3368 . 369845) (-3369 . 369771) (-3370 . 369697)
- (-3371 . 369623) (-3372 . 369549) (-3373 . 369475) (-3374 . 369351)
- (-3375 . 369177) (-3376 . 369053) (-3377 . 368967) (-3378 . 368901)
- (-3379 . 368835) (-3380 . 368769) (-3381 . 368703) (-3382 . 368637)
- (-3383 . 368571) (-3384 . 368505) (-3385 . 368439) (-3386 . 368373)
- (-3387 . 368307) (-3388 . 368241) (-3389 . 368175) (-3390 . 368109)
- (-3391 . 368043) (-3392 . 367977) (-3393 . 367911) (-3394 . 367845)
- (-3395 . 367779) (-3396 . 367713) (-3397 . 367647) (-3398 . 367581)
- (-3399 . 367515) (-3400 . 367449) (-3401 . 367383) (-3402 . 367317)
- (-3403 . 367251) (-3404 . 366602) (-3405 . 365953) (-3406 . 365825)
- (-3407 . 365702) (-3408 . 365579) (-3409 . 365438) (-3410 . 365283)
- (-3411 . 365139) (-3412 . 364964) (-3413 . 364354) (-3414 . 364230)
- (-3415 . 364105) (-3416 . 363426) (-3417 . 362727) (-3418 . 362626)
- (-3419 . 362569) (-3420 . 362512) (-3421 . 362455) (-3422 . 362398)
- (-3423 . 362338) (-3424 . 362273) (-3425 . 362164) (-3426 . 362055)
- (-3427 . 361946) (-3428 . 361666) (-3429 . 361591) (-3430 . 361364)
- (-3431 . 361282) (-3432 . 361203) (-3433 . 361124) (-3434 . 361045)
- (-3435 . 360965) (-3436 . 360886) (-3437 . 360792) (-3438 . 360691)
- (-3439 . 360622) (-3440 . 360572) (-3441 . 359878) (-3442 . 359227)
- (-3443 . 358433) (-3444 . 358351) (-3445 . 358246) (-3446 . 358153)
- (-3447 . 358060) (-3448 . 357985) (-3449 . 357910) (-3450 . 357835)
- (-3451 . 357779) (-3452 . 357723) (-3453 . 357656) (-3454 . 357589)
- (-3455 . 357526) (-3456 . 357134) (-3457 . 356639) (-3458 . 356179)
- (-3459 . 355924) (-3460 . 355733) (-3461 . 355389) (-3462 . 355091)
- (-3463 . 354921) (-3464 . 354789) (-3465 . 354648) (-3466 . 353565)
- (-3467 . 353409) (-3468 . 353239) (-3469 . 351845) (-3470 . 351707)
- (-3471 . 351561) (-3472 . 351330) (-3473 . 351060) (-3474 . 351000)
- (-3475 . 350943) (-3476 . 350886) (-3477 . 350673) (-3478 . 350533)
- (-3479 . 350425) (-3480 . 350307) (-3481 . 350240) (-3482 . 350166)
- (-3483 . 350051) (-3484 . 349794) (-3485 . 349692) (-3486 . 349494)
- (-3487 . 349178) (-3488 . 348704) (-3489 . 348597) (-3490 . 348489)
- (-3491 . 348338) (-3492 . 348196) (-3493 . 347777) (-3494 . 347527)
- (-3495 . 346850) (-3496 . 346695) (-3497 . 346580) (-3498 . 346469)
- (-3499 . 345646) (-3500 . 345593) (-3501 . 345540) (-3502 . 345344)
- (-3503 . 344065) (-3504 . 343614) (-3505 . 342218) (-3506 . 341362)
- (-3507 . 341312) (-3508 . 341262) (-3509 . 341212) (-3510 . 341144)
- (-3511 . 341068) (-3512 . 340877) (-3513 . 340804) (-3514 . 340728)
- (-3515 . 340655) (-3516 . 340537) (-3517 . 340485) (-3518 . 340405)
- (-3519 . 340325) (-3520 . 340245) (-3521 . 340193) (-3522 . 339946)
- (-3523 . 339643) (-3524 . 339558) (-3525 . 339473) (-3526 . 339411)
- (-3527 . 339021) (-3528 . 338748) (-3529 . 337873) (-3530 . 337297)
- (-3531 . 336059) (-3532 . 335249) (-3533 . 334997) (-3534 . 334745)
- (-3535 . 334318) (-3536 . 334072) (-3537 . 333826) (-3538 . 333580)
- (-3539 . 333334) (-3540 . 333088) (-3541 . 332842) (-3542 . 332595)
- (-3543 . 332348) (-3544 . 332101) (-3545 . 331854) (-3546 . 331424)
- (-3547 . 331306) (-3548 . 330457) (-3549 . 330425) (-3550 . 330077)
- (-3551 . 329850) (-3552 . 329750) (-3553 . 329650) (-3554 . 327879)
- (-3555 . 327765) (-3556 . 326710) (-3557 . 326617) (-3558 . 325693)
- (-3559 . 325358) (-3560 . 325023) (-3561 . 324918) (-3562 . 324831)
- (-3563 . 324802) (-3564 . 324745) (-3565 . 324665) (-3566 . 324593)
- (-3567 . 324518) (-3568 . 324443) (-3569 . 324411) (-3570 . 324379)
- (-3571 . 324347) (-3572 . 324315) (-3573 . 324283) (-3574 . 324251)
- (-3575 . 324219) (-3576 . 324187) (-3577 . 324158) (-3578 . 324045)
- (-3579 . 323932) (-3580 . 323819) (-3581 . 323706) (-3582 . 322617)
- (-3583 . 322495) (-3584 . 322358) (-3585 . 322224) (-3586 . 322090)
- (-3587 . 321793) (-3588 . 321496) (-3589 . 321148) (-3590 . 320918)
- (-3591 . 320688) (-3592 . 320575) (-3593 . 320462) (-3594 . 315181)
- (-3595 . 310808) (-3596 . 310496) (-3597 . 310341) (-3598 . 309813)
- (-3599 . 309480) (-3600 . 309283) (-3601 . 309086) (-3602 . 308889)
- (-3603 . 308692) (-3604 . 308576) (-3605 . 308450) (-3606 . 308334)
- (-3607 . 308218) (-3608 . 308123) (-3609 . 308028) (-3610 . 307915)
- (-3611 . 307709) (-3612 . 306552) (-3613 . 306457) (-3614 . 306341)
- (-3615 . 306246) (-3616 . 305997) (-3617 . 305884) (-3618 . 305666)
- (-3619 . 305547) (-3620 . 305246) (-3621 . 304515) (-3622 . 303932)
- (-3623 . 303451) (-3624 . 303203) (-3625 . 302955) (-3626 . 302468)
- (-3627 . 301854) (-3628 . 301406) (-3629 . 301249) (-3630 . 301103)
- (-3631 . 300777) (-3632 . 300619) (-3633 . 300476) (-3634 . 300333)
- (-3635 . 300190) (-3636 . 299909) (-3637 . 299687) (-3638 . 299160)
- (-3639 . 298945) (-3640 . 298730) (-3641 . 298342) (-3642 . 298162)
- (-3643 . 297950) (-3644 . 297639) (-3645 . 297445) (-3646 . 297270)
- (-3647 . 296124) (-3648 . 295752) (-3649 . 295549) (-3650 . 295343)
- (-3651 . 294500) (-3652 . 294471) (-3653 . 294402) (-3654 . 294331)
- (-3655 . 294164) (-3656 . 294135) (-3657 . 294106) (-3658 . 294050)
- (-3659 . 293897) (-3660 . 293837) (-3661 . 293141) (-3662 . 291963)
- (-3663 . 291902) (-3664 . 291577) (-3665 . 291505) (-3666 . 291448)
- (-3667 . 291391) (-3668 . 291334) (-3669 . 291277) (-3670 . 291202)
- (-3671 . 290610) (-3672 . 290250) (-3673 . 290175) (-3674 . 290115)
- (-3675 . 289997) (-3676 . 289046) (-3677 . 288919) (-3678 . 288706)
- (-3679 . 288631) (-3680 . 288575) (-3681 . 288521) (-3682 . 288467)
- (-3683 . 288358) (-3684 . 288045) (-3685 . 287937) (-3686 . 287834)
- (-3687 . 287673) (-3688 . 287572) (-3689 . 287474) (-3690 . 287336)
- (-3691 . 287198) (-3692 . 287060) (-3693 . 286798) (-3694 . 286588)
- (-3695 . 286450) (-3696 . 286161) (-3697 . 286008) (-3698 . 285729)
- (-3699 . 285507) (-3700 . 285354) (-3701 . 285201) (-3702 . 285048)
- (-3703 . 284895) (-3704 . 284742) (-3705 . 284532) (-3706 . 284412)
- (-3707 . 284021) (-3708 . 283686) (-3709 . 283341) (-3710 . 282990)
- (-3711 . 282645) (-3712 . 282300) (-3713 . 281913) (-3714 . 281526)
- (-3715 . 281139) (-3716 . 280768) (-3717 . 280038) (-3718 . 279687)
- (-3719 . 279233) (-3720 . 278804) (-3721 . 278187) (-3722 . 277586)
- (-3723 . 277194) (-3724 . 276858) (-3725 . 276466) (-3726 . 276130)
- (-3727 . 275908) (-3728 . 275381) (-3729 . 275166) (-3730 . 274951)
- (-3731 . 274735) (-3732 . 274555) (-3733 . 274339) (-3734 . 274159)
- (-3735 . 273771) (-3736 . 273591) (-3737 . 273379) (-3738 . 273289)
- (-3739 . 273199) (-3740 . 273108) (-3741 . 273021) (-3742 . 272931)
- (-3743 . 272850) (-3744 . 272661) (-3745 . 272605) (-3746 . 272524)
- (-3747 . 272443) (-3748 . 272362) (-3749 . 272227) (-3750 . 272092)
- (-3751 . 271968) (-3752 . 271847) (-3753 . 271729) (-3754 . 271593)
- (-3755 . 271460) (-3756 . 271341) (-3757 . 271082) (-3758 . 270797)
- (-3759 . 270725) (-3760 . 270633) (-3761 . 270541) (-3762 . 270455)
- (-3763 . 270357) (-3764 . 270240) (-3765 . 270099) (-3766 . 270042)
- (-3767 . 269985) (-3768 . 269925) (-3769 . 269528) (-3770 . 269004)
- (-3771 . 268726) (-3772 . 268305) (-3773 . 268192) (-3774 . 267750)
- (-3775 . 267518) (-3776 . 267315) (-3777 . 267133) (-3778 . 267003)
- (-3779 . 266797) (-3780 . 266590) (-3781 . 266399) (-3782 . 265834)
- (-3783 . 265578) (-3784 . 265287) (-3785 . 264993) (-3786 . 264696)
- (-3787 . 264396) (-3788 . 264266) (-3789 . 264133) (-3790 . 263997)
- (-3791 . 263858) (-3792 . 262641) (-3793 . 262333) (-3794 . 261969)
- (-3795 . 261872) (-3796 . 261631) (-3797 . 261335) (-3798 . 261039)
- (-3799 . 260778) (-3800 . 260603) (-3801 . 260524) (-3802 . 260436)
- (-3803 . 260335) (-3804 . 260240) (-3805 . 260158) (-3806 . 260086)
- (-3807 . 259285) (-3808 . 259213) (-3809 . 258881) (-3810 . 258809)
- (-3811 . 258477) (-3812 . 258405) (-3813 . 257956) (-3814 . 257884)
- (-3815 . 257779) (-3816 . 257704) (-3817 . 257629) (-3818 . 257557)
- (-3819 . 257214) (-3820 . 257084) (-3821 . 257007) (-3822 . 256458)
- (-3823 . 256315) (-3824 . 256172) (-3825 . 255688) (-3826 . 255357)
- (-3827 . 255144) (-3828 . 254889) (-3829 . 254539) (-3830 . 254314)
- (-3831 . 254089) (-3832 . 253864) (-3833 . 253639) (-3834 . 253426)
- (-3835 . 253213) (-3836 . 253061) (-3837 . 252877) (-3838 . 252772)
- (-3839 . 252649) (-3840 . 252541) (-3841 . 252433) (-3842 . 252106)
- (-3843 . 251840) (-3844 . 251528) (-3845 . 251223) (-3846 . 250913)
- (-3847 . 250178) (-3848 . 249583) (-3849 . 249406) (-3850 . 249261)
- (-3851 . 249106) (-3852 . 248983) (-3853 . 248878) (-3854 . 248763)
- (-3855 . 248664) (-3856 . 248180) (-3857 . 248070) (-3858 . 247960)
- (-3859 . 247850) (-3860 . 246763) (-3861 . 246248) (-3862 . 246181)
- (-3863 . 246107) (-3864 . 245234) (-3865 . 245160) (-3866 . 245104)
- (-3867 . 245048) (-3868 . 245016) (-3869 . 244930) (-3870 . 244898)
- (-3871 . 244812) (-3872 . 244388) (-3873 . 243964) (-3874 . 243407)
- (-3875 . 242295) (-3876 . 240571) (-3877 . 239009) (-3878 . 238213)
- (-3879 . 237709) (-3880 . 237217) (-3881 . 236809) (-3882 . 236149)
- (-3883 . 236074) (-3884 . 236002) (-3885 . 235930) (-3886 . 235888)
- (-3887 . 235766) (-3888 . 235712) (-3889 . 235651) (-3890 . 235597)
- (-3891 . 235494) (-3892 . 235054) (-3893 . 234614) (-3894 . 234174)
- (-3895 . 233652) (-3896 . 233487) (-3897 . 233322) (-3898 . 233011)
- (-3899 . 232924) (-3900 . 232834) (-3901 . 232476) (-3902 . 232359)
- (-3903 . 232278) (-3904 . 232119) (-3905 . 232005) (-3906 . 231930)
- (-3907 . 231078) (-3908 . 229892) (-3909 . 229792) (-3910 . 229692)
- (-3911 . 229361) (-3912 . 229282) (-3913 . 229206) (-3914 . 229099)
- (-3915 . 228941) (-3916 . 228833) (-3917 . 228697) (-3918 . 228561)
- (-3919 . 228438) (-3920 . 228342) (-3921 . 228193) (-3922 . 228097)
- (-3923 . 227942) (-3924 . 227787) (-3925 . 227122) (-3926 . 226457)
- (-3927 . 225729) (-3928 . 225176) (-3929 . 224623) (-3930 . 224070)
- (-3931 . 223404) (-3932 . 222738) (-3933 . 222072) (-3934 . 221518)
- (-3935 . 220964) (-3936 . 220410) (-3937 . 219857) (-3938 . 219304)
- (-3939 . 218751) (-3940 . 218198) (-3941 . 217645) (-3942 . 217092)
- (-3943 . 216988) (-3944 . 216399) (-3945 . 216293) (-3946 . 216217)
- (-3947 . 216074) (-3948 . 215981) (-3949 . 215888) (-3950 . 215795)
- (-3951 . 215696) (-3952 . 215590) (-3953 . 215466) (-3954 . 215342)
- (-3955 . 214975) (-3956 . 214852) (-3957 . 214750) (-3958 . 214386)
- (-3959 . 213852) (-3960 . 213776) (-3961 . 213700) (-3962 . 213607)
- (-3963 . 213424) (-3964 . 213328) (-3965 . 213252) (-3966 . 213159)
- (-3967 . 213066) (-3968 . 212903) (-3969 . 212352) (-3970 . 211801)
- (-3971 . 209004) (-3972 . 208831) (-3973 . 207415) (-3974 . 206853)
- (-3975 . 206654) (-12 . 206482) (-3977 . 206310) (-3978 . 206138)
- (-3979 . 205966) (-3980 . 205794) (-3981 . 205622) (-3982 . 205450)
- (-3983 . 205335) (-3984 . 205065) (-3985 . 205002) (-3986 . 204939)
- (-3987 . 204876) (-3988 . 204598) (-3989 . 204331) (-3990 . 204278)
- (-3991 . 203635) (-3992 . 203584) (-3993 . 203391) (-3994 . 203318)
- (-3995 . 203238) (-3996 . 203125) (-3997 . 202935) (-3998 . 202571)
- (-3999 . 202299) (-4000 . 202248) (-4001 . 202197) (-4002 . 202127)
- (-4003 . 202008) (-4004 . 201979) (-4005 . 201877) (-4006 . 201755)
- (-4007 . 201701) (-4008 . 201524) (-4009 . 201463) (-4010 . 201282)
- (-4011 . 201221) (-4012 . 201149) (-4013 . 200674) (-4014 . 200299)
- (-4015 . 196696) (-4016 . 196643) (-4017 . 196515) (-4018 . 196365)
- (-4019 . 196312) (-4020 . 196171) (-4021 . 194110) (-4022 . 184871)
- (-4023 . 184720) (-4024 . 184650) (-4025 . 184599) (-4026 . 184549)
- (-4027 . 184498) (-4028 . 184447) (-4029 . 184249) (-4030 . 184106)
- (-4031 . 183992) (-4032 . 183871) (-4033 . 183753) (-4034 . 183641)
- (-4035 . 183523) (-4036 . 183418) (-4037 . 183337) (-4038 . 183233)
- (-4039 . 182296) (-4040 . 182076) (-4041 . 181839) (-4042 . 181757)
- (-4043 . 181410) (-4044 . 181336) (-4045 . 181241) (-4046 . 181167)
- (-4047 . 180965) (-4048 . 180874) (-4049 . 180758) (-4050 . 180645)
- (-4051 . 180554) (-4052 . 180463) (-4053 . 180373) (-4054 . 180283)
- (-4055 . 180193) (-4056 . 180105) (-4057 . 177743) (-4058 . 177675)
- (-4059 . 177621) (-4060 . 177496) (-4061 . 177432) (-4062 . 177307)
- (-4063 . 177188) (-4064 . 176420) (-4065 . 176359) (-4066 . 176240)
- (-4067 . 175488) (-4068 . 175435) (-4069 . 175307) (-4070 . 175243)
- (-4071 . 175189) (-4072 . 175080) (-4073 . 173778) (-4074 . 173696)
- (-4075 . 173606) (-4076 . 173548) (-4077 . 173298) (-4078 . 173213)
- (-4079 . 173138) (-4080 . 173053) (-4081 . 172996) (-4082 . 172780)
- (-4083 . 172638) (-4084 . 171918) (-4085 . 171363) (-4086 . 170808)
- (-4087 . 170253) (-4088 . 169533) (-4089 . 168866) (-4090 . 168302)
- (-4091 . 167738) (-4092 . 167474) (-4093 . 167032) (-4094 . 166697)
- (-4095 . 166353) (-4096 . 166046) (-4097 . 165913) (-4098 . 165780)
- (-4099 . 165464) (-4100 . 165371) (-4101 . 165278) (-4102 . 165185)
- (-4103 . 165092) (-4104 . 164999) (-4105 . 164906) (-4106 . 164813)
- (-4107 . 164720) (-4108 . 164627) (-4109 . 164534) (-4110 . 164441)
- (-4111 . 164348) (-4112 . 164255) (-4113 . 164162) (-4114 . 164069)
- (-4115 . 163976) (-4116 . 163883) (-4117 . 163790) (-4118 . 163697)
- (-4119 . 163604) (-4120 . 163511) (-4121 . 163418) (-4122 . 163325)
- (-4123 . 163232) (-4124 . 163139) (-4125 . 162954) (-4126 . 162639)
- (-4127 . 161068) (-4128 . 160913) (-4129 . 160775) (-4130 . 160632)
- (-4131 . 160429) (-4132 . 158474) (-4133 . 158346) (-4134 . 158221)
- (-4135 . 158093) (-4136 . 157869) (-4137 . 157645) (-4138 . 157517)
- (-4139 . 157314) (-4140 . 157135) (-4141 . 156608) (-4142 . 156081)
- (-4143 . 155800) (-4144 . 155382) (-4145 . 154855) (-4146 . 154670)
- (-4147 . 154527) (-4148 . 154027) (-4149 . 153385) (-4150 . 153329)
- (-4151 . 153235) (-4152 . 153114) (-4153 . 153043) (-4154 . 152969)
- (-4155 . 152738) (-4156 . 152113) (-4157 . 151681) (-4158 . 151599)
- (-4159 . 151457) (-4160 . 150979) (-4161 . 150857) (-4162 . 150735)
- (-4163 . 150595) (-4164 . 150408) (-4165 . 150292) (-4166 . 150031)
- (-4167 . 149962) (-4168 . 149763) (-4169 . 149604) (-4170 . 149449)
- (-4171 . 149342) (-4172 . 149291) (-4173 . 148907) (-4174 . 148379)
- (-4175 . 148157) (-4176 . 147935) (-4177 . 147694) (-4178 . 147603)
- (-4179 . 145851) (-4180 . 145262) (-4181 . 145183) (-4182 . 139714)
- (-4183 . 138923) (-4184 . 138544) (-4185 . 138472) (-4186 . 138206)
- (-4187 . 138031) (-4188 . 137541) (-4189 . 137119) (-4190 . 136679)
- (-4191 . 135815) (-4192 . 135691) (-4193 . 135564) (-4194 . 135455)
- (-4195 . 135303) (-4196 . 135189) (-4197 . 135050) (-4198 . 134968)
- (-4199 . 134886) (-4200 . 134778) (-4201 . 134358) (-4202 . 133934)
- (-4203 . 133859) (-4204 . 133593) (-4205 . 133326) (-4206 . 132943)
- (-4207 . 132242) (-4208 . 132182) (-4209 . 132107) (-4210 . 132032)
- (-4211 . 131909) (-4212 . 131657) (-4213 . 131570) (-4214 . 131494)
- (-4215 . 131418) (-4216 . 131322) (-4217 . 127346) (-4218 . 126164)
- (-4219 . 125500) (-4220 . 125313) (-4221 . 123097) (-4222 . 122771)
- (-4223 . 122390) (-4224 . 121946) (-4225 . 121711) (-4226 . 121463)
- (-4227 . 121372) (-4228 . 119925) (-4229 . 119846) (-4230 . 119740)
- (-4231 . 118256) (-4232 . 117850) (-4233 . 117447) (-4234 . 117345)
- (-4235 . 117263) (-4236 . 117105) (-4237 . 115806) (-4238 . 115724)
- (-4239 . 115645) (-4240 . 115290) (-4241 . 115233) (-4242 . 115161)
- (-4243 . 115104) (-4244 . 115047) (-4245 . 114917) (-4246 . 114713)
- (-4247 . 114344) (-4248 . 113922) (-4249 . 108800) (-4250 . 108197)
- (-4251 . 107569) (-4252 . 107354) (-4253 . 107139) (-4254 . 106971)
- (-4255 . 106756) (-4256 . 106588) (-4257 . 106420) (-4258 . 106252)
- (-4259 . 106084) (-4260 . 103941) (-4261 . 103669) (-4262 . 96794)
- (** . 93828) (-4264 . 93408) (-4265 . 93160) (-4266 . 93103) (-4267 . 92605)
- (-4268 . 89780) (-4269 . 89630) (-4270 . 89466) (-4271 . 89302)
- (-4272 . 89206) (-4273 . 89088) (-4274 . 88964) (-4275 . 88821)
- (-4276 . 88650) (-4277 . 88523) (-4278 . 88378) (-4279 . 88225)
- (-4280 . 88065) (-4281 . 87550) (-4282 . 87459) (-4283 . 86789)
- (-4284 . 86595) (-4285 . 86499) (-4286 . 86189) (-4287 . 85013)
- (-4288 . 84806) (-4289 . 83629) (-4290 . 83554) (-4291 . 82373)
- (-4292 . 78780) (-4293 . 78416) (-4294 . 78139) (-4295 . 78047)
- (-4296 . 77954) (-4297 . 77677) (-4298 . 77584) (-4299 . 77491)
- (-4300 . 77398) (-4301 . 77014) (-4302 . 76943) (-4303 . 76851)
- (-4304 . 76693) (-4305 . 76339) (-4306 . 76181) (-4307 . 76073)
- (-4308 . 76044) (-4309 . 75977) (-4310 . 75823) (-4311 . 75664)
- (-4312 . 75270) (-4313 . 75195) (-4314 . 75089) (-4315 . 75017)
- (-4316 . 74939) (-4317 . 74866) (-4318 . 74793) (-4319 . 74720)
- (-4320 . 74648) (-4321 . 74576) (-4322 . 74503) (-4323 . 74262)
- (-4324 . 73922) (-4325 . 73774) (-4326 . 73701) (-4327 . 73628)
- (-4328 . 73555) (-4329 . 73301) (-4330 . 73157) (-4331 . 71821)
- (-4332 . 71627) (-4333 . 71356) (-4334 . 71208) (-4335 . 71060)
- (-4336 . 70820) (-4337 . 70625) (-4338 . 70355) (-4339 . 70159)
- (-4340 . 70130) (-4341 . 70029) (-4342 . 69928) (-4343 . 69827)
- (-4344 . 69726) (-4345 . 69625) (-4346 . 69524) (-4347 . 69423)
- (-4348 . 69322) (-4349 . 69221) (-4350 . 69120) (-4351 . 69005)
- (-4352 . 68890) (-4353 . 68839) (-4354 . 68722) (-4355 . 68664)
- (-4356 . 68563) (-4357 . 68462) (-4358 . 68361) (-4359 . 68245)
- (-4360 . 68216) (-4361 . 67484) (-4362 . 67359) (-4363 . 67234)
- (-4364 . 67094) (-4365 . 66976) (-4366 . 66851) (-4367 . 66696)
- (-4368 . 65713) (-4369 . 64854) (-4370 . 64800) (-4371 . 64746)
- (-4372 . 64538) (-4373 . 64164) (-4374 . 63750) (-4375 . 63389)
- (-4376 . 63028) (-4377 . 62875) (-4378 . 62573) (-4379 . 62417)
- (-4380 . 62091) (-4381 . 62020) (-4382 . 61949) (-4383 . 61737)
- (-4384 . 60930) (-4385 . 60724) (-4386 . 60350) (-4387 . 59830)
- (-4388 . 59562) (-4389 . 59078) (-4390 . 58594) (-4391 . 58468)
- (-4392 . 57254) (-4393 . 56063) (-4394 . 55490) (-4395 . 55272)
- (-4396 . 36855) (-4397 . 36669) (-4398 . 34569) (-4399 . 32393)
- (-4400 . 32245) (-4401 . 32063) (-4402 . 31654) (-4403 . 31353)
- (-4404 . 31002) (-4405 . 30834) (-4406 . 30666) (-4407 . 30302)
- (-4408 . 16365) (-4409 . 15245) (* . 11028) (-4411 . 10772) (-4412 . 10586)
- (-4413 . 9624) (-4414 . 9355) (-4415 . 8720) (-4416 . 7438) (-4417 . 6179)
- (-4418 . 5299) (-4419 . 4033) (-4420 . 382) (-4421 . 280) (-4422 . 160)
- (-4423 . 30)) \ No newline at end of file
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1071 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3550 *4))))
+ (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1041)) (-5 *1 (-757)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-910 *4))
+ (-4 *4 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+((-1306 . 733060) (-1307 . 732919) (-1308 . 732751) (-1309 . 732614)
+ (-1310 . 732220) (-1311 . 732107) (-1312 . 732016) (-1313 . 731930)
+ (-1314 . 731864) (-1315 . 731704) (-1316 . 731557) (-1317 . 731426)
+ (-1318 . 731274) (-1319 . 731094) (-1320 . 730779) (-1321 . 730691)
+ (-1322 . 730605) (-1323 . 730539) (-1324 . 716449) (-1325 . 716353)
+ (-1326 . 716275) (-1327 . 716036) (-1328 . 715932) (-1329 . 715819)
+ (-1330 . 715604) (-1331 . 715295) (-1332 . 713514) (-1333 . 713428)
+ (-1334 . 712771) (-1335 . 712602) (-1336 . 712506) (-1337 . 712450)
+ (-1338 . 712246) (-1339 . 712010) (-1340 . 711922) (-1341 . 711800)
+ (-1342 . 711696) (-1343 . 711606) (-1344 . 711507) (-1345 . 711310)
+ (-1346 . 707247) (-1347 . 707166) (-1348 . 707080) (-1349 . 706423)
+ (-1350 . 706327) (-1351 . 706269) (-1352 . 706030) (-1353 . 705905)
+ (-1354 . 705820) (-1355 . 705730) (-1356 . 704763) (-1357 . 704541)
+ (-1358 . 703787) (-1359 . 703701) (-1360 . 703573) (-1361 . 703477)
+ (-1362 . 703419) (-1363 . 703391) (-1364 . 703196) (-1365 . 703092)
+ (-1366 . 702720) (-1367 . 702626) (-1368 . 702459) (-1369 . 702237)
+ (-1370 . 702120) (-1371 . 702034) (-1372 . 701911) (-1373 . 701815)
+ (-1374 . 701503) (-1375 . 701380) (-1376 . 701196) (-1377 . 701109)
+ (-1378 . 701026) (-1379 . 700859) (-1380 . 700721) (-1381 . 700514)
+ (-1382 . 700428) (-1383 . 700305) (-1384 . 696638) (-1385 . 696542)
+ (-1386 . 696283) (-1387 . 696079) (-1388 . 695905) (-1389 . 695815)
+ (-1390 . 695728) (-1391 . 695241) (-1392 . 694930) (-1393 . 692585)
+ (-1394 . 692420) (-1395 . 692334) (-1396 . 692193) (-1397 . 692097)
+ (-1398 . 692028) (-1399 . 691600) (-1400 . 691516) (-1401 . 691293)
+ (-1402 . 691094) (-1403 . 691011) (-1404 . 690928) (-1405 . 690718)
+ (-1406 . 690360) (-1407 . 690195) (-1408 . 690109) (-1409 . 689954)
+ (-1410 . 689871) (-1411 . 689775) (-1412 . 689630) (-1413 . 689497)
+ (-1414 . 689258) (-1415 . 689036) (-1416 . 688862) (-1417 . 688671)
+ (-1418 . 688507) (-1419 . 688421) (-1420 . 688277) (-1421 . 688194)
+ (-1422 . 688098) (-1423 . 688046) (-1424 . 687905) (-1425 . 687712)
+ (-1426 . 687593) (-1427 . 687537) (-1428 . 687398) (-1429 . 687312)
+ (-1430 . 687132) (-1431 . 686971) (-1432 . 686875) (-1433 . 686791)
+ (-1434 . 686653) (-1435 . 686322) (-1436 . 686194) (-1437 . 686111)
+ (-1438 . 686014) (-1439 . 685928) (-1440 . 685804) (-1441 . 685649)
+ (-1442 . 685553) (-1443 . 685476) (-1444 . 685337) (-1445 . 685041)
+ (-1446 . 684913) (-1447 . 684830) (-1448 . 684729) (-1449 . 684643)
+ (-1450 . 684518) (** . 681524) (-1452 . 681428) (-1453 . 681373)
+ (-1454 . 681120) (-1455 . 680990) (-1456 . 680868) (-1457 . 680572)
+ (-1458 . 680515) (-1459 . 680432) (-1460 . 680335) (-1461 . 680249)
+ (-1462 . 680148) (-1463 . 680052) (-1464 . 680000) (-1465 . 679744)
+ (-1466 . 679519) (-1467 . 679209) (-1468 . 679137) (-1469 . 679002)
+ (-1470 . 678440) (-1471 . 678325) (-1472 . 678291) (-1473 . 678205)
+ (-1474 . 678148) (-1475 . 678052) (-1476 . 677934) (-1477 . 677860)
+ (-1478 . 677700) (-1479 . 677383) (-1480 . 677212) (-1481 . 677077)
+ (-1482 . 676992) (-1483 . 676906) (-1484 . 676849) (-1485 . 676664)
+ (-1486 . 676590) (-1487 . 676436) (-1488 . 676307) (-1489 . 676136)
+ (-1490 . 676012) (-1491 . 675911) (-1492 . 675808) (-1493 . 675751)
+ (-1494 . 675436) (-1495 . 675353) (-1496 . 675112) (-1497 . 674921)
+ (-1498 . 674744) (-1499 . 674623) (-1500 . 674421) (-1501 . 674332)
+ (-1502 . 674275) (-1503 . 672687) (-1504 . 672604) (-1505 . 672314)
+ (-1506 . 671826) (-1507 . 671674) (-1508 . 671556) (-1509 . 671462)
+ (-1510 . 671252) (-1511 . 671192) (-1512 . 671034) (-1513 . 670979)
+ (-1514 . 670841) (-1515 . 670757) (-1516 . 670477) (-1517 . 670341)
+ (-1518 . 670244) (-1519 . 670185) (-1520 . 670120) (-1521 . 669979)
+ (-1522 . 669710) (-1523 . 669636) (-1524 . 668968) (-1525 . 668750)
+ (-1526 . 668346) (-1527 . 668213) (-1528 . 668006) (-1529 . 667939)
+ (-1530 . 667883) (-1531 . 667774) (-1532 . 667631) (-1533 . 667557)
+ (-1534 . 667402) (-1535 . 667199) (-1536 . 667023) (-1537 . 666805)
+ (-1538 . 666674) (-1539 . 666602) (-1540 . 666300) (-1541 . 666247)
+ (-1542 . 666158) (-1543 . 666049) (-1544 . 665843) (-1545 . 665769)
+ (-1546 . 665587) (-1547 . 665328) (-1548 . 665123) (-1549 . 665066)
+ (-1550 . 664664) (-1551 . 664441) (-1552 . 664388) (-1553 . 664276)
+ (-1554 . 664167) (-1555 . 662199) (-1556 . 662120) (-1557 . 662067)
+ (-1558 . 661891) (-1559 . 661464) (-1560 . 661281) (-1561 . 661221)
+ (-1562 . 661100) (-1563 . 661047) (-1564 . 660959) (-1565 . 660679)
+ (-1566 . 660648) (-1567 . 660520) (-1568 . 660465) (-1569 . 660283)
+ (-1570 . 659742) (-1571 . 659555) (-1572 . 659158) (-1573 . 659056)
+ (-1574 . 658997) (-1575 . 658849) (-1576 . 658772) (-1577 . 658647)
+ (-1578 . 658588) (-1579 . 657292) (-1580 . 657113) (-1581 . 656983)
+ (-1582 . 656854) (-1583 . 656330) (-1584 . 656217) (-1585 . 656189)
+ (-1586 . 656110) (-1587 . 656051) (-1588 . 655989) (-1589 . 655758)
+ (-1590 . 655630) (-1591 . 655559) (-1592 . 655459) (-1593 . 655280)
+ (-1594 . 655173) (-1595 . 654899) (-1596 . 654621) (-1597 . 654511)
+ (-1598 . 654394) (-1599 . 654312) (-1600 . 653935) (-1601 . 653907)
+ (-1602 . 653823) (-1603 . 653596) (-1604 . 653496) (-1605 . 653309)
+ (-1606 . 653168) (-1607 . 652989) (-1608 . 652876) (-1609 . 652766)
+ (-1610 . 652697) (-1611 . 652644) (-1612 . 652616) (-1613 . 652535)
+ (-1614 . 652308) (-1615 . 652208) (-1616 . 651826) (-1617 . 651711)
+ (-1618 . 651579) (-1619 . 651135) (-1620 . 651081) (-1621 . 651025)
+ (-1622 . 650997) (-1623 . 650916) (-1624 . 650788) (-1625 . 650688)
+ (-1626 . 650543) (-1627 . 650364) (-1628 . 650260) (-1629 . 650146)
+ (-1630 . 649914) (-1631 . 649836) (-1632 . 649780) (-1633 . 649752)
+ (-1634 . 649671) (-1635 . 649468) (-1636 . 649368) (-1637 . 649189)
+ (-1638 . 649134) (-1639 . 648986) (-1640 . 648781) (-1641 . 648625)
+ (-1642 . 648457) (-1643 . 648283) (-1644 . 648201) (-1645 . 648022)
+ (-1646 . 647922) (-1647 . 647735) (-1648 . 647656) (-1649 . 647578)
+ (-1650 . 647439) (-1651 . 647257) (-1652 . 647029) (-1653 . 646959)
+ (-1654 . 646803) (-1655 . 646722) (-1656 . 646195) (-1657 . 646095)
+ (-1658 . 645713) (-1659 . 645643) (-1660 . 645539) (-1661 . 645409)
+ (-1662 . 644445) (-1663 . 644347) (-1664 . 644194) (-1665 . 644097)
+ (-1666 . 643939) (-1667 . 643412) (-1668 . 643297) (-1669 . 642301)
+ (-1670 . 642228) (-1671 . 642121) (-1672 . 641911) (-1673 . 641664)
+ (-1674 . 641566) (-1675 . 641392) (-1676 . 641218) (-1677 . 641117)
+ (-1678 . 640518) (-1679 . 636511) (-1680 . 636230) (-1681 . 636124)
+ (-1682 . 636009) (-1683 . 635601) (-1684 . 635546) (-1685 . 635436)
+ (-1686 . 635225) (-1687 . 634940) (-1688 . 634842) (-1689 . 634632)
+ (-1690 . 634563) (-1691 . 634142) (-1692 . 634027) (-1693 . 633619)
+ (-1694 . 633546) (-1695 . 633433) (-1696 . 633242) (-1697 . 632957)
+ (-1698 . 632905) (-1699 . 632781) (-1700 . 632606) (-1701 . 632556)
+ (-1702 . 632182) (-1703 . 631655) (-1704 . 631261) (-1705 . 631146)
+ (-1706 . 631028) (-1707 . 630973) (-1708 . 630869) (-1709 . 630286)
+ (-1710 . 630148) (-1711 . 629863) (-1712 . 629804) (-1713 . 629596)
+ (-1714 . 629525) (-1715 . 628811) (-1716 . 628626) (-1717 . 628598)
+ (-1718 . 628483) (-1719 . 628323) (-1720 . 627966) (-1721 . 627856)
+ (-1722 . 627600) (-1723 . 627276) (-1724 . 627217) (-1725 . 627143)
+ (-1726 . 627048) (-1727 . 626397) (-1728 . 626280) (-1729 . 624514)
+ (-1730 . 624371) (-1731 . 624256) (-1732 . 624111) (-1733 . 623700)
+ (-1734 . 623590) (-1735 . 623296) (-1736 . 623201) (-1737 . 623149)
+ (-1738 . 623054) (-1739 . 622957) (-1740 . 622139) (-1741 . 620684)
+ (-1742 . 620166) (-1743 . 620048) (-1744 . 619930) (-1745 . 619775)
+ (-1746 . 619659) (-1747 . 619362) (-1748 . 619267) (-1749 . 619107)
+ (-1750 . 618971) (-1751 . 618918) (-1752 . 618821) (-1753 . 618737)
+ (-1754 . 617247) (-1755 . 616605) (-1756 . 616423) (-1757 . 616268)
+ (-1758 . 616158) (-1759 . 615858) (-1760 . 615763) (-1761 . 615603)
+ (-1762 . 615505) (-1763 . 615400) (-1764 . 615302) (-1765 . 615246)
+ (-1766 . 615122) (-1767 . 615006) (-1768 . 614923) (-1769 . 614866)
+ (-1770 . 614736) (-1771 . 614641) (-1772 . 614488) (-1773 . 614390)
+ (-1774 . 614294) (-1775 . 610631) (-1776 . 609895) (-1777 . 609798)
+ (-1778 . 609505) (-1779 . 609350) (-1780 . 609219) (-1781 . 609086)
+ (-1782 . 608991) (-1783 . 608233) (-1784 . 606691) (-1785 . 606595)
+ (-1786 . 606321) (-1787 . 606158) (-1788 . 606037) (-1789 . 605744)
+ (-1790 . 605589) (-1791 . 605440) (-1792 . 605304) (-1793 . 605209)
+ (-1794 . 605081) (-1795 . 604983) (-1796 . 604736) (-1797 . 604659)
+ (-1798 . 604572) (-1799 . 604501) (-1800 . 604214) (-1801 . 604077)
+ (-1802 . 603539) (-1803 . 603400) (-1804 . 603302) (-1805 . 603212)
+ (-1806 . 603128) (-1807 . 603051) (-1808 . 602407) (-1809 . 602333)
+ (-1810 . 602049) (-1811 . 601912) (-1812 . 601795) (-1813 . 601652)
+ (-1814 . 600429) (-1815 . 600331) (-1816 . 600140) (-1817 . 599944)
+ (-1818 . 599885) (-1819 . 599829) (-1820 . 598657) (-1821 . 598426)
+ (-1822 . 598120) (-1823 . 597983) (-1824 . 597833) (-1825 . 597522)
+ (-1826 . 597427) (-1827 . 597271) (-1828 . 597173) (-1829 . 597058)
+ (-1830 . 595956) (-1831 . 595900) (-1832 . 595542) (-1833 . 595104)
+ (-1834 . 594983) (-1835 . 594860) (-1836 . 594493) (-1837 . 594398)
+ (-1838 . 594316) (-1839 . 594205) (-1840 . 594177) (-1841 . 594110)
+ (-1842 . 592973) (-1843 . 592889) (-1844 . 592811) (-1845 . 592777)
+ (-1846 . 592670) (-1847 . 592570) (-1848 . 592475) (-1849 . 592345)
+ (-1850 . 591912) (-1851 . 591845) (-1852 . 586677) (-1853 . 586535)
+ (-1854 . 586257) (-1855 . 586202) (-1856 . 586095) (-1857 . 585854)
+ (-1858 . 585759) (-1859 . 585731) (-1860 . 585563) (-1861 . 585500)
+ (-1862 . 585378) (-1863 . 585263) (-1864 . 584550) (-1865 . 584440)
+ (-1866 . 584144) (-1867 . 584049) (-1868 . 584021) (-1869 . 583899)
+ (-1870 . 583847) (-1871 . 583532) (-1872 . 583394) (-1873 . 583098)
+ (-1874 . 582996) (-1875 . 582687) (-1876 . 582447) (-1877 . 582307)
+ (-1878 . 582255) (-1879 . 581746) (-1880 . 581636) (-1881 . 581375)
+ (-1882 . 581273) (-1883 . 581194) (-1884 . 581108) (-1885 . 580861)
+ (-1886 . 580668) (-1887 . 580616) (-1888 . 580564) (-1889 . 580433)
+ (-1890 . 580352) (-1891 . 580250) (-1892 . 579906) (-1893 . 579659)
+ (-1894 . 579535) (-1895 . 579419) (-1896 . 579367) (-1897 . 579315)
+ (-1898 . 579220) (-1899 . 579137) (-1900 . 578992) (-1901 . 578778)
+ (-1902 . 578517) (-1903 . 578465) (-1904 . 578413) (-1905 . 578251)
+ (-1906 . 578222) (-1907 . 577792) (-1908 . 577732) (-1909 . 577406)
+ (-1910 . 577267) (-1911 . 577198) (-1912 . 577056) (-1913 . 576978)
+ (-1914 . 576772) (-1915 . 576716) (-1916 . 576518) (-1917 . 576360)
+ (-1918 . 576120) (-1919 . 575906) (-1920 . 575704) (-1921 . 575524)
+ (-1922 . 575462) (-1923 . 575302) (-1924 . 575145) (-1925 . 575118)
+ (-1926 . 574925) (-1927 . 574799) (-1928 . 574507) (-1929 . 574274)
+ (-1930 . 574056) (-1931 . 573983) (-1932 . 573923) (-1933 . 573800)
+ (-1934 . 573315) (-1935 . 573190) (-1936 . 572976) (-1937 . 572751)
+ (-1938 . 572551) (-1939 . 572294) (-1940 . 572175) (-1941 . 571474)
+ (-1942 . 571232) (-1943 . 571085) (-1944 . 570946) (-1945 . 570862)
+ (-1946 . 570834) (-1947 . 570767) (-1948 . 570648) (-1949 . 569456)
+ (-1950 . 569349) (-1951 . 569081) (-1952 . 568937) (-1953 . 568723)
+ (-1954 . 568374) (-1955 . 568346) (-1956 . 568249) (-1957 . 568089)
+ (-1958 . 568028) (-1959 . 567921) (-1960 . 567820) (-1961 . 567704)
+ (-1962 . 567395) (-1963 . 567241) (-1964 . 567167) (-1965 . 567139)
+ (-1966 . 567042) (-1967 . 566862) (-1968 . 566805) (-1969 . 566734)
+ (-1970 . 566651) (-1971 . 566520) (-1972 . 566375) (-1973 . 566277)
+ (-1974 . 566249) (-1975 . 566060) (-1976 . 565877) (-1977 . 565820)
+ (-1978 . 565749) (-1979 . 565666) (-1980 . 565607) (-1981 . 565229)
+ (-1982 . 565087) (-1983 . 565013) (-1984 . 564985) (-1985 . 564901)
+ (-1986 . 564800) (-1987 . 564723) (-1988 . 564511) (-1989 . 564441)
+ (-1990 . 564181) (-1991 . 563948) (-1992 . 563854) (-1993 . 563826)
+ (-1994 . 563704) (-1995 . 563603) (-1996 . 563543) (-1997 . 563334)
+ (-1998 . 563264) (-1999 . 562984) (-2000 . 562842) (-2001 . 562763)
+ (-2002 . 562647) (-2003 . 562619) (-2004 . 562473) (-2005 . 562369)
+ (-2006 . 562251) (-2007 . 562198) (-2008 . 561822) (-2009 . 561699)
+ (-2010 . 561540) (-2011 . 561297) (-2012 . 561069) (-2013 . 561013)
+ (-2014 . 560900) (-2015 . 560848) (-2016 . 560185) (-2017 . 560078)
+ (-2018 . 559118) (-2019 . 558583) (-2020 . 558439) (-2021 . 558206)
+ (-2022 . 557876) (-2023 . 557677) (-2024 . 557583) (-2025 . 556945)
+ (-2026 . 556852) (-2027 . 556142) (-2028 . 556016) (-2029 . 555939)
+ (-2030 . 555448) (-2031 . 555324) (-2032 . 554974) (-2033 . 554814)
+ (-2034 . 554720) (-2035 . 554481) (-2036 . 554431) (-2037 . 554305)
+ (-2038 . 554198) (-2039 . 554149) (-2040 . 554093) (-2041 . 553602)
+ (-2042 . 553543) (-2043 . 553076) (-2044 . 552740) (-2045 . 552647)
+ (-2046 . 552574) (-2047 . 552505) (-2048 . 552401) (-2049 . 552272)
+ (-2050 . 552218) (-2051 . 552092) (-2052 . 552027) (-2053 . 551541)
+ (-2054 . 551378) (-2055 . 551285) (-2056 . 548444) (-2057 . 548375)
+ (-2058 . 548271) (-2059 . 548139) (-2060 . 547823) (-2061 . 547239)
+ (-2062 . 547177) (-2063 . 546974) (-2064 . 546811) (-2065 . 546252)
+ (-2066 . 546159) (-2067 . 546054) (-2068 . 545953) (-2069 . 545839)
+ (-2070 . 545731) (-2071 . 545559) (-2072 . 545335) (-2073 . 545125)
+ (-2074 . 544822) (-2075 . 544659) (-2076 . 544100) (-2077 . 544012)
+ (-2078 . 543641) (-2079 . 543432) (-2080 . 543331) (-2081 . 543228)
+ (-2082 . 543036) (-2083 . 542762) (-2084 . 542581) (-2085 . 542406)
+ (-2086 . 539991) (-2087 . 539836) (-2088 . 539737) (-2089 . 539633)
+ (-2090 . 539472) (-2091 . 537358) (-2092 . 536812) (-2093 . 536594)
+ (-2094 . 536419) (-2095 . 536141) (-2096 . 536073) (-2097 . 535918)
+ (-2098 . 535839) (-2099 . 535735) (-2100 . 535628) (-2101 . 535253)
+ (-2102 . 535101) (-2103 . 534587) (-2104 . 534365) (-2105 . 534187)
+ (-2106 . 534133) (-2107 . 533928) (-2108 . 533872) (-2109 . 533706)
+ (-2110 . 533602) (-2111 . 533414) (-2112 . 533269) (-2113 . 533111)
+ (-2114 . 532784) (-2115 . 532425) (-2116 . 532300) (-2117 . 532178)
+ (-2118 . 532107) (-2119 . 531941) (-2120 . 531788) (-2121 . 531481)
+ (-2122 . 531414) (-2123 . 531216) (-2124 . 531022) (-2125 . 530958)
+ (-2126 . 530881) (-2127 . 530761) (-2128 . 530567) (-2129 . 530286)
+ (-2130 . 530113) (-2131 . 530030) (-2132 . 529699) (-2133 . 529596)
+ (-2134 . 529434) (-2135 . 529309) (-2136 . 529229) (-2137 . 529125)
+ (-2138 . 528959) (-2139 . 528737) (-2140 . 528564) (-2141 . 528481)
+ (-2142 . 528453) (-2143 . 528373) (-2144 . 528299) (-2145 . 528180)
+ (-2146 . 528103) (-2147 . 527935) (-2148 . 527834) (-2149 . 527681)
+ (-2150 . 527369) (-2151 . 527113) (-2152 . 527011) (-2153 . 526950)
+ (-2154 . 526876) (-2155 . 526757) (-2156 . 526677) (-2157 . 526595)
+ (-2158 . 526424) (-2159 . 526271) (-2160 . 526085) (-2161 . 526011)
+ (-2162 . 525958) (-2163 . 525884) (-2164 . 525831) (-2165 . 525751)
+ (-2166 . 525669) (-2167 . 525504) (-2168 . 525351) (-2169 . 524707)
+ (-2170 . 524624) (-2171 . 524555) (-2172 . 524481) (-2173 . 524353)
+ (-2174 . 524287) (-2175 . 524210) (-2176 . 524131) (-2177 . 523966)
+ (-2178 . 523813) (-2179 . 522611) (-2180 . 521309) (-2181 . 521235)
+ (-2182 . 521165) (-2183 . 521091) (-2184 . 521027) (-2185 . 520947)
+ (-2186 . 520876) (-2187 . 520776) (-2188 . 520623) (-2189 . 519361)
+ (-2190 . 519143) (-2191 . 519024) (-2192 . 518950) (-2193 . 518896)
+ (-2194 . 518662) (-2195 . 518591) (-2196 . 518399) (-2197 . 518008)
+ (-2198 . 517125) (-2199 . 516912) (-2200 . 516734) (-2201 . 516610)
+ (-2202 . 516501) (-2203 . 516343) (-2204 . 516272) (-2205 . 516168)
+ (-2206 . 515827) (-2207 . 514554) (-2208 . 514461) (-2209 . 514406)
+ (-2210 . 514232) (-2211 . 512889) (-2212 . 512807) (-2213 . 512505)
+ (-2214 . 512280) (-2215 . 512209) (-2216 . 512014) (-2217 . 511663)
+ (-2218 . 511561) (-2219 . 511494) (-2220 . 511248) (-2221 . 511124)
+ (-2222 . 511040) (-2223 . 510882) (-2224 . 510811) (-2225 . 510561)
+ (-2226 . 510210) (-2227 . 510087) (-2228 . 509944) (-2229 . 509891)
+ (-2230 . 509818) (-2231 . 509732) (-2232 . 509639) (-2233 . 509307)
+ (-2234 . 509236) (-2235 . 508991) (-2236 . 508640) (-2237 . 508507)
+ (-2238 . 508430) (-2239 . 508363) (-2240 . 508145) (-2241 . 508075)
+ (-2242 . 508009) (-2243 . 507951) (-2244 . 507808) (-2245 . 507709)
+ (-2246 . 507387) (-2247 . 507036) (-2248 . 506952) (-2249 . 506882)
+ (-2250 . 506816) (-2251 . 506731) (-2252 . 506588) (-2253 . 506332)
+ (-2254 . 505944) (-2255 . 505557) (-2256 . 505474) (-2257 . 505384)
+ (-2258 . 505318) (-2259 . 505241) (-2260 . 505158) (-2261 . 504783)
+ (-2262 . 504582) (-2263 . 504195) (-2264 . 504093) (-2265 . 503903)
+ (-2266 . 503837) (-2267 . 503712) (-2268 . 503627) (-2269 . 503544)
+ (-2270 . 503372) (-2271 . 503108) (-2272 . 502721) (-2273 . 502521)
+ (-2274 . 502448) (-2275 . 502382) (-2276 . 502325) (-2277 . 502060)
+ (-2278 . 501944) (-2279 . 501401) (-2280 . 501018) (-2281 . 500950)
+ (-2282 . 500880) (-2283 . 500814) (-2284 . 500672) (-2285 . 499921)
+ (-2286 . 499417) (-2287 . 499123) (-2288 . 498387) (-2289 . 498139)
+ (-2290 . 497528) (-2291 . 497463) (-2292 . 497397) (-2293 . 496830)
+ (-2294 . 496693) (-2295 . 496309) (-2296 . 496172) (-2297 . 495821)
+ (-2298 . 495570) (-2299 . 495515) (-2300 . 495449) (-2301 . 494882)
+ (-2302 . 494791) (-2303 . 494362) (-2304 . 494116) (-2305 . 493659)
+ (-2306 . 493411) (-2307 . 493317) (-2308 . 493251) (-2309 . 492987)
+ (-2310 . 492850) (-2311 . 492760) (-2312 . 492662) (-2313 . 492455)
+ (-2314 . 492026) (-2315 . 491778) (-2316 . 491482) (-2317 . 491416)
+ (-2318 . 491072) (-2319 . 490995) (-2320 . 490927) (-2321 . 490827)
+ (-2322 . 490717) (-2323 . 490084) (-2324 . 490016) (-2325 . 489685)
+ (-2326 . 489619) (-2327 . 489309) (-2328 . 489240) (-2329 . 485941)
+ (-2330 . 485837) (-2331 . 485198) (-2332 . 485124) (-2333 . 485058)
+ (-2334 . 484925) (-2335 . 484717) (-2336 . 484629) (-2337 . 484516)
+ (-2338 . 484442) (-2339 . 484345) (-2340 . 483953) (-2341 . 483515)
+ (-2342 . 483190) (-2343 . 483124) (-2344 . 482991) (-2345 . 482903)
+ (-2346 . 482790) (-2347 . 482695) (-2348 . 482598) (-2349 . 482256)
+ (-2350 . 481890) (-2351 . 481680) (-2352 . 481614) (-2353 . 481295)
+ (-2354 . 481124) (-2355 . 480928) (-2356 . 480800) (-2357 . 480408)
+ (-2358 . 480356) (-2359 . 480249) (-2360 . 480163) (-2361 . 480097)
+ (-2362 . 480001) (-2363 . 479891) (-2364 . 479728) (-2365 . 479386)
+ (-2366 . 479167) (-2367 . 479081) (-2368 . 479015) (-2369 . 478919)
+ (-2370 . 478860) (-2371 . 478786) (-2372 . 478679) (-2373 . 478454)
+ (-2374 . 477593) (-2375 . 477160) (-2376 . 477091) (-2377 . 477005)
+ (-2378 . 476939) (-2379 . 476843) (-2380 . 476791) (-2381 . 476717)
+ (-2382 . 476561) (-2383 . 476474) (-2384 . 475944) (-2385 . 475885)
+ (-2386 . 475799) (-2387 . 475733) (-2388 . 457158) (-2389 . 457062)
+ (-2390 . 457010) (-2391 . 456936) (-2392 . 456802) (-2393 . 456584)
+ (-2394 . 456217) (-2395 . 456134) (-2396 . 455948) (-2397 . 455852)
+ (-2398 . 455800) (-2399 . 455656) (-2400 . 455625) (-2401 . 455491)
+ (-2402 . 455273) (-2403 . 454769) (-2404 . 454658) (-2405 . 454621)
+ (-2406 . 454343) (-2407 . 454160) (-2408 . 454091) (-2409 . 453995)
+ (-2410 . 453942) (-2411 . 453789) (-2412 . 453643) (-2413 . 453530)
+ (-2414 . 453311) (-2415 . 453245) (-2416 . 453208) (-2417 . 453058)
+ (-2418 . 452962) (-2419 . 452849) (-2420 . 452674) (-2421 . 452555)
+ (-2422 . 452375) (-2423 . 452309) (-2424 . 452275) (-2425 . 452145)
+ (-2426 . 451854) (-2427 . 451758) (-2428 . 451645) (-2429 . 451492)
+ (-2430 . 451418) (-2431 . 451344) (-2432 . 451310) (-2433 . 451180)
+ (-2434 . 451077) (-2435 . 450981) (-2436 . 450923) (-2437 . 450770)
+ (-2438 . 450691) (-2439 . 450338) (-2440 . 450266) (-2441 . 450211)
+ (-2442 . 450108) (-2443 . 449990) (-2444 . 449894) (-2445 . 449468)
+ (-2446 . 449410) (-2447 . 449278) (-2448 . 448992) (-2449 . 448762)
+ (-2450 . 448706) (-2451 . 448307) (-2452 . 448131) (-2453 . 447950)
+ (-2454 . 447854) (-2455 . 447804) (-2456 . 447518) (-2457 . 447350)
+ (-2458 . 447038) (-2459 . 446808) (-2460 . 446756) (-2461 . 446518)
+ (-2462 . 446358) (-2463 . 446295) (-2464 . 446215) (-2465 . 446029)
+ (-2466 . 445618) (-2467 . 445505) (-2468 . 445449) (-2469 . 445174)
+ (-2470 . 445115) (-2471 . 445055) (-2472 . 444817) (-2473 . 444714)
+ (-2474 . 444636) (-2475 . 444033) (-2476 . 443747) (-2477 . 443202)
+ (-2478 . 443089) (-2479 . 442997) (-2480 . 442758) (-2481 . 442577)
+ (-2482 . 442481) (-2483 . 442421) (-2484 . 442348) (-2485 . 442128)
+ (-2486 . 441812) (-2487 . 441680) (-2488 . 441588) (-2489 . 441536)
+ (-2490 . 441376) (-2491 . 441244) (-2492 . 441059) (-2493 . 440797)
+ (-2494 . 440630) (-2495 . 440481) (-2496 . 440304) (-2497 . 440146)
+ (-2498 . 440089) (-2499 . 439994) (-2500 . 439939) (-2501 . 439776)
+ (-2502 . 439677) (-2503 . 439582) (-2504 . 439476) (-2505 . 439306)
+ (-2506 . 438760) (-2507 . 438688) (-2508 . 438593) (-2509 . 438523)
+ (-2510 . 438381) (-2511 . 438135) (-2512 . 438057) (-2513 . 438028)
+ (-2514 . 437915) (-2515 . 437845) (-2516 . 437746) (-2517 . 437413)
+ (-2518 . 437341) (-2519 . 437246) (-2520 . 437157) (-2521 . 437007)
+ (-2522 . 436761) (-2523 . 436629) (-2524 . 436533) (-2525 . 436449)
+ (-2526 . 436350) (-2527 . 436269) (-2528 . 436066) (-2529 . 436014)
+ (-2530 . 435941) (-2531 . 435846) (-2532 . 435777) (-2533 . 435647)
+ (-2534 . 434918) (-2535 . 434822) (-2536 . 434707) (-2537 . 434676)
+ (-2538 . 434597) (-2539 . 434524) (-2540 . 434321) (-2541 . 433979)
+ (-2542 . 433884) (-2543 . 433812) (-2544 . 433682) (-2545 . 432953)
+ (-2546 . 432787) (-2547 . 432693) (-2548 . 432614) (-2549 . 432536)
+ (-2550 . 432333) (-2551 . 432181) (-2552 . 432086) (-2553 . 431853)
+ (-2554 . 431706) (-2555 . 431568) (-2556 . 430892) (-2557 . 430328)
+ (-2558 . 430234) (-2559 . 430082) (-2560 . 430001) (-2561 . 429798)
+ (-2562 . 429725) (-2563 . 429630) (-2564 . 429578) (-2565 . 429451)
+ (-2566 . 428887) (-2567 . 428824) (-2568 . 428635) (-2569 . 428532)
+ (-2570 . 428235) (-2571 . 428119) (-2572 . 428046) (-2573 . 427951)
+ (-2574 . 427896) (-2575 . 427793) (-2576 . 427229) (-2577 . 427166)
+ (-2578 . 426994) (-2579 . 426939) (-2580 . 426840) (-2581 . 426781)
+ (-2582 . 426666) (-2583 . 426537) (-2584 . 426464) (-2585 . 426369)
+ (-2586 . 426338) (-2587 . 426231) (-2588 . 425667) (-2589 . 425604)
+ (-2590 . 425432) (-2591 . 425243) (-2592 . 425184) (-2593 . 425019)
+ (-2594 . 424903) (-2595 . 424649) (-2596 . 424472) (-2597 . 424377)
+ (-2598 . 424271) (-2599 . 423753) (-2600 . 423653) (-2601 . 422979)
+ (-2602 . 422926) (-2603 . 422754) (-2604 . 422631) (-2605 . 422496)
+ (-2606 . 422262) (-2607 . 422146) (-2608 . 422002) (-2609 . 421945)
+ (-2610 . 421850) (-2611 . 421615) (-2612 . 421564) (-2613 . 421445)
+ (-2614 . 421280) (-2615 . 420606) (-2616 . 419380) (-2617 . 419208)
+ (-2618 . 419135) (-2619 . 419076) (-2620 . 418936) (-2621 . 418838)
+ (-2622 . 417498) (-2623 . 417403) (-2624 . 417061) (-2625 . 416913)
+ (-2626 . 416717) (-2627 . 415980) (-2628 . 415907) (-2629 . 415737)
+ (-2630 . 415425) (-2631 . 415327) (-2632 . 415133) (-2633 . 415038)
+ (-2634 . 414857) (-2635 . 414780) (-2636 . 414359) (-2637 . 414286)
+ (-2638 . 413724) (-2639 . 413604) (-2640 . 413516) (-2641 . 413171)
+ (-2642 . 413058) (-2643 . 412906) (-2644 . 412811) (-2645 . 412625)
+ (-2646 . 412522) (-2647 . 412440) (-2648 . 411878) (-2649 . 411805)
+ (-2650 . 411708) (-2651 . 411377) (-2652 . 411168) (-2653 . 411016)
+ (-2654 . 410921) (-2655 . 410634) (-2656 . 410528) (-2657 . 410415)
+ (-2658 . 409853) (-2659 . 409780) (-2660 . 409359) (-2661 . 409325)
+ (-2662 . 409227) (-2663 . 408741) (-2664 . 408540) (-2665 . 408445)
+ (-2666 . 408372) (-2667 . 408284) (-2668 . 408094) (-2669 . 407419)
+ (-2670 . 407261) (-2671 . 406921) (-2672 . 406890) (-2673 . 406822)
+ (-2674 . 406706) (-2675 . 406434) (-2676 . 406339) (-2677 . 406274)
+ (-2678 . 406192) (-2679 . 405819) (-2680 . 405144) (-2681 . 404986)
+ (-2682 . 404913) (-2683 . 404829) (-2684 . 404761) (-2685 . 404663)
+ (-2686 . 404465) (-2687 . 404370) (-2688 . 404342) (-2689 . 404192)
+ (-2690 . 403912) (-2691 . 403237) (-2692 . 403017) (-2693 . 402961)
+ (-2694 . 402893) (-2695 . 402641) (-2696 . 402612) (-2697 . 402517)
+ (-2698 . 402467) (-2699 . 402337) (-2700 . 402286) (-2701 . 401723)
+ (-2702 . 401390) (-2703 . 401292) (-2704 . 401230) (-2705 . 401117)
+ (-2706 . 400918) (-2707 . 400817) (-2708 . 400722) (-2709 . 399276)
+ (-2710 . 399224) (-2711 . 399173) (-2712 . 398610) (-2713 . 398426)
+ (-2714 . 398318) (-2715 . 397723) (-2716 . 397689) (-2717 . 397468)
+ (-2718 . 397296) (-2719 . 397195) (-2720 . 397100) (-2721 . 396622)
+ (-2722 . 396529) (-2723 . 396388) (-2724 . 396318) (-2725 . 395755)
+ (-2726 . 395611) (-2727 . 395503) (-2728 . 395469) (-2729 . 395162)
+ (-12 . 394990) (-2731 . 394889) (-2732 . 394794) (-2733 . 394206)
+ (-2734 . 394094) (-2735 . 393975) (-2736 . 393614) (-2737 . 393512)
+ (-2738 . 393478) (-2739 . 393426) (-2740 . 392689) (-2741 . 392419)
+ (-2742 . 392318) (-2743 . 392223) (-2744 . 391433) (-2745 . 391115)
+ (-2746 . 391086) (-2747 . 390915) (-2748 . 390881) (-2749 . 390049)
+ (-2750 . 389947) (-2751 . 389358) (-2752 . 389257) (-2753 . 389162)
+ (-2754 . 388570) (-2755 . 388389) (-2756 . 388267) (-2757 . 388096)
+ (-2758 . 385315) (-2759 . 385213) (-2760 . 384729) (-2761 . 384628)
+ (-2762 . 384533) (-2763 . 383893) (-2764 . 383749) (-2765 . 383695)
+ (-2766 . 383436) (-2767 . 383402) (-2768 . 383322) (-2769 . 383074)
+ (-2770 . 382973) (-2771 . 382878) (-2772 . 382292) (-2773 . 382134)
+ (-2774 . 381957) (-2775 . 381698) (-2776 . 381664) (-2777 . 381196)
+ (-2778 . 380948) (-2779 . 380778) (-2780 . 380677) (-2781 . 380498)
+ (-2782 . 380424) (-2783 . 380260) (-2784 . 380199) (-2785 . 379753)
+ (-2786 . 379558) (-2787 . 379524) (-2788 . 378864) (-2789 . 378377)
+ (-2790 . 378253) (-2791 . 378152) (-2792 . 378042) (-2793 . 377990)
+ (-2794 . 377826) (-2795 . 377645) (-2796 . 377426) (-2797 . 377231)
+ (-2798 . 377197) (-2799 . 377133) (-2800 . 376510) (-2801 . 376409)
+ (-2802 . 376157) (-2803 . 376105) (-2804 . 375897) (-2805 . 375836)
+ (-2806 . 375239) (-2807 . 375142) (-2808 . 375021) (-2809 . 374568)
+ (-2810 . 374453) (-2811 . 374161) (-2812 . 374087) (-2813 . 373898)
+ (-2814 . 373826) (-2815 . 373703) (-2816 . 373625) (-2817 . 373504)
+ (-2818 . 373413) (-2819 . 373253) (* . 368986) (-2821 . 368871)
+ (-2822 . 368663) (-2823 . 368608) (-2824 . 368450) (-2825 . 368074)
+ (-2826 . 367829) (-2827 . 367681) (-2828 . 367590) (-2829 . 367482)
+ (-2830 . 367333) (-2831 . 367282) (-2832 . 367122) (-2833 . 367070)
+ (-2834 . 366909) (-2835 . 366856) (-2836 . 366537) (-2837 . 365858)
+ (-2838 . 365803) (-2839 . 365684) (-2840 . 365576) (-2841 . 365247)
+ (-2842 . 365130) (-2843 . 364966) (-2844 . 364914) (-2845 . 364753)
+ (-2846 . 364625) (-2847 . 364110) (-2848 . 363628) (-2849 . 363554)
+ (-2850 . 363502) (-2851 . 363343) (-2852 . 363182) (-2853 . 362910)
+ (-2854 . 362852) (-2855 . 362800) (-2856 . 362748) (-2857 . 362590)
+ (-2858 . 362437) (-2859 . 361955) (-2860 . 361903) (-2861 . 361616)
+ (-2862 . 361473) (-2863 . 361372) (-2864 . 361310) (-2865 . 361240)
+ (-2866 . 361100) (-2867 . 361047) (-2868 . 360543) (-2869 . 360491)
+ (-2870 . 360323) (-2871 . 360180) (-2872 . 359949) (-2873 . 359848)
+ (-2874 . 359796) (-2875 . 359345) (-2876 . 359217) (-2877 . 359074)
+ (-2878 . 359006) (-2879 . 358954) (-2880 . 358832) (-2881 . 358689)
+ (-2882 . 358602) (-2883 . 358501) (-2884 . 358422) (-2885 . 358359)
+ (-2886 . 358152) (-2887 . 358024) (-2888 . 348574) (-2889 . 348503)
+ (-2890 . 348450) (-2891 . 348211) (-2892 . 347930) (-2893 . 347771)
+ (-2894 . 347655) (-2895 . 347581) (-2896 . 347529) (-2897 . 347264)
+ (-2898 . 347136) (-2899 . 346985) (-2900 . 346914) (-2901 . 346845)
+ (-2902 . 346641) (-2903 . 346416) (-2904 . 346329) (-2905 . 345594)
+ (-2906 . 345542) (-2907 . 345176) (-2908 . 345033) (-2909 . 344982)
+ (-2910 . 344862) (-2911 . 344683) (-2912 . 344453) (-2913 . 344242)
+ (-2914 . 343712) (-2915 . 343587) (-2916 . 343317) (-2917 . 343174)
+ (-2918 . 343124) (-2919 . 343096) (-2920 . 342977) (-2921 . 342818)
+ (-2922 . 342625) (-2923 . 342407) (-2924 . 342282) (-2925 . 342163)
+ (-2926 . 342081) (-2927 . 341771) (-2928 . 341629) (-2929 . 341578)
+ (-2930 . 341459) (-2931 . 341357) (-2932 . 340821) (-2933 . 340542)
+ (-2934 . 340324) (-2935 . 339138) (-2936 . 338998) (-2937 . 338782)
+ (-2938 . 338575) (-2939 . 338430) (-2940 . 338379) (-2941 . 338330)
+ (-2942 . 338252) (-2943 . 338109) (-2944 . 337930) (-2945 . 337536)
+ (-2946 . 336354) (-2947 . 336236) (-2948 . 336053) (-2949 . 335742)
+ (-2950 . 334989) (-2951 . 334791) (-2952 . 334721) (-2953 . 334643)
+ (-2954 . 334463) (-2955 . 334338) (-2956 . 332131) (-2957 . 331968)
+ (-2958 . 331382) (-2959 . 331219) (-2960 . 331076) (-2961 . 331002)
+ (-2962 . 330949) (-2963 . 330808) (-2964 . 330593) (-2965 . 330435)
+ (-2966 . 330218) (-2967 . 330077) (-2968 . 329889) (-2969 . 329775)
+ (-9 . 329747) (-2971 . 329642) (-2972 . 329589) (-2973 . 329536)
+ (-2974 . 329333) (-2975 . 329139) (-2976 . 328141) (-2977 . 327695)
+ (-2978 . 327480) (-2979 . 327231) (-2980 . 327071) (-2981 . 326950)
+ (-8 . 326922) (-2983 . 326696) (-2984 . 326643) (-2985 . 326499)
+ (-2986 . 325635) (-2987 . 324756) (-2988 . 324647) (-2989 . 324529)
+ (-7 . 324501) (-2991 . 324421) (-2992 . 324368) (-2993 . 324118)
+ (-2994 . 324089) (-2995 . 324035) (-2996 . 323219) (-2997 . 323104)
+ (-2998 . 322906) (-2999 . 322489) (-3000 . 322377) (-3001 . 322300)
+ (-3002 . 322247) (-3003 . 322216) (-3004 . 321898) (-3005 . 321729)
+ (-3006 . 321053) (-3007 . 320621) (-3008 . 320567) (-3009 . 320498)
+ (-3010 . 320300) (-3011 . 320191) (-3012 . 320083) (-3013 . 319965)
+ (-3014 . 319869) (-3015 . 319816) (-3016 . 319758) (-3017 . 319529)
+ (-3018 . 319163) (-3019 . 319134) (-3020 . 319033) (-3021 . 318653)
+ (-3022 . 318584) (-3023 . 318299) (-3024 . 318132) (-3025 . 318027)
+ (-3026 . 317921) (-3027 . 317869) (-3028 . 317751) (-3029 . 317334)
+ (-3030 . 317265) (-3031 . 316825) (-3032 . 314598) (-3033 . 314505)
+ (-3034 . 314422) (-3035 . 314323) (-3036 . 314271) (-3037 . 314186)
+ (-3038 . 313881) (-3039 . 313763) (-3040 . 313387) (-3041 . 313321)
+ (-3042 . 313293) (-3043 . 307955) (-3044 . 307691) (-3045 . 307587)
+ (-3046 . 307478) (-3047 . 307399) (-3048 . 307326) (-3049 . 307273)
+ (-3050 . 307188) (-3051 . 306804) (-3052 . 306744) (-3053 . 306368)
+ (-3054 . 306243) (-3055 . 306169) (-3056 . 306013) (-3057 . 305587)
+ (-3058 . 305535) (-3059 . 304569) (-3060 . 304499) (-3061 . 304420)
+ (-3062 . 304367) (-3063 . 304274) (-3064 . 304189) (-3065 . 303962)
+ (-3066 . 303809) (-3067 . 303592) (-3068 . 303428) (-3069 . 303280)
+ (-3070 . 303186) (-3071 . 303092) (-3072 . 303021) (-3073 . 302959)
+ (-3074 . 302727) (-3075 . 302425) (-3076 . 302375) (-3077 . 302212)
+ (-3078 . 302064) (-3079 . 301993) (-3080 . 300875) (-3081 . 300781)
+ (-3082 . 300728) (-3083 . 300672) (-3084 . 300282) (-3085 . 300123)
+ (-3086 . 300052) (-3087 . 299888) (-3088 . 299825) (-3089 . 299602)
+ (-3090 . 299410) (-3091 . 297680) (-3092 . 297480) (-3093 . 297452)
+ (-3094 . 297396) (-3095 . 296509) (-3096 . 296178) (-3097 . 296035)
+ (-3098 . 295865) (-3099 . 295731) (-3100 . 295570) (-3101 . 293993)
+ (-3102 . 292812) (-3103 . 292654) (-3104 . 292626) (-3105 . 292570)
+ (-3106 . 291988) (-3107 . 291905) (-3108 . 291852) (-3109 . 291775)
+ (-3110 . 291242) (-3111 . 290440) (-3112 . 290282) (-3113 . 290254)
+ (-3114 . 290183) (-3115 . 289365) (-3116 . 289203) (-3117 . 289120)
+ (-3118 . 289067) (-3119 . 288990) (-3120 . 288791) (-3121 . 288281)
+ (-3122 . 288208) (-3123 . 288050) (-3124 . 288022) (-3125 . 287951)
+ (-3126 . 287699) (-3127 . 287615) (-3128 . 287469) (-3129 . 287340)
+ (-3130 . 287203) (-3131 . 286985) (-3132 . 286577) (-3133 . 286419)
+ (-3134 . 286339) (-3135 . 286268) (-3136 . 286016) (-3137 . 285935)
+ (-3138 . 285667) (-3139 . 285608) (-3140 . 285548) (-3141 . 285418)
+ (-3142 . 285253) (-3143 . 284593) (-3144 . 284519) (-3145 . 284361)
+ (-3146 . 284301) (-3147 . 284220) (-3148 . 283974) (-3149 . 283613)
+ (-3150 . 283554) (-3151 . 283501) (-3152 . 283371) (-3153 . 282962)
+ (-3154 . 282890) (-3155 . 282838) (-3156 . 282764) (-3157 . 282606)
+ (-3158 . 282554) (-3159 . 282474) (-3160 . 282228) (-3161 . 282171)
+ (-3162 . 282119) (-3163 . 282049) (-3164 . 281879) (-3165 . 281752)
+ (-3166 . 281680) (-3167 . 280252) (-3168 . 280185) (-3169 . 280133)
+ (-3170 . 280048) (-3171 . 279802) (-3172 . 279730) (-3173 . 279612)
+ (-3174 . 279552) (-3175 . 279425) (-3176 . 278340) (-3177 . 278298)
+ (-3178 . 278140) (-3179 . 278088) (-3180 . 277996) (-3181 . 277750)
+ (-3182 . 277693) (-3183 . 277566) (-3184 . 277433) (-3185 . 277374)
+ (-3186 . 277247) (-3187 . 277124) (-3188 . 277063) (-3189 . 276905)
+ (-3190 . 276853) (-3191 . 276549) (-3192 . 276302) (-3193 . 276084)
+ (-3194 . 275852) (-3195 . 275571) (-3196 . 275511) (-3197 . 275384)
+ (-3198 . 275167) (-3199 . 275113) (-3200 . 274972) (-3201 . 274915)
+ (-3202 . 274757) (-3203 . 274705) (-3204 . 274624) (-3205 . 274377)
+ (-3206 . 274159) (-3207 . 274075) (-3208 . 274006) (-3209 . 273758)
+ (-3210 . 273622) (-3211 . 273563) (-3212 . 273460) (-3213 . 273329)
+ (-3214 . 273226) (-3215 . 273175) (-3216 . 273017) (-3217 . 272945)
+ (-3218 . 272169) (-3219 . 271922) (-3220 . 271820) (-3221 . 271547)
+ (-3222 . 271404) (-3223 . 271231) (-3224 . 271175) (-3225 . 271115)
+ (-3226 . 271015) (-3227 . 270884) (-3228 . 270438) (-3229 . 270303)
+ (-3230 . 270145) (-3231 . 270066) (-3232 . 269861) (-3233 . 269614)
+ (-3234 . 269396) (-3235 . 269334) (-3236 . 269058) (-3237 . 269002)
+ (-3238 . 268762) (-3239 . 268703) (-3240 . 268606) (-3241 . 268444)
+ (-3242 . 267998) (-3243 . 267863) (-3244 . 267810) (-3245 . 267652)
+ (-3246 . 267221) (-3247 . 267086) (-3248 . 267020) (-3249 . 266830)
+ (-3250 . 266712) (-3251 . 266539) (-3252 . 266461) (-3253 . 266402)
+ (-3254 . 266343) (-3255 . 266213) (-3256 . 266109) (-3257 . 265663)
+ (-3258 . 265548) (-3259 . 265390) (-3260 . 265340) (-3261 . 265273)
+ (-3262 . 265174) (-3263 . 264310) (-3264 . 264137) (-3265 . 264078)
+ (-3266 . 263936) (-3267 . 263785) (-3268 . 263726) (-3269 . 263201)
+ (-3270 . 263043) (-3271 . 262928) (-3272 . 262810) (-3273 . 262743)
+ (-3274 . 262711) (-3275 . 262160) (-3276 . 261987) (-3277 . 261906)
+ (-3278 . 261850) (-3279 . 261580) (-3280 . 261482) (-3281 . 261100)
+ (-3282 . 261041) (-3283 . 260951) (-3284 . 260813) (-3285 . 260739)
+ (-3286 . 260682) (-3287 . 260561) (-3288 . 260211) (-3289 . 260038)
+ (-3290 . 259982) (-3291 . 259888) (-3292 . 259645) (-3293 . 259539)
+ (-3294 . 259446) (-3295 . 258824) (-3296 . 258686) (-3297 . 258612)
+ (-3298 . 258534) (-3299 . 258391) (-3300 . 258164) (-3301 . 257892)
+ (-3302 . 257695) (-3303 . 257579) (-3304 . 257116) (-3305 . 257010)
+ (-3306 . 256927) (-3307 . 256872) (-3308 . 256795) (-3309 . 256652)
+ (-3310 . 256584) (-3311 . 256525) (-3312 . 256425) (-3313 . 249482)
+ (-3314 . 249355) (-3315 . 249258) (-3316 . 248942) (-3317 . 248102)
+ (-3318 . 247939) (-3319 . 247862) (-3320 . 247807) (-3321 . 247736)
+ (-3322 . 247596) (-3323 . 247496) (-3324 . 247246) (-3325 . 247100)
+ (-3326 . 246999) (-3327 . 246391) (-3328 . 244535) (-3329 . 244421)
+ (-3330 . 244344) (-3331 . 244289) (-3332 . 244218) (-3333 . 244078)
+ (-3334 . 242294) (-3335 . 242237) (-3336 . 242109) (-3337 . 242012)
+ (-3338 . 241402) (-3339 . 241334) (-3340 . 241257) (-3341 . 240866)
+ (-3342 . 240811) (-3343 . 240745) (-3344 . 240602) (-3345 . 240488)
+ (-3346 . 239977) (-3347 . 239925) (-3348 . 239781) (-3349 . 238703)
+ (-3350 . 238635) (-3351 . 237419) (-3352 . 237348) (-3353 . 237261)
+ (-3354 . 237134) (-3355 . 236064) (-3356 . 235911) (-3357 . 235704)
+ (-3358 . 235652) (-3359 . 235381) (-3360 . 234795) (-3361 . 234727)
+ (-3362 . 234627) (-3363 . 233691) (-3364 . 233483) (-3365 . 233411)
+ (-3366 . 233281) (-3367 . 233185) (-3368 . 233018) (-3369 . 232097)
+ (-3370 . 232045) (-3371 . 231179) (-3372 . 231111) (-3373 . 230795)
+ (-3374 . 230629) (-3375 . 230529) (-3376 . 230425) (-3377 . 230237)
+ (-3378 . 230113) (-3379 . 230008) (-3380 . 229841) (-3381 . 229661)
+ (-3382 . 229569) (-3383 . 229471) (-3384 . 229312) (-3385 . 229244)
+ (-3386 . 228906) (-3387 . 228578) (-3388 . 228497) (-3389 . 228306)
+ (-3390 . 228088) (-3391 . 227916) (-3392 . 227792) (-3393 . 227705)
+ (-3394 . 227606) (-3395 . 227514) (-3396 . 227375) (-3397 . 227000)
+ (-3398 . 226669) (-3399 . 226589) (-3400 . 226511) (-3401 . 225898)
+ (-3402 . 225802) (-3403 . 225620) (-3404 . 225514) (-3405 . 225485)
+ (-3406 . 225367) (-3407 . 225281) (-3408 . 225070) (-3409 . 225014)
+ (-3410 . 224687) (-3411 . 224280) (-3412 . 224173) (-3413 . 224036)
+ (-3414 . 223609) (-3415 . 223503) (-3416 . 222901) (-3417 . 222844)
+ (-3418 . 222767) (-3419 . 222643) (-3420 . 222541) (-3421 . 222489)
+ (-3422 . 222359) (-3423 . 221997) (-3424 . 221835) (-3425 . 221698)
+ (-3426 . 221636) (-3427 . 221533) (-3428 . 221367) (-3429 . 221285)
+ (-3430 . 219123) (-3431 . 218977) (-3432 . 218875) (-3433 . 218772)
+ (-3434 . 218264) (-3435 . 218079) (-3436 . 217971) (-3437 . 217872)
+ (-3438 . 217735) (-3439 . 217151) (-3440 . 216998) (-3441 . 216926)
+ (-3442 . 216755) (-3443 . 215839) (-3444 . 215754) (-3445 . 214606)
+ (-3446 . 214063) (-3447 . 213927) (-3448 . 213859) (-3449 . 213703)
+ (-3450 . 213633) (-3451 . 213396) (-3452 . 213319) (-3453 . 213240)
+ (-3454 . 213113) (-3455 . 212967) (-3456 . 212912) (-3457 . 212878)
+ (-3458 . 212232) (-3459 . 212053) (-3460 . 211899) (-3461 . 211845)
+ (-3462 . 211709) (-3463 . 211593) (-3464 . 211516) (-3465 . 211360)
+ (-3466 . 211283) (-3467 . 211138) (-3468 . 211007) (-3469 . 210768)
+ (-3470 . 210619) (-3471 . 210564) (-3472 . 209722) (-3473 . 209130)
+ (-3474 . 208908) (-3475 . 208785) (-3476 . 208669) (-3477 . 208299)
+ (-3478 . 208152) (-3479 . 208120) (-3480 . 207967) (-3481 . 207911)
+ (-3482 . 207782) (-3483 . 207492) (-3484 . 207414) (-3485 . 203805)
+ (-3486 . 203583) (-3487 . 203484) (-3488 . 203368) (-3489 . 203190)
+ (-3490 . 203027) (-3491 . 202995) (-3492 . 202832) (-3493 . 202776)
+ (-3494 . 202697) (-3495 . 202644) (-3496 . 202567) (-3497 . 202345)
+ (-3498 . 202196) (-3499 . 202143) (-3500 . 202071) (-3501 . 201992)
+ (-3502 . 201960) (-3503 . 201866) (-3504 . 201787) (-3505 . 201734)
+ (-3506 . 201657) (-3507 . 201438) (-3508 . 201339) (-3509 . 201254)
+ (-3510 . 201114) (-3511 . 201032) (-3512 . 201000) (-3513 . 200804)
+ (-3514 . 200675) (-3515 . 200556) (-3516 . 200476) (-3517 . 200257)
+ (-3518 . 200102) (-3519 . 199786) (-3520 . 199596) (-3521 . 199437)
+ (-3522 . 199405) (-3523 . 199089) (-3524 . 198960) (-3525 . 198868)
+ (-3526 . 198809) (-3527 . 198590) (-3528 . 198435) (-3529 . 198380)
+ (-3530 . 198298) (-3531 . 198182) (-3532 . 198150) (-3533 . 197975)
+ (-3534 . 197666) (-3535 . 196485) (-3536 . 196317) (-3537 . 196022)
+ (-3538 . 195963) (-3539 . 195910) (-3540 . 195691) (-3541 . 195587)
+ (-3542 . 195504) (-3543 . 195434) (-3544 . 194782) (-3545 . 194666)
+ (-3546 . 194584) (-3547 . 194552) (-3548 . 194303) (-3549 . 193936)
+ (-3550 . 193874) (-3551 . 193800) (-3552 . 193671) (-3553 . 193477)
+ (-3554 . 193374) (-3555 . 193155) (-3556 . 192560) (-3557 . 192245)
+ (-3558 . 192129) (-3559 . 192047) (-3560 . 192015) (-3561 . 191735)
+ (-3562 . 191656) (-3563 . 191527) (-3564 . 191339) (-3565 . 191236)
+ (-3566 . 191163) (-3567 . 190944) (-3568 . 190838) (-3569 . 190551)
+ (-3570 . 190398) (-3571 . 190292) (-3572 . 190263) (-3573 . 189984)
+ (-3574 . 189839) (-3575 . 189736) (-3576 . 189635) (-3577 . 189557)
+ (-3578 . 189438) (-3579 . 189294) (-3580 . 189232) (-3581 . 189119)
+ (-3582 . 189026) (-3583 . 188948) (-3584 . 188803) (-3585 . 188700)
+ (-3586 . 188645) (-3587 . 188549) (-3588 . 188427) (-3589 . 188353)
+ (-3590 . 188178) (-3591 . 188065) (-3592 . 187972) (-3593 . 187894)
+ (-3594 . 187604) (-3595 . 187521) (-3596 . 187466) (-3597 . 187370)
+ (-3598 . 187311) (-3599 . 187241) (-3600 . 186824) (-3601 . 186738)
+ (-3602 . 186585) (-3603 . 186472) (-3604 . 186379) (-3605 . 185992)
+ (-3606 . 183860) (-3607 . 183677) (-3608 . 183216) (-3609 . 183142)
+ (-3610 . 183087) (-3611 . 182991) (-3612 . 182838) (-3613 . 182725)
+ (-3614 . 182654) (-3615 . 182481) (-3616 . 182135) (-3617 . 182083)
+ (-3618 . 181910) (-3619 . 181876) (-3620 . 181842) (-3621 . 181787)
+ (-3622 . 181688) (-3623 . 181435) (-3624 . 181142) (-3625 . 180968)
+ (-3626 . 180846) (-3627 . 180754) (-3628 . 180652) (-3629 . 180590)
+ (-3630 . 180553) (-3631 . 180519) (-3632 . 179889) (-3633 . 179734)
+ (-3634 . 179628) (-3635 . 179317) (-3636 . 178914) (-3637 . 178834)
+ (-3638 . 178642) (-3639 . 178505) (-3640 . 178343) (-3641 . 178081)
+ (-3642 . 176986) (-3643 . 176949) (-3644 . 176731) (-3645 . 176438)
+ (-3646 . 176314) (-3647 . 175962) (-3648 . 175074) (-3649 . 175016)
+ (-3650 . 174717) (-3651 . 174583) (-3652 . 174223) (-3653 . 174121)
+ (-3654 . 173869) (-3655 . 173745) (-3656 . 173519) (-3657 . 173177)
+ (-3658 . 173104) (-3659 . 172909) (-3660 . 172775) (-3661 . 172617)
+ (-3662 . 172412) (-3663 . 171010) (-3664 . 170922) (-3665 . 170785)
+ (-3666 . 170757) (-3667 . 170390) (-3668 . 170115) (-3669 . 169946)
+ (-3670 . 169881) (-3671 . 169770) (-3672 . 169655) (-3673 . 169355)
+ (-3674 . 169242) (-3675 . 169132) (-3676 . 169079) (-3677 . 168801)
+ (-3678 . 168716) (-3679 . 168579) (-3680 . 168529) (-3681 . 168475)
+ (-3682 . 168352) (-3683 . 167964) (-3684 . 167735) (-3685 . 167670)
+ (-3686 . 167544) (-3687 . 167244) (-3688 . 167215) (-3689 . 167113)
+ (-3690 . 167014) (-3691 . 166877) (-3692 . 166331) (-3693 . 166229)
+ (-3694 . 166045) (-3695 . 165791) (-3696 . 165718) (-3697 . 165651)
+ (-3698 . 165494) (-3699 . 159980) (-3700 . 159881) (-3701 . 159825)
+ (-3702 . 159346) (-3703 . 158982) (-3704 . 158646) (-3705 . 158512)
+ (-3706 . 158433) (-3707 . 158080) (-3708 . 157569) (-3709 . 154748)
+ (-3710 . 154632) (-3711 . 154537) (-3712 . 154311) (-3713 . 154234)
+ (-3714 . 153841) (-3715 . 153780) (-3716 . 153625) (-3717 . 153506)
+ (-3718 . 153341) (-3719 . 152803) (-3720 . 152637) (-3721 . 151609)
+ (-3722 . 151420) (-3723 . 150905) (-3724 . 150850) (-3725 . 150753)
+ (-3726 . 150681) (-3727 . 150581) (-3728 . 150139) (-3729 . 150024)
+ (-3730 . 149913) (-3731 . 149729) (-3732 . 149651) (-3733 . 149485)
+ (-3734 . 149167) (-3735 . 148987) (-3736 . 148712) (-3737 . 148660)
+ (-3738 . 148580) (-3739 . 148498) (-3740 . 148163) (-3741 . 148060)
+ (-3742 . 147949) (-3743 . 147815) (-3744 . 147364) (-3745 . 147152)
+ (-3746 . 146961) (-3747 . 146285) (-3748 . 146233) (-3749 . 146160)
+ (-3750 . 146086) (-3751 . 146006) (-3752 . 145926) (-3753 . 145858)
+ (-3754 . 145702) (-3755 . 145614) (-3756 . 145480) (-3757 . 145328)
+ (-3758 . 144754) (-3759 . 144410) (-3760 . 144143) (-3761 . 144115)
+ (-3762 . 144042) (-3763 . 143983) (-3764 . 143656) (-3765 . 143546)
+ (-3766 . 143273) (-3767 . 143172) (-3768 . 143038) (-3769 . 142519)
+ (-3770 . 142339) (-3771 . 142026) (-3772 . 141998) (-3773 . 141879)
+ (-3774 . 141584) (-3775 . 141511) (-3776 . 141296) (-3777 . 141193)
+ (-3778 . 140934) (-3779 . 140821) (-3780 . 140674) (-3781 . 140576)
+ (-3782 . 140442) (-3783 . 138664) (-3784 . 138491) (-3785 . 138312)
+ (-3786 . 138284) (-3787 . 137956) (-3788 . 137872) (-3789 . 137583)
+ (-3790 . 137510) (-3791 . 133350) (-3792 . 133147) (-3793 . 133075)
+ (-3794 . 132944) (-3795 . 132472) (-3796 . 132210) (-3797 . 132078)
+ (-3798 . 132034) (-3799 . 131872) (-3800 . 131801) (-3801 . 131717)
+ (-3802 . 131332) (-3803 . 130884) (-3804 . 130780) (-3805 . 129973)
+ (-3806 . 129871) (-3807 . 129740) (-3808 . 129136) (-3809 . 128878)
+ (-3810 . 128737) (-3811 . 128666) (-3812 . 128507) (-3813 . 128423)
+ (-3814 . 128395) (-3815 . 127968) (-3816 . 127814) (-3817 . 127742)
+ (-3818 . 127663) (-3819 . 127532) (-3820 . 127282) (-3821 . 126465)
+ (-3822 . 126309) (-3823 . 126257) (-3824 . 126147) (-3825 . 126063)
+ (-3826 . 125864) (-3827 . 125244) (-3828 . 125124) (-3829 . 124788)
+ (-3830 . 124405) (-3831 . 124268) (-3832 . 124096) (-3833 . 123916)
+ (-3834 . 123867) (-3835 . 123816) (-3836 . 123700) (-3837 . 123616)
+ (-3838 . 121987) (-3839 . 121807) (-3840 . 121200) (-3841 . 121071)
+ (-3842 . 120999) (-3843 . 120872) (-3844 . 120657) (-3845 . 120434)
+ (-3846 . 119002) (-3847 . 118950) (-3848 . 118561) (-3849 . 118464)
+ (-3850 . 118214) (-3851 . 117355) (-3852 . 116954) (-3853 . 116736)
+ (-3854 . 116638) (-3855 . 116302) (-3856 . 116222) (-3857 . 116094)
+ (-3858 . 115252) (-3859 . 115199) (-3860 . 115058) (-3861 . 113754)
+ (-3862 . 113702) (-3863 . 113168) (-3864 . 113098) (-3865 . 111802)
+ (-3866 . 111747) (-3867 . 111569) (-3868 . 111481) (-3869 . 111409)
+ (-3870 . 111157) (-3871 . 111104) (-3872 . 110972) (-3873 . 110826)
+ (-3874 . 110710) (-3875 . 110469) (-3876 . 110399) (-3877 . 110321)
+ (-3878 . 110057) (-3879 . 109969) (-3880 . 109516) (-3881 . 109392)
+ (-3882 . 109260) (-3883 . 109208) (-3884 . 108975) (-3885 . 108648)
+ (-3886 . 108553) (-3887 . 108456) (-3888 . 108362) (-3889 . 107988)
+ (-3890 . 107574) (-3891 . 107486) (-3892 . 107414) (-3893 . 107052)
+ (-3894 . 106800) (-3895 . 106748) (-3896 . 106616) (-3897 . 106556)
+ (-3898 . 106461) (-3899 . 105865) (-3900 . 105768) (-3901 . 105689)
+ (-3902 . 105601) (-3903 . 105307) (-3904 . 104057) (-3905 . 103952)
+ (-3906 . 103828) (-3907 . 103736) (-3908 . 103529) (-3909 . 103472)
+ (-3910 . 103349) (-3911 . 103268) (-3912 . 103184) (-3913 . 103111)
+ (-3914 . 103023) (-3915 . 102575) (-3916 . 102498) (-3917 . 102406)
+ (-3918 . 102154) (-3919 . 101956) (-3920 . 101885) (-3921 . 101828)
+ (-3922 . 99767) (-3923 . 99701) (-3924 . 98903) (-3925 . 98819)
+ (-3926 . 98736) (-3927 . 98558) (-3928 . 98464) (-3929 . 98387)
+ (-3930 . 98263) (-3931 . 98189) (-3932 . 98046) (-3933 . 97833)
+ (-3934 . 97774) (-3935 . 97395) (-3936 . 96904) (-3937 . 96821)
+ (-3938 . 96428) (-3939 . 96340) (-3940 . 96268) (-3941 . 95983)
+ (-3942 . 95912) (-3943 . 95591) (-3944 . 95448) (-3945 . 95420)
+ (-3946 . 95348) (-3947 . 94775) (-3948 . 94692) (-3949 . 94299)
+ (-3950 . 94211) (-3951 . 93868) (-3952 . 93595) (-3953 . 93542)
+ (-3954 . 93427) (-3955 . 93319) (-3956 . 93291) (-3957 . 92794)
+ (-3958 . 92584) (-3959 . 92483) (-3960 . 92298) (-3961 . 92210)
+ (-3962 . 92078) (-3963 . 92050) (-3964 . 91777) (-3965 . 91706)
+ (-3966 . 91361) (-3967 . 91240) (-3968 . 91188) (-3969 . 90766)
+ (-3970 . 90689) (-3971 . 90630) (-3972 . 90542) (-3973 . 90335)
+ (-3974 . 90190) (-3975 . 89669) (-3976 . 89371) (-3977 . 89318)
+ (-3978 . 89158) (-3979 . 89091) (-3980 . 89063) (-3981 . 88623)
+ (-3982 . 88354) (-3983 . 88230) (-3984 . 88142) (-3985 . 87918)
+ (-3986 . 87844) (-3987 . 87722) (-3988 . 87577) (-3989 . 87475)
+ (-3990 . 87422) (-3991 . 87283) (-3992 . 87209) (-3993 . 87099)
+ (-3994 . 86229) (-3995 . 85987) (-3996 . 85863) (-3997 . 85557)
+ (-3998 . 85469) (-3999 . 84983) (-4000 . 84838) (-4001 . 84785)
+ (-4002 . 84646) (-4003 . 84531) (-4004 . 84479) (-4005 . 84352)
+ (-4006 . 84142) (-4007 . 84089) (-4008 . 83890) (-4009 . 83802)
+ (-4010 . 83467) (-4011 . 83326) (-4012 . 83273) (-4013 . 83144)
+ (-4014 . 82887) (-4015 . 82835) (-4016 . 82705) (-4017 . 82573)
+ (-4018 . 82518) (-4019 . 82441) (-4020 . 81807) (-4021 . 81719)
+ (-4022 . 81504) (-4023 . 81347) (-4024 . 81294) (-4025 . 81209)
+ (-4026 . 81107) (-4027 . 81055) (-4028 . 80943) (-4029 . 80860)
+ (-4030 . 80525) (-4031 . 80368) (-4032 . 80280) (-4033 . 80021)
+ (-4034 . 79855) (-4035 . 79802) (-4036 . 79306) (-4037 . 79105)
+ (-4038 . 79053) (-4039 . 78895) (-4040 . 78742) (-4041 . 78413)
+ (-4042 . 78022) (-4043 . 77934) (-4044 . 77579) (-4045 . 77488)
+ (-4046 . 77435) (-4047 . 76137) (-4048 . 75815) (-4049 . 75763)
+ (-4050 . 75649) (-4051 . 75290) (-4052 . 75102) (-4053 . 75053)
+ (-4054 . 74915) (-4055 . 74688) (-4056 . 74660) (-4057 . 74580)
+ (-4058 . 74527) (-4059 . 74412) (-4060 . 73938) (-4061 . 73910)
+ (-4062 . 73762) (-4063 . 73470) (-4064 . 73279) (-4065 . 73227)
+ (-4066 . 73089) (-4067 . 72862) (-4068 . 72778) (-4069 . 72698)
+ (-4070 . 72645) (-4071 . 72513) (-4072 . 72406) (-4073 . 72354)
+ (-4074 . 72270) (-4075 . 71978) (-4076 . 71811) (-4077 . 71762)
+ (-4078 . 71642) (-4079 . 71415) (-4080 . 71318) (-4081 . 71265)
+ (-4082 . 70946) (-4083 . 70838) (-4084 . 70754) (-4085 . 70462)
+ (-4086 . 70121) (-4087 . 70069) (-4088 . 69949) (-4089 . 69722)
+ (-4090 . 69243) (-4091 . 68986) (-4092 . 68863) (-4093 . 68810)
+ (-4094 . 68248) (-4095 . 68097) (-4096 . 67989) (-4097 . 67697)
+ (-4098 . 67527) (-4099 . 67381) (-4100 . 67240) (-4101 . 67025)
+ (-4102 . 66666) (-4103 . 66595) (-4104 . 65722) (-4105 . 65669)
+ (-4106 . 65107) (-4107 . 64965) (-4108 . 64542) (-4109 . 64483)
+ (-4110 . 64455) (-4111 . 64209) (-4112 . 64157) (-4113 . 63998)
+ (-4114 . 63910) (-4115 . 63695) (-4116 . 63255) (-4117 . 62885)
+ (-4118 . 62832) (-4119 . 62270) (-4120 . 61851) (-4121 . 61424)
+ (-4122 . 61317) (-4123 . 60983) (-4124 . 60837) (-4125 . 60749)
+ (-4126 . 60597) (-4127 . 60453) (-4128 . 60321) (-4129 . 60034)
+ (-4130 . 59981) (-4131 . 59419) (-4132 . 59169) (-4133 . 59092)
+ (-4134 . 58664) (-4135 . 58466) (-4136 . 58378) (-4137 . 58326)
+ (-4138 . 57572) (-4139 . 57388) (-4140 . 57202) (-4141 . 57132)
+ (-4142 . 57021) (-4143 . 56950) (-4144 . 56388) (-4145 . 55711)
+ (-4146 . 55440) (-4147 . 55277) (-4148 . 55048) (-4149 . 54902)
+ (-4150 . 54814) (-4151 . 54709) (-4152 . 54639) (-4153 . 54568)
+ (-4154 . 54472) (-4155 . 54317) (-4156 . 54046) (-4157 . 53847)
+ (-4158 . 53671) (-4159 . 53619) (-4160 . 53481) (-4161 . 53358)
+ (-4162 . 53288) (-4163 . 53168) (-4164 . 53072) (-4165 . 53000)
+ (-4166 . 52846) (-4167 . 52735) (-4168 . 52348) (-4169 . 52209)
+ (-4170 . 51787) (-4171 . 51406) (-4172 . 51268) (-4173 . 51160)
+ (-4174 . 51066) (-4175 . 50650) (-4176 . 50538) (-4177 . 50466)
+ (-4178 . 50376) (-4179 . 50323) (-4180 . 49620) (-4181 . 49517)
+ (-4182 . 49290) (-4183 . 49238) (-4184 . 49150) (-4185 . 49042)
+ (-4186 . 48948) (-4187 . 48871) (-4188 . 48646) (-4189 . 48593)
+ (-4190 . 48533) (-4191 . 48430) (-4192 . 48159) (-4193 . 47978)
+ (-4194 . 47929) (-4195 . 47841) (-4196 . 47536) (-4197 . 47442)
+ (-4198 . 47389) (-4199 . 46968) (-4200 . 46772) (-4201 . 46695)
+ (-4202 . 46598) (-4203 . 46460) (-4204 . 46408) (-4205 . 46356)
+ (-4206 . 46268) (-4207 . 45958) (-4208 . 45864) (-4209 . 45592)
+ (-4210 . 45539) (-4211 . 45333) (-4212 . 44855) (-4213 . 44778)
+ (-4214 . 44719) (-4215 . 44578) (-4216 . 44529) (-4217 . 44441)
+ (-4218 . 43698) (-4219 . 43604) (-4220 . 43551) (-4221 . 43408)
+ (-4222 . 43358) (-4223 . 43235) (-4224 . 42900) (-4225 . 42422)
+ (-4226 . 42370) (-4227 . 42282) (-4228 . 42105) (-4229 . 42019)
+ (-4230 . 41966) (-4231 . 41870) (-4232 . 41820) (-4233 . 41768)
+ (-4234 . 41516) (-4235 . 41485) (-4236 . 41384) (-4237 . 41261)
+ (-4238 . 41205) (-4239 . 41156) (-4240 . 41068) (-4241 . 40923)
+ (-4242 . 40837) (-4243 . 40694) (-4244 . 40641) (-4245 . 39489)
+ (-4246 . 39439) (-4247 . 39352) (-4248 . 39116) (-4249 . 39064)
+ (-4250 . 38935) (-4251 . 38844) (-4252 . 38739) (-4253 . 38653)
+ (-4254 . 38600) (-4255 . 38529) (-4256 . 38461) (-4257 . 38409)
+ (-4258 . 38331) (-4259 . 38165) (-4260 . 37911) (-4261 . 37709)
+ (-4262 . 37660) (-4263 . 37566) (-4264 . 37448) (-4265 . 37362)
+ (-4266 . 37309) (-4267 . 37100) (-4268 . 36909) (-4269 . 36857)
+ (-4270 . 36779) (-4271 . 36589) (-4272 . 36310) (-4273 . 36060)
+ (-4274 . 35904) (-4275 . 35134) (-4276 . 35082) (-4277 . 34988)
+ (-4278 . 34889) (-4279 . 34838) (-4280 . 34752) (-4281 . 34699)
+ (-4282 . 34521) (-4283 . 34448) (-4284 . 34349) (-4285 . 34138)
+ (-4286 . 33843) (-4287 . 33746) (-4288 . 33697) (-4289 . 33487)
+ (-4290 . 32998) (-4291 . 32936) (-4292 . 32726) (-4293 . 32655)
+ (-4294 . 32537) (-4295 . 31339) (-4296 . 31224) (-4297 . 31083)
+ (-4298 . 30982) (-4299 . 30916) (-4300 . 30866) (-4301 . 30756)
+ (-4302 . 30420) (-4303 . 30242) (-4304 . 30190) (-4305 . 29999)
+ (-4306 . 29766) (-4307 . 29422) (-4308 . 29372) (-4309 . 29254)
+ (-4310 . 28162) (-4311 . 27875) (-4312 . 26810) (-4313 . 26689)
+ (-4314 . 26608) (-4315 . 24352) (-4316 . 24252) (-4317 . 24111)
+ (-4318 . 22931) (-4319 . 22878) (-4320 . 22811) (-4321 . 22591)
+ (-4322 . 22276) (-4323 . 22195) (-4324 . 21814) (-4325 . 21416)
+ (-4326 . 21260) (-4327 . 21000) (-4328 . 20968) (-4329 . 20885)
+ (-4330 . 20607) (-4331 . 20526) (-4332 . 20079) (-4333 . 19861)
+ (-4334 . 19686) (-4335 . 19612) (-4336 . 19416) (-4337 . 19366)
+ (-4338 . 19280) (-4339 . 19206) (-4340 . 19085) (-4341 . 19033)
+ (-4342 . 18798) (-4343 . 18749) (-4344 . 18503) (-4345 . 18359)
+ (-4346 . 18288) (-4347 . 18254) (-4348 . 18222) (-4349 . 18148)
+ (-4350 . 18021) (-4351 . 17767) (-4352 . 17512) (-4353 . 17484)
+ (-4354 . 17018) (-4355 . 16947) (-4356 . 16882) (-4357 . 16796)
+ (-4358 . 16722) (-4359 . 12180) (-4360 . 12083) (-4361 . 12005)
+ (-4362 . 11625) (-4363 . 11542) (-4364 . 11511) (-4365 . 11474)
+ (-4366 . 11050) (-4367 . 9850) (-4368 . 9746) (-4369 . 9660)
+ (-4370 . 9594) (-4371 . 9513) (-4372 . 9414) (-4373 . 8650)
+ (-4374 . 8567) (-4375 . 8229) (-4376 . 8092) (-4377 . 7668)
+ (-4378 . 6966) (-4379 . 6893) (-4380 . 6807) (-4381 . 6741)
+ (-4382 . 6635) (-4383 . 6536) (-4384 . 6392) (-4385 . 6267)
+ (-4386 . 5929) (-4387 . 5691) (-4388 . 5131) (-4389 . 5057)
+ (-4390 . 4378) (-4391 . 4310) (-4392 . 4224) (-4393 . 4158)
+ (-4394 . 3695) (-4395 . 3596) (-4396 . 3452) (-4397 . 3315)
+ (-4398 . 3102) (-4399 . 3016) (-4400 . 2950) (-4401 . 2523)
+ (-4402 . 2424) (-4403 . 2259) (-4404 . 2225) (-4405 . 2142)
+ (-4406 . 1965) (-4407 . 1746) (-4408 . 1493) (-4409 . 1441)
+ (-4410 . 1355) (-4411 . 1289) (-4412 . 1187) (-4413 . 1088)
+ (-4414 . 850) (-4415 . 816) (-4416 . 742) (-4417 . 608) (-4418 . 428)
+ (-4419 . 321) (-4420 . 266) (-4421 . 180) (-4422 . 114) (-4423 . 30)) \ No newline at end of file